
A Set of Metrics of Non-locality Complexity
in UML State Machines

Gefei Zhang1(B) and Matthias M. Hölzl2

1 Celonis GmbH, München, Germany
gefei.zhang@pst.ifi.lmu.de

2 Ludwig-Maximilians-Universität München, München, Germany
matthias.hoelzl@pst.ifi.lmu.de

Abstract. One of the barriers to widespread adoption of behavior mod-
eling languages lies in the complexity of the models. We show in the
context of UML state machines how non-locality, i.e., the information
for the current behavior of a model being spread over several model ele-
ments instead of being locally available, may make seemingly intuitive
and simple models rather complex and error-prone. We present a set of
metrics to measure the complexity of UML state machines arising from
different kinds of non-locality. Our metrics give a better understanding
of the complexity of UML state machines, and may alert the modeler to
pay more attention to pitfalls in apparently simple UML state machines.

1 Introduction

In Software Engineering research, Model-Driven Engineering (MDE) has been
recognized as “a promising approach to address the inability of third-generation
languages to alleviate the complexity of platforms and express domain concepts
effectively” [6]. However, in practice, MDE has not yet experienced broad accep-
tance. The reasons are manifold [7]. In our opinion, one important reason that
has not yet been widely discussed in the literature is that behavioral models are,
despite the best intention of the modeler, sometimes counter-intuitive and hard
to comprehend.

UML state machines are widely used to model software system behaviors
and have been described as “the most popular language for modeling reactive
systems” [2]. In literature about software or behavior modeling, UML state
machines are generally considered to be simple and intuitive. However, these
intuitions can easily be misleading when UML state machines are used to model
non-trivial behaviors [13].

In general, a state machine is only simple and intuitive as long as the effect
of transitions is kept local: if a transition only deactivates the state it originates
from, and only activates the state it leads to, the modeler can visually follow the
control flow, and the model is easy to understand.

In many realistic state machines, however, states are parallel and contain
orthogonal regions. In such state machines it is quite common for a transition
to activate not only its target, and to deactivate not only its source, but also
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 59–81, 2015.
DOI: 10.1007/978-3-319-21912-7 3

60 G. Zhang and M.M. Hölzl

states that are visually not directly connected to it. Conversely, a state can be
activated or deactivated not only by a transition directly connected to it, but also
by visually “remote” transitions. Moreover, transitions and states in different
regions may depend on each other in complex ways. In these situations the
modeler has to carefully study all information carried by remote model elements
to avoid introducing errors into the state machine.

It is therefore important to study this kind of complexity, which we call
non-locality complexity. In this paper, we discuss in detail “hidden” activations
and deactivations as well as cross-region dependencies, and we define a set of
metrics to measure the non-locality complexity caused by states or transitions,
that is, how many states—visually connected or not—are actually activated or
deactivated by a certain transition, how many transitions—visually connected or
not—may actually activate or deactivate a certain state, how many transitions—
in different regions—are fired in one execution step, and how many states—in
different regions—may prevent each other from getting active. These metrics
quantify various non-local effects of a state machine’s behavior and may alert
developers to potential pitfalls.

The remainder of the paper is structured as follows: in the following Sect. 2,
we give a brief overview of the concrete syntax and informal semantics of UML
state machines, and show how non-locality complexity may arise. In Sect. 3 we
discuss the non-local effects in more detail, define our metrics, and give some
application samples of how the metrics may indicate possible flaws in a state
machine. Related work is discussed in Sect. 4, before we conclude and outline
some future work in Sect. 5.

2 UML State Machines

A UML state machine provides a model for the behavior of an object or compo-
nent. Figure 1 shows a state machine modeling (in a highly simplified manner)
the behavior of a player during a part of a game.1 The behavior of the player—a
magician—is modeled in the state Play, which contains two concurrent regions
and models two different concerns of the magician’s conduct. The upper region
describes the possible movements of the player: she starts in an entrance hall
(Hall), from there she can move to a room in which magic crystals are stored
(CrystalRoom), and move on to a room containing a Ladder. From this room
the player can move back to the hall.

The lower region specifies the magician’s possible activities. She may be Idle,
gathering power for the next fight, Spelling a hex, or Fighting. She may escape
from the fight and try to spell another hex, or, if she wins the fight, finish
the game.

2.1 Concrete Syntax and Informal Semantics

According to the UML specification [5], a UML state machine consists of regions
which contain vertices and transitions between vertices. A vertex is either a state,
1 This example is inspired by [14].

A Set of Metrics of Non-locality Complexity in UML State Machines 61

do / takeCrystal
CrystalRoom

toHall

Ladder

Idle fight
entry / spellHex

Fightingspell Spelling

toCrystalRoom toLadder

Play

escape

won

Hall

Fig. 1. Example: UML state machine

which may show hierarchically contained regions; or a pseudo state regulating
how transitions are compounded in execution. Transitions are triggered by events
and describe, by leaving and entering states, the possible state changes of the
state machine. The events are drawn from an event pool associated with the
state machine, which receives events from its own or from other state machines.

A state is simple, if it contains no regions (such as Hall in Fig. 1); a state
is composite, if it contains at least one region; a composite state is said to be
orthogonal if it contains more than one region, visually separated by dashed lines
(such as Play). A region may also contain states and other vertices. A state, if
not on the top-level itself, must be contained in exactly one region. To simplify
the notation in later sections we assume in this paper that the top-level state is
enclosed in a region top, so that each state is contained in exactly one region.
A composite state and all the states directly or recursively contained in it thus
build a tree. A state may have an entry, a do, and an exit action, which are
executed before, whilst, and after the state is active, respectively.

Transitions are triggered by events (toCrystalRoom, fight). Completion
transitions (not shown in this paper) are triggered by an implicit completion
event emitted when a state completes all its internal activities. Events may be
deferred (not shown), that is, put back into the event pool if they are not to
be handled currently. A transition may have an effect, which is an action to be
executed when the transition if fired. Very briefly speaking, the result of firing a
transition is that the source state of the transition (and potentially other states,
see Sect. 3.3) is left, its target state (and potentially other states, see Sect. 3.2)
entered, and the entry and exit actions are executed; for more details, see below.
Transitions may also be declared to be internal (not shown), thus skipping the
activation-deactivation scheme. An initial pseudo state, depicted as a filled cir-
cle, represents the starting point of the execution of a region. A junction pseudo
state, depicted as a dot, chains transitions together. A final state, depicted as
a circle with a filled circle inside, represents the completion of its containing
region; if all top-level regions of a state machine are completed then the state
machine terminates. For simplicity, we omit the other pseudo state kinds: entry
and exit points, fork and join, shallow and deep history, choice, and terminate.
These vertices, except for joins, can be simulated using states and transitions
only, see [10]; joins require a slight extension of the methods presented in this
paper.

