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Abstract. The Event Coordination Notation (ECNO) allows modelling
the desired behaviour of a software system on top of any object-oriented
software. Together with existing technologies from Model-based Software
Engineering (MBSE) for automatically generating the software for the
structural parts, ECNO allows generating fully functional software from
a combination of class diagrams and ECNO models. What is more, soft-
ware generated from ECNO models, integrates with existing software
and software generated by other technologies.

ECNO started out from some challenges in behaviour modelling and
some requirements on behaviour modelling approaches, which we pointed
out in a paper presented at the second BMFA workshop [1]; the integra-
tion with pre-existing software was but one of these requirements.

Different ideas and concepts of ECNO have been presented before –
mostly with neat and small examples, which exhibit one special aspect
of ECNO or another; and it would be fair to call them “Mickey Mouse
examples”.

In this paper, we give a concise overview of the motivation, ideas,
and concepts of ECNO. More importantly, we discuss a larger system,
which was completely generated from the underlying models: a work-
flow management system. This way, we demonstrate that ECNO can be
used for modelling software beyond the typical Mickey Mouse examples.
This example demonstrates that the essence of workflow management –
including its behaviour – can be captured in ECNO: in a sense, it is a
domain model of workflow management, from which a fully functioning
workflow engine can be generated.

Keywords: Workflow engine · Meta-modelling · Behaviour modelling ·
Event Coordination · Code generation

1 Introduction

Long before the advent of Model-based Software Engineering (MBSE ) and one
of its main driving forces, the Model-driven Architecture (MDA) [2], there was
an endeavor to better understand and distill the nature of communication and
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interaction in concurrent systems – with pioneering work of Petri [3], Hoare [4,5],
Harel [6], and Milner [7] developing modelling notations for behaviour and iden-
tifying the fundamental concepts of communication and coordination, which are
still valid to date. Today, there exist a plethora of modelling notations for mod-
elling the behaviour of distributed, concurrent, or cooperating systems based on
theses concepts.

With the advent of Model-based Software Engineering, models received even
more attention – with the promise that a software system (or at least major
parts of it) could be automatically generated from these models. Using tech-
nologies like the Eclipse Modeling Framework (EMF) [8] can save a lot of pro-
gramming, making software development significantly faster and the resulting
software more reliable. Most of the automatically generated code, however, con-
cerns the structural parts of the software or standard functionality, but not the
actual behaviour.

In view of the fact that notations for modelling behaviour have been out
there for a quite a long time, it might appear a bit surprising that the use
of behaviour models lags a bit behind in Model-based Software Engineering.
There are different reasons for that. One reason is that the structural models,
such as class diagrams, typically, lack a natural mechanism for “hooking” in
behaviour on a higher level of abstraction. The only mechanism they provide for
“hooking in” behaviour is method invocation – which is quite different from the
communication mechanisms proposed by Hoare [4] and Milner [7]. Other reasons
why behaviour modelling lags behind were pointed out in our contribution to
the second BMFA workshop [1]: e.g. lack of mechanisms for integration with
existing software which would allow for a smooth transition from programming
software to modelling it.

Starting from these issues and challenges, we gradually developed a nota-
tion for modelling behaviour, which could overcome these problems: the Event
Coordination Notation (ECNO) [9]. ECNO is a modelling notation that allows
modelling the behaviour of a system on top of structural models (such as class
diagrams) on a high level of abstraction based on some of the basic commu-
nication mechanisms proposed by Hoare and Milner. Still, the software can be
generated from these models fully automatically. With the publication of the
ECNO technical report [9], which covers the motivation, philosophy as well as
all the details of ECNO’s modelling concepts and notations and with the pub-
lication of the ECNO Tool, ECNO has reached a major milestone, which we
report on in this paper.

The basic mechanism of ECNO for integrating behaviour models with struc-
tural models are events1; and events are a first class modelling concept in
ECNO. The life-cycle of an object, basically, defines when an object can partic-
ipate in which kind of events. We call this the local behaviour of the object; it,
roughly, corresponds to what Harel and Marelly [10] call intra-object behaviour.

1 In Milner’s terminology, our events would be called actions, and in Hoare’s termi-
nology events would be channels or channel names.
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ECNO provides different ways for defining the local behaviour of objects; the
default way for modelling the life-cycle of objects in ECNO, however, is a simple
form of Petri nets, which we call ECNO nets.

The more interesting part of ECNO, however, is the coordination of the
behaviour of different objects that need to join in on the execution of events.
ECNO provides coordination diagrams for defining which partners need to par-
ticipate in an event, in a given situation. We call this the global behavior, whereas
Harel and Marelly [10] would call it inter-object behaviour. The mechanisms used
in coordination diagrams are similar to the communication mechanisms of Hoare
and Milner, but – as we will see later – coordination diagrams are more general
in that many partners can be required, and more than one event might be jointly
executed. Moreover, the partners that are required to participate in an event,
can depend on the current situation and the underlying object structure. We call
the particular combination of objects and events that meet the requirements of
the coordination diagram and are executed together an interaction.

Altogether, ECNO allows modelling the desired behaviour of software sys-
tems on a high level of abstraction (on top of structural software models), from
which fully functioning software can be generated fully automatically. To achieve
this, ECNO uses a carefully balanced and adjusted set of concepts and, on the
technical sided, was designed so that it integrates with different MBSE and
object-oriented technologies.

In this paper, we give an overview of the concepts of ECNO and provide
some motivation and philosophical background. We informally introduce the
main idea and concepts of ECNO by a simple, but complete, example in Sect. 2.
In Sect. 3, we give a more systematic account of ECNO’s basic concepts and
introduce some of ECNO’s more advanced concepts.

Up to now, our published papers on ECNO used neat and small examples
particularly tuned to explain some concepts of ECNO. And it is fair to call
them “Mickey Mouse examples”. In order to demonstrate that ECNO reaches
“beyond Mickey Mouse”, this paper shows that ECNO can be used for modelling
the concepts of workflow management, including their behaviour, from which a
workflow engine can be generated fully automatically. This model, is discussed
in Sect. 4; it was developed in a 5-month master’s project [11]. Even though, we
consider this a “beyond Mickey Mouse example”, we do not call it case study;
the reason is that ECNO actually evolved from an ad-hoc notation that we used
to capture the essential concepts of business process models, which we called
AMFIBIA for “A Meta-Model for Integrating Business Process Aspects” [12].
Though ECNO has significant extensions and a much more thought through
and balanced combination of concepts as compared to AMFIBIA, a real case
study for evaluating ECNO would need to come from a domain different from
workflow management.

Most concepts of ECNO are actually not new, considered in isolation. The
novelty of ECNO is the combination of concepts and its integration with MBSE
technologies. In Sect. 5, we discuss the contributions of ECNO and relate them
to existing work and concepts.
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Naturally, this paper cannot cover all the details of ECNO. We refer to the
ECNO technical report [9] and some earlier publications [13–16] for more details
on ECNO – in particular concerning some more technical aspects and the ECNO
Tool itself. The ECNO Tool and its documentation are available from the ECNO
Home page: http://www2.compute.dtu.dk/∼ekki/projects/ECNO/index.shtml.

