
Ella Roubtsova · Ashley McNeile
Ekkart Kindler · Christian Gerth (Eds.)

 123

LN
CS

 6
36

8

International Workshops, BM-FA 2009–2014
Revised Selected Papers

Behavior Modeling –
Foundations
and Applications

Lecture Notes in Computer Science 6368

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Ella Roubtsova • Ashley McNeile
Ekkart Kindler • Christian Gerth (Eds.)

Behavior Modeling –

Foundations
and Applications
International Workshops, BM-FA 2009–2014
Revised Selected Papers

123

Editors
Ella Roubtsova
Open University of the Netherlands
Heerlen
The Netherlands

Ashley McNeile
Metamaxim
London
UK

Ekkart Kindler
Technical University of Denmark
Kgs. Lyngby
Denmark

Christian Gerth
Osnabrück University of Applied Sciences
Osnabrück
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21911-0 ISBN 978-3-319-21912-7 (eBook)
DOI 10.1007/978-3-319-21912-7

Library of Congress Control Number: 2015944149

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This book contains revised selected papers of six annual International Workshops on
Behaviour Modelling - Foundations and Applications, which were held from 2009 to
2014 [1–6].

Behaviour modelling is about describing a system in terms of its states and its
transitions from one state to another. The transitions may be initiated by the system
itself or by the systems environment, including the system’s users and other systems.
Behaviour models capture system requirements forming the basis of their precision and
completeness. They may have execution semantics, and, therefore, they are related to
system simulation techniques.

Over the last decade, models have played an ever increasing role in software
engineering, driven and dominated by the UML (Unified Modeling Language) and the
MDA (Model Driven Architecture) standards. Today, it is possible that major parts of
software systems can be generated from models fully automatically.

However, most of today’s code generators work mainly from class diagram models
and only address structural parts of the software. The code that implements behavioural
business rules and governs the protocols of interaction between the user and the
environment has to be added using traditional coding techniques. It seems that we have
not been as successful in leveraging the power of modelling to raise the level of
abstraction and eliminate low level coding in the behavioural realm as we have in the
structural realm. Nor have we managed to properly exploit the potential of behaviour
models to enable formal analysis and reasoning about behaviour, and thereby assure the
quality of the final software.

This was the starting point of the series of workshops on Behaviour Modelling -
Foundations and Applications (BM-FA). The objective was to raise awareness of the
unrealised potential of behaviour modelling, to identify factors that have contributed to
this, and ultimately to propose new ideas that overcome these barriers. We wanted to
find better ways for modelling behaviour, for speeding up the software development
process, better understanding its behaviour and guaranteeing its correctness.

This volume gives an overview of the ideas, problems, and solutions that were
presented and discussed over the course of these six BM-FA workshops. The workshop
papers and discussions explored the philosophy and practice of modelling, described
the experience and problems with existing notations, and proposed new concepts for
modelling behaviour and for combining existing modelling languages in new ways.

Modelling Practices

This volume starts with the paper written by Haim Kilov, a former academic (Stevens
Institute of Technology, USA), who works as an adviser for businesses applying
modelling. This paper combines and expresses the opinions of modellers working in
different domains and using different modelling techniques, and represents the essence
of the contributions of industrial participants of our workshop series. They all talked
of the need to recognise and accumulate patterns and abstractions, and of the impor-
tance of ensuring that definitions are easily understandable by users. H. Kilov gives a
historical example of specifications of insurance business showing that a complex
specification is not a quality specification. The author calls on modellers to think
clearly, separate essentials from specifics, avoid complexity and eschew tacit
assumptions.

Standards in Behaviour Modelling

After this general introduction of modelling, the volume presents an example of using
notations from standard UML for modelling behaviour.

The paper by Martin Gogolla, Lars Hamann, Frank Hilken, and Matthias Sedlmeier
presents the evolution of a UML- and OCL–based (Object Constraint Language) tool
for modelling. The group has been developing the tool USE (UML-based Specification
Environment) for about 15 years. While it started as a tool for structural modelling with
OCL constraints, it now addresses behaviour too. The paper illustrates the use of the
tool for analysis of a system described structurally with a class diagram, including class
invariants; and behaviourally with operation pre- and post-conditions, operation
implementations, and statecharts. The paper shows that even for relatively small
models, the validation of the structural models by behavioural views is needed, and is a
non-trivial task. The authors talk of the need to work further to investigate how such
tools would be used in the context of business systems development.

In the next paper, Gefei Zhang and Matthias M. Hölzl state that one of the barriers to
widespread adoption of UML behaviour modelling languages is in the complexity
of the models. The authors propose metrics of complexity of the UML statechart
models arising from different kinds of non-locality for the current behaviour of a model
being spread over several model elements instead of being locally available.

To illustrate the application of UML-based approaches for modelling embedded
systems, we have chosen the paper by Karolina Zurowska and Juergen Dingel. They
note that the execution semantics of UML behavioural models is not uniquely defined
by the standard, and various different semantics have been proposed. They explore the
possibility of a customisable execution engine that can be adapted to variations of the
execution semantics, giving greater flexibility for developers to align their tooling to
the task at hand.

VI Preface

New Ways of Behaviour Modelling: Events in Modelling

The next six papers of this volume present fresh ideas and concepts in modelling
behaviour itself and for integrating it with classical modelling and programming
mechanisms. We hope that these papers will inspire the modelling community to have a
closer look at the potential of behaviour modelling and use them as a glue between the
requirements descriptions and system implementations.

The contribution made by David Harel and Shani Nitzan exploits the application
of the approach of Behaviour Programming that aligns the software development with
descriptions of scenarios. The approach is applied to the domain of programs with
animation. Behaviour Programming was proposed by the group led by David Harel.
The basis of the approach is the language of Live Sequence Charts (LCS). LSCs extend
Message Sequence Charts (MSC) with modalities in order to support the specification
of liveness and safety properties and forbidden behaviours. The presented paper uses
the ideas of Behaviour Programming in Java for the development of hybrid systems
that combine discrete behaviour and continuous animation. The proposed approach
integrates the local rules between various objects with the behavioural programming
principles. As in hybrid automata, the states are governed by differential equations,
enabling continuous behaviours between discrete state changes. The approach has a lot
of application potential in modelling and simulation of interactive behaviour as its
combines the analogous behaviour with easy changeable rule abstractions to switch
such behaviour.

The paper by Jesper Jepsen and Ekkart Kindler proposes the Event Coordination
Notation (ECNO) for modelling the desired behaviour of a software system on top of
any object-oriented software. The authors emphasise the fact that the mechanism of
method invocation built in the foundation of the modelbased development is quite
different from the way of the observed object communication captured by behaviour
models. Therefore, the authors build their own notation, ECNO, that allows one to
model the behaviour of a system on top of structural models such as class diagrams.
ECNO is based on the basic coordination mechanisms proposed by Hoare and Milner
for defining interactions involving larger parts of a system. One of the main features of
ECNO is that it allows modelling behaviour on top of existing object-oriented systems,
and this way integrates with classical programming.

New Ways of Behaviour Modelling: Protocol Modelling

One of the core concepts used in the two papers above is that events are made a first
class modelling concept. Once defined, events can be used to coordinate the behaviour
of different components of the system. This idea is also a cornerstone of the Protocol
Modelling approach proposed by Ashley McNeile, which represents behaviour using
event-driven machines, called “protocol machines”, composed in the manner of
Hoare’s CSP. The interest in Protocol Modelling at the workshops is evidenced by the
fact that 14 contributions to the workshops made use of Protocol Modelling ideas; and

Preface VII

the editors have chosen three papers that illustrate different applications of these ideas.
In order to make this book self-contained, we reprint the paper by Ashley McNeile and
Nick Simons that introduces Protocol Modelling.

The paper by Marco Konersmann and Michael Goedicke highlights the features
of the domain of modern information systems that usually do not use behaviour models
and do not enjoy the benefits of reasoning about the behaviour and the ability to model
small, interacting behavioural components. The authors predict, however, the need of
models for future information systems and propose a framework, which imposes a low
barrier for integration of models. The paper presents a new way of programming with
protocol models integrated with source code. The protocol models replace the parts that
are not implemented yet. The protocol models are executable and can be used for
system debugging and testing at earlier design stages. A combination of models and the
implemented code in one framework may give rise to a flexible system development
approach.

The paper by Serguei Roubtsov and Ella Roubtsova investigates a particular way of
system modularisation separating the most changeable parts of systems. The authors
call them decision modules, and show how decision modules are expressed in
requirements and behaviour models. Decision modules are formalised as protocol
machines built using the event-based abstraction and possessing the unidirectional
dependency with protocol machines. The paper presents an analysis of different Java
implementation techniques (object composition, reflection, the publisher-subscriber
design pattern, interceptors, and aspects) aimed at establishing the possibility of
implementing decision modules having an event-based abstraction level and unidi-
rectional dependency with other modules. The paper also discusses the functionality of
a generic library that was developed by the authors for adopting the new style of
modularisation of locally changeable implementations with separated decision
modules.

In the paper contributed by the research group led by Jörg Kienzle (Wisam Al Abed,
Matthias Schöttle, Abir Ayed, Jörg Kienzle), this compositional approach is used for
aspect-oriented concern separation, and built into their tool Concern-Oriented REuse
(CORE). CORE contains many other views traditionally used for the UML-based
models. Classes statically define what functionality they offer. The message views
show how instances of these classes interact with each other and with objects of other
concerns to achieve this functionality. The state view complements the message views
by using protocol machines to specify the order in which an object’s operations should
be called. CSP parallel composition is used to synchronise operation invocations. As
the main purpose of CORE is model validation and documentation, CORE can com-
bine different state views and generate new logically related protocol views useful for
validation and documentation. The team developing CORE continues to experiment
with the incorporation of Protocol Modelling ideas into model driven software
development.

VIII Preface

Conclusion

The contributions of this volume show that behaviour models can play a significant part
in software development. These models can be on a high level of abstraction and very
close to domain modelling and requirements modelling; still, they can be used for
automatically executing them, for discussing and reasoning with them, and for veri-
fying the correctness of the developed system. With increased tool support, this could
lead to the development of implementation platforms which also make use of behaviour
models. However, there is still some way to go to exploit the full potential of behaviour
modelling — and we need to keep challenging existing notations and concepts, when
they do not adequately serve the needs and purposes, so that eventually we will have
distilled those concepts and notations that best serve their purpose.

Papers were contributed to the workshops by both European and American
researchers, so the key terms: behaviour (behavior) and modelling (modeling) will
appear in this volume both in British and American spelling.

The editors would like to thank:

– All the participants of the six international workshops for their contributions and
sharing ideas during the workshops

– The invited speakers, Prof. Dr. Gregor Engels (University of Padderborn, Germany)
and Michael Poulin (Head of Enterprise Architecture at Clingstone, Ltd. Bromley,
UK)

– The authors of this volume
– The reviewers of the Reviewing Committee for their quality reviews and strong

interest in the topic

In particular, we wish to thank the publisher, Springer, for making this publication
proceedings possible.

June 2015 Ella Roubtsova
Ashley McNeile
Ekkart Kindler
Christian Gerth

References

1. BM-MDA 2009: Proceedings of the First International Workshop on Behaviour Modelling in
Model-Driven Architecture. ACM, New York (2009). ISBN 978-1-60558-503-1

2. BM-FA 2010: Proceedings of the Second International Workshop on Behaviour Modelling:
Foundation and Applications. ACM, New York (2010). ISBN 978-1-60558-961-9

3. BM-FA 2011: Proceedings of the Third Workshop on Behavioural Modelling. ACM, New
York (2011). ISBN 978-1-4503-0617-1

4. BM-FA 2012: Proceedings of the Fourth Workshop on Behaviour Modelling - Foundations
and Applications. ACM, New York (2012). ISBN 978-1-4503-1187-8

Preface IX

5. BMFA 2013: Proceedings of the 5th ACM SIGCHI Annual International Workshop on
Behaviour Modelling - Foundations and Applications ACM, New York (2013). ISBN
978-1-4503-1989-8

6. BM-FA 2014: Proceedings of the 2014 Workshop on Behaviour Modelling-Foundations and
Applications. ACM, New York (2014). ISBN 978-1-4503-2791-6

X Preface

Reviewing Committee

Mehmet Akşit University of Twente, The Netherlands
Moussa Amrani University of Luxembourg, Luxembourg
Joao Paulo Barros Instituto Politecnico Beja, Portugal
Louis Birta University of Ottawa, Canada
Behzad Bordbar University of Birmingham, UK
Ghizlane El Boussaidi École de technologie supérieure, Canada
Mark van den Brand TU Eindhoven, The Netherlands
Juergen Dingel Queen’s University, Canada
Joao M. Fernandes Universidade do Minho, Portugal
Christian Gerth Osnabrück University of Applied Sciences, Germany
Luis Gomes Universidade Nova de Lisboa, Portugal
Joel Greenyer Politecnico di Milano, Italy
Reiko Heckel University of Leicester, UK
Stefan Hanenberg University of Duisburg-Essen, Germany
Jörg Kienzle McGill University, Canada
Ekkart Kindler Technical University of Denmark, Denmark
Marco Konersmann University of Duisburg-Essen, Germany
Haim Kilov Independent Consultant, USA
Ivan Kurtev University of Twente, The Netherlands
Levi Lucio McGill University, Montreal, Canada
Ashley McNeile Metamaxim, UK
Artem Polyvyanyy QUT in Brisbane, Australia
Michel Reniers TU Eindhoven, The Netherlands
Elvinia Riccobene Università degli Studi di Milano, Italy
Ella Roubtsova Open University of the Netherlands, The Netherlands
Bernhard Rumpe Aachen University, Germany
Dominik Stein University of Duisburg-Essen, Germany
Javier Troya Vienna University of Technology, Austria
Antonio Vallecillo Universidad de Malaga, Spain
Hagen Völzer IBM Research, Zurich, Switzerland
Matthias Weidlich Imperial College London, UK
Gefei Zhang Celonis GmbH, Munich, Germany

Contents

Modelling Practices

Business Modelling: Understandable Patterns, Practices, and Tools 3
Haim Kilov

Standards in Behaviour Modelling

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 31
Martin Gogolla, Lars Hamann, Frank Hilken, and Matthias Sedlmeier

A Set of Metrics of Non-locality Complexity in UML State Machines 59
Gefei Zhang and Matthias M. Hölzl

A Customizable Execution Engine for Models of Embedded Systems 82
Karolina Zurowska and Jürgen Dingel

New Ways of Behaviour Modelling: Events in Modelling

Programming Animation Using Behavioral Programming 113
David Harel and Shani Nitzan

The Event Coordination Notation: Behaviour Modelling Beyond Mickey
Mouse . 133

Jesper Jepsen and Ekkart Kindler

New Ways of Behaviour Modelling: Protocol Modelling

Protocol Modelling: A Modelling Approach that Supports Reusable
Behavioural Abstractions . 167

Ashley McNeile and Nicholas Simons

Integrating Protocol Contracts with Program Code – A Leightweight
Approach for Applied Behaviour Models that Respect Their Execution
Context . 197

Marco Konersmann and Michael Goedicke

Decision Modules in Models and Implementations 220
Serguei Roubtsov and Ella Roubtsova

http://dx.doi.org/10.1007/978-3-319-21912-7_1
http://dx.doi.org/10.1007/978-3-319-21912-7_2
http://dx.doi.org/10.1007/978-3-319-21912-7_3
http://dx.doi.org/10.1007/978-3-319-21912-7_4
http://dx.doi.org/10.1007/978-3-319-21912-7_5
http://dx.doi.org/10.1007/978-3-319-21912-7_6
http://dx.doi.org/10.1007/978-3-319-21912-7_6
http://dx.doi.org/10.1007/978-3-319-21912-7_7
http://dx.doi.org/10.1007/978-3-319-21912-7_7
http://dx.doi.org/10.1007/978-3-319-21912-7_8
http://dx.doi.org/10.1007/978-3-319-21912-7_8
http://dx.doi.org/10.1007/978-3-319-21912-7_8
http://dx.doi.org/10.1007/978-3-319-21912-7_9

Concern-Oriented Behaviour Modelling with Sequence Diagrams
and Protocol Models . 250

Wisam Al Abed, Matthias Schöttle, Abir Ayed, and Jörg Kienzle

Author Index . 279

XIV Contents

http://dx.doi.org/10.1007/978-3-319-21912-7_10
http://dx.doi.org/10.1007/978-3-319-21912-7_10

Modelling Practices

Business Modelling: Understandable Patterns,
Practices, and Tools

Haim Kilov(&)

Independent Consultant, Millington, USA
haimk@acm.org

Abstract. The paper discusses the key role of abstraction and explicitness in
modelling, and argues that abstract, precise, and explicit business domain and
process models based on a small system of concepts described in the work of
classics of systems thinking, economics, and computing science make possible
successful communications between business and IT stakeholders, and thus lead to
successful projects. The simple and elegant business models substantially use a
system of reusable patterns (relationships), from fundamental (applicable to all
models) to business-generic and business-specific. The stable invariants of the
business domain are clearly separated from the volatile business processes and
especially from the IT-imposed requirements (often restrictions). Modelling
practices including the need for human decision often forgotten in modelling, the
barriers to adoption of formal modelling, and the overly complex or otherwise
inadequate tools used by or imposed on modellers are also described.

“One of my major complaints about the computer field is that whereas Newton
could say, ‘If I have seen a little farther than others it is because I have stood on the
shoulders of giants,’ I am forced to say, ‘Today we stand on each other’s feet.’
Perhaps the central problemwe face in all of computer science is howwe are to get
to the situation where we build on top of the work of others rather than redoing so
much of it in a trivially different way.”

R.W. Hamming, Turing Award Lecture, 1968

When an artefact is to be designed and manufactured, it is necessary to determine
what it is, where it is, and what it does. To do that, a specification of semantics, both
of the artefact and of the appropriate fragment of the environment, is essential. This
specification – at an appropriate abstraction level and from an appropriate view-
point – should be understandable not only to the designers andmanufacturers of the
artefact but also, and more importantly, to its users and to those who will pay for it.
This has been a rule in any engineering discipline and should have been a rule in
software engineering. More often than not, this did not happen.

1 Abstraction and Reusable Patterns

“None of it is new; but sensible old ideas need to be repeated or silly new ones will get all the
attention.”

Leslie Lamport [60]

© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 3–27, 2015.
DOI: 10.1007/978-3-319-21912-7_1

Software engineering is complex. Dealing with complexity requires abstraction
(“The process of suppressing irrelevant detail to establish a simplified model, or the
result of that process” [1]) – a concept that has been known for millennia. In pro-
gramming, to quote C.A.R. Hoare, “only abstraction enables a manager or a chief
programmer to exert real technical control”. The same considerations apply to
understanding and modelling any complex phenomena including businesses: as noted
by F.A. Hayek, the purpose of a (high-level) model of a complex domain is to “bring
about an abstract order—a system of abstract relations—concrete manifestations of
which will depend on a great variety of particular circumstances which no one can
know in their entirety” [2].

The emphasis is on relations rather than on relation participants because neither
things nor actions exist in isolation. Almost always there is no need to reinvent:
important reusable patterns – fundamental, business-generic, and business-specific –

have been known and described for a long time. In particular, such fundamental
patterns as composition (“aggregation”) and supertyping (“generalisation”) have been
successfully used for decades (or more). Aggregation and generalisation patterns in the
context of general systems have been exactified and rigorously defined in [1, 3], and
elsewhere; for a short overview, see [4]. These definitions are abstract and such
irrelevant details as relation elements are suppressed: to quote F.A. Hayek again, in a
recurring pattern “the same… structure may be formed by any elements… of a very
different individual character… capable of entering the same relations to each other.”
[5]. (Observe that both things and actions may serve as relation elements, so that the
same relations may be used in “structural” and “behavioural” modelling.)

Recognising a pattern is not trivial and cannot be automated. Discovering and
defining a pattern is even more difficult. For patterns to be understandable to their
(potential) users, these activities require abstraction. As E.W. Dijkstra noted in his
Turing Award Lecture in 1972, the purpose of abstracting is not to be vague, but to
create a new semantic level in which one can be absolutely precise. As a consequence,
abstraction reduces reasoning to a doable amount (Dijkstra). Abstraction is probably
the most important activity of a good mathematician, a good programmer, or a good
modeller (systems thinker).

Y. Manin, an outstanding 20th (and 21st) century mathematician, described discov-
ering a new pattern as follows [6]: after acquiring a general vision of the vast territory and
focussing on a part of it, a mathematician tries to recognise “what is there” and “what has
already been seen by other people”; and finally starts “discerning something nobody has
seen”. This activity is very familiar to systems thinkers including business modellers. As
Manin observes, in the culture of definitions developed bymathematicians, “many efforts
are invested into clarification of … semantics of basic abstract notions and … of their
inter-relations, whereas the choice of words … and notations for these notions is a
secondary matter”. This observation is valid for any kind of modelling: unclear
semantics, such as using concepts “without the slightest whiff of a definition because
‘everybody knows it”’, leads to failures, from relatively trivial to life-threatening.

4 H. Kilov

2 Where Do the Patterns Come from?

“[w]hen a number of drawings are made after one pattern, though they may all miss it in some
respects, yet they will all resemble it more than they resemble one another; the general character
of the pattern will run through them all; the most singular and odd will be those which are most
wide of it; and though very few will copy it exactly, yet the most accurate delineations will bear
a greater resemblance to the most careless, than the careless ones will bear to one another.”

Adam Smith. The Theory of Moral Sentiments. 1759

In order to create information management systems that serve the needs of complex,
non-trivial and rapidly changing businesses, effective communication between business
and IT organizations is imperative. In order to communicate effectively, a small system
of understandable concepts and constructs with clearly defined semantics is essential.
These concepts and constructs – basic patterns of reasoning – facilitate understanding
and, in particular, bridge the proverbial gap between business and IT. They ought to be
used as a basis of all kinds of specifications, both of traditional businesses (“problem
world”) and of IT artefacts (“machines”).

Such a small system of fundamental elegant concepts and patterns has been around
in programming and modelling for decades. Some have been used for centuries and
even millennia in other areas of human endeavour, like engineering, business and law.
The semantics of this system of concepts was exactified in a very short (18 pages)
international standard, the Reference Model of Open Distributed Processing
(RM-ODP) [1]. In this standard everything was explicitly defined, especially the terms
“everyone knows” the meaning of (such as “system”, “abstraction”, or “behaviour”).
The fundamental patterns of composition (both of objects and of actions) and super-
typing (of objects, actions, and various other relation participants) mentioned above
were also precisely defined there. The system of concepts defined in RM-ODP has been
successfully used in modelling of many, and varied, non-trivial businesses and IT
systems (see, for example, [7–11, 29, 33, 59, 61], and many references there).

Many business-generic and business-specific patterns have also been described in
literature. For example, the business-generic pattern of a contract was described by
Francis Hutcheson [12] and by the US Uniform Commercial Code, exactified (for
example, in [11]) as a composite in the composition of parties, subject matter and
consideration, and refined, for example, as a business-specific pattern of a simple
financial contract (in [11], partially also based on [16] where invariants were explicitly
specified!) or as a business-specific pattern of a trade contractual element [8]. The
business-specific pattern of an annuity was described in [13] and, earlier, in [14]. Thus,
precise and abstract pattern descriptions have been around for centuries, and their
exactification based on these descriptions has been rather straightforward.

Clarity and understandability in general is also essential in economicswhich, “like logic
and mathematics, is a display of abstract reasoning… The economist does not need an
expensive apparatus for the conduct of his studies. What he needs is the power to think
clearly and to discern in the wilderness of events what is essential from what is merely
accidental” [15]. This is an excellent definition of abstraction along the same lines as in [1]!

More recently, for example, accountability requirements in sociotechnical systems
were clearly and succinctly specified (and represented in one simple UML diagram)

Business Modelling: Understandable Patterns, Practices, and Tools 5

[46] using the same three types of fundamental patterns (generic relationships) –

(non-binary) subtyping, (non-binary) composition, and reference – as those that were
successfully used in business modelling for “more traditional” businesses such as
insurance and finance.

The classical banking and financial models were based on such reusable patterns,
were short (several dozen pages at most, see e.g. the banking model in [16], the life
insurance model in [13], and the financial models in [17]) and understandable both to
insiders and to intelligent outsiders without any tacit assumptions. Details were often
omitted but could be easily explained, as and when needed, on the basis of these
abstract models. These are the most important characteristics of abstraction essential in
successful business (behaviour) modelling.

The exactifications of these simple and elegant pattern descriptions have been
obviously understandable to all stakeholders – from business experts to information
technologists. They may be and have been successfully used for communications
between business and IT experts (especially those business experts who are unable or,
more often, unwilling to become acquainted with the often threatening complexities of
the IT-specific methodologies and tools) [7, 8, 10, 18, 29, 33, 38, 58]. Regretfully, too
many “modern” business specifications include a lot of irrelevant details (such as
screen-based descriptions) and, even if these details are not IT-specific, do not include
appropriate abstract overviews. Such modern specifications (sometimes known as “8.5
by 11 by 11” specifications (the name is due to DeMarco?) – literally boxes of doc-
uments) are almost useless: they contain everything except a roadmap through their
thousands of pages. This clutter of complexity ought to be drastically (orders of
magnitude) reduced by using abstraction; and more often than not it means starting the
modelling activity from scratch.

As an example of dealing with “modern” models, consider the context of a large
insurance company where the project participants insisted that a simple business model
was impossible because the amount of materials was huge, and therefore it would be
extremely difficult to clarify what was going on and what was supposed to go on in the
future. Something was needed to convince the stakeholders that drastic simplifications
by means of abstracting out the business essentials were nevertheless possible. For-
tunately, the modellers found, then and there, in a local antiquarian bookstore, a
40-page booklet published in 1835 [13]. This small booklet contained a complete,
elegant, and non-threatening description of the business of life insurance annuities
including relevant regulations, parameterisable business rules, contract forms, tables to
be used, and so on. The booklet was demonstrated to the stakeholders who were
somewhat astonished (especially since this “ancient” description was non-threatening)
but immediately convinced (“serendipity in action”). The same booklet was later
demonstrated to stakeholders of other insurance companies, and also of financial
companies, with the same excellent results.

The essentials of such complex phenomena as modern financial derivative products
are still based on, and built upon, the classical basics, resulting in elegant under-
standable models. For example, a precise high-level model of mortgage-based secu-
rities was presented in Object Management Group in the mid-1990s on a couple of
pages; however, as observed by Kevin Tyson in his OOPSLA2000 keynote [18],
information technologists in the target audience of that model were (mildly speaking)

6 H. Kilov

less than interested in it, probably because it was about the business without any
reference to computer-based information technology.

Semiotic pollution [19] – information overload due to complexity – provides a
well-known counterexample. Such pollution harms our intellectual environment in the
same manner as physical pollution harms our physical environment. After complexity
has been introduced into a business or IT system, it is usually too late for a clean-up:
only trivial changes can be “reliably” made to that system unless a complete redesign is
accomplished. Even apparently local changes may lead to grave consequences if the
locality assumption, often unstated, will appear to be mistaken. Examples abound –

from 40000-page regulations for which it is not possible to determine whether they are
or are not satisfied in a realistic business situation, to information systems with (tens of)
thousands of acknowledged errors. For a recent apparently simpler example, Lex’s
observation – “If the crucial point appears on page 423 [of the annual report], it is
concealed. And the company is accountable for that.” (Lex, Financial Times,
13 November 2014) – is applicable not only to annual reports.

What to do about thousands of business rules? This question was asked by a
business subject matter expert in a large company where only “600” out of the “2400”
business rules were allegedly implemented in an IT system several weeks before the
deadline. The best way to deal with such issues is to recall a quote from H.A. Kinslow
[20]: [There are two classes of system designers:] “The first, if given five problems,
will solve them one at a time. The second will come back and announce that these
aren’t the real problems, and will eventually propose a solution to the single problem
which underlies the original five”. 2400 business rules mean 2400 problems, and,
following Kinslow, it would be not just desirable but essential to discover a few,
perhaps a few dozen, but much less than 480 (2400 divided by 5), problems which
underline the original ones. This approach leads to the need to “think first, program
later” – a well-known maxim often forgotten in the WISCA (“Why Isn’t Sam Coding
Anything?”)-compliant worlds of immediate code delivery.

3 Structure Over Content

“The fact is that in studies of complex phenomena the general patterns are all that is charac-
teristic of those persistent wholes which are the main object of our interest, because a number of
enduring structures have this general pattern in common and nothing else.”

F.A. Hayek [62]

The rules defining a relationship (“structure”) are generally independent of the identity
and nature (“content”) of the relationship participants. (“The structure of a system is the
set of all the relations among its components, particularly those that hold the system
together” [32]). These rules include, at least, the invariant that defines the relationship,
and also pre- and postconditions that define operations applicable to the relationship
and its participants. The same kind of relationships (such as composition; or contract)
when instantiated using different parameters describes the similar properties of simi-
larly related collections of quite different participants (such as things or actions). For
example, the invariant of a composition relationship states that the existence of an

Business Modelling: Understandable Patterns, Practices, and Tools 7

instance of this relationship implies the existence of exactly one participant in the
composite role and one or more participants in the component role, that at least one
(“emergent”) property of the composite participant is such that it depends upon
properties of the components, and that at least the identity of the composite participant
is independent of the existence or properties of the components (see e.g.
[1, 58, 61, 65, 66]). For a simple example of a composition, in accordance with the
Uniform Commercial Code, we may consider a contract (legal agreement) as a com-
position of parties, subject matter, and consideration; and we can instantiate this
composition for various legal or financial agreements. This approach to specifying
relationship properties characterizes not only fundamental generic relationships such as
composition or subtyping, but also more complex relationships “of the same kind”
from the same or different business environments. It represents a basis for reuse of
similar, but not identical, constructs. As an example, consider various instantiations of
a contract – such as buying a house, getting a mortgage, getting an unsecured (credit
card) loan, opening a chequeing account, and so on. At this abstraction level, all such
contracts are similar. And at a lower, more detailed, abstraction level, for example, all
real estate purchase-and-sale contracts are similar; but they are not similar to other
types of contracts such as contracts for credit card loans. The idea of discovering and
formulating common structural – rather than individual – properties is well-known in
science (“laws of physics”), mathematics ([31, 41] and other writings by E.W. Dijkstra,
and especially in category theory [53, 63]), programming, linguistics (grammar), and
exact philosophy [32]. We do that in programming when we discuss, for example,
while statements having the structure while expression do statement without paying too
much attention to what the specific expression and statement are, and independently of
the particular programming language used. And we do the same in discussing, for
example, trade contracts, or more specific business patterns such as options trade
contracts [8]. Emphasis on “attributes and their values” all too often encountered in
business modelling has to be avoided by all means because it contributes to excessive
complexity and hides the fact that things, components, and operations are not isolated.

These considerations apply not only to creating and reusing specifications, but also
to changes to a specification. Changes are inevitable for various reasons: due to better
understanding of the business by the business experts or by business analysts; due to
business experts changing their mind; due to changes in the environment such as new
laws; and for other reasons. (Abstraction may and often does help to anticipate
changes.) When we have to make a change, firstly we have to find a place or places
where to make it, and secondly we have to actually make it. Changeability is made
possible by clarity: it is easy to find a fragment of the specification to be changed if the
specification has a simple and elegant structure. Often, it may be possible to determine,
with the help of the business experts, which fragments of the business specification are
of high, medium, and low stability. Fortunately, in most cases the basic structure of the
specification remains the same when changes are made, so that the changes are of a
local nature. Specifically, this was observed in non-trivial financial [8, 59] and insur-
ance [10] specifications.

Emphasis on structure over content clearly helps a lot in business modelling. When
business analysts, together with business subject matter experts, try to discover and
formulate the model of a particular business domain, they ask questions in terms of

8 H. Kilov

invariants of patterns – both of generic relationships and of other, more specific,
business patterns. Thus it becomes possible to structure business information in an
appropriate manner and abstract out the essentials. Often it helps to formulate a
question as a proposition – “observable fact or state of affairs involving one or more
entities, of which it is possible to assert or deny that it holds for these entities” [1] – so
that the early incomplete versions of a business model may be precise but incorrect and
therefore serve as questions to business experts. Indeed, as observed by Joseph Goguen,
“a precise definition that is somewhat wrong is better than a description so vague that
no one can tell if it’s wrong” [63]. (Obviously, “precise” is not the same as “detailed”.)

4 Purposeful Behaviour

“Human action is purposeful behaviour.”

Ludwig von Mises [15]

Abstraction is needed to specify the essentials, like when using an appropriate road-
map; however, a business process like driving requires human decisions within this
framework. Thus, one should distinguish between patterns and specifics (“particular
circumstances”, Hayek). If behavioural semantics is specified explicitly, with articu-
lated tacit assumptions, then it becomes possible to determine what aspects of
behaviour can be automated (using an IT system), and what specifics could or should
be based on human decision. However, recognising what details are irrelevant, and in
what circumstances, may not be trivial: for example, in investing Richard Oldfield [21]
urges the reader to focus on “things which matter – information minimalism,” rather
than on “idiotic distraction and waste of time” when “staring… mesmerized… at [any]
machine which tells one stock prices” and which “impels people to do all sorts of
things which are better left undone”.

The concept of purposeful behaviour – see also [5] and [15] – is used to specify, in
the context of [1], voluntary choices made by people or legal entities (“parties”) and
directed towards some anticipated future state chosen from a set of possible future
states as a result of evaluation by the parties. Different objects fulfilling the same party
roles, or the same objects fulfilling these roles in different epochs, may direct pur-
poseful behaviour towards different anticipated future states. The realization of pur-
poseful behaviour may lead to a result different from that anticipated future state.
Purposeful behaviour is not predictable, i.e., it cannot be determined from the speci-
fication whether an action of purposeful behaviour will or will not occur in a given
state. The anticipated future state and the objective toward which purposeful behaviour
is directed may be left unspecified in the model.

Most actions in which a party participates are purposeful because the set of possible
future states usually includes more than one element (for example, due to possible
violations of prescribed behaviour). This contrasts with actions in which only
non-parties participate. Therefore the modeller, together with the owner of the model,
has to decide which of these party actions are of interest to be explicitly included in the
model as elements of purposeful behaviour.

Business Modelling: Understandable Patterns, Practices, and Tools 9

An example of purposeful behaviour of interest to the modeller may include the
offer, counteroffer and acceptance of an agreement that may be modelled as a contract.
Another example may include the change by a party of the result of a valuation per-
formed by a credit assessment algorithm. Still another example may include explicit
modelling of regulatory violations by financial institution employees. Thus, “in the field
of finance […] psychology and free will are added to the difficulties of modelling” [56].

When a party delegates a purposeful behaviour to an information system, that
system will choose from a predetermined set of future states according to predeter-
mined criteria. (When the information system is able to generate new behaviours or
new choice criteria, the set of all those behaviours and choice criteria is predetermined
in the specification of the system.)

There ought to be a possibility for humans to override an IT-based decision. Thus,
such behaviour of an IT-based financial system as the recent rejection of Bernanke’s
mortgage refinancing application would become less likely (“The root of the problems
lies in the cultural preference in North America in favour of concrete facts, algorithms
and what is imagined to be replicability, and against making judgments based on
personal assessment. A personal assessment would disclose that Mr. Bernanke,
although without a steady job and perhaps also with an irregular stream of income from
speeches and consultation, nevertheless is a very, very good risk.” [55]).

In a similar manner, credit and interest decisions made by humans led to substantial
success and popularitywith customers ofUKbranches of a Swedish bank (Handelsbanken)
where these decisions are made by branch managers rather than in a centralized manner
[22]. The banking patterns have remained the same for centuries – see, for example, Adam
Smith’s observation that in banking “all the operations are capable of being reduced towhat
is called a Routine, or to such a uniformity ofmethod as admits of little or no variation” [47]
– but the specifics are different for different banks under different circumstances; and
Handelsbanken succeeded because its branch managers could make their own decisions
based on the local state of themarket. This is as it should be: as vonMises emphasised, “the
specific entrepreneurial profits and losses […] depend on the adjustment of output to
the most urgent wants of the consumers. What produces them is the extent to which the
entrepreneur has succeeded or failed in anticipating the future – necessary uncertain – state
of the market” [15]. Attempts to completely automate such decisions often fail or, at best,
lead to less than optimal results.

5 The Stable Basics: The Business Domain

“In contrast with other types of engineers, ‘software engineers [generally] do not know how to
model the domain in which their software operates’ (Dines Bjørner). If only those who are
mesmerized by their employees’ C++ skills would finally understand this!”

George Hacken [23]

The problems of specification complexity are exacerbated by the desire to do the work
faster, and as a result specifications are often started “in the middle” instead of starting
with a solid and stable foundation – the basics of the business domain “as it is”. These
basics are also known as ontology that describes the structure and content of “what is

10 H. Kilov

there” in the domain of interest. The classical presentations of various businesses such
as finance, insurance, banking, and other areas of human endeavour, always started
with clear and understandable domain descriptions. Starting in the middle – either with
IT system requirements that may change in a rapid or unexpected manner (or may not
even be discovered and formulated without understanding of the stable basics), or with
the descriptions of business examples (even if they have fashionable names such as
“use cases” [24]) – may cause serious disappointments leading to software systems
chasing the existing products [8], to various kinds of hacking, dignified or otherwise,
and ultimately to more failures.

Relying only on (volatile) business processes (actions) while ignoring the domain
leads to serious problems not specific to information technology. Let us consider the
need to drive from “here” to “there.” When describing only the business process of
driving, we may ask for directions (such as “drive 11.5 miles on Route 22 and then turn
right and then at the third traffic light turn left, and…”). Such directions may be useful,
provided that there is no road construction work, that the odometer in the car is perfect
(and that we remember to look at it), that there are still exactly three functioning traffic
lights referred to in the directions, and so on. In real life, we know a better way: use a
roadmap. This non-trivial concept is based on the Hellenistic mathematical geography
known to us through Ptolemy’s Geography. It is a typical scientific theory using a
model of the surface of the Earth on a spherical surface with two spherical coordinates
and using projections in order to represent the spherical surface on plane charts [25].
After this scientific basis was established, it became possible to apply it in all kinds of
technology including that of using roadmaps for getting from here to there.

In any “traditional” branch of engineering, “for each system the developers must
investigate and analyse the properties of the problem world domains and of their
interactions with each other and with the machine to be built: they must devise a
machine whose interactions with the domain to which it is directly connected will
ensure that the system requirements – the purposes of the system – are satisfied” [26].
In most branches of traditional engineering, the problem world domains, the system,
and the most important aspects of the machine are well known and explicitly described,
leading to successful specialisation of engineers where, as Jackson observed, hand-
books and well-established approaches are taken for granted, and learning from failures
is considered to be normal. In software engineering, more often than not, this is not the
case (although at least some concepts may be well-known to many in the research
community).

Not everything in software engineering is completely bleak. Business models based
on stable business domain specifications have been successfully created and used for
better understanding of the business, for making business decisions based on that
understanding, for education and training of new employees, and for improving and
automation of various business processes [7, 8, 10, 27, 28].

The structure of a business domain is defined using relationships between business
things. Each of these business-specific relationships is a refinement of such funda-
mental generic relationships as “subtyping”, “composition”, and “reference”, defined in
international standards [1, 58, 65] and elsewhere. These relationships may be con-
sidered as “elementary molecules” encountered in modelling of all businesses (and IT
systems!). Models expressed in the terms of these relationships are compact and

Business Modelling: Understandable Patterns, Practices, and Tools 11

readable by all stakeholders. Obviously, it is possible and desirable to define and reuse
“non-elementary molecules” – business-specific patterns – such as “notification”, “joint
ownership” [29], “contract”, “real estate purchase and sale contract”, “trade”, “pur-
chase on margin/short sale” [66], “banking clearing house” [66], “settlement of
securities transactions” [66], “initial public offering” [66], “roles in organisation” [38],
etc. Observe that these business-specific patterns were formulated on the basis of
excellent clear and precise decades-old economics texts such as [15–17]. Thus, busi-
ness modelling never starts with a blank sheet of paper – the elementary molecules are
always there for reuse, and in most situations, non-elementary molecules already exist
or can be defined and reused.

The same kinds of relationships – business patterns – that define the structure of a
business domain can be used, in a similar manner, to define the structure of business
processes (relationships between actions – steps within business processes), as well as
to define the structure of information technology systems and infrastructure. Indeed, as
defined in [1], behaviour is a collection of actions with a set of constraints on when
they may occur; and such fundamental relationships as composition and subtyping are
defined in [1] not only for objects but also for actions and other kinds of relationship
participants. For a simple example, opening a chequeing account is an ordered com-
position of the following steps: assessing customer needs; choosing a template of an
account; offering the template to the customer and getting customer’s acceptance; and
instantiating the chequeing account contract template. Pre- and postconditions are used
to model individual business processes (actions), and process modelling provides
important feedback for the domain model showing where the latter ought to be refined.

Starting with the business domain model is not a panacea. Compare two approaches
used in different financial companies. In one company, business modelling activities
started with defining a trade (in its context) as the most important artefact. This defi-
nition was far from trivial and took several weeks of effort, in particular, because it was
essential to discover and articulate tacit assumptions of different stakeholders who used
the term “trade” to mean somewhat different things, especially for complex trades. The
non-triviality of defining a trade started to be understood when the business analysts
tried to formulate, together with the business experts, a clear definition of such a “trivial”
concept as trade confirmation. After a trade has been defined, to the satisfaction of all
business stakeholders and analysts, the rest of the business modelling activities went
very smoothly [8]. Contrariwise, in a different financial company business domain
modelling was performed along the lines of agile development in which the hard
problem of defining a trade was put aside because the stakeholders could not agree on a
definition, and as a result some less interesting fragments of the model were successfully
demonstrated to the management, but the modelling activity itself had not succeeded.

Relying on tacit assumptions (different for different business stakeholders) may
lead to very serious problems and even to disasters. Explicit specification of business
semantics is often simple and helps to avoid such problems. As another trade-related
example, consider problems with reconciling of trade valuations with counterparties:
“if [a company] had been regularly reconciling… it would have discovered much
sooner that its counterparties valued those trades completely differently: [reconciliation
is a] “simple but extraordinarily efficient way of managing risk” [30]. An explicitly
articulated abstract business model of trade confirmation with precisely specified

12 H. Kilov

semantics was either absent or not demonstrated in an understandable manner to all
stakeholders because “everyone knows” what “trade confirmation” means. Per Sjöberg’s
company, TriOptima, was able to discover these problems, specify them explicitly,
including description in a newspaper (Financial Times), and provide appropriate
solutions for “1200 institutions worldwide” [30]. Thus, understanding and correctly
formulating problems leads to (relatively) easy solutions.

Successful business modelling experience suggests that domain (and process)
modelling should be done (or, at the very least, led) by good abstractionists. As Bjørner
stressed, “Is it really the idea that computing scientist cum software engineers cum
knowledge engineers should be the ones who create domain models? Well, for the time
being, yes! In collaboration […] with domain stakeholders. But we foresee that
gradually professionals of respective domains will have learned basic techniques of
abstraction and modelling as part of their domain specific academic education, but in
courses that basically propagate computing science concepts and techniques” [27].
Indeed, best results in business modelling were achieved when those business subject
matter experts who were good systems thinkers became interested in modelling to such
an extent that they themselves (with some minimal help) created important non-trivial
fragments of the model [8].

As an example [8], in a rather complex area of exotic options, the amount of
modelling work done within a short timeframe was very substantial: in a few weeks it
was possible to create a reasonably complete top-level preliminary business domain
model (several dozen pages in length), and start process modelling. This became
possible due to the dedication of the business stakeholders, both from the front office
and from the back office, who actively participated in all modelling sessions. The IT
stakeholders also participated in these sessions. (Changing the mindset of participants
from starting with process to starting with domain modelling was the most important
aspect (took 3−6 sessions).) The resulting business model was general and used a
shared set of concepts and business patterns, both business-generic and
business-specific, thus avoiding the distinction between front, middle and back offices
which was needed only at more detailed levels of the model. The business stakeholders
observed that each of them had his own understanding of the meaning of a trade, a
settlement, etc., and understood – among other things – how difficult it was to com-
municate to business analysts and then to developers the concepts each of them
understood somewhat differently. Probably for the first time the front and back office
stake-holders were together in one room during some important modelling sessions. It
was very instructive to look at changes in individuals’ and managers’ mindsets. The
things they did have value far beyond building IT systems: to quote a leading business
stakeholder, “having a business model makes the organization ten times better”.

6 Modelling Practices

“There is no justification for renouncing the basic engineering technique of specifying what you
are going to do, in writing, and at appropriate level of detail, before you do it.”

Bertrand Meyer [24]

Business Modelling: Understandable Patterns, Practices, and Tools 13

During the course of the information system development process three kinds of
models are produced: business models, platform-independent IT solution models, and
platform-dependent IT solution models.

Different people and organizations use different terms to denote these three kinds of
model. Also, in many IT shops there is no analog to the business model, but there are
notions of platform-independent and platform-dependent IT solution models. Some-
times the platform-independent and platform-dependent IT solution models are referred
to as “analysis” and “design” models respectively. Alternatively, they can be referred to
as “design” and “implementation” models respectively, with business models referred
to as “analysis” models. Although these three model kinds are very different (due to
separation of concerns), at the same time the structure of these models is similar
because it is based on the same underlying concepts and constructs (a.k.a patterns).

A business model rigorously and explicitly defines the business entities (“things”
such as trades, options, etc.), business processes (such as a trade confirmation process),
and the relationships among them. By describing the business as an abstract –

realization-independent – model, it establishes a formal system of concepts that can be
used to express the business requirements.

A business model consists of a business domain model and a business operation
(a.k.a. process) model. The business domain model defines things and relationships of
interest, with an emphasis on relationships, and provides the explicit context for all
process specifications. It is relatively stable and shows the most important business
invariants that remain the same no matter what processes and services are, were, or will
be used. Of course, in some cases these invariants will change, but these changes are
substantially less frequent than changes in business processes or services.

A business model is independent of whether the business processes will be realized
by humans or IT systems (or by a human-computer system interaction). The appro-
priate realization decisions, including the decisions about stages in realizing IT sys-
tems, are to be made explicitly, based on the explicit and precise business models.

The same fundamental relationships that define the structure of a business domain
model are used, in a similar manner, to define the structure of a business operation
model (business processes, workflow, etc.), as well as to define the structure of IT
models. The definition of a mathematical structure as “a set of (indefinable!) objects (or
several sets of objects of different natures, distinguished by the titles conditionally
conferred upon them) with a given system of relationships between the elements of the
sets” [31], together with the general definition of a structure of a system as “the set of
all the relations among its components, particularly those that hold the system together”
[32] emphasise relationship semantics that is all too often completely or partially
ignored in “traditional” approaches to modelling.

The constructs used for a business model are not restricted by any infrastructure
(and, of course, by any tool). There should be no code generation from a business
model: it serves different purposes (understanding), and it should not be restricted by
methodologies or tools.

A business model specifies semantics. Therefore semantic-free artefacts, such as
box-and-line diagrams (with “default semantics” of the lines), “named lines” (with
names as “is related to” or “is linked”), and “meaningful names” of things (don’t forget
that a thing may have several context-dependent names also known as synonyms) must

14 H. Kilov

be excluded from such models and replaced with relationship specifications with clear
semantics based on generic relationships. Then it becomes clear that apparently dif-
ferent relationships have the same kind of invariant (with different actual parameters),
and therefore are of the same type (“shape”) [33].

As a typical example, when a large architectural “box-and-line” drawing was
presented at an important meeting, one of the decision makers was very pleased with
his apparent understanding of the architecture and decided to formulate it based on the
drawing. However, his understanding was wrong: the authors of the architecture meant
something totally different from what this architecture user read from several essential
fragments of the drawing. These authors relied on defaults and “common knowledge”,
and did not articulate what they meant in a precise and explicit manner. Already in
1968, Alan Perlis emphasized that people “use phrases like ‘communicate across
modules by going up and then down’ — all of the vague administratese which in a
sense must cover up a native and total incompetence” [20].

Such tacit assumptions as “meaningful names” usually mean substantially or –

worse! – somewhat different things for different stakeholders. A name has a meaning
only in context (“only in the context of a proposition has a name meaning”,
Wittgenstein). In particular, business things, relationships, and actions are not the same
as IT things, relationships, and actions: for a well-known example, a patient is not the
same as a patient record; and a patient may and usually does correspond to several
database records, perhaps in different databases (and probably also to something not
represented in any database at all) There is no 1:1 correspondence there, even though
the “meaningful names” are often the same.

A business model must be understandable without the expert around. In particular, it
means that all tacit assumptions must be articulated and made explicit. Regretfully, too
often modellers and even model users forget that the purpose of the business model is to
“demonstrate that answers [to questions about the model] can be given entirely in terms
of the model. If such answers can not be found then the model is inadequate” [34].

Most business systems we currently deal with are open, that is, external relation-
ships between components of these systems and their environment (“changing eco-
system”) change in often unpredictable ways. Striving for simplicity is essential for
decision making in the context of open systems where the inevitable changes can be
understood only when there is something stable (and as simple as possible!) to rely
upon. For example, some business systems are resilient so that essential characteristics
of their invariants tend to be preserved under changes in their environments. Marriage
or mortgage are examples. For a more specific example, when (inevitable) changes
were to be introduced in business requirements for an accounting model in a large
financial company, it was very easy to localise and implement them due to the clear and
understandable business domain specification [59].

Simplicity is essential for clarity and understandability of any model, not just a
model of an open system. With respect to (presumably) closed systems of consumer
electronics, it is very instructive to refer to Elke den Ouden’s thesis at the Technical
University of Eindhoven [35, 67]. She concluded that half of all supposedly mal-
functioning products returned to stores were in reality in full working order, but just
perceived as too complex to be operated successfully, and also noted that the average
U.S. consumer would spend a maximum of about 20 min trying to get a newly acquired

Business Modelling: Understandable Patterns, Practices, and Tools 15

electronics device to work before giving up. Something was wrong in modelling of
behavioural semantics for these products; perhaps it was never properly done in
business terms.

Thus, clarity and understandability to various audiences (business subject matter
experts, analysts, managers, developers, etc.) is essential for successful and therefore
usable business models. Therefore the representations used, including graphical ones,
should not be threatening or overwhelming and should be explainable to a non-expert;
formal or even graphical representations should be translatable into a structured natural
language (“legalese”) narrative. Precise specifications must be provided for each used
representational artefact. A business model should be not a burden to read, although
writing it may well be far from trivial. Abstraction levels and viewpoints should be
used for understandability.

In creating and discussing a business model, precision is much more important than
correctness. Indeed, a precise but incorrect model may be justifiably disagreed with by
the model users and correspondingly corrected, while an imprecise model is too vague
to be agreed or disagreed with.

Good business modellers generally do not need to know the specifics of an
application area before creating a business model: it is much easier for a modeller
ignorant (or claiming ignorance) of these specifics (P. Burkinshaw [20]) to discover,
articulate and thus make explicit different tacit assumptions of different business (and
perhaps IT) experts. In this context, we may refer to Gerald Weinberg’s observation
that “the student trained in general systems thinking can move quickly into entirely
new areas and begin speaking the language competently within a week or so” [36].

We may note another important Weinberg’s observation that mastery of one’s
native (plus at least one non-native) language together with mathematical maturity (as
opposed to knowledge of specific areas of mathematics) are essential for success in
general systems thinking, while, in Dijkstra’s independent opinion, these are the only
two necessary prerequisites of a competent programmer. For a somewhat unexpected
example, the inability of some “modern” modellers to detect and clarify grammatically
ambiguous (with more than one parse tree) statements in documents provided by
business customers leads to misinterpretations and wrong implementations that may be
detected too late if at all. (Regretfully, teaching grammar in secondary schools is not
fashionable anymore: “An education that drills children in the structure of a language
will produce adults who are able to teach themselves how to send emails in an hour, or
to speak an unfamiliar language in three months. One that aims only to teach them to
learn how to surf the Web is going to produce an ignorant underclass” [51]).

At the beginning, a model is usually sketchy and short. Still, it has to be precise and
explicit: high quality must be maintained from the beginning, and additional incre-
mental functionality may be added afterwards. Early versions of the model may serve
as excellent sources of questions to the business experts. The same approach, concepts
and constructs should be used in all kinds of models (business, IT system, techno-
logical infrastructure, etc.). Explicit division of labour should exist between different
models (e.g., between a business problem and an IT solution), as well as between
specification and implementation. In particular – and this is very important – there
should never be a requirements specification in terms of solutions (e.g., “screens”).

16 H. Kilov

More generally, user interface specifications should be clearly separated from business
specifications, unless the business is about user interfaces.

The importance of separating a business model from technology was mentioned,
for the financial environment, as early as in 1930: “The casual visitor to the Stock
Exchange is apt to come away much impressed with the mechanical appliances on the
floor … but rather oblivious to its much more important human mechanism. For the
securities market is able to function only through the highly specialized work of the
several different types of brokers and dealers who go to compose it. Indeed, the day
was when the only mechanical appliance in the New York stock market was the old
buttonwood tree” [17]. (For an earlier clear and understandable specification of the
semantics of English financial institutions, see, for example, a 63-page book [14].)

Creative composition of well-known and successfully used concepts and patterns
with “open-mindedness about where those components can be found” – rather than
starting from scratch and reinventing (possibly square) wheels – often leads to
non-trivial innovation and success [37, 38] in modelling and realisation of the models.

Elucidating the semantics may be difficult for a traditional business (although in
most cases possible, often referring to classical books about that business), but,
regretfully, is often almost impossible for an existing IT artefact (for procurement and
evaluation). The specification of the semantics of the latter is all too often vague and
incomplete, leading to the conclusion that it “does what it does”.

Finally, and more technically, in behavioural modelling we need to distinguish
between an invariant for a collection of objects (“entities”, “things”) that constitutes the
overall model and the fragment of the invariant that is used in a specific action (what
remains unchanged but used (referred to) vs. what is not even used). The latter is often
much simpler than the former (“abstraction in action”).

7 Barriers to Adoption

“Almost anything in software can be implemented, sold, and even used given enough deter-
mination. There is nothing a mere scientist can say that will stand against the flood of a hundred
million dollars. But there is one quality that cannot be purchased in this way – and that is
reliability. The price of reliability is the pursuit of the utmost simplicity.”

C A R Hoare, Turing Award Lecture, 1980

“…the DP Manager… swiveled round in his chair to face a huge flowchart stuck to the wall:
about 50 large sheets of paper, maybe 200 symbols, 500 connecting lines. ‘Fred did that. It’s the
build-up of gross pay for weekly payroll. Noone else but Fred understands it.’ his voice dropped
to a reverent hush. ‘Fred tells me he’s not sure he understands it himself.’ ”

Michael Jackson [39]

One of the most important barriers to successful use of business modelling in general
and behaviour modelling in particular is the rushing to code where too often the
emphasis is on details and specifics rather than on concepts and essentials. The
insistence on immediate gratification, on the “agile, let’s-just-do-what-we-need-now”
general approaches are “some of the most absurd and damaging contributions of agile
methods” that may lead to “historical catastrophes that caused billions of dollars of

Business Modelling: Understandable Patterns, Practices, and Tools 17

wasteful efforts [like] the MS-DOS 640 K memory limit, the Y2K mess, the initial size
of IP addresses” [24]. Like in the work of a foreign language translator or interpreter,
“word-for-word” translation or interpreting without understanding of the business
context leads to disasters (“machine translation” is just another example of the above).
Developers who are proud to “know the business better than the business people do”
and thus try to automate all human decisions – such as on risk management in finance –
are a similar example of this barrier.

A somewhat related barrier is that of replacing the business semantics with sig-
natures of operations with “obvious defaults” that are implemented in the code. Let’s
consider an almost trivial example of a contract specified in this manner using only a
signature (since “everyone knows what the domain is about”):

contractðhouse1; person1; person2;moneyÞ

The semantics of this contract may be any of the following:

• Person1 buys house1 from person2 paying money
• Person1 rents house1 from person2 for money per year
• Person1 babysits for person2 at house1 getting money per hour
• Person2 builds house1 for person1 getting paid money
• …

Behavioural semantics (e.g., specified by means of pre- and post conditions in the
context of the explicitly specified domain invariants) defines (the top level of) what this
contract is about. Demonstrating an example like this to business experts has sub-
stantially contributed to better communication between business and IT stakeholders.

Another important barrier is that of complexity. This was mentioned by
C.A.R. Hoare as early as in 1977: “…the fatal attraction is the very complexity…
which totally beggars the comprehension of both user and designer… which would
revolt the instincts of any engineer, but which, to the clever programmer, masquerades
as power and sophistication. He may even have less creditable motives…” [40]
Complex, and sometimes artificially complex, modelling approaches, methodologies,
and tools often imposed on modellers lead to complex models perceived as threatening
by business experts – the most important target audience of these models (only the
business experts can determine whether the models are correct). In such environments,
communication between business and IT experts fails miserably.

Complexity sells well not only in industry but also in academia. As E.W. Dijkstra
made explicit some time ago, “[h]e who regularly addresses Western academic audi-
ences quickly discovers that, on the average, his audience is impressed to the extent it
has not understood him: by a perfectly understandable lecture many people in the
audience feel somewhat cheated, and they leave the lecture hall afterwards, com-
plaining to each other ‘Well, that was all rather trivial, wasn’t it?’. As a result, most
audiences exert on most speakers a pressure – subconscious at both sides – to be
occasionally unnecessarily obscure” [41]. Similarly, simplicity has to be explicitly
taught and promoted in computer science courses, but this is too often not done, and
effective thinking is not taught. Many current textbooks and courses emphasise tools
and (sometimes buzzword-compliant) methodologies as opposed to concepts.

18 H. Kilov

Computing classics promoting simplicity and elegance are frequently not even men-
tioned. For example, dozens of students who relatively recently graduated with a BS in
computer science have never heard about Dijkstra, Hoare, or Wirth (or such classics as
[20]), and have also never heard about the more pragmatic Gerald Weinberg whose text
[42] was successfully used as a college textbook in the 1970s. All these classical works
have served as sources of inspiration for business modellers.

Attempts to reduce the complex phenomena in business behaviour to
computer-based models, together with the use of algorithms instead of – when needed –
human decisions is another serious barrier to success and perhaps adoption of business
modelling by business experts. All too often, customer service representatives tell users
that “the computer does not let me do that”, to the detriment both of users and of these
representatives. Behavioural semantics cannot always be specified in an algorithmic
manner – people are not automata.

Reduction to algorithms cannot and does not work in business modelling –

otherwise human decisions would not have been needed. In particular, using statistics
in financial models that rely on “the false assumption that market returns follow a
normal distribution” is misleading, as emphasised by Hayek [62] decades ago and as
recently noted in Financial Times [64] with respect to formulating regulations and
managing asset allocation by investors. Relationship semantics must be used instead.
Hayek discusses the impotence of statistics in dealing with complex systems because
statistics eliminates the essential complexity and ignores semantics of relationships
between individuals with different attributes: “The statistical method is… of use only
where we either deliberately ignore, or are ignorant of, the relations between the
individual elements with different attributes, i.e., where we ignore or are ignorant of
any structure into which they are organized” [62].

In addition to overemphasis on complex tools and methods, textbooks and often
papers on business (behaviour) modelling often ignore the complexity of real busi-
nesses. Not only textbooks but also academic papers almost always use toy examples
with neat and often trivial problem domains (the “disdain for the inconveniently messy
real world” in software engineering textbooks was observed, for example, by Michael
Jackson). Such papers are obviously considered irrelevant by those few practitioners
who take the trouble to read them. Contrariwise, Dines Bjørner specifically and
explicitly emphasised the need to model all kinds of complex and often unpleasant
behaviour: “In the real world, i.e., in the domain, all is possible: Diligent staff will
indeed follow-up on inquiries, orders, payments, etc. Loyal consumers will indeed
respond likewise. But sloppy such people may not. And outright criminals may wish to
cheat, say on payments or rejects. And we shall model them all” [27].

Unreadable business models are obviously a serious barrier to adoption. A graph-
ical representation of a business model several square meters in size is useless because
nobody can understand it, even if only a small projection of it is shown at a time. In a
more traditional business, for example, of using roadmaps, the concept of abstraction,
specifically, of using different levels of detail (and perhaps different viewpoints) on
different maps, has been successfully used for centuries if not millennia; regretfully,
business models are too often represented without any regard for abstraction and thus
for human readability. Business stakeholders often just ignore such documents.

Business Modelling: Understandable Patterns, Practices, and Tools 19

Quite a few failed business domain models were developed with the laudable goal
of being demonstrated to and agreed upon by business stakeholders. These failures
happened not only because the models were too detailed (“many square meters”)
without an abstract overview, but also because quite often they included fragments of
code for those aspects of the model that could not be presented graphically by the tool.
More often than not, there was no distinction between the business modelling artefacts
(things, relationships and actions), and IT system modelling artefacts (things, rela-
tionships and actions – different from but often having the same names as their business
counterparts), thus adding to the confusion.

“Speaking different languages” is another well-publicised barrier to adoption. If
business and IT stakeholders indeed “speak different languages” then proper translation
is essential. For an excellent precise description of translation as a creative act, and of
the need for a context-dependent approach to meaning and translation, see Yuri Lotman’s
book [52] (a very terse and nice overview is provided, for example, in [54]). The
“length of context” (Gasparov) essential for understanding and therefore for translation
is certainly non-zero and is often substantial, even within the same business (“trade”
means different things for different people even in the trading environment, depending
on the context), and especially between stakeholders with very different backgrounds.
At the same time, generic patterns are the same for (almost) all businesses including the
business of software, and using these patterns makes the translation substantially easier.