62 G. Zhang and M.M. Hölzl

At run time, states get activated and deactivated as a consequence of tran-
sitions being fired. The active states at a stable step in the execution of the
state machine form the active state configuration. Active state configurations
are hierarchical: when a composite state is active, then exactly one state in each
of its regions is also active; when a substate of a composite state is active, so
is the containing state, too. The execution of the state machine can be viewed
as different active state configurations getting active or inactive upon the state
machine receiving events.

When an event in the event pool is processed, first the maximum set of enabled
conflict-free transitions is calculated. We refer to transitions where the source state
is active, the trigger is the current event, and the guard is evaluated to true as
enabled transitions. At runtime, if there are several enabled transitions where the
source states are in different regions, then all the transitions are in general con-
tained in the set, and should be fired in one execution step.2 A special case, how-
ever, is when the source of one of the enabled transitions is contained in the source
of another enabled transition. In this case, only the transition with the innermost
source state is contained in the maximum set of conflict-free enabled transitions.
If there are several enabled transitions whose sources are in the same region, then
they all have the same source state, since in one region there is at most one active
state (here: exactly one). In this case, we say the enabled transitions (from the
same source) are conflicting, and only one of them, chosen non-deterministically,
is contained in the maximum set of conflict-free enabled transitions.

The transitions in the maximum set of conflict-free enabled transitions are
then fired in one execution step. More specifically, first the source states, and
other states to be deactivated (see Sect. 3.3), are deactivated, then their exit
actions are executed, then the effects of the transitions are executed, then the
entry actions of the target states, and other states to be activated (see Sect. 3.2),
are executed, and finally these states are activated. For the entry and exit actions,
the UML Specification [5] imposes a partial order of execution: for two states s
and S, if s is directly or recursively contained in S, then the entry action of S is
executed before that of s when the states are activated, and the exit action of s
is executed before that of S when the states are deactivated. In the other cases,
where s and S are in different regions and are not contained in each other, no
special order of execution is specified. In the metrics we are going to define in
this paper, we do not make use of this partial order. In the future, more precise
metrics can be defined if this partial order is also taken into account.

Since the maximum set of enabled transitions is determined before the exe-
cution of the entry actions, the transitions’ effects, and the exit actions, these
actions have no effect on the choice of transitions to be fired.

In our example of Fig. 1, an execution trace, given in terms of active state
configurations the state machine, might be (Play, Hall, Idle), (Play, Hall,

2 Strictly using the terms defined in the UML Specification, this is a special case of the
run-to-completion step. For simplicity, we do not use the concept run-to-completion
in this paper. Since we ignore most of the pseudo states, see Sect. 3.1, a run-to-
completion event is actually very similar to our execution step.

A Set of Metrics of Non-locality Complexity in UML State Machines 63

Spelling), (Play, Hall, Fighting), followed by the final state, which terminates
the execution trace.

2.2 Non-locality Complexity

While the simplest UML state machines may be intuitively comprehensible,
the complexity increases rapidly when the behavior under modeling gets more
involved [13]. There are several reasons for this increase in complexity. One is
that the language is low-level, providing only if-then-else and goto like constructs
(see [10]). In this sense, modeling with state machines is similar to programming
in assembly language, where the programmer has to implement every program
structure without the benefit of abstractions built into the language.

The metrics we propose in this paper are, however, mostly concerned with
another cause for complexity in state machines: the control flow in a region is
often determined not only by information that is available “locally”, i.e., stored in
currently active states or transitions just before or after being fired. Instead, rel-
evant information is “hidden” in model elements that are not directly connected
with active states and transitions. Recall, for instance, that when a transition t is
fired, not only is its target s activated, but, if s is a substate in a composite state
S not containing the source of t, so is the state S (if a substate is active, then
so is its containing state, too). Therefore, in each region of S exactly one of the
contained states, although not connected directly with s or t, is also activated.
Similarly, when a transition t is fired, not only is its source s deactivated, so are
all states S containing s but not the target of t, and hence all states that are
directly or recursively contained in S, although they are not connected directly
with s or t.

As an example, consider Fig. 1. The transition leaving the initial pseudo state
activates not only Hall in the upper region, but also Idle in the lower region;
the transition leaving Fighting deactivates not only this state, but also the
state in the upper region which is currently active. Considering that this kind of
“remote” activation and deactivation may be recursive, it may cause significant
potential for misinterpretation of the state machine’s actual behavior by the
modeler.

Moreover, different, parallel regions of a state are not executed independently
of each other. Instead, there often exist cross-region dependencies within a state.
For instance, enabled transitions with the same trigger and source states in
different regions are normally fired in the same execution step—unless something
(like a guard in a nested region) prevents some of these transitions from firing.
To understand what a state machine is supposed to do, the reader of the machine
has thus to keep track of a lot of non-local information—a guard that prevents a
transition from firing does not have to be guarding the transition it inhabits or,
for that matter, be anywhere close to this transition in the visual representation
of the state machine.

We will present more examples of this kind of complexity, which we call
non-locality complexity, later on. In the following, we define metrics to measure
non-locality complexity.

64 G. Zhang and M.M. Hölzl

3 Metrics

We first review the metamodel of UML state machines, define auxiliary functions,
and then define metrics to capture the non-locality complexity.

3.1 Notation

The abstract syntax of UML state machines we consider in this paper is shown
in Fig. 2. UML allows many syntactic variations that complicate static analysis
of state machines. Therefore, we require some minor restrictions in addition to
the UML Specification [5]:

1. A composite state may contain at most one region r without an initial vertex;
r must contain directly or recursively a state which is the target of a transition
t, and t’s source is not contained in r.3

2. The state machine must not contain junctions. All junctions, except the ones
following an initial vertex, should be removed by the (semantics-preserving)
transformation shown in Fig. 3, which essentially merges each pair of junction-
connected transitions into one transition, with the conjuncture of the two orig-
inal guards as new guard. For simplicity, we do not consider state machines
with junctions following an initial vertex in this paper.

The first constraint applies only to states with multiple regions and serves to
clarify their semantics: in the case of multiple regions the behavior of a state
machine that does not satisfy this restriction is not clear. The second constraint
actually slightly restricts the range of possible state machines; it would be pos-
sible to lift this restriction by a straightforward extension of our metrics.

Initial

Vertex Transition

Constraint

Trigger

BehaviorFinalState

State

StateMachine

Region
1
source

target

1 draug
1

*
*

deferrable
Trigger

do
1
effect

exit
1

entry
1 1

1

1 top

*
subvertex1

container
*

Fig. 2. Metamodel: UML state machines (simplified)

Given states s1 and s2, we write LCR(s1, s2) for the least region contain-
ing both s1 and s2, and LCA(s1, s2) for the least state containing both s1 and
3 In other words, t is a target-unstructured transition, see below, Definition 3.