2 ECNO: An Example

In this section, we give a brief and informal overview of the concepts and nota-
tions of ECNO by formalizing the behaviour of Petri nets by means of ECNO [16];
to be precise, we formalize the semantics of P/T-systems [17]. One reason for
choosing Petri nets as our example here is that the modelled workflow engine will
use workflow nets [18,19] for modelling the control aspect of business processes.
Since workflow nets are a restricted class of Petri nets, we can re-use the under-
standing of this Petri net semantics later on when discussing the model of the
workflow engine in Sect. 4.2.

Another reason for choosing Petri nets as our example is that it is neat and
concise and allows us discussing the most important concepts of ECNO. Even
though the example is neat, it might twist your mind a bit. The reason is that on
the one-hand side, we use ECNO models for defining the semantics of Petri nets,
which means that Petri nets occur on the instance level; but, ECNO itself also
uses another version of Petri nets called ECNO nets for modelling the behaviour,
which means that Petri nets occur also on the modelling level. The Petri nets
used on these two level should not be confused with each other.

2.1 Petri Nets

Figure 1 shows a simple example of a Petri net, which models the mutual exclu-
sion of two processes by a semaphor: there are two agents or processes, which
cyclically run through the phases idle, pending (pend), and critical (crit).
As indicated by the name, the two processes should never be in their critical
section at the same time. This is achieved by each agent acquiring the semaphor
(sem) when entering the critical section. The semaphor is returned again when
the agent exits the critical section. In a Petri net, the possible states are rep-
resented by places which are graphically shown as circles or ellipses. A black
dot, called a token, on a place indicates that the agent currently is in this state.
In P/T-systems, it is possible that there is more than one token on a place,
but this situation does not occur in our example. Figure 1 shows that, initially,
both processes are idle (represented by the tokens on places idle1 and idle2 )
and that the semaphor is available (represented by the token on place sem). The
distribution of tokens on the places of the Petri net represents the current state
of the system; it is called the marking of the Petri net.

The possible state changes are defined by the transitions of the Petri net,
which are graphically represented by squares. The arcs from a place to a tran-
sition indicate on which places there needs to be a token for the transition to

http://www2.compute.dtu.dk/~ekki/projects/ECNO/index.shtml
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Fig. 1. A Petri net modelling mutual exclusion

be enabled. In the marking of the Petri net of Fig. 1, for example, the transition
req1 is enabled, since there is a token on the place idle1, which is the only place
with an arc to transition req1. Likewise, transition req2 is enabled since there is
a token on idle2. All the other transitions are not enabled in this marking. An
enabled transition can fire: if and when a transition fires, it removes one token
from each place from which an arc is pointing to the transition; at the same time
the transition adds one token to each place to which it has an arc pointing to.

2.2 Formalizing Petri Nets

Next, we formalize the syntax and semantics of Petri nets in a software engi-
neering way by providing models [16]; actually, we formalize the abstract syntax
of Petri nets only. The abstract syntax is defined by a class diagram2, which
represents the concepts of Petri nets and their relation among each other. The
behavior is defined by a coordination diagram on top of the class diagram later.

Figure 2 shows the class diagram formalizing the concepts or the abstract
syntax of Petri nets. We omit some constraints, though. The main concepts of
Petri nets are Places and Transitions, and Arcs connecting them.

Next, we discuss how to define the behaviour of Petri nets (their semantics)
by some ECNO models. In ECNO, the behaviour is modelled in two parts: the
local behaviour or the life-cycle for each element (in ECNO, objects that have
an explicit life-cycle are called elements); and the global behaviour which defines
how to coordinate the local behaviours of the different elements with each other
by so-called coordination diagrams.

We start with the discussion of ECNO coordination diagrams for modelling
the behaviour of Petri nets, with some informal hints to the local behaviour,
which we model later. Figure 3 shows the coordination diagram that defines the
global behaviour of Petri nets. It shows the main elements of the class dia-
gram from Fig. 2 again – with some additions. The main concept of ECNO
that enable us to coordinate behaviour are events which can have different types
(event types): for our Petri net example, the relevant event types are fire, add and

2 Actually, it is an Ecore model, which is a kind of lightweight version of UML class
diagrams supported by EMF [8].
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Fig. 2. Abstract syntax of Petri nets: Class diagram

Fig. 3. Coordination diagram: Global behaviour of Petri nets

remove, which correspond to firing a transition, and the corresponding removal
and addition of tokens from and to places. The event types are explicitly defined
in the coordination diagram, shown as rounded rectangles. The rest of the coor-
dination diagram defines how different elements coordinate their behaviour via
events by annotating the underlying class diagram with coordination annota-
tions, which we explain below.

Since the semantics of Petri nets is about firing transitions, we start explain-
ing the coordination diagram at the transition. The element type Transition is
associated with three event types: fire, add, and remove. Technically, this can be
seen by the boxes inside the element types with the respective labels referring to
the respective event types, which are called coordination sets. We will see later
in Fig. 4 that the local behaviour of the element type Transition requires that
three events of event types fire, add, and remove must be executed together for a
Transition element. The coordination annotations attached to the references out
and in respectively, require that all the arcs starting at the Transition (out) need
to participate in an add event, and that all the arcs ending at the Transition (in)
need to participate in a remove event whenever a Transition participates in such
an event.
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Fig. 4. Local behaviour of a Transition Fig. 5. Local behaviour of a Token

As we will see later, when defining the local behaviors of the different ele-
ment types, an Arc can always participate in add and remove events. The rele-
vance of the Arc is that the coordination annotation attached to the reference
target requires that the Place to which the arc points to participates in the
add event, too. Likewise, the coordination annotation attached to the reference
source requires the Place at which the arc starts to participate in the remove
event, too. This way, the coordination diagram guarantees that every place with
an arc to a transition is involved in a remove event, and every place with an arc
from a transition is involved in an add event – initially triggered by a transition
participating in a fire event.

The local behaviour of a Place when it participates in an add event adds a
new token to this place. The place does not require other associated elements
to participate in the add event. Therefore, the coordination set for add is not
attached to any coordination annotation. Note that the label of that coordination
set is enclosed between two plus signs, which indicates a subtlety of ECNO, which
we will discuss later in Sect. 3.5: counting events.

The local behaviour of a Place when participating in a remove event does
nothing, but the coordination annotation requires that one of the Place’s tokens
participates in the remove event. This participating Token will then take care of
removing itself from the place.

In ECNO, the local behaviour of an element defines when the element can
participate in an event – and what effect that will have on the element. ECNO
uses a simple form of Petri nets for that purpose again3, which we call ECNO
nets; the ECNO nets (model level) for the different element types of Petri nets
(instance level) are shown in Figs. 4, 5, 6 and 7. Note that most of these ECNO
nets are very degenerated Petri nets (transitions not connected to any places,
which means that they are enabled anytime).

Figure 4 shows the local behaviour of the Transition. It shows that a transition
element can join a fire event any time (from the transition’s point of view), but it
requires the remove and add events to be part of that interaction too – this way,
in combination with the global behaviour and the local behaviour for the other
element types, making sure that the respective tokens are ready for removal and
also removing and adding the respective tokens when executed.