Finally, buzzwords and catch phrases instead of clear arguments represent an
important barrier to adoption of modelling approaches based on solid (classical)
foundations. The epigraph to this paper is an illustration observed almost half a century
ago and still valid now. In order to understand and specify a business problem and
possible solutions, buzzwords like “business logic”, “business functions”, “business
rules” (which are often only in the code), “business objects”, “architecture”, etc. should
be replaced with semantic definitions in context. These definitions ought to be
understandable to all stakeholders, especially to business experts. Excellent examples
of defining all terms used, especially those that “everyone knows”, are provided by [1]
and, independently, by exact philosophy [32]. In this manner, for example, a business
rule may be defined without using buzzwords – as a proposition about business things,
the relationships between them, and the operations applied to them.

8 Tools

“The tool should be charming, it should be elegant, it should beworthy of our love. This is no joke,
I am terribly serious about this… The greatest virtues a program can show: Elegance and Beauty.”

E.W. Dijkstra, 1962 [50]

“Using PL/I must be like flying a plane with 7000 buttons, switches, and handles to manipulate
in the cockpit. I absolutely fail to see how we can keep our growing programs firmly within our
intellectual grip when by its sheer baroqueness the programming language – our basic tool,
mind you! – already escapes our intellectual control. And if I have to describe the influence PL/I
can have on its users, the closest metaphor that comes to my mind is that of a drug.”

E.W. Dijkstra, 1972 (Turing Award Lecture)

20 H. Kilov

In addition to the intrinsic complexity of business and IT systems, we often impose
(artificially) complex notations on those brave people who dare to create, read, and use
the models of those systems. The semantics of important constructs of these notations
is often not clear. The purpose of a business model is understanding of the business and
people-to-people communication. Contrariwise, the purpose of many (most?) tools
imposed on business modellers is to create code rather than to represent business
semantics in a manner understandable to the stakeholders.

Dines Bjørner [28] clearly demonstrates that effective (“pleasing, elegant, expres-
sive, and revealing”) models of all kinds clearly emphasise semantics rather than the
syntactic details of “powerful” modelling languages, in the same manner as observed
by E.W. Dijkstra decades ago with respect to “powerful” programming languages.
Using many if not most “CASE tools” to represent models ought to be done with
caution for the reasons eloquently noted by Dijkstra with respect to PL/I. (Some
currently popular programming languages are even worse: they impose a very low
abstraction level on the programmer and program readers.) Modelling languages have
additional problems. Firstly, as noted above, often the semantics of important con-
structs used there is undefined or badly defined. Secondly, the target audience of a
programming language consists of programmers who may be at least somewhat used to
artificial complexity introduced by languages and tools, while business stakeholders in
the target audience of a business modelling language have no desire to learn a totally
unfamiliar language explained in several hundred pages. Too many language and tool
vendors (and quite a few users) make “the common mistake of thinking that ‘throwing’
more syntax at an issue will improve the semantics” [43]. Nevertheless, it is possible to
succeed in modelling by using very restricted subsets of modelling languages enhanced
by precisely specified semantics of such essential constructs as generic relationships
[58, 61, 65, 66] – in the same manner as it was possible to succeed in programming by
using very restricted subsets of such languages as PL/I [57].

It is possible to use graphics for business model representation, provided that the
notation is explained on the back of the proverbial – perhaps business-size – envelope
(“The ease with which [“back-of-the-envelope” sketching] is done, and done so that the
result is pleasing, has utility, and is fit for purpose, is the hallmark of a great software
engineer, or respectively of a great architect.” ([28], Vol. 1, p. 413). If the notation is not
explained in this manner then the ultimate users (and approvers!) of business models –
the business experts – become disinterested. As a typical example, consider a typical
request from a head trader: “tell me about UML in 15 min”. This head trader became
interested in business modelling and enjoying the process and results after being shown
and explained an apparently simple example: two mutually independent subtyping
hierarchies (gender-related and function-related – technical or managerial) for the same
supertype (“employee”) in which an employee satisfies exactly one subtype in the
gender-related hierarchy and at least one subtype in the function-related hierarchy [58,
Fig. 2-2]. By using only the “bare bones” of UML class diagrams with the emphasis on
relationships [58, 61] it was possible to achieve excellent understanding of the business
models (“a pleasure to read”) by the business experts of several large financial firms
(see, for example, [8, 33]). The only difficulty was with respect to UML treatment of

Business Modelling: Understandable Patterns, Practices, and Tools 21

icons for relationships: the business experts invariably could not remember, for exam-
ple, whether the triangle was an icon for subtyping or for composition (UML aggre-
gation), although they very clearly distinguished between the concepts themselves (the
experts wanted words or lexical abbreviations rather than icons, or at the very least
labelled icons). The complete business models represented using these “bare bones” of
UML were usually short: for example, the top level of the secondary mortgage market
model took two slide-size pictures to present, while the much more complex and more
detailed business model of exotic options took several dozen pages.

The proliferation of ontology languages apparently to be used for business mod-
elling is, as observed by K. Baclawski, a symptom of a more serious problem – the rush
to produce tools and languages without any clear [business] purpose. He further
properly observed that, rather than tools being constructed to support methodologies,
many methodologies are created for the sake of understanding how to use the tools. As
a result, in particular, interoperability becomes (almost) impossible.

The (anti-)pattern of replacing concepts with tools discussed by Dijkstra, Wirth and
other authors exists not only in software engineering. In economics, replacement of con-
cepts with tools of quantitative economics and econometrics – harshly criticised, in par-
ticular, by Hayek and von Mises – resulted in loss of understanding and thus in grave
consequences (see, for example, the warnings presented by Hayek in his Nobel lecture
[44]). S. R. H. Jones (Letter to the Editor, Financial Times, 21 November 2014, p. 8)
recently reminded us about the warning of Alfred Marshall in 1901 (!) that, given the
complex relationship between economic facts that can’t be quantified to those that can, the
application of exact mathematical methods to those that can “is nearly always a waste of
time”. Regretfully, this warning has long been forgotten, and,more than a century later, this
replacement of concepts with tools often leads to distrust of all economic theory and very
serious social consequences, both in economics and (manifested e.g. as project failures) in
software engineering.

Regretfully, many tools available to or imposed on (business) modellers do not
support even the fundamental patterns or support them only with serious restrictions
(such as support for only binary relationships; no support for mutually orthogonal sub-
typing or composition hierarchies). When using such tools, there is a mismatch between
the layer of abstraction at which business modellers work and that of the representation
where information is encoded, which is particularly harmful. As early as in 1978,
William Kent observed: “…much of [the user’s] learning is really a struggle to contrive
some way of fitting his problem to a tool: changing the way he thinks about his infor-
mation, experimenting with different ways of representing it, and perhaps even aban-
doning some parts of his intended application because his tool won’t handle it” [45]. For a
rather typical example, in a large pharmaceutical company the possibility of mutually
orthogonal subtyping hierarchies was not even considered by an otherwise excellent
business modelling team because the tool imposed on them made such constructs
impossible; the problem they tried to solve for a few weeks was solved in less than an
hour after this artificial restriction was lifted.

22 H. Kilov

9 Conclusions and Future Work

“[A] horrified… manager reacted upon a suggestion of mine with: ‘But that would require
people to think!’. It was as if I had made an indecent proposal. (The very common reaction to
look immediately for ‘a tool’ as soon as a problem emerges could very well be a symptom of
that same attitude.)”

E.W. Dijkstra [48]

Abstraction and precision in modelling are essential: the former is needed for under-
standing by humans and for being able to communicate at all (“complex phenomena”,
F.A. Hayek), while the latter (required by mathematics) is needed for discovering –

together with the stakeholders – whether a model is correct or not. While some business
models satisfy this requirement, (too) many do not.

To finish on a more optimistic note, quite a few good models understandable to all
stakeholders have been created based on a small, conceptually clear, and elegant
system of concepts and reusable patterns, so that the modellers and business stake-
holders could concentrate on the business domain and problem at hand, abstract away
the irrelevant details, and avoid the complexities of fashionable buzzword-compliant
representation mechanisms. (The Oxford English Dictionary defines elegant in our
context as “pleasing by ingenious simplicity and effectiveness”.)

Classical books and papers by great thinkers – in computing, mathematics, phi-
losophy, economics, and systems thinking – provide us with fresh air needed to make
our thinking more lucid, more explicit, and more expressive. These works, some of
which are listed as references, present concepts and patterns that help us to understand
and formulate the semantics of deep commonalities between apparently very different
domains or systems.

One of the most important lessons (to be) learned is the need for time to think and
to contemplate without the demand to satisfy immediate “practical” needs and to solve
immediate short-term problems. To quote Adam Smith again: “Wonder, therefore, and
not any expectation of advantage from its discoveries, is the first principle which
prompts mankind to the study of philosophy, of that science which pretends to lay open
the concealed connections that unite the various appearances of nature; and they pursue
this study for its own sake, as an original pleasure or good in itself, without regarding
its tendency to procure them the means of many other pleasures… Philosophy, by
representing the invisible chains which bind together all these disjointed objects,
endeavours to introduce order into this chaos of jarring and discording appearances, to
allay this tumult of the imagination, and to restore it, when it surveys the great revo-
lutions of the universe, to that tone of tranquility and composure, which is both most
agreeable in itself and most suitable to its nature” [49].

This lesson ought to be learned both in industry and in academia, and especially in
teaching (current and) future modellers. My experience in teaching professionals in a
university environment suggests that many students at first looked at the work of
Adam Smith, of Hoare, and especially of Dijkstra with scepticism (“Is Adam Smith still
relevant?”, “Dijkstra could not possibly be very serious, could he?”). However, they
very quickly understood and gave many examples of concepts and situations discussed
by these authors that have been around in the students’ professional (including failed

Business Modelling: Understandable Patterns, Practices, and Tools 23

and “almost successful” projects), learning, and often personal lives. Quite a few of the
students became much better systems thinkers and successfully used these concepts in
their and their colleagues’ current projects.

A better and more profound theoretical foundation is very desirable for future work.
There may be some uneasiness in working with the fundamental relationship patterns
described in this paper, despite the very positive gut feeling of analysts, designers, and,
perhaps more importantly, business stakeholders. A respectable mathematical foun-
dation for this gut feeling will permit better elucidation of the underlying system of
concepts and patterns, and, therefore, its well-justified reuse in various contexts. Cat-
egory theory (CT) is such a mathematical foundation. The excellent book [53] provides
an introduction to the structure of complex systems based on CT, explained in a
manner accessible to an audience having mathematical (and systems thinking) matu-
rity, but not necessarily having any knowledge of CT, and includes a wealth of
interesting examples from biological and social systems including business enterprises
(for a flavour of the relevant CT concepts, see [43]). CT emphasises relations and
(emergent) collective state and behaviour essential for understanding and explanation
of any complex system. (Regretfully, existing tools used for modelling do not deal with
emergent properties, although this concept is explicitly included in the definition of
composition in such international standards as [1, 58], and [65].)

Libraries of precisely and explicitly specified reusable business-specific patterns
would be a very welcome goal and result of future work. Patterns for mortgage-based
securities, and, more generally, for loan-based securities (including peer-to-peer) pro-
vide a nice example in a business area extensively discussed in business literature.

Finally, as an interesting and promising direction of future work, it would be desirable
to provide an explicit model of all aspects of business modelling, with an emphasis on
semantics. This includes an explicit model of the stakeholders and their influence on
decision making. Articulation is essential here, although it may lead to (politically or
socially) unpleasant consequences; only some contributors were brave enough to be that
explicit (Dijkstra, Parnas, Meyer, Hayek, von Mises,…). A top-level specification
(business-specific patterns rather than details) appears to be sufficient, reusing concepts
and constructs from von Mises and Hayek, perhaps along the lines of [38].

References

1. ISO/IEC. Open Distributed Processing — Reference Model: Part 2: Foundations (ITU-T
Recommendation X.902 | ISO/IEC 10746-2)

2. Hayek, F.A.: New Studies in Philosophy, Politics, Economics and the History of Ideas.
Routledge and Kegan Paul, London (1985)

3. Bunge, M.: Emergence and Convergence: Qualitative Novelty and the Unity of Knowledge.
University of Toronto Press, Toronto (2004)

4. Kilov, H.: Review of [3]. SIGMOD Rec. 33(4), 88–90 (2004)
5. Hayek, F.A.: The Sensory Order. Routledge & Kegan Paul, London (1952)
6. Manin, Y.: Mathematics as Metaphor. American Mathematical Society, Providence (2007)
7. Kilov, H., Sack, I.: Mechanisms for communication between business and IT experts.

Comput. Stand. Interfaces 31(1), 98–109 (2009)

24 H. Kilov

8. Garrison, J.S.: Business specifications: using UML to specify the trading of foreign
exchange options. In: Baclawski, K., Kilov, H. (eds.) Proceedings of the 10th OOPSLA
Workshop on Behavioural Semantics (Back to Basics), pp. 79–84. Northeastern University,
Boston (2001)

9. Kilov, H., Linington, P.F., Romero, J.R., Tanaka, A., Vallecillo, A.: The reference model of
open distributed processing: foundations, experience and applications. Comput. Stand.
Interfaces 35, 247–256 (2013)

10. Kilov, H., Mogill, H., Simmonds, I.: Invariants in the Trenches. In: Kilov, H., Harvey, W.
(eds.) Object-Oriented Behavioural Specifications, pp. 77–100. Kluwer Academic
Publishers, Norwell (1996)

11. Kilov, H.: Business Models. Prentice-Hall, Upper Saddle River (2002)
12. Hutcheson, F.: A System of Moral Philosophy. Foulis, Glasgow & Millar (1755)
13. Proposals of the Massachusetts Hospital Life Insurance Company, to Make Insurance on

Lives, to Grant Annuities on Lives and in Trust, and Endowments for Children. Printed by
James Loring (1835)

14. Hales, C.: The Bank Mirror; or, A Guide to the Funds. In Which is Given, a Clear and Full
Explanation of The Process of Buying and Selling Stock in the Bank of England; so that any
Person May Become Thoroughly Acquainted with it in a Few Hours, Without Consulting a
Broker. Together with an Account of Government and Other Securities, of the Supplies of
Government, and Other Important Articles; Compiled Under the Following Heads: Funds,
Banks, Credit, Traffic, Money, Stock, Company, Transfer, Dividends, Letters of Attorney,
Government Supplies, Taxes, Sinking Fund, Exchequer Bills, Navy Bills, India Bonds, Bills
of Exchange, Jobbing in the Funds, South Sea Annuities, India Annuities, Wills, Testaments,
Assurances on Lives, Assurances on Property, Including a Sketch of the Rise, Progress, and
Revolutions of Commerce, From its Cultivation Under the Asiatic and Grecian Empires, Till
Its Present State of Grandeur and Importance … J. Adlard, London (1796)

15. von Mises, L.: Human Action: A Treatise on Economics. Yale University Press, New Haven
(1949)

16. Dunbar, C.F.: Chapters on the Theory and History of Banking. G.P. Putnams Sons,
New York (1901). Second edition, enlarged and edited by O.M.W. Sprague

17. Meeker, J.E.: The Work of the Stock Exchange, Revised edn. The Ronald Press Company,
New York (1930)

18. Tyson, K.: Information Technology and Business in the Post-.COM World (Keynote at
OOPSLA 2000). www.oopsla.org/2000/postconf/Tyson.pdf

19. Posner, R.: Semiotic Pollution: Deliberations Towards Ecology of Signs. Sign Syst. Stud.
28, 290–308 (2000). Tartu University Press, Tartu, Estonia

20. Naur, P., Randell, B. (eds.) Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7−11 October 1968 (1969)

21. Oldfield, R.: Simple but not Easy: an Autobiographical and Biased Book about Investing.
Doddington Publishing, United Kingdom (2007)

22. Arnold, M.: UK Account Holders Flock to Swedish Bank’s Church Spire. Financial Times,
25 August 2014

23. Hacken, G.: Review of Boca, P., Bowen, J., Siddiqi, J. (eds.): Formal Methods: State of the
Art and New Directions. Springer, New York (2009). Computing Reviews, Review No.
CR139235 (1202-0120) (2012)

24. Meyer, B.: Agile!: The Good, the Hype, and the Ugly. Springer, Switzerland (2014)
25. Russo, L.: The Forgotten Revolution: How Science Was Born in 300 BC and Why it Had to

Be Reborn. Springer, Heidelberg (2004)
26. Nuseibeh, B., Zave, P. (eds.): Software Requirements and Design. The Work of Michael

Jackson. Good Friends Publishing Company, Chatham (2010)

Business Modelling: Understandable Patterns, Practices, and Tools 25

http://www.oopsla.org/2000/postconf/Tyson.pdf

27. Bjørner, D.: Domain models of the market — in preparation for e-transaction systems. In:
Kilov, H., Baclawski, K. (eds.) Practical Foundations of Business System Specifications,
pp. 111–144. Kluwer Academic Publishers, Norwell (2003)

28. Bjørner, D.: Software Engineering, vol. 1–3. Texts in Theoretical Computer Science, the
EATCS Series. Springer, New York (2006)

29. Kilov, H., Simmonds, I.D.: Business Patterns: Reusable Abstract Constructs for Business
Specifications. In: Humphreys, P., et al. (eds.) Implementing Systems for Supporting
Management Decisions: Concepts, Methods and Experiences, pp. 225–248. Chapman and
Hall, London (1996)

30. Sjöberg, P.: A Simple but Highly Efficient Approach to Managing Risk. (Interview with
Philip Stafford). Financial Times, 5 November 2014

31. Yaglom, I.M.: Mathematical Structures and Mathematical Modelling. Gordon and Breach
Science Publishers, New York (1986)

32. Bunge, M.: Philosophical Dictionary. Enlarged edition. Prometeus Books, Amherst, NY
(2003)

33. Bernet, O., Kilov, H.: From Box-and-Line Drawings to Precise Specifications: Using
RM-ODP and GRM to Specify Semantics. In: Kilov, H., Baclawski, K. (eds.) Practical
Foundations of Business System Specifications, pp. 99–110. Kluwer Academic Publishers,
Norwell (2003)

34. Mac an Airchinnigh, M., Belsnes, D., O’Regan, G.: Formal Methods & Service Specification.
In: Kugler, H.J., Mullery, A., Niebert, N. (eds.) Towards a Pan-European Telecommunication
Service Infra-structure. LNCS, vol. 851, pp. 563–572. Springer, Heidelberg (1994)

35. Scientist: Complexity Causes 50 % of Product Returns. ComputerWorld, 6 March 2006
36. Weinberg, G.M.: Rethinking Systems Analysis and Design. Little, Brown and Company,

Boston (1982)
37. Hill, A.: Innovation that Succeeds by Exploiting the Past Creatively. Financial Times, 25

November 2014
38. Kilov, H.: Finding work: an IT expert as an entrepreneur. In: Kilov, H., Baclawski, K. (eds.)

Proceedings of the OOPSLA 2002 Workshop on Behavioural Semantics (Serving the
Customer), pp. 108–120. Northeastern University, Boston (2002)

39. Jackson, M.: Software Specifications and Requirements: a Lexicon of Practice, Principles
and Prejudices. Addison-Wesley, Reading (1995)

40. Hoare, C.A.R.: Software Engineering: A Polemical Prologue. In: Perrott, R.H. (ed.)
Software Engineering. Proceedings of a Symposium Held at The Queen’s University of
Belfast 1976, pp. 1–4. Academic Press (1977)

41. Dijkstra, E.W.: Essays on the nature and role of mathematical elegance. http://www.cs.
utexas.edu/users/EWD/ewd06xx/EWD619.PDF

42. Weinberg, G.: The Psychology of Computer Programming. Van Nostrand Reinhold,
New York (1971)

43. Ehresmann, A.C., Paton, R.C., Vanbremeersch, J.-P.: Mathematical Metaphors and Models
Based on Graphs and Categories. http://ehres.pagesperso-orange.fr

44. Hayek, F.A.: The Pretense of Knowledge. Lecture to the memory of Alfred Nobel.
nobelprize.org/nobel_prizes/economics/laureates/1974/hayeklecture.html

45. Kent, W.: Data and Reality. North-Holland, Los Altos (1978)
46. Chopra, A.K.: Interaction-Oriented Software Engineering. http://www.lancaster.ac.uk/staff/

chopraak/mine/presentations/iose-london-dec-2014.pdf
47. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. Printed for

W. Strahan; and T. Cadell, London (1776)
48. Dijkstra, E.W.: American Programming’s Plight. ACM Softw. Eng. Notes 6(1), 5 (1981)

26 H. Kilov

http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD619.PDF
http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD619.PDF
http://ehres.pagesperso-orange.fr
http://nobelprize.org/nobel_prizes/economics/laureates/1974/hayeklecture.html
http://www.lancaster.ac.uk/staff/chopraak/mine/presentations/iose-london-dec-2014.pdf
http://www.lancaster.ac.uk/staff/chopraak/mine/presentations/iose-london-dec-2014.pdf

49. Smith, A.: Essays on Philosophical Subjects. London. Printed for T. Cadell Jun. and
W. Davies (Successors to Mr. Cadell) in the Strand; and W. Creech, Edinburgh (1795)

50. Dijkstra, E.W.: Some meditations on advanced programming. In: Poppewell, C.M. (ed.)
Proceedings of the IFIP Congress 1962, pp. 535–538. North Holland (1963)

51. Hensher, P.: What Do They Know of English. The Spectator, 17 February 2001
52. Lotman, Y.: Universe of the Mind. Indiana University Press, Bloomimgton (1990)
53. Ehresmann, A., Vanbremeersch, J.P.: Memory Evolutive Systems: Hierarchy, Emergence,

Cognition. Elsevier, New York (2007)
54. Kull, K.: Semiosis included incompatibility: on the relation between semiotics and

mathematics. In: Bockarove, M., Danesi, M., Nunez, R. (eds.) Semiotic and Cognitive
Science Essays on the Nature of Mathematics, pp. 330–339. LINCOM EUROPA, München
(2012)

55. Geiger, P.: Why Bernanke May Not Have Ticked All the Boxes. Financial Times, 15
October 2014

56. Hacken, G.: Review of Deuflhard, P. et al.: MATHEON: Mathematics for key technologies.
Computing Reviews, Review No. 143186 (2015)

57. Kilov, H.: PL/I Subset. University of Latvia, Riga (1974)
58. Object Management Group. UML Profile for Relationships. http://www.omg.org/cgi-bin/

doc?formal/2004-02-07
59. Kilov, H., Ash, A.: How to ask questions: handling complexity in a business specification.

In: Kilov, H., Rumpe, B., Simmonds, I. (eds.) Proceedings of the OOPSLA 1997 Workshop
on Object-Oriented Behavioral Semantics, Atlanta, pp. 99–104. Munich, University of
Technology, TUM-I9737, 6 October 1997

60. Lamport, L.: Who builds a house without drawing blueprints? Commun. ACM 58(4), 38–41
(2015)

61. Kilov, H.: Representing business specifications in UML. In: Baclawski, K., Kilov, H. (eds.)
Proceedings of the 9th OOPSLA Workshop on Behavioral Semantics, pp. 102–111.
Northeastern University, Boston (2000)

62. Hayek, F.A.: The Theory of Complex Phenomena. In: Bunge, M. (ed.) The Critical
Approach to Science and Philosophy (In Honor of Karl R. Popper), pp. 332–349. The Free
Press of Glencoe, London (1964)

63. Goguen, J.: An introduction to algebraic semiotics, with application to user interface design.
In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer,
Heidelberg (1999)

64. Mackintosh, J.: Short View. Financial Times, 10 April 2015
65. ISO/IEC 10165-7. Information Technology. Open Systems Interconnection – Management

Information Services – Structure of Management Information – Part 7: General Relationship
Model (1995)

66. Kilov, H.: Business specifications. Prentice-Hall, Upper Saddle River (1999)
67. den Ouden, E.: Development of a Design Analysis Model for Consumer Complaints

Revealing a New Class of Quality Failures. Thesis at the Technical University of Eindhoven
in the Netherlands (2006)

Business Modelling: Understandable Patterns, Practices, and Tools 27

http://www.omg.org/cgi-bin/doc%3fformal/2004-02-07
http://www.omg.org/cgi-bin/doc%3fformal/2004-02-07

Standards in Behaviour Modelling

Modeling Behavior with Interaction Diagrams
in a UML and OCL Tool

Martin Gogolla(B), Lars Hamann, Frank Hilken,
and Matthias Sedlmeier

Database Systems Group, University of Bremen,
Bremen, Germany

{gogolla,lhamann,fhilken,ms}@informatik.uni-bremen.de

Abstract. This paper discusses system modeling with UML behavior
diagrams. We consider statecharts and both kinds of interaction dia-
grams, i.e., sequence and communication diagrams. We present new
implementation features in a UML and OCL modeling tool: (1) Sequence
diagram lifelines are extended with states from statecharts, and (2) com-
munication diagrams are introduced as an alternative to sequence
diagrams. We assess the introduced features and propose selection mech-
anisms which should be available in both kinds of interaction diagrams.
We emphasize the role that OCL can play for such selection mechanisms.

Keywords: UML · OCL ·Model behavior · Statechart diagram · Inter-
action diagram · Sequence diagram · Communication diagram · Model
validation · Diagram view

1 Introduction

In the last years the Unified Modeling Language (UML) has become a de-facto
standard for the graphical design of IT systems. UML [18,20] comprises language
features for structural and behavioral modeling. The textual Object Constraint
Language (OCL) as part of UML adds precision in form of class invariants for
restricting structural aspects and pre- and postconditions for constraining behav-
ioral ones, among other uses of OCL [19,22] within UML.

This contribution puts emphasis on UML interaction diagrams which are
syntactically presented in form of sequence and communication diagrams. Inter-
actions describe sequences of messages exchanged among parts of a system. We
use interactions for the analysis of a system which has been described struc-
turally with a class diagram including class invariants and behaviorally with
operation pre- and postconditions, operation implementations, and statecharts.
In general, behavioral diagrams have become more important in the modeling
of systems. The specification of interactions using the respective behavior dia-
grams is more understandable, which is one of the goals of the UML. In addition,
the specification of actions is more intuitive using diagrams instead of textual
OCL pre- and postconditions, which is widely used for, e.g., business services.
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 31–58, 2015.
DOI: 10.1007/978-3-319-21912-7 2

32 M. Gogolla et al.

We introduce new features for interactions in a UML tool and discuss how the
two interaction diagrams could be handled in a uniform way.

Our group is developing the UML and OCL tool USE (UML-based Specifica-
tion Environment) since about 15 years. USE [7,10] originally started as a kind
of OCL interpreter with class, object and sequence diagrams available in the
tool from the beginning. Other behavioral diagrams have been added over the
last years, namely statechart diagrams in form of protocol state machines and
most recently communication diagrams. USE claims to be useful for validation
and verification of UML and OCL models. USE has been employed success-
fully in national and international projects (see, for example, [1,6] among other
projects).

The rest of this paper is structured as follows. Section 2 introduces a running
example. After having set with the example the context of our work, we discuss in
Sect. 3 some general issues concerning behavioral modeling: ‘abstraction’, ‘best
practices’, and ‘tool support’. Section 4 explains in more details how our sys-
tem USE contributes to system validation and verification. Section 5 shows the
UML metamodel for interactions and sets the context for the interaction dia-
gram implementation within USE. Section 6 presents new features in sequence
diagrams, and Sect. 7 discusses established and new features in communication
diagrams. In Sect. 8 a direct comparison between the two interaction diagrams
is shown. Section 9 proposes systematic selection mechanisms that could be
available in both interaction diagrams. Section 10 compares our approach to
related papers. The contribution is closed in Sect. 11 with concluding remarks
and future work.

2 Running Example

This section explains a running example which is used throughout the paper.
In Fig. 1, a small, abstract version of Toll Collect1 is shown. Toll Collect is a
tolling system for trucks on German motorways. In the figure, the following
USE features are employed: (a) a class diagram with two classes, (b) two stat-
echarts (two protocol state machines) for each of the classes, (c) one object
diagram, (d) one list of commands representing a scenario (test case), and the
evaluation of (e) the class invariants and (f) a stated OCL query expression in
the system state that is reached by executing the command list. The reached
system state is characterized by the object diagram.

The class diagram consists of a part responsible for building up the
motorway connections (basically Point, Connection, northConnect(Point),
southConnect(Point)) and a part for managing trucks and journeys (basi-
cally Truck, Current, enter(Point), move(Point), pay(Integer)). The model
includes three OCL class invariants (restricting system structure) and a num-
ber of OCL operation contracts in form of pre- and postconditions (restricting
system behavior). Apart from the above used standard UML descriptions, the

1 http://www.toll-collect.de/en/home.html.

http://www.toll-collect.de/en/home.html

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 33

F
ig
.
1
.
E
x
a
m
p
le

m
o
d
el

to
ll
co
ll
ec
t.

34 M. Gogolla et al.

Truck::move(target:Point)

begin self.trips:=self.trips->including(target);

self.debt:=self.debt+1;

delete (self,self.current) from Current;

insert (self,target) into Current;

end

pre currentExists:

self.current->notEmpty

pre targetReachable:

self.current.north->union(self.current.south)->includes(target)

post debtIncreased:

self.debt@pre+1=self.debt

post tripsUpdated:

self.trips@pre->including(target)=self.trips

post currentAssigned:

target=self.current

post allTruckInvs:

numIsKey()

Fig. 2. Example of operation implementation and pre- and postconditions.

Fig. 3. Sequence diagram with statechart states on lifelines (some details suppressed)
and equivalent communication diagram.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 35

Fig. 4. Command list for used interaction diagrams.

Fig. 5. Example for motorway connections.

36 M. Gogolla et al.

operations are implemented in a Simple OCL-like Imperative programming Lan-
guage (SOIL). An example for an operation contract and an operation imple-
mentation in SOIL [2] is shown in Fig. 2. Figure 3 displays a shortened variation
of the scenario that the paper will discuss in detail in form of a sequence diagram
and an equivalent communication diagram.

In Fig. 4, we show a longer command list where the single commands either
generate objects with a specified object identity or call operations on generated
objects. This command list and the commands determined by the respective
operation implementation in SOIL are used in the following as the basis for the
discussed interaction diagrams. This command list represents one test case, and
this test case shows the consistency of the operation contracts in the sense that
at least one scenario is possible where all operations are called (and thus all
pre- and postconditions are valid) and all invariants are valid at times when no
operation is active. The considered motorway connections are a toy example with
the largest German towns Hamburg (hh), Berlin (b), and Munich (m). A slightly
larger motorway example allowing to travel between western and eastern points
as well is shown in Fig. 5. The complete USE model is given in the Appendix.

3 General Behavioral Modeling Issues: Abstraction, Best
Practices, Tool Support

Before we go into the details of our approach we want to discuss crucial questions
between our work and general issues in behavioral modeling: To what extent does
our approach support behavioral modeling abstraction mechanisms? What is the
relationship between our proposal and established best practices in behavioral
modeling? How is our work supported by tools?

Abstraction: The motivation for modeling and the relationship to abstrac-
tion has been formulated to the point in [21] (and other works by the same
author): Why do engineers build models? (a) To understand problems and
solutions, (b) to communicate model and design intent, (c) to predict inter-
esting characteristics of the system under study, and (d) to specify the imple-
mentation of the system under study. Building models is realized by select-
ing statements through abstraction, i.e., reduction of information preserving
properties relative to a given set of concerns.

In our view structural and behavioral modeling must go hand in hand. As
our background is database and information system modeling, we typically
start with structural modeling and later involve behavioral aspects. Other
IT disciplines as, for example, embedded systems may prefer to start with
behavioral issues and continue with structural ones. In our view, behavioral
aspects are inherently more complex than structural issues because in infor-
mation systems the behavioral descriptions must be aware of and respect
the structural requirements. Thus finding good abstraction techniques that
reduce information are even more relevant for behavioral modeling.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 37

As said already before, we use UML interactions for the analysis of a
system which has been described structurally with a class diagram includ-
ing class invariants and behaviorally with operation pre- and postconditions,
operation implementations, and statecharts. One focus here is on UML inter-
action diagrams in form of communication diagrams. Communication dia-
gram are able to present all details of a behavioral scenario and bear the
danger to overwhelm the modeler with too many messages which are the
basic cornerstones of a scenario. Thus in particular for communication dia-
grams proper and adequate abstraction mechanisms are strongly needed.
This demand leads in our approach to a proposal for allowing views on
interaction diagrams that take into account message number intervals, mes-
sage depth, and message kind abstraction mechanisms in order to show that
part of a scenario that the modeler regards as important.

Best practices: UML sequence and communication diagrams are employed
for showing interactions, i.e., message exchanges between objects (or object
roles) in order to perform a task. Both sequence and communication diagrams
show interactions, but they emphasize different aspects. A sequence diagram
shows time sequence as a geometric dimension, but the relationship among
[object] roles are implicit. A communication diagram shows the relationships
among [object] roles geometrically and relates messages to the connectors,
but time sequences are less clear because they are implied by the sequence
numbers. Each diagram should be used when its main aspect is the focus of
attention (quoted from [20]). If one wants to capture the difference along
the slogan Time vs Space, one would classify the sequence diagram into the
Time dimension and the communication diagram into the Space dimension.

However, there is only little methodological help on the question when to
use which diagram. Our observation is that sequence diagrams are more fre-
quently used than communication diagrams. It seems that sequence diagrams
can be used intuitively easier due to explicitly displayed message order. The
message order must be mentally retrieved in communication diagrams. How-
ever, as said before, communication diagrams show the relationship between
objects which is neglected in sequence diagrams.

Tool support: Both sequence and communication diagrams are supported by
UML tools. However, a general common view mechanism on the underlying
interactions is not explicitly stated in UML. This leads to different features
for interactions diagrams in different tools.

Our proposal here is to offer the same view mechanisms in both interac-
tion diagrams. The motivation for an (as far as possible) uniform treatment
of sequence diagrams and communication diagrams comes from the fact that
both diagram forms treat the same model elements: interactions, i.e., objects
and messages between them. For example, if one starts from a complex inter-
action in form of a sequence diagram and one selects a subset of the involved
objects for viewing, then it should be possible to do the same selection in
the corresponding communication diagram. The same holds if the selection is
made for messages. A conversion between both diagram forms is in principle
possible because of identical underlying elements (objects and messages) and

38 M. Gogolla et al.

because of the fact that the geometrical ordering in the sequence diagram
has its equivalent in the numerical ordering in the communication diagram.
However the relationships between objects present in the communication
diagram do not have an equivalent in the sequence diagram and thus cannot
be represented. With respect to the underlying static structure (the class
diagram) both interaction diagrams use the same elements arising from the
class diagram, basically commands for the creation and deletion of objects
and links, for the manipulation of attributes and for operation calls.

Interaction diagrams can be looked at from different angles. One can
view interactions in both sequence and communication diagrams along the
object or along the message dimension. Furthermore, apart from interac-
tively selecting relevant parts in a scenario, we discuss how to employ OCL
for systematically accessing objects and messages.

The discussed features are implemented in our tool USE. Sequence dia-
grams have been present in USE from the very beginning, and only later
communication diagrams were added. Integrated views on both kinds of
interaction diagrams with common features are currently under develop-
ment. The aim of the newly added view features is to better support new
abstraction mechanisms for behavioral modeling, in particular in connection
with communication diagrams that are only poorly supported in present
UML tools as far as voluminous scenarios are concerned.

4 Validation and Verification with USE

OCL can be employed in USE for various tasks: in class diagrams for (a) class
invariants, (b) operation contracts, (c) attribute and association derivation rules,
and (d) attribute initializations; in protocol state machines for (e) state invari-
ants and (f) transition pre- and postconditions; furthermore for (g) ad-hoc OCL
queries in object diagrams, and for (h) expressions within SOIL. In USE, class
diagrams and protocol machines enriched by invariants, operation contracts,
statechart constraints and SOIL operation implementations determine system
structure and behavior. Sequence and communication diagrams are employed in
USE for visualizing and analyzing specified test cases in form of scenarios. Inter-
action diagrams are not used for restricting system behavior, but to document,
analyze, and understand the interactions. These diagrams are built after a com-
plete model including the SOIL operation implementation has been constructed.

The overall aim of USE is to support development by reasoning about the
model through (a) validation, i.e., checking informal expectations against for-
mally given properties, for example, by stating OCL queries against a reached
system state (object diagram) and (b) verification, i.e., checking formal proper-
ties of the model, for example by considering model consistency or the indepen-
dence of invariants as in [7]. That contribution also shows how USE supports
making deductions from the stated model on the basis of a finite search space
of possible system states (object diagrams). Such checks are realized in form of
positive and negative scenarios which can be thought of as being test cases for
the system under consideration. Thus USE supports the development of tests.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 39

In OCL operation contracts as well as pre- and postconditions can be gen-
eral OCL formulas. In postconditions, one can refer with @pre to attribute and
association end values at precondition time. Postconditions can state general
requirements and are not restricted to the specification of changes to attribute
and association end values. Thus the actual changes made by the operation are
described in SOIL and are checked against the contract. Concerning the proto-
col state machines, concurrency is currently not supported, and operation call
sequences which do not fit to the protocol are rejected. The definition of protocol
state machines is optional.

Various validation and verification use cases for the USE tool are discussed
in [9]. A comparison between the USE verification method for behavioral aspects
and another approach is discussed in [11]. The so-called ‘filmstripping’ technique
within USE for mapping behavioral descriptions into structural problems is pro-
posed in [8].

5 UML Metamodel for Interactions

The interactions part of the UML metamodel2 [18, p. 473ff.] was developed to
visualize concrete traces of event occurrences and in addition to allow the def-
inition of all possible traces of an interaction. The former can be used in early
design stages to be able to communicate with designers and to some extent with
stakeholders. A concrete trace does not show alternatives or loop constructs,
because it describes a single message trace (or command trace) in the system.
Elements like alternatives or loops can be used in later design phases to express
all possible traces (cf. [18, p. 473]). Interactions can be visualized by different
diagrams. Two of the more common ones are sequence diagrams and communica-
tion diagrams. Both diagrams focus on slightly different aspects of interactions.
While sequence diagrams highlight the time line of an interaction, communica-
tion diagrams focus on the different elements participating in an interaction and
their relationship.

Figure 6 shows an excerpt of the UML metamodel required to briefly dis-
cuss the representation of event occurrences inside interaction diagrams. A more
detailed presentation can, for example, be found in [15]. On the right side of this
figure, meta classes from the structural modeling part of the UML are shown.
These are needed to completely model message occurrences. On the left side,
the relevant parts of the interaction meta classes are shown. Consider the occur-
rence of the message enter(hh) shown in the following sequence diagram in
Fig. 3 and in the (following) communication diagram in Fig. 8. This part of both
diagrams can be expressed as an object diagram of the metamodel, as it is done in
Fig. 7. Again, on the right side the structural part is shown, e. g., the two classes
which participate in the message occurrence: Truck as the class of the receiving

2 UML metamodel novices might skip this section on first reading and continue with
the next section. UML metamodel followers are invited to dive deep.

40 M. Gogolla et al.

Fig. 6. Relevant parts of the UML interactions metamodel.

instance3 and Point which is used as the type of the parameter of the operation
enter. Further, both instances used in the interaction diagrams (freds scania
and hh) are placed there, too. On the left side, the example scenario is given as
an instance of Interaction. Since we consider the single message occurrence
enter(hh), the object diagram contains few interaction related instances. First,
the Gate gSend acts as the source of the message occurrence. It is linked to the
interaction as a formal gate to signal that the source of the event is outside of
this interaction. The receiving end of the message is represented by the instance
recEnter of type MessageOccurenceSpecification. This instance is linked to
the Lifeline named freds scania:Truck. The payload of the message mEnter
is given by the InstanceValue argument linked to the instance hh of the class
Point.

6 Sequence Diagrams

As USE allows the developer to employ UML protocol machines to restrict the
model behavior and to document test scenarios with sequence diagrams, it is
desirable to show the protocol machine state of objects on sequence diagram
lifelines, when the developer thinks this may be useful. Thus we have imple-
mented this option for lifelines.

In Fig. 3, a fraction of the test scenario from Fig. 4 is displayed. We have
manually selected the lifeline of only two Point objects and one Truck object and
have activated the display of states from protocol state machines. For example,

3 In the current version of the UML metamodel, a lifeline can only represent con-
nectable elements like properties or parameters. Since our tool allows a lifeline to
represent a concrete instance, this fact cannot be expressed using the current UML
metamodel. This is an open issue reported to the OMG [5].

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 41

Fig. 7. Send message event as an instance of the UML metamodel.

one can directly trace the development of the Truck object and the state chang-
ing through operation calls with init(..), enter(..), move(..), pay(..),
bye(): from born to noDebt to debt and then again to noDebt. In the case
that more money has been paid than is needed for paying the journey, the oper-
ation bye returns the overpayment.

UML sequence diagrams also allow the developer to use combined frag-
ments, which define a combination of interaction fragments. A combined frag-
ment consists of an interaction operator, an appropriate interaction operands
and, if required, so-called guards (Boolean expressions).

Altogether, the UML supports 12 interaction operators. Some of these oper-
ators could be introduced in USE by representing SOIL operations as sequence
diagrams. The alternatives and option operators, for example, could be realized
via SOIL’s conditional execution support (if-then-else). And the loop operator
could be implemented via the SOIL iteration statement (for-in-do-end).

Sequence diagrams also support interaction use elements, which allow devel-
opers to call other interactions to simplify or reuse shared interactions. This
could be represented in SOIL with corresponding operation calls, thus covering
the reference interaction operator.

7 Communication Diagrams

Figure 8 shows the communication diagram representing the messages from the
test scenario in Fig. 4 and additionally all messages that are executed within
the operation calls by the SOIL implementation. As usual in communication
diagrams, the ordering of messages is determined by message numbers, and sub-
messages (i.e., messages that are triggered by one message) are displayed by a
structured message number with a dot as separator. For example, message 18 has

42 M. Gogolla et al.

F
ig
.
8
.
C
o
m
m
u
n
ic
a
ti
o
n
d
ia
g
ra
m

w
it
h
d
et
a
il
s
sh
ow

n
(f
ra
m
ed

m
es
sa
g
es

a
ls
o
in

F
ig
.3
).

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 43

F
ig
.
9
.
C
o
m
m
u
n
ic
a
ti
o
n
d
ia
g
ra
m

d
is
p
la
y
in
g
o
n
ly

m
es
sa
g
es

9
–
1
5
.

44 M. Gogolla et al.

Fig. 10. Sequence diagram displaying only messages 9–15.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 45

F
ig
.
1
1
.
C
o
m
m
u
n
ic
a
ti
o
n
d
ia
g
ra
m

d
is
p
la
y
in
g
o
n
ly

li
n
k
in
se
rt
io
n
a
n
d
d
el
et
io
n
.

46 M. Gogolla et al.

F
ig
.
1
2
.
C
o
m
m
u
n
ic
a
ti
o
n
d
ia
g
ra
m

w
it
h
O
C
L
se
le
ct
io
n
fo
r
tr
u
ck

o
b
je
ct

b
y
id
en
ti
ty
.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 47

F
ig
.
1
3
.
S
eq
u
en

ce
d
ia
g
ra
m

co
rr
es
p
o
n
d
in
g
to

co
m
m
u
n
ic
a
ti
o
n
d
ia
g
ra
m

in
F
ig
.1
2
.

48 M. Gogolla et al.

the sub-messages 18.1, 18.2, and 18.3, i.e., the enter(b) call on the Truck object
angies benz is implemented by a link insertion (18.1) in association Current,
an assignment (18.2) for attribute debt and an assignment (18.3) for attribute
trips. As usual in communication diagrams, the specifications new, transient,
resp. destroyed refer to objects that are newly introduced, newly introduced
and deleted, resp. deleted during the interaction.

The relationship to the sequence diagram in Fig. 3 has been indicated man-
ually by messages that are lying inside free drawn frames. These eight framed
messages correspond to the eight messages in the sequence diagram.

For a smart representation of a communication diagram in an interactive
GUI, the main objective is to provide a good overview and comprehensibility
of the diagram. Bigger communication diagrams with multiple operation calls
and messages become quickly difficult to follow (see Fig. 8). To improve this
situation, some straightforward ideas have proven to be helpful:

1. Limiting the view of the diagram to a range of messages (see Fig. 9).
2. Cropping of different message types to only display those messages that are

relevant to understand the shown process (see Fig. 11).
3. Cropping of objects and links to only display those relevant in the shown

process (see Fig. 12).
4. Combinations of the above.

The communication diagram in Fig. 8 shows the complete sequence of mes-
sages (1–21), which can be roughly split into the initialization of a road network
and two navigations of trucks. Figure 9 focuses on the navigation of the first
truck only (messages 9–15) and thereby this sequence is easier to understand.

A similar effect occurs when focusing on a subset of message types. Figure 11
only shows link insertion and deletion messages in the communication diagram
and thereby increases the focus on the development of the links. A similar feature
is available for sequence diagrams, allowing to show or hide the message types
create, destroy, insert, delete and set.

Lastly, single objects and links that are not relevant to understand the
current process can be removed from the view of the diagram in favor of a
better accessibility, e.g., in Fig. 12 only one truck, the two points that it visits
and the links in between these objects are displayed. The other parts of the route
as well as the second truck are hidden.

Thus, to help with the selection of large quantities of objects communication
diagrams, the selection by OCL expression feature of the USE tool has been taken
over from the object diagram (see Fig. 12). With this feature, certain objects can
be shown, hidden or cropped.

8 Selection Mechanisms in Communication and Sequence
Diagrams

To further illustrate and compare the selection mechanisms in sequence and
communication diagrams, the following three examples demonstrate selecting

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 49

views on the complete interaction from Fig. 8 where one particular aspect is
emphasized in each example. Where appropriate, the corresponding sequence
diagram is also displayed with the same filters applied.

1. Interval selection: Figure 9 restricts the messages according to a message
number interval: only the messages 9 to 15 including their sub-messages are
stated. This part of the interaction handles the first Truck object and shows
its initialization and movements. Figure 10 shows the corresponding sequence
diagram with the same selection applied.

2. Message kind selection: Figure 11 presents a view on the complete inter-
action along a different dimension than message numbers. Only messages
concerning a particular message kind are displayed, in this diagram the inser-
tion and deletion of links. As in UML different message kinds are available,
such a restriction can be useful. In USE we currently support the follow-
ing message kinds: object creation, object destruction, link creation, link
destruction, attribute assignment, and operation call.

3. OCL selection: Figure 12 makes a selection in the communication diagram
with the help of an OCL expression. In this case the OCL expression picks
a Truck object together with the Point objects that are visited. The result
is typed as Set(OclAny) because objects of different classes show up. All
messages between the selected objects are shown. This object and message
selection cannot be achieved with a message number interval or a message
kind specification. Figure 13 shows the corresponding sequence diagram with
the same selection applied, however set statements are hidden.

The selection mechanisms shown in the communication diagrams in
Figs. 8 and 12, are currently implemented (modulo some required improvements
in the user interface). USE also supports the selection mechanisms shown in
Figs. 9 and 11.

9 Systematic Selection Mechanisms for Views in UML
Interactions and Further Use of OCL

Currently, the selection mechanisms for UML sequence and communication dia-
grams in our tool USE are different. This is due to the fact that the design and
implementation has been done at different times with different people involved.
Our plan is to unify the selection mechanisms and offer a unified view mechanism
for both interaction diagrams. We currently identify the following options. An
overview in form of a generic interaction together with the object and message
dimensions and the resulting presentation options is presented in Fig. 14.

Selection focusing on objects: Objects could be selected through the follow-
ing possibilities:

1. Interactive show, hide or crop for objects individually or by class.
2. Interactive multiple selection by shift key and mouse click.

50 M. Gogolla et al.

Fig. 14. Overview on interactions with object and message dimension.

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 51

3. Objects satisfying resp. violating an OCL invariant during interaction.
4. Objects satisfying resp. violating an ad-hoc OCL formula during interaction.

Selection focusing on messages: Messages could be selected through the
following possibilities:

1. Interactive show, hide or crop for messages.
2. Selection through an OCL object query identifying the sending object.
3. Selection through a satisfied resp. violated OCL pre- or postcondition.
4. Selection through a satisfied resp. violated ad-hoc OCL formula at pre- or

postcondition time during an operation call.
5. Selection by message kind: object creation, object destruction, link insertion,

link deletion, attribute assignment, operation call.
6. Selection by message number depth.
7. Determination of a message interval defined by

(a) interactively fixed start message and end message.
(b) start OCL formula and end OCL formula.
(c) a statechart start state and a statechart end state for a fixed object.

The OCL expressions that we employ in communication diagrams are currently
working on the last system state. However, the communication diagram contains
information that is not selectable using plain OCL in this way, i.e., removed
objects and links in general. For example the OCL expression allInstances()
to select all instances of a class will currently not select transient or destroyed
objects, yet they are still displayed in the communication diagram.

Consequently, to get full access to the elements in the communication dia-
gram, the syntax and accordingly the evaluation of OCL has to be extended.
First, it is desired to access the system’s pre- and post states of each message to
get access to all time steps of the communication diagram. In addition, access to
the elements of a range of messages or the global sequence of messages is helpful
for the selection. Temporal extensions for OCL often include functionality to
formulate expression about the past (see e.g., [24]) and can be considered to be
integrated.

The temporal extension of OCL would not only improve the selection of
elements in the GUI. The access to the new properties increases the possibilities
of validation tasks formulated on the communication diagram.

10 Related Work

Behavior modeling with UML interactions has relationships to other important
approaches. A definition of the UML interaction semantics in terms of the Sys-
tem Model can be found in [3]. In [12], a comparison between software model
verification approaches using OCL and UML interaction diagrams among others
is performed. The work in [16] focuses on the interaction problem in the context
of aspect-oriented programming. It explains how Aspect-UML can be translated

52 M. Gogolla et al.

into Alloy and shows how to verify aspect interactions with Alloy’s model ana-
lyzer. In [17], the synthesis of test cases from UML interaction diagrams by a
systematic interpretation of flow of controls is discussed. Improvements to the
UML interaction metamodel concerning message arguments and loops are pro-
posed and demonstrated in [23]. The approach in [14] is strongly related to the
USE approach because of the emphasis on protocol modeling. That work is how-
ever closer to programming through the use of Java, whereas we are closer to
modeling because of using OCL. The proposals in [4,13] discuss test case genera-
tion from interaction diagrams. Our approach is the only one that employs OCL
for selecting relevant parts in the interactions under consideration. The current
work differs from our previous contributions (like [7,10]) in that we did not
consider sequence diagrams with statechart states on lifelines or communication
diagrams at all.

11 Conclusion

This contribution has discussed how to handle UML interaction diagrams in
a model validation tool and has pointed to the link between protocol machine
and interaction diagrams. We have set up desirable selection mechanisms for
both kinds of UML interaction diagrams, namely sequence and communication
diagrams.

Future work has to complete our current implementation with the missing
features in both interaction diagrams. In particular, message kind selection and
message interval selection seem to offer useful analysis options. We have discussed
how to extend the options for interaction analysis with temporal OCL query
features. Larger examples and case studies need to validate the already existing
and planned features for better support of interaction diagrams that advance
behavioral modeling.

Appendix: Complete USE Model for Toll Collect

-- model TollCollect

model TollCollect

-- class Truck

class Truck

attributes

num:String init: ’’

trips:Sequence(Point) init: Sequence{}

debt:Integer init: 0

operations

init(aNum:String)

begin self.num:=aNum end

enter(entry:Point)

begin insert (self,entry) into Current; self.debt:=1;

self.trips:=self.trips->including(self.current) end

move(target:Point)

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 53

begin self.trips:=self.trips->including(target);

self.debt:=self.debt+1; delete (self,self.current) from Current;

insert (self,target) into Current end

pay(amount:Integer)

begin self.debt:=self.debt-amount end

bye():Integer

begin delete (self,self.current) from Current;

result:=self.debt.abs(); self.debt:=0 end

--

numIsKey():Boolean=

Truck.allInstances->forAll(self,self2|

self<>self2 implies self.num<>self2.num)

--

statemachines

psm TruckLife

states

prenatal:initial

born [num=’’]

noDebt [num<>’’ and current->isEmpty]

debt [num<>’’ and current->notEmpty]

transitions

prenatal -> born { create }

born -> noDebt { init() }

noDebt -> debt { enter() }

debt -> debt { move() }

debt -> debt { pay() }

debt -> noDebt { bye() }

end

end

-- class Point

class Point

attributes

name:String init: ’’

isJunction:Boolean derived: north->union(south)->size()>=2

operations

init(aName:String)

begin self.name:=aName end

northConnect(aNorth:Point)

begin insert (aNorth,self) into Connection end

southConnect(aSouth:Point)

begin insert (self,aSouth) into Connection end

--

northPlus():Set(Point)=north->closure(p|p.north)

southPlus():Set(Point)=south->closure(p|p.south)

--

54 M. Gogolla et al.

nameIsKey():Boolean=

Point.allInstances->forAll(self,self2|

self<>self2 implies self.name<>self2.name)

noCycles():Boolean=

Point.allInstances->forAll(self|

not(self.northPlus()->includes(self)))

--

statemachines

psm PointLife

states

prenatal:initial

born [name=’’]

growing [name<>’’]

transitions

prenatal -> born { create }

born -> growing { init() }

growing -> growing { northConnect() }

growing -> growing { southConnect() }

end

end

-- association Current

association Current between

Truck[0..*] role truck

Point[0..1] role current

end

--- association Connection

association Connection between

Point[0..*] role north

Point[0..*] role south

end

-- constraints

constraints

--- invariants

context Truck inv numIsKeyInv:

numIsKey()

context Point inv nameIsKeyInv:

nameIsKey()

context Point inv noCyclesInv:

noCycles()

-- Point::init

context Point::init(aName:String)

pre freshPoint:

self.name=’’ and self.north->isEmpty and self.south->isEmpty

pre aNameOk:

aName<>’’ and aName<>null

post nameAssigned:

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 55

aName=self.name

post allPointInvs:

nameIsKey() and noCycles()

-- Point::northConnect

context Point::northConnect(aNorth:Point)

pre aNorthDefined:

aNorth.isDefined

pre freshConnection:

self.north->excludes(aNorth) and self.south->excludes(aNorth)

pre notSelfLink:

self<>aNorth

pre noCycleIntroduced:

aNorth.northPlus()->excludes(self)

post connectionAssigned:

self.north->includes(aNorth)

post allPointInvs:

nameIsKey() and noCycles()

-- Truck::init

context Point::southConnect(aSouth:Point)

pre aSouthDefined:

aSouth.isDefined

pre freshConnection:

self.south->excludes(aSouth) and self.south->excludes(aSouth)

pre notSelfLink:

self<>aSouth

pre noCycleIntroduced:

aSouth.southPlus()->excludes(self)

post connectionAssigned:

self.south->includes(aSouth)

post allPointInvs:

nameIsKey() and noCycles()

-- Truck::init

context Truck::init(aNum:String)

pre freshTruck:

self.num=’’ and self.trips=Sequence{} and self.debt=0 and

self.current->isEmpty

pre aNumOk:

aNum<>’’ and aNum<>null

post numAssigned:

aNum=self.num

post allTruckInvs:

numIsKey()

--- Truck::enter

context Truck::enter(entry:Point)

pre noDebt:

0=self.debt

56 M. Gogolla et al.

pre currentEmpty:

self.current->isEmpty

pre entryOk:

entry<>null

post debtAssigned:

1=self.debt

post currentAssigned:

entry=self.current

post allTruckInvs:

numIsKey()

-- Truck::move

context Truck::move(target:Point)

pre currentExists:

self.current->notEmpty

pre targetReachable:

self.current.north->union(self.current.south)->includes(target)

post debtIncreased:

self.debt@pre+1=self.debt

post tripsUpdated:

self.trips@pre->including(target)=self.trips

post currentAssigned:

target=self.current

post allTruckInvs:

numIsKey()

--- Truck::pay

context Truck::pay(amount:Integer)

pre amountPositive:

amount>0

pre currentExists:

self.current->notEmpty

post debtReduced:

(self.debt@pre-amount)=(self.debt)

post allTruckInvs:

numIsKey()

--- Truck::bye

context Truck::bye():Integer

pre currentExists:

self.current->notEmpty

pre noDebt:

self.debt<=0

post resultEqualsOverPayment:

self.debt@pre.abs()=result

post zeroDebt:

self.debt=0

post currentEmpty:

self.current->isEmpty

post allTruckInvs:

numIsKey()

--

Modeling Behavior with Interaction Diagrams in a UML and OCL Tool 57

References

1. Büttner, F., Bartels, U., Hamann, L., Hofrichter, O., Kuhlmann, M., Gogolla, M.,
Rabe, L., Steimke, F., Rabenstein, Y., Stosiek, A.: Model-driven standardization
of public authority data interchange. Sci. Comput. Program. 89, 162–175 (2014)

2. Büttner, F., Gogolla, M.: Modular embedding of the object constraint language
into a programming language. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS,
vol. 7021, pp. 124–139. Springer, Heidelberg (2011)

3. Calegari, D., Cengarle, M.V., Szasz, N.: UML 2.0 Interactions with OCL/RT Con-
straints. In: FDL, pp. 167–172. IEEE (2008)

4. Chen, H.Y., Li, C., Tse, T.H.: Transformation of UML Interaction Diagrams into
Contract Specifications for Object-oriented Testing. In: IEEE [12], pp. 1298–1303
(2007)

5. Chonoles, M.M.J.: Issue 15123: Sequence Diagram and Communication Diagrams
should Support Instances as Lifelines (uml2-rtf), March 2010. http://www.omg.
org/issues/uml2-rtf.html#Issue15123

6. Georg, G., France, R.: An Activity Theory Language: USE Implementation. Col-
orado State University, Computer Science, Technical report CS-13-101 (2013)

7. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69, 27–34 (2007)

8. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From Applica-
tion Models to Filmstrip Models: An Approach to Automatic Validation of Model
Dynamics. In: Fill, H., Karagiannis, D., Reimer, U. (eds.) Proceedings Model-
lierung (MODELLIERUNG’2014), pp. 273–288. GI, LNI 225 (2014)

9. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Conse-
quences in UML and OCL models. In: Dubois, C. (ed.) TAP 2009. LNCS, vol.
5668, pp. 90–104. Springer, Heidelberg (2009)

10. Hamann, L., Hofrichter, O., Gogolla, M.: On integrating structure and behavior
modeling with OCL. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 235–251. Springer, Heidelberg (2012)

11. Hilken, F., Niemann, P., Gogolla, M., Wille, R.: Filmstripping and unrolling: a
comparison of verification approaches for UML and OCL behavioral models. In:
Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 99–116. Springer,
Heidelberg (2014)

12. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

13. Machado, P.D.L., de Figueiredo, J.C.A., Lima, E.F.A., Barbosa, A.E.V., Lima,
H.S.: Component-based Integration Testing from UML Interaction Diagrams. In:
IEEE [12], pp. 2679–2686 (2007)

14. McNeile, A.T., Simons, N.: Protocol modelling: a modelling approach that supports
reusable behavioural abstractions. Softw. Syst. Model. 5(1), 91–107 (2006)

15. Micskei, Z., Waeselynck, H.: The many meanings of UML2 sequence diagrams: a
survey. Softw. Syst. Model. 10(4), 489–514 (2011)

16. Mostefaoui, F., Vachon, J.: Design-level detection of interactions in aspect-UML
models using Alloy. J. Object Technol. 6(7), 137–165 (2007)

17. Nayak, A., Samanta, D.: Model-based test cases synthesis using UML interaction
diagrams. ACM SIGSOFT Softw. Eng. Notes 34(2), 1–10 (2009)

18. OMG, (ed.) UML Superstructure 2.4.1. Object Management Group (OMG),
August 2011

http://www.omg.org/issues/uml2-rtf.html
http://www.omg.org/issues/uml2-rtf.html

58 M. Gogolla et al.

19. OMG, (ed.) Object Constraint Language, Version 2.3.1. OMG (2012). http://www.
omg.org. OMG Document

20. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language 2.0 Ref-
erence Manual. Addison-Wesley, Massachusetts (2003)

21. Selic, B.: The Theory and Practice of Modeling Language Design. Tutorial at
MODELS 2012 (2012). http://models2012.info/

22. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML, 2nd edn. Addison-Wesley (2003)

23. Wendland, M.-F., Schneider, M., Haugen, Ø.: Evolution of the UML interactions
metamodel. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 405–421. Springer, Heidelberg (2013)

24. Ziemann, P., Gogolla, M.: OCL extended with temporal logic. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 351–357. Springer, Heidelberg
(2004)

http://www.omg.org
http://www.omg.org
http://models2012.info/

A Set of Metrics of Non-locality Complexity
in UML State Machines

Gefei Zhang1(B) and Matthias M. Hölzl2

1 Celonis GmbH, München, Germany
gefei.zhang@pst.ifi.lmu.de

2 Ludwig-Maximilians-Universität München, München, Germany
matthias.hoelzl@pst.ifi.lmu.de

Abstract. One of the barriers to widespread adoption of behavior mod-
eling languages lies in the complexity of the models. We show in the
context of UML state machines how non-locality, i.e., the information
for the current behavior of a model being spread over several model ele-
ments instead of being locally available, may make seemingly intuitive
and simple models rather complex and error-prone. We present a set of
metrics to measure the complexity of UML state machines arising from
different kinds of non-locality. Our metrics give a better understanding
of the complexity of UML state machines, and may alert the modeler to
pay more attention to pitfalls in apparently simple UML state machines.