A Set of Metrics of Non-locality Complexity in UML State Machines 65

A

B

C

X

Y

ea [ga] / aa;

eb [gb] / ab;

ec [gc] / ac;

[gx] / ax;

[gy] / ay;

(a) Original situation

A X

B

C Y

ec [gc & gx] / ac; ax;

ec [gc & gy] / ac; ay;

eb [gb & gy] / ab; ay;

ea [ga & gy] / aa; ay;

ea [ga & gx] / aa; ax;

eb [gb & gx] / ab; ax;

(b) Junction eliminated

Fig. 3. Removing junctions

s2. We suppose that on the top-level, a state machine consists in a region
(called top), which contains the top-level vertices of the state machine, see
Sect. 2.1. Therefore, for any s1 and s2, LCR(s1, s2) is well-defined. If there
is no state containing both s1 and s2 (i.e., LCR(s1, s2) = top), we write
LCA(s1, s2) = ⊥. In Fig. 1, LCR(Spelling, Fighting) is the lower region of Play
and LCA(Spelling, Fighting) = Play.

Given region r, we write substate+(r) to represent all states (directly or
recursively) contained in r. For a state s, we write substate+(s) to represent⋃

r∈region(s) substate+(r) and write substate∗(s) to represent substate+(s) ∪ {s}.
We write S ∈ superstate∗(s) if s ∈ substate∗(S). We write simple(s) if state s is
simple. Given states S and s ∈ substate+(S), we write s ∈ S, otherwise we write
s /∈ S.

We refer to property p of object o as p(o). If the name of a property is not
given explicitly, we follow the common UML convention and use, independently
of the multiplicity, the lower-cased name of its type as the property name. For
example, we write state(r) for the state associated with a region r according to
UML metamodel given in Fig. 2.

In the following, we define some more auxiliary notations.

Definition 1 (Initial Transition). If a region r contains an initial vertex, we
call the transition leaving this initial vertex the initial transition of r, and refer
to it as intr(r).

For example, in Fig. 1 the initial transition of the lower region is the one
leading into the Idle state; the upper region does not have an initial transition.

Definition 2 (Source Structured Transitions). A transition t is called
source structured, referred to as strucsource(t), if its source is a direct subver-
tex of the LCR of its source and its target. More formally, strucsource(t) is true

if source(t) ∈ subvertex(LCR(source(t), target(t))).

Definition 3 (Target Structured Transitions). A transition t is called tar-
get structured, referred to as structarget(t), if its target is a direct subvertex of
the LCR of its source and its target. More formally, structarget(t) is true if
target(t) ∈ subvertex(LCR(source(t), target(t))).

66 G. Zhang and M.M. Hölzl

Intuitively, a transition “goes through” the border of a composite state if it
is source or target unstructured. Obviously, a transition may be both source and
target structured, and does not need to be either. In Fig. 1, all transitions are
target structured except for the one leading into state Hall from outside the
Play state.

Definition 4 (Container State in Region). Given a state s and a region
r, the container state of s in region r is the state x which contains (directly
or recursively) s and is a direct substate of r. More formally, Csr(r, s) =
subvertex(r) ∩ {x | s ∈ substate+(x)}. Obviously, if s ∈ substate+(r), there is
exactly one element in Csr(r, s), otherwise Csr(r, s) is empty. We therefore refer
to this single element as Csr(r, s).

In Fig. 1 no state has a container state in either the upper or lower region. The
state Play is container state for Hall, CrystalRoom, Ladder, Idle, Spelling
and Fighting in the region enclosing the whole state machine.

3.2 Metrics Regarding State Activation

The activation and deactivation of states in UML state machines is relatively
complex, because concurrent and nested regions may be involved. We therefore
introduce in Fig. 4 a slightly more complicated variant of the game in Fig. 1.
The game now consists of two areas, a laboratory (Lab) in which the wizard
may rest (in state Idle) or brew potions (in state BrewPotion) and the multi-
room dungeon (Dungeon) in which fights take place. The wizard enters the level
from the hall of the dungeon, and can use the ladder of the dungeon to escape
to her lab and later return to the dungeon. In addition, she can take a potion
before fighting (takeBrew) which will increase the power of her next spell ten-
fold (PowerSpelling and PowerFighting). In Sect. 3.5 we will use the metrics
defined in this paper to show that this model has several possible modeling mis-
takes; for now we are only interested in the activation and deactivation of states
by transitions.

According to the UML Specification [5], a state s can be activated in one of
the following ways:

1. a transition t with target(t) = s is fired (transition spell to state Spelling)
in Fig. 1,

2. a substate x of s is activated by a transition t where source(t) �∈ substate∗(s)
(Play when the “initial transition” from the outer region to Dungeon is fired;
Dungeon, when the transition toLadder from state Idle in Lab is fired),

3. s is the target of an “initial transition” in a region, contained in composite
state S, and transition t with target(t) = S is fired (Hall and Idle inside
Dungeon in Fig. 4 when the “initial transition” to Dungeon is fired),

4. s is the target of an “initial transition” in a region, contained in composite
state S, when a state x in one of the neighbor regions of s gets activated
by a target-unstructured transition t with target(t) = x (state Idle in the
lower region of Dungeon in Fig. 4 when toLadder from the state Idle in Lab
is fired).

A Set of Metrics of Non-locality Complexity in UML State Machines 67

Hall
do / takeCrystal

CrystalRoom

toHall

Ladder

exit / power /= 10
PowerFighting

Idle Brew
Potion

Idle
exit / power *= 10

PowerSpelling

Spelling Fightingfight

fight

toCrystalRoom toLadder

Dungeon
toLab

toLadder

brew

done

Lab

takeBrew

escape

escape

won

wonspell

Play

Fig. 4. Two-room game example

To capture this notion precisely we first define a function orth that returns
the set of all states contained in regions orthogonal to the one containing s, i.e.,
all states either directly in a region orthogonal to the region containing s or
recursively contained in a state in such a region:

superstate(s) = state(container(s))

orth(s) = {s′ ∈ substate+(superstate(s)) | LCA(s, s′) ∈ LCR(s, s′)}
We can now define the set of transitions that may make state s active, Atr (s)

more precisely. Atr (s) is the least fixed point of the equations

Atr (s) = T in(s) ∪ BT (s) ∪ PT (s)

where

T in(s) = {t | target(t) = s

∨ (source(t) �∈ substate∗(s) ∧ target(t) ∈ substate+(s))}

BT (s) =

{
∅ if s is not target of an initial transition
⋃

s′∈IC (s)\{s} Atr (s′) otherwise

IC (s) =

{
{s} if s is not target(intr(container(s)))
{s} ∪ IC (superstate(s)) otherwise

PT (s) =

{
∅ if s is not target of an initial transition
{
t ∈ ⋃

s′∈orth(s) A
tr (s′) | source(t) �∈ orth(s)

}
otherwise

T in(s) covers the first two cases, whereas BT (s) deals with the third and
PT (s) captures the fourth one. Atr is defined as fixed point to cover cases like the
ones depicted in Fig. 5: Since both B and D are initial states in their respective
regions, Atr (B) has to take into account Atr (D) when determining PT (B), but
Atr (D) in turn relies on Atr (B). In Fig. 5, the transition from A to B and the
transition from C to D both activate states B and D.