Figure 7 shows the local behaviour of the Arc. There are two transitions,
which can be executed anytime, which means that the Arc can participate in
the events add and remove anytime. Since the transitions are independent of
3 Note that these Petri nets are used on the modelling level now.
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Fig. 6. Local behaviour of a Place Fig. 7. Local behaviour of an Arc

each other, an arc can even participate in both events in parallel. Actually, the
participation of an Arc in any of these events does not have any local effect
on the Arc at all. The Arc is a mediator only which propagates the respective
events from the transition to the respective places as defined by the coordination
diagram in Fig. 3.

Figure 6 shows the local behaviour of the Place. Again, there are two tran-
sitions in this ECNO net, which are enabled all the time. The first transition
is bound to the add event. Note that there is an action, a Java code snippet,
attached to this transition. This action is executed when the add event is exe-
cuted: it creates a new token and adds it to the place itself (self) by using the
API which is automatically generated from the underlying class diagrams.

Figure 5 shows the local behaviour of the Token. This is the only ECNO
net in our example where the firing of the transition is restricted. Actually the
single token on the place makes sure that a token can be removed only once in
its life-time – the very semantics of a token in Petri nets. The action (Java code
snippet) attached to the transition actually removes the token from the place
(its owner) when the Token participates in a remove event.

Fig. 8. Interaction: t1

Together, the models for the local behaviour
(Figs. 4, 5, 6 and 7) and for the global behaviour
(Fig. 3) define the semantics of P/T-systems. Start-
ing from a fire event on a Transition element, the
transition will also be required to participate in an
add and remove event, which then will require the
connected Arcs, Places and Tokens to participate.
This combination of elements and events is called
an interaction. Figure 8 graphically shows an exam-
ple of one interaction that is possible in that Petri
net in the given marking. The interaction is shown
as an octagon containing all instances of events; the
dashed lines show which events are associated with which elements. Executing
the interaction shown in Fig. 8 corresponds to firing transition t1 with the top-
most token on place p1. Note, that there would be one other interaction possible
in this situation (which is not shown here).
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3 ECNO: Concepts

In this section, we give a more systematic overview of the terms and concepts
of ECNO. We start with the core concepts, which we have seen in the example
already. In the end, we give an overview of ECNO’s more advanced concepts in
order to give a more complete picture of ECNO.

3.1 Object-Oriented Modelling

ECNO is based on object-oriented models, in particular, class diagrams and
object diagrams. In order to present a consistent overall picture, we briefly
rephrase the needed concepts from object-orientation. ECNO and its tool are
independent from any specific object-oriented technology. As a default however,
the ECNO Tool uses the Eclipse Modeling Framework (EMF) [8] as its under-
lying technology. Therefore, we use EMF’s terminology instead of UML’s [20].

Basically, ECNO assumes that there are classes and references between them
along with their multiplicity. Later, we also use inheritance on classes. Classes,
can have attributes, but attributes are not specifically exploited by ECNO. In
some of our class diagrams, we use compositions, which are a special case of
references. These are typically relevant when a bunch of objects is serialised to a
file. Like attributes, compositions are not directly exploited in ECNO, however.
Classes and references are defined in the scope of a Package.

We have seen an example of a class diagram or a package in Fig. 2, which
actually is an EMF Ecore diagram already.

An object diagram is an instance of a class diagram, which shows a specific
situation of a system. An instance of a class is an object and an instance of a
reference is a link – or vice versa, the type of a link of an object is a reference
of the object’s class.

3.2 ECNO: Basic Concepts

Next, we discuss the basic concepts of ECNO, which we have seen in the example
already.

Elements and Element Types. ECNO aims at modelling the behaviour of
a system on top of a class diagram. To this end, ECNO extends the notion of
objects and classes of object-orientation. Note that an ECNO model does not
need to define behaviour for all classes of the underlying class diagram. Not all
classes have ECNO behaviour, some might be used as data only. In order to make
this difference explicit, we call objects that have behaviour in ECNO elements,
and we call the classes for which ECNO defines behaviour element types.

Life-Cycle (Local Behaviour). In a sense, an ECNO element is an object
with an explicitly defined life-cycle. The life-cycle of the element is defined by a
model which defines the local behaviour for a specific element type. So, an ECNO
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element type consists of a class from object orientation and a local behaviour;
and there are some more concepts, which we discuss later. In this paper, the
local behaviour is defined by a special version of Petri nets, which we call ECNO
nets. In our example, the element types were defined by the class diagram of
Fig. 2 and the ECNO nets of Figs. 4, 5, 6 and 7, by using the same name for the
classes and the ECNO nets.

Events and Event Types. The life-cycle of an element defines when (i.e.
in which situations) the element could participate in some event, and how the
state of the element changes, when the element participates in that event. To be
precise, we distinguish between event types, and an instance or occurrence of an
event at a specific time at runtime when an interaction is executed. The event
types are defined in ECNO’s coordination diagrams, where they are represented
as rounded rectangles. The ECNO nets refer to these event types for defining
the local behaviour. For simplicity, we call an instance of an event type just an
event in the rest of this paper. The relation between an event and an event type
is similar to the relation between objects and classes. Still the nature of events
is fundamentally different from the nature of objects: An event is inherently
volatile and – at least conceptually – has no duration; when the execution of the
interaction is finished, all its events “evaporate”; only their effects – defined by
the life-cycles of the elements participating in the events – stay.

Coordination and Interactions. An interaction is the joint participation of
some elements in some events. Conceptually an interaction is executed instan-
taneously4. What constitutes a combination of elements and events that make
up a legal interaction is defined by the local behaviour of the elements as well as
the coordination annotations. As explained already, the local behaviour defines,
whether an element could participate in an event at a given time; it can also
require that some events need to be executed together (see Fig. 4). The coordi-
nation annotations define which combinations of elements and events are valid.
Basically, each coordination annotation formulates a requirement of the follow-
ing nature: if an element of some type participates in an event of some type, one
or all elements to which there exists a link of a certain reference need to partici-
pate in that event too. We have seen in Fig. 3 that, for a Transition to participate
in an add event, all Arcs which go out from this transition must participate in
the add event too. Together, these requirements might require that many ele-
ments participate in a valid interaction – once one element participates in some
event. In practice, the possible interactions will be computed starting from one
element participating in an event of some type, until all the requirements of all
coordination annotations of the involved elements are met. The interaction of
4 In practise, executing an interaction takes time. We will see later that the instanta-

neous execution of interactions is mimicked by executing them transactionally in the
sense of the ACID principle [21]; in particular, interactions are executed “atomically”
and “in isolation”.
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our example shown in Fig. 8 was computed starting from the transition t1 and a
fire event. Note that, in general, there might be more than one possible interac-
tion for a given element and event. And it might happen, that there is no such
combination at all – in which case the overall behaviour would not allow the
element to participate in that event at that time.

The coordination annotations are defined in an ECNO coordination diagram,
which is based on an underlying class diagram. Note that coordination diagrams
are also used to define the event types. The defined event types can then be
used in the coordination annotations as well as in the ECNO nets for the local
behaviour.