1 Introduction

In Software Engineering research, Model-Driven Engineering (MDE) has been
recognized as “a promising approach to address the inability of third-generation
languages to alleviate the complexity of platforms and express domain concepts
effectively” [6]. However, in practice, MDE has not yet experienced broad accep-
tance. The reasons are manifold [7]. In our opinion, one important reason that
has not yet been widely discussed in the literature is that behavioral models are,
despite the best intention of the modeler, sometimes counter-intuitive and hard
to comprehend.

UML state machines are widely used to model software system behaviors
and have been described as “the most popular language for modeling reactive
systems” [2]. In literature about software or behavior modeling, UML state
machines are generally considered to be simple and intuitive. However, these
intuitions can easily be misleading when UML state machines are used to model
non-trivial behaviors [13].

In general, a state machine is only simple and intuitive as long as the effect
of transitions is kept local: if a transition only deactivates the state it originates
from, and only activates the state it leads to, the modeler can visually follow the
control flow, and the model is easy to understand.

In many realistic state machines, however, states are parallel and contain
orthogonal regions. In such state machines it is quite common for a transition
to activate not only its target, and to deactivate not only its source, but also
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 59–81, 2015.
DOI: 10.1007/978-3-319-21912-7 3

60 G. Zhang and M.M. Hölzl

states that are visually not directly connected to it. Conversely, a state can be
activated or deactivated not only by a transition directly connected to it, but also
by visually “remote” transitions. Moreover, transitions and states in different
regions may depend on each other in complex ways. In these situations the
modeler has to carefully study all information carried by remote model elements
to avoid introducing errors into the state machine.

It is therefore important to study this kind of complexity, which we call
non-locality complexity. In this paper, we discuss in detail “hidden” activations
and deactivations as well as cross-region dependencies, and we define a set of
metrics to measure the non-locality complexity caused by states or transitions,
that is, how many states—visually connected or not—are actually activated or
deactivated by a certain transition, how many transitions—visually connected or
not—may actually activate or deactivate a certain state, how many transitions—
in different regions—are fired in one execution step, and how many states—in
different regions—may prevent each other from getting active. These metrics
quantify various non-local effects of a state machine’s behavior and may alert
developers to potential pitfalls.

The remainder of the paper is structured as follows: in the following Sect. 2,
we give a brief overview of the concrete syntax and informal semantics of UML
state machines, and show how non-locality complexity may arise. In Sect. 3 we
discuss the non-local effects in more detail, define our metrics, and give some
application samples of how the metrics may indicate possible flaws in a state
machine. Related work is discussed in Sect. 4, before we conclude and outline
some future work in Sect. 5.

2 UML State Machines

A UML state machine provides a model for the behavior of an object or compo-
nent. Figure 1 shows a state machine modeling (in a highly simplified manner)
the behavior of a player during a part of a game.1 The behavior of the player—a
magician—is modeled in the state Play, which contains two concurrent regions
and models two different concerns of the magician’s conduct. The upper region
describes the possible movements of the player: she starts in an entrance hall
(Hall), from there she can move to a room in which magic crystals are stored
(CrystalRoom), and move on to a room containing a Ladder. From this room
the player can move back to the hall.

The lower region specifies the magician’s possible activities. She may be Idle,
gathering power for the next fight, Spelling a hex, or Fighting. She may escape
from the fight and try to spell another hex, or, if she wins the fight, finish
the game.

2.1 Concrete Syntax and Informal Semantics

According to the UML specification [5], a UML state machine consists of regions
which contain vertices and transitions between vertices. A vertex is either a state,
1 This example is inspired by [14].

A Set of Metrics of Non-locality Complexity in UML State Machines 61

do / takeCrystal
CrystalRoom

toHall

Ladder

Idle fight
entry / spellHex

Fightingspell Spelling

toCrystalRoom toLadder

Play

escape

won

Hall

Fig. 1. Example: UML state machine

which may show hierarchically contained regions; or a pseudo state regulating
how transitions are compounded in execution. Transitions are triggered by events
and describe, by leaving and entering states, the possible state changes of the
state machine. The events are drawn from an event pool associated with the
state machine, which receives events from its own or from other state machines.

A state is simple, if it contains no regions (such as Hall in Fig. 1); a state
is composite, if it contains at least one region; a composite state is said to be
orthogonal if it contains more than one region, visually separated by dashed lines
(such as Play). A region may also contain states and other vertices. A state, if
not on the top-level itself, must be contained in exactly one region. To simplify
the notation in later sections we assume in this paper that the top-level state is
enclosed in a region top, so that each state is contained in exactly one region.
A composite state and all the states directly or recursively contained in it thus
build a tree. A state may have an entry, a do, and an exit action, which are
executed before, whilst, and after the state is active, respectively.

Transitions are triggered by events (toCrystalRoom, fight). Completion
transitions (not shown in this paper) are triggered by an implicit completion
event emitted when a state completes all its internal activities. Events may be
deferred (not shown), that is, put back into the event pool if they are not to
be handled currently. A transition may have an effect, which is an action to be
executed when the transition if fired. Very briefly speaking, the result of firing a
transition is that the source state of the transition (and potentially other states,
see Sect. 3.3) is left, its target state (and potentially other states, see Sect. 3.2)
entered, and the entry and exit actions are executed; for more details, see below.
Transitions may also be declared to be internal (not shown), thus skipping the
activation-deactivation scheme. An initial pseudo state, depicted as a filled cir-
cle, represents the starting point of the execution of a region. A junction pseudo
state, depicted as a dot, chains transitions together. A final state, depicted as
a circle with a filled circle inside, represents the completion of its containing
region; if all top-level regions of a state machine are completed then the state
machine terminates. For simplicity, we omit the other pseudo state kinds: entry
and exit points, fork and join, shallow and deep history, choice, and terminate.
These vertices, except for joins, can be simulated using states and transitions
only, see [10]; joins require a slight extension of the methods presented in this
paper.

62 G. Zhang and M.M. Hölzl

At run time, states get activated and deactivated as a consequence of tran-
sitions being fired. The active states at a stable step in the execution of the
state machine form the active state configuration. Active state configurations
are hierarchical: when a composite state is active, then exactly one state in each
of its regions is also active; when a substate of a composite state is active, so
is the containing state, too. The execution of the state machine can be viewed
as different active state configurations getting active or inactive upon the state
machine receiving events.

When an event in the event pool is processed, first the maximum set of enabled
conflict-free transitions is calculated. We refer to transitions where the source state
is active, the trigger is the current event, and the guard is evaluated to true as
enabled transitions. At runtime, if there are several enabled transitions where the
source states are in different regions, then all the transitions are in general con-
tained in the set, and should be fired in one execution step.2 A special case, how-
ever, is when the source of one of the enabled transitions is contained in the source
of another enabled transition. In this case, only the transition with the innermost
source state is contained in the maximum set of conflict-free enabled transitions.
If there are several enabled transitions whose sources are in the same region, then
they all have the same source state, since in one region there is at most one active
state (here: exactly one). In this case, we say the enabled transitions (from the
same source) are conflicting, and only one of them, chosen non-deterministically,
is contained in the maximum set of conflict-free enabled transitions.

The transitions in the maximum set of conflict-free enabled transitions are
then fired in one execution step. More specifically, first the source states, and
other states to be deactivated (see Sect. 3.3), are deactivated, then their exit
actions are executed, then the effects of the transitions are executed, then the
entry actions of the target states, and other states to be activated (see Sect. 3.2),
are executed, and finally these states are activated. For the entry and exit actions,
the UML Specification [5] imposes a partial order of execution: for two states s
and S, if s is directly or recursively contained in S, then the entry action of S is
executed before that of s when the states are activated, and the exit action of s
is executed before that of S when the states are deactivated. In the other cases,
where s and S are in different regions and are not contained in each other, no
special order of execution is specified. In the metrics we are going to define in
this paper, we do not make use of this partial order. In the future, more precise
metrics can be defined if this partial order is also taken into account.

Since the maximum set of enabled transitions is determined before the exe-
cution of the entry actions, the transitions’ effects, and the exit actions, these
actions have no effect on the choice of transitions to be fired.

In our example of Fig. 1, an execution trace, given in terms of active state
configurations the state machine, might be (Play, Hall, Idle), (Play, Hall,

2 Strictly using the terms defined in the UML Specification, this is a special case of the
run-to-completion step. For simplicity, we do not use the concept run-to-completion
in this paper. Since we ignore most of the pseudo states, see Sect. 3.1, a run-to-
completion event is actually very similar to our execution step.

A Set of Metrics of Non-locality Complexity in UML State Machines 63

Spelling), (Play, Hall, Fighting), followed by the final state, which terminates
the execution trace.

2.2 Non-locality Complexity

While the simplest UML state machines may be intuitively comprehensible,
the complexity increases rapidly when the behavior under modeling gets more
involved [13]. There are several reasons for this increase in complexity. One is
that the language is low-level, providing only if-then-else and goto like constructs
(see [10]). In this sense, modeling with state machines is similar to programming
in assembly language, where the programmer has to implement every program
structure without the benefit of abstractions built into the language.

The metrics we propose in this paper are, however, mostly concerned with
another cause for complexity in state machines: the control flow in a region is
often determined not only by information that is available “locally”, i.e., stored in
currently active states or transitions just before or after being fired. Instead, rel-
evant information is “hidden” in model elements that are not directly connected
with active states and transitions. Recall, for instance, that when a transition t is
fired, not only is its target s activated, but, if s is a substate in a composite state
S not containing the source of t, so is the state S (if a substate is active, then
so is its containing state, too). Therefore, in each region of S exactly one of the
contained states, although not connected directly with s or t, is also activated.
Similarly, when a transition t is fired, not only is its source s deactivated, so are
all states S containing s but not the target of t, and hence all states that are
directly or recursively contained in S, although they are not connected directly
with s or t.

As an example, consider Fig. 1. The transition leaving the initial pseudo state
activates not only Hall in the upper region, but also Idle in the lower region;
the transition leaving Fighting deactivates not only this state, but also the
state in the upper region which is currently active. Considering that this kind of
“remote” activation and deactivation may be recursive, it may cause significant
potential for misinterpretation of the state machine’s actual behavior by the
modeler.

Moreover, different, parallel regions of a state are not executed independently
of each other. Instead, there often exist cross-region dependencies within a state.
For instance, enabled transitions with the same trigger and source states in
different regions are normally fired in the same execution step—unless something
(like a guard in a nested region) prevents some of these transitions from firing.
To understand what a state machine is supposed to do, the reader of the machine
has thus to keep track of a lot of non-local information—a guard that prevents a
transition from firing does not have to be guarding the transition it inhabits or,
for that matter, be anywhere close to this transition in the visual representation
of the state machine.

We will present more examples of this kind of complexity, which we call
non-locality complexity, later on. In the following, we define metrics to measure
non-locality complexity.

64 G. Zhang and M.M. Hölzl

3 Metrics

We first review the metamodel of UML state machines, define auxiliary functions,
and then define metrics to capture the non-locality complexity.

3.1 Notation

The abstract syntax of UML state machines we consider in this paper is shown
in Fig. 2. UML allows many syntactic variations that complicate static analysis
of state machines. Therefore, we require some minor restrictions in addition to
the UML Specification [5]:

1. A composite state may contain at most one region r without an initial vertex;
r must contain directly or recursively a state which is the target of a transition
t, and t’s source is not contained in r.3

2. The state machine must not contain junctions. All junctions, except the ones
following an initial vertex, should be removed by the (semantics-preserving)
transformation shown in Fig. 3, which essentially merges each pair of junction-
connected transitions into one transition, with the conjuncture of the two orig-
inal guards as new guard. For simplicity, we do not consider state machines
with junctions following an initial vertex in this paper.

The first constraint applies only to states with multiple regions and serves to
clarify their semantics: in the case of multiple regions the behavior of a state
machine that does not satisfy this restriction is not clear. The second constraint
actually slightly restricts the range of possible state machines; it would be pos-
sible to lift this restriction by a straightforward extension of our metrics.

Initial

Vertex Transition

Constraint

Trigger

BehaviorFinalState

State

StateMachine

Region
1
source

target

1 draug
1

*
*

deferrable
Trigger

do
1
effect

exit
1

entry
1 1

1

1 top

*
subvertex1

container
*

Fig. 2. Metamodel: UML state machines (simplified)

Given states s1 and s2, we write LCR(s1, s2) for the least region contain-
ing both s1 and s2, and LCA(s1, s2) for the least state containing both s1 and
3 In other words, t is a target-unstructured transition, see below, Definition 3.

A Set of Metrics of Non-locality Complexity in UML State Machines 65

A

B

C

X

Y

ea [ga] / aa;

eb [gb] / ab;

ec [gc] / ac;

[gx] / ax;

[gy] / ay;

(a) Original situation

A X

B

C Y

ec [gc & gx] / ac; ax;

ec [gc & gy] / ac; ay;

eb [gb & gy] / ab; ay;

ea [ga & gy] / aa; ay;

ea [ga & gx] / aa; ax;

eb [gb & gx] / ab; ax;

(b) Junction eliminated

Fig. 3. Removing junctions

s2. We suppose that on the top-level, a state machine consists in a region
(called top), which contains the top-level vertices of the state machine, see
Sect. 2.1. Therefore, for any s1 and s2, LCR(s1, s2) is well-defined. If there
is no state containing both s1 and s2 (i.e., LCR(s1, s2) = top), we write
LCA(s1, s2) = ⊥. In Fig. 1, LCR(Spelling, Fighting) is the lower region of Play
and LCA(Spelling, Fighting) = Play.

Given region r, we write substate+(r) to represent all states (directly or
recursively) contained in r. For a state s, we write substate+(s) to represent⋃

r∈region(s) substate+(r) and write substate∗(s) to represent substate+(s) ∪ {s}.
We write S ∈ superstate∗(s) if s ∈ substate∗(S). We write simple(s) if state s is
simple. Given states S and s ∈ substate+(S), we write s ∈ S, otherwise we write
s /∈ S.

We refer to property p of object o as p(o). If the name of a property is not
given explicitly, we follow the common UML convention and use, independently
of the multiplicity, the lower-cased name of its type as the property name. For
example, we write state(r) for the state associated with a region r according to
UML metamodel given in Fig. 2.

In the following, we define some more auxiliary notations.

Definition 1 (Initial Transition). If a region r contains an initial vertex, we
call the transition leaving this initial vertex the initial transition of r, and refer
to it as intr(r).

For example, in Fig. 1 the initial transition of the lower region is the one
leading into the Idle state; the upper region does not have an initial transition.

Definition 2 (Source Structured Transitions). A transition t is called
source structured, referred to as strucsource(t), if its source is a direct subver-
tex of the LCR of its source and its target. More formally, strucsource(t) is true

if source(t) ∈ subvertex(LCR(source(t), target(t))).

Definition 3 (Target Structured Transitions). A transition t is called tar-
get structured, referred to as structarget(t), if its target is a direct subvertex of
the LCR of its source and its target. More formally, structarget(t) is true if
target(t) ∈ subvertex(LCR(source(t), target(t))).

66 G. Zhang and M.M. Hölzl

Intuitively, a transition “goes through” the border of a composite state if it
is source or target unstructured. Obviously, a transition may be both source and
target structured, and does not need to be either. In Fig. 1, all transitions are
target structured except for the one leading into state Hall from outside the
Play state.

Definition 4 (Container State in Region). Given a state s and a region
r, the container state of s in region r is the state x which contains (directly
or recursively) s and is a direct substate of r. More formally, Csr(r, s) =
subvertex(r) ∩ {x | s ∈ substate+(x)}. Obviously, if s ∈ substate+(r), there is
exactly one element in Csr(r, s), otherwise Csr(r, s) is empty. We therefore refer
to this single element as Csr(r, s).

In Fig. 1 no state has a container state in either the upper or lower region. The
state Play is container state for Hall, CrystalRoom, Ladder, Idle, Spelling
and Fighting in the region enclosing the whole state machine.

3.2 Metrics Regarding State Activation

The activation and deactivation of states in UML state machines is relatively
complex, because concurrent and nested regions may be involved. We therefore
introduce in Fig. 4 a slightly more complicated variant of the game in Fig. 1.
The game now consists of two areas, a laboratory (Lab) in which the wizard
may rest (in state Idle) or brew potions (in state BrewPotion) and the multi-
room dungeon (Dungeon) in which fights take place. The wizard enters the level
from the hall of the dungeon, and can use the ladder of the dungeon to escape
to her lab and later return to the dungeon. In addition, she can take a potion
before fighting (takeBrew) which will increase the power of her next spell ten-
fold (PowerSpelling and PowerFighting). In Sect. 3.5 we will use the metrics
defined in this paper to show that this model has several possible modeling mis-
takes; for now we are only interested in the activation and deactivation of states
by transitions.

According to the UML Specification [5], a state s can be activated in one of
the following ways:

1. a transition t with target(t) = s is fired (transition spell to state Spelling)
in Fig. 1,

2. a substate x of s is activated by a transition t where source(t) �∈ substate∗(s)
(Play when the “initial transition” from the outer region to Dungeon is fired;
Dungeon, when the transition toLadder from state Idle in Lab is fired),

3. s is the target of an “initial transition” in a region, contained in composite
state S, and transition t with target(t) = S is fired (Hall and Idle inside
Dungeon in Fig. 4 when the “initial transition” to Dungeon is fired),

4. s is the target of an “initial transition” in a region, contained in composite
state S, when a state x in one of the neighbor regions of s gets activated
by a target-unstructured transition t with target(t) = x (state Idle in the
lower region of Dungeon in Fig. 4 when toLadder from the state Idle in Lab
is fired).

A Set of Metrics of Non-locality Complexity in UML State Machines 67

Hall
do / takeCrystal

CrystalRoom

toHall

Ladder

exit / power /= 10
PowerFighting

Idle Brew
Potion

Idle
exit / power *= 10

PowerSpelling

Spelling Fightingfight

fight

toCrystalRoom toLadder

Dungeon
toLab

toLadder

brew

done

Lab

takeBrew

escape

escape

won

wonspell

Play

Fig. 4. Two-room game example

To capture this notion precisely we first define a function orth that returns
the set of all states contained in regions orthogonal to the one containing s, i.e.,
all states either directly in a region orthogonal to the region containing s or
recursively contained in a state in such a region:

superstate(s) = state(container(s))

orth(s) = {s′ ∈ substate+(superstate(s)) | LCA(s, s′) ∈ LCR(s, s′)}
We can now define the set of transitions that may make state s active, Atr (s)

more precisely. Atr (s) is the least fixed point of the equations

Atr (s) = T in(s) ∪ BT (s) ∪ PT (s)

where

T in(s) = {t | target(t) = s

∨ (source(t) �∈ substate∗(s) ∧ target(t) ∈ substate+(s))}

BT (s) =

{
∅ if s is not target of an initial transition
⋃

s′∈IC (s)\{s} Atr (s′) otherwise

IC (s) =

{
{s} if s is not target(intr(container(s)))
{s} ∪ IC (superstate(s)) otherwise

PT (s) =

{
∅ if s is not target of an initial transition
{
t ∈ ⋃

s′∈orth(s) A
tr (s′) | source(t) �∈ orth(s)

}
otherwise

T in(s) covers the first two cases, whereas BT (s) deals with the third and
PT (s) captures the fourth one. Atr is defined as fixed point to cover cases like the
ones depicted in Fig. 5: Since both B and D are initial states in their respective
regions, Atr (B) has to take into account Atr (D) when determining PT (B), but
Atr (D) in turn relies on Atr (B). In Fig. 5, the transition from A to B and the
transition from C to D both activate states B and D.

68 G. Zhang and M.M. Hölzl

BA

DC

Fig. 5. State machine that illustrates the need for fixed points in Atr

With these premises, we define the metric of Number of Activating Transi-
tions of a state as the cardinality of the set of transitions that may activate it:

Definition 5 (Number of Activating Transitions). Given a state s, its
Number of Activating Transitions is

NATr(s) = #Atr (s)

In Fig. 1 all states contained in Play are simple, therefore the number of
activating transitions for each state is not surprising, e.g., for Hall it is 2, for
CrystalRoom it is 1. In the lower region, the number of activating transitions
for Idle is 1, the one for Spelling is 2 and the one for Fighting is 1.

Given a transition t, the set Act(t) of states which may be activated by t is
as follows:

1. If t is target structured and its target is a simple state, then it only activates
its target.

2. If t is target structured and its target is composite, then it activates all initial
states directly contained in one of the regions of its target, and this activation
continues recursively until simple states are reached.

3. If t is not target structured, the chain of activations starts with the container
state S of its target in the region that contains both its source and target.
This is the topmost state that can become active, since any state containing
both source and target of t has to be already active before t can fire, and
is not activated by t. If S is itself the target of t, then, as in the previous
case, all initial states recursively contained in S are activated. If, however,
S is not target of t, then S must contain the target state s = target(t). In
this case, t activates all regions of S that are not in the “path” to s in the
usual way, whereas in regions that are on the way to s it activates these states
through which it passes, independently of whether they are targets of initial
transitions or not.

A Set of Metrics of Non-locality Complexity in UML State Machines 69

Act(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{target(t)}
if structarget(t) ∧ simple(target(t))

{target(t)} ∪ ⋃
r∈region(target(t)) Act(intr(r))

if structarget(t) ∧ ¬simple(target(t))
Acts(t,Csr(LCR(source(t), target(t)), target(t)))

if ¬structarget(t)

where

Acts(t, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{S} ∪ ⋃
r∈region(S) Act(intr(r))if target(t) = S

⋃
r∈region(S),r �=r′ Act(intr(r)) ∪ Acts(t,Csr(r′, target(t)))

where r′ ∈ region(S) ∧ target(t) ∈ substate+(r′)
if target(t) �= S

With these premises, we define the metric Number of Activated States of a
transition as the cardinality of the set of the states that may be activated by the
transition:

Definition 6 (Number of Activated States). Given a transition t, its Num-
ber of Activated States is

NAS (t) = #Act(t)

Applying this metric to the example given in Fig. 1, we get some interesting
results. For example, let t be the transition from the initial to Hall, then we have
NAS (t) = 3, reflecting the fact that not only the obvious Hall is activated when
t is fired, but also Idle and Play. In this sense, t is obviously more complex
than the transition from Hall to CrystalRoom, which only has a NAS of 1.

3.3 Metrics Regarding State Deactivation

According to the UML Specification [5], a state s can be deactivated in one of
the following ways:

1. a transition t is activated, source(t) = s,
2. a transition t is activated, source(t) = S, where S is a state containing s,
3. a transition t is activated, source(t) = s′, where s′ is in one of the neighbor

regions of s and target(t) is in a region containing s.

An example for the first kind of deactivation is the transition from Fighting
to Spelling in Fig. 4. A transition from Dungeon to Lab would be an example for
the second case. The third kind of deactivation happens, e.g., for state Fighting
when the transition from Ladder to Idle is taken.

70 G. Zhang and M.M. Hölzl

More formally, let D tr (s) be the set of transitions that may deactivate state s,
we have

D tr (s) =
⋃

S∈superstate∗(s)

T out(S) ∪ AT (s)

where
AT (s) =

⋃
{t | target(t) /∈ LCA(source(t), s)}

With these premises, we define the metric of Number of Deactivating Tran-
sitions of a state as the cardinality of the set of transitions that may deactivate
the state:

Definition 7 (Number of Deactiviting Transitions). Given a state s, its
Number of Deactivating Transitions is

NATr(s) = #D tr (s)

Deactivation is simpler than activation since no “cascading deactivations”
may happen: A transition will deactivate all states in regions contained in its
source and all states in regions “between” its source and target, but it may not
trigger additional deactivations in regions inside its target state as is the case
for activations. In Fig. 4, state Fighting has 3 deactivating transitions: from
Fighting to Spelling, from Fighting to the final state, and from Ladder (in
the upper region) to Idle.

Given a transition t, the set Dct(t) of states which may be deactivated by t
is as follows:

1. A source-structured transition from a simple state deactivates only its source
state.

2. A source-structured transition t from a composite state S deactivates S and,
potentially, all of its substates. More precisely, t deactivates exactly one state
in each of the active regions recursively contained in S. Since any of these
states may be deactivated by S we count the number of substates in S.

3. For a source-unstructured transition, the same considerations apply for states
in regions not on the “path” of the transition; on the way from the source to
the target of t only these states through which t passes may be deactivated.

Dct(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{source(t)}
if strucsource(t) ∧ simple(source(t))

{source(t)} ∪ ⋃
r∈R{x | x ∈ substate+(r)}

if strucsource(t) ∧ ¬simple(target(t))
Dcts(t, S)

if ¬strucsource(t)

A Set of Metrics of Non-locality Complexity in UML State Machines 71

where

Dcts(t, S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{S} ∪ substate∗(S)
if source(t) = S

⋃
r∈R,r �=r′ substate∗(r) ∪ Dcts(t,Csr(r′, source(t)))

where r′ ∈ region(s) ∧ source(t) ∈ substate+(r′)
if source(t) �= S

With these premises, we define the metric Number of Deactivated States of a
transition as the cardinality of the set of states that may be deactivated by the
transition:

Definition 8 (Number of Deactivated States). Given a transition t, its
Number of Deactivated States is

NDS (t) = #Dct(t)

Let t be the transition from Fighting to the final state, it has a high NDS
of 5, because not only Fighting, but also Hall, CrystalRoom, Ladder and Play
will get inactive once t is fired.

3.4 Metrics Regarding Cross-Region Dependency

Cross-region dependencies may have two forms: some “actions” (transitions
being fired, states being activated or deactivated) in different regions are car-
ried out simultaneously, while others may prevent each other from being carried
out. These dependencies crosscut model elements across several regions, their
comprehension requires careful study of the state machine.

In the following, we use another extension of our computer game to illustrate
cross-region dependencies, see Fig. 6. In this variant of the game, the naviga-
tion region contains another state CrystalPedestal that can be reached from
the CrystalRoom upon the event investigate whenever the player is near a
pedestal. The Idle state in the region responsible for the player’s activities has
been refined by a state machine that describes the various activities the player
can perform while she is idle: she can Wander around the room; while wandering
the player may trip and enter into a Curious state in which she has the pos-
sibility to investigate the reason for tripping, or to ignore the incident and
continue wandering. If the player does investigate while she is in the Curious
state two courses of action may unfold: Either there was no particular reason
for tripping, in which case the investigation deducts some health points (not
shown in the state machine) and the player continues to wander, or the player
tripped over a hidden trap door (guard TD) in which case she discovers a trap
door leading to fame and fortune, and thus immediately wins the level without
having to fight. Whenever the player is in the Idle state she can investigate
her surroundings and thereby gather new information about the room or objects
nearby.

72 G. Zhang and M.M. Hölzl

Play

Hall
toCrystalRoom

[c == 0]

CrystalRoom
entry / c++
do / takeCrystal
exit / c--

CrystalPedestal

investigate
[nearPedestal]

done
[c == 0]

Ladder

NewLevel

entry / init

Idle

Wander

Curious

DiscoverSecret
Trapdoor

trip

investigate
[!TD]

Investigating

do / collectInformation

investigate

done

ignore

investigate
[TD]

Spelling

Fightingentry / c++
do / spellHex
exit / c--

spell
[c == 0]

escape [c==0]

Level
Won

lost

toHall

nextLevel

won

entry / c = 0

Fig. 6. Game with cross-region dependencies

In this version of the game we have used the investigate event on three
different transitions: to change from the CrystalRoom to the CrystalPedestal
with the guard nearPedestal, to change from Idle to Investigating uncondi-
tionally, and from Wander to Curious (both substates of Idle) when the guard
TD holds. Whenever the transition inside the Idle state is enabled, the tran-
sition from Idle to Investigating cannot fire. This shows that submachines
are not compositional, i.e., the addition of a submachine to a state may inval-
idate invariants of the containing machine. It is often convenient to model in
this way. For example, if the investigate event is mapped to a physical event
generated by controller hardware, the state machine in Fig. 6 represents the dif-
ferent results of pressing this button in various game situations in a very concise
manner. However, the “stealing” of events by interior transitions is also a source
of possible mistakes, in particular when working with modeling tools that allow
modelers to hide nested states. Therefore we consider it useful to investigate
metrics that can draw attention to these kinds of potential problems. In the
following we will therefore propose some measures for the influence exerted by
states or transitions on the execution of other regions of the state machine.

Simultaneous Initial Transitions. One simple case of transitions being fired
in one execution step is that when a composite state S is activated, either via a
transition t, target(t) = S, or via a transition t′, target(t′) ∈ substate+(S), then
the initial transitions of the regions of S are also fired. Details were described in
Sect. 3.2.

A Set of Metrics of Non-locality Complexity in UML State Machines 73

Given an initial transition t, for each state in the set Act(t)\{target(t)}, there
is another transition which is fired in the same execution step as t. The complex-
ity measure for this situation is therefore given by the cardinality NAS (t) − 1,
see page 11.

Bonded Transitions. Another case of transitions being fired in one execution
step is that when transition t1 is fired, another transition t2 from a parallel
region is also fired in the same execution step if all the four following conditions
are satisfied:

1. the source states are both active,
2. guard(t1) and guard(t2) both hold,
3. both transitions have the same trigger,
4. the source states are in different, parallel regions.

To capture situations where these conditions may hold we define the set of
transitions that are bonded to a given transition.

Definition 9 (Bonded Transitions). Given a transition t, the set of transi-
tions that are bonded to t is B(t) = {t′ | Can(t, t′)}, where the predicate Can
is defined as Can(t, t′) : : = trigger(t) = trigger(t′) ∧ LCA(source(t), source(t′)) ∈
substate+(LCR(source(t), source(t′))).

The definition states that two transitions t and t′ are bonded, written as
Can(t, t′), when the last two of the four conditions above are satisfied. The first
part of the predicate Can reflects condition 3, and the second part reflects con-
dition 4. However, the converse is not true: The information to determine if the
other two conditions hold is only available at runtime. Since this paper is con-
cerned with static analysis, we ignore these two conditions, and over-estimate
the run-time value instead.

The set B(t) may also contain transitions that are not fired when t is fired:
suppose t′, t′′ ∈ B(t), source(t′′) ∈ substate+(source(t′)), and at some time during
the state machine’s execution, source(t′′) (and therefore source(t′)) is active. If
the current event is trigger(t) = trigger(t′) = trigger(t′′), then, according to the
UML Specification [5], t′′ is fired while t′ is not, since the source of t′′ is a substate
of t′. For example, when Curious (and thus Idle) is active, since one of the condi-
tions [TD] and [!TD] is always true, the transition from Idle to Investigating
in Fig. 6 will not be fired, even if the current event is investigate.

In the next definition, we restrict the set to contain only transitions that we
know will definitely be fired when t is fired. The flip side of the definition is that
it may ignore those transitions t′ such that Can(t, t′) holds but there is some
t′′, source(t′′) ∈ substate+(source(t′)) ∧ Can(t, t′′).

Definition 10 (Strictly Bonded Transitions). Given a transition t, the set
of transitions that are strictly bonded to t is B(t) = {t′ | Can(t, t′)∧ � ∃t′′ ·
[Can(t, t′′) ∧ source(t′′) ∈ substate+(source(t′))]}

74 G. Zhang and M.M. Hölzl

These two relations are the most precise values we can compute by static analysis,
since in general only by actually executing the state machine is it possible to
find out whether source(t′′) will be active whenever source(t′) is active.

The relations are not symmetric, i.e., if t′ ∈ B(t), generally it does not hold
that t ∈ B(t′) and if t′ ∈ B(t), generally it does not hold that t ∈ B(t′). Moreover,
the relations are independent of the transitions’ effects: since the transitions to
fire are selected before their effects, if any, are executed, potential effects are
transparent for (both strict and non-strict) bondedness of transitions.

Now we are in the position to define metrics for (strictly and non-strictly)
bonded relationships.

Definition 11 (Number of Bonded Transitions). Given a transition t, the
number of transitions bonded to t is

NB(t) = #B(t)

Definition 12 (Number of Strictly Bonded Transitions). Given a tran-
sition t, the number of transitions strictly bonded to t is

NB(t) = #B(t)

These two metrics reflect the complexity of transitions that may be fired
simultaneously, i.e., within one execution step.

In Fig. 6 the transition tCC from CrystalRoom to CrystalPedestal is
strictly bonded (and hence bonded) to each of the transitions triggered by the
investigate event in the lower region: the transition tCW from Curious to
Wander, the transition tCD from Curious to DiscoverSecretTrapdoor and the
transition tII from Idle to Investigating. Therefore NB(tCW) = NB(tCW) =
1, NB(tCD) = NB(tCD) = 1 and NB(tII) = NB(tII) = 1. These numbers show
that each of these transitions may be accompanied by a simultaneous transition
in an orthogonal region, but that if a concurrent execution step takes place in
the orthogonal region, it always progresses by triggering the same transition for
each of tCW , tCD and tII . (The metric is not precise enough to indicate that all
three transitions are bonded to the same transition tCC)

On the other hand, the transitions tCW and tCD are both strictly bonded
to tCC since no transition starting from a substate of Curious exists. However
the transition tII is bonded to tCC but not strictly bonded, since tCW and tCD

are bonded to tCC and their initial states are substates of Idle. Therefore,
we have NB(tCC) = 3, NB(tCC) = 2. These metrics show that the behavior
in the region orthogonal to tCC is much more complicated: There are at least
two different transitions in the innermost relevant region that may each fire
concurrently with tCC , (because NB(tCC) = 2), and there is one transition that
may be inhibited by locally invisible transitions inside its source state (because
NB(tCC) = NB(tCC) + 1). When looking at bonded transitions, the measures
NB and NB for the transitions bonded to a transition t are more revealing than
the measures for t itself: By seeing the numbers NB(tCC) and NB(tCC) when
looking at tII we are immediately alerted that there are other transitions that
may prevent tII from firing, even when the submachine inside Idle is hidden.

A Set of Metrics of Non-locality Complexity in UML State Machines 75

Competing States. There are also states which are, at least under certain
conditions, not supposed to be active simultaneously. This is often implemented
in state machines by adding entry, do, or exit actions to a state that change
the value of some variable x, while there are states in other regions with incom-
ing transitions where x is consulted; [11] discusses implementation of mutual
exclusion using this technique in greater detail.

We have to take care of two facts:

1. the target of the transition may be a composite state, or a substate of some
composite state, and therefore firing this transition may actually cause many
other states to be active and their entry actions to be executed;

2. the source of the transition may be a composite state, or a substate of some
composite state, and therefore firing this transition may actually cause many
other states to be inactive and their exit actions to be executed.

While in case 1 we can precisely calculate the states to be activated and thus
their entry actions, in case 2 it is in general not possible to calculate statically
the precise “path” of state deactivation and thus the exit actions. We therefore
make some approximation for this case.

We first define auxiliary functions for the entry and exit actions that are
executed when composite state or their substates get active or inactive.

Definition 13 (Compound Entry Action). Given a transition t, we define
its Compound Entry Action as EntryC(t) = {entry(s) | s ∈ Act(t)}.
Definition 14 (Compound Exit Action). Given a transition t, we define its
Compound Exit Action as ExitC(t) = {exit(s) | s ∈ Dct(t)}.

Note that ExitC(t) also contains actions that are not executed, since Dct(t)
contains states that are not active when t is fired. Again, finding out which states
are actually active when t is fired requires actually executing the state machine;
static analysis does not suffice.

Definition 15 (Strict Compound Exit Action). Given a transition t, we
define its Strict Compound Exit Action as

ExitC(t) = {exit(S) | S ∈ substate∗(Csr(LCR(source(t), target(s))))
∧ target(t) ∈ substate∗(S)}).

ExitC(t) underestimates the exit actions, since it only contains the exit actions
of those states that are definitely deactivated when t is fired, i.e., all composite
states containing source(t), contained in the region LCR(source(t), target(s)).

Definition 16 (Modified Variables). Given a transition t, the set of variables
it modifies, W(t) is the set of all variables written by ExitC(t) ∪ {effect(t)} ∪
EntryC(t).

Definition 17 (Strictly Modified Variables). Given a transition t, the set of
variables it strictly modifies, W(t) is the set of all variables written by ExitC(t)∪
{effect(t)} ∪ EntryC(t).

76 G. Zhang and M.M. Hölzl

Definition 18 (Do-Modified Variables). Given a state s, the set of variables
it do-modifies is the set W(s) of all variables written in do(s).

As stated in Sect. 2.1, in order to calculate our metrics, we ignore possi-
ble orders of execution of these actions, and instead simply assume a non-
deterministic execution order.

Definition 19 (Read Variable). Given a transition t, the set of variables it
reads is R(t) = {v ∈ V | v is read by guard(t)}.
Now we can define relations describing cross-region dependencies:

Definition 20 (Controlling). Given a transition t1 and a state s2, we say s2
is (weakly) controlled by t1, and write control(t1, s2), if there exists a transition
t2 with target s2 such that t1 modifies a variable read by t2, i.e., if

∃t2 · ∃v ∈ V · [target(t2) = s2 ∧ v ∈ W(t1) ∧ v ∈ R(t2)].

Given two states s1 and s2, we say s2 is (weakly) controlled by s1 if there
exists a transition t1 with target s1 that controls s2 or if the do activity of s1
modifies a variable that is read by a transition leading into s2, i.e., if

∃t1, t2 · ∃v ∈ V · [target(t1) = s1 ∧ target(t2) = s2

∧ (v ∈ W(t1) ∨ v ∈ W(s1)) ∧ v ∈ R(t2)]

We write this as control(s1, s2). If v ∈ W(t1) ∨ v ∈ W(s1) holds in the above
formula instead of v ∈ W(t1) ∨ v ∈ W(s1), then we say s1 strictly controls s2
and write it as control(s1, s2).

A state s1 therefore controls a state s2 if there exists a variable v such that
a guard in at least one transition t leading into s2 depends on v and either (1) a
transition leading into s1 modifies v in its compound entry action, its effects or
its compound exit actions, or (2) the do activity of s1 modifies v. This can also
be expressed as (⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) �= ∅

If s1 controls s2 it may only influence some paths leading into s2, or it may
control all transitions leading into s2. The latter case is important if we want to
ensure, e.g., mutual exclusion between states. We therefore define the notions of
partial and total control:

Definition 21 (Partial Control). Given two states s1 and s2, we say s2 is
partially controlled by s1, and write controlp(s1, s2), if s2 is controlled by s1 but
there exists a transition t with target s2 that is not controlled by s1, i.e., if the
predicates

∃t ·
[
target(t) = s2 ∧

(⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) �= ∅]

∃t ·
[
target(t) = s2 ∧

(⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) = ∅]

A Set of Metrics of Non-locality Complexity in UML State Machines 77

both hold. If additionally control(s1, s2) holds, then we say s1 partially strictly
controls s2 and notate it by controlp(s1, s2).

Definition 22 (Total Control). Given two states s1 and s2, we say s2 is
totally controlled by s1, and write it as controlt(s1, s2), if s1 controls all transi-
tions leading into s2, more precisely, if control(s1, s2) and

∀t1, t2 · [target(t1) = s1 ∧ target(t2) = s2 =⇒ (W(t1) ∪ W(s1)) ∩ R(t2) �= ∅].

If (W(t1) ∪ W(s1)) ∩ R(t2) �= ∅ holds in this equation instead of (W(t1) ∪
W(s1)) ∩ R(t2) �= ∅, then we say s1 totally strictly controls s2 and write it
as controlt(s1, s2).

If s1 totally controls s2 we therefore have

∀t ·
[
target(t) = s2 =⇒

(⋃

target(ti)=s1

W(ti) ∪ W(s1)
)

∩ R(t) �= ∅
]

and if there are any transitions leading into s2 this is a necessary and sufficient
condition for total control.
Based on the controlling relationship, we now define the following metrics:

Definition 23 (Number of Partially Controlled States). Given a state s,
its Number of Partially Controlled States is

NPC (s) = #{s′ | controlp(s, s′)}

and its Number of Partially Strictly Controlled States is

NPSC (s) = #{s′ | controlp(s, s′)}

Definition 24 (Number of Totally Controlled States). Given a state s,
its Number of Totally Controlled States is

NTC (s) = #{s′ | controlt(s, s′)}

and its Number of Partially Strictly Controlled States is

NTSC (s) = #{s′ | controlt(s, s′)}

As indicated above, these metrics may be used to determine possible sources
of concurrency errors: if NTC (s) < NPC (s) the state machine contains a state s′

whose reachability on some paths depends on s but some other transitions into s′

do not depend on s. If s′ is meant to be mutually exclusive to s this may indicate
synchronization bugs. (Note that an analysis based solely on these metrics is not
sufficiently precise to determine whether s and s′ are synchronized or not since,
e.g., predecessor states of s′ may be synchronized with s and therefore prevent
the unguarded transitions from being reached).

78 G. Zhang and M.M. Hölzl

3.5 Applications

While the metrics presented in this paper represent only a rough estimate of the
complexity caused by behavior depending on non-local properties, we believe
that they could serve a useful purpose in alerting modelers to unexpected features
of their state machines. In the following, we demonstrate the usefulness of our
metrics by means of two simple extensions of the game, which contain several
potential modeling mistakes that can be identified using our metrics, see Figs. 4
and 6.

Hidden Deactivation. Figure 4 contains several potential mistakes. The first
one is that the wizard can escape to her laboratory whenever she is in the ladder
room, even during a fight. This is not immediately obvious from the lower region
of the state machine which describes the behavior of the wizard, and a developer
focusing on this region might suppose that casting a spell always leads to a fight,
and that fights are always terminated by either winning or escaping. However,
the number of deactivating transitions for every state in the lower region is
higher than the number of directly visible transitions, which clearly indicates
that there are other ways to exit the states in this region than the locally visible
ones. For example, in state Fighting there are two locally visible transitions (to
Spelling and to the final state), but the number of deactivating transitions is
3. By looking at the metrics the developer is therefore immediately alerted to
the existence of deactivating transitions operating in a “more global” manner.

Post-Domination. While a simple comparison of locally visible activations and
deactivations with the metrics proposed in this paper is strong enough to point
to some problems, this analysis is relatively indiscriminate and may capture non-
local effects intended by the system’s designers. By combining the metrics with
flow-analysis techniques it becomes possible to identify more precisely situations
which are likely to be incorrect.

For example, a slightly more sophisticated analysis of Fig. 4 shows that
it is possible for the wizard to obtain arbitrarily large power ups: Taking
into account only local transitions, state PowerFighting post-dominates [1]
state PowerSpelling, i.e., each path from PowerSpelling to a final state goes
through PowerFighting. This is an important property because states that
release acquired resources or undo changes to variables have to post-dominate
all resource acquisitions or variable changes for the state machine to be correct.
In the example, the player obtains a boost of its power in state PowerSpelling
which is undone in state PowerFighting.

Looking only at the lower state machine one might thus be led to assume
that the exit action of PowerFighting will always be executed after state
PowerSpelling has been entered. However, the measure D tr of deactivating
transitions for PowerSpelling has the value 3; since there are only two locally

A Set of Metrics of Non-locality Complexity in UML State Machines 79

visible outgoing transitions it is clear that it is, indeed, possible to exit this state
by a non-local transition: If the player enter state PowerSpelling while in the
Ladder room, she can take the transition toLadder to exit from PowerSpelling
without decreasing the value of the power variable.

By combining the metrics presented in this paper with static analysis it would
therefore be possible for tools to identify possible sources of errors resulting from
non-local activations or deactivations.

“Stolen” Events. One of the pitfalls of the semantics of UML state machines
is that if several transitions with the same trigger are enabled, and for two of
them, say t1 and t2, it holds that source(t1) is directly or recursively contained
in source(t2), then only t1 is fired. This is a bit dangerous since when modeling
on a higher level of abstraction (with states on a higher level in the hierarchy),
the modeler may intend to have several transitions bonded, i.e., they should be
fired at the same time, and this bondedness may easily get lost when one of the
higher level states is later refined and a substate reacts to the same event. For
example, in Fig. 6, since state Curious also reacts to event investigate (and
one of the conditions [TD] and [!TD] is always true), the transition from Idle
(which contains Curious) to Investigating will not be fired when Curious
is active. Using our metrics, this mistake can be easily detected: Let t be the
transition from CrystalRoom to CrystalPedestal, then NB(t) �= NB(t), and
the modeler can be alerted to double check this transition and those bonded to it.

Mutual Exclusion. Another important application of our metrics is the detec-
tion or validation of mutual exclusions of states. In general, mutual exclusion is
in UML state machines often hard to model and to comprehend, since the exclu-
sion logic is “hidden” in several model elements, scattered in several regions [11].
A mechanism to make mutual exclusions in a state machine “visible” is therefore
desirable.

Our metrics provide a simple means to make hidden mutual exclusions visible.
For two states s1 and s2, we say s1 excludes s2 if s1 strictly controls s2, and
there do not exist transitions t1, t2, target(t1) = s1, target(t2) = s2, such that
after t1 has been fired (and all exit actions, t1’s effect, and all entry actions have
been executed), the guard of t2 is satisfiable. If s1 excludes s2 and s2 excludes
s1, then s1 and s2 mutually exclude each other from being active. For example,
in Fig. 6, the states CrystalRoom and Spelling mutually exclude each other,
since the condition for CrystalRoom to be active (via any transition) is c==0,
and its entry action then increases the value of umlc, setting it to 1, thus making
it impossible for the guard of any of the transitions leading to Spell satisfiable;
and in the same manner, entering Spell also prevents CrystalRoom from getting
active. This way, mistakes of the modeler failing to constrain any of transitions
leading to these states are easy to detect by the measures for partial and total
control as described on p. 20.

80 G. Zhang and M.M. Hölzl

4 Related Work

Complexity metrics of state machines have been recognized as useful indica-
tors [9]. Hierarchical states are considered in [3,4]. Strictly speaking, these
approaches do not consider UML state machines, but rather State Transition
Systems (STSs). The syntax of STSs is considerably simpler than that of UML
state machines, and their semantics do not contain cross-region effects, such as
bonded transitions, stolen transitions, or a transition originating from one region
deactivating states in another. In comparison, our approach provides a set of
metrics for UML state machines, where it is much more involved to determine
the model elements that may activate or deactivate certain states. Moreover, it
is also clearer which elements are actually responsible for the complexity.

Cyclomatic complexity [8] is a very widely-used metric for state-based sys-
tems. Like the approaches cited above, cyclomatic complexity is also only
applicable to flat state transition systems, and is therefore, in the domain of
UML, not as direct as our approach.

Our previous paper [12] was the first one to study remote activation and
deactivation of states. The current paper extends [12] by the metrics regarding
cross-region dependencies.

The determination of the transitions activating or deactivating a certain state
is also an essential technique for weaving aspect-oriented state machines [14].

5 Conclusions and Future Work

We have discussed in detail the activation and deactivation of (hierarchical)
composite states in UML state machines, and, based on this discussion, defined
metrics to reflect the complexity of transitions leading to or leaving compos-
ite states, as well as the complexity caused by cross-region dependencies. Our
metrics give a better understanding of the complexity of UML state machines
than traditional metrics. They also show where the modeler or reader of UML
state machines must pay attention, and may alert them to potential modeling
mistakes.

Based on this work, we plan to define more precise metrics which also take
into account, e.g., the partial order of the execution of entry and exit actions
when composite states are activated or deactivated. Metrics on their own can
only provide relatively coarse indications of problems in state machines, and tools
based solely on metrics will probably often report possible errors when structural
properties of the state machine are used by designers to ensure invariants of
the model. Therefore we also intend to pursue the integration of the measures
presented in this paper with stronger structural analysis techniques for state
machines. Finally, we plan to validate our metrics in more realistic models, as
well as to implement support for the metrics in modeling tools.

Acknowledgment. This work has been partially sponsored by the EU project
ASCENS, 257414.

A Set of Metrics of Non-locality Complexity in UML State Machines 81

References

1. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: An
efficient method of computing static single assignment form. In: Conference Record
of the 16th Annual ACM Symposium Principles of Programming Languages (POPL
1989), pp. 25–35. ACM Press (1989)

2. Drusinsky, D.: Modeling and Verification Using UML Statecharts. Elsevier,
Amsterdam (2006)

3. Guo, L., Sangiovanni-Vincentelli, A.L., Pinto, A.: A complexity metric for con-
current finite state machine based embedded software. In: 8th IEEE International
Symposium on Industrial Embedded Systems (SIES 2013), pp. 189–195. IEEE
(2013)

4. Hall, M.: Complexity metrics for hierarchical state machines. In: Cohen, M.B.,
Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 76–81. Springer,
Heidelberg (2011)

5. Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.4.1. Specification, OMG (2011). http://www.omg.org/
spec/UML/2.4.1/Superstructure

6. Schmidt, C.D.: Model-Driven Engineering. IEEE Comput. 39(2), 25–31 (2006)
7. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigó, I.,

Gómes, J., Kappel, G., Knapp, A., Matera, M., Meliá, S., Moreno, N., Pröll, B.,
Reiter, T., Retschitzegger, W., Rivera, J.E., Schauerhuber, A., Schwinger, W.,
Wimmer, M., Zhang, G.: MDWEnet: A practical approach to achieving interop-
erability of model-driven web engineering methods. In: Koch, N., Vallecillo, A.,
Houben, G.-J. (eds.) Proceedings of the 3rd International Workshop on Model-
Driven Web Engineering (MDWE 2007), vol. 261 of CEUR-WS (2007)

8. http://en.wikipedia.org/wiki/Cyclomatic complexity. Accessed on 2014–04-30
9. http://code.google.com/p/umple/wiki/MasuringStateMachineComplexity.

Accessed on 2014–04-30
10. Zhang, G.: Aspect-Oriented State Machines. Ph.D thesis, Ludwig-Maximilians-

Universität München (2010)
11. Zhang, G.: Aspect-oriented modeling of mutual exclusion in UML state machines.

In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.)
ECMFA 2012. LNCS, vol. 7349, pp. 162–177. Springer, Heidelberg (2012)

12. Zhang, G., Hölzl, M.: A set of metrics for states and transitions in UML
state machines. In: Proceedings of the 6th International Workshop on Behaviour
Modeling-Foundations and Applications (BM-FA 2014). ACM, New York (2014)

13. Zhang, G., Hölzl, M.: HiLA: high-level aspects for UML state machines. In: Ghosh,
S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg (2010)

14. Zhang, G., Hölzl, M.M.: Weaving semantic aspects in HiLA. In: Hirschfeld, R.,
Tanter, É., Sullivan, K.J., Gabriel, R.P. (eds.) Proceedings of the 11th International
Conference on Aspect-Oriented Software Development, (AOSD 2012), pp. 263–274.
ACM Press (2012)

http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://code.google.com/p/umple/wiki/MasuringStateMachineComplexity

A Customizable Execution Engine
for Models of Embedded Systems

Karolina Zurowska(B) and Jürgen Dingel

School of Computing, Queen’s University, Kingston, ON, Canada
{zurowska,dingel}@cs.queensu.ca

Abstract. In the Model Driven Development (MDD) paradigm analysis
of models is important. We propose an approach to the analysis which
uses a customizable execution engine. Such customization can improve
scalability and provide more support for variations of semantics. We
exemplify these benefits with several customizations of semantics that
are abstractions. They are applied to models of embedded systems imple-
mented in the UML-RT language. The goal of abstractions is to replace
original semantics with semantics that generates smaller state spaces.
Different execution semantics of UML-RT models are provided terms of
operational semantics style execution rules. We describe the design of
the toolset called Toolset for UML-RT Execution, illustrate execution
rules with examples, and present the results of preliminary evaluation.

1 Introduction

In Model Driven Development (MDD) analysis techniques are important, since
they provide better understanding of models. Moreover, they enable debugging
and verification. In this paper we propose an approach to the analysis of MDD
models based on a customizable execution semantics engine. The engine can
execute models with the standard semantics, but we can adjust it, so that the
execution state space becomes smaller or simpler or it explores only portions
of models important w.r.t. the desired analysis. The goal of making execution
engines customizable is also to facilitate model analysis through, e.g., better
scalability and support for variations in semantics and for flexible displays of
executions.

The standard notion of abstraction in MDD and behavioral modeling deals
with representing elements of modeled systems in a way that is simple but yet
contains sufficient details [17]. We propose to extend this notion and apply it to
the analysis and verification of models. In this context the abstraction is used
to overcome one of the most important challenges, that is, the scalability of
analysis. We realize abstractions by providing non-standard execution semantics
of models. These semantics are implemented in our execution engine dedicated to
one of the industrial MDD languages, namely, the UML-RT modeling language.
Therefore we also address another challenge of modern MDD, which is a lack of
tools dedicated to the industrial languages.

c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 82–110, 2015.
DOI: 10.1007/978-3-319-21912-7 4

A Customizable Execution Engine for Models of Embedded Systems 83

The customization of executions realized as abstractions can serve the analy-
sis of MDD models in two ways. Firstly, it can support verification, that is,
exhaustive checking whether certain desired properties are satisfied in a model.
In this case abstractions can reduce the state space and make the exhaustive
exploration possible. The reduction of the sizes of the state space comes with a
price, which in case of some our abstractions is the overapproximation and the
possibility of false positive (or negative) results. We can deal with such results
either by checking the paths against the model or by being more specific which
parts of the state space we abstract away (we proposed a model checking tech-
nique based on this idea [21]). The second way abstractions are useful is to help
visualize the executions. Thanks to the substantial reduction in complexity of
models we can show the execution of a model, and such an execution can be
inspected.

In this paper we illustrate our ideas by presenting a Toolset for UML-RT
Execution (TUMLE) that enables execution of UML-RT models with various
semantics. TUMLE includes a rule-based engine in which a set of rules defines
the semantics. These rules are tailored to UML-RT models and we describe
the set of rules necessary to simulate the semantics of the standard UML-RT
language. Variations of this semantics enable us to perform abstract executions.
We distinguish three abstractions: symbolic execution, structural abstraction
and state aggregation. Symbolic execution is used to deal with the values of
variables in a model, structural abstraction is used to simplify the structure of
models and state aggregation is used to simplify state machines. The changes in
rules required by these abstractions can be aggregated, so that we can provide
more powerful and directed abstractions.

The use of interpreters for models has been advocated among others by Bran
Selic in [18]. However, most of the MDD tools, including the tool for UML-RT
(i.e. IBM RSA RTE), support only the basic execution of models and they
typically require code generation. The majority of general analysis methods
uses translations of UML-like models to an input language of an existing tool
[9,10,15,16]. Although these tools allow for the comprehensive verification, their
support for execution and abstractions is limited. On the other hand abstractions
have long been used in model checking to reduce the sizes of state spaces [5,6].
These works, however, are not directly applicable to MDD models. Finally, the
variations in semantics of models have been recognized in for instance in [4,13],
but the goal of these works is to capture different variants of state machines.

In Sect. 2 we indicate benefits of customizations and we show the design of
our tool. In Sect. 3 we summarize the UML-RT language. In Sect. 4 we describe
the design of the engine. In Sect. 5 we report on experiments and in Sect. 7 we
discuss related work.

2 Analysis Support with Customizable Execution Engine

In this work we use the UML-RT modeling language described in more detail in
Sect. 3. UML-RT models are executable, so we associate executions with them.

84 K. Zurowska and J. Dingel

In the simplest case the execution of a UML-RT model is a sequence of execution
states and transitions that represent a change in a state. The execution is the
result of exploration of states of a model and sometime we will use these two
terms interchangeably.

The standard execution semantics of UML-RT models is defined in the IBM
RSA RTE tool., Making the execution engine customizable can bring advantages
such as:

1. Reducing complexity of executions. To simplify executions, we can use abstrac-
tions. Additionally, we can focus on certain aspects or views of executions,
and abstract out portions that are irrelevant w.r.t. required analysis.

2. Support for variations of semantics. Variations in semantics may be due to
several reasons. Firstly, there might be variation points in the design of the
modeling language (such as in UML 2). Secondly, the modeling languages
change with time, e.g., with updates of tools.

3. Support for flexible display of executions. There are many aspects in which
we may want to customize the visualization of executions. For instance, we
may want to display only some elements of execution states.

4. Support for partial models. By providing semantics for elements that are ten-
tative, missing or not well-formed we can support the execution of models
that are still under development.

In order to achieve the above advantages we propose a toolset whose struc-
ture is presented in Fig. 1. We can distinguish three major areas of the tool:
formalization, execution and verification. The formalization step is necessary to
simplify UML-RT models to enable the analysis. This step is divided into two
parts: ATL transformation of structural elements of UML-RT models and sym-
bolic execution of action code associated with transitions and states. The sym-
bolic execution is performed using our custom built symbolic execution engine.
The output from this step is a model in our formal representation of UML-RT
models called Communicating Functional Finite State Machines (see Sect. 3).
The execution part of our toolset is given by an execution engine that uses rules
for execution. This engine and the rules are described in more details in the
following sections. Finally, the toolset includes a model checker for UML-RT
models [21].

3 Overview of the UML-RT Language

In our work we use the UML-RT modeling language and in this section we
introduce its basic features using the example of a model of traffic lights.
A specification of a UML-RT model consists of a structure diagram and a state
machine for each capsule, i.e., a component.

Figure 2 presents the structure diagram of a capsule TrafficController. The
capsule has 2 internal parts: cars and walk. A part in a capsule is an instance
of some other capsule, in this case of CarLights and WalkLights, respectively.
Besides parts, the capsule also contains ports: carsManager and walkManager to

A Customizable Execution Engine for Models of Embedded Systems 85

F
ig
.
1
.
T

h
e

d
es

ig
n

o
f
to

o
ls

et
fo

r
a
n
a
ly

si
s

o
f
U

M
L
-R

T
m

o
d
el

s.

86 K. Zurowska and J. Dingel

Fig. 2. Structure diagram of TrafficController capsule. Inspired by [19].

Fig. 3. A structure and behavior of capsule TrafficController. Labels of transitions
are of the forms: port.signal or port.signal/action code. From [19].

communicate with the parts, external to receive signals from the environment
and carsTimer and walkTimer to receive timer signals. Ports can be base or con-
jugated and we only connect ports of different types. Ports have a type, called a
protocol. For instance, a protocol for carsManager is called CarsProtocol. Proto-
cols gather events that can be received or sent through this port; events can be
used as triggers on transitions. Events may contain variables that carry values
when they are sent. A capsule in a model may include also typed attributes (not
shown in the structure diagram). The values of attributes receive default values,
which can be updated during execution.

The behavior of each capsule is specified with a UML-RT State Machine,
which is a variant of UML 2 State Machines [2]. The state machines for capsules
in our model are shown in Figs. 3 and 4. They have states and guarded transitions,
which can contain actions. For instance, in Fig. 3 a transition between the states
Starting and Stop cars checks for the value of input received with the trigger

A Customizable Execution Engine for Models of Embedded Systems 87

(a) CarLights

(b) WalkLights

Fig. 4. A structure and behavior of capsules CarLights and WalkLights. Labels of
transitions are the same as in Fig. 3. From [19]

(through a pointer *rtdata) and if the value is greater than 0, it is assigned to
the attribute walkD of this capsule. Next, with the help of the send operation, the
signal toRed is sent using the port carsManager. Another example of an action is
shown between states Stop walk and Walk. This action is used to start the timer
walkTimer, which after the prescribed time generates a timeout event. Figure 4(a)
and (b) present state machines for CarLights and WalkLights capsules. The state
machine of CarLights in Fig. 4(a) initializes the part and cycles through different
lights using timers to control Yellow and YellowRed transitions. The behavior of
the capsule WalkLights is shown in Fig. 4(b) and it alternates between the states
walk and no Walk.

88 K. Zurowska and J. Dingel

Table 1. Informal description of the mapping of the structural elements from UML-RT
models to CFFSMs. Parameters of elements are given in parentheses.

UML-RT element CFFSMs element

capsule module

part (type) part (type)

(base port, protocol, out
event(variable))

out signal(out variable)

(conjugated port, protocol, in
event(variable))

(base port, protocol, in
event(variable))

in signal(in variable)

(conjugated port, protocol,
out event(variable))

(connector(base port, connector(owner,

conjugated port, owner), out signal (base port, protocol, out event),

protocol, out event) owning part(base port),

in signal (conjugated port, protocol, out event),

owning part (conjugated port),

variables)

(connector(base port, connector(owner,

conjugated port, owner), out signal (conjugated port, protocol, in event),

protocol, in event) owning part(conjugated port),

in signal (base port, protocol, in event),

owning part (base port),

variables)

We formalize syntax and semantics of a subset of UML-RT models using
Communicating Functional Finite State Machines (CFFSMs)[19]. The structure
of CFFSMs is very similar to that of UML-RT and we present the mapping of
structural elements in Table 1 and of state machine elements in Table 2. In the
structure of CFFSMs we simplify the communication and we use only signals and
connectors, which represent the combination of ports and protocols. Additionally,
connectors combine events, ports and protocols.

State machines in CFFSMs are flat and we use functions to summarize action
code attached to transitions and states. These functions are obtained using sym-
bolic execution of the action code. Each function is a set of cases, and each case
is a pair consisting of a condition and effects such as the update of attributes.
The work presented in this paper has been defined for CFFSMs, so any modeling
language that can be translated to CFFSMs can be used.

A Customizable Execution Engine for Models of Embedded Systems 89

Table 2. Mapping of the state machine elements from UML-RT to CFFSM.