68 G. Zhang and M.M. Hölzl

BA

DC

Fig. 5. State machine that illustrates the need for fixed points in Atr

With these premises, we define the metric of Number of Activating Transi-
tions of a state as the cardinality of the set of transitions that may activate it:

Definition 5 (Number of Activating Transitions). Given a state s, its
Number of Activating Transitions is

NATr(s) = #Atr (s)

In Fig. 1 all states contained in Play are simple, therefore the number of
activating transitions for each state is not surprising, e.g., for Hall it is 2, for
CrystalRoom it is 1. In the lower region, the number of activating transitions
for Idle is 1, the one for Spelling is 2 and the one for Fighting is 1.

Given a transition t, the set Act(t) of states which may be activated by t is
as follows:

1. If t is target structured and its target is a simple state, then it only activates
its target.

2. If t is target structured and its target is composite, then it activates all initial
states directly contained in one of the regions of its target, and this activation
continues recursively until simple states are reached.

3. If t is not target structured, the chain of activations starts with the container
state S of its target in the region that contains both its source and target.
This is the topmost state that can become active, since any state containing
both source and target of t has to be already active before t can fire, and
is not activated by t. If S is itself the target of t, then, as in the previous
case, all initial states recursively contained in S are activated. If, however,
S is not target of t, then S must contain the target state s = target(t). In
this case, t activates all regions of S that are not in the “path” to s in the
usual way, whereas in regions that are on the way to s it activates these states
through which it passes, independently of whether they are targets of initial
transitions or not.

A Set of Metrics of Non-locality Complexity in UML State Machines 69

Act(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{target(t)}
if structarget(t) ∧ simple(target(t))

{target(t)} ∪ ⋃
r∈region(target(t)) Act(intr(r))

if structarget(t) ∧ ¬simple(target(t))
Acts(t,Csr(LCR(source(t), target(t)), target(t)))

if ¬structarget(t)

where

Acts(t, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{S} ∪ ⋃
r∈region(S) Act(intr(r))if target(t) = S

⋃
r∈region(S),r �=r′ Act(intr(r)) ∪ Acts(t,Csr(r′, target(t)))

where r′ ∈ region(S) ∧ target(t) ∈ substate+(r′)
if target(t) �= S

With these premises, we define the metric Number of Activated States of a
transition as the cardinality of the set of the states that may be activated by the
transition:

Definition 6 (Number of Activated States). Given a transition t, its Num-
ber of Activated States is

NAS (t) = #Act(t)

Applying this metric to the example given in Fig. 1, we get some interesting
results. For example, let t be the transition from the initial to Hall, then we have
NAS (t) = 3, reflecting the fact that not only the obvious Hall is activated when
t is fired, but also Idle and Play. In this sense, t is obviously more complex
than the transition from Hall to CrystalRoom, which only has a NAS of 1.

3.3 Metrics Regarding State Deactivation

According to the UML Specification [5], a state s can be deactivated in one of
the following ways:

1. a transition t is activated, source(t) = s,
2. a transition t is activated, source(t) = S, where S is a state containing s,
3. a transition t is activated, source(t) = s′, where s′ is in one of the neighbor

regions of s and target(t) is in a region containing s.

An example for the first kind of deactivation is the transition from Fighting
to Spelling in Fig. 4. A transition from Dungeon to Lab would be an example for
the second case. The third kind of deactivation happens, e.g., for state Fighting
when the transition from Ladder to Idle is taken.

70 G. Zhang and M.M. Hölzl

More formally, let D tr (s) be the set of transitions that may deactivate state s,
we have

D tr (s) =
⋃

S∈superstate∗(s)

T out(S) ∪ AT (s)

where
AT (s) =

⋃
{t | target(t) /∈ LCA(source(t), s)}

With these premises, we define the metric of Number of Deactivating Tran-
sitions of a state as the cardinality of the set of transitions that may deactivate
the state:

Definition 7 (Number of Deactiviting Transitions). Given a state s, its
Number of Deactivating Transitions is

NATr(s) = #D tr (s)

Deactivation is simpler than activation since no “cascading deactivations”
may happen: A transition will deactivate all states in regions contained in its
source and all states in regions “between” its source and target, but it may not
trigger additional deactivations in regions inside its target state as is the case
for activations. In Fig. 4, state Fighting has 3 deactivating transitions: from
Fighting to Spelling, from Fighting to the final state, and from Ladder (in
the upper region) to Idle.

Given a transition t, the set Dct(t) of states which may be deactivated by t
is as follows:

1. A source-structured transition from a simple state deactivates only its source
state.

2. A source-structured transition t from a composite state S deactivates S and,
potentially, all of its substates. More precisely, t deactivates exactly one state
in each of the active regions recursively contained in S. Since any of these
states may be deactivated by S we count the number of substates in S.

3. For a source-unstructured transition, the same considerations apply for states
in regions not on the “path” of the transition; on the way from the source to
the target of t only these states through which t passes may be deactivated.

Dct(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{source(t)}
if strucsource(t) ∧ simple(source(t))

{source(t)} ∪ ⋃
r∈R{x | x ∈ substate+(r)}

if strucsource(t) ∧ ¬simple(target(t))
Dcts(t, S)

if ¬strucsource(t)

A Set of Metrics of Non-locality Complexity in UML State Machines 71

where

Dcts(t, S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{S} ∪ substate∗(S)
if source(t) = S

⋃
r∈R,r �=r′ substate∗(r) ∪ Dcts(t,Csr(r′, source(t)))

where r′ ∈ region(s) ∧ source(t) ∈ substate+(r′)
if source(t) �= S

With these premises, we define the metric Number of Deactivated States of a
transition as the cardinality of the set of states that may be deactivated by the
transition:

Definition 8 (Number of Deactivated States). Given a transition t, its
Number of Deactivated States is

NDS (t) = #Dct(t)

Let t be the transition from Fighting to the final state, it has a high NDS
of 5, because not only Fighting, but also Hall, CrystalRoom, Ladder and Play
will get inactive once t is fired.