Element State and Situations. As discussed above, the coordination annota-
tions together with the local behaviour for the elements define which interactions
are possible in any given situation. The local behaviour and, in particular, the
actions (Java snippets attached to the transition of the ECNO net, cf. Fig. 6)
define what each element would do and how its state would change when the
interaction is actually executed. Note that the state of an element consists of
two parts: the state of the underlying object (i.e. all its attributes and links)
as well as the state of its life-cycle (the marking of the ECNO net in our case).
A situation consists of the state of all objects (e.g. represented as an object
diagram) plus the state of the life-cycle for each object.

Above, we have roughly sketched which interactions would be valid in a given
situation. A formal definition for the fragment of ECNO that we have discussed
so far, can be found in Chap. 4 of the ECNO technical report [9].

Controllers and GUI. One question, however, was not answered yet: when will
a possible interactions be computed and executed? Actually, the ECNO models
do not define that at all. The ECNO models specify which interactions could be
executed (are valid) in a given situation – and the ECNO execution engine will
make sure that only valid interactions are executed. It is left to some controllers
on top of the ECNO engine to decide when valid interactions are computed
and then scheduled for execution. Typically, the execution of interactions is
triggered by the user by clicking on some button in some Graphical User Interface
(GUI); and the ECNO Tool comes with some predefined controllers and a default
GUI for that purpose. These controllers are automatically instantiated for new
elements, when the ECNO engine becomes aware of them. These controllers can
also be programmed manually and registered with the ECNO engine, which then
can compute and execute interactions on elements as they see fit. To this end,
ECNO comes with a programming framework for implementing own controllers
and for configuring them for an ECNO application. For details, see Sect. 5.5 of
the ECNO technical report [9].

In our simple example, some element types and some event types, are specif-
ically marked as GUI types. From this information, the ECNO code generator
generates a simple GUI with standard controllers, where the user interactively
can trigger enabled interactions on the GUI elements.
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3.3 ECNO: Event Synchronisation and Parameters

Next we discuss some more advanced concepts that concern events, in particular,
the synchronization of different events and event parameters, a concept which
did not occur in our example yet.

Life-Cycle: Choices. As discussed above, each element has a life-cycle or a
local behaviour, which in our example are defined by ECNO nets. But, there
could be other formalisms for the local behaviour of elements; actually, the local
behaviour can also be programmed. Basically, the local behaviour associated with
an element, defines in any given situation, in which choices the element could
participate. In ECNO nets, the possible choices are defined by the transitions of
the ECNO net; these choices define which events would be involved in the choice
by the event binding associated with the respective transitions. Moreover the
choice defines the element’s state changes when the choice is taken (executed);
in ECNO nets, that would be defined by the change of the marking of the ECNO
net by firing the transition, as well as by the action associated with the transition,
which could change some of the attributes and links of the underlying object, as
defined by some Java code snippet. In ECNO nets, transitions can also have an
additional condition, which can refer to the parameters of the events (see below)
and the attributes of the object in order to define additional pre-conditions for
firing the respective choice. The interfaces for the local behaviour of an element
as well as for choices form the backbone in the ECNO framework and allow the
ECNO engine to compute valid interactions and execute them independently
from a specific modelling notation for the local behaviour.

Synchronizing Different Events. Typically, the transitions of an ECNO net
are associated with exactly one event type. But, it is possible that an event
binding for a transition refers to more than one event type (in the ECNO net
of Fig. 4, the binding refers to three event types fire, remove, and add). In that
case, the same element would be required to participate in two or more events
at the same time within the same interaction. This way, it is possible that an
element participating in one event requires the element to participate in some
other events too, which is then also propagated to other elements as defined by
the coordination annotations. Basically, this corresponds to the synchronization
of two or more different events.

Event Parameters. In general, event types can have parameters, which are
defined for each event type with a name and a data type. The local behaviour can
assign values to these parameters in the event bindings, and the parameters of the
involved events can be used in the condition and action associated with the event.
In contrast to methods of classes, an event is not owned by an element. The rela-
tion of all participants to an event is completely symmetric: there is no “caller”
or “callee” of an event; there are only participants in an event. In principle, any
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participant of an interaction can contribute a value to an event it is partici-
pating in. This could result in different elements contributing different values.
The default behaviour of ECNO’s event parameters is that an interaction is valid
only, if all values contributed to the same parameter are actually the same (in the
sense of Java’s equal()). We call this kind of event parameter exclusive para-
meters. And the ECNO execution engine will make sure that valid interactions
meet this condition.

In some cases, however, we would like to allow all participants that engage in
an event to contribute a value; and the contributed values should not be required
to be equal. We call this kind of event parameter a collective parameter. In that
case, when accessed in a condition or action, the value of a parameter would
return a collection of all the values contributed by the different partners. This
can, for example, be used, to get hold of all the partners involved in the same
event, by each partner assigning itself to this parameter.

The parameters are assigned to the events in the event bindings, by pro-
viding an expression for the respective parameter. This expression could refer
to attributes of the element or the underlying object (self) and also refer
to other event parameters. The parameters of an event e can be accessed by
e.parameter, where parameter is the name of the parameter. In order to refer
to an event, event bindings are represented as an assignment, assigning the
bound event to a name: In the binding shown in Fig. 4, we could refer to the
instance of the fire event by f, the variable the event is assigned to. When using
an expression for assigning a parameter to an event, which refers to other para-
meters, there is one complication: There could be an assignment of a parameter
that depends on an other parameter. In such cases, the ECNO engine makes
sure that these assignments are done in the order respecting the dependencies –
in case of cyclic dependencies, the interaction would be considered invalid. The
value of an event parameter, can be accessed in event bindings, in conditions and
in actions, by referring to the respective event and the name of the parameter
as discussed above.

Actually, it is this completely symmetric way of dealing with contributing
values to an event parameters, which helps us doing away with the invocation
based way of coordinating behaviour. Parameters are not passed in a specific
direction; they are just shared among different participants. It is perfectly pos-
sible that different parameters of the same event are contributed by different
partners of an interaction.

3.4 ECNO: Inheritance

ECNO also has a concept of inheritance. Actually, there are different forms
of inheritance in ECNO: There is inheritance on element types, which we call
behaviour inheritance. And there is inheritance on event types, which even comes
in two flavours: specialisation and extension.

Even though inheritance on event types is probably more interesting, we focus
on behaviour inheritance in this paper. For details on inheritance on events, we
refer to the ECNO technical report [9].
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If the underlying classes of two element types have an inheritance relation in
the object-oriented model, the corresponding element types in an ECNO model
can also have an inheritance relation between them. In ECNO, however, one
element type can inherit from at most one other element type, which gives rise
to a linear inheritance hierarchy – multiple inheritance on element types is not
supported by ECNO.

The behaviour of an element of an element type that inherits from an other
element type (and indirectly from more), basically consists in running all the life-
cycles of the element’s type hierarchy in parallel and synchronizing them on the
same events. This way, a sub-type restricts the behaviour of the life-cycle of its
super types. In addition, a sub-type can introduce event types not known or not
used by its super types; in that case, the sub-type will actually add new behaviour
concerning the new event types since the super type will not synchronize on
events it does not know. Typically, the top-level element type will define some
overall life-cycle; and sub-types will just add some additional constraints on
when the sub type can participate in the event, and what happens when the
event is executed. Due to the synchronization of all the life-cycles of the element
type hierarchy, it could easily happen that some events are blocked completely.
Developing a methodology and modelling guidelines that avoid inadvertently
blocking some events, is planned for the future.