UML-RT CFFSMs

non-composite state state

(transition chain (start state,
target state), trigger)

transition (start state, target state, trigger)

(transition chain (code), entry and
exit code from states)

transition (functions)

transition chain (guard code) transition (guard)

4 Elements of the Execution Engine

The execution engine which is a part of our toolset (see Sect. 2) uses execution
rules. A set of applied rules determine the execution semantics we wish to use.
We start this section with the description of the basic elements of rules used and
then we show how different sets of rules can be used to obtain different execution
semantics.

4.1 Elements of Execution Rules

Figure 5 presents the elements of rules used in our execution engine. A rule
contains variables, conditions and effects. A rule variable represents a type of
an element of a model (such as execution part or a state machine location). The
operation getValues returns the currently possible values of the rule variable and
these values are stored. A rule variable value is a pair consisting of a rule variable
and a value, that is, an element of a current execution state (e.g., a current
execution part, a current value of an attributes) or of the original model (e.g.,
a location, a transition in a state machine). Rule variable values are gathered
in a mapping. A rule condition represents a condition that must be satisfied in
order to fire a rule. For instance, a rule condition can be a check whether a
trigger is external. Rule conditions are evaluated with the match method, which
uses a mapping to refer to the respective elements of an execution state, i.e.,
values of rule variables. A rule effect describes changes to an execution state
and the fire methods realizes these changes. For instance, such an effect can be
changing a state machine location or updating values of attributes based on the
update effect. Similar to rule conditions, they refer to the necessary elements of
an execution using rule variables and the values stored in the assignments.

Example 1. Let us assume that in a very simplistic engine we have only one
execution rule, which is called SimpleRule defined by its elements: three variables
LocationVariable (refers to a location in a state machine), TransitionVariable

(refers to a transition in state machine), CaseVariable (refers to a set of cases
assigned to a transition). The variables refer to the elements of a state machine
mentioned in their names. This very simple rule has:

90 K. Zurowska and J. Dingel

Fig. 5. A class diagram used for execution rules.

– one condition IsExternal, which uses TransitionVariable and which in its
match method checks if a transition is external,

– one effect TargetLocation, which uses TransitionVariable and which in its
fire method updates a location in a target execution to be a target location
of a transition

The above specification of an engine can refer to any model. We refer to a specific
model after declaring mappings of variables, that is, after providing their specific
values.

Given the set of execution rules we perform an exhaustive exploration of a
model, that is we make sure that if a rule is applicable it will be fired including all
its effects. The exploration is done for a given execution state with Algorithm 1
used to explore such a state. The algorithm iterates through all rules (line 2).
For each rule we generate all possible mappings for its rule variables (line 3).
For each possible mapping we check whether it fulfills the necessary conditions
(line 5) and if so we generate a new execution state. The necessary changes (rule
effects) are applied to this new execution state in line 7. The updated state is
then included in the set of returned results.

Generating mappings uses the getValues method for each variable and it is
outlined in Algorithm 2. First, we create some initial empty mapping. Next, in
line 2 we iterate through all variables and using getValues, we generate values
for them according to the current execution state and to the current mapping
(line 5). Because a set of possible values might have more than one element, for
each such value we need to copy the current mapping (line 7) and add this value
to the new mapping (line 8). The new mapping mappingNew with a variable and
value pair is added to the set of all mappings (line 9).

A Customizable Execution Engine for Models of Embedded Systems 91

Algorithm 1. An outline of explore(executionState).
Require: a set of rules rules
Require: a current execution state executionState

results ← ∅
for all rule ∈ rules do

3: mappings ← generateMappings(rule.variables, executionState)
for all mapping ∈ mappings do

if match(rule.conditions,mapping) then
6: executionStateNew ← copy(executionState)

fire(rule.effects,mapping,executionStateNew)
results ← results ∪ {executionStateNew}

9: return results

Algorithm 2. An outline of generateMappings(variables, executionState).
Require: a set of rules variables variables
Require: a current execution state executionState

mappings ← {emptyMapping}
for all variable ∈ variables do

3: for all mapping ∈ mappings do
mappings ← mappings \ {mapping}
values ← variable.getValues(executionState, mapping)

6: for all value ∈ values do
mappingNew ← copy(mapping)
mappingNew ← mappingNew ∪ {variable �→ value}

9: mappings ← mappings ∪ {mappingNew}
return mappings

Example 2. We continue with the previous example and the rule SimpleRule.
The rule has three variables and we have to generate mappings for them. For the
sake of brevity let us assume that we have a model with just one state machine,
its UML-RT version is presented in Fig. 3. In the current execution state we
have the current location to be Starting. We start the procedure by creating an
empty mapping and place it in the mappings set. We consider the first variable,
i.e., LocationVariable. In the current execution state the getValues method of
this rule variable returns only one location Starting. We iterate through all
mappings, which at this point means using only an empty mapping. We copy
this mapping and we add to it the pair {LocationVariable �→ Starting}. The
resulting mapping is included in the set mappings.

Next, we consider TransitionVariable. We start with the single mapping we
created for the previous variable. The getValue method of this variable returns
outgoing transitions from a location mapped by LocationVariable. According to
Fig. 3 we have two of them carsFirst and walkFirst (we assume their names
are the names of their triggering signals). We copy the original mapping and
we add to it the pair TransitionVariable �→ carsFirst to it, which results in
a mapping {LocationVariable �→ Start, TransitionVariable �→ carsFirst}. For
the next value of TransitionVariable we start with the original mapping and we
add the variable value pair with the value walkFirst. This gives us mappings:
{{LocationVariable �→ Start, TransitionVariable �→ carsFirst},
{LocationVariable �→ Start, TransitionVariable �→ walkFirst}}.

We now move to the last variable CaseVariable. Its getValue method returns
the cases of the transition mapped by TransitionVariable. As required by

92 K. Zurowska and J. Dingel

the algorithm we iterate through two existing mappings. The first one is
{LocationVariable �→ Starting, TransitionVariable �→ carsFirst}. For this
mapping we get values for CaseVariable, that is, cases assigned to the carsFirst

transition, which are {(carsFirstVar > 0), (carsFirstVar <= 0)} (names are
after the conditions of the cases and carsFirstVar is an input variable). We add
(CaseVariable �→ (carsFirstVar > 0)) to the copy of the current mapping. We
do the same for the second value, i.e., (carsFirstVar <= 0). We move to the
the second mapping, i.e., {LocationVariable �→ Starting, TransitionVariable �→
walkFirst}. For this mapping values for CaseVariable are cases assigned to the
walkFirst transition, which are {(walkFirstVar > 0), (walkFirstVar <= 0)}. We
add both of these values to a current mapping and it gives us the following set
of mappings mappings = {
{LocationVariable �→ Starting, TransitionVariable �→ carsFirst,

CaseVariable �→ (carsFirstVar > 0)},

{LocationVariable �→ Starting, TransitionVariable �→ carsFirst,

CaseVariable �→ (carsFirstVar <= 0)},

{LocationVariable �→ Starting, TransitionVariable �→ walkFirst,

CaseVariable �→ (walkFirstVar > 0)}
{LocationVariable �→ Starting, TransitionVariable �→ walkFirst,

CaseVariable �→ (walkFirstVar <= 0)}}

Our execution engine detects the similarity of execution states. If the state
that is a result of application of all effects is the same as some other existing
state we stop exploration. The similarity is defined recursively for all execution
parts in the model and may slightly differ for different execution semantics.

4.2 Execution Rules for Standard and Abstract Semantics

In this section we introduce the execution rules for different execution semantics.
We start with the rules for the standard execution that mimics the UML-RT
behavior. Next, we show the adjustments to those basic rules that need to be
applied to provide abstractions. For each rule we provide a set of rule variables
it uses as well as conditions and effects. For conditions and effects we provide
the necessary rule variables in parentheses.

Table 3 summarizes rules in the standard execution semantics. We have five
rules:

– the Default Rule needs just an execution part which is in its initial state.
Initializing such a part will fire initial transitions and evaluate cases assigned
to them,

– the Match Rule also needs the execution part, but additionally it requires
the current location of its the state machine, a transition outgoing from this
location along with guards assigned to it, case conditions, case effects and the
execution signal from the queue. We have several rule conditions including
one that checks whether a trigger on the transition and an execution signal
are the same. Additionally, case and guard conditions have to be satisfied.

A Customizable Execution Engine for Models of Embedded Systems 93

If this is true, the current location is changed to the target location of the
transition, the execution signal is removed from the queue and a set of effects
assigned to the case are executed.

– the External Rule is very similar to the match rule, and it differs only in that
there is no queue involved and the valuation of input variables is generated (as
opposed to being taken from the queue). Also in this rule the case condition
and guard must be satisfied and the rule effects change the location and
evaluate the considered case.

– the Timeout Rule differs from the external rule only in that a timeout signal is
used as trigger and the corresponding timer must be present in the execution
state of the execution part we apply the rule to. In the rule effects we remove
the timer from the set of set timers, so the timer that goes off disappears.

– the Drop Rule simply removes the current execution signals from the queue,
if it cannot be used as trigger on any transitions.

In the standard execution semantics we say that states are similar if they
are identical. States are identical if the contents of all queues is the same and if
the execution states for each execution part are the same with respect to their
locations, values of attributes and the set of active timers. If we find some state
to be similar with one of already explored states we do not explore it.

Example 3. We use the UML-RT model shown in Sect. 3. Figure 6 shows an
example of a concrete execution. Each execution state consists of two parts.
The first one includes the contents of queues in a model, in the example, each
capsule has its own queue. The second part includes details of the execution
state of each part in the model. The details contain a current location, values of
attributes declared in a capsule and the set of currently active (i.e., set) timers.
In the first execution state the queues are empty, the states of all parts are
initial and the attributes have default values. Because at least one part is in the
initial state, the Default rule is fired and the location of the top part and all its
children is updated. Next, we can apply the External Rule and the top level part
receives one of the external signals carsFirst or walkFirst. In Fig. 6 we show
only two out of all possible values received with an incoming signal. In both
cases values received with input signals are greater than zero, so we will update
values of respective attributes. In the labels of transitions we have the type of
the transition, which is the same as the type of the rule. Next, we show the full
name of the part involved in the transition as a sequence of part names that the
part is in contained in < and >. Finally, we have the input signal received and
all output signals generated during the transition.

4.3 Execution Rules for Abstract Execution Semantics

In this section we show the execution rules for abstractions with the concrete
execution rules as the basis. We present the necessary changes to obtain rules
for symbolic execution, structural abstraction and state aggregation.

94 K. Zurowska and J. Dingel

Table 3. Rules in the standard execution.

A Customizable Execution Engine for Models of Embedded Systems 95

Fig. 6. First execution states of a UML-RT model in a standard execution semantics.

In symbolic execution (see Table 4) we use symbols instead of concrete values
of input variables and we maintain conditions on these symbols to distinguish
between execution paths. The rules used in this semantics are similar to the
standard rules. The default and the drop rule are exactly the same. In all other
rules we update the check of the guard and case conditions. Instead of checking
if they are satisfied in the current state we check whether the conditions are
satisfiable in the current state (i.e., no contradictions are introduced). Another
adjustment is for the external rule, in which we use symbolic input variables
instead of standard ones. We also check whether the combined path constraints
are satisfiable. Effects in the symbolic execution engine are very similar to one
in the standard execution semantics, with an additional one, which adds case
conditions and guards to the current path constraints, that is constraints that
need to be satisfied to follow certain branch of execution.

Symbolic execution is exact, so no spurious paths are introduced and no paths
are removed from the execution [19]. This means that checking properties of
UML-RT models yields the same results in the standard and symbolic execution.
This is very useful and desired property of any execution engine. For instance,
consider checking reachability of locations in our traffic lights model. If we are
checking reachability of an execution state in which the top level part is in
the Stop cars location (see Fig. 3), we get the same results using symbolic or
standard execution, that is, the state is reachable, no matter if we use concrete
or symbolic variables as an input in the signal carsFirst.

96 K. Zurowska and J. Dingel

Table 4. Rules in symbolic execution.

In the case of symbolic execution we define similarity as in the case of the
standard execution with one adjustment. We say two states are similar if they
are exactly the same (including path constraints) or if they are the same modulo
symbolic input variables. This helps to detect similarity for execution states that
differ only in the order of received input variables.

Example 4. We present symbolic execution using the UML-RT model from
Sect. 3. The first execution states S 1,S 2 are shown in Fig. 7. Two of them
are exactly the same as in the case of standard execution. However, the states
explored after the application of the External Rule are different. We introduce a
new variable carsFirst var1 (and walkFirst var1) to represent the input value
received with the input signal carsFirst (and walkFirst). These variables are
used to update the value of attributes. They are also used to update the path
constraints so that the condition from the action code attached to the transition
is represented.

When using structural abstraction, the user first identifies the parts that
are to be abstracted. Then, only the unabstracted parts are executed as before
with the exception that whenever an unabstracted part p requires input from
an abstracted part q (i.e., to be able to take a transition, p requires a trigger
that is generated by q), then that input is simply assumed to exist and provided
to p, without checking if q can actually produce this input to p in the current
state. The rules necessary to realize the above semantics are gathered in Table 5.
They are the same as those of the standard execution semantics, with an extra

A Customizable Execution Engine for Models of Embedded Systems 97

Fig. 7. An example of execution states in symbolic execution in the UML-RT model
from Figs. 2, 3 and 4.

rule Abstracted Signal Rule to account for using triggers from abstracted parts.
This rule has a condition that checks whether the sender of a trigger is one of
the abstracted parts.

The presence of the extra Abstract Signal Rule results in triggering transi-
tions that otherwise would not be triggered. This makes structural abstraction
an overapproximation, because we may introduce additional execution paths not
present in the original state space. So, as with analyses based on overapproxima-
tions in general, structural abstraction needs to be handled with a bit of care: if
the analysis reveals some undesired behaviours, we need to check them against
the unabstracted model; however, if the analysis does not find any undesired
behaviours, then we can be assured that the original, unabstracted model does
not contain any, either. For instance, if in the traffic lights model we abstract
away the <top,walk> part and if we show unreachability of an execution state
in which the <top,cars> part is in its Green location (see Fig. 4(a)) and the
<top> part is in Walk (see Fig. 3), we are certain that such an execution state is
also unreachable in unabstracted execution.

Moreover, for many combinations of properties and choices of parts to be
abstracted out using structural abstraction, the fact that the abstraction cannot
introduce any spurious analysis results can be deduced from the model quite
easily. For instance, when checking the reachability of the location Red in the part

98 K. Zurowska and J. Dingel

Table 5. Rules in structural abstraction.

<top, cars> in the traffic lights model (see Fig. 4(a)), a structural abstraction
to abstract out the part <top, walk> will not introduce any spurious results,
because to reach this location the part <top, cars> does not interact with the
part <top, walk> at all. For another example, consider an analysis to determine
the signals exchanged between the parts <top> and <top, walk>; here, the
execution paths introduced by the interactions with <top, walk> are irrelevant,
and <top, walk> can again be safely abstracted out.

The similarity detection of execution states in the case of the structural
abstraction is the same in the case of standard abstractions assuming that states
of abstracted parts are the same. Note that if an execution part is abstracted
it remains such for the entire execution and its execution details will always be
empty.

Example 5. We use the UML-RT model from Sect. 3. Figure 8 presents some
of the execution states when the model is executed with structural abstraction
applied to the execution part <top,walk>. The initial execution states from S 1

to S 4 of this model are similar as in Fig. 6. The only difference is that the part
that is abstracted, that is <top,walk> is marked with an empty execution, that
is, ∅. We label the last execution state as S 4’. Let us consider the execution part
<top>. The current location of this part is Stop walk. The only outgoing transi-
tion from this location is triggered by the walkStopped signal (see Fig. 3), which
is delivered by the <top,walk> part. Since this execution part is abstracted we
can apply Abstracted Signal Rule. Application of this rule will result in state
S 5’.

In state aggregation (see Table 6) we aggregate user-specified locations of
state machines and we treat them as one location. We call this abstraction
state aggregation initially to relate to states in original UML-RT state machines,
but more accurate term is location aggregation. We specify disjoint aggregation

A Customizable Execution Engine for Models of Embedded Systems 99

Fig. 8. Execution states in the structural abstraction of the UML-RT model in Figs. 2, 3
and 4.

groups, which group locations we wish to aggregate. Rules used in the semantics
are almost the same as in the standard execution semantics, but instead of using
a single location as a rule variable we now use a set of locations. Additionally,
we add an extra effect which will make sure that when taking a transition the
target locations include all locations in a given aggregation group.

As in the case of structural abstraction, state aggregation is an overapprox-
imation, because we can trigger transitions outgoing from all locations in the
current aggregation groups. In the standard execution we consider transitions
outgoing from only one such location. However, as in case of the structural
abstraction, we can accept such spurious paths if they are irrelevant to the
analysis. For instance, if in the traffic lights example we have an aggregation
group for all states in <top,cars> part and we wish to check reachability of the
location Cars in the top level part (see Fig. 3) the result will be the same as if
the analysis was performed without the aggregation. This is possible because the
transitions between the locations we aggregate depend on the triggers provided
by the top level part (or timers which are set after receiving such triggers), so
the transitions in <top,cars> would be fired anyway.

The similarity detection for execution states explored using the state aggre-
gation semantics is very much as in the standard execution semantics. Note that
in this case we need to compare sets of locations and we use standard equality
between sets.

Example 6. We continue the previous example of a UML-RT model. In Fig. 9
we present execution states of the model using state aggregation abstraction.
We assume that we have one aggregation group {Start cars, Stop walk}. From
the execution state S 1 we take a transition triggered by carsFirst. This transi-
tion takes us to the location Stop walk. Because this location is in the aggregation

100 K. Zurowska and J. Dingel

Table 6. Rules in state aggregation engine.

Fig. 9. Execution states of the UML-RT model (Figs. 2, 3 and 4) using state aggrega-
tion abstraction. We assume that toRed is external signal.

group we extend the target state to the entire aggregation group. Now, if we con-
sider the execution state S 2 we need to check both locations in the aggregation
group. We assume that toRed is external, therefore we can apply External Rule.

We can combine several abstractions to further increase the level of abstrac-
tion. For instance we can combine symbolic execution with either two other
abstractions, to have some parts abstracted or some location aggregated and
symbolic values used for input variables.

5 Results of Executing UML-RT Models

In this section we present the results of using the proposed tool. We show how
the tool performs using several models. The performance is given using the

A Customizable Execution Engine for Models of Embedded Systems 101

number of states generated in each case. Unfortunately, we cannot compare ou
tool with existing approaches, because the tools introduced in the literature are
not publicly available.

We performed experiments with the execution engine using the version of
the traffic lights model from Sect. 3. Figure 10 shows the structure of additional
capsules we use in our experiments. IntersectionController represents an inter-
section and StreetController represent a street, that is, a sequence of several
intersections. We increase the complexity of the models by increasing the number
of intersections in the model up to 3. Additionally, we report on our experiments
with a UML-RT model we obtained from our industrial partner, which is a model
of a Private Branch Exchange (PBX) as used in the telecommunication industry.
The experiments are performed on 4 subsystems of the main model which have
up to 6 capsules and between 4 K an 6.5 K lines of code after code generation.

(a) IntersectionController

(b) StreetController

Fig. 10. Structure diagrams of capsules IntersectionController and Street

Controller. From [19]

The results of our experiments are presented in terms of the number of exe-
cution states when using different execution rules. We used a standard PC with
with processor Intel i7 (3.07 GHz) and with 4 GB of RAM memory. We omit
the times necessary to execute the models, because they are proportional to the

102 K. Zurowska and J. Dingel

number of states and in case of the model with 1 intersection are seconds, with
2 or 3 intersections and PBX subsystems are less than 20 min and for 3 inter-
sections and PBX subsystems in cases when OutOfMemoryException is thrown are
more than 24 hours. For all experiments we detect similarity of states and we
stop the exploration if the same states are detected.

5.1 Symbolic Execution

We start by presenting results of experiments with symbolic execution performed
on several models. If possible we compare the sizes of the state space between
symbolic and standard execution semantics. When using the standard execution
we assume that the domain of all possible integer input values is limited to the
intervals: (-1,1) and (-4,4). In the tables below we label the executions that use
these intervals as ‘Concrete (-1,1)’ and ‘Concrete (-4,4)’ respectively.

Table 7. Number of states in the symbolic execution of StreetController model with
different number of intersections. From [19].

Module Symbolic Concrete(-1,1) Concrete(-4,4)

StreetController with 1 intersection 188 226 862

StreetController with 2 intersections 10 587 26 597 45 849

StreetController with 3 intersections >136 000 >136 000 >136 000

Table 7 presents the number of states in state spaces that are results of exper-
iments with StreetController model with 1, 2 and 3 intersections. The models
with 1 and 2 intersections were explored fully, but the exploration for the model
with 3 intersection was interrupted by an OutOfMemoryException. The size of the
state space increases with each additional intersection. Also state spaces resulting
from standard (concrete) execution are larger than those arising from symbolic
execution. For interval (-1,1) the state space is larger by 20 % and 150 % com-
pared to symbolic execution, whereas for interval (-4,4) the increase is 5 and 10
times.

We also performed experiments with symbolic execution of subsystems of
the PBX model. Table 8 gathers the results of these experiments. We show only
results of symbolic execution, because the state space created during standard
execution is too large. Even symbolic execution in most of the cases is partial.
The largest discovered state space was in case of CallController and the smallest
of OAMManager.

Table 8. Number of states in the symbolic execution of PBX subsystems. From [19].

Model CallController DeviceManager OAMSubsystem ProxyManager

Size of state space > 350 000 > 250 000 65 582 > 200 000

A Customizable Execution Engine for Models of Embedded Systems 103

Symbolic execution is an abstraction that can reduce the size of execution
state space of models if they rely on external inputs. However, the abstraction
is the most efficient for smaller models such as StreetController with 1 or 2
intersections. For models larger than that we cannot explore the entire state
space without further abstraction even if symbolic variables are used.

5.2 Structural Abstraction

In this section we present structural abstraction of StreetController model with
1, 2 and 3 intersections and to subsystems of the PBX model. In all cases we
will combine structural abstraction with symbolic execution to get smaller and
more manageable state spaces.

Table 9 presents results of applying several structural abstractions to the
model with 1 intersection when combined with symbolic execution. In the table
we present the results of increasingly more aggressive abstractions, when the
larger number of execution parts are abstracted out. We start with abstracting
walk parts in both NS and WE parts. Next, we perform abstraction in cars parts.
The state space size decreases more if cars parts are abstracted, because this part
has more interactions in the model. In the next row are results of abstracting
parts with prefixes: <top,intersection1,NS> or <top,intersection1,NS>. This
effectively means that we abstract all cars and walk parts. Next, we additionally
abstract <top,intersection1,NS> and <top,intersection1,WE>, so we abstract
parts with the prefix <top,intersection1>. This means that not abstracted
parts are <top> and <top,intersection1>. The last row abstract all parts
except for <top>. We can see that the number of states is reduced with more
parts being abstracted.

Table 9. Number of states in symbolic execution state space of StreetController

model with 1 intersection with different structural abstractions. i1 stands for
intersection1 part and * indicates any parts with the prefix.

Abstracted parts Symbolic

none 188

< top, intersection1, NS, walk >, < top, intersection1, WE, walk > 157

< top, intersection1, NS, cars >, < top, intersection1, WE, cars > 112

< top, intersection1, NS, ∗ >, < top, intersection1, WE, ∗ > 86

< top, intersection1, ∗ > 15

< top, ∗ > 6

We perform similar abstractions of the model StreetController with 2 inter-
sections. The results are given in Table 10. However, we distinguish a case when
only parts from intersection1 are abstracted (first column in the table) and
when we apply abstractions to both intersection1 and intersection2 (second

104 K. Zurowska and J. Dingel

Table 10. Number of states in symbolic execution state spaces of StreetController
model with 2 intersection parts with different structural abstractions. i is
intersection1 part or intersection1 and intersection2 parts and * indicates any
parts with the indicated prefix.

Abstracted parts i = {intersection1} i = {intersection1,
intersection2}

none 10 587 10 587

< top, i, NS, walk >,< top, i, WE, walk > 9 577 8 353

< top, i, NS, cars >,< top, i, WE, cars > 8 265 4 627

<< top, i, NS, ∗ >,< top, i, WE, ∗ > 6 947 3 043

< top, i, ∗ > 3 117 337

< top, ∗ > 546 10

Table 11. Number of states in state spaces of StreetController model with 3 inter-
section parts with different structural abstractions. i stands for all intersection parts
and * indicates any parts with the indicated prefix.

Abstracted parts i = all intersection parts

< top, i, NS, cars >,< top, i, WE, cars > 69 022

<< top, i, NS, ∗ >,< top, i, WE, ∗ > 51 757

< top, i, ∗ > 4 791

top,* 546

column in the table). The difference between abstracting parts from one or both
intersections is apparent in cases when more parts are abstracted. In the case of
abstracting walk parts we have reduced the state space by 12 % if all walk parts
from both intersections are considered. The difference becomes more substantial
when more parts are abstracted. For instance, if abstracting walk and cars parts
from both intersections we reduce the state space by 56 %.

Table 11 presents the results of experimenting with StreetController with 3
intersections if parts of all intersections are abstracted. Even though the initial
model is too large for exhaustive exploration, by abstracting away execution
parts we can substantially reduce the execution state space.

Structural abstraction also is useful for performing a unit analysis of indi-
vidual capsules in isolation. We achieve that by abstracting away all parts that
are not a part we are interested in. In this way we can inspect the execution of
a state machine associated with a capsule.

Table 12 presents the sizes of state spaces in symbolic and concrete execution
(with values between -4 and 4). The behavior of a capsule WalkLights is the
same in case of symbolic and concrete execution, because it does not depend on
external signals with variables. The sizes of the resulting state spaces are very
small and can be easily verified.

A Customizable Execution Engine for Models of Embedded Systems 105

Table 12. Number of states in state space of TrafficLights model with different
structural abstractions used to extract a single module.

Module Symbolic Concrete(-4,4)

WalkLights 7 7

CarLights 15 121

Controller 33 95

IntersectionController 20 284

StreetController for 1 intersection 6 22

StreetController for 2 intersections 10 26

StreetController for 3 intersections 22 38

Table 13. Number of states in execution of PBX subsystems model with different
structural abstractions used to extract a behavior of a single module.

We also performed this kind of unit analysis on several modules of PBX sub-
systems. Table 13 presents the results. Most of the capsules have rather limited
state spaces. The largest one is for CellPhoneEventFilter, because it models the
reception of pressing keys on the phone, and combination of those must be con-
sidered. We can also observe that most of the capsules depend on external inputs
and the sizes of their symbolic execution state spaces are smaller.

This section shows the results of experiments with structural abstractions.
We can see how powerful this abstraction can be. This is valid even for models,
that cannot be exhaustively explored such as StreetController with 3 intersec-
tions and PBX subsystems. Depending on parts that are abstracted, structural
abstraction may substantially reduce the execution of models. We also show
how structural abstraction can be used to support unit analyses and inspect
the behaviour of individual capsules in isolation. As mentioned earlier structural

106 K. Zurowska and J. Dingel

abstraction is an overapproximation and may produce spurious execution paths,
so the analysis results should be treated with care.

5.3 State Aggregation

In this section we present results of experimenting with state aggregation
abstraction. We apply this semantics to the StreetController model with 1 and
2 intersections using different aggregation groups.

Table 14 presents the results of applying state aggregation abstractions to the
StreetController model with 1 intersection (in the first we repeat the number
of states without any abstraction). In the first experiment we use an aggre-
gation that groups all the operating locations in IntersectionController. This
abstraction enables the reduction of the number of states by more than 70 %. In
the following experiment we use an aggregation group that gathers initalization
locations in the TrafficController. This abstraction does not change the num-
ber of states, because we aggregate states for which triggers need to be present
in a respective queue and simply enabling extra transitions is not sufficient for a
transition to actually be fired. Finally we use 2 aggregation groups with Yellow

and YellowRed for both cars parts. In this case the larger number of enabled
transitions result in extra states and the execution is larger.

Table 14. Number of states in execution of StreetController model with 1 intersec-
tion with different state aggregation abstractions.

Aggregation Symbolic Concrete (-4,4)

none 188 862

Operating in intersection 62 196

Initialization in intersection 188 862

Yellow and YellowRed in both cars parts 222 970

We gather results of applying state aggregation to the StreetController

model with 2 intersections in Table 15. Aggregation groups are similar to the
ones used in the previous experiment and we also present the full size of the

Table 15. Number of states in execution of StreetController model with 2 intersec-
tions with different state aggregation abstractions.

Aggregation Symbolic Concrete (-4,4)

none 10 867 45 849

Operating in both intersections 2 807 9 417

Initialization in both intersections 10 867 45 849

Yellow and YellowRed in all cars 16 423 65 325

A Customizable Execution Engine for Models of Embedded Systems 107

state space in the first row of the table. Next we show the results of state aggre-
gation for two aggregation groups, each of which includes locations responsible
for operating an intersection. Similarly to the previous model, this abstraction
reduces the number of execution states. Using the next aggregation group has
no effect on the number of states. Finally, aggregation with 4 aggregation groups
containing locations Yellow and YellowRed generates more execution states than
standard or symbolic execution.

State aggregation abstraction enables grouping locations in state machines.
The groupings can be arbitrary, but we can also follow the hierarchies of states
in the original UML-RT State Machine. Unlike the previous abstraction, this
abstraction may have none or even a negative effect, that is, we may not achieve
the reduction in the number of states or we may increase that number. Therefore,
it is crucial to carefully select locations to be grouped. Similarly to the structural
abstraction, state aggregation is an overapproximation.

5.4 Summary

Figure 11 summarizes the results of using different execution semantics for 1, 2
and 3 intersections. The dashed lines indicate executions for which we could not
produce any results because of OutOfMemoryException. We selected one of the
structural abstractions (namely <top,i,*) and one of the aggregation groups in
state aggregation (namely Operating). Structural abstraction is more aggressive
and is the only execution type we could get results for StreetController with 3
intersections.

Fig. 11. Number of states in the execution of StreetController using different exe-
cution semantics (Y-axis is logarithmic with base 10).

108 K. Zurowska and J. Dingel

6 Extending TUMLE to Support
Additional Customizations

In the current version of the tool we support the basic abstractions and their
combinations. In order to realize the full possibilities of customizable abstractions
(from Sect. 2) we have to extend the existing tool in the following ways:

– easy support for user-defined semantics: the tool should support any seman-
tics, by allowing the user to define new execution rules with easy interface
(currently it can be done only in the source code). It should be possible to
reuse execution rules as well as to introduce new rules.

– extended parametrization of abstractions: some of the proposed abstractions
have parameters, such as parts to abstract or states to aggregate. We wish to
extend possible parameters to other elements of models. For instance, we may
have new abstractions that act on specific signals or functions.

– selective application of abstractions: in the current work we can combine exist-
ing abstractions. We would like to extend such combinations to any semantics
with parameters indicating which semantics should be used for which parts of
execution and/or of the models.

7 Related Work

UML-RT models are executable in the IBM RSA RTE [1] with code generation.
However, IBM RSA RTE does not support abstractions or alternative semantics.

The prevailing works in the general analysis of UML like models is con-
cerned with translation of models to the existing other tools. For instance,
HUGO RT [9,16] is a toolset that offers translation of collections of UML State
Machines SPIN, UPPAAL and other. In the context to of UML-RT transla-
tions to Promela/Spin [15], to AsmL language [10] and others were proposed.
Although these tools allow verification of properties, they are usually limited in
their abilities to exhaustively execute or the models. Also, the semantics used
in the models are fixed, and the adjustments in executions can be made only
through models.

In model checking abstractions are used to reduce the complexity of verifica-
tion [11]. In [5] it is shown that for certain CTL properties (only universal path
quantifiers) it is possible to check them on the abstracted model Ma as long
as there is a simulation relation between M and Ma. This approach is similar
to abstract interpretation [6], in which the semantics of certain operations is
replaced and simpler state spaces are generated. There were also other numeri-
cal abstraction methods proposed for model checking [7,8]. In our approach we
use abstractions in a similar way, but we provide abstractions dedicated to the
UML-RT models we are using.

One of the abstraction we use is symbolic execution, it is also supported in
Symbolic JPF [14]. This tool performs symbolic execution for Java, but in [12]
is extended to support single state machines. In [4] the problem of heterogeneity

A Customizable Execution Engine for Models of Embedded Systems 109

of state based models is addressed and implemented with a tool based on JPF.
We also proposed the tool for symbolic execution of UML-RT models [20]. The
tool presented here introduces also other abstractions.

There are also other tools that support specification of the semantics of
domain specific languages. We can specify the entire language (such as XSe-
mantics for XText [3]) or we can use state machines templates [13].

To the best of our knowledge, the proposed tool is the first interpreter for
UML-RT model with varying semantics.

8 Conclusions

In this paper we present Toolset for UML Execution (TUMLE). The toolset
enables execution of models with various semantics and to support abstractions
that will reduce the size of the state space. We show the design of the tool, which
is based on rules and we show the specification of rules necessary to perform
different abstractions. Thanks to the rule-based design we can reuse internal
elements, but we can also reuse the implementation of the graphical display.
We performed experiments with the tool and we showed how abstractions can
reduce the size of the state space of more complex models.

References

1. IBM Rational Software Architect, RealTime Edition, Version 8.0.2. http://publib.
boulder.ibm.com/infocenter/rsarthlp/v7r5m1/

2. Unified Modeling Language (UML 2.0) Superstructure. http://www.uml.org/
3. Xsemantics. http://xsemantics.sourceforge.net/
4. Balasubramanian, D., Păsăreanu, C.S., Karsai, G., Lowry, M.R.: Polyglot: sys-

tematic analysis for multiple statechart formalisms. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 523–529. Springer,
Heidelberg (2013)

5. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

6. Cousot, P.: Abstract interpretation based formal methods and future challenges.
In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol.
2000, pp. 138–156. Springer, Heidelberg (2001)

7. Dwyer, M.B., Hatcliff, J., Joehanes, R., Laubach, S., Păsăreanu, C.S.: Tool-
supported program abstraction for finite-state verification. In: ICSE (2001)

8. Loustinova, N., Sidorova, N.: Abstraction and flow analysis for model checking
open asynchronous systems. In: Software Engineering Conference (2002)

9. Knapp, A., Merz, S., Rauh, C.: Model checking timed uml state machines and
collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol.
2469, pp. 395–414. Springer, Heidelberg (2002)

10. Leue, S., Stefanescu, A., Wei, W.: An AsmL semantics for dynamic structures
and run time schedulability in UML-RT. Technical report, University of Konstanz
(2008)

11. Manna, Z., Colón, M.A., Finkbeiner, B., Sipma, H.B., Uribe, T.E.: Abstraction
and modular verification of infinite-state reactive systems. In: Broy, M. (ed.) RTSE
1997. LNCS, vol. 1526, pp. 273–292. Springer, Heidelberg (1998)

http://publib.boulder.ibm.com/infocenter/rsarthlp/v7r5m1/
http://publib.boulder.ibm.com/infocenter/rsarthlp/v7r5m1/
http://www.uml.org/
http://xsemantics.sourceforge.net/

110 K. Zurowska and J. Dingel

12. Mehlitz, P.C.: Trust your model - verifying aerospace system models with Java
pathfinder. In: IEEE Aerospace Conference (2008)

13. Niu, J., Atlee, J.M., Day, N.A.: Template semantics for model-based notations.
IEEE Trans. Softw. Eng. 29(10), 866–882 (2003)

14. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: symbolic execution of Java
bytecode. In: ASE (2010)

15. Saaltink, M., Meisels, I.: Using SPIN to analyse RoseRT models. Technical report,
ORA Canada (1999)

16. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collab-
orations. Electron. Notes Theoret. Comput. Sci. 55(3), 357–369 (2001)

17. Selic, B.: A short catalogue of abstraction patterns for model-based software engi-
neering. Int. J. Softw. Inform. 5(1–2), 313–334 (2011)

18. Selic, B.: What will it take? A view on adoption of model-based methods in prac-
tice. Softw. Syst. Model. 11(4), 513–526 (2012)

19. Zurowska, K.: Language specific analysis of statemachine models of reactive sys-
tems. Ph.D. thesis, Queen’s University, June 2014

20. Zurowska, K., Dingel, J.: Symbolic execution of communicating and hierarchically
composed UML-RT state machines. In: Goodloe, A.E., Person, S. (eds.) NFM 2012.
LNCS, vol. 7226, pp. 39–53. Springer, Heidelberg (2012)

21. Zurowska, K., Dingel, J.: Model checking of UML-RT models using lazy composi-
tion. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS
2013. LNCS, vol. 8107, pp. 304–319. Springer, Heidelberg (2013)

New Ways of Behaviour Modelling:
Events in Modelling

Programming Animation Using
Behavioral Programming

David Harel(B) and Shani Nitzan

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, 76100 Rehovot, Israel
dharel@weizmann.ac.il, Shani.Lesser@gmail.com

Abstract. We propose a simple, user-friendly way of creating computer
programs for hybrid systems whose execution involves animation. This is
done by adapting behavioral programming, a recently proposed approach
to software development that is aligned with how people describe system
behavior, for use in programming animation. Users can define discrete
and continuous behavior, which are then run simultaneously, interacting
with each other, and resulting in a smooth hybrid animation.

1 Introduction

We define a natural and intuitive method for programming animation through
scenarios. Each scenario describes a certain part of the motion of an object, and
can correspond to an individual requirement, specifying what can, must, or may
not happen following a sequence of events. Ideally, such motion scenarios should
enable incremental development, allowing the user to add new scenarios without
interfering with existing ones.

Behavioral programming (BP) is a recently proposed scenario-based program-
ming paradigm that centers on natural and incremental specification of behaviors;
see [8]. The BP approach was preceded by the language of live sequence charts
(LSC) [1], which extends message sequence charts (MSC), and is a scenario-based
language for reactive systems. LSCs add modalities to MSCs, allowing the spec-
ification of liveness and safety properties, as well as forbidden behaviors [1,2].
Two support tools for LSCs have been built, first the Play-Engine [2] and then
PlayGo [3]. Later, the ideas where extended and embedded also in conventional
programming languages like Java (resulting in BPJ, for behavioral programming
in Java) [4], C++ [5], as well as Erlang and Blockly [6,7], thus providing a more
classical programming point of view to this concept. See [8] for more details.
In this paper we use BPJ.

Heretofore,behavioralprogramminghadbeenusedpredominantly forprogram-
ming discrete systems. In this article we propose and demonstrate its use for pro-
gramming hybrid systems, whose execution can involve also continuous animation.

Animation programs can be executed by calculating the location of an object
according to the time elapsed between clock ticks, while considering the location
of the other objects. Although this can be made to produce satisfactory visual
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 113–132, 2015.
DOI: 10.1007/978-3-319-21912-7 5

114 D. Harel and S. Nitzan

results, it is not always a natural way to describe animation. Over the years, much
research has been carried out to simplify this by having moving objects assume
more life-like behavior. Scenarios have been used for animation [9], and an initial
attempt at using LSCs to create animations appears in [10]. A decision network
framework for specifying and activating human behaviors has been introduced
to create the behavioral animation of virtual humans [11].

Complex behavioral animation can also be obtained by defining simple, local
rules between the various objects [12], which can rely on the objects having
synthetic vision [13,14]. Synthetic vision has been used with other interaction
components (an attention component, a gaze generation component and a mem-
ory component) to create a virtual human animation [15]. It has been integrated
with cognitive science work on human locomotion to model interactive simula-
tion of crowds of individual humans [16]. Non-linear dynamical system theory,
kinetic data structures, and harmonic functions have also been used for agent
steering and crowd simulation [17]. Motion within a large crowd has also been
modelled by integrating global navigation and local collision avoidance [18].

A hybrid system is usually defined as one that exhibits both continuous and
discrete (reactive) behaviors. Continuous behaviors are those that create the
motion of an object; discrete behaviors are those that control sudden changes
in that motion. Thus, between bounces, a bouncing ball exhibits a continuous
behavior, its movement determined by angle, velocity, speed and gravity, but
when it hits the ground it undergoes a sudden change in motion, due to the hit
and the release of energy, which is considered a discrete behavior.

Hybrid behaviors can be modelled in many ways, a well known one being
hybrid automata [19]. A hybrid automaton is a finite-state machine, where each
state can be governed by a set of differential equations, enabling continuous
behaviors between discrete state changes.

In this article we introduce a system that integrates defining local rules
between various objects that have synthetic vision, with the behavioral program-
ming principles. Our method simplifies the creation of animation in several ways,
notably in that it enables the implementation of the local rules by using differ-
ent threads for different rules. The method of synchronization of these threads
is built into the BP execution mechanism, and in a way is transparent to the
user. This is explained later.

A bouncing ball can thus be modeled using two scenarios:Move andChange-
Direction. The scenario Move is responsible for moving the ball according to
its initial velocity and the force of gravity, and represents a continuous behavior.
When the ball hits the ground, ChangeDirection calculates the new velocity of
the ball, and it represents a discrete behavior. These scenarios can be implemented
incrementally, so that for each step the physical correctness can be verified and
simulated.

The code for all the examples presented in this article can be downloaded
from:
https://www.dropbox.com/sh/yjxgpuq1pjzb2xd/AAAozws8Ql7l8ssAqmp
KhmdAa?dl=0

https://www.dropbox.com/sh/yjxgpuq1pjzb2xd/AAAozws8Ql7l8ssAqmpKhmdAa?dl=0
https://www.dropbox.com/sh/yjxgpuq1pjzb2xd/AAAozws8Ql7l8ssAqmpKhmdAa?dl=0

Programming Animation Using Behavioral Programming 115

2 Behavioral Programming

2.1 Basic Idioms

A behavioral program [8] consists of separate behavioral components (called
b-threads) that generate a flow of events via an enhanced publish/subscribe pro-
tocol, as follows (see Fig. 1). Unlike regular threads, each b-thread runs atom-
ically until it reaches a synchronization point, at which point it yields. When
synchronizing, a b-thread specifies the following three sets of events:

– Requested events: The b-thread asks that these events be triggered, and to be
notified when any of them is.

– Waited-for events: The b-thread asks to be notified when any of these events
is triggered. It does not ask to trigger them.

– Blocked events: The b-thread prevents these events from being triggered.

When all the b-threads enter a synchronized point, some event is sought,
which is in the requested events set of at least one of the b-threads, and is
not in the blocked events set of any of the b-threads. One such event (if it
exists) is selected for triggering, and when it is triggered all b-threads that
requested or waited for it are notified, and their execution is resumed. Each of
the resumed b-threads then proceeds with its execution, all the way to its next
synchronization point, where it again presents its sets of requested, waited-for
and blocked events. When all b-threads are again at a synchronization point the
event selection process repeats. When more than one event is found as a legal
candidate for triggering, i.e., it is requested by some b-thread and not blocked
by any, the actual event to be triggered is chosen depending on the implemented
execution semantics, of which there are several, see [8].

Each b-thread has local variables and global variables; events are defined
globally. Since b-threads run atomically until a synchronization point is reached
there is no need for safety measures, such as locks, to be taken in order to ensure
that the b-threads work as expected.

BP principles can be implemented as part of various languages and program-
ming approaches, with possible variations on the actual programming idioms.
In addition to Java with the BPJ package, the idioms have been implemented in
Erlang [6,20], Blockly [7] and C++ [5]. The BP idioms have also been applied to
PicOS, a programming environment for wireless sensor networks, using C [21].
In addition to the Play-Engine and PlayGo, a visual approach called Synthesizing
Biological Theories (SBT) [22], a tool for biological modelling, was implemented
using the BP principles.

2.2 Behavioral Programming in Java

BPJ is implemented using the special BPJ package. In BPJ, every b-thread is
an instance of the class BThread, and events are instances of the class Event or
classes that extend it. The logic of each behavior is coded as a method supplied

116 D. Harel and S. Nitzan

Fig. 1. An illustration of the BP execution cycle

by the programmer, which in turn invokes the method bSync to synchronize with
other behaviors, and to specify its requested, waited-for and blocked events, as
follows:
bSync(requestedEvents, waitedForEvents, blockedEvents);

When a b-thread calls bSync, it is suspended, and is resumed when a requested
or waited-for event is triggered. To enforce predictable and repeatable execution
the events selected at a synchronization point must be uniquely defined. This can
be done in different ways. In BPJ every b-thread has a unique priority. When
more than one event is requested and not blocked the event that will be trig-
gered is the one requested by the b-thread with the lowest priority. If this b-thread
requests more than one event the first event in the list of requested events that is
not blocked is the one triggered (this is possible because in BPJ the requested
events set is ordered).

Example 1. We illustrate the use of BPJ by a water flow control example taken
from [4]. The goal is to have lukewarm water flow from a tap, by alternately
letting a small amount of warm water and then a small amount of cold water

Programming Animation Using Behavioral Programming 117

flow. Hot and cold water are supplied by different sources, each of which supplies
its type of water repeatedly. The alternation of the two is done by an external
mechanism. The b-threads for the three relevant behaviors are as follows:

1. AddHotThreeTimes: This b-thread requests the event addHot three times.
The event addHot represents opening the hot water-tap for a short time.

2. AddColdThreeTimes: This b-thread requests the event addCold three
times. The event addCold represents opening the cold water-tap for a short
time.

3. Interleave: This b-threads repeatedly waits for the event addHot and blocks
the event addCold, and then waits for the event addCold and blocks the event
addHot.

AddHotThreeTimes and AddColdThreeTimes can work independently
of one another, resulting in the flow of only hot or cold water from the tap.
To get lukewarm water, the b-thread Interleave is used to force the alternation
of the events addHot and addCold, which results in lukewarm water (Fig. 2).

The BPJ package, the code of the water flow problem and other BPJ exam-
ples can be downloaded from:
http://www.wisdom.weizmann.ac.il/∼bprogram/bpj/

2.3 Live Sequence Charts

The visual language live sequence charts (LSC) [1] is an extension of message
sequence charts (MSC). Like MSC, LSC use vertical lifelines to represent objects
and horizontal arrows to represent messages passed between them. Since time
flow is from top to bottom, a partial order of occurrences of the events ensues.

However the partial order alone cannot express what scenarios are to be
carried out and when. This is where the extension of LSCs comes into play. LSCs
can express what must happen (hot), what may happen (cold), and what is not
allowed to happen (forbidden). Scenarios that are to be executed proactively are
also distinguished from those that are only to be observed and monitored.

An LSC is composed of two parts, a prechart, depicted as a dashed-line
hexagon, and a main chart. The main chart contains instructions that should be
executed, and to activate it the scenario in the prechart must have occurred. The
chart in Fig. 3 is a part of an implementation of a cruise control. It represents
the scenario of the brake being pressed, resulting in the cruise releasing control
of the brakes and the accelerator and turning itself off.

Play-in. LSC allows a new way of coding, called play-in [2], which is similar to
programming by example. With play-in the user specifies the scenario in a way
that is close to how real interaction with the system occurs, and the programming
itself is done via a GUI. In the example in Fig. 3, the user would click the brake
(action of the prechart), which releases the control the cruise has on the brakes
and accelerator (action of the main chart).

http://www.wisdom.weizmann.ac.il/~bprogram/bpj/

118 D. Harel and S. Nitzan

Fig. 2. The water flow problem

Fig. 3. LSC chart

Play-out. The play-out technique facilitates the execution of an LSC. Play-out
does this by tracking the actions taken by the user and the system’s environment.
Events that may be selected next in all lifelines in all charts are tracked. When
needed, play-out responds to an action accordingly, by selecting and triggering
events. Play-out is also carried out via a GUI.

3 Animation in Behavioral Programming

Our method for creating animation with behavioral programming calls for each
object to have b-threads that control its motion. Each of these b-threads represents

Programming Animation Using Behavioral Programming 119

a certain behavior of that object and they interactwith one another through theBP
synchronization mechanism. The b-threads are divided into those that represent
discrete behaviors and those that represent continuous behaviors.

B-threads that represent discrete behaviors are called control b-threads. They
influencemotionb-threads, those that represent continuousbehaviors, through syn-
chronization. After a synchronization point, when a control b-thread senses that
the motion of the object it is in charge of needs to be manipulated it will do so.

It should be noted that in this article continuous behaviors are implemented
by discretization (the process of transforming a continuous model into discrete
parts), since computers work in a discrete way. This can be analogous to a person
walking. Even though the person is moving in a continuous way his/her motion
can be divided into discrete steps.

Like in regular animation programs, small movements of an object are trig-
gered by time ticks, which are controlled by the following b-thread:
Sleep(Event endSleep, long timeOfSleep, double priorityOfBThread)

When created, this b-thread sleeps for timeOfSleep milliseconds and
then requests that the event endSleep be triggered. The b-thread gets prior-
ity priorityOfBThread. The b-thread Sleep is always created by a motion
b-thread.

3.1 Motion B-Threads

Since motion b-threads represent an object’s continuous behavior, and continu-
ous behavior in animation is guided, among other things, by the velocity of an
object, the most basic and simple pattern of a motion b-thread is an infinite loop
that does the following: It first creates the b-thread Sleep, and then waits for
the event endSleep. It then requests the event takeStep, and finally calculates
the new position of the object.

while true do
Create the b-thread Sleep.
Wait for the event endSleep.
Request the event takeStep.
Calculate the new place of the object according to the velocity and the time passed.

end while

Algorithm 1. Basic motion b-thread algorithm

To understand how a motion b-thread works, imagine a green ball rolling
to the right. The ball has one continuous behavior, which is its movement. Its
motion b-thread is as follows:

while (true) {

createSleep(endSleep1, sleep, prio1);

bp.bSync(none, endSleep1, none);

bp.bSync(takeStep1, none, none);

x1 += getTimePassed()*step; //updates coordinate

}

120 D. Harel and S. Nitzan

An example of this animation can be viewed here:
https://www.dropbox.com/s/jaoptmayfn1cm8c/Sec3Sub1.mp4.

Now suppose another ball is added; this time a blue ball rolling at half the
speed of the green ball. Now there is a second continuous behavior, which is
represented by another appropriate motion b-thread.

An example of this animation can be viewed here:
https://www.dropbox.com/s/56eoxjxwcybv3cb/Sec3Sub1 2.mp4.

With these two b-threads the two balls move simultaneously, each at its
own pace. New moving objects can thus be added incrementally. Changing the
direction or speed of one of the balls requires no change in the b-threads of the
other balls.

3.2 Control B-Threads

Control b-threads can manipulate the motion of an object in different ways.
In our example, one of the simplest is to block the event takeStep. The motion
b-thread of the object being blocked terminates, which results in stopping the
motion. Imagine the rolling green ball of the previous subsection, and that this
ball is getting closer to a wall. When it reaches the wall we want it to stop
rolling. The continuous behavior of the ball is the same, which means that the
motion b-thread that represents it is the same as well, but now the following
control b-thread can be added:

while(true){

bp.bSync(none, endSleep1, none);

if(collision()) { //checks if the ball has reached the wall

bp.bSync(none, none, takeStep1);

}

}

An example of this animation can be viewed here:
https://www.dropbox.com/s/oh5cxuex8ww8i2k/Sec3Sub2.mp4.

This b-thread adds a behavior without the user having to alter existing ones.
More control b-threads can be added very easily. For example, all that needs
to be done in order to add a new wall is to enhance the program with a new
control b-thread that checks collision with the new wall and blocks takeStep1
accordingly.

These basic algorithms for control and motion b-threads are the basis for
implementing far more complex behaviors, as we show later.

3.3 Improving and Adding B-Threads

One problem that appears when integrating different b-threads for the balls, is
that a ball does not stop exactly when it reaches the wall, but a little later.
This is because the ball moves in steps and the wall will often be reached in

https://www.dropbox.com/s/jaoptmayfn1cm8c/Sec3Sub1.mp4
https://www.dropbox.com/s/56eoxjxwcybv3cb/Sec3Sub1_2.mp4
https://www.dropbox.com/s/oh5cxuex8ww8i2k/Sec3Sub2.mp4

Programming Animation Using Behavioral Programming 121

between two steps. In some cases this kind of issue does not cause a problem.
For example, if an object moves until it sees an obstacle 50 m away and it turns
left, then it does not matter if the object turned left when it was 50 m away
from the obstacle or 50 m and 1 cm away. However, in many cases, including the
one above, this does matter. The ball should appear to stop at the wall, which
means that it has to stop exactly when it gets to the wall.

To overcome this problem we make the control b-thread look ahead at the
next step, and if a change of motion is in order, it is fixed. This is done by making
small changes to both the motion and the control b-threads. The changes are
demonstrated in the bouncing ball example. The motion b-thread calculates the
new y-axis coordinate of the ball, and then requests the event takeStepY. After
it is triggered, the new coordinate is updated. The motion b-thread is as follows:

while (true) {

createSleep(endSleep, sleep, prio);

nextY = calcNextY(); //calculates the next coordinate

bp.bSync(takeStepY, none, none);

y = nextY; //updates the new coordinate

}

After checkStep (the event that symbolizes looking ahead at the next step)
is triggered, the control b-thread checks if the next coordinates will result in a
collision between the ball and the ground. If so, the b-thread requests the event
hitGround, and updates the next coordinate so that the ball is exactly on the
ground. Since the ball should bounce and not just stop, then instead of blocking
the event takeStepY the control b-thread calculates the new velocity, which is
in the opposite direction of the previous velocity, and its speed is slower, due to
friction. The control b-thread is as follows:

while (true) {

bp.bSync(none, endSleep, none);

bp.bSync(checkStep, none, none);

if(ballHitGround()){ //checks if the ball collides with the ground

bp.bSync(hitGround, none, none);

nextY = calcNewNextY(); //calculates the new next coordinate

calcNewInitVelocityY(); //calculates the new velocity

}

}

By using only these two b-threads the ball continues to bounce on the floor
forever, reaching increasingly lower latitudes. To stop the ball when its velocity
is near zero, another control b-thread is added. This one waits for the event
hitGround, then blocks the event endSleep if the velocity is near enough to
zero. The b-thread is as follows:

122 D. Harel and S. Nitzan

while(true) {

bp.bSync(none, hitGround, none);

/*The velocity is near zero so motion should stop*/

if(speedNearZero())

bp.bSync(none, none, endSleep);

}

An example of this animation can be viewed here:
https://www.dropbox.com/s/gg2m18rg5erjhjc/Sec3Sub3.mp4.

4 Using Behavioral Programming for Billiard

Our technique for creating animations using behavioral programming is fairly
simple, yet it can handle many of the general problems that occur when trying
to program animations. We now discuss billiard. The animation scenarios of a
billiard game are described in Fig. 4. The game consists of 16 balls; here the balls
are indexed 0–15, where 0 is the white ball. The event moveBall[i] is triggered
when ball number i starts moving (which happens when another ball hits it).

The b-thread that represents the continuous behavior of ball i is Move-
Ball(i). Since the ball should only start moving when the event moveBall[i] is
triggered, this b-thread repeatedly waits for it. After that, as long the velocity
of the ball is not zero the ball should move while decreasing its velocity at each

Fig. 4. Description of the animation scenarios of a billiard game

https://www.dropbox.com/s/gg2m18rg5erjhjc/Sec3Sub3.mp4

Programming Animation Using Behavioral Programming 123

time tick, due to friction. This is exactly what MoveBall(i) does, while block-
ing the event startMove with every call to the function bSync. Therefore, a new
move does not start while the ball is still moving. MoveBall(i) is as follows:

while(true){

bp.bSync(none, billiard.moveBall[i], none);

long t1 = System.currentTimeMillis(), t2 = t1; //initialized the time

/*continues in a loop until the ball’s velocity equals zero*/

while(ballHasVelocity()){

createSleep(endSleep[i], sleep, prio[i]);

bp.bSync(none, endSleep[i], startMove);

t2 = System.currentTimeMillis(); //updates the time

calculateNextStep(t2-t1); //calculates the next coordinates of the

ball

bp.bSync(takeStep[i], none, startMove);

takeNextStep(); //updates the coordinates of the ball

t1 = t2;

}

}

There are three discrete behaviors in the animation of a billiard game: a
ball’s collision with the borders of the billiard table (BallHitBorder(i)), a ball
falling into one of the holes on the table (BallInHole(i)) and a ball colliding
with another ball (BallHitsBall(i,j)). Every step these b-threads wait for the
event endSleep[i] (which is only requested when ball i has non-zero velocity).

Every time tick, BallHitBorder(i) checks if ball i has collided with the
borders of the table and updates the next coordinates of the ball and its velocity
accordingly. BallInHole(i) does the same for the holes of the table, with one
exception: when the ball falls into a hole it should stop moving altogether and
other balls shouldn’t check for collisions with it. To insure this as long as ball i
is inside the hole, the event ballOnTable[j] is blocked.

For every ordered pair of balls i and j, the b-thread BallHitsBall(i,j) rep-
resents ball i colliding with ball j. When there is a collision, the coordinates and
velocities of both balls should change accordingly, and if ball j was motionless it
should start moving. To enable this, every time a collision is detected, the event
moveBall(j) is requested, which resumes the execution of the motion b-thread
MoveBall[j]. After checking for a collision BallHitsBall(i,j) requests the event
ballOnTable[j], which prevents this b-thread from continuing if ball j is not
on the table. BallHitsBall(i,j) is as follows:

124 D. Harel and S. Nitzan

while(true) {

bp.bSync(none, endSleep[i], none);

bp.bSync(checkCollision[i], none, none);

//checks if there is a collision between balls i and j

if(areBallsColliding(i ,j)){

adjustPosition();

adjustVelocities();

bp.bSync(moveBall[j], none, none);

}

bp.bSync(ballOnTable[j], none, none);

}

All the control b-threads are independent of each other, while still affecting
the motion b-thread when it is required. This is important, and makes it possible
to add or remove discrete behaviors easily, without affecting other b-threads.
The current example shows only one motion b-thread per object, which may not
always be the case.

An example of this animation can be viewed here:
https://www.dropbox.com/s/oukaccxcke2m26n/billiard.mp4.

The billiards animation was based on open source code that can be down-
loaded from here: http://ftparmy.com/193538-billard4k.html.

5 Adding Continuous Behaviors

Sometimes moving objects have more than one continuous behavior. When a ball
is thrown it can be thought of having two continuous behaviors. The first is the
motion in the direction the ball was thrown, and the second is the acceleration
towards the ground, due to gravity. In our approach, like in many motion cal-
culations, each of these behaviors can be represented by an independent motion
b-thread, and integrating them is done using one or more control b-threads.

Separating an object’s motion into multiple continuous behaviors simplifies
the act of describing the motion. Describing a thrown ball with a single scenario is
difficult, because the ball has a curve-like motion. When the motion is separated

https://www.dropbox.com/s/oukaccxcke2m26n/billiard.mp4
http://ftparmy.com/193538-billard4k.html

Programming Animation Using Behavioral Programming 125

into the behaviors of movement with the initial velocity and movement towards
the ground due to gravity, describing the motion becomes easy.

Like with discrete behaviors, adding continuous behaviors to an already
working program should be done, as far as possible, without altering existing
b-threads. The BP’s incremental approach makes adding continuous behaviors
of an object relatively easy. Moreover, implementing motion b-threads that repre-
sent such continuous behaviors creates additional benefits. For example, it makes
the controlling of the motion simple. If there are several continuous behaviors
that work at different times, scheduling them can be done by control b-threads.

5.1 How it is Done

To demonstrate the b-threads of a thrown ball having an initial velocity parallel
to the x-axis, we use the example of a bouncing ball, which already has continu-
ous behavior of the acceleration due to gravity. Thus, the motion in the direction
that the ball was thrown is the only behavior that needs to be added.

The new b-thread has the same pattern as other motion b-threads. Each
time the event endSleep is triggered this motion b-thread requests the event
takeStepX, and then updates the new x-axis coordinate of the ball. The b-thread
is as follows:

while (true) {

bp.bSync(none, endSleep, none);

bp.bSync(takeStepX, none, none);

double x = calcNewX(); //updates new x-axis coordinates

}

Notice that the main difference between this motion b-thread and the earlier
ones is the fact that this one does not trigger the b-thread Sleep. This is because
the motion b-thread in charge of the motion towards the ground already does
this. Since we assume that every object has a single clock and all its b-threads
work in a way that is aligned with that clock, only one motion b-thread triggers
Sleep. We call it the main motion b-thread. All other b-threads (control and
motion) just wait for the event endSleep when a synchronization with the clock
is called for.

This scenario presents a problem that can occur when programming anima-
tions using behavioral programming. Sometimes a control b-thread can affect
more than one motion b-thread even when this is not desirable. The fact that
both motion b-threads work with the same clock means that, automatically,
when takeStepY is blocked due to the y-axis velocity being near zero the ball
stops moving along the x-axis too. If this scenario is not desired, then creating
the b-thread Sleep should not be done by the motion b-thread that represents
the motion on the y-axis. Rather, it can be done by creating a new main motion
b-thread.

In our example, every time the ball hits the ground the direction of the y-
axis velocity is flipped and its speed decreases due to friction. Although the

126 D. Harel and S. Nitzan

Fig. 5. Circle trying to pass an obstacle to get to its destination

x-axis velocity should not be flipped its speed should decrease. This can be done
easily by adding a control b-thread that waits for the event hitGround and then
decreases the speed of the x-axis velocity.

An example of this animation can be viewed here:
https://www.dropbox.com/s/ldy2wjv122s5lia/Sec5Sub1.mp4.

