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Abstract. A depth upsampling method based on Markov Random Field is
proposed, considering the depth and color information. First, the initial interpo-
lated depth map is inaccurate and oversmooth, we use a rectangle window
centered on every pixel to search the maximum and minimum depth value of the
depth map to find out the edge pixels. Then, we use the depth information to guide
the segmentation of the color image and build different data terms and smoothness
terms for the edge and non-edge pixels. The result depth map is piecewise smooth
and the edge is sharp. In the meanwhile, the result is good where the color infor-
mation is consistent while the depth is not or where the depth information is
consistent while the color is not. Experiments show that the proposed method
performs better than other upsampling methods in terms of mean absolute differ-
ence (MAD).
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1 Introduction

Recently, three-dimension television (3DTV) has been attractive and more applica-
tions such as human pose recognition, interactive free-viewpoint video, and 3D
games have been put into use, the fundamental problem is the acquisition of the
depth information and color information of the same scene. The fully-developed
color camera makes the acquisition of the color information easy. However, the high
complexity and low robustness of the passive methods, like stereo algorithms, limit
the acquisition of the depth image. In recent years, with the advent of the low-cost
depth sensors, such as Time-of-Flight (TOF) range sensors [1] and Kinect [2], the
active sensor-based methods to gain the depth information become more popular.
The TOF sensor measures the traveling time for a reflected light beam from the
sender to an object to the receivers [1]. The tiny camera can overcome the short-
comings of the traditional passive methods and generate real-time depth map and
intensity image. However, the current TOF sensors can only deliver limited spatial
resolution depth image with noise and radial distortion. The Swiss Ranger 4000 [3]
from company Swissranger, for example, can only produce 176 X 144 depth map,
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which is rather low compared to the color image of conventional color camera, the
resolution is usually 1280 X 960 or 1920 x 1080. Therefore, in order to acquire high-
quality depth maps in 3DTV and other applications, the upsampling and distortion
correction are necessary, this paper focuses on the upsampling of the depth image.

As for depth upsampling problem, the traditional method such as: nearest neighbor,
bilinear and bicubic interpolation always generate oversmooth image especially at the
depth discontinuities, the blurry boundaries make it hard to use. Hence, the upsampling
method considering the low-resolution depth map and high-resolution color image gains
much attention.

Depth map upsampling based on low-resolution depth map and high-resolution color
image can be classified into two categories: filter-based upsampling approaches and
Markov random field (MRF) based methods. As for filter-based upsampling method,
Kopf et al. [4] propose a joint bilateral upsampling strategy when a high resolution prior
is available to guide the interpolation from low to high resolution, but when the depth
discontinuity is not consistent with the color edge, the texture transfer artifact is inevi-
table. To avoid the texture transfer artifacts, Chan et al. [5] propose noise aware filter
for depth upsampling (NAFDU), which enables us to fuse the data from a low-resolution
depth camera and a high-resolution color camera while preserving features and elimi-
nating texture transfer artifact, but the image edge structure is easy to be broken using
this method, thus the over-smoothing problem at the depth discontinuity is obvious.
Yang et al. [6] quantize the depth values, build a cost volume of depth probability. They
iteratively apply a bilateral filter on the cost volume, and take the winner-takes-all
approach to update the HR depth values. However, the result is oversmooth at the depth
discontinuity. He et al. [ 7] propose a guide filter to preserve the edge. Lu et al. [8] present
a cross-based framework of performing local multipoint filtering to preserve the edge
and the structure. David et al. [9] propose an anisotropic diffusion tensor, calculated
from a high resolution intensity image to guide the upsampling of the depth map. Min
et al. [10] propose a joint bilateral filter combined with the time information to ensure
the temporal correlation. The filter-based method is fast, but it will cause over-smoothing
problem somehow. For MRF method, Diebel and Thrun [11] propose a 4-node MRF
model based on the fact that depth discontinuities and color difference tend to co-align,
but the result is not that good. Lu et al. [12] presents a new data term to better describe
the depth map and make the depth map more accurate, but the result at the depth discon-
tinuities is still not good. Park et al. [13] use non-local means regularization to improve
the smoothness term. Most of these algorithms are solved by Graph Cuts (GC) [14-16]
or Belief Propagation (BP) [17]. Yin and Collins [18] use a 6-node MRF model
combined the temporal information, which make the depth map more reliable. In addi-
tion, more and more weighting energy equations are proposed, papers [19, 20] combine
the intensity map from the TOF camera as confidence map and the last frame image as
time confidence to gain the depth map.