Generally, we feel that synchronizing the life-cycles of the element type hier-
archy provides a more faithful notion of inheritance since the sub-types can-
not arbitrarily change the behaviour – the behaviour of the super types is still
accounted for in the sub-types, which, for example, is not true in Java, where
sub-classes can completely change the behaviour of a method by overriding it.

In some cases, however, sub-types might want to change the behaviour that
was defined by the super type. To this end, ECNO also provides a mechanism to
partially or completely override the local behaviour of super types. And in the
actions, the local behaviour of sub-types has options to determine in which order
the actions of the life-cycles on the element’s type hierarchy should be executed –
the default is starting with the action of the sub-types and continuing all the way
up in the type hierarchy. But, we do not discuss the details here (see Chap. 4.2.1
of [9] for more information).

In addition to the local behaviour, sub-types can also add new coordination
sets and new coordination annotations for an element type that inherits from
another element type. These additional coordination sets and annotations are
taken into account for computing valid interactions of course. Whether and to
which extend this is needed and would need some extensions, is yet to be seen,
since all of our examples make very limited use of this possibility.

3.5 ECNO: More Concepts

In order to get an overview, we give a brief account of some subtle additional
concepts of ECNO, which we do not discuss in full detail though.
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Coordination Sets and Priorities. In our example, each element type had
at most one coordination set for each event type. In general, an element type
can have more than one coordination sets for the same event type. For the
coordination, this means that one of these coordination sets could be chosen for
coordinating an event of that type with other elements. So, only the coordination
annotations for one of the coordination sets of that event type needs to be taken
into account. This way, the requirements for coordinations with respect to one
event type is a disjunction (choice between the different coordination sets) of
conjunctions of coordination annotations (all coordination annotations attached
to the coordination set).

In some cases, we would like to give one coordination set preference over
some others, if both of them would result in viable interactions. To this end,
different coordination sets can be given a priority. Then, an interaction in which
a coordination set with a higher priority is enabled will be given the preference.
Section 6.1 of [9] and [16] show an application of this feature when defining the
semantics of so-called Signal-Event nets – as an extension of the semantics for
P/T-systems that we discuss here.

Parallel Behaviour. Sometimes, we want to allow an element to participate
in two events in parallel. In our Petri net example, the ECNO net for the Place
(Fig. 6) allows the place to participate in and add and a remove event at the
same time. This way, a transition with a loop to some place can remove and add
a token to the same place at the same time (in the same interaction). In ECNO
nets, two transitions with there associated events can fire in parallel when the
transitions are completely independent of each other or because there is more
then token available at the places they have in common. In some cases, such
as defining the semantics of Petri nets, it makes sense that the local behaviour
of an element exhibits such parallel behaviour too. Therefore, ECNO supports
behaviour where more than one choice is allowed to be executed at the same
time, which we call parallel behaviour.

Counting Events. In the default case of ECNO, if an element participates in
an event of the required type already, it will not participate in another event of
that type, if another element also requests this: both requests will be joint on a
single event. This way, we can be sure that the computation of valid interactions
always terminates.

In some cases, however, we want an element to participate as many times
in the event as request exists from other elements to do so. In the semantics of
Petri nets for example, we would like to add a token as many times as there are
arcs from the transition to the place. In order to achieve this, it is possible in
ECNO for an element type to declare an event type as triggering or counting
event, graphically indicated by the event type being enclosed between two plus
symbols in the respective coordination sets (see element types Place and Token
in Fig. 3). This makes sure that elements of that type participates in these events
as many times as it is triggered by other elements. In that case, an interaction
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does not only take care of that an element participates in events of the respective
type – it also takes care of it participating in the correct number of times.

In case of cyclic requirements, counting events can, however, result in request-
ing an unbounded number of participations, and consequently the computation
of valid interactions might not terminate anymore (this would be ECNO’s coun-
terpart of infinite loops). Therefore, the modeller needs to take great care when
making use of counting events for an element type.

3.6 Execution Engine

Above, we have discussed the concepts of ECNO and how they define possible
interactions in any given situation. The possible interactions in a given situa-
tion are calculated by an ECNO execution engine – typically triggered by the
controllers associated with the elements. The controllers will also issue the exe-
cution of the interactions calculated by the engine; of course, it might happen
that an interaction becomes invalid due to some changes made by other inter-
actions or some other programs running concurrently. Therefore, the interaction
might not be valid anymore, when its execution is issued. The execution engine
will actually take care of that interactions that became invalid after they were
computed are invalidated and not executed at all. In addition, all interactions
are executed in a transactional way according to the ACID principle. The ECNO
execution engine can also be used to save the complete state of a running ECNO
application to a file and later start the ECNO application again from there.

In the latest official release, the state (current situation) of an ECNO appli-
cation is saved in a file; but it was demonstrated in a masters project that the
state of an ECNO application can also be persisted in databases [22].

4 ECNO: Modelling a Workflow Engine

In this section, we discuss the ECNO models of a workflow engine, which is
inspired by the ideas of AMFIBIA [12]; which distinguishes the core concepts of
business processes, and separates them from the concepts of specific aspects of
a business process such as control, information, and organization. Note that we
discuss only the most relevant excerpts of these models. This ECNO Workflow
Engine and all its models are deployed together with the ECNO Tool, so that
you can have a look at the actual models in all their details yourself, and you
can play with the generated workflow engine with some example processes (see
detailed instructions in the ECNO technical report [9]).

4.1 Core Model

We start with discussing the core concepts of business process models and their
behaviour in this section. These concepts are independent from the different
aspects of business process models and independent from the formalisms used
for modelling the different aspects.
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Figure 9 shows the class diagram with the core concepts of our workflow
meta-model. The most important concepts are shown in the two rows at the
bottom (shaded in light yellow). The two top rows (shaded in grey) show some
more technical infrastructure, which allows us structuring and accessing business
process models and their different aspects, registering them with the engine, and
maintaining the runtime information. In our discussion, we focus on the concepts
at the bottom. Actually, the diagram is also split vertically: the left-hand side
shows the concepts of the business process models (modelling time); the right-
hand side shows the concepts of instances of business processes (runtime). Having
meta-models for the modelling concepts for business process models as well as for
the runtime information and clearly separating the runtime information from the
model was one of the main principles of AMFIBIA already. Note that runtime
information can refer to the information of the models, but not the other way
round: The process models “do not know” which instances of them are running,
but instances “know” the modelling concepts they are an instance of.

At the heart of AMFIBIA [12] and also of our ECNO Workflow Engine
are four concepts: Process, Task, Case, and Activity, where Case represents one
running instance of a Process (indicated by the reference process) and Activity
represents one running instance of a Task (indicated by the reference task). On
the modelling side, the main concepts are processes and tasks: a business process
model may consist of any number of tasks, which, at runtime, are reflected by
cases and their activities.