5.2 Blocking Unwanted Continuous Behaviors

When using more than one motion b-thread it is possible to block some of the
events requested by some of those b-threads. Every time a specific motion is
deemed unnecessary or harmful, an event requested by the motion b-thread
representing it can be blocked by a control b-thread.

This is demonstrated by the following example, which involves a green circle
that has to get to a destination point (depicted by a red circle), overcoming a
mid-way obstacle (in the form of a line). The green circle has to first move to the
closest edge of the obstacle and then move to the destination. There are three
motion b-threads involved (Fig. 5):

1. MoveY- This b-thread adds one unit to the circle’s y-axis coordinate every
time tick, and is the main motion b-thread, since the circle’s coordinates
should be increased until it reaches its destination.

2. MoveX1- This b-thread adds one unit to the circle’s x-axis coordinate every
time tick.

3. MoveX2- This b-thread removes one unit from the circle’s x-axis coordinate
every time tick.

Since the circle is continuously moving forward on the y-axis, the b-thread
MoveY should run until the circle reaches the destination. If the circle passes the

https://www.dropbox.com/s/ldy2wjv122s5lia/Sec5Sub1.mp4

Programming Animation Using Behavioral Programming 127

obstacle from the right-hand side, MoveX1 should run until the circle reaches
the obstacle. The b-thread MoveX2 should start running only when the circle
reaches the obstacle, and should stop when it reaches the destination.

In this example there is one control b-thread. As long as the circle has not
reached the obstacle it blocks the event moveX2. After that, as long as the circle
has not reached the destination, this b-thread blocks the event moveX1. When
the ball reaches the destination it should stop moving, which is why moveX1,
moveX2 and moveY are blocked. The b-thread is as follows:

//continues until circle reaches the obstacle

while(!reachObstacle())

bp.bSync(none, endSleep, moveX2);

//continues until circle reaches the destination

while(!reachDestination())

bp.bSync(none, endSleep, moveX1);

//blocks all movement of circle

bp.bSync(none, none, new EventSet(moveY, moveX1, moveX2));

An example of this animation can be viewed here:
https://www.dropbox.com/s/kad7uicwipwqfls/Sec5Sub2.mp4.

5.3 Random Continuous Behaviors

Imagine a winding corridor, and suppose that one should get an object from one
end of the corridor to the other. There are many known ways to get the object
to its destination. Here we show how animation using behavioral programming
can be used for this (Fig. 6).

The solution to this problem using BP is very simple. There is a set of
directions D in which the object can move. These are defined ahead of time.
For every direction d ∈ D a motion b-thread (Move) and a control b-thread
(BlockMove) are written.

The b-thread Move works in a different way from the motion b-threads
presented so far. It waits for the event takeStep(d), and then updates the
coordinates of the object according to the time passed and the direction d.
Move is as follows:

while (true) {

bp.bSync(none, takeStep, none); //waits for takeStep(f)

//updates coordinates according to the function f

x += speedX;

y += speedY;

}

Every time tick, BlockMove checks if moving the object in the direction d
will result in the object being too close to the walls of the corridor, and blocks
the event takeStep(d) if it does. Here is how this is programmed:

https://www.dropbox.com/s/kad7uicwipwqfls/Sec5Sub2.mp4

128 D. Harel and S. Nitzan

Fig. 6. An object that wants to get from one end of a winding corridor to the other

bp.bSync(none, endSleep, event);

while (true) {

//checks if moving in the direction of function f results in

intersection with the borders

if(intersectWithBorders())

bp.bSync(none, endSleep, takeStep); //blocks takeStep(f) until

next time tick

else

bp.bSync(none, endSleep, none);

}

To trigger the event takeStep(d), another b-thread is used, which is the
main motion b-thread. It waits for a time tick and then arranges the events
takeStep(d) for every direction d ∈ D in a random ordered list, and then
requests the list. This results in the object taking a step in a random direction,
but not in a direction that brings it too close to the walls of the corridor (because
in this case the relevant event is blocked).

If the set of directions is chosen correctly (the average direction of the set
is always in the general direction of the corridor) the object succeeds in getting
from one side of the corridor to the other.

An example of this animation can be viewed here:
https://www.dropbox.com/s/mqd239tu02xjbau/Sec5Sub3.mp4.

6 Flock Movements

Boids is an algorithm that simulates the flocking behavior of birds; see [23]. The
basic algorithm consists of three rules that each bird follows:

https://www.dropbox.com/s/mqd239tu02xjbau/Sec5Sub3.mp4

Programming Animation Using Behavioral Programming 129

1. Separation- maintain a small distance from other birds.
2. Alignment- try to match the velocity with the average velocity of the flock.
3. Cohesion- fly towards the center of mass of the flock.

Other behaviors can be added, such as flying away from the center of mass of
the flock when there is a threat, maintaining a certain minimum and maximum
speed, and keeping away from walls and other objects. In this example, the birds
fly in a flock as long as there is no threat. When a threat occurs (simulated in
our example by a mouse left-click) the birds fly away from the flock. When
they stop flying in a united flock (the mouse is right-clicked) the birds continue
flying, keeping away from each other and other objects, and they do not follow
the alignment and cohesion rules.

Since this algorithm is based on the birds’ individual behaviors, it can be
easily implemented using behavioral programming. We set things up so that
every bird in the flock has a motion b-thread for each rule. Control b-threads
are used to block events requested by motion b-threads that represent rules that
are not relevant to the state of the bird or flock.

Each bird has the following motion b-threads:

– Boid- Every time tick, this b-thread updates the coordinates according to
the velocity and the time passed. This is the main motion b-thread.

– MatchSpeed- Every time tick, this b-thread requests the event matchSpeed
and updates the velocity so that it is closer to the average velocity of the rest
of the flock.

– FlyTowardsCenterOfMass- Every time tick, this b-thread requests the
event flyTowardsCenterOfMass, and moves the bird towards the center of
the flock.

– FlyAwayFromCenterOfMass- Every time tick, this b-thread requests the
event flyAwayFromCenterOfMass and updates the velocity so that the bird
flies away from the center of the flock.

– KeepSpeed- Every time tick, this b-thread updates the velocity of the bird
to keep it between a given minimum and maximum.

– For every wall K SoftBounceFromKWall- Every time tick, this b-thread
requests the event softBounceFromKWall and updates the velocity of the bird
to make it move away from the wall.

– For every wall K HardBounceFromKWall- Every time tick, this b-thread
requests the event hardBounceFromKWall and reverses the velocity of the bird
to make it move away from the wall.

– For every other bird i in the flock KeepAway- Every time tick, this b-thread
requests the event keepAway[i] and moves the bird away from bird i.

We have the following control b-threads:

– MouseReleased- When the mouse is released from its left-click, the
b-thread is created. It waits for the event mousePressed and blocks flyAway-
FromCenterOfMass. This makes the birds fly as a flock with all the relevant
behaviors.

130 D. Harel and S. Nitzan

– Scared- When the mouse is left-clicked, the b-thread is created. It waits for
the event mouseReleased and blocks matchSpeed and flyTwardsCenterOf-
Mass. This is so that the birds fly away from each other as fast as possible, to
avoid the threat.

– NotCooperative- When the mouse is right-clicked, the b-thread is created.
It waits for the event mouseReleased and blocks matchSpeed, flyTwards-
CenterOfMass and flyAwayFromCenterOfMass. This way the birds continue
to move, but not as a united flock.

Every bird in the flock has the following control b-threads:

– For every wall K CheckKWall- Every time tick, this b-thread checks where
the bird is with respect to the wall, and then blocks hardBounceFromKWall
and softBounceFromKWall accordingly.

– For every pair of birds in the flock CheckCollision- Every time tick, this
b-thread blocks the keepAway event of both birds if they are not close to each
other. This is so they will not fly away from each other when there is no need
to do so.

The b-threads above implement the Boid algorithm using BP. It is an example
of how animation with BP integrates defining local rules between various objects
that have synthetic vision with BP, to further simplify the creation of complex
computerized animations.

Examples of this animation can be viewed here:
https://www.dropbox.com/s/g6zu5n34psxaoi3/flock.mp4, and here:
https://www.dropbox.com/s/yt7lhixhukuyu35/flock%205%20X2.avi

The boid animation was based on open source code that can be downloaded
here: http://ultrastudio.org/en/Project:Boids.

7 Future Work

In the billiard and flock examples, each object had a number of behaviors.
Since each of these was turned into a b-thread, there are many context switches
between b-threads before the new coordinates of an object can be calculated.
It takes a while to execute these context switches, because the system needs to
check that the next event to be triggered is not blocked by any b-thread, so that
it has to be compared to all the blocked events in the program.

In these two examples there is a relatively large number of objects. This
can create a problem if the time between each clock tick is too short. When
this occurs, an object with high priority can execute two or more moves, while
an object with a lower priority does not move at all. This happens when the
endSleep event of the higher priority object is requested before the endSleep
event of the lower priority object is triggered, which results in the endSleep
event of the higher priority object being triggered instead of the endSleep event
of the lower priority object. When this happens, it can be seen on-screen; some
of the objects move, while others do not. To solve this problem, the context
switch between b-threads should be optimized.

https://www.dropbox.com/s/g6zu5n34psxaoi3/flock.mp4
https://www.dropbox.com/s/yt7lhixhukuyu35/flock%205%20X2.avi
http://ultrastudio.org/en/Project:Boids

Programming Animation Using Behavioral Programming 131

In addition to optimizing the algorithm for the context switch between
b-threads, further work should be done on behavioral programming with mul-
tiple time scales [20]. Our work on programming animation using BP enables
using a different clock, and hence a different time scale, for each object. Although
objects then move independently of each other, they still share common vari-
ables and events. More work can be done on rendering the behaviors of these
objects truly independent, while still synchronizing their execution.

Our work simplifies programming animation, but is still far from becoming as
simple as we would like. Research could be done on analyzing how animation is
described informally in layman’s terms, and then using the results to suggest for-
mal programming language primitives to enhance the BP paradigm with means
for specifying animation. Also, the physical calculations in this article are carried
out in conventional code, and it would be beneficial for users to have a system
that incorporates a feature that enables making these calculations directly from
a mathematical formula. In addition, functionality should be added to BP, to
give the user a better illusion that motion b-threads are actually continuous.
This will make programming animation more user-friendly to non-programmers.

Additional work can also be done on more complex animation examples.
What comes to mind are compound objects that have many moving parts, such
as worm or a human. Another example is of an object with dynamic boundaries,
such as a stress ball. Other complex animations would involve the merging and
splitting of objects; cells, for example.

Acknowledgements. Part of this research was supported by the I- CORE program
of the Israel Planning and Budgeting Committee and the Israel Science Foundation.

References

1. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal
Methods Syst. Des. 19(1), 45–80 (2001)

2. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, New York (2003)

3. Harel, D., Maoz, S., Szekely, S., Barkan, D.: PlayGo: towards a comprehensive tool
for scenario based programming. In: Proceedings of the IEEE/ACM 25th Inter-
national Conference on Automated Software Engineering (ASE 2010), Antwerp,
Belgium, pp. 359–360 (2010)

4. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer,
Heidelberg (2010)

5. Harel, D., Kantor, A., Katz, G.: Relaxing synchronization constraints in behavioral
programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013.
LNCS, vol. 8312, pp. 355–372. Springer, Heidelberg (2013)

6. Wiener, G., Weiss, G., Marron, A.: Coordinating and visualizing independent
behaviors in erlang. In: Fritchie, S.L., Sagonas, K.F. (eds.) Erlang Workshop,
pp. 13–22. ACM (2010)

132 D. Harel and S. Nitzan

7. Marron, A., Weiss, G., Wiener, G.: A decentralized approach for programming
interactive applications with javascript and blockly. In: Proceedings of the 2nd
Edition on Programming Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions, AGERE! 2012, pp. 59–70. ACM,
New York (2012)

8. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

9. Devillers, F., Donikian, S.: A scenario language to orchestrate virtual world evo-
lution. In: SCA 2003: Proceedings of the 2003 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation, Aire-la-Ville, Switzerland, Switzerland,
pp. 265–275. Eurographics Association (2003)

10. Atir, Y., Harel, D.: Using LSCs for scenario authoring in tactical simulators.
In: Proceedings of Summer Computer Simulation Conference (SCSC 2007),
pp. 437–442 (2007)

11. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral anima-
tion of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation, pp. 119–128. Eurographics Association
(2007)

12. Haumann, D.R., Parent, R.E.: The behavioral test-bed: obtaining complex behav-
ior from simple rules. Vis. Comput. 4(6), 332–347 (1988)

13. Renault, O., Magnenat-Thalmann, N., Cui, M., Thalmann, D.: A vision-based
approach to behavioral animation (1990)

14. Noser, H., Thalmann, D.: Sensor-based synthetic actors in a tennis game simula-
tion. Vis. Comput. 14(4), 193–205 (1998)

15. Peters, C., O’Sullivan, C.: Bottom-up visual attention for virtual human anima-
tion. In: 16th International Conference on Computer Animation and Social Agents,
pp. 111–117. IEEE (2003)

16. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering
approach for crowd simulation. ACM Trans. Graph. (TOG) 29, 123 (2010). ACM

17. Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.:
Scalable nonlinear dynamical systems for agent steering and crowd simulation.
Comput. Graph. 25(6), 983–998 (2001)

18. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph.
(TOG) 25, 1160–1168 (2006). ACM

19. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: an algorith-
mic approach to the specification and verification of hybrid systems. In: Hybrid
Systems, pp. 209–229 (1992)

20. Harel, D., Marron, A., Wiener, G., Weiss, G.: Behavioral programming, decentral-
ized control, and multiple time scales. In: Lopes, C.V. (ed.) SPLASH Workshops,
pp. 171–182. ACM (2011)

21. Shimony, B., Nikolaidis, I., Gburzynski, P., Stroulia, E.: On coordination tools
in the picos tuples system. In: Proceedings of the 2nd Workshop on Software
Engineering for Sensor Network Applications, SESENA 2011, pp. 19–24. ACM,
New York (2011)

22. Kugler, H., Plock, C., Roberts, A.: Synthesizing biological theories. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 579–584.
Springer, Heidelberg (2011)

23. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Stone, M.C. (ed.) SIGGRAPH, pp. 25–34. ACM (1987)

The Event Coordination Notation:
Behaviour Modelling Beyond Mickey Mouse

Jesper Jepsen1 and Ekkart Kindler2(B)

1 Alumnus of DTU Compute, Kgs. Lyngby, Denmark
jepsen.jesper@gmail.com

2 DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
ekki@dtu.dk

Abstract. The Event Coordination Notation (ECNO) allows modelling
the desired behaviour of a software system on top of any object-oriented
software. Together with existing technologies from Model-based Software
Engineering (MBSE) for automatically generating the software for the
structural parts, ECNO allows generating fully functional software from
a combination of class diagrams and ECNO models. What is more, soft-
ware generated from ECNO models, integrates with existing software
and software generated by other technologies.

ECNO started out from some challenges in behaviour modelling and
some requirements on behaviour modelling approaches, which we pointed
out in a paper presented at the second BMFA workshop [1]; the integra-
tion with pre-existing software was but one of these requirements.

Different ideas and concepts of ECNO have been presented before –
mostly with neat and small examples, which exhibit one special aspect
of ECNO or another; and it would be fair to call them “Mickey Mouse
examples”.

In this paper, we give a concise overview of the motivation, ideas,
and concepts of ECNO. More importantly, we discuss a larger system,
which was completely generated from the underlying models: a work-
flow management system. This way, we demonstrate that ECNO can be
used for modelling software beyond the typical Mickey Mouse examples.
This example demonstrates that the essence of workflow management –
including its behaviour – can be captured in ECNO: in a sense, it is a
domain model of workflow management, from which a fully functioning
workflow engine can be generated.

Keywords: Workflow engine · Meta-modelling · Behaviour modelling ·
Event Coordination · Code generation

1 Introduction

Long before the advent of Model-based Software Engineering (MBSE) and one
of its main driving forces, the Model-driven Architecture (MDA) [2], there was
an endeavor to better understand and distill the nature of communication and

c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 133–164, 2015.
DOI: 10.1007/978-3-319-21912-7 6

134 J. Jepsen and E. Kindler

interaction in concurrent systems – with pioneering work of Petri [3], Hoare [4,5],
Harel [6], and Milner [7] developing modelling notations for behaviour and iden-
tifying the fundamental concepts of communication and coordination, which are
still valid to date. Today, there exist a plethora of modelling notations for mod-
elling the behaviour of distributed, concurrent, or cooperating systems based on
theses concepts.

With the advent of Model-based Software Engineering, models received even
more attention – with the promise that a software system (or at least major
parts of it) could be automatically generated from these models. Using tech-
nologies like the Eclipse Modeling Framework (EMF) [8] can save a lot of pro-
gramming, making software development significantly faster and the resulting
software more reliable. Most of the automatically generated code, however, con-
cerns the structural parts of the software or standard functionality, but not the
actual behaviour.

In view of the fact that notations for modelling behaviour have been out
there for a quite a long time, it might appear a bit surprising that the use
of behaviour models lags a bit behind in Model-based Software Engineering.
There are different reasons for that. One reason is that the structural models,
such as class diagrams, typically, lack a natural mechanism for “hooking” in
behaviour on a higher level of abstraction. The only mechanism they provide for
“hooking in” behaviour is method invocation – which is quite different from the
communication mechanisms proposed by Hoare [4] and Milner [7]. Other reasons
why behaviour modelling lags behind were pointed out in our contribution to
the second BMFA workshop [1]: e.g. lack of mechanisms for integration with
existing software which would allow for a smooth transition from programming
software to modelling it.

Starting from these issues and challenges, we gradually developed a nota-
tion for modelling behaviour, which could overcome these problems: the Event
Coordination Notation (ECNO) [9]. ECNO is a modelling notation that allows
modelling the behaviour of a system on top of structural models (such as class
diagrams) on a high level of abstraction based on some of the basic commu-
nication mechanisms proposed by Hoare and Milner. Still, the software can be
generated from these models fully automatically. With the publication of the
ECNO technical report [9], which covers the motivation, philosophy as well as
all the details of ECNO’s modelling concepts and notations and with the pub-
lication of the ECNO Tool, ECNO has reached a major milestone, which we
report on in this paper.

The basic mechanism of ECNO for integrating behaviour models with struc-
tural models are events1; and events are a first class modelling concept in
ECNO. The life-cycle of an object, basically, defines when an object can partic-
ipate in which kind of events. We call this the local behaviour of the object; it,
roughly, corresponds to what Harel and Marelly [10] call intra-object behaviour.

1 In Milner’s terminology, our events would be called actions, and in Hoare’s termi-
nology events would be channels or channel names.

The Event Coordination Notation: Behaviour Modelling 135

ECNO provides different ways for defining the local behaviour of objects; the
default way for modelling the life-cycle of objects in ECNO, however, is a simple
form of Petri nets, which we call ECNO nets.

The more interesting part of ECNO, however, is the coordination of the
behaviour of different objects that need to join in on the execution of events.
ECNO provides coordination diagrams for defining which partners need to par-
ticipate in an event, in a given situation. We call this the global behavior, whereas
Harel and Marelly [10] would call it inter-object behaviour. The mechanisms used
in coordination diagrams are similar to the communication mechanisms of Hoare
and Milner, but – as we will see later – coordination diagrams are more general
in that many partners can be required, and more than one event might be jointly
executed. Moreover, the partners that are required to participate in an event,
can depend on the current situation and the underlying object structure. We call
the particular combination of objects and events that meet the requirements of
the coordination diagram and are executed together an interaction.

Altogether, ECNO allows modelling the desired behaviour of software sys-
tems on a high level of abstraction (on top of structural software models), from
which fully functioning software can be generated fully automatically. To achieve
this, ECNO uses a carefully balanced and adjusted set of concepts and, on the
technical sided, was designed so that it integrates with different MBSE and
object-oriented technologies.

In this paper, we give an overview of the concepts of ECNO and provide
some motivation and philosophical background. We informally introduce the
main idea and concepts of ECNO by a simple, but complete, example in Sect. 2.
In Sect. 3, we give a more systematic account of ECNO’s basic concepts and
introduce some of ECNO’s more advanced concepts.

Up to now, our published papers on ECNO used neat and small examples
particularly tuned to explain some concepts of ECNO. And it is fair to call
them “Mickey Mouse examples”. In order to demonstrate that ECNO reaches
“beyond Mickey Mouse”, this paper shows that ECNO can be used for modelling
the concepts of workflow management, including their behaviour, from which a
workflow engine can be generated fully automatically. This model, is discussed
in Sect. 4; it was developed in a 5-month master’s project [11]. Even though, we
consider this a “beyond Mickey Mouse example”, we do not call it case study;
the reason is that ECNO actually evolved from an ad-hoc notation that we used
to capture the essential concepts of business process models, which we called
AMFIBIA for “A Meta-Model for Integrating Business Process Aspects” [12].
Though ECNO has significant extensions and a much more thought through
and balanced combination of concepts as compared to AMFIBIA, a real case
study for evaluating ECNO would need to come from a domain different from
workflow management.

Most concepts of ECNO are actually not new, considered in isolation. The
novelty of ECNO is the combination of concepts and its integration with MBSE
technologies. In Sect. 5, we discuss the contributions of ECNO and relate them
to existing work and concepts.

136 J. Jepsen and E. Kindler

Naturally, this paper cannot cover all the details of ECNO. We refer to the
ECNO technical report [9] and some earlier publications [13–16] for more details
on ECNO – in particular concerning some more technical aspects and the ECNO
Tool itself. The ECNO Tool and its documentation are available from the ECNO
Home page: http://www2.compute.dtu.dk/∼ekki/projects/ECNO/index.shtml.

2 ECNO: An Example

In this section, we give a brief and informal overview of the concepts and nota-
tions of ECNO by formalizing the behaviour of Petri nets by means of ECNO [16];
to be precise, we formalize the semantics of P/T-systems [17]. One reason for
choosing Petri nets as our example here is that the modelled workflow engine will
use workflow nets [18,19] for modelling the control aspect of business processes.
Since workflow nets are a restricted class of Petri nets, we can re-use the under-
standing of this Petri net semantics later on when discussing the model of the
workflow engine in Sect. 4.2.

Another reason for choosing Petri nets as our example is that it is neat and
concise and allows us discussing the most important concepts of ECNO. Even
though the example is neat, it might twist your mind a bit. The reason is that on
the one-hand side, we use ECNO models for defining the semantics of Petri nets,
which means that Petri nets occur on the instance level; but, ECNO itself also
uses another version of Petri nets called ECNO nets for modelling the behaviour,
which means that Petri nets occur also on the modelling level. The Petri nets
used on these two level should not be confused with each other.

2.1 Petri Nets

Figure 1 shows a simple example of a Petri net, which models the mutual exclu-
sion of two processes by a semaphor: there are two agents or processes, which
cyclically run through the phases idle, pending (pend), and critical (crit).
As indicated by the name, the two processes should never be in their critical
section at the same time. This is achieved by each agent acquiring the semaphor
(sem) when entering the critical section. The semaphor is returned again when
the agent exits the critical section. In a Petri net, the possible states are rep-
resented by places which are graphically shown as circles or ellipses. A black
dot, called a token, on a place indicates that the agent currently is in this state.
In P/T-systems, it is possible that there is more than one token on a place,
but this situation does not occur in our example. Figure 1 shows that, initially,
both processes are idle (represented by the tokens on places idle1 and idle2)
and that the semaphor is available (represented by the token on place sem). The
distribution of tokens on the places of the Petri net represents the current state
of the system; it is called the marking of the Petri net.

The possible state changes are defined by the transitions of the Petri net,
which are graphically represented by squares. The arcs from a place to a tran-
sition indicate on which places there needs to be a token for the transition to

http://www2.compute.dtu.dk/~ekki/projects/ECNO/index.shtml

The Event Coordination Notation: Behaviour Modelling 137

Fig. 1. A Petri net modelling mutual exclusion

be enabled. In the marking of the Petri net of Fig. 1, for example, the transition
req1 is enabled, since there is a token on the place idle1, which is the only place
with an arc to transition req1. Likewise, transition req2 is enabled since there is
a token on idle2. All the other transitions are not enabled in this marking. An
enabled transition can fire: if and when a transition fires, it removes one token
from each place from which an arc is pointing to the transition; at the same time
the transition adds one token to each place to which it has an arc pointing to.

2.2 Formalizing Petri Nets

Next, we formalize the syntax and semantics of Petri nets in a software engi-
neering way by providing models [16]; actually, we formalize the abstract syntax
of Petri nets only. The abstract syntax is defined by a class diagram2, which
represents the concepts of Petri nets and their relation among each other. The
behavior is defined by a coordination diagram on top of the class diagram later.

Figure 2 shows the class diagram formalizing the concepts or the abstract
syntax of Petri nets. We omit some constraints, though. The main concepts of
Petri nets are Places and Transitions, and Arcs connecting them.

Next, we discuss how to define the behaviour of Petri nets (their semantics)
by some ECNO models. In ECNO, the behaviour is modelled in two parts: the
local behaviour or the life-cycle for each element (in ECNO, objects that have
an explicit life-cycle are called elements); and the global behaviour which defines
how to coordinate the local behaviours of the different elements with each other
by so-called coordination diagrams.

We start with the discussion of ECNO coordination diagrams for modelling
the behaviour of Petri nets, with some informal hints to the local behaviour,
which we model later. Figure 3 shows the coordination diagram that defines the
global behaviour of Petri nets. It shows the main elements of the class dia-
gram from Fig. 2 again – with some additions. The main concept of ECNO
that enable us to coordinate behaviour are events which can have different types
(event types): for our Petri net example, the relevant event types are fire, add and

2 Actually, it is an Ecore model, which is a kind of lightweight version of UML class
diagrams supported by EMF [8].

138 J. Jepsen and E. Kindler

Fig. 2. Abstract syntax of Petri nets: Class diagram

Fig. 3. Coordination diagram: Global behaviour of Petri nets

remove, which correspond to firing a transition, and the corresponding removal
and addition of tokens from and to places. The event types are explicitly defined
in the coordination diagram, shown as rounded rectangles. The rest of the coor-
dination diagram defines how different elements coordinate their behaviour via
events by annotating the underlying class diagram with coordination annota-
tions, which we explain below.

Since the semantics of Petri nets is about firing transitions, we start explain-
ing the coordination diagram at the transition. The element type Transition is
associated with three event types: fire, add, and remove. Technically, this can be
seen by the boxes inside the element types with the respective labels referring to
the respective event types, which are called coordination sets. We will see later
in Fig. 4 that the local behaviour of the element type Transition requires that
three events of event types fire, add, and remove must be executed together for a
Transition element. The coordination annotations attached to the references out
and in respectively, require that all the arcs starting at the Transition (out) need
to participate in an add event, and that all the arcs ending at the Transition (in)
need to participate in a remove event whenever a Transition participates in such
an event.

The Event Coordination Notation: Behaviour Modelling 139

Fig. 4. Local behaviour of a Transition Fig. 5. Local behaviour of a Token

As we will see later, when defining the local behaviors of the different ele-
ment types, an Arc can always participate in add and remove events. The rele-
vance of the Arc is that the coordination annotation attached to the reference
target requires that the Place to which the arc points to participates in the
add event, too. Likewise, the coordination annotation attached to the reference
source requires the Place at which the arc starts to participate in the remove
event, too. This way, the coordination diagram guarantees that every place with
an arc to a transition is involved in a remove event, and every place with an arc
from a transition is involved in an add event – initially triggered by a transition
participating in a fire event.

The local behaviour of a Place when it participates in an add event adds a
new token to this place. The place does not require other associated elements
to participate in the add event. Therefore, the coordination set for add is not
attached to any coordination annotation. Note that the label of that coordination
set is enclosed between two plus signs, which indicates a subtlety of ECNO, which
we will discuss later in Sect. 3.5: counting events.

The local behaviour of a Place when participating in a remove event does
nothing, but the coordination annotation requires that one of the Place’s tokens
participates in the remove event. This participating Token will then take care of
removing itself from the place.

In ECNO, the local behaviour of an element defines when the element can
participate in an event – and what effect that will have on the element. ECNO
uses a simple form of Petri nets for that purpose again3, which we call ECNO
nets; the ECNO nets (model level) for the different element types of Petri nets
(instance level) are shown in Figs. 4, 5, 6 and 7. Note that most of these ECNO
nets are very degenerated Petri nets (transitions not connected to any places,
which means that they are enabled anytime).

Figure 4 shows the local behaviour of the Transition. It shows that a transition
element can join a fire event any time (from the transition’s point of view), but it
requires the remove and add events to be part of that interaction too – this way,
in combination with the global behaviour and the local behaviour for the other
element types, making sure that the respective tokens are ready for removal and
also removing and adding the respective tokens when executed.

Figure 7 shows the local behaviour of the Arc. There are two transitions,
which can be executed anytime, which means that the Arc can participate in
the events add and remove anytime. Since the transitions are independent of
3 Note that these Petri nets are used on the modelling level now.

140 J. Jepsen and E. Kindler

Fig. 6. Local behaviour of a Place Fig. 7. Local behaviour of an Arc

each other, an arc can even participate in both events in parallel. Actually, the
participation of an Arc in any of these events does not have any local effect
on the Arc at all. The Arc is a mediator only which propagates the respective
events from the transition to the respective places as defined by the coordination
diagram in Fig. 3.

Figure 6 shows the local behaviour of the Place. Again, there are two tran-
sitions in this ECNO net, which are enabled all the time. The first transition
is bound to the add event. Note that there is an action, a Java code snippet,
attached to this transition. This action is executed when the add event is exe-
cuted: it creates a new token and adds it to the place itself (self) by using the
API which is automatically generated from the underlying class diagrams.

Figure 5 shows the local behaviour of the Token. This is the only ECNO
net in our example where the firing of the transition is restricted. Actually the
single token on the place makes sure that a token can be removed only once in
its life-time – the very semantics of a token in Petri nets. The action (Java code
snippet) attached to the transition actually removes the token from the place
(its owner) when the Token participates in a remove event.

Fig. 8. Interaction: t1

Together, the models for the local behaviour
(Figs. 4, 5, 6 and 7) and for the global behaviour
(Fig. 3) define the semantics of P/T-systems. Start-
ing from a fire event on a Transition element, the
transition will also be required to participate in an
add and remove event, which then will require the
connected Arcs, Places and Tokens to participate.
This combination of elements and events is called
an interaction. Figure 8 graphically shows an exam-
ple of one interaction that is possible in that Petri
net in the given marking. The interaction is shown
as an octagon containing all instances of events; the
dashed lines show which events are associated with which elements. Executing
the interaction shown in Fig. 8 corresponds to firing transition t1 with the top-
most token on place p1. Note, that there would be one other interaction possible
in this situation (which is not shown here).

The Event Coordination Notation: Behaviour Modelling 141

3 ECNO: Concepts

In this section, we give a more systematic overview of the terms and concepts
of ECNO. We start with the core concepts, which we have seen in the example
already. In the end, we give an overview of ECNO’s more advanced concepts in
order to give a more complete picture of ECNO.

3.1 Object-Oriented Modelling

ECNO is based on object-oriented models, in particular, class diagrams and
object diagrams. In order to present a consistent overall picture, we briefly
rephrase the needed concepts from object-orientation. ECNO and its tool are
independent from any specific object-oriented technology. As a default however,
the ECNO Tool uses the Eclipse Modeling Framework (EMF) [8] as its under-
lying technology. Therefore, we use EMF’s terminology instead of UML’s [20].

Basically, ECNO assumes that there are classes and references between them
along with their multiplicity. Later, we also use inheritance on classes. Classes,
can have attributes, but attributes are not specifically exploited by ECNO. In
some of our class diagrams, we use compositions, which are a special case of
references. These are typically relevant when a bunch of objects is serialised to a
file. Like attributes, compositions are not directly exploited in ECNO, however.
Classes and references are defined in the scope of a Package.

We have seen an example of a class diagram or a package in Fig. 2, which
actually is an EMF Ecore diagram already.

An object diagram is an instance of a class diagram, which shows a specific
situation of a system. An instance of a class is an object and an instance of a
reference is a link – or vice versa, the type of a link of an object is a reference
of the object’s class.

3.2 ECNO: Basic Concepts

Next, we discuss the basic concepts of ECNO, which we have seen in the example
already.

Elements and Element Types. ECNO aims at modelling the behaviour of
a system on top of a class diagram. To this end, ECNO extends the notion of
objects and classes of object-orientation. Note that an ECNO model does not
need to define behaviour for all classes of the underlying class diagram. Not all
classes have ECNO behaviour, some might be used as data only. In order to make
this difference explicit, we call objects that have behaviour in ECNO elements,
and we call the classes for which ECNO defines behaviour element types.

Life-Cycle (Local Behaviour). In a sense, an ECNO element is an object
with an explicitly defined life-cycle. The life-cycle of the element is defined by a
model which defines the local behaviour for a specific element type. So, an ECNO

142 J. Jepsen and E. Kindler

element type consists of a class from object orientation and a local behaviour;
and there are some more concepts, which we discuss later. In this paper, the
local behaviour is defined by a special version of Petri nets, which we call ECNO
nets. In our example, the element types were defined by the class diagram of
Fig. 2 and the ECNO nets of Figs. 4, 5, 6 and 7, by using the same name for the
classes and the ECNO nets.

Events and Event Types. The life-cycle of an element defines when (i.e.
in which situations) the element could participate in some event, and how the
state of the element changes, when the element participates in that event. To be
precise, we distinguish between event types, and an instance or occurrence of an
event at a specific time at runtime when an interaction is executed. The event
types are defined in ECNO’s coordination diagrams, where they are represented
as rounded rectangles. The ECNO nets refer to these event types for defining
the local behaviour. For simplicity, we call an instance of an event type just an
event in the rest of this paper. The relation between an event and an event type
is similar to the relation between objects and classes. Still the nature of events
is fundamentally different from the nature of objects: An event is inherently
volatile and – at least conceptually – has no duration; when the execution of the
interaction is finished, all its events “evaporate”; only their effects – defined by
the life-cycles of the elements participating in the events – stay.

Coordination and Interactions. An interaction is the joint participation of
some elements in some events. Conceptually an interaction is executed instan-
taneously4. What constitutes a combination of elements and events that make
up a legal interaction is defined by the local behaviour of the elements as well as
the coordination annotations. As explained already, the local behaviour defines,
whether an element could participate in an event at a given time; it can also
require that some events need to be executed together (see Fig. 4). The coordi-
nation annotations define which combinations of elements and events are valid.
Basically, each coordination annotation formulates a requirement of the follow-
ing nature: if an element of some type participates in an event of some type, one
or all elements to which there exists a link of a certain reference need to partici-
pate in that event too. We have seen in Fig. 3 that, for a Transition to participate
in an add event, all Arcs which go out from this transition must participate in
the add event too. Together, these requirements might require that many ele-
ments participate in a valid interaction – once one element participates in some
event. In practice, the possible interactions will be computed starting from one
element participating in an event of some type, until all the requirements of all
coordination annotations of the involved elements are met. The interaction of
4 In practise, executing an interaction takes time. We will see later that the instanta-

neous execution of interactions is mimicked by executing them transactionally in the
sense of the ACID principle [21]; in particular, interactions are executed “atomically”
and “in isolation”.

The Event Coordination Notation: Behaviour Modelling 143

our example shown in Fig. 8 was computed starting from the transition t1 and a
fire event. Note that, in general, there might be more than one possible interac-
tion for a given element and event. And it might happen, that there is no such
combination at all – in which case the overall behaviour would not allow the
element to participate in that event at that time.

The coordination annotations are defined in an ECNO coordination diagram,
which is based on an underlying class diagram. Note that coordination diagrams
are also used to define the event types. The defined event types can then be
used in the coordination annotations as well as in the ECNO nets for the local
behaviour.

Element State and Situations. As discussed above, the coordination annota-
tions together with the local behaviour for the elements define which interactions
are possible in any given situation. The local behaviour and, in particular, the
actions (Java snippets attached to the transition of the ECNO net, cf. Fig. 6)
define what each element would do and how its state would change when the
interaction is actually executed. Note that the state of an element consists of
two parts: the state of the underlying object (i.e. all its attributes and links)
as well as the state of its life-cycle (the marking of the ECNO net in our case).
A situation consists of the state of all objects (e.g. represented as an object
diagram) plus the state of the life-cycle for each object.

Above, we have roughly sketched which interactions would be valid in a given
situation. A formal definition for the fragment of ECNO that we have discussed
so far, can be found in Chap. 4 of the ECNO technical report [9].

Controllers and GUI. One question, however, was not answered yet: when will
a possible interactions be computed and executed? Actually, the ECNO models
do not define that at all. The ECNO models specify which interactions could be
executed (are valid) in a given situation – and the ECNO execution engine will
make sure that only valid interactions are executed. It is left to some controllers
on top of the ECNO engine to decide when valid interactions are computed
and then scheduled for execution. Typically, the execution of interactions is
triggered by the user by clicking on some button in some Graphical User Interface
(GUI); and the ECNO Tool comes with some predefined controllers and a default
GUI for that purpose. These controllers are automatically instantiated for new
elements, when the ECNO engine becomes aware of them. These controllers can
also be programmed manually and registered with the ECNO engine, which then
can compute and execute interactions on elements as they see fit. To this end,
ECNO comes with a programming framework for implementing own controllers
and for configuring them for an ECNO application. For details, see Sect. 5.5 of
the ECNO technical report [9].

In our simple example, some element types and some event types, are specif-
ically marked as GUI types. From this information, the ECNO code generator
generates a simple GUI with standard controllers, where the user interactively
can trigger enabled interactions on the GUI elements.

144 J. Jepsen and E. Kindler

3.3 ECNO: Event Synchronisation and Parameters

Next we discuss some more advanced concepts that concern events, in particular,
the synchronization of different events and event parameters, a concept which
did not occur in our example yet.

Life-Cycle: Choices. As discussed above, each element has a life-cycle or a
local behaviour, which in our example are defined by ECNO nets. But, there
could be other formalisms for the local behaviour of elements; actually, the local
behaviour can also be programmed. Basically, the local behaviour associated with
an element, defines in any given situation, in which choices the element could
participate. In ECNO nets, the possible choices are defined by the transitions of
the ECNO net; these choices define which events would be involved in the choice
by the event binding associated with the respective transitions. Moreover the
choice defines the element’s state changes when the choice is taken (executed);
in ECNO nets, that would be defined by the change of the marking of the ECNO
net by firing the transition, as well as by the action associated with the transition,
which could change some of the attributes and links of the underlying object, as
defined by some Java code snippet. In ECNO nets, transitions can also have an
additional condition, which can refer to the parameters of the events (see below)
and the attributes of the object in order to define additional pre-conditions for
firing the respective choice. The interfaces for the local behaviour of an element
as well as for choices form the backbone in the ECNO framework and allow the
ECNO engine to compute valid interactions and execute them independently
from a specific modelling notation for the local behaviour.

Synchronizing Different Events. Typically, the transitions of an ECNO net
are associated with exactly one event type. But, it is possible that an event
binding for a transition refers to more than one event type (in the ECNO net
of Fig. 4, the binding refers to three event types fire, remove, and add). In that
case, the same element would be required to participate in two or more events
at the same time within the same interaction. This way, it is possible that an
element participating in one event requires the element to participate in some
other events too, which is then also propagated to other elements as defined by
the coordination annotations. Basically, this corresponds to the synchronization
of two or more different events.

Event Parameters. In general, event types can have parameters, which are
defined for each event type with a name and a data type. The local behaviour can
assign values to these parameters in the event bindings, and the parameters of the
involved events can be used in the condition and action associated with the event.
In contrast to methods of classes, an event is not owned by an element. The rela-
tion of all participants to an event is completely symmetric: there is no “caller”
or “callee” of an event; there are only participants in an event. In principle, any

The Event Coordination Notation: Behaviour Modelling 145

participant of an interaction can contribute a value to an event it is partici-
pating in. This could result in different elements contributing different values.
The default behaviour of ECNO’s event parameters is that an interaction is valid
only, if all values contributed to the same parameter are actually the same (in the
sense of Java’s equal()). We call this kind of event parameter exclusive para-
meters. And the ECNO execution engine will make sure that valid interactions
meet this condition.

In some cases, however, we would like to allow all participants that engage in
an event to contribute a value; and the contributed values should not be required
to be equal. We call this kind of event parameter a collective parameter. In that
case, when accessed in a condition or action, the value of a parameter would
return a collection of all the values contributed by the different partners. This
can, for example, be used, to get hold of all the partners involved in the same
event, by each partner assigning itself to this parameter.

The parameters are assigned to the events in the event bindings, by pro-
viding an expression for the respective parameter. This expression could refer
to attributes of the element or the underlying object (self) and also refer
to other event parameters. The parameters of an event e can be accessed by
e.parameter, where parameter is the name of the parameter. In order to refer
to an event, event bindings are represented as an assignment, assigning the
bound event to a name: In the binding shown in Fig. 4, we could refer to the
instance of the fire event by f, the variable the event is assigned to. When using
an expression for assigning a parameter to an event, which refers to other para-
meters, there is one complication: There could be an assignment of a parameter
that depends on an other parameter. In such cases, the ECNO engine makes
sure that these assignments are done in the order respecting the dependencies –
in case of cyclic dependencies, the interaction would be considered invalid. The
value of an event parameter, can be accessed in event bindings, in conditions and
in actions, by referring to the respective event and the name of the parameter
as discussed above.

Actually, it is this completely symmetric way of dealing with contributing
values to an event parameters, which helps us doing away with the invocation
based way of coordinating behaviour. Parameters are not passed in a specific
direction; they are just shared among different participants. It is perfectly pos-
sible that different parameters of the same event are contributed by different
partners of an interaction.

3.4 ECNO: Inheritance

ECNO also has a concept of inheritance. Actually, there are different forms
of inheritance in ECNO: There is inheritance on element types, which we call
behaviour inheritance. And there is inheritance on event types, which even comes
in two flavours: specialisation and extension.

Even though inheritance on event types is probably more interesting, we focus
on behaviour inheritance in this paper. For details on inheritance on events, we
refer to the ECNO technical report [9].

146 J. Jepsen and E. Kindler

If the underlying classes of two element types have an inheritance relation in
the object-oriented model, the corresponding element types in an ECNO model
can also have an inheritance relation between them. In ECNO, however, one
element type can inherit from at most one other element type, which gives rise
to a linear inheritance hierarchy – multiple inheritance on element types is not
supported by ECNO.

The behaviour of an element of an element type that inherits from an other
element type (and indirectly from more), basically consists in running all the life-
cycles of the element’s type hierarchy in parallel and synchronizing them on the
same events. This way, a sub-type restricts the behaviour of the life-cycle of its
super types. In addition, a sub-type can introduce event types not known or not
used by its super types; in that case, the sub-type will actually add new behaviour
concerning the new event types since the super type will not synchronize on
events it does not know. Typically, the top-level element type will define some
overall life-cycle; and sub-types will just add some additional constraints on
when the sub type can participate in the event, and what happens when the
event is executed. Due to the synchronization of all the life-cycles of the element
type hierarchy, it could easily happen that some events are blocked completely.
Developing a methodology and modelling guidelines that avoid inadvertently
blocking some events, is planned for the future.

Generally, we feel that synchronizing the life-cycles of the element type hier-
archy provides a more faithful notion of inheritance since the sub-types can-
not arbitrarily change the behaviour – the behaviour of the super types is still
accounted for in the sub-types, which, for example, is not true in Java, where
sub-classes can completely change the behaviour of a method by overriding it.

In some cases, however, sub-types might want to change the behaviour that
was defined by the super type. To this end, ECNO also provides a mechanism to
partially or completely override the local behaviour of super types. And in the
actions, the local behaviour of sub-types has options to determine in which order
the actions of the life-cycles on the element’s type hierarchy should be executed –
the default is starting with the action of the sub-types and continuing all the way
up in the type hierarchy. But, we do not discuss the details here (see Chap. 4.2.1
of [9] for more information).

In addition to the local behaviour, sub-types can also add new coordination
sets and new coordination annotations for an element type that inherits from
another element type. These additional coordination sets and annotations are
taken into account for computing valid interactions of course. Whether and to
which extend this is needed and would need some extensions, is yet to be seen,
since all of our examples make very limited use of this possibility.

3.5 ECNO: More Concepts

In order to get an overview, we give a brief account of some subtle additional
concepts of ECNO, which we do not discuss in full detail though.

The Event Coordination Notation: Behaviour Modelling 147

Coordination Sets and Priorities. In our example, each element type had
at most one coordination set for each event type. In general, an element type
can have more than one coordination sets for the same event type. For the
coordination, this means that one of these coordination sets could be chosen for
coordinating an event of that type with other elements. So, only the coordination
annotations for one of the coordination sets of that event type needs to be taken
into account. This way, the requirements for coordinations with respect to one
event type is a disjunction (choice between the different coordination sets) of
conjunctions of coordination annotations (all coordination annotations attached
to the coordination set).

In some cases, we would like to give one coordination set preference over
some others, if both of them would result in viable interactions. To this end,
different coordination sets can be given a priority. Then, an interaction in which
a coordination set with a higher priority is enabled will be given the preference.
Section 6.1 of [9] and [16] show an application of this feature when defining the
semantics of so-called Signal-Event nets – as an extension of the semantics for
P/T-systems that we discuss here.

Parallel Behaviour. Sometimes, we want to allow an element to participate
in two events in parallel. In our Petri net example, the ECNO net for the Place
(Fig. 6) allows the place to participate in and add and a remove event at the
same time. This way, a transition with a loop to some place can remove and add
a token to the same place at the same time (in the same interaction). In ECNO
nets, two transitions with there associated events can fire in parallel when the
transitions are completely independent of each other or because there is more
then token available at the places they have in common. In some cases, such
as defining the semantics of Petri nets, it makes sense that the local behaviour
of an element exhibits such parallel behaviour too. Therefore, ECNO supports
behaviour where more than one choice is allowed to be executed at the same
time, which we call parallel behaviour.

Counting Events. In the default case of ECNO, if an element participates in
an event of the required type already, it will not participate in another event of
that type, if another element also requests this: both requests will be joint on a
single event. This way, we can be sure that the computation of valid interactions
always terminates.

In some cases, however, we want an element to participate as many times
in the event as request exists from other elements to do so. In the semantics of
Petri nets for example, we would like to add a token as many times as there are
arcs from the transition to the place. In order to achieve this, it is possible in
ECNO for an element type to declare an event type as triggering or counting
event, graphically indicated by the event type being enclosed between two plus
symbols in the respective coordination sets (see element types Place and Token
in Fig. 3). This makes sure that elements of that type participates in these events
as many times as it is triggered by other elements. In that case, an interaction

148 J. Jepsen and E. Kindler

does not only take care of that an element participates in events of the respective
type – it also takes care of it participating in the correct number of times.

In case of cyclic requirements, counting events can, however, result in request-
ing an unbounded number of participations, and consequently the computation
of valid interactions might not terminate anymore (this would be ECNO’s coun-
terpart of infinite loops). Therefore, the modeller needs to take great care when
making use of counting events for an element type.

3.6 Execution Engine

Above, we have discussed the concepts of ECNO and how they define possible
interactions in any given situation. The possible interactions in a given situa-
tion are calculated by an ECNO execution engine – typically triggered by the
controllers associated with the elements. The controllers will also issue the exe-
cution of the interactions calculated by the engine; of course, it might happen
that an interaction becomes invalid due to some changes made by other inter-
actions or some other programs running concurrently. Therefore, the interaction
might not be valid anymore, when its execution is issued. The execution engine
will actually take care of that interactions that became invalid after they were
computed are invalidated and not executed at all. In addition, all interactions
are executed in a transactional way according to the ACID principle. The ECNO
execution engine can also be used to save the complete state of a running ECNO
application to a file and later start the ECNO application again from there.

In the latest official release, the state (current situation) of an ECNO appli-
cation is saved in a file; but it was demonstrated in a masters project that the
state of an ECNO application can also be persisted in databases [22].

4 ECNO: Modelling a Workflow Engine

In this section, we discuss the ECNO models of a workflow engine, which is
inspired by the ideas of AMFIBIA [12]; which distinguishes the core concepts of
business processes, and separates them from the concepts of specific aspects of
a business process such as control, information, and organization. Note that we
discuss only the most relevant excerpts of these models. This ECNO Workflow
Engine and all its models are deployed together with the ECNO Tool, so that
you can have a look at the actual models in all their details yourself, and you
can play with the generated workflow engine with some example processes (see
detailed instructions in the ECNO technical report [9]).

4.1 Core Model

We start with discussing the core concepts of business process models and their
behaviour in this section. These concepts are independent from the different
aspects of business process models and independent from the formalisms used
for modelling the different aspects.

The Event Coordination Notation: Behaviour Modelling 149

Figure 9 shows the class diagram with the core concepts of our workflow
meta-model. The most important concepts are shown in the two rows at the
bottom (shaded in light yellow). The two top rows (shaded in grey) show some
more technical infrastructure, which allows us structuring and accessing business
process models and their different aspects, registering them with the engine, and
maintaining the runtime information. In our discussion, we focus on the concepts
at the bottom. Actually, the diagram is also split vertically: the left-hand side
shows the concepts of the business process models (modelling time); the right-
hand side shows the concepts of instances of business processes (runtime). Having
meta-models for the modelling concepts for business process models as well as for
the runtime information and clearly separating the runtime information from the
model was one of the main principles of AMFIBIA already. Note that runtime
information can refer to the information of the models, but not the other way
round: The process models “do not know” which instances of them are running,
but instances “know” the modelling concepts they are an instance of.

At the heart of AMFIBIA [12] and also of our ECNO Workflow Engine
are four concepts: Process, Task, Case, and Activity, where Case represents one
running instance of a Process (indicated by the reference process) and Activity
represents one running instance of a Task (indicated by the reference task). On
the modelling side, the main concepts are processes and tasks: a business process
model may consist of any number of tasks, which, at runtime, are reflected by
cases and their activities.

Note that the core concepts do not yet represent in which order the tasks
(actually the corresponding activities) are supposed to be executed. Neither do
the core concepts represent who is allowed to initiate or execute activities, or
which data are needed for or are produced by the activities. All this is represented
by models that represent different aspects of a business process. In the ECNO
workflow engine, the three main aspects from AMFIBIA are covered: control,
organisation, and information. We discuss the concepts for some of these aspects
later in Sect. 4.2.

The core concepts do not mention any of the concrete aspects yet. They
just provide the infrastructure so that a Process can consist of different parts
that represent the concepts relating to its aspects – in the models as well as at
runtime. The respective concepts are shown in the left-most column concerning
models, and in the right-most column concerning the runtime information for
the running instances: a process model refers to the models for the different
aspects of that process; likewise the case and the activity contains the runtime
information for the different aspects. Note again, that the runtime information
can refer to the models, but not the other way round.

Note also that all the concepts for aspects are interfaces only. This means that
specific concrete versions of them need to be defined when defining an aspect.

150 J. Jepsen and E. Kindler

F
ig
.
9
.
B

P
M

:
C

o
re

co
n
ce

p
ts

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

The Event Coordination Notation: Behaviour Modelling 151

F
ig
.
1
0
.
B

P
M

:
C

o
o
rd

in
a
ti

o
n

d
ia

g
ra

m
(c

o
re

)

F
ig
.
1
1
.

B
P

M
:

lo
ca

l
b
eh

av
io

u
r

o
f

C
as
e

F
ig
.
1
2
.

B
P

M
:

lo
ca

l
b
eh

av
io

u
r

o
f

A
ct
iv
it
y

152 J. Jepsen and E. Kindler

Now, let us have a brief look at the behaviour concerning the core concepts.
Figure 10 shows the coordination diagram for the core elements. This diagram
defines the event type CreateCase for creating a new instance of a process, which
is a Case for the respective process; moreover, the diagram defines the event
types StartActivity and FinishActivity, which represent starting and finishing an
activity within a case. Note that there is a slight asymmetry between the event
types StartActivity and FinishActivity: the event StartActivity is triggered from
a Case, whereas FinishActivity is triggered from the Activity itself. The reason
is that, when starting an activity, the activity does not exist yet; therefore, it
needs to be created from somewhere else, the Case. The Activity can, however,
take responsibility for its own termination. Note that the CreateCase is dealt
with in a slightly different way: the Case, actually, seems to trigger itself. This
is a minor hack: the workflow engine always keeps one fresh instance of a case
for each process ready, which is activated when the first activity of the case is
started; the StartActivity will then by synchronized with the CreateCase event,
which in turn will activate this case and create another fresh instance of a case
for that process for the next case to be started. Conceptually, this reflects the
fact that starting the first activity of a case, actually, starts the case.

The coordination diagram of Fig. 10 also shows the necessary coordinations
for these event types, most of which are straight-forward. The most impor-
tant coordinations concern the runtime part: the StartActivity and FinishActivity
require all the aspects of the respective concept to participate in that event.
This way, the coordination makes sure that activities are started and finished
only when all aspects are ready for that. With the three aspects that we cover
here, an activity can be started only when the control allows to start it (control
aspect), all the needed data are ready (information aspect), and there is an agent
available who is allowed to perform this activity (organisation aspect).

Most of the life-cycles of the core concepts are trivial – meaning that all
events are possible anytime (there are some minor twists, though, which we do
not discuss here). The most interesting local behaviours are the ones for Case
and Activity, which are shown in Figs. 11 and 12, respectively.

We start discussing the life-cycle of the Case. Remember that there is always
one fresh case, which is ready for being activated by starting one of its initial
activities. The case is activated by a CreateCase event, which actually is jointly
executed together (synchronized) with the StartActivity event that starts the
first activity of the case at the same time. After that, the Case can participate
in further StartActivity events without synchronizing it with another CreateCase
event. In a running case, StartActivity events can happen as long as the case is
not finished, which is represented by an additional condition.

Figure 12 shows the life-cycle of the Activity. This is almost trivial, mak-
ing sure that every activity can finish only once, which is similar to the local
behaviour of tokens in the ECNO semantics of Petri nets.

The Event Coordination Notation: Behaviour Modelling 153

4.2 Models for Aspects and Formalisms

Next, we discuss some of the models relating to the different aspects of business
processes. Note that we restrict this discussion to the control aspect and a part
of the organisation aspect. The ECNO workflow engine covers the information
aspect too, but we do not discuss this aspect here.

We start with the discussion of the control aspect as well as one formalism for
modelling the control aspect of business processes: Petri nets or actually workflow
nets. Note that AMFIBIA set out to separate the concepts of an aspect from
the realization of these concepts in a concrete formalism. Anyway, we discuss
the general concepts of the control aspect together with a concrete modelling
formalism here.

Figure 13 shows the general concepts of the control aspect as well as how these
concepts can be captured by the Petri nets formalism – actually by workflow nets
[19,23]. The classes in the top row (in light yellow) represent the concepts from
the core model again (as see in Fig. 9 already). The classes in the two rows
below (in light blue) represent the general concepts of the control aspect, and
the classes below that (in magenta) show the concepts of Petri nets implementing
the concepts of the control aspect. Like before, the classes on the left-hand side
represent the modelling concepts, whereas the classes on the right-hand side
represent the runtime concepts.

The class TaskC represents the control aspect of a task (it implements Task
Aspect), which in Petri nets is realized as a Transition. On the runtime side,
the class ActivityC represents the control aspect of an activity (implementing
ActivityAspect), which in turn refers to the control aspect of the case CaseC.
The most important part of the control aspect is that a case has a concept of a
State, which determines which activities are possible to be started in the current
situation. In Petri nets, the State is realized as a Marking, which is represented
by a set of tokens associated with some places of the Petri net. The model for
Petri nets here, roughly, resembles the model of Petri nets that we had seen
in Sect. 2.1. The most important difference is that tokens are not contained in
places anymore, but are part of the marking; instead, each token refers to the
place it belongs to. The reason for detaching tokens from places in this model is
that tokens represent runtime information, which the actual model should not
know about. This leaves the question of how the initial marking of the Petri net
is represented in the model itself. To this end, we exploit a speciality of workflow
nets: they always start in a specific marking, exactly one token on a so-called
start place. So, the model does not need to represent the initial marking; we
just need to represent the start place and the finish place of the net. This
is reflected by the references from the PetriNet to the start and finish place.
Transitions that are enabled when a single token is added to the start place
correspond to the initial tasks of a process, which implicitly start the process
(as discussed above).

The more interesting part of the models for the control aspect concerns
the behaviour at runtime. The corresponding coordination diagram is shown
in Fig. 14. Starting an activity requires the control aspect of the case (CaseC) to

154 J. Jepsen and E. Kindler

F
ig
.
1
3
.
B

P
M

:
C

o
n
ce

p
ts

fo
r

co
n
tr

o
l
a
n
d

P
et

ri
n
et

fo
rm

a
li
sm

The Event Coordination Notation: Behaviour Modelling 155

Fig. 14. BPM: Coordination diagram for control aspect and Petri net formalism

156 J. Jepsen and E. Kindler

coordinate the event StartActivity with its State, which will require a synchroni-
sation with another event StartActivityC; this event represents the control aspect
of the event StartActivity. The state, in turn, will need the model for the control
aspect – in our case the Petri net – to participate in the StartActivityC event,
which will require a Remove event on a Transition to be part of the coordination.
The Remove is used and handled in a similar way to the Petri net example that
we had discussed in Sect. 2.1. Note that in contrast to the original semantics of
Petri nets which fires a transition instantaneously, workflow nets are executed
in two steps: Starting the activity removes the tokens from the input places,
whereas finishing the activity adds the tokens to the output places. Note that
this way, in workflow nets a transition does note fire instantaneously, but take
time; this reflects the fact that activities in workflows take time.

The start of an activity needs to be issued from the case since an instance of
the activity is created only upon starting it. By contrast, the activity can take
care of its own termination. The ActivityC coordinates a FinishActivityC event
with the respective transition, which in turn coordinates it with an add event
which adds all the tokens to the postset of the transition – similar to the Petri
net semantics that we had discussed earlier.

The only interesting local behaviours are the life-cycles of the elements of the
Petri net. Since these are similar to the ones discussed in Sect. 2.1, we do not
discuss them here. All the other local behaviours are quite simple. Most impor-
tantly they synchronize the StartActivity event with the StartActivityC event, and
likewise the FinishActivity event with the FinishActivityC event.

Next, let us have a brief look at the organisation aspect. Since the underlying
class diagram for this aspect is quite simple, we skip it and discuss the coordina-
tion diagram for the organization aspect right away, which is shown in Fig. 15.
Basically, the organisation aspect for the case, CaseO, delegates the StartActivity
event to one of the (possibly) involved Agents; likewise the organisation aspect
of an activity ActivityO delegates the FinishActivity event to the Agent to which
this activity was assigned.

The ECNO net for the life-cycle of the Agent is shown in Fig. 16. From the
organisation point of view, an agent can start any activity as long as it does so
on its own behalf, and the organisation model allows the agent to do so, which is
represented by the additional conditions, which are attached to the transitions
of the ECNO nets.

4.3 Workflow Engine and GUI

From the models above and a few more models, which are similar, a fully func-
tioning workflow engine can be generated fully automatically. The only part that
needed to be implemented manually was the GUI – in particular, the worklist
which allows the agents to log in and to select, start and finish work items. The
implementation of this GUI, however, is straight-forward. We do not discuss it
here (see [9,11] for details), since all behaviour comes from the ECNO models.

The Event Coordination Notation: Behaviour Modelling 157

Fig. 15. BPM: Coordination diagram for organisation

Fig. 16. BPM: local behaviour of Agent

The workflow engine can then be started with some process models, which
cover the control, organisation, and information aspect. Up to now, there is only
a simple tree editor for creating and editing such process models, since the focus
of this project was on the feasibility and not the usability of its editors. Once
the workflow engine is started, the different agents can log on, and via the GUI
start cases, activities, and inspect, add, and change the data involved in an

158 J. Jepsen and E. Kindler

activity, and then finish the activity. For lack of space, we cannot discuss the use
of the workflow engine and the execution of some example processes here. Some
example processes are deployed together with ECNO and the ECNO workflow
engine; the installation and the use of the examples are discussed in the ECNO
technical report [9].

5 Related Work

The ideas of ECNO have evolved over many years and started out from a
meta-model that distilled the essence of business process modelling notations:
AMFIBIA [12]. For capturing the behaviour of these concepts, AMFIBIA used
a simple ad-hoc notation for the local behaviour and for the coordination of
the behaviour of the different elements. The ad-hoc notation that we used in
AMFIBIA was later formalized and implemented in a kind of pre-cursor of
ECNO, which we called MoDowA [24,25]. The idea of ECNO goes back to the
ad-hoc notations of AMFIBIA and MoDowA; ECNO is more general and the
too tight integration with aspect-orientation was dropped, so that ECNO – at
its core – is not explicitly aspect-oriented anymore. Moreover, inheritance was
introduced for elements and for events, which needed some careful tuning; for
that reason, there is a complete Chap. 4 that is devoted to the discussion of
inheritance in the ECNO technical report [9]. Starting out from the challenges
of behaviour modelling [1], we then defined the core concepts of ECNO [13–15]
with minor variations, which now seem to converge.

As pointed out in our earlier work [15] already, none of the concepts used
in ECNO are particularly new or original; the contribution of ECNO is more in
the careful combination of its concepts and, on the technical side, its integration
with existing object-oriented technologies.