3.4 Metrics Regarding Cross-Region Dependency

Cross-region dependencies may have two forms: some “actions” (transitions
being fired, states being activated or deactivated) in different regions are car-
ried out simultaneously, while others may prevent each other from being carried
out. These dependencies crosscut model elements across several regions, their
comprehension requires careful study of the state machine.

In the following, we use another extension of our computer game to illustrate
cross-region dependencies, see Fig. 6. In this variant of the game, the naviga-
tion region contains another state CrystalPedestal that can be reached from
the CrystalRoom upon the event investigate whenever the player is near a
pedestal. The Idle state in the region responsible for the player’s activities has
been refined by a state machine that describes the various activities the player
can perform while she is idle: she can Wander around the room; while wandering
the player may trip and enter into a Curious state in which she has the pos-
sibility to investigate the reason for tripping, or to ignore the incident and
continue wandering. If the player does investigate while she is in the Curious
state two courses of action may unfold: Either there was no particular reason
for tripping, in which case the investigation deducts some health points (not
shown in the state machine) and the player continues to wander, or the player
tripped over a hidden trap door (guard TD) in which case she discovers a trap
door leading to fame and fortune, and thus immediately wins the level without
having to fight. Whenever the player is in the Idle state she can investigate
her surroundings and thereby gather new information about the room or objects
nearby.

72 G. Zhang and M.M. Hölzl

Play

Hall
toCrystalRoom

[c == 0]

CrystalRoom
entry / c++
do / takeCrystal
exit / c--

CrystalPedestal

investigate
[nearPedestal]

done
[c == 0]

Ladder

NewLevel

entry / init

Idle

Wander

Curious

DiscoverSecret
Trapdoor

trip

investigate
[!TD]

Investigating

do / collectInformation

investigate

done

ignore

investigate
[TD]

Spelling

Fightingentry / c++
do / spellHex
exit / c--

spell
[c == 0]

escape [c==0]

Level
Won

lost

toHall

nextLevel

won

entry / c = 0

Fig. 6. Game with cross-region dependencies

In this version of the game we have used the investigate event on three
different transitions: to change from the CrystalRoom to the CrystalPedestal
with the guard nearPedestal, to change from Idle to Investigating uncondi-
tionally, and from Wander to Curious (both substates of Idle) when the guard
TD holds. Whenever the transition inside the Idle state is enabled, the tran-
sition from Idle to Investigating cannot fire. This shows that submachines
are not compositional, i.e., the addition of a submachine to a state may inval-
idate invariants of the containing machine. It is often convenient to model in
this way. For example, if the investigate event is mapped to a physical event
generated by controller hardware, the state machine in Fig. 6 represents the dif-
ferent results of pressing this button in various game situations in a very concise
manner. However, the “stealing” of events by interior transitions is also a source
of possible mistakes, in particular when working with modeling tools that allow
modelers to hide nested states. Therefore we consider it useful to investigate
metrics that can draw attention to these kinds of potential problems. In the
following we will therefore propose some measures for the influence exerted by
states or transitions on the execution of other regions of the state machine.

Simultaneous Initial Transitions. One simple case of transitions being fired
in one execution step is that when a composite state S is activated, either via a
transition t, target(t) = S, or via a transition t′, target(t′) ∈ substate+(S), then
the initial transitions of the regions of S are also fired. Details were described in
Sect. 3.2.

A Set of Metrics of Non-locality Complexity in UML State Machines 73

Given an initial transition t, for each state in the set Act(t)\{target(t)}, there
is another transition which is fired in the same execution step as t. The complex-
ity measure for this situation is therefore given by the cardinality NAS (t) − 1,
see page 11.

Bonded Transitions. Another case of transitions being fired in one execution
step is that when transition t1 is fired, another transition t2 from a parallel
region is also fired in the same execution step if all the four following conditions
are satisfied:

1. the source states are both active,
2. guard(t1) and guard(t2) both hold,
3. both transitions have the same trigger,
4. the source states are in different, parallel regions.

To capture situations where these conditions may hold we define the set of
transitions that are bonded to a given transition.

Definition 9 (Bonded Transitions). Given a transition t, the set of transi-
tions that are bonded to t is B(t) = {t′ | Can(t, t′)}, where the predicate Can
is defined as Can(t, t′) : : = trigger(t) = trigger(t′) ∧ LCA(source(t), source(t′)) ∈
substate+(LCR(source(t), source(t′))).

The definition states that two transitions t and t′ are bonded, written as
Can(t, t′), when the last two of the four conditions above are satisfied. The first
part of the predicate Can reflects condition 3, and the second part reflects con-
dition 4. However, the converse is not true: The information to determine if the
other two conditions hold is only available at runtime. Since this paper is con-
cerned with static analysis, we ignore these two conditions, and over-estimate
the run-time value instead.

The set B(t) may also contain transitions that are not fired when t is fired:
suppose t′, t′′ ∈ B(t), source(t′′) ∈ substate+(source(t′)), and at some time during
the state machine’s execution, source(t′′) (and therefore source(t′)) is active. If
the current event is trigger(t) = trigger(t′) = trigger(t′′), then, according to the
UML Specification [5], t′′ is fired while t′ is not, since the source of t′′ is a substate
of t′. For example, when Curious (and thus Idle) is active, since one of the condi-
tions [TD] and [!TD] is always true, the transition from Idle to Investigating
in Fig. 6 will not be fired, even if the current event is investigate.

In the next definition, we restrict the set to contain only transitions that we
know will definitely be fired when t is fired. The flip side of the definition is that
it may ignore those transitions t′ such that Can(t, t′) holds but there is some
t′′, source(t′′) ∈ substate+(source(t′)) ∧ Can(t, t′′).

Definition 10 (Strictly Bonded Transitions). Given a transition t, the set
of transitions that are strictly bonded to t is B(t) = {t′ | Can(t, t′)∧ � ∃t′′ ·
[Can(t, t′′) ∧ source(t′′) ∈ substate+(source(t′))]}

74 G. Zhang and M.M. Hölzl

These two relations are the most precise values we can compute by static analysis,
since in general only by actually executing the state machine is it possible to
find out whether source(t′′) will be active whenever source(t′) is active.

The relations are not symmetric, i.e., if t′ ∈ B(t), generally it does not hold
that t ∈ B(t′) and if t′ ∈ B(t), generally it does not hold that t ∈ B(t′). Moreover,
the relations are independent of the transitions’ effects: since the transitions to
fire are selected before their effects, if any, are executed, potential effects are
transparent for (both strict and non-strict) bondedness of transitions.