Note that the core concepts do not yet represent in which order the tasks
(actually the corresponding activities) are supposed to be executed. Neither do
the core concepts represent who is allowed to initiate or execute activities, or
which data are needed for or are produced by the activities. All this is represented
by models that represent different aspects of a business process. In the ECNO
workflow engine, the three main aspects from AMFIBIA are covered: control,
organisation, and information. We discuss the concepts for some of these aspects
later in Sect. 4.2.

The core concepts do not mention any of the concrete aspects yet. They
just provide the infrastructure so that a Process can consist of different parts
that represent the concepts relating to its aspects – in the models as well as at
runtime. The respective concepts are shown in the left-most column concerning
models, and in the right-most column concerning the runtime information for
the running instances: a process model refers to the models for the different
aspects of that process; likewise the case and the activity contains the runtime
information for the different aspects. Note again, that the runtime information
can refer to the models, but not the other way round.

Note also that all the concepts for aspects are interfaces only. This means that
specific concrete versions of them need to be defined when defining an aspect.
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Now, let us have a brief look at the behaviour concerning the core concepts.
Figure 10 shows the coordination diagram for the core elements. This diagram
defines the event type CreateCase for creating a new instance of a process, which
is a Case for the respective process; moreover, the diagram defines the event
types StartActivity and FinishActivity, which represent starting and finishing an
activity within a case. Note that there is a slight asymmetry between the event
types StartActivity and FinishActivity: the event StartActivity is triggered from
a Case, whereas FinishActivity is triggered from the Activity itself. The reason
is that, when starting an activity, the activity does not exist yet; therefore, it
needs to be created from somewhere else, the Case. The Activity can, however,
take responsibility for its own termination. Note that the CreateCase is dealt
with in a slightly different way: the Case, actually, seems to trigger itself. This
is a minor hack: the workflow engine always keeps one fresh instance of a case
for each process ready, which is activated when the first activity of the case is
started; the StartActivity will then by synchronized with the CreateCase event,
which in turn will activate this case and create another fresh instance of a case
for that process for the next case to be started. Conceptually, this reflects the
fact that starting the first activity of a case, actually, starts the case.

The coordination diagram of Fig. 10 also shows the necessary coordinations
for these event types, most of which are straight-forward. The most impor-
tant coordinations concern the runtime part: the StartActivity and FinishActivity
require all the aspects of the respective concept to participate in that event.
This way, the coordination makes sure that activities are started and finished
only when all aspects are ready for that. With the three aspects that we cover
here, an activity can be started only when the control allows to start it (control
aspect), all the needed data are ready (information aspect), and there is an agent
available who is allowed to perform this activity (organisation aspect).

Most of the life-cycles of the core concepts are trivial – meaning that all
events are possible anytime (there are some minor twists, though, which we do
not discuss here). The most interesting local behaviours are the ones for Case
and Activity, which are shown in Figs. 11 and 12, respectively.

We start discussing the life-cycle of the Case. Remember that there is always
one fresh case, which is ready for being activated by starting one of its initial
activities. The case is activated by a CreateCase event, which actually is jointly
executed together (synchronized) with the StartActivity event that starts the
first activity of the case at the same time. After that, the Case can participate
in further StartActivity events without synchronizing it with another CreateCase
event. In a running case, StartActivity events can happen as long as the case is
not finished, which is represented by an additional condition.

Figure 12 shows the life-cycle of the Activity. This is almost trivial, mak-
ing sure that every activity can finish only once, which is similar to the local
behaviour of tokens in the ECNO semantics of Petri nets.
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4.2 Models for Aspects and Formalisms

Next, we discuss some of the models relating to the different aspects of business
processes. Note that we restrict this discussion to the control aspect and a part
of the organisation aspect. The ECNO workflow engine covers the information
aspect too, but we do not discuss this aspect here.

We start with the discussion of the control aspect as well as one formalism for
modelling the control aspect of business processes: Petri nets or actually workflow
nets. Note that AMFIBIA set out to separate the concepts of an aspect from
the realization of these concepts in a concrete formalism. Anyway, we discuss
the general concepts of the control aspect together with a concrete modelling
formalism here.

Figure 13 shows the general concepts of the control aspect as well as how these
concepts can be captured by the Petri nets formalism – actually by workflow nets
[19,23]. The classes in the top row (in light yellow) represent the concepts from
the core model again (as see in Fig. 9 already). The classes in the two rows
below (in light blue) represent the general concepts of the control aspect, and
the classes below that (in magenta) show the concepts of Petri nets implementing
the concepts of the control aspect. Like before, the classes on the left-hand side
represent the modelling concepts, whereas the classes on the right-hand side
represent the runtime concepts.

The class TaskC represents the control aspect of a task (it implements Task
Aspect), which in Petri nets is realized as a Transition. On the runtime side,
the class ActivityC represents the control aspect of an activity (implementing
ActivityAspect), which in turn refers to the control aspect of the case CaseC.
The most important part of the control aspect is that a case has a concept of a
State, which determines which activities are possible to be started in the current
situation. In Petri nets, the State is realized as a Marking, which is represented
by a set of tokens associated with some places of the Petri net. The model for
Petri nets here, roughly, resembles the model of Petri nets that we had seen
in Sect. 2.1. The most important difference is that tokens are not contained in
places anymore, but are part of the marking; instead, each token refers to the
place it belongs to. The reason for detaching tokens from places in this model is
that tokens represent runtime information, which the actual model should not
know about. This leaves the question of how the initial marking of the Petri net
is represented in the model itself. To this end, we exploit a speciality of workflow
nets: they always start in a specific marking, exactly one token on a so-called
start place. So, the model does not need to represent the initial marking; we
just need to represent the start place and the finish place of the net. This
is reflected by the references from the PetriNet to the start and finish place.
Transitions that are enabled when a single token is added to the start place
correspond to the initial tasks of a process, which implicitly start the process
(as discussed above).

The more interesting part of the models for the control aspect concerns
the behaviour at runtime. The corresponding coordination diagram is shown
in Fig. 14. Starting an activity requires the control aspect of the case (CaseC) to
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Fig. 14. BPM: Coordination diagram for control aspect and Petri net formalism
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coordinate the event StartActivity with its State, which will require a synchroni-
sation with another event StartActivityC; this event represents the control aspect
of the event StartActivity. The state, in turn, will need the model for the control
aspect – in our case the Petri net – to participate in the StartActivityC event,
which will require a Remove event on a Transition to be part of the coordination.
The Remove is used and handled in a similar way to the Petri net example that
we had discussed in Sect. 2.1. Note that in contrast to the original semantics of
Petri nets which fires a transition instantaneously, workflow nets are executed
in two steps: Starting the activity removes the tokens from the input places,
whereas finishing the activity adds the tokens to the output places. Note that
this way, in workflow nets a transition does note fire instantaneously, but take
time; this reflects the fact that activities in workflows take time.

The start of an activity needs to be issued from the case since an instance of
the activity is created only upon starting it. By contrast, the activity can take
care of its own termination. The ActivityC coordinates a FinishActivityC event
with the respective transition, which in turn coordinates it with an add event
which adds all the tokens to the postset of the transition – similar to the Petri
net semantics that we had discussed earlier.