ECNO’s coordination mechanism via events resembles the synchronization of
actions in process algebras [4,5,7]. One difference, though, is that ECNO’s syn-
chronization is not restricted to bi-lateral synchronizations and that the partners
required to participate in an event might dependent on the dynamically chang-
ing underlying structure of the system. Also this aspect has been seen before
in process algebras like ACP [26], the chemical abstract machine [27], or the
Π-calculus [28]. What is new, however, is that, in ECNO’s coordination mech-
anism, different of these synchronization mechanisms work together, combining
these coordination requirements transitively, which allows us to define much
more complex interactions.

The proposal of behavioral programming [29] exploits the idea of synchro-
nizing events for programming concurrent behaviour (b-threads). The idea of
behavioural programming is very similar in spirit to ECNO – with a focus on
programming. But, in behavioural programming possible synchronizations on
the same event are global and not driven by the dynamic relation to other
objects; moreover, behavioural programming does not allow synchronizing dif-
ferent events or transitively combining synchronizations into more complex inter-
actions, nor does it come with an inherent notion of joint atomic execution when
synchronizing on events.

The Event Coordination Notation: Behaviour Modelling 159

Another major concern in the design of ECNO was the clear separation
between coordination aspects and computation aspects of a system. Actually,
ECNO is about coordination only, but ECNO’s concept of actions provides a
way to interface with the computational aspects by invoking methods or func-
tions. This idea, however, is not new either: Harel and Pnueli [30] had proposed
the distinction between transformational and reactive systems. ECNO takes care
of the reactive aspect of the system by defining possible interactions – the trans-
formational aspect is left to the underlying programming language (Java in our
case) for the actions by invoking methods.

Another major concern of ECNO is the distinction between local behaviour
and global behaviour [1]. Also this idea is not really new: Harel and Marelly [10]
distinguish between intra-object behaviour and inter-object behaviour, which
correspond to local and global behaviour, respectively. The only difference is the
way this behaviour is represented. Concerning the local behaviour, this is mostly
a question of syntactic sugar. For inter-object behaviour (global behaviour),
Harel and Marelly use a set of Live Sequence Charts (LSCs) [31], which are
an extension of Message Sequence Charts [32]. This is a scenario-based and
temporal approach, where the focus of inter-object behaviour is the behaviour
over time. In ECNO, the coordination annotations focus on the needed partners
for a single interaction only: it is about behaviour at a time. Therefore, both
approaches have a different focus. It might be interesting to combine both of
them; this might in particular be interesting since ECNO does not have a way
to define what must happen in a system – it defines what can happen only.
LSCs [31] allow to characterize both kinds. But a detailed investigation of such
a combination would require further research.

As discussed above, the ideas of ECNO started out from an ad-hoc notation
in which aspects were an explicit modelling concept and therefore, ECNO has
some relation to aspect-oriented programming [33,34] or aspect-oriented mod-
elling [35,36]. Actually, from the philosophical angle, the original ideas were close
to the Theme approach [37] and closer to the idea of subject-oriented program-
ming [38]. Anyway, the explicit notion of aspects was removed in ECNO again.
A bit of the original subject-oriented idea survived in one of the two different
concepts of inheritance on event types, which we did not discuss here. And by
using some specific modelling patterns, ECNO can be used for modelling in
an aspect-oriented way: In a way, events of ECNO can be considered to be join
points of AspectJ [39]. The difference, though, is that events are an explicit mod-
elling concept [40], whereas join points are formulated on top of a program. This
way, events are a concept of the domain, whereas join points are programming
artifacts (which of course could have a counter-part in the domain). The coor-
dination annotations of ECNO then correspond to pointcuts. Though stripped
of an explicit notion of aspects, ECNO still shares some philosophy with aspect-
or subject-orientation: joining events together via coordination annotations into
interactions.

The local behaviour of elements could be modelled in many different ways. We
could use traditional automata or StateCharts [6]. We mainly use a special form of

160 J. Jepsen and E. Kindler

Petri nets [3,41], which we call ECNO nets. Initially, the reason for using ECNO
nets was mostly a practical one: we could use our own framework for Petri net tools,
the ePNK [42], for easily implementing a graphical editor for ECNO nets. And the
ePNK is based on EMF [8], which is the object-oriented technology that happens to
be the default object-oriented technology of ECNO. But, it turned out to be useful
that Petri nets have a natural notion of concurrent or parallel firing of transitions,
when it comes to parallel behaviour (see Sect. 3.5). Therefore, simple automata
are not sufficient for modelling the local behaviour of elements. Like Petri nets,
StateCharts have a notion of parallel behaviour, which makes them an other good
candidate for modelling local behaviour, too. Our main concern with StateCharts
would be that they might be too powerful: modellers might be tempted to put too
much into the local behaviour of elements, since StateCharts allow nested complex
states. But, this is up to future evaluation and a question of methodology, which
is yet to be worked out in full detail.

At last, ECNO has some similarities with agent-based software engineering
and Multi-Agent Systems (MAS) [43,44]; but, at least in its basic form, ECNO
would probably not qualify as an approach towards agent-based software engi-
neering. This, however, depends on which level we look at things: From our point
of view, ECNO is more a notation and technique5 whereas agent-based software
engineering is more a way of thinking. Anyway, some of the principles underly-
ing ECNO were proposed by the proponents of agent-based software engineering.
The two most important shared principles are: getting rid of the thread-oriented
way of thinking, and giving agents control over what they do or to which kind
of request they react or – as we would say in ECNO – in which events they par-
ticipate. In addition, in agent-based software engineering, agents have attitudes
and are pro-active and take initiative. Even disregarding the more social notions
of initiative and attitude, ECNO elements are not even active – remember that
ECNO models describe what can happen in a given situation, but they do not
describe what must happen. Therefore, ECNO’s elements are technically not
agents. But, by adding controllers on top of elements, elements can be turned
active. This way, ECNO might be a notation and technique in which agent-based
designs or agent-based thinking can be formulated and implemented. But, this
is up to others to judge.

Speaking of agents, we should mention another approach, which uses Petri
nets for defining local behaviour: Renew [45]. Renew also uses a mechanism
for synchronizing different parts of a system with each other following some
fixed relations between these parts. But, theses synchronisations need to follow
some very specific containment structures following the so-called nets-within-
nets paradigm [46]. By contrast, ECNO models can exploit the dynamic structure
of the underlying object-oriented model for defining the required partners, which
was one of its express goals.

Altogether, ECNO has many different flavours. On a first glance and depend-
ing on ones background, ECNO might appear as just another process algebra,
just another notation for aspect-oriented modelling, just another agent-based
5 The methodology part of this technique is yet to be worked out in detail.

The Event Coordination Notation: Behaviour Modelling 161

approach, just another form of transactions, just another ... – and there might
be some truth to that. But, we believe that it is the combination of these differ-
ent things and a carefully adjusted set of concepts that makes ECNO what it is:
A way of clearly separating coordination from computation, and of separating
coordination from local behaviour.

6 Conclusion

In this paper, we have given an overview of ECNO and motivated some of its
concepts and definitions. Moreover, we have discussed an ECNO model of a work-
flow engine, which demonstrates that ECNO can be used for “beyond Mickey
Mouse examples”. From this ECNO model, a complete workflow engine can be
generated fully automatically [11]. Together with the other examples [9], this
shows that ECNO can be used for a wide range of different applications.

Modelling the workflow engine consisted in providing a domain-specific lan-
guage (DSL) for workflow models; this DSL was defined by class diagrams con-
cerning the abstract syntax of the DSL; on top of these class diagrams ECNO
models defined the actual behaviour (semantics) of this DSL. In a similar way,
ECNO was used for defining the semantics for Petri nets – again a meta-model
was provided for Petri nets; ECNO models on top of these meta-models defined
the semantics of Petri nets. This shows that ECNO can be used to define and
implement also the semantics of a DSL. Actually, we believe that the semantics
of ECNO can be defined in ECNO itself, which however is yet to be worked out
in detail.

ECNO shows that there are mechanisms beyond method invocation for inte-
grating behaviour models with structural models. The implementation of the
ECNO framework and tool shows that interactions can be executed in a trans-
actional way, and this way be executed in a multi-threaded or concurrent envi-
ronment without explicitly thinking about threads or modelling them. Since
ECNO is independent of a specific underlying object-oriented technology, it can
also be used for integrating software using different technologies.

What is still missing is a coherent methodology with modelling guidelines
and best practices for properly using ECNO, which we plan to work out in the
future. In order to gain more experience and to work out this methodology, we
will need some more examples of realistic size. The currently published version
of ECNO and the corresponding ECNO Tool6, are a good basis for working on
some more realistic examples.

References

1. Kindler, E.: Model-based software engineering: the challenges of modelling behav-
iour. In: Aksit, M., Kindler, E., Roubtsova, E., McNeile, A. (eds.) Proceedings of
the Second Workshop on Behavioural Modelling - Foundations and Application
(BM-FA 2010), pp. 51–66 (2010) (Also published in the ACM electronic libraries)

6 see http://www2.compute.dtu.dk/∼ekki/projects/ECNO/index.shtml.

http://www2.compute.dtu.dk/~ekki/projects/ECNO/index.shtml

162 J. Jepsen and E. Kindler

2. OMG: MDA guide v1.0.1. (2003). http://www.omg.org/cgi-bin/doc?omg/
03-06-01

3. Petri, C.A.: Kommunikation mit Automaten. Technical report Schriften des IIM,
Nr. 2, Institut für instrumentelle Mathematik, Bonn (1962)

4. Hoare, C.: Communicating sequential processes. Comm. ACM 21(8), 666–677
(1978)

5. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

6. Harel, D.: Statecharts: a visual formalism for computer systems. Sci. Comput.
Program. 8(3), 231–274 (1987)

7. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall, Upper Saddle River (1989)

8. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Reading (2006)

9. Kindler, E.: Coordinating interactions: The Event Coordination Notation. Techni-
cal report DTU Compute Technical report 2014–05, DTU Compute, Kgs. Lyngby,
Denmark (2014)

10. Harel, D., Marelly, R.: Come Let’s Play: Scenario-based Programming Using LSCs
and the Play-engine. Springer, Heidelberg (2003)

11. Jepsen, J.: Realizing a workflow engine with the Event Coordination Notation.
Master’s thesis, Technical University of Denmark, DTU Compute (2013) IMM-
M.Sc.-2013-101

12. Axenath, B., Kindler, E., Rubin, V.: AMFIBIA: a meta-model for the integration
of business process modelling aspects. Int. J. Bus. Process Integr. Manag. 2(2),
120–131 (2007)

13. Kindler, E.: Integrating behaviour in software models: an Event Coordination
Notation - concepts and prototype. In: Proceedings of the Third Workshop on
Behavioural Modelling - Foundations and Application (BM-2011) (2011)

14. Kindler, E.: The Event Coordination Notation: execution engine and programming
framework. In: Störrle, H., Botterweck, G., Bourdellès, M., Kolovos, D., Paige, R.,
Roubtsova, E., Rubin, J., Tolvanen, J.P. (eds.) Fourth Workshop on Behavioural
Modelling - Foundations and Application (BM-FA 2012), Joint proceedings of co-
located events at ECMFA 2012, pp. 143–157 (2012)

15. Kindler, E.: Modelling local and global behaviour: Petri nets and event coordina-
tion. Trans. Petri Nets Other Models Concur. 6, 71–93 (2012)

16. Kindler, E.: An ECNO semantics for Petri nets. Petri Net Newslett. 81, 3–16
(2012). Cover Picture Story

17. Reisig, W.: Place/Transition systems. In: Brauer, W., Reisig, W., Rozenberg, G.
(eds.) Petri Nets: Central Models and Their Properties. LNCS, vol. 254, pp. 117–
141. Springer, Heidelberg (1987)

18. van der Aalst, W.: Exploring the process dimension of workflow management.
Computing Science Reports 97/13, Eindhoven University of Technology (1997)

19. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and
Systems. Cooperative Information Systems. The MIT Press, Cambridge (2002)

20. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2.
Object Management Group, 140 Kendrick Street, Needham, MA 02494, USA
(2007) OMG Document number: formal/2007-11-02

21. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Mateo (1993)

22. Nielsen, H.E.: A database integration for the Event Coordination Notation. Mas-
ter’s thesis, Technical University of Denmark, DTU Compute (2014)

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01

The Event Coordination Notation: Behaviour Modelling 163

23. van der Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

24. Schmelter, D.: Eine Technik zur Entwicklung und Ausführung aspektorientierter
Modelle. Master’s thesis, Department of Computer Science, Software Engineering
Group, University of Paderborn, Paderborn, Germany (2007)

25. Kindler, E., Schmelter, D.: Aspect-oriented modelling from a different angle: mod-
elling domains with aspects. In: 12th International Workshop on Aspect-Oriented
Modeling (2008)

26. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1–3), 109–137 (1984)

27. Berry, G., Boudol, G.: The chemical abstract machine. In: POPL, pp. 81–94 (1990)
28. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Parts I & II).

Inf. Comput. 100(1), 1–40 & 41–77 (1992)
29. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),

90–100 (2012)
30. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K. (ed.)

Logics and Models of Concurrent Systems. Series F: Computer and System Science,
vol. 13, pp. 477–498. Springer, Heidelberg (1985)

31. Damm, W., Harel, D.: LSC’s: Breathing life into message sequence charts. In:
Ciancarini, P., Fantechi, A., Gorrieri, R. (eds.) FMOODS 1999. IFIP, vol. 10, pp.
293–311. Springer, Boston (1999)

32. ITU-T Recommendation Z.120: Message sequence charts (MSC). ITU (1996)
33. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,

Irwin, J.: Aspect-oriented programming. In: Moreira, A. (ed.) ECOOP 1997. LNCS,
vol. 1743, pp. 220–242. Springer, Heidelberg (1997)

34. Mens, K., Lopes, C., Tekinerdogan, B., Kiczales, G.: Aspect-oriented programming
workshop report. In: Bosch, J., Mitchell, S. (eds.) ECOOP 1997. LNCS, vol. 1357,
pp. 483–496. Springer, Heidelberg (1998)

35. Brichau, J., Haupt, M.: Survey of aspect-oriented languages and execution models.
Technical report AOSD-Europe-VUB-01, AOSD-Europe (2005)

36. Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M.P., Bakker, J., Tekin-
erdogan, B., Clarke, S., Jackson, A.: Survey of aspect-oriented analysis and design
approaches. Technical report AOSD-Europe-ULANC-9, AOSD-Europe (2005)

37. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme App-
roach. Addison-Wesley, Reading (2005)

38. Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure
objects). In: OOPSLA, pp. 411–428. ACM (1993)

39. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol.
2072, pp. 327–353. Springer, Heidelberg (2001)

40. Douence, R., Noyé, J.: Towards a concurrent model of event-based aspect-oriented
programming. In: European Interactive Workshop on Aspects in Software (EIWAS
2005) (2005)

41. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol.
4. Springer, Berlin (1985)

42. Kindler, E.: The ePNK: an extensible Petri net tool for PNML. In: Kristensen,
L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 318–327.
Springer, Heidelberg (2011)

43. Wooldridge, M.: Agent-based software engineering. IEE Proc. Softw. Eng. 144(1),
26–37 (1997)

164 J. Jepsen and E. Kindler

44. Jennings, N.R., Sycara, K.P., Wooldridge, M.: A roadmap of agent research and
development. Auton. Agent. Multi-Agent Syst. 1(1), 7–38 (1998)

45. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

46. Valk, R.: Petri nets as token objects: an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

New Ways of Behaviour Modelling:
Protocol Modelling

Protocol Modelling

A Modelling Approach that Supports Reusable
Behavioural Abstractions

Ashley McNeile(B) and Nicholas Simons

Metamaxim Ltd., 48 Brunswick Gardens, London W8 4AN, UK
{ashley.mcneile,nick.simons}@metamaxim.com

Abstract. We describe a behavioural modelling approach based on the
concept of a “Protocol Machine”, a machine whose behaviour is governed
by rules that determine whether it accepts or refuses events that are pre-
sented to it. We show how these machines can be composed in the manner
of mixins to model object behaviour and show how the approach pro-
vides a basis for defining reusable fine-grained behavioural abstractions.
We suggest that this approach provides better encapsulation of object
behaviour than traditional object modelling techniques when modelling
transactional business systems.

We relate the approach to work going on in model driven approaches,
specifically the Model Driven Architecture initiative sponsored by the
Object Management Group.

Keywords: Behavioural modelling · Reuse · Protocols · State
machines · Mixins · Executable modelling

1 Introduction

1.1 Background and Purpose

The modelling ideas described in this paper have their origins in work done by
the authors in the late 1980 s to develop a scheme for generating code from mod-
els. Since that early work we have developed a series of tools that implement
the approach and have refined the ideas and their formal basis. Our motiva-
tion has been to develop suitable abstractions for describing the behaviour of a
class of systems normally termed “transactional business systems”. This class
includes such familiar applications as accounting, order processing, workflow,
stock control, etc.

This paper explores a possible formal basis for the ideas. We believe that
this formalisation will help others in the modelling community to understand
and assess our work, and provide a basis to extend and improve it. We also com-
pare aspects of our approach with more traditional object-oriented modelling
(as supported, for instance, by the Unified Modelling Language, UML) and
explain how ours differs and why it may be better.

This paper originally appeared in Software & Systems Modeling, 5(1):91–107, 2006
and is reproduced here by kind permission of Springer-Verlag.

c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 167–196, 2015.
DOI: 10.1007/978-3-319-21912-7 7

168 A. McNeile and N. Simons

1.2 Structure of the Paper

In Sect. 2 we introduce the underlying concepts of Events, Protocol Machines
and Protocol Systems. These are the basis for the rest of the paper.

In Sect. 3 we show how these basic concepts can be used to model the behav-
iour of objects, and in Sect. 4 how the behavioural metadata of objects is defined.
This section includes an example illustrating a graphical notation for metadata.

Section 5 explains how the ideas can be used to build semantically complete
object models, capable of execution. Section 6 describes how the approach sup-
ports reuse of behavioural metadata.

Section 7 discusses the differences between our approach and other forms
of object based modelling. We note that our focus on modelling behaviour is
aligned to some of the aims of the Object Management Group’s “Model Driven
Architecture” (MDA) initiative, and we relate our work to other work in the
MDA field.

Finally, Sect. 8 gives a short history of implementations of the ideas described
in this paper.

2 Underlying Concepts

This section describes the three concepts that form the basis of the approach
described in this paper. These concepts are:

– events,
– protocol machines, and
– protocol systems.

2.1 Events

Our focus has been on modelling the behaviour of event driven systems. Our
modelling approach uses a core behavioural abstraction that we refer to as a “pro-
tocol machine”. Before describing the concept of a protocol machine in detail,
we start with the notion of an “event”.

An “event” (properly an “event instance”1) is the data representation of an
occurrence of interest in the real world business domain. Examples of such real
world occurrences are Customer Fred places an order for 100 widgets to be deliv-
ered on 12th August or Policy holder Jim makes a claim for £250 against policy
number P1234. These occurrences are considered to be atomic and instantaneous
in the domain.

An event represents such an occurrence as a set of data attributes. Every
event is an instance of an event-type, and the type of an event determines its
metadata (or attribute schema), this being the set of data attributes that com-
pletely define an instance of the event-type. In a banking system, for instance, an

1 We will use “event” for event instance throughout this paper. Where we need to
refer to an event type we will use the explicit term.

Protocol Modelling 169

event-type might be “Withdraw” with metadata (Account Id, Date and Time,
Amount).

This approach to modelling events is identical to that used in other event
based modelling approaches such as Jackson System Development [8] and Syn-
tropy [15]. From a more formal standpoint, our treatment of events corresponds
to that described by Jackson and Zave [9].

We use meaningful, natural language names for Event-types to aid their
identification with the real world occurrences that they represent. For the same
reason, we use natural language names for attributes in the metadata of an
event-type.

2.2 Protocol Machines

A “protocol machine” is a conceptual machine that has a defined repertoire of
events that it understands, and the ability to accept, refuse or ignore any event
that is presented to it. Protocol machines have the property that large, complex
protocol machines can be assembled from small, simple ones. We are interested
in using them to build models of systems that comprise objects and, in this use,
the smallest protocol machines are more fine-grained than objects. The largest,
however, represent whole systems.

The use of the term “protocol” in this context is borrowed from UML, as
used in the concept of a “protocol state machine” [13]. In UML, protocol is
used to mean an allowable sequence of operation (method) invocations in the
life of an object. Although we are talking about sequencing of events rather than
operations, the intent (namely to define allowable sequences) is the same so we
use the same term.

Type. A protocol machine has a “machine-type” which is a fixed, immutable
property of the machine. The machine type, M , of a machine instance, m, can
be determined using a type function:

M = τ(m)

(Note: Throughout this paper we use upper case to denote a type and lower case
to denote an instance.)

State. A protocol machine has a stored “local state” which only it can alter,
and only when moving to a new state in response to an event.

Machines can be nested. If a machine m1 is immediately nested in machine
m2, then:

– The local state of m1 is a subset of the local state of m2.
– Only m1 can alter that part of the local state of m2 that is also the local state

of m1.

170 A. McNeile and N. Simons

In addition, a machine has a “state environment”, being stored state that
the machine can access but cannot alter. The state environment of m1 is defined
as the union of:

– the local state of m2 that is not local state of m1, and
– the state environment of m2.

A machine that is not nested inside another has an empty state environment,
and is called a “closed machine”. This is summarised in Fig. 1.

m1

State environment of m1.
m1 can access, but cannot alter.

m2

m3

Outermost (closed) machine

Local state of m1.
m1 can alter.

Fig. 1. Machine Nesting

Repertoire. A protocol machine has a set called its “repertoire” that deter-
mines the events that it is able to understand2. The only requirement of a reper-
toire is that when an event is presented to a machine, it must be possible to
determine whether or not that event is represented in the repertoire. Exactly
how this determination is made is defined in Sect. 3.3 in terms of “binding”. For
the present we shall take it that the repertoire of a machine is a set of event-
types. The machine can understand any event with a type that belongs to its
repertoire.

As we describe later in Sect. 5.4, the repertoire of a machine can change.
However, it must always be possible to determine the repertoire of a machine
when the machine is in a stable state.

When machines are nested, the repertoire of an inner machine is always a
subset of the repertoire of the machine within which it is embedded. This is
required for consistency, as it makes no sense for a machine to ignore an event
that another machine nested inside could understand.

Behaviour. The behaviour of a protocol machine is entirely event driven.
Events are presented to the machine one at a time by its environment.

2 More formally: an event-type is included in the repertoire of a protocol machine if
there is some state of the machine in which it would be capable of accepting or
refusing it.

Protocol Modelling 171

The machine has no capability to process more than one event at a time, and
is stable between events. Presenting an event to a machine also presents it to
every embedded machine.

The behaviour of a machine is defined as follows:

a. When presented with an event that is not represented in its repertoire, the
machine ignores it.

b. When presented with an event that is represented in its repertoire, it will
either accept it or refuse it.

c. Acceptance of an event is not possible unless the quiescent values of the
machine’s local state and of its state environment both before and after the
event meet constraints specified by the machine.

d. By accepting an event, the machine is allowing (but not requiring) its new
quiescent state to be designated as its new stable state.

Quiescence and Stability. A machine is quiescent when, if starved of further
events (no further events presented to it), it cannot undergo any further change
of local state. Informally, this just means that the processing that the machine
performs to update its local state in response to an event is complete.

When a machine reaches quiescence after being presented with an event, one
of the following must take place:

– Its new quiescent local state is designated as its new stable state; or
– The new quiescent local state is abandoned, and the machine remains at the

stable state that pertained before the last event.

Whichever of these takes place, it applies to the machine itself and to all
embedded machines. The decision as to which happens is, in general, not made
by the machine itself. This is discussed later in Sect. 5.2.

Only after a new stable state has been established can a new event be pre-
sented to the machine.

Determinism. Protocol Machines are deterministic in the following sense. The
new quiescent state that a machine reaches as a result of being presented with
an event is completely determined by:

– the last stable value of its own local state,
– the last stable value of its state environment, and
– the event-type and the values of the attributes of the event presented to it.

This also means that whether or not a machine accepts an event is similarly
deterministic, and therefore that executions of a protocol machine based model
are repeatable.

To ensure that this degree of determinism is achieved requires that:

a. The algorithm by which a machine updates its local state is deterministic3.
3 This rules out, for instance, using multiple threads of processing in the algorithm if

this can cause indeterminism by introducing race conditions.

172 A. McNeile and N. Simons

b. When a machine accesses its state environment in the course of update, it
will always obtain the last stable value, not yet reflecting any update for the
current event.

c. A machine does not begin to update its own local state until all embedded
machines have reached their new quiescent states, and access to the state of
an embedded machine yields its new quiescent state.

The last of these means that, using the terminology defined above, if machine
m2 is performing updates to its local state for an event e:

– m2 cannot start to alter its own local state before e has been presented to m1
and m1 has reached quiescence.

– m2 has access to this new quiescent state of m1.
– m2 also has access to its own state environment in its last stable state, i.e.,

not reflecting any updates for e.

The scheme is shown pictorially in Fig. 2.

Presentation
of event e

m3

Outermost (closed) machine

m1

m2
State environment of m2, accessible by
m2 during its update processing.
(In old stable state, not reflecting e.)

New local state of m1.
(Quiescent state after update by m1 for e.)

Local state of m2.
(Undergoing update by m2 for e.)

Fig. 2. State Update Discipline

2.3 Protocol Systems

We are interested in building executable models by putting together protocol
machines.

In this section we describe, in general, how a set of protocol machines can
be composed in parallel to form another protocol machine. We call a machine
formed in this way a “protocol system”. A protocol system has no stored state or
behavioural capacity beyond that provided by the machines that constitute it.

In the following sections we describe how a protocol system behaves and
show how it conforms to the definition of a protocol machine. For ease of reading
across, the headings mirror those used in Sect. 2.2 to describe a protocol machine.

Protocol Modelling 173

Type. A system has a system-type which is a unique, immutable property of
the system. The type of a system has associated metadata which determines a
fixed set of machine types to which any constituent machine must belong.

The system-type, S, of a system, s, can be determined using a type function:

S = τ(s)

As a system is itself a protocol machine, its system-type is also its machine-type.

Repertoire. The repertoire of a system is the union of the repertoires of its
constituent machines.

State. The local state of a system is the union of the local states of the con-
stituent machines.

The state environment of each constituent machine is the union of:

– the local states of all the other constituent machines, and
– the state environment of the system.

Behaviour. When an event is presented to a system it is presented, in some
order, to all of the constituent machines of the system.

The disposition (ignored, refused or accepted) of an event presented to a
system is determined by, and only by, the responses of the constituent machines
in the system. This determination is made as follows:

a. If the event is not represented in the repertoire of the system, the system
ignores it.

b. If any constituent machine refuses the event, the system refuses it.
c. Otherwise the system accepts the event.

Note that this definition of the semantics of composition bears a close resem-
blance to the parallel composition operator, P ‖ Q, in Hoare’s Communicating
Sequential Processes [5]. We explore some aspects of this resemblance in an
earlier paper, State Machines as Mixins [2].

Quiescence and Stability. It follows from the definition of quiescence for a
protocol machine that the system is quiescent when:

– all constituent machines that could update their local state as a result of the
last event presented to the system have done so, and

– all of its constituent machines are quiescent.

Once a system is quiescent a determination of its new stable state is made,
as described in Sect. 5.2.

174 A. McNeile and N. Simons

Determinism. A protocol system is deterministic, shown inductively as follows:

a. By assumption, the constituent machines are deterministic. So the only source
of non-determinism in the system is in different choices of the order in which
the constituent machines are presented with an event and perform their
update.

b. As any constituent machine, while in progress of updating its local state, can-
not see updates made for the current event by any other constituent machine,
the ordering of updates does not influence the result of the updates.

This induction requires that elementary machines (those not defined in terms
of other machines) are deterministic. This is addressed in Sect. 4.3.

3 Modelling Objects

This section describes how the concepts of events, protocol machines and proto-
col systems can be used to construct models that have a notion of object.

Machine-Type: M1
OID: o1

Machine-Type: M2
OID: o1

Machine-Type: M3
OID: o1

Machine-Type: M1
OID: o2

Machine-Type: M4
OID: o2

Object o1
(three

machines)

Object o2
(two

machines)

System

Fig. 3. Object Composition

3.1 Object Identifiers

Our aim is to be able to model a population of objects as a protocol system. We
do not want each object instance to require its own machine type, so we have to
be able to accommodate multiple instances of a given machine type in a system
and identify them as different individuals.

To provide for unique identification of machines in a system, and to tie every
machine to the object whose partial description it represents, we require that
every constituent machine of a system has a property called its “object iden-
tifier”, or OID. The OID is a fixed, immutable property of the machine. The
combination of the OID and machine-type properties of a machine must be
unique in a system.

Protocol Modelling 175

The collection of all machines sharing a given OID represents an object, so
the relationship between objects and machines is one to many4, as shown in
Fig. 3.

Figure 3 shows a system containing two objects, one comprising three
machines and the other two machines. The combination of machine-type and
OID yields a unique identifier for each machine. Note that machine type M1 is
used by both objects.

3.2 Repertoire Specification

In Sect. 2.2 we introduced the idea of a repertoire, and suggested that the reper-
toire of a machine type can be thought of as a set of event-types.

With the introduction of objects the use of a simple event-type as a repertoire
entry is not sufficient, and needs to be qualified in two ways as described below.

The first need for qualification results from having multiple machines of the
same type in a system. When an event is submitted to a system it will be
relevant to some objects and not others. Thus a “Withdraw” occurrence in a
banking domain will be for a particular account. Other accounts are not affected
by it and should ignore it.

From the objects’ point of view the event instance corresponding to the
Withdraw is in the repertoire of one particular account, and should be ignored
by other accounts. To allow the repertoire to be used to determine that an event
is to be ignored because it is for a different object, the entries in the repertoire
of the machine are made to include the OID of the machine. Concretely, we
express this by specifying an entry in the repertoire of a machine using both the
event-type and the OID:

(E, o, . . .)

Here E is an event-type and o is the OID of the machine. The ellipsis indicates
that we are now going to add more to the entry, because of the second need for
qualification.

The second need for qualification is more subtle. It is required because, in
some cases, event-type is not a unique determinant of the meaning of an event
to a machine. Ambiguity can occur when an event instance can be presented to
two machines of the same type.

Consider the case of a “Transfer” event that moves money from one bank
account to another. Clearly an instance of Transfer has a different effect in the
two accounts: in one (the source) it causes a reduction in the balance but in the
other (the target) it causes an increase. It may also be that the Transfer is subject
to different protocol rules in the two accounts: for instance, if an account is in
a “frozen state”, this may mean that it cannot serve as the source of a Transfer
but may not affect its ability to act as a target.

4 An alternative formation, having one machine per OID, is also possible but adds
complexity with no apparent advantage.

176 A. McNeile and N. Simons

If both accounts are represented by a machine of the same type, it is necessary
for the machine to know both the event-type (Transfer) and its role in the event
(Source or Target) to determine its behaviour. To ensure lack of ambiguity, the
role (e.g., Source or Target) that an object can play when engaging in an event
is added to the event-type and OID to create an unambiguous repertoire entry
thus:

(E, o,R)

Here R is a role name. To keep the formalisation uniform, and without loss of
generality, we assume that all repertoire entries use this triple form, even if the
role name is not required for disambiguation.

As would be expected, the roles that an event-type can play are specified
in its metadata. The metadata for the Transfer event-type might be as shown
in Fig. 4. This shows the attributes of the Transfer event and an indication, in
parentheses, of the type of value that each attribute is allowed to take.

Fig. 4. Event Metadata

We shall use the names of the OID valued attributes, “Source” and “Target”
in Fig. 4, as the names of the roles associated with the event-type. For example,
the entry (Transfer, 12345, Source) in a machine’s repertoire signifies that
the machine will understand, and either accept or refuse but will not ignore,
an event that wants to transfer funds, using the account corresponding to OID
12345 as the source of the transfer.

3.3 Binding

When an event is presented to a machine its treatment by the machine depends
on whether the event is represented in the repertoire of the machine. We use the
term binding to describe whether or not an event is represented in the repertoire
of a machine.

When an event is created, some of its attributes (as defined by the event-
type’s metadata, see Fig. 4) take OIDs as their values. Suppose an event instance
e of event-type E containing an attribute R with OID value o is presented to
machine m. We say that the attribute is “bound” to m if m’s repertoire contains
the entry (E, o,R).

Based on this, we can define the possible levels of binding between an event
e and a machine m as follows:

a. If e has no OID valued attributes, the binding between e and m is undefined.

Protocol Modelling 177

b. If any OID valued attribute of e is bound to m, e is bound to m.
c. If all OID valued attributes in e are bound to m, e is fully bound to m.
d. If no OID attribute of e is bound to m, e is not bound.

The phrase “an event e is represented in the repertoire of a machine m”
introduced in Sect. 2.2 we now formally define to mean “e is bound to m”. Thus
a machine m will ignore an event e that is presented to it unless e is bound to m.

3.4 Single Binding Rule

Consider an event of type E that has two OID valued attributes (R1 and R2)
with the same OID value, o. There is the risk here that the model contains a
machine that has both (E, o,R1) and (E, o,R2) in its repertoire, and that this
machine will accept and react in two different ways to the event. This could give
rise to non-deterministic behaviour.

To prevent this, we require that a given OID may appear as the value of at
most one attribute in a given event instance, so that it is not possible for two
attributes of the same event instance to bind to the same machine. Having an
event instance that binds twice with a given machine is avoided by using another
event-type that only binds once. Thus a “Suicide” event would be used in place
of “Murder” if the murderer and victim are the same person.

3.5 Object Types

The scheme described so far does not place any restriction on the combinations
of machine types that may be used to form an object. If a system has n machine
types, any of the 2n − 1 combinations could be used. We now describe a more
restricted, but much more useful, formulation in which there is a fixed number
of predefined object types.

To do this we ensure that every system only allows a predetermined combi-
nation of machine types to share the same OID. Each combination of machine
types allowed is specified as a set called an “object type”. The set of object types
supported by a system of type S is denoted by Ω(S) and is part of the metadata
associated with the system-type.

4 Machine Metadata

Ultimately any protocol machine is defined in terms of “elementary machines”:
machines that are not defined (as systems) in terms of other machines.

The properties and behaviour of an elementary machine are determined by
the metadata associated with its machine-type. This metadata determines:

a. The repertoire of the machine.
b. The initialized value of the local state of a newly instantiated machine.

178 A. McNeile and N. Simons

c. The tests that the machine applies to the quiescent states before and after
an event to determine whether or not it accepts the event.

d. The updates that it makes to its local state as the result of an event.

It is not the purpose of this paper to describe the details of a concrete modelling
language, but some aspects of the metadata definition are described below.

4.1 Machine Meta-Repertoire

The metadata of an elementary machine type M defines the set of event-type/
role combinations (E,R) that any machine of type M can understand. This set
is called the “meta-repertoire” of M and is denoted by Λ(M).

When an elementary machine is instantiated from metadata and given an
OID, o, the machine’s repertoire entries in the form (E, o,R) are created from
the OID and the meta-repertoire in the obvious way.

Fig. 5. Metadata Structure Fig. 6. Transition Notations

4.2 Machine Behaviour

For each entry in the meta-repertoire of a machine, the machine’s metadata must
provide:

– A definition of the tests that determine whether or not an event instance that
matches the repertoire entry is accepted, and

– The updates to the machine’s local state that are performed if it is.

The metadata for a machine can be thought of as having the logical structure
shown in Fig. 5.

This picture depicts a structure for the metadata for a machine type,
M. The upper boxes represent the entries of the meta-repertoire of M , so:
Λ(M) = {Q1, Q2, Q3, Q4}. Each member of Λ(M) has the form (E,R) described
in Sect. 4.1.

The lower box for a given meta-repertoire entry defines how a machine of
type M handles an event that matches the meta-repertoire entry. The handling
is defined by:

Protocol Modelling 179

a. Tests to be applied to the quiescent states before and after an event that
determine whether or not the event can be accepted by the machine. These
tests have as their domain the local state and the state environment of the
machine.

b. The algorithm that defines the update to be applied to the local state of the
machine as a result of the event.

4.3 A Graphical Notation

In principle, the metadata for the test and update definitions (the lower boxes
in Fig. 5) can take any convenient form: for instance a programming language.
However, the following graphical form is attractive and works well in practice.

The graphical notation uses state transitions. There are two variants of the
notation, as shown in Fig. 6.

In both variants, the circles represent states of the machine, and the tran-
sition represents the effect of an event. In both cases, the diagram represents a
successful event acceptance scenario.

In the upper variant, the states “s1” and “s2” are values of a distinguished
stored variable (the “state variable”) in the local state of the machine. The
semantics of the upper diagram is:

a. The scenario is applicable if the value of the state variable in the quiescent
local state of the machine before the event is “s1”.

b. The scenario results in a set of updates, specified by Update Spec, being
applied to the local state of the machine.

c. In addition to the updates specified by Update Spec, the scenario results in
the machine’s state variable being set to “s2” after the event, this being the
only mechanism whereby the state variable can be changed.

In the lower variant, the circles (this time with a double outline) represent
values that are computed by the machine, using a distinguished function called
the machine’s “state function”. This is a function on the local state and state
environment of the machine that returns an enumerated type, of which “f1” and
“f2” are two possible values. Again, the diagram represents a successful event
acceptance scenario, but with the following semantics:

a. The scenario applies if the value returned by the state function in the quies-
cent state of the machine before the event is “f1” and the value returned by
the state function in the quiescent state after the event is “f2”.

b. The scenario results in a set of updates, specified by Update Spec, being
applied to the local state of the machine.

One or more scenarios can be used to specify the lower box metadata in
Fig. 5 for a given entry in the meta-repertoire of a machine. An event presented
to the machine is accepted if there is a corresponding scenario specified against
the repertoire entry for the event that is successful according to the semantics
defined above.

180 A. McNeile and N. Simons

The rule that a machine must be deterministic (as specified in Sect. 2.2)
requires that the scenarios are designed so that a given machine cannot have
more than one successful scenario for a given event. This is most easily arranged
by requiring that, where more than one scenario is specified for a given repertoire
entry, the starting states of the scenarios are mutually exclusive.

Also note the following:

– The two variants are not mixed within a given machine-type. A machine
type is either “stored state” in which case it has a single, distinguished, state
variable as part of its local state and only uses upper variant scenarios; or it
is “derived state” in which case it has a single, distinguished, state function
that returns its state value and only uses lower variant scenarios.

– The success scenario diagrams for a single machine type can be “stitched
together” to form a single graphical state transition diagram that represents
the behaviour of the machine.

Fig. 7. Simple Bank Account

4.4 Example

Figure 7 shows a state transition diagram for a machine that represents a simple
bank account.

Each arrow represents a scenario for a different meta-repertoire entry, and
each is labelled with the meta-repertoire to which it belongs: Open, Deposit,
Withdraw or Close5. This machine uses a stored state and thus uses the upper
variant described in Fig. 6. The current state (Active or Closed) is stored as
part of the local state of the machine and changes to its value are driven by the
transitions as shown in the diagram.

Now suppose that an account can be frozen and that, while frozen, funds
cannot be withdrawn. Figure 8 shows a machine that specifies this behaviour.

5 Strictly speaking these meta-repertoire entries should be specified in the form (E, R).
In these examples the role, R, is not required for disambiguation and we have omitted
it for ease of reading.

Protocol Modelling 181

Fig. 8. Account Freezing Fig. 9. Release\Close Control

This machine type, then, is added to the set that defines the Account object
type.

This machine also uses a stored state and specifies four scenarios. The
machine performs no updates to its local state, apart from the state variable
update implicit in the transitions.

As the Withdraw event is subject to scenarios in both Account Machine 1
and Account Machine 2, it can only be accepted if allowed by both: in other
words, if the Account is both Active (in Account Machine 1) and Unfrozen
(in Account Machine 2).

Suppose that additionally we want to specify that an account cannot be
released (from a frozen state) or closed if it is overdrawn. A third machine with
the metadata shown in Fig. 9 is added to the Account object type.

This machine specifies two scenarios, corresponding to the two arrows, one
for Release and one for Close. The scenarios state that these events cannot take
place unless the Account state as returned by the machine’s state function before
the event is In Credit. This machine uses the lower variant from Fig. 6 but, as
we are not interested in the state after the events, no ending state is needed
on the scenarios. Note that the state function refers to the Balance maintained
by Account Machine 1, which forms part of Account Machine 3’s state
environment.

Finally, suppose that the account is subject to an overdraft limit of £50. We
add a fourth machine, shown in Fig. 10.

In this machine, the overdraft limit rule is expressed as a constraint on the
state that results from a Withdraw event. If the state after the event is not as
specified by this machine, the event is refused. So no withdrawal can be made
that results in a violation of the £50 overdraft limit.

As a final note, a state function may be more complex than shown here. In
a previous paper, Mixin Based Behaviour Modelling [3], we describe a model
of marriages in which the marital status of a Person (Single or Married) is
computed by detecting the presence of a valid Marriage Contract, another
object type in the model.

4.5 State Spaces

Generally, the number of machines required to model the behaviour of an object
is the number of separate “state spaces” that the object possesses. For instance,

182 A. McNeile and N. Simons

Fig. 10. Withdraw Control

a model of Person might have two state spaces, (Single or Married) and
(Working or Unemployed), and would therefore require two machines to
model its event protocol.

This is only a guideline. Sometimes it is appropriate to use more than one
machine for a state space to improve model readability or to render machines
more re-usable across different object types.

4.6 Proto Machines

To support the instantiation of new machines when a new object is created, it is
assumed that a system has an inexhaustible supply of “proto-machines”, being
machines that have a type but no OID.

Proto-machines are in an initial state. The initial state of an elementary
machine is specified by the machine’s metadata. In particular, stored state vari-
ables are initialised to a value that corresponds to the starting pseudo-state (the
black dots in Figs. 7 and 8). The initial state of a system is a system with no
constituent machines. Proto-machines have no repertoire, so ignore all events.

The way in which proto-machines are used to create new objects is described
in the following section.

5 Protocol Models

A “protocol model” is a protocol machine built out of other protocol machines
by combining them recursively as systems6. A protocol model is privileged in
having the following two capabilities, not shared by its constituent machines:

– The capability to determine whether or not a new quiescent state becomes a
new stable state, and

– The capability to bring new objects into existence.

To qualify for this privilege, a protocol model must be closed (in the sense
defined in Sect. 2.2) and requires that every event that is presented to it is fully
bound to it, otherwise the result of presentation is undefined.
6 Subject, of course, to the constraint that a system is not defined directly or indirectly

in terms of itself.

Protocol Modelling 183

5.1 Full Binding

The implication of full binding is that every OID valued attribute of an event
is represented in the repertoire of at least one elementary machine in the model
(see Sect. 3.3).

Consider, for example, the Transfer event in Fig. 4. Full binding means that
when an instance of the Transfer event type is created, Accounts exist for both
OIDs specified in the event. This does not mean that the event is necessarily
accepted, as one or both Accounts involved in the transfer might refuse the event.

However it does mean that no OID in the event can be ignored and in this
sense, the full binding requirement ensures that the behavioural semantics of a
model is complete. This is a prerequisite for meaningful execution.

5.2 Determination of Stability

After an event has been presented to a model and the model has reached a new
quiescent state, it is able to determine a new stable state for itself. It does this
as follows:

a. If the event was accepted by the model, the new quiescent state becomes the
new stable state.

b. If the event was refused, the new stable state is the same as the one that
pertained before presentation of the event.

This determination defines the new stable state of the model itself and of all
nested machines.

5.3 OIDs in Models

A model does not itself have an OID but every other machine in the model does
have one. This is because every machine in a model, with the exception of the
model itself which is at the top of the nesting, belongs to a system and so requires
an OID as described in Sect. 3.1. In particular, every elementary machine in a
model has an OID7.

Because a constituent machine of a system can itself be a system, there can
be many systems in a model, each having its own set of OIDs. This recursion can
be used, for instance, to model an object that structurally owns a homogeneous
population of further objects, as an Order owns Order Lines8.

The OIDs of a model must satisfy the following rule: Given an OID, even
one not currently used by any machine in the model, it must be possible to
determine the system to which the OID belongs. In other words, there must be
an “object ownership” function, ω, which gives the system s to which an OID o
belongs: s = ω(o).

7 We ignore the case of a model that consists of a single elementary machine.
8 UML refers to this kind of ownership relationship as “aggregation”.

184 A. McNeile and N. Simons

5.4 Object Creation

A new object is created when an event containing an OID that does not currently
exist (i.e. there are no machines in the model with that OID) is presented to a
model. This is done before the level of binding between the event and the model
has been determined.

Suppose an event contains an OID valued attribute with value o, and that
no object exits in the model with this OID. The event creation mechanism must
ensure that ω(o) exists at the time the event is presented. The model then creates
a new object in the system ω(o) with OID o.

Object creation is done by assigning the OID o to a set of proto-machines in
ω(o). The object creation mechanism must ensure that the set of types of the
proto-machines selected to instantiate the object is a member of Ω(τ(ω(o))), the
set of object types allowed in ω(o).

When an elementary proto-machine is given an OID, it also acquires a reper-
toire as described in Sect. 4.1. Because the repertoire of a system is the union
of the repertoires of its constituent machines (see Sect. 2.3) the new repertoire
entries percolate up the nesting hierarchy and contribute new entries to the
repertoire of the model. Only after the model repertoire has been re-established
is the level of binding of the event with the model determined.

5.5 Attribute Typing

The metadata for an event-type includes a “type” for each attribute of the event.
Giving an event attribute a type is an instruction to the mechanism that handles
event instance creation concerning the allowable values that may be loaded into
the attribute. This mechanism is normally a user interface, although it could
also be software.

For a non-OID valued attribute the type is a primitive value type such as
String, Integer, Real, Date, Boolean, etc. with the obvious meaning for what
may be loaded at event creation time.

For OID valued attributes we have so far specified the type as “OID” (for
instance in Fig. 4) indicating that the attribute references an object. However,
this gives no indication of what type of object is an appropriate addressee of the
event, and therefore no guarantee that the event will be bound. A better scheme
is to type event attributes that reference objects with a machine-type. In the
next section, we show how it is then possible to ensure that events are properly
(fully) bound to a model.

First, we define what is meant by giving an OID valued attribute a type.
Suppose an attribute R of an event type E is given type M (a machine-type).
Suppose that an instance e of type E is created, and that the attribute R is given
the OID value o. To honour the type, M , of the attribute, the event creation
mechanism must ensure that there is a machine of type M with OID o in the
model. Moreover, this must be the case whether o is an existing object or a new
object created according to the description in Sect. 5.4.

Protocol Modelling 185

If a new object is to be created, and there is more than one object-type that
meets the type match criterion given above, which one is chosen is undefined by
the model and must be determined externally. This determination is normally
by user choice at event creation time.

5.6 Design Time Binding

With OID valued attributes typed in this way, it is possible to ensure at design
time (i.e., based on metadata of a model) that events are always fully bound to
a model. We now describe a recipe for doing this.

First we define the meta-repertoire, Λ(O), of an object type O as follows:

Λ(O) ≡ {Q | (Q ∈ Λ(M)) ∧ (M ∈ O) ∧ M is elementary}

To guarantee that an attribute R in event-type E will be bound to a model X,
we choose the type M for the attribute as follows:

a. Let Σ be the set of all system-types used in the metadata of X. Define Ω(X),
the set of object types in X, as: Ω(X) ≡ {O | (O ∈ Ω(S)) ∧ (S ∈ Σ)}

b. Define the set O(E,R,X) of all object types in X that have (E,R) in their
meta-repertoire: O(E,R,X) ≡ {O | (O ∈ Ω(X)) ∧ ((E,R) ∈ Λ(O))}

c. For the type of R in E, find a machine-type M such that any object using a
machine of type M has (E,R) in its meta-repertoire: ∀ O ∈ Λ(X),M ∈ O ⇒
O ∈ O(E,R,X)

This construction of the attribute type for R, combined with the assurance
provided by the event creation mechanism that any value loaded into R must
conform to type, guarantees that the attribute R will be bound to the model. So
if this construction is carried out for all the OID valued attributes of an event
type, event instances of that type will be fully bound.

In step c of the construction it is possible that no machine-type M with the
property required exists. In this case it is possible to create one as follows9:

i. Create a new elementary machine type M ′ with Λ(M ′) = {}. Any machine
of type M ′ will have an empty repertoire so will ignore all events presented
to it. Hence adding M ′ to an object-type has no effect on the behaviour of
objects of that type.

ii. Add the machine-type M ′ to all object-types in O(E,R,X) (from step b
above). Use M ′ as the type for the attribute.

5.7 Example

We now expand the banking example introduced earlier to illustrate the effect
of having an event bound to multiple objects.
9 In practice, the need to create a machine type that has no behaviour is an indication

that a model contains poorly chosen behavioural abstractions.

186 A. McNeile and N. Simons

Fig. 11. Metadata for Open

Consider the Open event, that opens a bank account for a customer with
the metadata shown in Fig. 11.

This event has two OID valued attributes. The Account attribute is typed
by the machine Account Machine 1 (Fig. 7). The machine for Customer is
shown in Fig. 12.

Suppose that an instance, e, of the Open event is created with value o1 for
the Customer attribute and o2 for the Account attribute.

Assuming that e is fully bound and successful (not refused) then e must
have been accepted by a machine of type Customer Machine 1 with OID o1
and by a machine of type Account Machine 1 with OID o2. Moreover, the
o1 machine must have been in the state Registered and the o2 machine in the
initial pseudo-state (the black dot on Fig. 7), otherwise the event would not have
been accepted.

In the case of the Customer machine, there may not have been any change
to the local state of the machine as a result of the event. The point here is that
acceptance of an event by a machine signifies consent to the event being possible,
and may or may not involve an update to the local state of the accepting machine.
Designing the metadata of a protocol model is therefore about designing the
“event consent schema” of each event type, across all the object types it involves.
We emphasise this to dispel the possible misconception that an event-type only
needs to appear in the metadata of a machine if an occurrence of the event
actually alters the state of the machine.

Fig. 12. Customer Machine Fig. 13. Model Extension

Protocol Modelling 187

5.8 Extended Models

It is possible to extend a model so that the effect10 of one event is defined in
terms of a set of generated events.

The general scheme is shown in Fig. 13. Here the model X ′ is created by
extending the model X with:

– A new event type, EP .
– A process P that handles instances of EP .
– Protocol metadata within X that determines when events of type EP can be

accepted.

Events presented to X ′ that are not of type EP are presented directly to X
(as in the case of e1 in Fig. 13).

Events of type EP are presented to a process P that is in X ′ but outside
X, as shown in the case of e2. P creates new events and presents them to X,
as is the case with e3 and e4. The generated events are handled by X exactly
as though X were a stand-alone model: P is simulating an environment for X
by presenting it with events. This means that, while P is active, X determines
acceptance and state stability for the generated events.

Note the following points about P :

– P is specific to an event type and is used for every instance of that event type
presented to X ′.

– P is not, itself, a protocol machine. When an event is presented to it, it must
accept it.

– While P is active, X behaves like a model for all the events generated by P .
This includes object creation in X and determining acceptance or refusal of
the generated events.

– P has access to the attributes of e2 and to the interim stable states that X
reaches between the presentation of successive generated events.

– Once P completes and X reaches a quiescent state, the quiescent state of X ′

is the same as that of X. In other words, P does not contribute to this state.

Although presented to X, e2 must not itself cause any change to the state
of X. Instead, the required updates are performed by the events created by P .
This rule ensures that there is no possible indeterminacy in the processing of e2
resulting from different interleavings of the updates required for e2 itself with
those required for the generated events.

A necessary condition for the acceptance of e2 by X ′ is that every generated
event is accepted by X. This is not a sufficient condition, as the metadata of X
may impose protocol constraints on the acceptance of e2 that are not guaranteed
by the acceptance of the generated events.

X ′ is responsible for determining state stability for events presented to X ′.
So the new quiescent state of X ′ after presentation of e2 becomes the new stable

10 Here “effect” of an event means the change to the total stored state of the model
resulting from its acceptance.

188 A. McNeile and N. Simons

state if, and only if, all generated events are accepted by X and e2 itself is
accepted by X ′. Otherwise the new stable state of X ′ is the stable state prior to
presentation of e2.

As an example of the use of model extension, suppose that in a banking
system separate events have been defined to:

– Register the new customer, and
– Open a current account, and
– Open a savings account.

Suppose also that, for most new customers, it is usual to do all three of these
and do them together. It would be possible to use model extension to define a
new “standard customer set-up” event that registers a new customer and opens
the two accounts as a single event.

Model extension can also be used to create and send events to a number of
objects.

6 Behaviour Reuse

One of the motivations for the approach to behaviour modelling described in
this paper is to support the reuse of behavioural abstractions. The basis for this
is that the same elementary machine type may be included in the definition of
many object types. As the behaviour of a given machine type is specified by its
metadata, this translates into a mechanism for reuse of behavioural metadata
across many object types.

This style of object behaviour definition by combining the metadata of
smaller elements that can be reused conforms to the pattern described by Bracha
et al. as a pure mixin approach [6].

While this provides the foundation for behaviour reuse, its utility is limited
without a means to define behaviour that abstracts from particular event-types,
as the next section illustrates.

6.1 Approach to Re-Use

Suppose that the Account example described in Sect. 4.4 is to amended to sup-
port two different types of account: a Current Account and Savings Account.
A Current Account allows overdrafts, and each Current Account has an over-
draft limit agreed with the customer at the time the account is opened. Savings
Accounts, on the other hand, do not allow overdrafts.

When a Current Account is opened its overdraft limit is specified as part
of the open event, so the open event must include this as an attribute in its
metadata. The open event for a Savings Account does not have this attribute
and is therefore a different event-type.

It makes sense to want to use Account Machine 1 (Fig. 7), which describes
the basic mechanism for account balance maintenance, for both types of account.
However, there is an apparent problem here: how do you represent the “open”

Protocol Modelling 189

event in this machine when there are two different kinds of open event, one for
each of the two different kinds of account?

There are a number of possible mechanisms that might be considered, none
of which is satisfactory:

– Include both event types in the definition of Account Machine 1. However,
this pollutes the repertoire of each account type with an Open event that
does not belong to it.

– Require that the set of events defined for the application be re-factored, for
instance so that opening a current account is separated into two events: a
generic open and another event that sets the overdraft limit. However, it is
not proper that the vocabulary of event types should be driven or constrained
by limitations of the modelling language.

– Take a similar line to that described above, but hide the internal configu-
ration of events by using the Model Extension mechanism (see Sect. 5.8) to
generate them. However, the consequent separation between the vocabularies
of external and internal, generated, events dilutes the clarity of the protocols
as statements about rules of the domain.

Instead of any of these, our route has been to build mechanisms into the
modelling language that allow abstract events to be defined. Two mechanisms
are involved:

– Conditional Repertoire Entries
– Repertoire Macros

These are described in the following sections.

6.2 Conditional Repertoire Entries

This is a mechanism that allows the behaviour of a machine to be influenced by
its context, as defined by the other machines which belong to the same object.

Suppose that a machine type M has an entry Q = (E,R) in its meta-
repertoire. We can define a new machine type, M/{Q}, which is the same as
M except that the entry Q is absent from its meta-repertoire. This means that a
machine of type M/{Q} will ignore requests to participate as player of role R in
an event of type E. Otherwise the machine behaves exactly like one of type M .

Now we define M//{Q}, a machine in which Q has been made a “conditional”
entry in the meta-repertoire of M . The behaviour of a machine of this type
depends on its context in a protocol system. Suppose that a machine m of type
M//{Q} and with OID o is present in a system s. Then:

a. If any other constituent machine of s has the entry (E, o,R) in its reper-
toire, resulting from a non-conditional entry (E,R) in its meta-repertoire, m
behaves as though it had type M .

b. Otherwise m behaves as though it had type M/{Q}.

190 A. McNeile and N. Simons

The effect of this is that the meta-repertoire entry Q in a machine of type
M//{Q} is “active” (i.e., causes the machine to accept or refuse events) if and
only if the machine is part of an object that has at least one other machine
whose meta-repertoire contains Q as a non-conditional entry.

We will use underlining to denote a conditional meta-repertoire entry,
thus: Q.

6.3 Full Binding Revisited

With the introduction of conditional repertoire entries we need to revisit the dis-
cussion of full binding in Sect. 5.6 to check that the ideas set out there still work.

Suppose a machine type M that has a conditional meta-repertoire entry Q is
used by an object type O, so that M ∈ O. If no other machine type in O contains
Q as a non-conditional entry, Q is inactive in O and so should not appear in the
meta-repertoire, Λ(O), of O.

With this observation it is clear that, provided conditional meta-repertoire
entries are ignored when compiling the meta-repertoire of an object, the full
binding recipe works as before. The definition of the meta-repertoire of an object
type given previously in Sect. 5.6 is therefore amended to:

Λ(O) ≡ {Q | (Q ∈ Λ(M))∧(M ∈ O)∧M is elementary ∧ Q is non−conditional in M}

6.4 Conditional Entries and Reuse

Returning to the example of the current and savings accounts, we now explain
how conditional repertoire entries allow machine metadata reuse.

Fig. 14. Modified Bank Account

We start by assuming that we want to use a common machine to describe
the basic account mechanism of maintaining a balance, as Account Machine 1
did in our earlier example, but that we include both types of account opening
event. The machine is described in Fig. 14.

Protocol Modelling 191

This machine type allows either of the two (different) event types Open
Current or Open Savings to be the first event in its lifecycle. Either event
has the effect of initialising the balance and enabling deposits and withdrawals
to take place until the close event. However, if used as it stands in the context of
defining both the current and savings account objects, both objects will end up
with both types of open event in their repertoire, and this is not appropriate.

To avoid this, we can create a reusable version of the machine by forming
the machine:

Account Machine//{(Open Current,Account), (Open Savings,Account)}
in which the two entries for the open events are made conditional11.

Note that the Current Account object must contain at least one (non-
reusable) machine that includes Open Current non-conditionally in its meta-
repertoire, otherwise Open Current would not appear in the meta-repertoire
of Current Account at all. Assuming however, as is reasonable, that none of the
machine types involved in defining the Current Account object contains Open
Savings non-conditionally in its meta-repertoire, Open Savings will not be
in the meta-repertoire of Current Account at all. A similar argument applies to
Savings Account.

6.5 Repertoire Macros

While the conditional repertoire entry mechanism can support the creation of
reusable machines by making it possible to “switch off” the entries in a machine’s
repertoire not relevant to the context of a particular object, we have not captured
an idea of abstraction that would allow the distinction between two event types
(such as the two open events) to be hidden where it is not required. The second
mechanism, Repertoire Macros, is the basis for doing this.

Suppose a machine type has the metadata shown in Fig. 15.
Consider the relationship between the metadata for Q1 and an event instance

that it processes. In particular we need to understand what information about an
event the metadata needs to obtain from an event instance at run time. Because
the metadata, by assumption, is specific to an event type and role (as specified in
Q1) these are known to the metadata by design, and do not need to be obtained
at run time. Therefore, only the values of event attributes need to be obtained
at run time. This means that the metadata definitions for two meta-repertoire
entries can be identical if:

– the event attributes referred to by the two metadata definitions are present
in the metadata of both event types, and

– the processing required (i.e., both testing for event acceptance and performing
local state update) defined by the two entries is the same.

11 For concreteness in showing the meta-repertoire entries it is assumed that the both
of the open events have an attribute called Account that takes the OID of the (new)
Account being opened.

192 A. McNeile and N. Simons

Fig. 15. Base Version Fig. 16. Shared
Metadata

Fig. 17. Repertoire
Macro

Under these circumstances, the two entries can share a single lexical copy of
the metadata. This is shown in Fig. 16. Figure 16 represents the same machine as
Fig. 15 but recognises that the (conditional) meta-repertoire entry Q3 and the
(non-conditional) entry Q4 have identical metadata and can share the same lex-
ical copy. We now provide a simple compile-time lexical replacement (or macro)
facility to re-write Fig. 16 as shown in Fig. 17.

Using this technique in the context of the Account Machine defined earlier,
we can define a macro:

Open = {(Open Current, Account), (Open Savings, Account)}

In this definition, Open is a macro name now defined in the meta-repertoire
of Account Machine, but which is replaced by the two conditional meta-
repertoire entries for the two types of open event at compile time. This macro
definition is possible because the metadata treatment of the two open events in
the context of the Account Machine is identical, as can be seen in Fig. 14.
This is equivalent to noting that, at least in the context of Account Machine,
abstraction from the particular types of open to a generic open is appropriate,
and the Open macro can be viewed as naming this abstraction.

We can now restore Fig. 14 to the simpler form that it had in Fig. 7, with the
single arrow for opening an account, supplemented by the macro definition that
makes it re-usable across the different types of account.

7 Discussion

7.1 Behaviour Encapsulation

Most object-oriented modelling techniques, in particular the UML, do not have a
primitive notion of an “event” as described here and typically events are modelled
as objects. A “Transfer” event that moves funds between accounts would have
its own class with responsibility for checking that a transfer can complete, i.e.
that both the source and target accounts exist and are in a state to participate

Protocol Modelling 193

in the transfer. This checking might include a check that the source account is
not frozen, as this might prevent the account from being used in this role.

Freezing an account would also prevent cash withdrawal, so the class that
models the Withdraw event would need to include a similar check.

In this approach the behavioural states and the event protocol of an object
are implicit in the tests that transactions perform to determine whether or not
they can proceed. This has two consequences:

– Each transaction can potentially take a different view on how the attributes
of an object determine its state. So that there is no guarantee, for instance,
that Transfer and Withdraw determine whether or not the account is frozen
in the same way. If they do it in different ways, the behaviour of the system
becomes incoherent.