Now we are in the position to define metrics for (strictly and non-strictly)
bonded relationships.

Definition 11 (Number of Bonded Transitions). Given a transition t, the
number of transitions bonded to t is

NB(t) = #B(t)

Definition 12 (Number of Strictly Bonded Transitions). Given a tran-
sition t, the number of transitions strictly bonded to t is

NB(t) = #B(t)

These two metrics reflect the complexity of transitions that may be fired
simultaneously, i.e., within one execution step.

In Fig. 6 the transition tCC from CrystalRoom to CrystalPedestal is
strictly bonded (and hence bonded) to each of the transitions triggered by the
investigate event in the lower region: the transition tCW from Curious to
Wander, the transition tCD from Curious to DiscoverSecretTrapdoor and the
transition tII from Idle to Investigating. Therefore NB(tCW) = NB(tCW) =
1, NB(tCD) = NB(tCD) = 1 and NB(tII) = NB(tII) = 1. These numbers show
that each of these transitions may be accompanied by a simultaneous transition
in an orthogonal region, but that if a concurrent execution step takes place in
the orthogonal region, it always progresses by triggering the same transition for
each of tCW , tCD and tII . (The metric is not precise enough to indicate that all
three transitions are bonded to the same transition tCC)

On the other hand, the transitions tCW and tCD are both strictly bonded
to tCC since no transition starting from a substate of Curious exists. However
the transition tII is bonded to tCC but not strictly bonded, since tCW and tCD

are bonded to tCC and their initial states are substates of Idle. Therefore,
we have NB(tCC) = 3, NB(tCC) = 2. These metrics show that the behavior
in the region orthogonal to tCC is much more complicated: There are at least
two different transitions in the innermost relevant region that may each fire
concurrently with tCC , (because NB(tCC) = 2), and there is one transition that
may be inhibited by locally invisible transitions inside its source state (because
NB(tCC) = NB(tCC) + 1). When looking at bonded transitions, the measures
NB and NB for the transitions bonded to a transition t are more revealing than
the measures for t itself: By seeing the numbers NB(tCC) and NB(tCC) when
looking at tII we are immediately alerted that there are other transitions that
may prevent tII from firing, even when the submachine inside Idle is hidden.

A Set of Metrics of Non-locality Complexity in UML State Machines 75

Competing States. There are also states which are, at least under certain
conditions, not supposed to be active simultaneously. This is often implemented
in state machines by adding entry, do, or exit actions to a state that change
the value of some variable x, while there are states in other regions with incom-
ing transitions where x is consulted; [11] discusses implementation of mutual
exclusion using this technique in greater detail.

We have to take care of two facts:

1. the target of the transition may be a composite state, or a substate of some
composite state, and therefore firing this transition may actually cause many
other states to be active and their entry actions to be executed;

2. the source of the transition may be a composite state, or a substate of some
composite state, and therefore firing this transition may actually cause many
other states to be inactive and their exit actions to be executed.

While in case 1 we can precisely calculate the states to be activated and thus
their entry actions, in case 2 it is in general not possible to calculate statically
the precise “path” of state deactivation and thus the exit actions. We therefore
make some approximation for this case.

We first define auxiliary functions for the entry and exit actions that are
executed when composite state or their substates get active or inactive.

Definition 13 (Compound Entry Action). Given a transition t, we define
its Compound Entry Action as EntryC(t) = {entry(s) | s ∈ Act(t)}.
Definition 14 (Compound Exit Action). Given a transition t, we define its
Compound Exit Action as ExitC(t) = {exit(s) | s ∈ Dct(t)}.

Note that ExitC(t) also contains actions that are not executed, since Dct(t)
contains states that are not active when t is fired. Again, finding out which states
are actually active when t is fired requires actually executing the state machine;
static analysis does not suffice.

Definition 15 (Strict Compound Exit Action). Given a transition t, we
define its Strict Compound Exit Action as

ExitC(t) = {exit(S) | S ∈ substate∗(Csr(LCR(source(t), target(s))))
∧ target(t) ∈ substate∗(S)}).

ExitC(t) underestimates the exit actions, since it only contains the exit actions
of those states that are definitely deactivated when t is fired, i.e., all composite
states containing source(t), contained in the region LCR(source(t), target(s)).

Definition 16 (Modified Variables). Given a transition t, the set of variables
it modifies, W(t) is the set of all variables written by ExitC(t) ∪ {effect(t)} ∪
EntryC(t).

Definition 17 (Strictly Modified Variables). Given a transition t, the set of
variables it strictly modifies, W(t) is the set of all variables written by ExitC(t)∪
{effect(t)} ∪ EntryC(t).

76 G. Zhang and M.M. Hölzl

Definition 18 (Do-Modified Variables). Given a state s, the set of variables
it do-modifies is the set W(s) of all variables written in do(s).

As stated in Sect. 2.1, in order to calculate our metrics, we ignore possi-
ble orders of execution of these actions, and instead simply assume a non-
deterministic execution order.

Definition 19 (Read Variable). Given a transition t, the set of variables it
reads is R(t) = {v ∈ V | v is read by guard(t)}.
Now we can define relations describing cross-region dependencies:

Definition 20 (Controlling). Given a transition t1 and a state s2, we say s2
is (weakly) controlled by t1, and write control(t1, s2), if there exists a transition
t2 with target s2 such that t1 modifies a variable read by t2, i.e., if

∃t2 · ∃v ∈ V · [target(t2) = s2 ∧ v ∈ W(t1) ∧ v ∈ R(t2)].

Given two states s1 and s2, we say s2 is (weakly) controlled by s1 if there
exists a transition t1 with target s1 that controls s2 or if the do activity of s1
modifies a variable that is read by a transition leading into s2, i.e., if

∃t1, t2 · ∃v ∈ V · [target(t1) = s1 ∧ target(t2) = s2

∧ (v ∈ W(t1) ∨ v ∈ W(s1)) ∧ v ∈ R(t2)]

We write this as control(s1, s2). If v ∈ W(t1) ∨ v ∈ W(s1) holds in the above
formula instead of v ∈ W(t1) ∨ v ∈ W(s1), then we say s1 strictly controls s2
and write it as control(s1, s2).