These methods are based on the assumption that the depth discontinuities and the
boundaries of the color map are consistent. But when the depth value is the same while
the color information is not or otherwise, the result is bad, as shown in Fig. 1.
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(a) (b)

Fig. 1. Inconsistency in the color image and depth map: (a) the depth value is the same while the
color information is different; (b) the color information is the same while the depth value is
different (Color figure online)

The paper proposes a method that can ensure the accuracy of the smooth region, the
depth discontinuities and solve the problems shown in Fig. 1. The remainder of the paper
is organized as follows: In Sect. 2, we review the MRF-based depth map upsampling
method. The proposed method is presented in Sect. 3, followed by the experimental
results and comparisons between the former work with our method in Sect. 4. Finally,
we conclude our work in Sect. 5.

2 Depth Map Upsampling Method Based on MRF

An image analysis problem can be defined as a modeling problem, to solve the image
problem is to find a solution to the model. The depth map upsampling problem can be
transformed to seeking a solution to the MRF problem. The depth value of the image is
related to the initial depth value and the depth value around. In MRF model, each node
represents a variable including the initial depth value, the corresponding color infor-
mation and the depth value around. The edge between the two nodes represents the
connection between the two variables. Let the low-resolution depth map be D, and the
high-resolution color image be I = {z}.p = (i, ) is the pixel in the result high-resolution
depth map D = {d,}. Using a MRF model to describe the problem, then it transforms
to a maximum posterior probability of P(d, z). The maximum posterior probability is:

P, z)

Pd|z) = P0)
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According to the theory of Hammersley-Clifford, solving the maximum posterior
probability can be transformed to solving the minimum of the energy equation of (2)
[21], N(i) represents the neighboring nodes of the node i, A, is smoothness coefficient.

E=Y D)+ Y, AV(j)
i iy

L
JEN(D)

@



Depth Map Upsampling Using Segmentation 119

The data term is used to ensure the result depth getting close to the initial depth value,
o is a threshold of the truncated absolute difference function:

D(i) = min(|d; — d°|, o) 3

The smoothness term is used to ensure the depth of the pixel getting close to the
depth of the neighboring pixels and the depth map is piecewise smooth:

V(i,j) = Wy x min(|d; - d], o) @

Thus, the minimum energy equation problem turns to label assigning problem, a
high-probability depth label is given to every pixel according to the maximum posterior
probability acquired from the initial depth map and the color map, the high-resolution
depth map is acquired.

But there is blurring at the depth discontinuities of the interpolated initial depth map,
which results in the depth value which the data term relies on is incorrect. The paper
builds a rectangle window to search the maximum depth value and the minimum to get
the difference value. If the difference is bigger than some threshold, it is regarded as an
edge pixel, such that the accurate pixel of the initial depth map is acquired. The modified
graph-based image segmentation method is used to get the segmentation information.
Different smoothness weights of the edge pixel and non-edge pixels are built based on
the edge and segmentation information to ensure the depth map is piecewise smooth and
the edge is sharp. In the meanwhile, the area where the color information is consistent
while the depth is not or otherwise is well dealt with.

3 Proposed Method

First, the bicubic interpolation method is used to the low-resolution depth map to get
the initial depth map, then get the edge pixels and use the initial depth map to guide the
segmentation of the color image, and build new data term and smoothness term based
on the edge and segmentation information to get the high-resolution depth map. The
section is described according to the above.

3.1 Acquisition of the Edge Pixels of the Depth Map

The interpolated initial depth map is blurry at the depth discontinuities, and the depth
value is inaccurate, as show in Fig. 2. The depth changes instantly at the discontinuities
in the ground truth while in the interpolated depth map the depth changes gradually. We
find out that when the upscale factor is n, the neighboring (2n + 1) pixels changes
gradually.

So we build a n X n rectangle window centered on every pixel to find out the
maximum and minimum depth value to get the difference:

Dis(i) = max D(i) — min D(i) 5)
ieW(i) iEW()
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Fig. 2. Depth transformation at depth discontinuities: (a) depth map of ground truth and the depth
value changes instantly at depth discontinuities; (b) depth map of the bicubic interpolated depth
map and the depth value changes in the range of (N — n, N + n)

If Dis(i) is bigger than the threshold, then the pixel is edge or the pixel is non-edge.

. 1 if Dis(i) > th,g,
Dedge(l) ={ 0 else * 6)

We use the depth image and the corresponding color image of the dataset Middle-
bury, take the “Arr” image as example, as shown in Fig. 3(a). Downscale the depth image
with factor 8 as shown in Fig. 3(b), and then the bicubic interpolation method is used to
enlarge the low-resolution depth image as shown in Fig. 3(c). It can be seen there is
blurring at the depth discontinuities after the bicubic interpolation. If the traditional
canny, sobel edge extracting method is used to get the edge, there are some mistakes.
While using the above method to get the edge range, we can ensure the depth value of
the non-edge area is the same as the ground truth, as shown in Fig. 3(d).