– Because event protocols are embedded in the transactions and not the object,
sub-classing the object does not sub-class the protocol. This means that sub-
classing cannot be used to create behavioural variants of an object in the way
that one might hope or expect.

We think that these are symptoms of poor encapsulation of behaviour. Nei-
ther of these issues can arise in protocol based modelling as the protocol of an
object is a property of the object itself, by virtue of the protocol machines used
to define it.

7.2 MDA

Our focus on model execution is driven by a belief that execution at the model
level has value in providing a means of validating models early in the systems
development lifecycle. The idea that models embody behavioural semantics that
potentially support model execution is also part of the vision of the Model Driven
Architecture initiative sponsored by the Object Management Group. In this
section we relate our work to some of the stated aims of MDA and compare the
protocol machine approach with other approaches that also aspire to address
these aims.

MDA and Model Execution. The OMG characterises MDA as follows: Fully-
specified platform-independent models (including behaviour) can enable intellec-
tual property to move away from technology-specific code, helping to insulate
business applications from technology evolution and further enable interoperabil-
ity [12]. (The underlining is ours.)

Moreover, Richard Soley, CEO of OMG, says that one of the aims of MDA is
that Models are testable and simulatable [14]. Oliver Sims, a member of various
OMG Task Forces who served for several years on the OMG Architecture Board,
says that The aim [of MDA] is to build computationally complete PIMs [models]
[11]. As Oliver Sims points out, the term “computationally complete” means
capable of being executed.

194 A. McNeile and N. Simons

Fig. 18. Contracts versus Protocols

Other MDA Approaches. Here we compare our approach to other work
currently being promoted under the MDA banner. There are two main camps of
MDA, both of which take the UML as their basis, and we consider each in turn
below.

The first camp is based on “Design By Contract” [4], and uses the Object
Constraint Language (OCL) [7] to specify contracts in terms of pre-and post-
conditions on operations invoked in objects. The claim is that adorning a
UML structural (class) model with contracts enables behaviour to be captured
formally [1].

While the language of Design by Contract (pre- and post-conditions) is very
similar to that used in this paper for protocols (pre- and post-constraints), it
seems clear to us that Contracts and Protocols are conceptually different (see
Fig. 18). In particular, the language of contracts does not bring with it any new
primitives with behavioural semantics to raise the level of abstraction at which
behaviour is described. This means that a model that expresses behaviour as
contracts will either not be executable (and therefore not simulatable or testable)
or will not be at a level of abstraction above a programming language.

The second camp is that termed “Executable UML”, which is based largely on
the work of Shlaer and Mellor [17]. In this approach, state machine descriptions of
object life-cycles are adorned with definitions of the processing performed by the
object expressed in a high level imperative language, the Action Language [16].

This work bears superficial resemblance to ours in its use of state transition
diagrams as a means of describing object behaviour and in its aim of provid-
ing model executability. Moreover, the state machines do provide some level of
explicit definition for the behavioural states of an object. However, the state
machine semantics in Executable UML are different from ours, in that a state
machine may ignore an event but cannot refuse one. Without the ability to refuse
events, state machines cannot describe event protocols in situations where an
event must be accepted by multiple objects, which is usual in transactional busi-
ness systems. This leads to the need to model transactions (events) as classes
in their own right, containing behaviour rules that check event acceptability
across multiple contexts. This approach has the encapsulation weaknesses that
we outlined in Sect. 7.1.

Protocol Modelling 195

Two other points where the Executable UML approach differs from that
described in this paper are also worth noting:

– The approach advocates a single state machine per class. An object with
multiple state spaces, such as the Person example in Sect. 4.5, would need to
be modelled using more than one class.

– There is no concept of a calculated state, as described in Sect. 4.3. This means,
in general, that state spaces such as (In Credit or Overdrawn) can only be
handled by generating internal events that have no domain meaning to drive
the machine between these states.

Finally, the Executable UML technique offers no mechanism for behaviour
reuse which, in the literature describing the method, is explicitly discouraged.

8 Implementations

The ideas presented in this paper have emerged from 15 years of work building
and using tools that support the behavioural design of transactional business
systems.

Our focus in this work has been to provide tools that allow behavioural
models, described as protocol machines, to be executed and tested early in the
development lifecycle. This early testing reduces the risk that severe behavioural
problems are found at late stages of development, when rectification can be very
expensive. The executable models can be viewed as a form of prototype, and the
testing and exploration of model based prototypes provides a vehicle for users
and other stakeholders to engage in the modelling process even if they have no
understanding of the notations and concepts used to build the model.

All of these tools are aimed at exploring and validating behaviour with users.
The user interface for driving model execution is therefore designed to be under-
standable by people who do not know anything about the modelling concepts
used. In particular, the user interface presents object instances without revealing
their internal machine level structure or requiring the user to understand this
structure.

The first version of the tool, built in 1989, used the concepts and notations
of Jackson System Development [8], an early object-based modelling approach
developed in the 1970s. This tool only allowed one machine per object and had
no support for behaviour reuse. Also, this version had a primitive user interface
that required OIDs to be constructed and entered explicitly by the user.

In 1993 we moved to using state transition diagrams as the basic notation
for defining protocols. This allowed a more intuitive style of user interface, as
it became possible to grey out the event-types incapable of being accepted by
an object because they violate a pre-constraint. A new approach to binding
events to the model was introduced based on selecting object instances from
user interface lists rather than entering OIDs; and OIDs became completely
hidden from the user. This tool also supported multiple machines per object
and extended the notion of state transition diagrams by allowing states to be

196 A. McNeile and N. Simons

calculated, as described in Sect. 4.3. However, there was only limited support for
machine re-use.

The most recent tool, ModelScope [10], developed in 2002, improved the
metadata language and added support for the event abstraction ideas described
in Sect. 6, greatly increasing the capabilities for behavioural reuse.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

2. McNeile, A., Simons, N.: State Machines as Mixins. J. Object Technol. 2(6), 85–101
(2003)

3. McNeile, A., Simons, N.: Mixin Based Behaviour Modelling. In: 6th International
Conference on Enterprise Information Systems, vol. 3, pp. 179–183 (2004)

4. Meyer, B.: Object-Oriented Software Construction. Prentice Hall PTR, Englewood
Cliffs (2000)

5. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs (1985)

6. Bracha, G., Cook, W.: Mixin-based Inheritance. In: ASM Conference on Object-
Oriented Programming, Systems, Languages, Applications, pp. 179–183 (1990)

7. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

8. Jackson, M.: System Development. Prentice Hall, Englewood Cliffs (1983)
9. Jackson, M., Zave, P.: Domain Descriptions. In: Proceeding of IEEE International

Symposium on Requirements Engineering, pp. 56–64 (1993)
10. Metamaxim Ltd., ModelScope. Metamaxim Website: http://www.metamaxim.

com. Accessed Feb 2004
11. Sims, O.: MDA: The Real Value. OMG Website: http://www.omg.org/mda/

presentations. Accessed Feb 2004
12. Object Management Group. How Systems Will Be Built. OMG Website: http://

www.omg.org/mda. Accessed Jan 2004
13. Object Management Group. UML 2.0 Superstructure Final Adopted Specification.

OMG Document reference ptc/03-08-02, August 2003
14. Soley, R.: MDA: An Introduction. OMG Website: http://www.omg.org/mda/

presentations. Accessed Feb 2004
15. Cook, S., Daniels, J.: Designing Object Systems: Object-Oriented Modelling with

Syntropy. Prentice-Hall, Englewood Cliffs (1994)
16. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-

tectures. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)
17. Shlaer, S., Mellor, S.: Object Life Cycles - Modeling the World in States. Yourdon

Press/Prentice Hall, Englewood Cliffs (1992)

http://www.metamaxim.com
http://www.metamaxim.com
http://www.omg.org/mda/presentations
http://www.omg.org/mda/presentations
http://www.omg.org/mda
http://www.omg.org/mda
http://www.omg.org/mda/presentations
http://www.omg.org/mda/presentations

Integrating Protocol Contracts with Program
Code – A Leightweight Approach for Applied

Behaviour Models that Respect
Their Execution Context

Marco Konersmann(B) and Michael Goedicke

paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{marco.konersmann,michael.goedicke}@paluno.uni-due.de

Abstract. In the domain of information systems, behaviour is typically
described without a formal foundation. These systems could benefit from
the use of formal behaviour modeling. However, the perceived costs for
integrating a formal behaviour modeling approach seems to be higher
than the expected benefits. A framework for formal behaviour modeling
and execution could help bringing the benefits of formal modeling to this
domain when it imposes a low barrier for integrating the approach. To
achieve this, we present our approach for designing and executing behav-
iour models which are encoded with well-defined source code structures.
In our approach the model is statically represented in the program code.
Therefore the model does not exist as a first class citizen, but is extracted
from the code at design time and run time. These models can be inte-
grated within a context of arbitrary other program code, that does not
follow the semantics of the model type. They therefore impose only a
small barrier for their use.

1 Motivation

The domain of information systems is driven by platforms that are defined in
industry standards. These platforms typically describe the structure of informa-
tion systems that use the platform, including structural specifications for data
models, logical components, and user interfaces. The specifications are most
often accompanied by specifications for security, logging, monitoring, and other
cross cutting concerns.

Formal behaviour models are not broadly used in the domain of information
systems. Although the domain includes some problems that require complex
behaviour descriptions, great parts of information systems are not modeled by
behaviour models. The benefit of formal behaviour models – the ability to for-
mally reason about the behaviour and the ability to model small, interacting
behavioural components – is often considered not necessary, or the costs for
using formal behaviour models is considered too high for their benefits. There-
fore, the widely used platforms for information systems do not include formal
behaviour models, but rely on the underlying imperative programming language
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 197–219, 2015.
DOI: 10.1007/978-3-319-21912-7 8

198 M. Konersmann and M. Goedicke

for behaviour specifications. Another property of information systems is, that
they are often long-living systems, which are and have been subject to evolution.
Therefore changing the complete behaviour towards a formal model implemen-
tation is infeasibly expensive.

For behaviour specifications to be more broadly used in information systems,
we believe that a framework needs to be available, which imposes a low barrier
for its integration. We identified the following criteria for a solution for formal
behaviour models in the information system domain:

– Ease of Application Integration. As it is not expected that the com-
plete behaviour of an information system is changed at once, it is desirable
that behaviour models can easily be used for increasingly many parts of the
software in an evolutionary fashion. This includes that arbitrary application
program code can be called from the model to get or set external information.

– Ease of Platform Integration. It is desirable that a solution is easily inte-
gratable into the standard platforms for information systems.

– Integrated Editor. The model specifications should be editable in the typ-
ical editors for information systems, e.g. IDEs like Eclipse1.

– Ease of Development Tool Integration. The tools used for developing
information systems today are very much focused on program code and text
based files. This includes e.g. code repositories, collaboration tools, or code
metric tools. It is desirable that a solution for behaviour models in information
systems integrate well with these tools. Therefore, the key model information
should be readable and editable with text editors. Ideally, it should also be
debuggable in an IDE.

– Possibility to Monitor. The model should be easy to monitor.
– Possibility to Debug. It should be possible to debug the model. Ideally this

can be done within an IDE.

Our approach for a formal behaviour model framework that can be used in
information systems is to integrate model specifications into the source code of
programs. With this approach, the models can be reliably extracted from the
code. We call this approach Architecture-Carrying Software (ACS) [5]. In ACS
we integrate static structure models, including component models and behav-
iour models with source code that complies with component frameworks. Other
models, including quality information and deployment information, are planned
to be added. Currently, the behaviour model included in ACS is a batch-oriented
state machine (see [1]). This batch-oriented model is, however, not well suitable
for information systems, because often one wants to interactively influence the
behaviour of a subsystem.

In this paper we present an alternative behaviour model integrated with
source code. The integrated model type is that of Protocol Contracts [6,7]. The
model allows for interactive behaviour, which makes it better-suited for infor-
mation systems. In the following, we will first explain briefly the conceptual
foundations of our work in Sect. 2. Section 3 describes the integration of Proto-
col Contracts with Java source code at design time. The execution runtime and
1 http://www.eclipse.org.

http://www.eclipse.org

Integrating Protocol Contracts with Program Code 199

the corresponding run time model are described in Sect. 4. The idea behind a
model editor for integrated Protocol Contracts is introduced in Sect. 5. We dis-
cuss our approach in Sect. 6, before we present future work in Sect. 7 and related
work in Sect. 8. We conclude in Sect. 9.

2 Conceptual Foundations

In this section we introduce the conceptual foundations for this paper. First we
briefly introduce our approach for integrating model information with source
code. Then we describe Protocol Contracts, before we describe the integration
of Protocol Contracts with source code in Sect. 3.

2.1 Architecture-Carrying Software

The idea of Architecture-Carrying Software (ACS) [5] is to represent architec-
tural models in source code with sophisticated code structures. Architecture-
Carrying means that the software itself carries its architecture information,
without the need for adjacent models that are separate from the code.

The code structures that represent models in ACS only define architecturally
relevant code. Therefore they include interfaces to execute arbitrary other, non-
architectural code.

These code structures are not meant to be directly changed with source
code editors, but with model editors. These model editors allow to edit the
architecture in a representation that software architects are comfortable with,
e.g. UML or formal specification languages. The editor extracts the architecture
from the underlying code base and presents a model to interact with. Changes
to the model are reflected by changes to the underlying code base. The model
view is volatile. It only exists as long as the model editor is in use. With ACS,
the architecture model is available at compile time as source code structures and
at run time via reflection mechanisms.

The code can still be viewed and edited with text editors. The source code
representing models should be edited with respect to the ACS code structure
definitions. The source structures define so-called entry points where external
code is meant to be integrated. Code that does not represent the models can
still be edited freely.

Currently, the only behaviour model included in ACS is a batch-oriented state
machine (see [1]). This batch-oriented model is, however, not suitable for many
applications, because usually one wants to interactively influence the behaviour.
In this paper, we present our ongoing work how we extend ACS with Protocol
Contracts.

2.2 Protocol Contracts

Protocol Contracts [6,7] describe event-driven, state-based behaviour of object
models. In a Protocol Contract, events are presented to protocol models. Pro-
tocol Models react to events by accepting them and changing their state, or by

200 M. Konersmann and M. Goedicke

refusing them. In the following, we will briefly introduce Protocol Contracts as
they are described in [7]. An example of a protocol model is shown in Fig. 1.

Fig. 1. An example system specified as Protocol Contract (Source: [6])

Events. Events in Protocol Contracts are typed. An event type has a name and
attributes. Event attributes are also typed. Attribute types are the usual prim-
itive types of programming language. This especially includes integers, floating
point numbers, booleans, and strings. In addition, attributes can have the type
of an object. An example is the event of the type Deposit in Fig. 1. This event
type defines an attribute date of deposit of the type Date, an attribute amount
of the type Currency, and an attribute into, which is a reference to an object
to be affected by this event. An event type is instantiated to an event instance
(also called event in this paper) by setting attribute values.

Integrating Protocol Contracts with Program Code 201

Protocol Machines. Protocol machines describe a deterministic behaviour
contract for objects. They can be built up either by states and rules how to
change the states in reaction to events, or by comprising other protocol machines.
The first are called elementary machines.

Elementary machines have a stored state. The stored state consists of typed
variables, including an implicit state variable (just state variable from now on).
The variables work analogously to attributes in objects of object-oriented pro-
gramming languages like Java. The state variable represents a finite set of pos-
sible states, that a protocol machine can be in. The value of a state variable can
be determined by the sequence of events, that the machine accepted (so called
topological states), as it is known from UML state machines [9, page 535 ff.], or
by a state function that is evaluated when a event is presented to the machine.

Non-elementary machines are built by nested non-elementary and eventually
by elementary machines. They build their stored states based on the stored states
of the nested machines. A nested machine can read and write its own stored
state. It can read the stored state of all other machines in its environment. The
environment of a machine is built by the stored states of its parent machines
and all of their parents’ nested machines.

Protocol machines have a repertoire, that describes which events are accepted
or rejected. Events that are neither accepted nor rejected are ignored. Repertoire
entries include:

1. an event type,
2. a reference to an object that is represented by this machine (the OID),
3. a role in which the machine accepts the event type,
4. a boolean expression based on the machine’s stored state, that has to evaluate

to true before the event is processed (the “test”)
5. a term that expresses the update to the machine’s stored state when the event

is processed

The role is important when an event references several similar machines.
E.g. the event Transfer (see Fig. 1) transfers money from one bank account
to another. This event references one account in the role source, and another
account in the role target.

An event is accepted by a machine, if (1) it has a repertoire entry for the
given event type, (2) it represents exactly one object that is referenced by the
event, (3) in the role stated by the object reference in the event, and (4) the test
is evaluated to true. If the test evaluates to false, the event is rejected. In any
other case the event is ignored.

Non-elementary machines reject an event when any nested machine rejects
the event. When all nested machines ignore the event, the non-elementary
machine ignores the event. When at least one nested machine accepts the event
and all other nested machines accept or ignore the event, the event is accepted.

Protocol Systems. Protocol systems compose protocol machines in terms of
Communicating Sequential Processes (CSP) [4]. Protocol systems themselves

202 M. Konersmann and M. Goedicke

have no stored state, event types, and referenced object. Their repertoire and
their references to objects are built by their composed machines. A protocol
machine that is composed by a protocol system has read access to the attributes
of all other protocol machines within the system. Protocol systems can them-
selves be subject to composition by other protocol systems.

Protocol Models. Protocol models are protocol machines that are not nested
or composed by any other protocol machine or system. They describe the com-
plete, self-enclosed behavior of the objects they represent.

3 Model Integration

For adding new behaviour models to ACS the following artefacts are necessary:

1. a meta model of the model type to integrate,
2. integration mechanisms for a specific framework or language,
3. a runtime to execute the model,
4. an editor to inspect and change the model in a model view.
5. a monitor to show the executed model

The meta model of protocol contract comprises a design time meta model
and a run time meta model. This is due to the fact, that instances of protocol
machine specifications are created at run time. Therefore elements exist at run
time, that are not modeled explicitly at design time. In the following we present
the meta model for the design time (Sect. 3.1) and integration mechanisms for
Protocol Contracts in the Java programming language (Sect. 3.2).

The execution runtime, including the run time meta model, is described in
Sect. 4. An editor, which may also serve as a monitor and for debugging purposes,
is described in Sect. 5.

3.1 Design Time Meta Model

The ACS prototype is implemented in Java and based on Ecore models [11].
Therefore, the meta model is implemented in Ecore. In this section, we describe
the design time meta model for our implementation of Protocol Contracts, which
is based on the description from McNeile and Simons [7].

Machine Types. There are two machine types represented in our meta model:
The Protocol Machine and the Protocol System. In our model (Fig. 2) a Protocol-
System always composes at least two machines. Using this notation, a hierarchy
of machines can be built. The inner nodes and the root of the tree are Protocol-
Systems. The leafs are ProtocolMachines.

The ProtocolMachine contains MachineAttributes, MachineRoleAttributes,
one Statetype, Roles, EventTypes, and RepertoireEntries. The MachineAttributes
and MachineRoleAttributes specify the local storage of a machine. The first

Integrating Protocol Contracts with Program Code 203

Fig. 2. Machine types in the Protocol Contracts meta model

define value-based attributes. The latter define references to OIDs in Protocol
Contracts. The attributes are typed, and may define a default value, which is
null, when not specified. The Statetype defines the type of the machine, i.e.
whether the machine defines topological states (StoredStateType in our model),
or a state function (DerivedStateType in the model). Both types may have a
number of States. However, the DerivedStateType also has a StateFunction which
contains an attribute spec of the type EString (an Ecore representation of a Java
String), specifying its function in terms of Java source code. The repertoire, that
each machine contains, is formed by the RepertoireEntries in our model. The
EventType and Role of the repertoire entry are represented as references of the
contained elements of a machine. This allows to reuse EventType and Role ele-
ments. Repertoire entries can also reuse Event Type and Role elements of their
machines. This introduces a dependency on the model level towards these other
machines. The updateSpec defined by repertoire entries represent the update
of the local storage during transitions. Each entry knows its beforeState and
the nextState, if applicable. This represents the precondition and the update of
the state variable of stored state machines, and the pre- and postcondition for
derived state machines.

Figure 3 shows the part of the meta model that defines event types. The
class EventType may contain typed EventAttributes. The EventType may contain
Role2ObjectEntities, which bind the Role in an event type to a PCObjectType.
The PCObjectType is the type of an OID. This e.g. represents the type Customer
in the example in Fig. 1.

204 M. Konersmann and M. Goedicke

Fig. 3. Event Types in the Protocol Contracts meta model

3.2 Integration Mechanisms

For describing Protocol Contracts as model type for ACS, source code structures
for the design time meta model elements have to be defined. In the following sec-
tions, we describe the source code structures that represent Protocol Contracts
in Java code. Elements that represent the instantiation of machines and events
are runtime artefacts and therefore not represented in the code.

Protocol Machine. A protocol machine is represented in Java code as a Java
package that includes a class, which implements a marker interface IProtocol-
Machine. We call this class the Protocol Machine Class (or just Machine Class).
Listing 1.1 shows the Machine Class template. A marker interface is an inter-
face without any operations, that only exists to mark classes. Only one Machine
Class is allowed within a Java package. Other classes that define the protocol
machine (as shown in the following) also reside within this package or subpack-
ages2. Other classes, unrelated to the protocol machine, may also reside in that
package, although we do not recommend that.

The Machine Class also includes a reference to the object type that is rep-
resented by the machine. It is an attribute in the class definition marked with a
MachineOID annotation. The object type of the OID is a simple Java class. The
type of the attribute is that class. The variable is named oid for convenience.

Machine Attributes and Machine Role Attributes. Machine attributes
and machine role attributes are represented in a separate class, called Variable
Class. The Variable Class contains the local storage (excluding the state variable)
and the corresponding get and set methods. The methods are also represented in
interfaces: one interface for get methods, the Read Interface, and one interface for
set methods, the Write Interface. These interfaces are entry points for reading
and changing the attributes. The Variable Class implements these interfaces. A
third interface, the Context Interface, defines the environment of the machine.
For a single protocol machine, the Context Interface extends the Read Interface

2 This is actually a recommendation, not a requirement. For protocol machines with
more than 3 or four states, we found it practical to use subpackages for structuring
reasons.

Integrating Protocol Contracts with Program Code 205

public class $MachineName implements IProtocolMachine {

@MachineOID
$PCObjectTypeName oid;

@MachineContext(
localState = $MachineNameVariable.class,
localStateRead = IReadableVariable.class,
localStateWrite = IWritableVariable.class)

IContext context;
}

Listing 1.1. The source code structure for a Protocol Machine Class with the reference
to a Machine Attribute Class

and the Write Interface of the machine. The Machine Class contains a variable,
with the type of the Context Interface as a reference to its environment, the
machine context. Due to the interface and class structure described above, the
Context Interface allows for reading and writing the local storage of the machine,
and for reading the local storages of its environment. An annotation on the
variable for the machine context states the Read Interface, the Write Interface,
and the Variable Class. Listing 1.1 shows how the Machine Class is built with the
Variable Class (here and in the following listings, a dollar sign denotes a variable
in a template). The reference to the OID is a reference to the underlying object,
and allows for executing operations of this object. It is therefore a reference to
model-external code.

States and OIDs. States are represented as a Java class that extends the
abstract class AbstractPCState (see Listing 1.2). The name of the state is repre-
sented by the class name. The class extends the abstract class AbstractPCState.
That abstract class has a type parameter that represents the OID type of the
machine. AbstractPCState has an oid reference to an arbitrary object. This is the
interface of the states to model-external code. This can be used within transition
code to execute arbitrary operations in the context.

State Variable. The state variable in Protocol Contracts can be built in two
ways. In stored state protocol machines, the state variable is determined by
the initial state and the updates. In derived state protocol machines, the state
variable is derived using a state function.

The state variable of stored state machines does not have a static represen-
tation. Therefore no source code structure exists for that state. Machine Classes
of derived state protocol machines contain a method getCurrentState() to evalu-
ate the state variable. The method returns Class<? extends AbstractPCState>,

public class $StateName extends AbstractPCState<$PCObjectTypeName> { }

Listing 1.2. The source code structure for a state

206 M. Konersmann and M. Goedicke

i.e. the reference to the class that represents the current state. The method’s
body implements the state function.

Roles and Event Types. Roles are represented as classes implementing the
marker interface IRole. An event type is represented in the source code as Event
Type Class. This is a class implementing the marker interface IEventType. Event
types contain two types of meta data: (1) event attributes, and (2) roles and
object references.

Event attributes are represented as object variables in the class with the cor-
responding type. The attribute name is represented by the name of the variable.
The variable is complemented by a get and a set method.

PCObjectTypes are represented as Java classes. Therefore, roles and object
references can be represented by variables with the corresponding class as vari-
able type, and the role as variable name. These variables are also complemented
by corresponding get and set methods. Listing 1.3 shows the source code struc-
ture for an Event Type Class.

Repertoire Entries. Repertoire entries define the following data: (1) an event
type, (2) a referenced object, (3) a role for which the event type is accepted, (4)
a test, and (5) an update specification. In the source code these are represented
as annotated methods (Repertoire Entry Methods), as shown in Listing 1.4. The
methods are contained by State Classes or a Protocol Machine Class. The test is
defined by the class that implements the method. When a State Class implements
the method, that state is the necessary source state. When a Protocol Machine
Class of a stored state machine implements the method, the source state is the
initial pseudo state. When a Protocol Machine Class of a derived state machine
implements the method, the before state is empty. The method’s parameters are
a reference to an Event Type Class object (event), a reference to an object of the
Context Interface (context), and a reference to the Role class. The parameter
event represents the event type. The context parameter is used for the update
specification and is a reference to the machine’s context. The next state of the
repertoire entry is given as parameter of an annotation as class reference.

Both, the Machine Class and the State Class have an attribute oid that is
the reference to the object defined by the machine. Here the attribute acts as an
interface to non-architectural code. Within the update specification, operations

public class $EventTypeName implements IEventType {

$PCObjectTypeName $roleName;

$AttributeType $attribtueName;

// getters and setters
}

Listing 1.3. The source code structure for event types, including event attributes and
roles

Integrating Protocol Contracts with Program Code 207

@RepertoireEntry(nextState = $StateName.class)
public void $eventTypeName($EventTypeName event, IContext context, $RoleName role){

// Update Specification
}

Listing 1.4. The source code structure for repertoire entries

to the OID can be called. The semantics of the executed operations of the OID
are not part of the model.

Protocol Systems. The source code representation of a protocol system is a
Protocol System Class, or shortly System Class (see Listing 1.5). Such a class
implements the marker interface IProtocolMachine, just as Protocol Machine
Classes. In addition, Protocol System Classes are annotated with the annota-
tion ProtocolSystem, which takes a list of classes as parameter, that extend the
IProtocolMachine interface. One package may only contain either one Protocol
System Class or one Protocol Machine Class. Subpackages may contain further
Protocol Machines or Systems.
@ProtocolSystem({ $MachineName.class, ... })
public class $ProtocolSystemName implements IProtocolMachine {

@SystemEnvironment
ISystemContext context;

}

Listing 1.5. The source structure for Protocol Systems

Protocol Systems influence the environment of their referenced protocol
machines and systems. To represent this influence, each Protocol System Class
is accompanied by a System Context Interface. This interface extends the Read
Interfaces of its composed protocol machines and the System Context Interfaces
of its composed protocol systems. The System Context Interface is an attribute of
the Protocol System Class, annotated with an annotation SystemEnvironment.

When a protocol machine is composed by a protocol system, the machine
can read variables from all machines composed in the system. To reflect this,
the machine’s Context Interface replaces the extension of its Read Interface with
the System Context Interface of the highest Protocol System in the composition
hierarchy (see Fig. 4).

Protocol Models. Protocol models are protocol machines that are not nested
or composed by any other protocol machine or system. This can be evaluated
from the machine context. Thus no explicit source code structures exist for
protocol models.

3.3 Example

To show the functionality of our meta model and source code structures, we
implemented a desktop example. Our example is an implementation of the Bank

208 M. Konersmann and M. Goedicke

Fig. 4. The given interface and class structure ensures that the variables of all com-
posed machine are readable by every machine in the system, and that each machine
can only alter its own variables.

Model example given in [6]. The model of the example system is shown in Fig. 1.
We will here only show parts of the example that differ enough to show the dif-
ferent working concepts. We therefore show here our implementation of account
machine 1, a protocol machine with stored states; account machine 4, a protocol
machine with derived states; and the account system, a protocol system.

Account Machine 1. Account machine 1 (AM1) is a protocol machine with
stored states. All of the classes for AM1 are placed in the same Java package.
Figure 5 gives an overview of the classes and interfaces in the package. The
Protocol Machine Class for AM1 is depicted in Listing 1.6.

The Protocol Machine Class of AM1 defines one repertoire entry from the
pseudo state — here represented by the containment relationship from the Pro-
tocol Machine Class to the method — to the State Active. The body of the
method open shows the update specification.

Figure 6 shows the class structure of the machine attributes for AM1 (without
the influence of the system, that composes the machine). The interfaces shown in
this figure contain get and set methods according to their task. The implementing
class is shown in Listing 1.7.

The Event Type Class of Open is shown in Listing 1.8. It contains the
attributes and roles prescribed by the specification in in terms of attributes,
get methods, and set methods.

The State Class of the state Active is shown in Listing 1.9. It includes reper-
toire entry methods for all accepted events as described in Fig. 1. Our source
code structure however does not allow to create an entry with the same update
and target state, but with multiple event types and roles without copies of the
update specification. We need multiple methods to represent this structure.

Integrating Protocol Contracts with Program Code 209

Fig. 5. The package structure of protocol machine for Account Machine 1. The annota-
tions mean: (E) Event Type Classes; (M) Machine Class, Variable Class and interfaces;
(O) Referenced Object classes; (R) Role Classes; (S) State Classes. The c in a circle
denotes a class. The i in a circle denotes an interface.

Fig. 6. The class structure for the machine attributes of Account Machine 1

210 M. Konersmann and M. Goedicke

public class AccountMachine1 implements IProtocolMachine {

@MachineOID
AccountObject oid;

@MachineContext(
localState = AccountMachine1VariablesImpl.class,
localStateRead = IReadableVariables.class,
localStateWrite = IWritableVariables.class)

IContext context;

@RepertoireEntry(nextState = Active.class)
public void open(Open event,

IContext context, Account role) {
context.setBalance(0);
context.setOwner(event.getCustomer());

}
}

Listing 1.6. The implementation of the Machine Class for Account Machine 1

public class AccountMachine1VariablesImpl
implements IReadableVariables, IWritableVariables {

int balance;

CustomerObject owner;

// getters and setters
}

Listing 1.7. The machine attribute class of Account Machine 1

public class Open implements IEventType {
Date dateOfOpen;

AccountObject account;

CustomerObject owner;

// getters and setters
}

Listing 1.8. The Event Type Class of the event type Open of Account Machine 1

Some classes are not shown in detail here. The Role Classes implement the
Interface IRole, but do not contain any methods or attributes. The Event Type
Classes that are not shown are built accordingly to the Event Type Open in the
obvious way.

Account Machine 4. Account Machine 4 (AM4) is a protocol machine with
a derived state. Thus its structure differs slightly from AM1. Figure 7 gives an
overview of the classes and interfaces in the package. The package does not
contain Role Classes or Event Type Classes, because the machine relies on the
classes already stated by AM1. The Protocol Machine Class for AM4 is depicted
in Listing 1.10. It especially contains the State Function Method getCurrentState,

Integrating Protocol Contracts with Program Code 211

which shows the implementation of the state function in Java. All other classes
are built in the ways already stated and do not include anything surprising.

Fig. 7. The package structure of protocol machine for Account Machine 4. The anno-
tations mean: (M) Machine Class, Variable Class and interfaces; (S) State Classes. The
c in a circle denotes a class. The i in a circle denotes an interface.

public class Active
extends AbstractPCState<AccountObject> {

@RepertoireEntry(nextState = Active.class)
public void transfer(Transfer event,

IContext context, Target role) {
oid.notifyMoneyReceived("You received money:" + event.getAmount());
context.setBalance(

context.getBalance() + event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void deposit(Deposit event,

IContext context, Into role) {
oid.notifyMoneyReceived("You received money:" + event.getAmount());
context.setBalance(

context.getBalance() + event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void transfer(Transfer event,

IContext context, Source role) {
context.setBalance(

context.getBalance() - event.getAmount());
}

@RepertoireEntry(nextState = Active.class)
public void withdraw(Withdraw event,

IContext context, From role) {
context.setBalance(

context.getBalance() - event.getAmount());
}

@RepertoireEntry(nextState = Closed.class)
public void close(Close event,

IContext context, Account role) {
}

}

Listing 1.9. The Active state of Account Machine 1

212 M. Konersmann and M. Goedicke

public class AccountMachine4 implements IProtocolMachine {

@MachineOID
Account oid;

@MachineContext(
localState = AccountMachine4VariablesImpl.class,
localStateRead = IReadableVariables.class,
localStateWrite = IWritableVariables.class)

IContext context;

public Class
<? extends AbstractPCState<AccountObject>>
getCurrentState() {

if (context.getBalance() < -50)
return OverLimit.class;

else
return WithinLimit.class;

}

@RepertoireEntry(nextState = WithinLimit.class)
public void withdraw(Withdraw event,

IContext context, From role) {
}

}

Listing 1.10. The implementation of the Machine Class for Account Machine 4

Bank System. The protocol system Account System (AS) composes AM1 to
AM4 (AM2 and AM3 are not shown in this paper). Following the source code
structures defined in Sect. 3.2, the AS consists of one Protocol System Class
(Listing 1.11) and the System Context Interface, which is an interface without
any own operations. Figure 8 shows how the class structure is influenced by the
system. IContext of AM1 no longer extends the Read Interface of AM1, but the
ISystemContext of the AS. The ISystemContext extends the Read Interfaces of
all composed machines (only AM1 and AM4 are shown in this figure). Therefore
each machine has read access to all variables in the environment.
@ProtocolSystem({ AccountMachine1.class, AccountMachine2.class,

AccountMachine3.class, AccountMachine4.class })
public class BankAccountSystem implements IProtocolMachine {

@SystemEnvironment
ISystemContext context;

}

Listing 1.11. The source code of the System Class of the Bank Account System

4 Execution Runtime

The Protocol Contracts meta model is executable. The runtime is in a prototype
state. It is divided into a bytecode to model extractor, and a protocol model execu-
tor. The bytecode to model extractor parses bytecode to read the protocol model
structures encoded as presented in Sect. 3.2 using code reflection mechanisms.
From these structures it builds the design time model, on which the run time
model is based. The protocol model is then available as Ecore model in memory.

Integrating Protocol Contracts with Program Code 213

Fig. 8. The composition by the Account System has an influence on the source code
structure of the Account Machine 1. IContext no longer extends IReadableInterface, but
the ISystemContext. The ISystemContext extends the Read Interfaces of all composed
machines (only AM1 and AM4 are shown in this figure). Therefore each machine has
read access to all variables in the environment.

The protocol model executor manages the model. i.e. it provides interfaces for
clients to interact with the protocol model. For executing the model, an instance
of event classes can be created, filled with attribute values and presented to the
execution runtime. The execution runtime uses the model information at run
time, e.g. to create machine instances, switch the stored states, and uses calls to
the operations of the source code structures for executing update specifications.
It then reports about the acceptance of the event, which can be accepted, ignored,
or refused.

These calls enable the source code structures to contain interfaces to model-
external code. The update specification of a repertoire entry may contain calls
to the underlying object using the attribute oid. The update specification is
encoded as Java method, which is called by the runtime in an inversion-of-control
pattern. When the control flow hits the underlying object, the model-external
code is executed.

4.1 Run Time Meta Model

At run time, instance of machines, events, and related model elements are cre-
ated. Figure 9 shows the elements for instantiating machines. Protocol systems

214 M. Konersmann and M. Goedicke

Fig. 9. Protocol machines instantiation in the Protocol Contracts meta model

Fig. 10. Event instantiation in the Protocol Contracts meta model

and protocol machines each have model elements for their instantiation. They
are build analogously to their type specification. ProtocolMachineInstances con-
tain MachineAttributeInstances, which represent the actual values of the value
types in the local storage. MachineRoleAttributeInstances represent the refer-
ences to OIDs in machine instances, which are related to a role. All elements
have relations to their respective type elements. This is not shown in the figure
for readability reasons.

Event instances (see Fig. 10) are represented as EventInstance elements.
They reference their type. They contain EventAttributeInstances, value-based
attributes, and Object2RoleEntries, which map OIDs as PCObjectInstancesto
roles.

Integrating Protocol Contracts with Program Code 215

4.2 Monitoring and Debugging

The execution runtime offers a web service to register a monitor for a running
protocol model. The monitor can be informed about the current system state
(including the design time mode, and the runtime model), and about incoming
events. A debugging interface allows to change values of machine attributes. The
monitoring and debugging interfaces are currently in a prototype state.

5 Model Editor

The editor is divided into a source code to model extractor/adapter to extract the
model from source code, and the model editor. The extractor/adaptor uses the
Java Development Tools (JDT)3 to parse code structures for building an Ecore
model of the protocol model described in the source code, while keeping the
trace links to the code. Technically, these trace links are java objects that relate
source code elements to model objects, while providing methods to translate the
one into the other. When the model is changed in the editor, the changes are
reflected in the code, following the trace links. Therefore the source code is not
overridden, but changed. The editor itself is a standard Ecore editor in Eclipse.
The extractor/adaptor is not fully implemented yet.

6 Discussion

Our integration of Protocol Contracts follows several design decisions. The main
variation points are the meta model and the integration mechanisms. The meta
model was designed to be close at the description in [7]. As some parts of the
example were not completely described, we cannot be sure that the meta model
is in a final version.

Two attributes in the model are strings without semantics. The attribute
spec in the class StateFunction, and the attribute updateSpec in the class Reper-
toireEntry. Both contain Java source code that is part of the model definition.
This might seem inconsequent. These method bodies are, however, entry points
for model-external code. The operations called upon the OID objects are not
semantically encoded in the model.

The work presented in this paper are part of the research project ADVERT4

that aims at using Architecture-Carrying Software for solving evolution chal-
lenges in long-living software. We plan to integrate the meta model for Protocol
Contracts with the meta model for architecture descriptions from this research
project. Therefore we also expect slight changes to the meta model for integra-
tion purposes.

The integration mechanisms presented in this paper are designed for Java
programs. The model execution is event-based. One could possibly create other

3 https://eclipse.org/jdt/.
4 http://advert-project.org.

https://eclipse.org/jdt/
http://advert-project.org

216 M. Konersmann and M. Goedicke

integration mechanisms that better integrates with already existing event-based
communication frameworks. In the research project mentioned before, we pro-
vide integration paths to multiple runtime frameworks. Therefore we expect to
create other integration mechanisms. These can, however, base largely on the
mechanisms presented in this paper.

7 Future Work

As future work, we plan to further evaluate the concept and implementation, and
integrate it in our framework for Architecture-Carrying Software. This includes
that the Protocol Contracts are included into an existing architecture-modeling
language. The architecture languages, on which ACS is based, typically have
components and their interconnections as first-class entities. We intend to create
a mapping from oids to component instances, and object types to component
types. We can then define the behaviour of component types with Protocol
Contracts. The interfaces to arbitrary code play an important role here, to allow
for behaviour that should not be modeled on an architectural level. However,
some details of the integration still have to be inspected.

Furthermore the source code to model extractor/adaptor has still to be devel-
oped. Blueprints for such components exist in the context of the ADVERT
project for other model types. Therefore we expect no substantial difficulties
in the development of this component. Also the execution runtime is currently
in a prototype state. We need to test it with further examples to be more confi-
dent about its reliability.

The editor is currently in the work. Blueprints for this editor are also avail-
able. The editor is based on the standard reflective Ecore editor in the Eclipse
IDE. Only the loading and the saving mechanisms will be overridden to extract
the model from the code while keeping the trace links between model elements
and the code, and to execute the changes on the code when the changes are
saved.

8 Related Work

Related work to ours can be found for several aspects. Balz already created
an integration for a behaviour model in his PhD thesis [1]. He integrates state
machine models. His implementation of state machine models is working in a
batch-like mode. I.e. a state machine is started and is executed until it termi-
nates. The integration of Protocol Contracts is working interactively by gener-
ating events and presenting them to the protocol model.

Managing multiple representations of software design and specifically archi-
tecture has been subject to other fields of research. Related to the paper at
hand is the field of Model-Driven Development (MDD) (e.g. [3,10]) and round
trip engineering (e.g. [8]).

Integrating Protocol Contracts with Program Code 217

MDD concentrates on deriving code from models. The models and the code
are two representations of the program that are independently subject to evolu-
tion and maintenance. Changes in the specification can be taken over automati-
cally in the implementation. When the program changes in the implementation,
these changes cannot be automatically taken over in the specification.

Round trip engineering (RTE) describes techniques to synchronize models
and code. The models used in RTE are very detailed and technical, e.g. UML
class diagrams. RTE thus allows for two-way synchronization, but does not
bridge the gap between abstraction levels, as our approach does.

The work presented here can be seen as part of models@runtime [2]. We have
models with a high abstraction level that are not tied to the underlying technol-
ogy. We have a technology specific runtime to execute the models. In addition,
we have defined interfaces between the model and arbitrary source code.

A runtime for Protocol Contracts already exists (see [6]). We did not find
extensive information about that runtime. For our runtime we plan to allow for
inspecting and debugging of running Protocol Contracts at run time. It is not
clear from [6] whether this is possible with the already existing runtime.

9 Conclusion

For behaviour specifications to be more broadly used in information systems, we
believe that a framework needs to be available, which imposes a low barrier for its
integration. We identified six criteria that a possible solution has to fulfill to be a
candidate for a broader use in this particular domain. In this paper we presented
our proposal for a framework for developing and executing Protocol Contracts
in the domain of information systems. We evaluated the functionality in a small
desktop example. The evaluation shows that the meta model and source code
structures are suitable to model Protocol Contracts. Our implementation meets
the identified criteria:

– Ease of Application Integration. Our framework allows the Protocol Con-
tract implementations to call external code during state transitions. This
includes information interchange with program code outside of the model
implementation. The oid objects represent conceptual interfaces between the
model and the model-external code. This allows to integrate such a formal
behaviour model incrementally into existing applications.

– Ease of Platform Integration. The framework is implemented in Java as a
library. The Protocol Contract implementation consists of code following the
necessities of this framework code and a dependency to the execution runtime
implementation. It is therefore easy to embed into typical information sys-
tems implemented in Java. Model instances can be created from information
system platform code, and platform functions can be called from within the
models. This allows to integrate the formal modeling execution framework
into information system platforms.

218 M. Konersmann and M. Goedicke

– Integrated Editor. We are currently developing an editor that is integrated
with the Eclipse IDE, and reuses much of this IDE’s concepts and code. How-
ever, the editor is not available yet.

– Ease of Development Tool Integration. The model specification is read-
able and editable without an explicit model editor. A text editor suffices, but
a comprehensive Java editor is recommended to read and edit the code that
represents the model. As the model specification is based only on program
code, it can be easily managed with source code management systems and
other Java tools.

– Possibility to Monitor. A monitoring interface for the execution runtime
exists as a prototype, which allows to be informed about the current system
state and about executed events.

– Possibility to Debug. A debugging interface for the execution runtime exists
as a prototype, which allows to read and change machine attributes at run
time. This is only a starting point. An extension of this interface should be able
to also edit e.g. running machine instances and types. However, as the model is
based on Java code, especially the update specifications of transitions and the
state functions can be edited at run time with the standard Java debugging
mechanism.

We see that all of the criteria are fulfilled to a certain extend. The fewest
developed criterion is the integrated editor, which is in the work, but not avail-
able yet.

Acknowledgements. Parts of the meta model presented in this paper are based on
the work of Noyan Kurt from the institute paluno at the University of Duisburg-
Essen. The work presented in this paper is partially funded by the DFG (German
Research Foundation) under the grant number GO 774/7-1 within the Priority Pro-
gramme SPP1593: Design For Future Managed Software Evolution.

References

1. Balz, M.: Embedding Model Specifications in Object-Oriented Program Code: A
Bottom-up Approach for Model-based Software Development. Ph.D. thesis, Uni-
versitt Duisburg-Essen, Mai (2011)

2. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10), 22–27
(2009)

3. Brown, A., Conallen, J., Tropeano, D.: Introduction: models, modeling, and model-
driven architecture (mda) model-driven software development. In: Beydeda, S.,
Book, M., Gruhn, V. (eds.) Model-Driven Software Development, ch. 1, pp. 1–16.
Springer, Heidelberg (2005)

4. Hoare, C.A.R.: Communicating sequential processes, vol. 178. Prentice-hall, Engle-
wood Cliffs (1985). http://www.usingcsp.com/

5. Konersmann, M., Goedicke, M.: A conceptual framework and experimental work-
bench for architectures. In: Heisel, M. (ed.) Software Service and Application Engi-
neering. LNCS, vol. 7365, pp. 36–52. Springer, Heidelberg (2012)

http://www.usingcsp.com/

Integrating Protocol Contracts with Program Code 219

6. McNeile, A.T., Roubtsova, E.E.: Programming in protocols - a paradigm of behav-
ioral programming. In: Gonzalez-Perez, C., Jablonski, S. (eds.) ENASE, pp. 23–30.
INSTICC Press, Portugal (2008)

7. McNeile, A.T., Simons, N.: Protocol modelling: a modelling approach that supports
reusable behavioural abstractions. Softw. Syst. Model. 5(1), 91–107 (2006)

8. Nickel, U.A., Niere, J., Wadsack, J.P., Zündorf, A.: Roundtrip engineering with
FUJABA. In: Proceedings of 2nd Workshop on Software-Reengineering (WSR),
Bad Honnef, Germany (2000)

9. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, August 2011

10. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley, New York (2006)

11. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Singapore (2009)

Decision Modules in Models
and Implementations

Serguei Roubtsov1(B) and Ella Roubtsova2

1 Technical University Eindhoven, Eindhoven, The Netherlands
s.roubtsov@tue.nl

2 Open University of the Netherlands, Heerlen, The Netherlands
ella.roubtsova@ou.nl

Abstract. We define a type of concern called a decision module. Deci-
sion modules can be seen as a specific subset of often changeable busi-
ness rules, identified in requirements. We present decision modules as
protocol machines in protocol models. The proven property of such pro-
tocol machines is their unidirectional dependency from other protocol
machines. The composition technique used in protocol models allows for
such local changes in a protocol machine that the behaviour of unchanged
machines in the whole system is preserved.

We analyse different Java implementation techniques in order to find
the possibility of building decision modules having the same properties
as in protocol models. We implement decision modules using object com-
position, reflection, the publisher-subscriber design pattern, interceptors
and aspects. The results of our experiments are illustrated with an exam-
ple of a document submission system. We discuss the functionality of a
generic library that we build for adopting the new style of locally change-
able implementations with separated decision modules.

1 Introduction

Modules are useful instruments for handling complexity of software systems. Mod-
ules are created for various purposes giving birth to different approaches to mod-
ularisation. Among the goals of modularisation are traceability of requirements
and ease of code modification, reuse, testing and support of system evolution.

The major goal of the modularisation technique presented in this paper is the
support of system evolution. The system evolution starts with new requirements
caused by new business ideas, changes in laws, regulations and business rules.
“International Data Corporation (IDC) asked in a survey: How often do you want
to customize the business rules in your software? 90% of respondents reported
they try to change it annually or more frequently. 34% said monthly. . . A con-
ventionally programmed software package can seldom be reprogrammed this
often”[9].

New policies, laws and business rules result in instructions on what to do
in a given situation. An instruction combines a description of the situation, the
expected actions or events and the directives permitting or forbidding events
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 220–249, 2015.
DOI: 10.1007/978-3-319-21912-7 9

Decision Modules in Models and Implementations 221

in the described situation. A model or implementation of such an instruction
usually combine states of system objects, as well as events and control flow
constructions corresponding to the description. In this paper, we define such a
combination as a decision module. If a business rule could be presented as a deci-
sion module in models and implementations and if this module could be locally
changed without the necessity to change the rest of the model or implemen-
tation, then such a modularisation would ease system evolution. However, the
separation of such modules is not a common practice in conventional modelling
and implementation approaches.

The most commonly used modularization is the separation of object life
cycles. This means that a domain concept is modelled as a class of objects.
Each object is created, exists in some states, makes decisions on the basis of
its states and recognised events. Eventually, the object is destroyed or deleted.
Modularisation of object life cycles hides the states of objects and process control
points inside objects. To implement a new policy, modify a program or generate
a test, the control points inside life cycle modules have to be analysed. As a
result, each modification of policies and business rules requires re-modelling and
re-implementing all the life cycle modules contributing to the decisions made by
these policies and business rules.

The research on business rules [4,10] investigates the ways of modularisation
of business rules and the methods of their integration. However, the business
rules engines are usually based on the workflow concept and the Business Process
Modeling Language (BPML). They integrate the entire control flow and, thus,
do not provide the possibility for local changes of the business rules.

There is a modelling technique called Protocol Modelling that supports the
separation of the modules called “behaviours” that derive own state from the
states of different objects and combine event descriptions with control flow ele-
ments. Protocol Modelling is based on the CSP parallel event-based composition
technique [8] extended for models with data [22]. This composition technique,
implemented in a composition engine, supports separation and composition of
both life cycle modules and “behaviours”. The property of observational con-
sistency proven in Protocol Modelling for modules and the system they form
perfectly supports local changes of modules without the need to validate the
rest of the model. Thus, the properties of “behaviours” facilitate model chang-
ing and testing. The same properties are desirable for the decision modules both
in models and implementations. In this paper we intend to investigate if it is
possible to protocol model decision modules and implement them using the avail-
able object-oriented techniques in such a way that the implementations would
have the same properties of “behaviours” as in executable protocol models.

The rest of the paper is structured as follows.

Section 2 defines a decision module.
Section 3 presents related work.
Section 4 introduces a case study used for illustration of our modularization

vision.
Section 5 shows how the decision modules are identified in requirements.

222 S. Roubtsov and E. Roubtsova

Section 6 identifies the decision modules in executable protocol models. It
explains the composition of decision modules and life-cycle modules and
recognizes the attractive properties of modules in Protocol Modelling.

Section 7 applies different software development techniques (object composition,
reflection, the publisher-subscriber design pattern, interceptors and aspects)
for implementation of decision modules and evaluates how the implementa-
tions preserve the desired properties of protocol models.

Section 8 discusses the advantages of the proposed approach for the modelling
and implementation as well as tackling the obstacles in its adoption.

Section 9 concludes the paper and draws perspectives for the future work.

2 Definition of Decision Module

In this section, we give a notation independent definition of a decision module.
Later in Sect. 6, a decision module will be defined as a protocol machine.

A model of a system is described as a set of interacting objects. A behaviour
of an object is its description in terms of states and transitions. The behaviour
of a system of objects is defined on the basis of the states and events of objects.
However, a system has its own goals and the behaviour of the system is often
different from the disjoint union of the individual behaviours of objects. Decision
modules direct behaviours of objects in particular combinations of states towards
system goals.

Definition 1. A decision module represents a specification of an instruction on
how to make the decision about allowing or forbidding certain events.

– The instruction is defined on a set of objects selected in a model. The type
of each selected object contains specifications of its possible states and the
events allowed in the specified states. All possible combinations of the states
of selected objects and a subset of the union of all events of the set of selected
objects are used for specification of a decision module.

– The instruction can be seen as an “if (case)”- construction

if (State Function() = value) then allow Event;

The domain of the StateFunction() is defined by the partitioning of the state
space of the set of selected objects into disjoint subsets. The partitioning can
be done before (or after) the Event in hand.

The range of the state function is a set of names of these disjoint subsets
presented with a nominal variable called “state of the decision module”. The
nominal values are the abstractions (often - business names) of the conditions
for a decision.

For example, let’s consider a decision module which can belong to an object
Aircraft. It’s state function:

If (State Function() = “All Passengers Are On Board”), then allow Start.

Decision Modules in Models and Implementations 223

The Aircraft ’s behaviour is coordinated with the behaviors of its Passengers.
The selected event is Start. The state space has been partitioned before the Start
into two subsets “All Passengers Are On Board” and “Not All Passengers Are
On Board”.

We separate a decision module as a module because it can be associated (in
terms of programming - reused) with different objects as a separate entity. In
our example, it can be associated with an Aircraft or, say, a Bus.

We name this module a decision module because it forms the condition for the
acceptance or refusal of an action processing an event. It is not a pre-condition
because it can be derived both from the pre- and post-states of the actions in
the life cycles of the set of selected objects.

A decision module cannot be classified as an object. An object owns (may
change independently) its state, whereas the state of a decision module is derived
from the states of other modules. A decision module only permits or forbids the
actions specified in objects from the set of selected objects.

A decision module does not fit exactly into the definition of a crosscutting
concern or an aspect [7]. It can be seen as a high-level management concern or
a control concern. It can be crosscutting or not.

Finally, what we can observe about a decision module is that:

– it is recognized and can be separated at the early stages of system development
such as requirements engineering;

– it is often not separated as an entity in conventional models and implementa-
tions;

– it tends to undergo frequent changes at the later stages such as maintenance
and evolution.

3 Related Work

Modules similar to our decision modules have been also recognized in Business
Rules community. These modules are called enablers [1,3].

“An enabler is a type of action assertion which, if true, permits or leads to the
existence of the correspondent object.” An enabler has varying interpretations
depending on the nature of the correspondent object: it may permit (i.e. enable)
the creation of a new instance; permit another action assertion; permit an action
execution [3] and is often called an integrity constraint, a condition or a test.

The enablers represent only a subset of our decision modules because the
decision modules

– describe assertions of a set of actions using the state space of a set of selected
objects as an input;

– can both enable and disable (refuse) an action execution, the creation of a
new instance and another action assertion.

In rather advanced form, such an approach to modularization can be seen
in protocol models [20]. The modules called “behaviours”, separated in protocol
models, possess the following properties:

224 S. Roubtsov and E. Roubtsova

– use state functions that are able to read (but not change) attributes, an event
pre-state of other modules [22];

– use state functions that are able to predict the post-state of other modules
for the given event [22];

– often use the control flow constructions to permit events at specified values
of the state function;

– are composed with different life cycle modules (objects) in such a way that the
life cycle modules do not know (remain oblivious) about the “behaviours” and
do not need to be changed as the “behaviours” are added or changed [19,20].

Protocol modeling makes use of an extended form of the Communicating Sequen-
tial Processes (CSP) [8] parallel composition of modules which possess internal
data. The CSP parallel composition produces observationally consistent models.
This means that a protocol model allows one to modify modules locally, add and
delete modules so that the behaviour of unchanged modules is preserved in the
behaviour of the whole system [19].

In Sect. 6, we will show that the decision modules are easily separated in
protocol models as “behaviours” or, in other words, as protocol machines with
derived states.

4 Case Study: Preparation of a Document by Several
Participants

We illustrate the proposed modularization with a case study. It will be used
to show how the decision rules declared in requirements can be transformed
into modules of executable synchronous protocol models. It will be also used
to illustrate our investigation of the applicability of Java-based techniques for
implementation of decision modules.

Let us consider a system that controls a preparation of a document, e.g. a
proposal, a paper or a report, by several participants. One of the participants
usually plays the role of the coordinator responsible for submitting the document.
There is a deadline for the document submission.

The coordinator creates the parts of the document and chooses participants.
Each part is assigned to a participant. A part has its own deadline before the
deadline of the document and should be submitted by the participant so that
the coordinator has time to combine parts and submit the document.

If a participant misses the part deadline, the coordinator sends a reminder to
the delaying participant. The coordinator can change the deadline or assign the
document to another participant. Only the coordinator can cancel the prepara-
tion of the document.

5 Decision Modules in Requirements

In our experience of requirements engineering we have found that requirements
often describe the decision modules informally.

Decision Modules in Models and Implementations 225

Submit Document

Submit Document

Create Part
(Deadline)

Part
- A part of the document is created
- Each part has a deadline.
- Each part is assigned to a participant.

Document
- A document is created with its deadline.

Create
Participant

Participant
- A participant is created.
- Each part is assigned to a participant.
- A participant submits the assigned part.

Deadline Control
- A document can be submitted before the deadline.

Deadline Part Correctness
- The part deadline is correct, if it is in the future but before the
document deadline.

Document Submittable
- If all parts are ready, the document can be submitted.

Create Participant, Assign Part

Act
 - If a participant has missed the part deadline, the coordinator
may assign the part to the same participant with a new
deadline or to another participant.

Create Document

DeadlineCorrectness
- The deadline of the document is correct, if it is in the future.

Coordinator
- A coordinator is created.
- The preparation of the document can be always cancelled by the
coordinator.

Assign Part, Submit Part

Assign Part, Submit Part

Create
Document
(Deadline)

Cancel Document, Submit Document

Create
Coordinator

created

Cancel Document, Create
Participant, Create Part, Assign Part,

Submit Part, Submit Document

Create Part

created

created

created

submittable

actact

not expired

correct

correct

Fig. 1. Declarative specification

We start with an observation that almost every sentence of requirements
presents a snapshot of the desired system behaviour. A snapshot is a visible
abstract state captured after or before an event. Figure 1 presents all the snap-
shots corresponding to the case study in Sect. 4 as a declarative specification.
We depict an abstract system state as a double line oval. An oval may have an
ingoing or outgoing arc labeled with an action that can happen.

For example, the declaration “A document can be submitted before the dead-
line” can be presented as a decision rule or a decision module DeadlineControl.
It shows that the event Submit Document can only be accepted if the deadline
is “not expired”. In this case, the arc is ingoing.

If an event can only be accepted in the described state, then the arc is
outgoing. The example is the decision module Document Submittable: After all
parts are ready, the document can be submitted.

The state descriptions in decision modules are abstracted from the life cycle of
entities of the system. An abstract state may present the state of a set of system
concepts, a subset of states of the system, etc. For example, state submittable of
the decision module Document submittable depends on the states of all parts of
the document.

Often the decision modules give instructions or polices on what to do in a
situation described as an abstract state. For example, Act presents a possibility
to progress by creating a new participant (event Create Participant) who can
write a part of the document (event Assign Part).

226 S. Roubtsov and E. Roubtsova

The elements of the life cycles of entities in the model are also present in
requirements and shown in Fig. 1 as declarations. However, the states in such
description are not abstract, they are the states of objects. We depict a state of
an object as a single line oval. For example, we can read in requirements what
an instance of the Coordinator can do when it is in state “created”. It can Create
Document, Submit Document, Create Participant, Create Part, Assign Part and
Cancel Document.

6 Decision Modules in Protocol Models

The declarative specifications are not executable. However, there is a way to
present decision modules as modules of executable protocol models. We show this
way of modularization after a short introduction of Protocol Modelling developed
by A. McNeile [22].

6.1 Protocol Modeling

Protocol Modeling splits the Universe into a system and its environment.
A protocol model represents the modelled system. The environment submits
events to the system. The system may change its state reacting to events.

The building blocks of a protocol model [22] are protocol machines and
events. They are instances of, correspondingly, protocol machine types and event
types. Each protocol machine “recognises” a finite set of event types, i.e. uses
the names of these event types in the specification of a protocol machine type.

In order to facilitate reuse, there are two types of protocol machines: Objects
and Behaviours. Behaviours cannot be instantiated on their own but may extend
functionality of Objects. In a sense, Behaviours are similar to mixins or aspects
in programming languages [2,20].

A protocol machine type is an LTS (Labelled Transition System) extended
with attributes and call-backs to enable modelling with data:

PMi = (s0i , Si, Ei, Ti, Ai, CBi,), where

– s0i is the initial state;
– Si is a non-empty finite set of states;
– Ei is a finite set of transition labels being the “recognized” event types ei,

coming from the environment. The set can be empty.
– Ti ⊆ Si × Ei × Si a finite set of transitions:
t = (sx, e, sy), sx, sy ∈ Si, e ∈ Ei. The set of transitions can be empty. The
states are updated by transitions.

– Ai is a finite set of attributes of the specified types. The standard data
types such as String, Integer, Currency, Date, etc. plus the types of protocol
machines can be used for specification of attributes. The attributes are the
data containers of a protocol machine. A protocol machine Object contains
at least one attribute, the Name of the Object. The set of attributes of a
Behaviour protocol machine can be empty.

Decision Modules in Models and Implementations 227

– CBi(PM1, . . . , PMn, E1, . . . , Em) = (PM1, . . . , PMn, E1, . . . , Em) is a call-
back function. PM1, . . . , PMn are the protocol machines of the protocol
model. E1, . . . , Em are the events of the protocol model. We list all protocol
machines of the protocol model and the events “recognized” by PMi as the
arguments of the callback function CBi because the elements of all protocol
machines and all “recognized” events can be used as inputs for updating the
values of the attributes, states and events of the protocol machines. These val-
ues can be updated using the callback function only as a result of a transition,
i.e. as a result of event acceptance.
If no calculation is needed for updating attributes of the protocol machine
PMi, the set of callback functions is empty.

“Recognized” events are modelled from the system perspective. Each event
belongs to a specified type telling the system what kind of attributes can be
found in this event.

An event type is a tuple e = (Ae, CBe), where

– Ae is a finite not empty set of attributes of the event.
– CBe(PM1, . . . , PMn, E1, . . . , Em) = (PM1, . . . , PMn, E1, . . . , Em) is a call-

back function corresponding to this event. The callback function for an event
is used if the protocol model generates other events using the attributes of
this event.