A state s1 therefore controls a state s2 if there exists a variable v such that
a guard in at least one transition t leading into s2 depends on v and either (1) a
transition leading into s1 modifies v in its compound entry action, its effects or
its compound exit actions, or (2) the do activity of s1 modifies v. This can also
be expressed as (⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) �= ∅

If s1 controls s2 it may only influence some paths leading into s2, or it may
control all transitions leading into s2. The latter case is important if we want to
ensure, e.g., mutual exclusion between states. We therefore define the notions of
partial and total control:

Definition 21 (Partial Control). Given two states s1 and s2, we say s2 is
partially controlled by s1, and write controlp(s1, s2), if s2 is controlled by s1 but
there exists a transition t with target s2 that is not controlled by s1, i.e., if the
predicates

∃t ·
[
target(t) = s2 ∧

(⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) �= ∅]

∃t ·
[
target(t) = s2 ∧

(⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) = ∅]

A Set of Metrics of Non-locality Complexity in UML State Machines 77

both hold. If additionally control(s1, s2) holds, then we say s1 partially strictly
controls s2 and notate it by controlp(s1, s2).

Definition 22 (Total Control). Given two states s1 and s2, we say s2 is
totally controlled by s1, and write it as controlt(s1, s2), if s1 controls all transi-
tions leading into s2, more precisely, if control(s1, s2) and

∀t1, t2 · [target(t1) = s1 ∧ target(t2) = s2 =⇒ (W(t1) ∪ W(s1)) ∩ R(t2) �= ∅].

If (W(t1) ∪ W(s1)) ∩ R(t2) �= ∅ holds in this equation instead of (W(t1) ∪
W(s1)) ∩ R(t2) �= ∅, then we say s1 totally strictly controls s2 and write it
as controlt(s1, s2).

If s1 totally controls s2 we therefore have

∀t ·
[
target(t) = s2 =⇒

(⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) �= ∅
]

and if there are any transitions leading into s2 this is a necessary and sufficient
condition for total control.
Based on the controlling relationship, we now define the following metrics:

Definition 23 (Number of Partially Controlled States). Given a state s,
its Number of Partially Controlled States is

NPC (s) = #{s′ | controlp(s, s′)}

and its Number of Partially Strictly Controlled States is

NPSC (s) = #{s′ | controlp(s, s′)}

Definition 24 (Number of Totally Controlled States). Given a state s,
its Number of Totally Controlled States is

NTC (s) = #{s′ | controlt(s, s′)}

and its Number of Partially Strictly Controlled States is

NTSC (s) = #{s′ | controlt(s, s′)}

As indicated above, these metrics may be used to determine possible sources
of concurrency errors: if NTC (s) < NPC (s) the state machine contains a state s′

whose reachability on some paths depends on s but some other transitions into s′

do not depend on s. If s′ is meant to be mutually exclusive to s this may indicate
synchronization bugs. (Note that an analysis based solely on these metrics is not
sufficiently precise to determine whether s and s′ are synchronized or not since,
e.g., predecessor states of s′ may be synchronized with s and therefore prevent
the unguarded transitions from being reached).

78 G. Zhang and M.M. Hölzl

3.5 Applications

While the metrics presented in this paper represent only a rough estimate of the
complexity caused by behavior depending on non-local properties, we believe
that they could serve a useful purpose in alerting modelers to unexpected features
of their state machines. In the following, we demonstrate the usefulness of our
metrics by means of two simple extensions of the game, which contain several
potential modeling mistakes that can be identified using our metrics, see Figs. 4
and 6.

Hidden Deactivation. Figure 4 contains several potential mistakes. The first
one is that the wizard can escape to her laboratory whenever she is in the ladder
room, even during a fight. This is not immediately obvious from the lower region
of the state machine which describes the behavior of the wizard, and a developer
focusing on this region might suppose that casting a spell always leads to a fight,
and that fights are always terminated by either winning or escaping. However,
the number of deactivating transitions for every state in the lower region is
higher than the number of directly visible transitions, which clearly indicates
that there are other ways to exit the states in this region than the locally visible
ones. For example, in state Fighting there are two locally visible transitions (to
Spelling and to the final state), but the number of deactivating transitions is
3. By looking at the metrics the developer is therefore immediately alerted to
the existence of deactivating transitions operating in a “more global” manner.

Post-Domination. While a simple comparison of locally visible activations and
deactivations with the metrics proposed in this paper is strong enough to point
to some problems, this analysis is relatively indiscriminate and may capture non-
local effects intended by the system’s designers. By combining the metrics with
flow-analysis techniques it becomes possible to identify more precisely situations
which are likely to be incorrect.

For example, a slightly more sophisticated analysis of Fig. 4 shows that
it is possible for the wizard to obtain arbitrarily large power ups: Taking
into account only local transitions, state PowerFighting post-dominates [1]
state PowerSpelling, i.e., each path from PowerSpelling to a final state goes
through PowerFighting. This is an important property because states that
release acquired resources or undo changes to variables have to post-dominate
all resource acquisitions or variable changes for the state machine to be correct.
In the example, the player obtains a boost of its power in state PowerSpelling
which is undone in state PowerFighting.

Looking only at the lower state machine one might thus be led to assume
that the exit action of PowerFighting will always be executed after state
PowerSpelling has been entered. However, the measure D tr of deactivating
transitions for PowerSpelling has the value 3; since there are only two locally

A Set of Metrics of Non-locality Complexity in UML State Machines 79

visible outgoing transitions it is clear that it is, indeed, possible to exit this state
by a non-local transition: If the player enter state PowerSpelling while in the
Ladder room, she can take the transition toLadder to exit from PowerSpelling
without decreasing the value of the power variable.

By combining the metrics presented in this paper with static analysis it would
therefore be possible for tools to identify possible sources of errors resulting from
non-local activations or deactivations.

“Stolen” Events. One of the pitfalls of the semantics of UML state machines
is that if several transitions with the same trigger are enabled, and for two of
them, say t1 and t2, it holds that source(t1) is directly or recursively contained
in source(t2), then only t1 is fired. This is a bit dangerous since when modeling
on a higher level of abstraction (with states on a higher level in the hierarchy),
the modeler may intend to have several transitions bonded, i.e., they should be
fired at the same time, and this bondedness may easily get lost when one of the
higher level states is later refined and a substate reacts to the same event. For
example, in Fig. 6, since state Curious also reacts to event investigate (and
one of the conditions [TD] and [!TD] is always true), the transition from Idle
(which contains Curious) to Investigating will not be fired when Curious
is active. Using our metrics, this mistake can be easily detected: Let t be the
transition from CrystalRoom to CrystalPedestal, then NB(t) �= NB(t), and
the modeler can be alerted to double check this transition and those bonded to it.

Mutual Exclusion. Another important application of our metrics is the detec-
tion or validation of mutual exclusions of states. In general, mutual exclusion is
in UML state machines often hard to model and to comprehend, since the exclu-
sion logic is “hidden” in several model elements, scattered in several regions [11].
A mechanism to make mutual exclusions in a state machine “visible” is therefore
desirable.