(a) (b) () (d)

Fig. 3. Acquisition of edge map: (a) ground truth; (b) low-resolution depth map; (c) bicubic
interpolation depth map; (d) edge map acquired by formula (6)
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3.2 Depth-Guided Color Image Segmentation

The graph-based segmentation [22] uses the adaptive threshold to segment the
image. First compute the dissimilarity between every pixel and its neighboring 4
pixels, and sort the edge between two pixels increasingly, if the dissimilarity is no
bigger than the inner dissimilarity, merge the two pixels and then go to the next
edge. The inner difference of a district Int(C) is the biggest intensity difference and
the difference between the districts Diff (C;, C,) is the smallest dissimilarity among
all the edges between the two districts. If the dissimilarity between the districts is no
bigger than the two inner difference:

Diff (C;, C;) < min(Ini(Cy) + r(C), In(C)) + r(C))) (7)

Merge the two districts. In this paper, the condition of merging two districts is
changed to use the segmentation image to guide the depth upsampling. As shown in
Fig. 4, when the depth difference between the two districts is less than a (7 < a < 11)
and the difference of the two districts is no bigger than the inner difference of the two

(a) (b)

(a) (b) (©)

Fig. 5. Close-ups of the edge pixels and pixels around the edge: (a) segmentation image; (b), (c)
close-ups of the edge map and the segmentation image of highlighted rectangle region in (a)
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districts, merge the two districts, or merge the two districts only when the depth differ-
ence is less than f (0 < f < 3). In other words, the segmentation takes the color infor-
mation and depth map into account, but if the depth difference is very little which tends
to 0, it is regarded as an area where the depth is the same while the color information is
not, merge the two districts directly, the result is shown in Fig. 4(b).

3.3 The New Data Term and Smoothness Term

In the paper, we use an 8-node MRF model to deal with the depth map upsampling
problem. The initial depth map is the interpolated depth map, and the color image is
mean shift filtered [23] which can join the area with similar color, wipe some details
and preserve the edge in the meantime. The MRF energy equation consists of two terms,
the following describes the improvement of the data term and smoothness term respec-
tively.

Data Term. In MRF model, the data term is used to ensure the depth value getting closed
to the initial depth value, but because of the inaccuracy of the depth value at depth
discontinuities in the interpolated depth map, we build different data terms for depth in
edge area and non-edge area. The edge area acquired in 3.1 includes almost all edges
pixels, and the data term is as follows:

1. If the current pixel i is not edge pixel, then the initial depth value is trustworthy, the
data term is D(i) = min(|d; — d"|, o).

2. If the current pixel i is in the edge range, then we can’t rely on the initial depth
value completely, we find out a non-edge pixel j which is (n + 3) pixels from the
current pixel and belong to a district with the current pixel. If the pixel can be
find out, we make the initial depth value of the current pixel i equal to the depth
value of pixel j. The data term is D(i) = min(|d; — dﬁu_i|=n+3|, o). As shown in
Fig. 5, for point A at the color boundary of the color image, we can find a non-
edge pixel point B which is (n + 3) pixels from the point A, so we make the
initial depth value of A equal to the depth value of B.

3. If the current pixel is in the edge range and we can’t find out a pixel that satisfies the
condition of (2), we make a data weight w; to reduce the effect of the original depth
value. The data term is:

D(i) = w; xmin(|d; = d’],0)  (0O<w;<1) )
Thus, we build a more accurate data term.

Smoothness Term. As for smoothness term:

V(i.j) = W; X min(|d; — d;|) )

The smoothness weight W;; consists of two sub-weight: W,

and Wla,,’ij, W

seg.ij
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represents the segmentation information of the two neighboring pixels and W,

describes the color difference between the two pixels, the two weights are used to control
the influence of the neighboring pixels.

1. If the pixel i and its neighboring pixel j are non-edge pixels: D, (i) = 0 and
D, 4,.(j) = 0, the segmentation information is ignored, because the depth value of the
two pixels must be the same, we set W, , = 1, W, = 1.

2. For the pixel i and its neighboring pixel j, if one is edge pixel and the other is non-
edge pixel:D, ;. (i) = 0, D, 4, (j) = 1 or otherwise. Then the two pixels are around
the edge range, because we expand the edge range in the search of edge points, the
depth value should be the same: W, = LW, = v(y > 1).