The only interesting local behaviours are the life-cycles of the elements of the
Petri net. Since these are similar to the ones discussed in Sect. 2.1, we do not
discuss them here. All the other local behaviours are quite simple. Most impor-
tantly they synchronize the StartActivity event with the StartActivityC event, and
likewise the FinishActivity event with the FinishActivityC event.

Next, let us have a brief look at the organisation aspect. Since the underlying
class diagram for this aspect is quite simple, we skip it and discuss the coordina-
tion diagram for the organization aspect right away, which is shown in Fig. 15.
Basically, the organisation aspect for the case, CaseO, delegates the StartActivity
event to one of the (possibly) involved Agents; likewise the organisation aspect
of an activity ActivityO delegates the FinishActivity event to the Agent to which
this activity was assigned.

The ECNO net for the life-cycle of the Agent is shown in Fig. 16. From the
organisation point of view, an agent can start any activity as long as it does so
on its own behalf, and the organisation model allows the agent to do so, which is
represented by the additional conditions, which are attached to the transitions
of the ECNO nets.

4.3 Workflow Engine and GUI

From the models above and a few more models, which are similar, a fully func-
tioning workflow engine can be generated fully automatically. The only part that
needed to be implemented manually was the GUI – in particular, the worklist
which allows the agents to log in and to select, start and finish work items. The
implementation of this GUI, however, is straight-forward. We do not discuss it
here (see [9,11] for details), since all behaviour comes from the ECNO models.
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Fig. 15. BPM: Coordination diagram for organisation

Fig. 16. BPM: local behaviour of Agent

The workflow engine can then be started with some process models, which
cover the control, organisation, and information aspect. Up to now, there is only
a simple tree editor for creating and editing such process models, since the focus
of this project was on the feasibility and not the usability of its editors. Once
the workflow engine is started, the different agents can log on, and via the GUI
start cases, activities, and inspect, add, and change the data involved in an
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activity, and then finish the activity. For lack of space, we cannot discuss the use
of the workflow engine and the execution of some example processes here. Some
example processes are deployed together with ECNO and the ECNO workflow
engine; the installation and the use of the examples are discussed in the ECNO
technical report [9].

5 Related Work

The ideas of ECNO have evolved over many years and started out from a
meta-model that distilled the essence of business process modelling notations:
AMFIBIA [12]. For capturing the behaviour of these concepts, AMFIBIA used
a simple ad-hoc notation for the local behaviour and for the coordination of
the behaviour of the different elements. The ad-hoc notation that we used in
AMFIBIA was later formalized and implemented in a kind of pre-cursor of
ECNO, which we called MoDowA [24,25]. The idea of ECNO goes back to the
ad-hoc notations of AMFIBIA and MoDowA; ECNO is more general and the
too tight integration with aspect-orientation was dropped, so that ECNO – at
its core – is not explicitly aspect-oriented anymore. Moreover, inheritance was
introduced for elements and for events, which needed some careful tuning; for
that reason, there is a complete Chap. 4 that is devoted to the discussion of
inheritance in the ECNO technical report [9]. Starting out from the challenges
of behaviour modelling [1], we then defined the core concepts of ECNO [13–15]
with minor variations, which now seem to converge.

As pointed out in our earlier work [15] already, none of the concepts used
in ECNO are particularly new or original; the contribution of ECNO is more in
the careful combination of its concepts and, on the technical side, its integration
with existing object-oriented technologies.

ECNO’s coordination mechanism via events resembles the synchronization of
actions in process algebras [4,5,7]. One difference, though, is that ECNO’s syn-
chronization is not restricted to bi-lateral synchronizations and that the partners
required to participate in an event might dependent on the dynamically chang-
ing underlying structure of the system. Also this aspect has been seen before
in process algebras like ACP [26], the chemical abstract machine [27], or the
Π-calculus [28]. What is new, however, is that, in ECNO’s coordination mech-
anism, different of these synchronization mechanisms work together, combining
these coordination requirements transitively, which allows us to define much
more complex interactions.

The proposal of behavioral programming [29] exploits the idea of synchro-
nizing events for programming concurrent behaviour (b-threads). The idea of
behavioural programming is very similar in spirit to ECNO – with a focus on
programming. But, in behavioural programming possible synchronizations on
the same event are global and not driven by the dynamic relation to other
objects; moreover, behavioural programming does not allow synchronizing dif-
ferent events or transitively combining synchronizations into more complex inter-
actions, nor does it come with an inherent notion of joint atomic execution when
synchronizing on events.



The Event Coordination Notation: Behaviour Modelling 159

Another major concern in the design of ECNO was the clear separation
between coordination aspects and computation aspects of a system. Actually,
ECNO is about coordination only, but ECNO’s concept of actions provides a
way to interface with the computational aspects by invoking methods or func-
tions. This idea, however, is not new either: Harel and Pnueli [30] had proposed
the distinction between transformational and reactive systems. ECNO takes care
of the reactive aspect of the system by defining possible interactions – the trans-
formational aspect is left to the underlying programming language (Java in our
case) for the actions by invoking methods.

Another major concern of ECNO is the distinction between local behaviour
and global behaviour [1]. Also this idea is not really new: Harel and Marelly [10]
distinguish between intra-object behaviour and inter-object behaviour, which
correspond to local and global behaviour, respectively. The only difference is the
way this behaviour is represented. Concerning the local behaviour, this is mostly
a question of syntactic sugar. For inter-object behaviour (global behaviour),
Harel and Marelly use a set of Live Sequence Charts (LSCs) [31], which are
an extension of Message Sequence Charts [32]. This is a scenario-based and
temporal approach, where the focus of inter-object behaviour is the behaviour
over time. In ECNO, the coordination annotations focus on the needed partners
for a single interaction only: it is about behaviour at a time. Therefore, both
approaches have a different focus. It might be interesting to combine both of
them; this might in particular be interesting since ECNO does not have a way
to define what must happen in a system – it defines what can happen only.
LSCs [31] allow to characterize both kinds. But a detailed investigation of such
a combination would require further research.

As discussed above, the ideas of ECNO started out from an ad-hoc notation
in which aspects were an explicit modelling concept and therefore, ECNO has
some relation to aspect-oriented programming [33,34] or aspect-oriented mod-
elling [35,36]. Actually, from the philosophical angle, the original ideas were close
to the Theme approach [37] and closer to the idea of subject-oriented program-
ming [38]. Anyway, the explicit notion of aspects was removed in ECNO again.
A bit of the original subject-oriented idea survived in one of the two different
concepts of inheritance on event types, which we did not discuss here. And by
using some specific modelling patterns, ECNO can be used for modelling in
an aspect-oriented way: In a way, events of ECNO can be considered to be join
points of AspectJ [39]. The difference, though, is that events are an explicit mod-
elling concept [40], whereas join points are formulated on top of a program. This
way, events are a concept of the domain, whereas join points are programming
artifacts (which of course could have a counter-part in the domain). The coor-
dination annotations of ECNO then correspond to pointcuts. Though stripped
of an explicit notion of aspects, ECNO still shares some philosophy with aspect-
or subject-orientation: joining events together via coordination annotations into
interactions.