Our metrics provide a simple means to make hidden mutual exclusions visible.
For two states s1 and s2, we say s1 excludes s2 if s1 strictly controls s2, and
there do not exist transitions t1, t2, target(t1) = s1, target(t2) = s2, such that
after t1 has been fired (and all exit actions, t1’s effect, and all entry actions have
been executed), the guard of t2 is satisfiable. If s1 excludes s2 and s2 excludes
s1, then s1 and s2 mutually exclude each other from being active. For example,
in Fig. 6, the states CrystalRoom and Spelling mutually exclude each other,
since the condition for CrystalRoom to be active (via any transition) is c==0,
and its entry action then increases the value of umlc, setting it to 1, thus making
it impossible for the guard of any of the transitions leading to Spell satisfiable;
and in the same manner, entering Spell also prevents CrystalRoom from getting
active. This way, mistakes of the modeler failing to constrain any of transitions
leading to these states are easy to detect by the measures for partial and total
control as described on p. 20.

80 G. Zhang and M.M. Hölzl

4 Related Work

Complexity metrics of state machines have been recognized as useful indica-
tors [9]. Hierarchical states are considered in [3,4]. Strictly speaking, these
approaches do not consider UML state machines, but rather State Transition
Systems (STSs). The syntax of STSs is considerably simpler than that of UML
state machines, and their semantics do not contain cross-region effects, such as
bonded transitions, stolen transitions, or a transition originating from one region
deactivating states in another. In comparison, our approach provides a set of
metrics for UML state machines, where it is much more involved to determine
the model elements that may activate or deactivate certain states. Moreover, it
is also clearer which elements are actually responsible for the complexity.

Cyclomatic complexity [8] is a very widely-used metric for state-based sys-
tems. Like the approaches cited above, cyclomatic complexity is also only
applicable to flat state transition systems, and is therefore, in the domain of
UML, not as direct as our approach.

Our previous paper [12] was the first one to study remote activation and
deactivation of states. The current paper extends [12] by the metrics regarding
cross-region dependencies.

The determination of the transitions activating or deactivating a certain state
is also an essential technique for weaving aspect-oriented state machines [14].

5 Conclusions and Future Work

We have discussed in detail the activation and deactivation of (hierarchical)
composite states in UML state machines, and, based on this discussion, defined
metrics to reflect the complexity of transitions leading to or leaving compos-
ite states, as well as the complexity caused by cross-region dependencies. Our
metrics give a better understanding of the complexity of UML state machines
than traditional metrics. They also show where the modeler or reader of UML
state machines must pay attention, and may alert them to potential modeling
mistakes.

Based on this work, we plan to define more precise metrics which also take
into account, e.g., the partial order of the execution of entry and exit actions
when composite states are activated or deactivated. Metrics on their own can
only provide relatively coarse indications of problems in state machines, and tools
based solely on metrics will probably often report possible errors when structural
properties of the state machine are used by designers to ensure invariants of
the model. Therefore we also intend to pursue the integration of the measures
presented in this paper with stronger structural analysis techniques for state
machines. Finally, we plan to validate our metrics in more realistic models, as
well as to implement support for the metrics in modeling tools.

Acknowledgment. This work has been partially sponsored by the EU project
ASCENS, 257414.

A Set of Metrics of Non-locality Complexity in UML State Machines 81

References

1. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: An
efficient method of computing static single assignment form. In: Conference Record
of the 16th Annual ACM Symposium Principles of Programming Languages (POPL
1989), pp. 25–35. ACM Press (1989)

2. Drusinsky, D.: Modeling and Verification Using UML Statecharts. Elsevier,
Amsterdam (2006)

3. Guo, L., Sangiovanni-Vincentelli, A.L., Pinto, A.: A complexity metric for con-
current finite state machine based embedded software. In: 8th IEEE International
Symposium on Industrial Embedded Systems (SIES 2013), pp. 189–195. IEEE
(2013)

4. Hall, M.: Complexity metrics for hierarchical state machines. In: Cohen, M.B.,
Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 76–81. Springer,
Heidelberg (2011)

5. Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.4.1. Specification, OMG (2011). http://www.omg.org/
spec/UML/2.4.1/Superstructure

6. Schmidt, C.D.: Model-Driven Engineering. IEEE Comput. 39(2), 25–31 (2006)
7. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigó, I.,

Gómes, J., Kappel, G., Knapp, A., Matera, M., Meliá, S., Moreno, N., Pröll, B.,
Reiter, T., Retschitzegger, W., Rivera, J.E., Schauerhuber, A., Schwinger, W.,
Wimmer, M., Zhang, G.: MDWEnet: A practical approach to achieving interop-
erability of model-driven web engineering methods. In: Koch, N., Vallecillo, A.,
Houben, G.-J. (eds.) Proceedings of the 3rd International Workshop on Model-
Driven Web Engineering (MDWE 2007), vol. 261 of CEUR-WS (2007)

8. http://en.wikipedia.org/wiki/Cyclomatic complexity. Accessed on 2014–04-30
9. http://code.google.com/p/umple/wiki/MasuringStateMachineComplexity.

Accessed on 2014–04-30
10. Zhang, G.: Aspect-Oriented State Machines. Ph.D thesis, Ludwig-Maximilians-

Universität München (2010)
11. Zhang, G.: Aspect-oriented modeling of mutual exclusion in UML state machines.

In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 162–177. Springer, Heidelberg (2012)

12. Zhang, G., Hölzl, M.: A set of metrics for states and transitions in UML
state machines. In: Proceedings of the 6th International Workshop on Behaviour
Modeling-Foundations and Applications (BM-FA 2014). ACM, New York (2014)

13. Zhang, G., Hölzl, M.: HiLA: high-level aspects for UML state machines. In: Ghosh,
S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg (2010)

14. Zhang, G., Hölzl, M.M.: Weaving semantic aspects in HiLA. In: Hirschfeld, R.,
Tanter, É., Sullivan, K.J., Gabriel, R.P. (eds.) Proceedings of the 11th International
Conference on Aspect-Oriented Software Development, (AOSD 2012), pp. 263–274.
ACM Press (2012)

http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://code.google.com/p/umple/wiki/MasuringStateMachineComplexity

	A Set of Metrics of Non-locality Complexity in UML State Machines
	1 Introduction
	2 UML State Machines
	2.1 Concrete Syntax and Informal Semantics
	2.2 Non-locality Complexity

	3 Metrics
	3.1 Notation
	3.2 Metrics Regarding State Activation
	3.3 Metrics Regarding State Deactivation
	3.4 Metrics Regarding Cross-Region Dependency
	3.5 Applications

	4 Related Work
	5 Conclusions and Future Work
	References