3. Ifthe pixel i and its neighboring pixel j are in the edge range, we can’t define whether
the pixel i and j is edge pixel or not. We combine the color information and the
segmentation information to define the smoothness weight. The similarity in color
image is defined in LAB color space:

VU=l +ai=ap2+(bi=b)?
e 10
Wlab =e 4 ( )

The more similar the color image is, the possibility of the depth value being the same
is larger. But if it is an area where the color information is consistent while the depth is
not, the result depth map is wrong. So we make a segmentation weight in addition:

_J 1 if seg(i) = seg(j)
Wieg = { 10<zt<1) else (11

If the two neighboring pixels belong to one district, we just consider the color infor-
mation of the two pixels. While if the two pixels don’t belong to one district, then weaken
the dependency relation of the two pixels, so the result is more accurate where the color
information is consistent while the depth is not.

4 Experiment Results

The experiments are performed on an Intel Core i7-4790 CPU, 3.60 GHz with 8 GB
memory system using Microsoft visual C++ platform. We use 4 test image sets
including the color image and the corresponding depth map provided by Middlebury
dataset [24]: “Art”, “Books”, “Moebius” and “Dolls”. First, the ground truth maps are
downscaled by factors 2, 4 and 8 to get the low-resolution depth map, and then use
bicubic interpolation to upsample the depth map, thus, we can get the initial depth map.
Then the energy equation is built considering the segmentation and edge information
described above, and solved by Graph Cut (GC). We set the parameters as follow:
Ay =150 =35, thedge =10,y =5, v, w, are set 0.7. For “Art”, “Books”, “Moebius”,
the parameters a and f are set as: « = 10, § = 3. For “Dolls”, the parameters « and f are
setas:a = 7, § = 2. This is because the depth difference between depth areas in “Dolls”
is small, to reduce the two parameters is to get better segmentation result. To evaluate
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the method, we compare our method with the former work [6-11] about depth up
sampling, the result for TGV and Edge are quoted from paper [9, 10]. From Table 1, it
can be seen: as for Mean Absolute Difference (MAD), most of our method is improved.
And the result is good where the color is consistent but the depth is not, as shown in
Fig. 6. The results in Fig. 7 show that texture copying and edge blurring problems have
been reduced with our method.

Table 1. Quantitative comparison on Middlebury dataset (in MAD)

Art Book Moebius Dolls

magnitude 2 4 8 2 4 8 2 4 8 2 4 8
MRE[11] ]0.59 10.96 [1.89 [0.21 {0.33 [0.61 |0.24 |0.36 |0.65 |0.19 |0.34 [0.68
JBFcv[6] ]0.55]0.68 [1.44 {0.29 [0.44 [0.62 |0.38 10.46 |0.67 | 0.29 [0.38 [0.72
Guided[7] [0.63 [1.01 |1.70 |0.22 ]10.3510.58 |0.23 [0.37 [0.59 [0.28 | 0.35 | 0.56
CLMFO[8] |0.43 |10.74 |1.37 |0.14 [ 0.28 [0.51 [0.15 {0.29 [0.52 | 0.24 |0.34 | 0.66
CLMFI1[8] |0.44 |10.76 | 1.44 10.14 [ 0.28 [0.51 [0.15 [0.29 |0.51 | 0.23 |0.34 | 0.60
TGV[9] [0.45]0.65 [1.17 [0.18 |0.27 | 0.42 |0.18 |0.29 | 0.49 | 0.21 [0.33 [0.70
Edge[10] [0.41 ]0.65 |1.03 [0.17 [0.30 |0.56 [0.18 [0.29 |0.51 |0.16 {0.31 | 0.56
our method [0.41 [0.58 |1.01 |0.17 |0.27 |0.41 |0.18 [0.27 [0.44 [0.23 |0.31 |0.53

(a) (b) (©) (d)

Fig. 6. Close-ups of the depth map “Art”: (a) ground truth; (b) depth map acquired by MRF [11];
(c) depth map acquired by JBFcv [6]; (d) depth map of our method
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(a) (b) () (d)

Fig.7. Close-ups of the depth map “Moebius”: (a) ground truth; (b) depth map acquired by MRF
[11]; (c) depth map acquired by JBFcv [6]; (d) depth map of our method

5 Conclusion

In the paper, a depth upsampling method based on MRF model is proposed. Usually,
there is blurring at the depth discontinuities of the interpolated initial depth map, and
the depth value is not accurate. This results in the depth value which the data term relies
on is incorrect. The paper builds a rectangle window to search the maximum and the
minimum depth value to get the difference value. If it is bigger than some threshold, it
is regarded as an edge pixel. The accurate pixel of the initial depth map is acquired
through the method. The graph-based image segmentation method is used. Different
smoothness weights of the edge pixel and non-edge pixel are built to ensure the depth
map is piecewise smooth and the edge is sharp. In the meanwhile, the depth evaluation
of the area where the color information is consistent while the depth is not or otherwise
is well dealt with.
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