The local behaviour of elements could be modelled in many different ways. We
could use traditional automata or StateCharts [6]. We mainly use a special form of
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Petri nets [3,41], which we call ECNO nets. Initially, the reason for using ECNO
nets was mostly a practical one: we could use our own framework for Petri net tools,
the ePNK [42], for easily implementing a graphical editor for ECNO nets. And the
ePNK is based on EMF [8], which is the object-oriented technology that happens to
be the default object-oriented technology of ECNO. But, it turned out to be useful
that Petri nets have a natural notion of concurrent or parallel firing of transitions,
when it comes to parallel behaviour (see Sect. 3.5). Therefore, simple automata
are not sufficient for modelling the local behaviour of elements. Like Petri nets,
StateCharts have a notion of parallel behaviour, which makes them an other good
candidate for modelling local behaviour, too. Our main concern with StateCharts
would be that they might be too powerful: modellers might be tempted to put too
much into the local behaviour of elements, since StateCharts allow nested complex
states. But, this is up to future evaluation and a question of methodology, which
is yet to be worked out in full detail.

At last, ECNO has some similarities with agent-based software engineering
and Multi-Agent Systems (MAS) [43,44]; but, at least in its basic form, ECNO
would probably not qualify as an approach towards agent-based software engi-
neering. This, however, depends on which level we look at things: From our point
of view, ECNO is more a notation and technique5 whereas agent-based software
engineering is more a way of thinking. Anyway, some of the principles underly-
ing ECNO were proposed by the proponents of agent-based software engineering.
The two most important shared principles are: getting rid of the thread-oriented
way of thinking, and giving agents control over what they do or to which kind
of request they react or – as we would say in ECNO – in which events they par-
ticipate. In addition, in agent-based software engineering, agents have attitudes
and are pro-active and take initiative. Even disregarding the more social notions
of initiative and attitude, ECNO elements are not even active – remember that
ECNO models describe what can happen in a given situation, but they do not
describe what must happen. Therefore, ECNO’s elements are technically not
agents. But, by adding controllers on top of elements, elements can be turned
active. This way, ECNO might be a notation and technique in which agent-based
designs or agent-based thinking can be formulated and implemented. But, this
is up to others to judge.

Speaking of agents, we should mention another approach, which uses Petri
nets for defining local behaviour: Renew [45]. Renew also uses a mechanism
for synchronizing different parts of a system with each other following some
fixed relations between these parts. But, theses synchronisations need to follow
some very specific containment structures following the so-called nets-within-
nets paradigm [46]. By contrast, ECNO models can exploit the dynamic structure
of the underlying object-oriented model for defining the required partners, which
was one of its express goals.

Altogether, ECNO has many different flavours. On a first glance and depend-
ing on ones background, ECNO might appear as just another process algebra,
just another notation for aspect-oriented modelling, just another agent-based
5 The methodology part of this technique is yet to be worked out in detail.
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approach, just another form of transactions, just another ... – and there might
be some truth to that. But, we believe that it is the combination of these differ-
ent things and a carefully adjusted set of concepts that makes ECNO what it is:
A way of clearly separating coordination from computation, and of separating
coordination from local behaviour.

6 Conclusion

In this paper, we have given an overview of ECNO and motivated some of its
concepts and definitions. Moreover, we have discussed an ECNO model of a work-
flow engine, which demonstrates that ECNO can be used for “beyond Mickey
Mouse examples”. From this ECNO model, a complete workflow engine can be
generated fully automatically [11]. Together with the other examples [9], this
shows that ECNO can be used for a wide range of different applications.

Modelling the workflow engine consisted in providing a domain-specific lan-
guage (DSL) for workflow models; this DSL was defined by class diagrams con-
cerning the abstract syntax of the DSL; on top of these class diagrams ECNO
models defined the actual behaviour (semantics) of this DSL. In a similar way,
ECNO was used for defining the semantics for Petri nets – again a meta-model
was provided for Petri nets; ECNO models on top of these meta-models defined
the semantics of Petri nets. This shows that ECNO can be used to define and
implement also the semantics of a DSL. Actually, we believe that the semantics
of ECNO can be defined in ECNO itself, which however is yet to be worked out
in detail.

ECNO shows that there are mechanisms beyond method invocation for inte-
grating behaviour models with structural models. The implementation of the
ECNO framework and tool shows that interactions can be executed in a trans-
actional way, and this way be executed in a multi-threaded or concurrent envi-
ronment without explicitly thinking about threads or modelling them. Since
ECNO is independent of a specific underlying object-oriented technology, it can
also be used for integrating software using different technologies.

What is still missing is a coherent methodology with modelling guidelines
and best practices for properly using ECNO, which we plan to work out in the
future. In order to gain more experience and to work out this methodology, we
will need some more examples of realistic size. The currently published version
of ECNO and the corresponding ECNO Tool6, are a good basis for working on
some more realistic examples.
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Modelle. Master’s thesis, Department of Computer Science, Software Engineering
Group, University of Paderborn, Paderborn, Germany (2007)

25. Kindler, E., Schmelter, D.: Aspect-oriented modelling from a different angle: mod-
elling domains with aspects. In: 12th International Workshop on Aspect-Oriented
Modeling (2008)

26. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1–3), 109–137 (1984)

27. Berry, G., Boudol, G.: The chemical abstract machine. In: POPL, pp. 81–94 (1990)
28. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Parts I & II).

Inf. Comput. 100(1), 1–40 & 41–77 (1992)
29. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),

90–100 (2012)
30. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K. (ed.)

Logics and Models of Concurrent Systems. Series F: Computer and System Science,
vol. 13, pp. 477–498. Springer, Heidelberg (1985)

31. Damm, W., Harel, D.: LSC’s: Breathing life into message sequence charts. In:
Ciancarini, P., Fantechi, A., Gorrieri, R. (eds.) FMOODS 1999. IFIP, vol. 10, pp.
293–311. Springer, Boston (1999)

32. ITU-T Recommendation Z.120: Message sequence charts (MSC). ITU (1996)
33. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,

Irwin, J.: Aspect-oriented programming. In: Moreira, A. (ed.) ECOOP 1997. LNCS,
vol. 1743, pp. 220–242. Springer, Heidelberg (1997)

34. Mens, K., Lopes, C., Tekinerdogan, B., Kiczales, G.: Aspect-oriented programming
workshop report. In: Bosch, J., Mitchell, S. (eds.) ECOOP 1997. LNCS, vol. 1357,
pp. 483–496. Springer, Heidelberg (1998)

35. Brichau, J., Haupt, M.: Survey of aspect-oriented languages and execution models.
Technical report AOSD-Europe-VUB-01, AOSD-Europe (2005)

36. Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M.P., Bakker, J., Tekin-
erdogan, B., Clarke, S., Jackson, A.: Survey of aspect-oriented analysis and design
approaches. Technical report AOSD-Europe-ULANC-9, AOSD-Europe (2005)

37. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme App-
roach. Addison-Wesley, Reading (2005)

38. Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure
objects). In: OOPSLA, pp. 411–428. ACM (1993)

39. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol.
2072, pp. 327–353. Springer, Heidelberg (2001)
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