Within Protocol Modelling, callback functions are the instruments for data
handling. In the ModelScope tool [21] supporting the execution of protocol mod-
els, the callbacks are coded as Java classes with methods changing and/or return-
ing the values of attributes and states of instances of protocol machines. They
may also change attributes of events and generate event instances.

CSP parallel composition. A protocol model (PM) is a CSP parallel composition
of a finite number of instances of protocol machines. A PM is also a protocol
machine, the set of states of which is the Cartesian product of states of all
composed protocol machines [22]:

n ∈ N
PM = ‖PMi = (s0i , Si, Ei, Ti, Ai, CBi) = (s0, S, E, T,A,CB,).

i = 1

n
s0 =

⋃
s0i is the initial state;

i = 1
n

S =
∏

Si is the set of states;
i = 1
n

E =
⋃
Ei is the set of events;

i = 1

228 S. Roubtsov and E. Roubtsova

not expired
SubmitDoc

submittable
SubmitDoc

submitted
CteatePart

SubmitPart

Part

submitted

Document

created
SubmitDoc

CreateDoc
(Deadline)

UpdateDoc(Deadline),
CreatePart,
AssignPart

created
CreateParticipant

Participant

AssignPart,
SubmitPart

correct

CreatePart,
AssignPart

DeadlineControl

DeadlinePartCorrectness

Document Submittable

act

DESIRED:
CreateParticipant,

AssignPart

creates

AssignPart

CreateDoc,
UpdateDoc

DeadlineCorrectness

cancelled

CancelDoc

Coordinator

created
CreateCoordinator

CreateDoc,
UpdateDoc,
SubmitDoc,

CreateParticipant,
CreatePart,
AssignPart,
CancelDoc,

correct

unique
Create

Duplicate Check

 Module of Synchronous Composition (CSP parallel Composition)

GENERIC Create
MATCHES
CreateDoc,
CreatePart[Document]

EVENT CreateCoordinator
ATTRIBUTES
NameCoordinator:String,
Coordinator:Coordinator

EVENT CreateDoc
ATTRIBUTES
Document:Document,
Name:String, Deadline:Date,
Coordinator:Coordinator

EVENT UpdateDoc
ATTRIBUTES
Document:Document,
Name:String,
Deadline:Date,
Coordinator:Coordinator

EVENT SubmitDoc
ATTRIBUTES
Document: Document,
Coordinator:Coordinator

EVENT CancelDoc
ATTRIBUTES
Document:Document,
Coordinator:Coordinator

EVENT AssignPart
ATTRIBUTES
Document:Document,
Part:Part, DeadlinePart:Date,
Participant:Participant,
Coordinator:Coordinator

EVENT SubmitPart
ATTRIBUTES
Part:Part,
Participant:Participant

EVENT CreateParticipant
ATTRIBUTES
Participant:Participant,
NameParticipant:String,
Coordinator:Coordinator

All machines that recognize E are in state, where they are able to accept E

Deadline=
Deadline

DeadlinePart=
DeadlinePart

EVENT CreatePart
ATTRIBUTES
Part:Part, Name:String,
DeadlinePart:Date,
Coordinator:Coordinator,
Document:Document,

E

E- One of the specified
events

Act

Fig. 2. Executable Protocol Model

n
A =

⋃
Ai is the set attributes of all machines;

i = 1
n

CB =
⋃
CBi is the set of callbacks of all machines.

i = 1
The set of transitions T of the protocol model is defined by the rules of

the CSP parallel composition [8]. The rules synchronise transitions of protocol
machines.

Decision Modules in Models and Implementations 229

The CSP composition rules in Protocol Modelling are:

– If an event is not recognised by the protocol model, it is ignored.
– If an event is recognised by the protocol model and all protocol machines,

recognising this event, are able to accept it, the event is enabled.
– If an event is recognised by the protocol model, but at least one protocol

machine, recognising this event, is not able to accept it, the event is refused.

As the result, the composition may contain the union of transitions of composed
protocol machines if the sets of the “recognised” events of protocol machines are
disjoint. If the sets of the “recognised” events are not disjoint, the set of allowed
transitions is defined using the Cartesian product

∏
Si of states of machines,

the set of events and the rules of CSP parallel composition. An algorithm of
calculation of the set of transitions can be found in [26].

Dependent Protocol Machines. Derived States.
Transitions Ti of a protocol machine PMi enable updates of only its own states;
namely, those in Si. On the other hand, protocol machines can read the states of
other protocol machines, although cannot change them. Callback functions CBi

are used to read states of specified protocol machines and update attributes and
calculate derived states of protocol machines of type Behaviour.

Callback functions create dependencies between protocol machines. The
dependency means that one protocol machine (usually the included protocol
machine of type Behaviour) needs to read the state of other protocol machines
to calculate its own state. Such calculated states are called derived states, which
distinguishes them from the stored states denoted in the model [22]. A protocol
machine with derived (calculated) states is called dependent.

A transition of a dependent protocol machine contains a derived state and
an event, permitted in this state. The derived state can be either an input or
output state of this event.

As all protocol machines are composed with he same CSP parallel composi-
tion rules, a dependent protocol machine specifies an extra “restrictions” on the
acceptance of an event by other protocol machines of the protocol model. Note
that these “restricted” protocol machines are not necessarily the same protocol
machines, states of which have been read to derive the state of the dependent
protocol machine.

The ability of protocol machines to read the state of other protocol machines
is an asset for separation of decision modules. Decision modules need this to read
the information of other modules and use it to specify a decision about event
acceptance.

Further, there are two types of derived states possible in dependent machines,
which can be used in decision modules:

(1) The pre-state of a transition which can be calculated. The pre-state is similar
to guards calculated in Coloured Petri Nets (CPN) [12] and the UML state
machines [23].

(2) The post-state of a transition which can also be calculated. We mentioned
already that the callback functions can update the values of the attributes,

230 S. Roubtsov and E. Roubtsova

states and events only as a result of a transition, i.e. as a result of event
acceptance. If a post-state refuses the event caused its calculation, the event
is rolled back, i.e. the system sends a messages about the post-state value
and it is returned into the state that preceded to the event acceptance. This
semantics does not exist either in the UML, CPN or BPMN. An example of
a decision module using a post-state will be shown in the next sub-section.

6.2 Protocol Model with Decision Modules in the Case Study

The protocol model of our case study is shown in Fig. 2. This protocol model
can be executed in the ModelScope tool [21].

A finite set of EVENTS is defined for this protocol model. For example, the
event type CreateDoc is a tuple of variables of types Document, Coordinator,
String and Date. The elements Document and Coordinator are the protocol
machines of types Document and Coordinator correspondingly (Listing 1).

Listing 1. EVENT CreateDoc

EVENT CreateDoc
ATTRIBUTES

Document : Document ,
Name : Str ing ,
Deadl ine : Date ,
Coordinator : Coordinator

As we see, the event is described as a set of attributes of standard data types
and the types of protocol machines Coordinator and Document.

The life cycles entities (objects) Coordinator, Participant, Part and Docu-
ment are specified as protocol machines. Figure 2 shows the protocol machines
graphically.

Listing 2 shows the textual specification of a protocol machine of type Doc-
ument. Before its creation, any object is in the state @new. Accepting events,
any object transits to states of its life cycle. For example, being in state @new
and accepting event CreateDoc an object of type Document transits from state
@new to state created.
The corresponding transition is depicted as follows: @new*CreateDoc= created.

Listing 2. OBJECT Document

OBJECT Document
NAME Name
INCLUDES Deadl ineControl ,

DocumentSubmittable ,
Deadl ineCorrectness ,
DuplicateCheck

ATTRIBUTES
Name : Str ing , Deadl ine : Date ,
Coordinator : Coordinator

Decision Modules in Models and Implementations 231

STATES created , submitted , c an c e l l e d
TRANSITIONS @new∗CreateDoc= created ,

c r ea ted ∗UpdateDoc=created ,
c r ea ted ∗CreatePart=created ,
c r ea ted ∗AssignPart=created ,
c r ea ted ∗SubmitDoc=submitted ,
c r ea ted ∗CancelDoc=canc e l l e d

Using the protocol machines presenting the life cycles of system entities, the
decision modules can be specified. In order to establish the functional relations
between the states of life cycle modules (objects) and the derived states of deci-
sion modules, the decision module is described as a labelled transition system
with callback functions.

For example, the decision module DeadlineControl in our protocol model
consists of a description of the labeled transition system (Listing 3) and the
corresponding java class (of the same name, Listing 4) describing functional
relation between the states of the decision module and the life cycle modules.

The relation between the DeadlineControl and Document is specified with
the INCLUDE sentence in the Document (Listing 2). To facilitate reuse, the
DeadlineControl decision module can be included in any other object that have
an attribute Deadline.

Listing 3. BEHAVIOUR DeadlineControl

BEHAVIOUR ! Deadl ineContro l
Allows SubmitDoc only i f
the dead l ine i s not exp i r ed

STATES expired , not exp i r ed
TRANSITIONS @any∗SubmitDoc= not exp i red

The decision module DeadlineControl contains transition @any ∗
SubmitDoc = notexpired. State @any literally means any possible combina-
tion of the states of the life cycle modules in the model.

The functional dependency between DeadlineControl and the attribute Dead-
line of the Document is defined in the java class DeadlineControl shown in
Listing 4 as a callback. Behaviour DeadlineControl relates an instance of the
Document with the system clock which is invisibly present in the model. The
system clock gives the current date. The current date is compared with the Dead-
line of the Document. The derived state “expired” or “not expired” is returned
to the protocol machine DeadlineControl.

Listing 4. Java Callback for BEHAVIOUR DeadlineControl

import java . u t i l . Date ;
public class Deadl ineContro l extends Behaviour{

public St r ing ge tSta t e (){
Date expDate = this . getDate (‘ ‘ Deadl ine ’ ’) ;
Date currentDate = new Date () ;

232 S. Roubtsov and E. Roubtsova

return currentDate . compareTo (expDate)>0
? ” exp i red ” : ”not exp i red ” ;

}
}

The decision module DeadlineControl is an example of the Behaviour that
calculates the post-state after proceeding of the event SubmitDoc. If the derived
state of DeadlineControl after processing an event of type SubmitDoc has the
value “expired”, then the event is rolled back and the system returns into the
state before processing of this event.

Figure 2 also shows the examples of the Behaviours that use the pre-state
of other protocol machines for making the decision. For example, Behaviour
Document Submittable is included into the Object Document. Document Sub-
mittable derives its state submittable only if all Parts of the Document are in
state submitted (Listings 5 and 6).

Listing 5. BEHAVIOUR DocumentSubmittable

BEHAVIOUR ! DocumentSubmittable
Ensures that a document cannot be
#submitted i f i t has un f i n i sh ed Parts
ATTRIBUTES ! Document Status : S t r ing

STATES submittable , not submittab le
TRANSITIONS submittab le ∗SubmitDoc=@any

Listing 6. Java Callback for BEHAVIOUR DocumentSubmittable

public class DocumentSubmittable extends Behaviour {
public St r ing ge tSta t e () {
boolean a l lSubmitted =true ;

In s tance [] myParts =
this . s e l ec tByRef (”Part” , ”Document”) ;

i f (myParts . l ength==0)
{ a l lSubmitted = fa l se ;}

for (int i = 0 ; i < myParts . l ength ; i++) {
i f ((myParts [i] . g e tSta te (”Part”) . equa l s (” c r ea ted ”)))

a l lSubmitted = fa l se ;
}

return a l lSubmitted ? ” submittab le ” : ”not submittab le ” ;
}
public St r ing getDocumentStatus () {

return this . g e tS ta t e (”DocumentSubmittable ”) ;
}

}

Decision Modules in Models and Implementations 233

Figure 2 presents six decision modules: DeadlineCorrectness, DeadlinePart-
Correctness, DeadlineControl, Document Submittable, Act, Duplicate check. The
arc with the half-dashed triangle end shows the INCLUDE relation.

Several decision modules may be included into the same object. For exam-
ple, four decision modules are included into object Document. All the decision
modules processing the submitted event need to be executed to make a deci-
sion about its proceeding. Any event proceeds only if all the protocol machines
recognising this event permit its proceeding.

6.3 Properties of Decision Modules in Protocol Models

We can name the following properties of decision modules in Protocol Models:

1. Modularity: a decision module localises the decision making rules (separates
them for the purpose of reuse);
For example, the module DeadlineControl can restrict the behaviour of
objects Document and Part in the same way.

2. Unidirectional Dependency : the decision modules can read the state of other
modules, but other modules do not know how the decision is made (other
modules are oblivious [7]).
For example, DeadlineControl reads the value of attribute Deadline of the
object Document and predicts state expired, not expired after event Submit-
Doc. The object Document remains oblivious.

3. Mechanism to Achieve the Properties is Event-driven with CSP Parallel Com-
position.
Decision modules are incorporated into the protocol model on the basis of
their ability to react to predefined events following the rules of CSP parallel
composition. The CSP parallel composition of all modules in protocol model
allows for local modification, adding and deleting of modules without affecting
the ordering in the specified behaviour sequences of existing modules.

Executable protocol models enable separation of decision modules defined in
requirements. Requirements become traceable in executable models. There are
obvious advantages of modularisation of decision modules for traceability of
requirements and testing and modification of models.

Traceability. Traceability of requirements in models is prescribed in standards
and considered as a prerequisite of a proper system evolution, modifiability and
long life. The developers should convince themselves and their customers that
the system does what it was required to do. Modularisation of decision modules
directly transforms the declarations or items of requirements into modules of
the model. For example, the item “If all parts are ready, the document can be
submitted” is traced in the decision module Document Submittable.

Testing. Modularisation of decision modules defines the testing strategy. Each
of the decision modules specifies a finite set of tests. The set of tests is finite
because the decision module partitions the data into groups. Each group results

234 S. Roubtsov and E. Roubtsova

in a decision. Testing only one representative from each group is sufficient to
test the decisions and the variants of behaviour resulting from this decision. For
example, in order to test the decision module Document Submittable:“If all parts
are ready, the document can be submitted” two tests should be designed:

(1) a document has been created; at least two parts have been assigned; one
part has been submitted and another part has not been submitted;

(2) a document has been created; the parts have been assigned and all parts
have been submitted.

Modification. In our model we have not separated the decision module Can-
cel Document. However, we can easily modularize cancellation of a document
and compose it with the model. A new decision module will define that “If a
document is in a state created, it can be canceled or submitted”.

Systematic separation of decision modules from requirements to models and
implementation promises advantages for traceability of requirements, testing and
modification of the implementation. In the next section we investigate if the deci-
sion modules with the same properties as in protocol models can be implemented
using such a mainstream programming language as Java.

7 Decision Modules in Java

The implementation of decision modules using mainstream programming lan-
guages is the question that needs investigation. To the best of our knowledge,
there are no systematic implementation approaches for separation of enablers.

The research question of this paper is the following:
Is it possible to implement the decision modules using mainstream object-oriented
language techniques in such a way that the implementation of decision modules
would have the same properties as the decision modules in executable protocol
models, namely:
- modularity;
- unidirectional dependency;
- event-based composition?

For our experiments with the implementation of decision modules we have
chosen Java as one of the mainstream object-oriented programming languages.

First, we investigated if decision modules can be implemented within com-
mon Java paradigm, that is, without using any frameworks and special libraries.
We consider this rather important because relying upon specialised libraries and
frameworks usually makes the implementation less generic with respect to, for
example, underlying architecture. It can also make the solution platform- and
vendor-specific violating a well known Java principle “write once, run every-
where”.

Further, we also investigate the expressivity of Enterprise Java Beans (EJB3)
and aspect-oriented Java (AspectJ) [15,27] for implementation of enables and
decision modules.

Decision Modules in Models and Implementations 235

7.1 Using Object Composition

It seems that a simple way to implement decision modules is to use object
composition where they are included in life cycle modules as object fields. In
the Listing 7 both OBJECT Document and BEHAVIOUR DeadlineControl are
shown as Java classes, the former includes the latter as an instance variable. As
we said in Subsect. 6.1, the difference between life cycle modules(objects) and
behaviours in Protocol Modelling is that behaviours cannot be instantiated on
their own but rather extend functionality of objects. In the implementations in
this paper, we do not implement this restriction. That’s why there is no need in
a separate class Object and both classes extend the same parent class Behaviour.

Listing 7. Implementation using Object Composition

class Document extends Behaviour{
private St r ing name ;
private Date deadLine ;

/∗ ’INCLUDES ’ in the model i s implemented
as o b j e c t composi t ion ∗/

private Deadl ineContro l dead l ineContro l ;
public Document (S t r ing name , Date deadLine){

this . name = name ;
this . deadLine = deadLine ;
this . s t a t e = ” created ” ;

/∗ i f d ead l i ne changes Dead l ineContro l
has to be somehow n o t i f i e d ∗/

this . dead l ineContro l =
new Deadl ineContro l (deadLine) ;

}
/∗ This method has to check i t s e l f the s t a t e
o f Dead l ineContro l ∗/

public void submitDoc (){
i f (dead l ineCont ro l . g e tSta te () .

compareTo (”not exp i red ”) == 0) {
this . s e t S t a t e (” submitted ”) ;

} else {
this . s e t S t a t e (” c an c e l l e d ”) ;

}
}

}

public class Deadl ineContro l extends Behaviour {

/∗ Date needs to be passed to Dead l ineContro l ∗/
private Date dead l ine ;
Deadl ineContro l (Date deadLine) {

this . d ead l ine = deadLine ;

236 S. Roubtsov and E. Roubtsova

}
@Override
public St r ing ge tSta t e () {

Date currentDate = new Date () ;
return
currentDate . compareTo (dead l ine) > 0

? ” exp i red ” : ”not exp i red ” ;
}

}
Such an implementation is quite traditional and completely within the scope

of plain Java. However, its limitations are obvious:

– The communication of objects is not event-driven.
– The dependency of modules is bi-directional. The life cycle module Document

is not oblivious about the functionality of the decision module DeadlineControl
because it has to
• specify DeadlineControl as its object field and
• explicitly invoke the deadlineControl.getState() method.
• even the state of the decision module DeadlineControl “not expired” is

used in the code of the life cycle module Document.
– The implementation of the decision module is also dependent, because it has

to know the exact name, the type, and the value of a constrained attribute
(e.g. Date deadline.)

Consequently, changing (for example, changing the module name or the state
name “not expired”) or adding new functionality within decision modules would
require refactoring and subsequent regression testing of all affected life cycle
modules. The limitations above make such decision modules not generic enough
to be used to implement shared behaviours among different life cycle objects.

7.2 Using Publisher-Subscriber Design Pattern and Java Reflection

Further generalization can be done using Java reflection and the publisher-
subscriber design pattern. Java reflection makes it possible to retrieve the name
of a field of a known type to the decision module. Using publisher-subscriber
design pattern, we can implement event-driven mechanism, which is in the core
of the Protocol Modeling approach.

Here we implemented the generic functionality of the behaviour protocol
machines (Sect. 6) in the parent class Behaviour. In particular, Behaviour imple-
ments the reflection on all allowed generic data types. The Behaviour class can
be put in a separate Java package among other application independent elements
of Protocol Modeling such as Object, State, Attribute, or Event. This package -
we will further refer to it as a “behaviour engine” - should also include generic
Protocol Modelling mechanisms such as object instantiation and the CSP com-
position mechanism. We will introduce the latter in the following subsections.

Decision Modules in Models and Implementations 237

Listing 8 shows the Document class, which now implements interface Sub-
mitDocEventListener within the publisher-subscriber design pattern.

DeadlineControl has now a new attribute deadlineAttribute, which is used
to invoke the name of the checked attribute deadline of the class Document via
Java reflection inside the getDate() method. This method is defined in the parent
class Behaviour.

Listing 8. Implementation using publisher-subscriber design pattern and Java
Reflection

class Behaviour {
/∗
. . .
The r e s t o f BEHAVIOUR f u n c t i o n a l i t y
. . .
∗/

public Date getDate (S t r ing dateFieldName){
// Re f l e c t i on to ge t acces s to the va lue
// o f dateFieldName o f type Date

Fie ld f i e l d ;
f i e l d =

this . g e tC la s s () .
g e tDec la r edF i e ld (dateFieldName) ;

f i e l d . s e tA c c e s s i b l e (true) ;
return (Date) f i e l d . get (this) ;

}
}

public class Document extends Behaviour
implements SubmitDocEventListener {

private St r ing name ;
private Date deadLine ;

/∗ ‘INCLUDES ’ in the model i s implemented
as o b j e c t composi t ion ∗/

private Deadl ineContro l dead l ineContro l ;

public Document (S t r ing name , Date deadLine){
this . name = name ;
this . deadLine = deadLine ;
s e tS t a t e (State .NEW) ;
// passes the dead l ine a t t r i b u t e
this . dead l ineContro l =

new Deadl ineContro l (‘ ‘ deadLine ’ ’) ;
}

238 S. Roubtsov and E. Roubtsova

/∗ Implementation o f l i s t e n e r method
from SubmitDocEventListener i n t e r f a c e ∗/

@Override
public void submitDocEventReceived (){

i f (dead l ineCont ro l . g e tSta te (this) ==
DocManState .NOT EXPIRED) {

this . s e t S t a t e (DocManState .SUBMITTED) ;
}

}

}
public class Deadl ineContro l extends Behaviour{

private St r ing dead l i n eAt t r ibu t e ;

Deadl ineContro l (S t r ing dead l ine) {
this . d ead l i n eAt t r ibu t e = dead l i n e ;

}

public DocManState ge tSta t e (Behaviour i n s t){
Date expDate =

i n s t . getDate (this . d ead l i n eAt t r i bu t e) ;
Date currentDate = new Date () ;
return

currentDate . compareTo (expDate) > 0
? DocManState .EXPIRED : DocManState .NOT EXPIRED;

}
}

In the enhanced code above we also make use of the class DocManState, which
specialises the application dependent functionality of the behaviour engine’s
generic class State and contains the enumeration of all possible states of the
objects in the Document Manager model.

The publisher-subscriber design pattern implements the Protocol Modelling
event-based communication of modules. Java reflection allows reducing the
dependency of the decision module on a particular life cycle module.

Still, OBJECT Document has to be aware of the functionality of the BEHAV-
IOUR DeadlineControl as it has to invoke it inside the event handler submitDo-
cEventReceived(). The dependency of modules is bi-directional.

7.3 Using Interceptors Within Enterprise Java Beans Framework

A decision module can be seen as a managerial concern or a control concern. In
mainstream languages, concerns are often implemented using the aspect mech-
anism.

We intend to investigate if the aspect mechanisms in Java can support imple-
mentation of decision modules that have only unidirectional dependency with

Decision Modules in Models and Implementations 239

life cycle modules, that is, the decision modules can read the state of the life
cycle modules and permit or forbid proceeding of events while the life cycles are
oblivious to decision modules.

The standard Java currently has only one aspect mechanism implemented
in the Java Enterprise Edition (Java EE [6]), which supports Enterprise Java
Beans 3 (EJB3) specification. EJB3 supports special objects called interceptors,
which have the “around invoke” aspect semantics. Interceptors are invoked by
the Java EE container run by an application server. Each EJB may have a set of
“business methods” which can be surrounded by additional functionally provided
by a decision module via container. The decision module is implemented as an
interceptor. The container is instructed by an EJB3 annotation @Interceptors
to call an interceptor before the invocation of a business method of a bean.

In the Listing 9, the life cycle module is implemented as class Document. It is
a “stateless” bean [6], which the corresponding annotation @Stateless declares.
The only thing the code developer has to do with the life cycle module is to choose
the business method (or methods) that should be intercepted and annotate
this business method with the @Interceptors(DeadlineControlInterceptor.class)
annotation. In our case, this is the SubmitDoc() method. This annotation informs
the application server that before submitting the document the corresponding
deadline control interceptor has to be invoked.

Listing 9. Implementation of OBJECT type Document as a stateless bean using EJB3
specification

@State l e s s
public class Document implements DocumentRemote {

private St r ing name ;
private stat ic Date deadLine ;
private St r ing s t a t e ;

public Document () {
this . s t a t e = ”@new” ;

/∗ . . ∗/
}

@Interceptor s (Dead l ineCont ro l In t e r c epto r . class)
@Override
public void submitDoc () {

this . s t a t e = DocManState .SUBMITTED;
}

}
Interceptor DeadlineControlInterceptor (Listing 10) is a Java class. It has

one special method annotated as @AroundInvoke. Via its only parameter Invoca-
tionContext, it has access to the life cycle module’s instance. The Java reflection
mechanism provides access to the deadLine attribute of the Document object.

240 S. Roubtsov and E. Roubtsova

Listing 10. Implementation of DeadlineControl as an interceptor using EJB3 specifi-
cation

class Dead l ineCont ro l In t e r c epto r {

@AroundInvoke
public Object ge tSta t e (Invocat ionContext i c)
throws Exception {

Date currentDate = new Date () ;
/∗ Using Invocat ionContex t to g e t the o b j e c t

and r e f l e c t i o n to ge t the va lue o f i t s
”deadLine” a t t r i b u t e ∗/

Fie ld f l d = i c . getMethod () .
g e tDec l a r ingC la s s () .

g e tDec la r edF i e ld (”deadLine”) ;
f l d . s e tA c c e s s i b l e (true) ;
Date dt = new Date () ;
Date expDate = (Date) f l d . get (dt) ;
i f (currentDate . compareTo (expDate) > 0) {

return null ; //Method submitDoc () i s not c a l l e d
} else {

return i c . proceed () ;
}

}
}
Using InvacationContext, the decision module DeadlineControlInterceptor
obtains the name of the attribute “deadLine” to read its value from the life
cycle module. The value of the “deadLine” is assigned to the expDate (expira-
tion Date) and compared with the current date.

The implementation above is generic enough as it allows using the same
decision module among multiple life cycle modules. The only restriction remains
that the name of the constrained attribute “deadLine” has to be the same among
all of them. The unidirectional dependency is achieved using the interceptor
mechanism supported by the application server. The event-based communication
and composition is also used (although not shown in the listings above).

7.4 Using Enterprise Java Beans Framework and Decorator Design
Pattern

One may argue that using reflection is not safe and should be avoided whenever
it’s possible. In some cases, life cycle modules to be extended by decision modules
may have the same external behaviour, e.g. Document and Part in our running
case study. In such a case, decision modules may be implemented as wrappers to
life cycle modules using the Decorator design pattern. In the EJB3 specification
this pattern is supported as well. Decorators implement a mechanism that is
close to interceptors. They add functionality to the decorated classes. However,

Decision Modules in Models and Implementations 241

instead of implementing cross-cutting concerns useful for different class types,
they extend the behaviour of a class implementing a certain interface.

In the following Listing 11 the deadline control functionality is implemented
as a decorator class DocumentDeadlineControlDecorator.

Listing 11. Implementation of DeadlineControl using Delegation within EJB3 speci-
fication

@Decorator
public abstract class

DocumentDeadlineControlDecorator
implements DocumentRemote {

@Inject
@Delegate
DocumentRemote doc ;

@Override
public void submitDoc () {

Date currentDate = new Date () ;
i f (currentDate .

compareTo (doc . getDeadLine ()) >0){
System . e r r . p r i n t l n (”Expired”) ;

} else {
doc . submitDoc () ;

}
}

}
The code shows the Document or Part class injected via their common inter-

face DocumentRemote. The @Inject annotation uses the dependency injection
mechanism [6] to give the decorator access to the decorated class. The @Delegate
annotation gives the container access to all exposed methods of all the classes
implementing the DocumentRemote interface. In our example, the call of the
submitDoc() method of Document happens only if the deadline is not expired.
As one can see, the techniques based on the dependency injection mechanism
provide the implementation means to produce the decision modules with all the
desired properties: modularity, unidirectional dependency with other modules,
event-based communication and composition of modules.

The disadvantage of the decision modules’ implementation approach using
EJB3 is obvious: it’s too heavy. The overhead of running the application server
just for the sake of support of decision modules is not sufficiently justified. How-
ever, if the system is already implemented as an enterprise application, this may
be a viable solution. EJB3 is supported by a large variety of certified application
servers [25], both open source and proprietary. In order to completely avoid a
vendor lock the EJB3 platform may be substituted by a platform independent
solution, for example, the Spring framework [27]. It has an additional benefit, as

242 S. Roubtsov and E. Roubtsova

it supports the AspectJ [5] specification, which implements the aspect paradigm
much more thoroughly than EJB3 does. We didn’t experiment with Spring, but
a code snippet like the one below can be already envisioned (Listing 12).

Listing 12. Implementation of DeadlineControl as an aspect using Spring framework
specification

@Aspect
public class Deadl ineContro lAspect {
/∗ . . . ∗/

@Around (‘ ‘ execut ion (∗ documentmanager . submitDoc (. .)) ’ ’)
public void Deadl ineContro l (Jo inPoint j o inPo in t){

/∗ add dec i s i on module f u n c t i o n a l i t y here ∗/

}
}

Still, Spring is an additional layer on top of an application server. In the
following section we show how AspectJ as a special library for plain Java can be
used to implement decision modules.

7.5 Using AspectJ

The idea to implement business rules as aspects is not new. The authors
of [13,16,17] point out that aspects allow the developers to separate the busi-
ness logic from the application’s core functionality encapsulating in aspects both
crosscutting features as well as their “connectors” [17] to business objects. This
makes it possible to “completely remove the source code pertaining to the busi-
ness rules” [13] from the business objects. In our terminology this is called uni-
directional dependency or obliviousness. In this subsection we show how the
entire set of Protocol Modelling properties may be implemented using aspect
technology for the plain Java.

We implemented our running example using an AspectJ plugin for Eclipse [5].
In the implementation, we continued to separate the generic Protocol Modelling
behaviour from the application (Document Manager) specific functionality.

Apart from the Behaviour class, already implemented earlier, we added to
the generic implementation (“behaviour engine”) two public interfaces Lifecy-
cleModule and DecisionModule.

The interface LifecycleModule contains the list of its decision modules and the
declarations of methods linking a life cycle module to its decision modules. This
is the implementation of the protocol model INCLUDES declaration (Listing 2).

The interface DecisionModule declares the decide() method, which, being
implemented, have to return true, if the decision module is in the right
state allowing proceeding the event specified for this decision module or false
otherwise.

Further, we implemented the protocol model generic behaviour as an abstract
aspect BehaviourProtocol (Listing 13).

Decision Modules in Models and Implementations 243

Listing 13. Implementation of the Protocol Modeling behaviour as an abstract aspect
using AspectJ

public abstract aspect BehaviourProtoco l {
public abstract po intcut stateChanges (L i f ecyc l eModule l c) ;

void around (Li f ecyc leModule l c) : stateChanges (l c) {
for (int i = 0 ; i<l c . getDec is ionModules () . s i z e () ; i++){

i f (! ((Decis ionModule) l c . getDec is ionModules ()
. elementAt (i)) . dec ide (l c)){
System . out . p r i n t l n (”NO GO! ”) ;
return ;

}
}
proceed (l c) ;

}
/∗ . . . ∗/
}

The most important part of our “engine” is the AspectJ advice state-
Changes() with “around invoke” semantics. It iterates through all the life cycle
module’s (LC) decision modules (DM) using their decide() methods. If the state
of each decision module permits to proceed, the AspectJ’s proceed() method is
invoked, which allows the corresponding LC module’s method to run. As one
can see in Listing 13, if several DM’s are used for a single LC, the AND seman-
tics is implemented with respect to the DM invocation: each of them has to be
in the right state that permits proceeding. If necessary, any other semantics of
logical composition of aspects (e.q., OR, XOR) can be realized generically at the
implementation level.

Listing 14 shows the application specific part of the AspectJ implementa-
tion. There is an aspect implementing the BehaviourProtocol abstract aspect. It
declares the Document class as a LC and the DeadlineControl class as its DM
and also links them to the aspect. Next, the DeadlineControl ’s decide() method
is implemented by the aspect. Finally, the pointcut is created, which links the
advice stateChanges to the Document ’s method submitDocEventAJ().

Listing 14. Implementation of the application specific behaviour using AspectJ

public aspect BehaviourProtocolDocManImpl
extends BehaviourProtoco l {

/∗ Document as a l i f e c y c l e module ∗/
de c l a r e parents : Document

implements Li fecyc leModule ;
public Object Document . getData () { return this ; }

/∗ I t s d e c i s i on module ∗/
de c l a r e parents : Deadl ineContro l

implements DecisionModule ;
/∗ GO−No GO method f o r the d e c i s i on module ∗/

244 S. Roubtsov and E. Roubtsova

public boolean Deadl ineContro l . dec ide (L i f ecyc l eModule l c)
{

System . out . p r i n t l n (”Deadl ineContro l Works ! ”) ;
/∗ Here the DM ge t s the in format ion about t ype s o f the LC

f i e l d s to check and t h e i r c o r r e c t s t a t e s f o r GO ∗/
i f (ge tS ta t e ((Behaviour) l c . getData ()) ==

DocManState .NOT EXPIRED){
return true ;

} else {
return fa lse ;

}
}

/∗ s ta teChanges i s invoked f o r each t a r g e t be ing a l i f e
c y c l e module wi th the s i gna tu r e o f the method aspec t
i s weaved to ∗/

public po intcut stateChanges (L i f ecyc l eModule l c) :
t a r g e t (l c) && c a l l (public void submitDocEventAJ ())

}
Listing 15 shows the AspectJ implementation of the Document class. As

one can see, this is a “purely oblivious” implementation without any knowledge
about the decision module. The decision module can be implemented the same
way as shown in Listing 8. To obtain its current state, it still needs Java reflection
and the knowledge about the LC’s field type. However, as we pointed out before
(Subsect. 7.2), it is possible to implement any type-related functionality, which
uses reflection, as a member method of the generic class Behaviour.

Listing 15. Document class in the AspectJ implementation

public class Document extends Behaviuor
private St r ing name ;
private Date deadLine ;
public Document (S t r ing name , Date deadLine) {

this . name = name ;
this . deadLine = deadLine ;
s e tS t a t e (State .NEW) ;

}
public void submitDocEventAJ () {

this . s e t S t a t e (DocManState .SUBMITTED) ;
}

/∗ . . . ∗/
}

}
To support modularity, the AspectJ implementation clearly separates the

core and business rule logics between LC and DM implementation classes. The
former are completely oblivious to the latter. The even-driven mechanism can
be easily implemented using the publisher-subscriber pattern as we have shown

Decision Modules in Models and Implementations 245

before in Subsect. 7.2. Moreover, the generic Protocol Modelling behaviour can
be further separated from the application specific one. This way, the usability of
the approach can be facilitated.

7.6 Using Mixins

Another promising approach would be to program with mixins [18]. When a class
implements a mixin, it implements an interface extended with this mixin and,
this way, implements mixin’s attributes and methods. This description is very
close to the functionality of BEHAVIOUR in protocol models. Unfortunately,
direct realisation of mixins in mainstream languages is largely absent, at least
without making use of special or not well known libraries. Despite some anecdotal
claims, the support of mixins in Java is hardly expected in foreseeable future
as well. The newly released Java 8 SE specification [11] does not support them
either.

A partial solution could be to use newly introduces in Java 8 SE [11] so
called “virtual extension methods”, which simply allow one to add default
method implementations to the interface not changing the implementation
classes. Whether or not such a feature could be sufficient enough for deci-
sion module implementations needs further experiments. In our future study
we intend to investigate as to how some known ad-hoc approaches [14] can be
used to program decision modules with mixins.

7.7 Properties of Decision Modules in Java Implementations

Table 1 summarises the implementation examples above with respect to their
adherence to the properties of decision modules in Protocol Modelling as they
described in Subsect. 6.3. The table shows that the aspect-oriented implementa-
tion techniques provide full support for the modularization with decision mod-
ules.

8 Discussion

8.1 Decision Abstractions in Behaviour Modelling Practice

Decision modules are the abstractions of the business system modelling domain.
The practice shows that the most changeable parts of functionality of infor-

mation and case management systems are the parts that present the rules of han-
dling the cases and information. The rules of handling insurance claims change
every year. The rules of proposal selection for funding and crediting are con-
stantly modified following the changes in the economic situation. The rules of
dealing with private health information in patient files, the rules of using the
information on the web, all undergo changes. Localization of such rules in sepa-
rate modules and the ability to modify those modules without changes in other
modules are the desired requirements supporting changeability of systems dur-
ing their evolution. Complex automated control systems may experience less

246 S. Roubtsov and E. Roubtsova

Table 1. Protocol Modelling decision modules properties in different Java implemen-
tations

Technique Modularity Unidirectional Mechanism:

dependency Event-Driven

(CSP||)
Object

Composition yes no no

Publ.-Subscr.& partially,

Java Reflection yes state reading:yes yes

obliviousness:no

EJB 3 with

Interceptors yes yes yes

EJB 3 yes,

with Delegation yes for a given yes

interface

Aspects with

AspectJ yes yes yes

changes but they still need to overcome modernization. The localization of deci-
sion points in such a way that their changes does not change the rest of the
system can simplify regression testing of system modifications.

The need of localising decisions seems being realised in the draft version of the
new Case Management Model and Notation (CMMN) [24] standard developed by
OMG. The standard includes a decision module called Sentry. “Sentry watches
out for important situations to occur (or events), which influence the further
proceedings of a Case. . . A Sentry is a combination of an event and/or condition.
When the event occurs, a condition might be applied to evaluate whether the
event has effect or not” [24](p. 23).

Thus, on the one hand, the need of decision points as separate entities has
been recognised by the OMG community. On the other hand, the Protocol Mod-
elling semantics forms a solid basis for building executable models with decision
modules. There is also the ModelScope tool [21] that supports the execution of
protocol models. This is a good starting point. In this paper we have shown the
possibilities of implementation of decision models with the same properties as
in protocol models.

However, there are barriers to widespread adoption of the new protocol mod-
elling style.

– Unawareness. The first barrier is unawareness of the modelling community
about this style of modelling. The CMMN standard is young and still under
development. The description of the standard does not exactly follow the pro-
tocol modelling semantics. The mutual adaptation of the Protocol Modelling

Decision Modules in Models and Implementations 247

and the CMMN standard would contribute to the awareness about decision
modules.

– A Small Number of Success Stories. For the moment, success stories have
been collected at the official web page of the company called Metamaxim [21].
A systematic application was fulfilled for the use case of basic insurance for
Oracle Nederland [28]. In order to convince businesses to use the new mod-
elling style, more success stories have to be collected and distributed to the
modelling community and businesses.

– Legacy Models. There are many legacy models in the key business areas like
banking and government services. These models are built using the traditional
process modelling style. To adopt a new modelling style, companies need a
very good motivation for new investments in those models. Modelling does
not give direct return on investments. Better understanding and reasoning
are not tangible enough. The advantages of the new modelling style need
further valorisation.

8.2 Decision Modules in Implementations. The Way to Go?

The bottleneck in system development is often the implementation of changes.
For example, the maintenance teams of insurance applications experience stress
every year as the new rules of claim handling are accepted by the governments,
say, in November-December. The changes often need to be implemented and
work perfectly from the first day of January. Most of the time, the modifica-
tions concern decision rules. If the implementation follows the new modelling
style and supports local modifications which guarantee that the not-modified
parts preserve their behaviour, the time for implementation and testing activi-
ties will be shortened. This evidence will be the best argument in favour of the
new modelling and implementation style. We see the best way to obtain such an
evidence in refactoring an existing application in some traditional case manage-
ment domain. To do so, we need a proper tool support for different stages of the
software development process.

– Refactoring of Conventional Process Models. The first group of tools should
be able to refactor or transform the conventional process models into protocol
models with separated decision models. These tools should help to overcome
the barrier of legacy systems and also increase the awareness in the new style
of modelling and the properties of models with separated decision modules.

– An Open Source Execution Tool for CMMN Models with Protocol Modelling
Semantics. The most convincing way of promoting the new approach is to let
the user to play with it. Even more importantly, executable Protocol Modelling
would allow the developers to get insights into the model at early stages of
the development and avoid more costly mistakes at the later stages.

– Implementation libraries and plugins. The Protocol Modelling implementation
style has to be accompanied by open source libraries which should implement
its generic functionality. In our experiments with Java and AspectJ we have
found that this generic part can be factored out from the application specific

248 S. Roubtsov and E. Roubtsova

behaviour into a separate package. Further, using the plugin mechanism, a
“behaviuor engine” package and, thus, the decision module-based approach
can be made a part of the development environments such as Eclipse or Net-
Beans.

In our future work we intend to follow the directions indicated in the above list.

9 Conclusion

In this paper we have defined decision modules and investigated the possibili-
ties of Java implementation of decision modules identified in requirements and
modularized in protocol models.

Decision modules separate a specification of the state of a non-empty set of
system objects in the form of a calculated state allowing or forbidding a set of sys-
tem actions. The calculated states serve as conditions for making decisions about
the possible system actions. Separation of such modules facilitates requirements
traceability, test generation and modification of models and implementations.

We have shown a possible way to separate decision models in declarative
models, executable protocol models and Java programs.

To answer our research question, we conclude that it is indeed possible
to implement functionality of decision modules using such mainstream object-
oriented language techniques as EJB3 and AspectJ so that such implementations
would have the same properties as the decision modules in executable protocol
models. These techniques support all the decision modules’ properties and pro-
vide the means to make generic implementations. The usability of such a solution
depends on the development of necessary libraries and plugins. In this paper we
have collected the experience for creating a “behaviour composition engine” for
the implementation of applications with life-cycle and decision modules.

References

1. von Halle, B.: Business Rules Applied. Wiley, New York (2001)
2. Bracha, G., Cook, W.: Mixin-based inheritance. In: OOPSLA/ECOOP 1990 Pro-

ceedings of the European conference on object-oriented programming on Object-
oriented programming systems, languages, and applications, pp. 303–311 (1990)

3. Business Rules Group. Defining Business Rules. What Are They Really? (2000).
http://www.businessrulesgroup.org/first paper/br01c0.htm

4. Date, C.J.: What not How: The Business Rules Approach to Application Develop-
ment. Addison-Wesley, Boston (2000)

5. Eclipse. AspectJ project. http://projects.eclipse.org/projects/tools.aspectj
6. EJB 3.2 Expert Group. JSR-318 Enterprise JavaBeans, Version 3.2 (2013)
7. Filman, R., Elrad, T., Clarke, S., Akşit, M.: Aspect-Oriented Software Develop-

ment. Addison-Wesley, Boston (2004)
8. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International (1985)
9. IDC. IDC survey (2007). http://ceiton.com/CMS/EN/workflow/introduction.

html/

http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://projects.eclipse.org/projects/tools.aspectj
http://ceiton.com/CMS/EN/workflow/introduction.html/
http://ceiton.com/CMS/EN/workflow/introduction.html/

Decision Modules in Models and Implementations 249

10. Taylor, J., Raden, N.: Smart (Enough) Systems. Prentice Hall, Upper Saddle River,
NJ, USA (2007)

11. JSR-000337 Java SE 8 Release (2014)
12. Jensen, K.: Coloured Petri Nets. Springer, Heidelberg (1997)
13. Kellens, A., Schutter, K.D., D’Hondt, T., Jonckers, V., Doggen, H.: Experiences

in modularizing business rules into aspects. In: ICSM 2008, pp. 448–451 (2008)
14. Kerflyn’s Blog. Java 8: Now You Have Mixins?. http://kerflyn.wordpress.com/

2012/07/09/java-8-now-you-have-mixins/
15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,

Irwin, J.: Aspect-oriented programming. In: Proceedings of the European Confer-
ence on Object-Oriented Programming, vol. 1241, pp. 220–242 (1997)

16. Cibrán, M.A., D’Hondt, M.: Composable and reusable business rules using
AspectJ. In: Workshop on Software engineering Properties of Languages for Aspect
Technologies (SPLAT) at the International Conference on AOSD. Boston, USA
(2003)

17. Cibrán, M.A., D’Hondt, M., Jonckers, V.: Aspect-oriented programming for con-
necting business rules. In: 6th Proceedings of International Conference on Business
nforamtioon Systems, Colorado Springs, USA (2003)

18. Flatt, M., Adsul, B., Felleisen, M.: A programmer’s reduction semantics for classes
and mixins. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java. LNCS,
vol. 1523, pp. 241–269. Springer, Heidelberg (1999)

19. McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: AOM
2008, pp. 13–18 (2008)

20. McNeile, A., Roubtsova, E.: Aspect-oriented development using protocol model-
ing. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented
Software Development VII. LNCS, vol. 6210, pp. 115–150. Springer, Heidelberg
(2010)

21. McNeile, A., Simons, N.: http://www.metamaxim.com/
22. McNeile, A., Simons, N.: Protocol modelling: a modelling approach that supports

reusable behavioural abstractions. Softw. Syst. Modeling 5(1), 91–107 (2006)
23. OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-03

(2003)
24. OMG. Case Management Model and Notation. Version 1.0, formal/2014-05-05

(2014)
25. Oracle. JavaEE Compatibility. http://www.oracle.com/technetwork/java/javaee/

overview/compatibility-jsp-136984.html
26. Roubtsova, E., Roubtsov, S.: A test generator for model-based testing. In: Proceed-

ings of the Fourth International Symposium on Business Modeling and Software
Design, BMSD 2014, 24–26 June, 2014. Luxembourg (2014)

27. Spring. Spring Framework. http://projects.spring.io/spring-framework/
28. Verheul, J., Roubtsova, E.: An executable and changeable reference model for the

health insurance industry. In: The 3rd International Workshop on Behavioural
Modelling - Foundations and Application, BM-FA 2011, Birmingham, UK, pp.
33–40. ACM DL (2011)

http://kerflyn.wordpress.com/2012/07/09/java-8-now-you-have-mixins/
http://kerflyn.wordpress.com/2012/07/09/java-8-now-you-have-mixins/
http://www.metamaxim.com/
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html
http://projects.spring.io/spring-framework/

Concern-Oriented Behaviour Modelling
with Sequence Diagrams and Protocol Models

Wisam Al Abed, Matthias Schöttle(B), Abir Ayed, and Jörg Kienzle

School of Computer Science, McGill University, Montreal, QC H3A 0E9, Canada
{wisam.alabed,matthias.schoettle,abir.ayed}@mail.mcgill.ca,

joerg.kienzle@mcgill.ca

Abstract. Concern-Oriented REuse (CORE) is a multi-view modelling
approach that builds on the disciplines of model-driven engineering, soft-
ware product lines and aspect-orientation to define broad units of reuse,
so called concerns. Concerns specify the essence of a design solution and
its different variations, if any, using multiple structural and behavioural
views, and expose the encapsulated functionality through a three-part
interface: a variation, a customization and a usage interface. Concerns
can reuse other concerns, and model composition techniques are used to
create complex models in which these concerns are intertwined. In such
a context, specifying the composition of the models is a non-trivial task,
in particular when it comes to specifying the composition of behavioural
models. This is the case for CORE message views, which define behav-
iour using sequence diagrams. In this paper we describe how we added
an additional behavioural view to CORE – the state view – that spec-
ifies the allowed invocation protocol of class instances. We discuss why
Protocol Modelling, a compositional modelling approach based on state
diagrams, is an appropriate notation to specify such a state view, and
show how we added support for protocol modelling to the CORE meta-
model. Finally, we demonstrate how to model using the new state views
by means of an example, and explain how state views can be exploited
to model-check the correctness of behavioural compositions.

1 Introduction

Model-Driven Engineering (MDE) [21] is a unified conceptual framework in
which software development is seen as a process of model production, refine-
ment and integration. Models are built representing different views of a software
system using different formalisms, i.e., modelling languages. The formalism is
chosen in such a way that the model concisely expresses the properties of the
system that are important at the current level of abstraction. During develop-
ment, high-level specification models are refined or combined with other models
to include more solution details, such as the chosen architecture, data struc-
tures, algorithms, and finally even platform and environment-specific execution
properties. The manipulation of models is achieved by means of model transfor-
mations. Model refinement and integration continues until a model (or code) is
produced that can be executed.
c© Springer International Publishing Switzerland 2015
E. Roubtsova et al. (Eds.): BM-FA 2009-2014, LNCS 6368, pp. 250–278, 2015.
DOI: 10.1007/978-3-319-21912-7 10

Concern-Oriented Behaviour Modelling 251

MDE, while successful in many areas, still faces important challenges in
practise. One main challenge is model reuse [25]: typically, models for a system
under development are created from scratch, rather than reusing already existing
models. This makes modelling more cumbersome than coding, since most mod-
ern programming languages offer extensive libraries that facilitate code reuse.
Furthermore, models of complex applications tend to grow in size, to a point
where even individual views are not readily understood or analyzable anymore.
This is particularly true for behavioural models that are executable or used as
source models for code generation, since they need to specify the behaviour in
great detail.

Concern-Oriented REuse (CORE) is a multi-view modelling approach aimed
at addressing the reuse and scalability issues of model-driven engineering. CORE
extends MDE with best practices from research in both software product lines
and aspect-orientation to define broad units of reuse, so-called concerns. These
concerns specify the essence of a design solution and its different potential vari-
ations using multiple structural and behavioural views. The modelling notations
used within a concern offer aspect-oriented features that make it possible to sepa-
rate and modularize crosscutting properties and functionality. Currently, CORE
incorporates feature models, goal models, class diagrams, sequence diagrams,
and – thanks to the research described in this paper – protocol state machines,
all with aspect-oriented extensions.

Concerns can easily reuse other concerns thanks to their three-part inter-
face (a variation, a customization and a usage interface), thus creating concern
hierarchies with complex dependencies. Syntactic or semantic model composi-
tion techniques [20] are used to flatten concern hierarchies and create complex
models in which the concerns are intertwined that can then be executed or from
which code is generated.

Specifying this composition is a non-trivial task, in particular when it comes
to specifying the composition of behaviour. Structural composition of class dia-
grams in CORE boils down to merging of model elements. For two classes, for
instance, this yields a new class that has the properties from both of the merged
classes. Experience shows that the symmetric merge operation is conceptually
easy to master by modellers.

Behavioural composition of sequence diagrams in CORE is asymmetric in
nature. One sequence diagram can invoke an operation that is defined by another
sequence diagram, which means that the weaver has to insert the behaviour of
the called operation into the sequence diagram that made the call. Furthermore,
aspect message views can modify the behaviour of a sequence diagram by adding
additional behaviour before and/or after the already existing sequence of inter-
actions. Understanding the resulting behaviour becomes tricky, in particular if
the different behavioural specifications are scattered in multiple models. Also,
as for all asymmetric approaches, the order of composition matters in the case
where several aspect models want to add behaviour at the same place.

The complexity of understanding aspect dependencies and interactions,
unwanted or wanted, has been a subject of study for many years now [18], and

252 W. Al Abed et al.

recognized as a major problem in aspect-oriented software development. This
paper presents how we integrated protocol modelling (PM) [15] into CORE to
allow the modeller to specify operation invocation protocols for class instances.
We present some important properties that make PM an adequate notation for
expressing state views in CORE design models, and show how we integrated
a restricted form of PM into the CORE metamodel. We then discuss how this
restricted PM can be used by a modeller to specify state views, and how it can
be exploited by our TouchCORE tool [1,2] to perform consistency checking of
behavioural specifications that cross model boundaries.

The remainder of the paper is structured as follows. Section 2 reviews some of
the most important concepts of CORE. Section 3 enumerates the requirements
that a modelling notation needs to fulfill in order to be useful in the context
of CORE. Section 4 shows how we introduced a restricted form of PM into the
CORE metamodel. Section 5 discusses how we envision modellers to use our
new state views within CORE by means of the AspectOPTIMA [10] case study.
Section 6 elaborates how the PM approach satisfies our requirements. Section 7
summarizes related work, and the last section draws some conclusions.

2 Background on CORE

In contrast to model-driven engineering’s focus on models, the main unit of mod-
ularization, abstraction, construction, and reasoning in concern-driven software
development (CCD) is the concern.

A concern is any domain of interest to a software engineer. It can (but does
not have to) be a crosscutting concern as advocated by aspect-oriented soft-
ware development. A concern is a unit of modularization that encapsulates a
set of models describing all properties of that concern required to sufficiently
understand and use the concern. Typically, the models within a concern span
multiple phases of software development and levels of abstraction. The models
are built using the most appropriate modelling formalisms to express the prop-
erties of the concern that are relevant at each level of abstraction. Consequently,
a concern is typically described by many modelling notations, which may be
object-oriented in nature, but typically also need to offer other language mecha-
nisms (e.g., aspect-oriented features) in order to properly handle the crosscutting
nature of certain properties encapsulated within a concern. Finally, a concern
also encapsulates all relevant variations/choices that are available/encapsulated
within a concern, together with guidance on how to choose among those varia-
tions.

The key concept of concern-orientation promoting modularity is the three-
part interface [3] that every concern must provide:

– TheVariation Interface describes the available variations of the concern and the
impact of different variants on high-level goals, qualities, and non-functional
requirements.The variations of a concern are representedwith a featuremodel [7]
(described in more detail in Subsect. 2.1) that specifies the individual features

Concern-Oriented Behaviour Modelling 253

a concern offers, as well as their dependencies. The impact of choosing a feature
on soft-goals and system qualities is specified with goal models [6].

– The Customization Interface describes how a chosen variant can be adapted
to the needs of a specific application. Each variant of a concern is described as
generally as possible to maximize reusability. Therefore, some elements in the
concern are only partially specified and need to be related or complemented
with concrete modelling elements of the application that intends to reuse the
concern. The customization interface is hence used when a specific variant of
a reusable concern is composed with the application.

– The Usage Interface describes how the application can finally access the struc-
ture and behaviour provided by the concern.

2.1 Designing a Concern

Building a concern is a non-trivial, time consuming task, typically done by or
in consultation with a domain expert; it requires a deep understanding of the
nature of the concern to be able to identify and specify all features of a concern.
In CORE, this is done with feature models (see Subsect. 2.1.1). Once identified,
each feature of a concern has to be realized, i.e., the structure and behaviour of
the functionality it encapsulates needs to be specified. In CORE, this is done with
Reusable Aspect Models (RAM) [9,12], an aspect-oriented multi-view modelling
notation based on UML class and sequence diagrams (see Subsect. 2.1.2).

2.1.1 Feature Model
The features of a concern include all prominent or distinctive user-visible aspects,
qualities and characteristics related to the concern. Once identified, the concern
designer summarizes all relevant variations of the functionality pertaining to a
concern, as well as all extensions of the functionality, with a feature model [7].
Feature models specify the relationships and dependencies that exist between
features effectively and express them visually as a tree with different parent-child
relationships (mandatory, optional, xor and or) and cross-feature dependencies
(requires and excludes) that are not limited to just parent-child relationships.

Figure 1 shows the feature model of a low-level software design concern called
Association. It occurs very frequently in object-oriented designs that an object
of class A needs to be associated with other objects of class B. Implementing
associations with multiplicity 0..1 or 1 is easy, since it simply requires the class
A to store a reference to an instance of class B. Implementing an association where
the upper bound of the multiplicity is greater than 1, e.g., 0..*, can be done in
many ways, and it is the job of a designer to determine the most appropriate way.
Typically, the design has to introduce an intermediate collection data structure
that stores the instances of B and refer to it from within class A. Operations need
to be provided that add and remove instances of B from the collection contained
in the object of class A.

What kind of collection to use depends on the functional requirements of
the association. For example, an {ordered} association has to be designed with

254 W. Al Abed et al.

Association

Unordered Key IndexedOrdered

HashMap DatabaseTreeSet HashSetArrayList LinkedList

Legend
mandatory optional

or xor (alternative)

Fig. 1. Association concern feature model

a collection that orders the elements it contains, e.g., a queue (FIFO), a stack
(LIFO), or a priority queue (sorted using some criteria). A qualified association
has to be designed with some sort of dictionary or map that allows the retrieval
of objects by means of a key. Furthermore, an abstract data structure may have
many different internal implementations. For example, a queue can be structured
internally as an array or a linked list, the choice of which affects the algorithms
for insertion, deletion, and iteration. This ultimately impacts the non-functional
properties of the application, e.g., memory usage and performance, which are
expressed by means of the impact model (see Subsect. 2.1.5).

2.1.2 Realizing Features
A concern can encapsulate complex functionality; however, this complexity is
decomposed into several features that each modularize a coherent part of that
functionality. The root feature of a concern, for instance, encapsulates structural
and behavioural properties that are always present. Optional features modularize
structure and behaviour that is only relevant when that particular feature of the
concern is chosen.

In CORE, a feature is realized by a structural view (class diagram) and one
or more message views (sequence diagrams). The class and sequence diagram
notation used are extended with aspect-oriented features as described in the
Reusable Aspect Models (RAM) approach [9,12]. This makes it possible for the
realization models of one feature to augment the structure and behaviour of the
realization models of their ancestor features.

Concretely, if feature A is the parent of feature B, then the model BReal
that realizes feature B extends the model AReal that realizes the feature A.
Because B is a sub-feature of A, the concern designer’s intent is to add addi-
tional structural and/or behavioural model elements to AReal that provide addi-
tional, alternative or complementary properties to what already exists in AReal.
By default, BReal has full visibility of all elements visible in AReal. As a result,
BReal can use the structure and behaviour provided by AReal when needed.
Furthermore, any model elements used in BReal that have the same name as
an existing model element in AReal are considered to be the same, i.e., their
properties are going to be merged by the TouchCORE tool using the weaving
algorithms defined in [9] to produce a “woven” model that realizes both features.
This allows BReal to augment the customization and usage interface of AReal
with additional structure and behaviour.

Concern-Oriented Behaviour Modelling 255

2.1.3 Structural View – Class Diagrams
To realize a feature, the concern designer specifies in the structural view the
classes relevant to the feature, together with their attributes and operations, as
well as any associations among classes. The notation used is UML class diagrams,
with the additional possibility of marking classes, attributes and operations as
partial by prefixing their name with a vertical bar: ‘|’. Partial model elements are
included in the concern’s customization interface, and designate model elements
that are general from the point of view of the current concern, which means that
they must be mapped to application-specific model elements before the concern
can be used.

Because a concern is split into features, the structural view of a feature is
of reasonable size (typically containing 1–6 classes with 1–10 public operations
each). As a result, the complexity of a concern is split into several models that
usually fit into the limited active working memory of a human [16]. This makes
the elaboration, understanding and evolution of the models involved in the real-
ization of the feature easy and less error prone [24] than if the entire concern
model had to be specified in one model.

structural view

1
mySeq

message view initializeAssociation

aspect Association.Ordered realizes Ordered
|Data

|Associated

0..*

+ create()
+ add(|Associated a)
+ add(int index, |Associated a)
+ remove(|Associated a)
+ remove(int index)
+ |Associated get(int index)
+ boolean contains(|Associated a)
+ Sequence<|Associated> getAssociated()

int size
|Data

|Associated

~ create()
~ add(|Associated a)
~ add(int i, |Associated a)
~ remove(|Associated a)
~ remove(int i)
~ |Associated get(int index)
~ boolean contains(|Associated)
~ destroy()

int size
Sequence

|Associated

Implementation:
Sequence:
any java.util.List

new:
|Data

create(..)

Pointcut Advice
new:
|Data

create(..)

mySeq:
Sequence

<|Associated>

mySeq := create()* *

message view |Data affected by initializeAssociation

message view add(|Associated)
target: |Data

add(a)
mySeq:

Sequence<|Associated>
add(a)

other message views omitted for space reasons

Fig. 2. CORE-RAM model realizing Ordered of the Association concern

The top part of Fig. 2 shows the structural view of a CORE-RAM model
that realizes the Ordered feature of the Association concern shown in Fig. 1.
The structural view describes the structural design of an ordered association
between two classes with a multiplicity of 0..*. The structural view defines
a partial class |Data, which uses a Sequence to link an instance of |Data to

256 W. Al Abed et al.

many instances of the partial class |Associated in an ordered way. The class
Sequence refers to a Java implementation of java.util.List.1

|Data and |Associated are partial classes, i.e., incomplete classes (high-
lighted by a vertical bar ‘|’) that must be mapped to another class whenever
this feature is used within another concern. These classes are partial since at
this point it is not yet known what actual application classes will need to be
associated with each other. All partial classes (and operations) are part of the
customization interface of a CORE model: any model that wants to use the
Ordered feature of the Association concern must map |Data and |Associated
to two of its own classes.

In CORE, there are four types of visibility modifiers for operations: public
(+), protected (#), private (-) and concern-private (~). All public operations
are part of the usage interface of a CORE model, i.e., they are the operations
that another model can invoke to trigger the behaviour realized by the feature.
Protected operations can only be invoked from within the same class or subclass,
private operations can only be invoked from within the same class, and concern-
private operations can be called only by classes included in the same concern.

2.1.4 Message View – Sequence Diagrams
Message views describe the behaviour of the feature being modelled. There is one
message view for each public operation defined by a class in the structural view.
Each message view describes the sequencing of message interchanges that occur
between instances of classes of the concern when providing the functionality
offered by the public operation.

In the Association<Ordered> model, the class |Data has eight public oper-
ations. All these operations involve interactions with an instance of the class
Sequence. For space reasons, Fig. 2 only shows the message view for the con-
structor of |Data (create) and one of the add operations. The add operation
illustrates how the call is forwarded to the Sequence class. Because the behaviour
of the constructor of |Data is not known yet, it is advised using an aspect message
view to initialize the Sequence class. The advice of initializeAssociation
describes that after the behaviour of the specific constructor, the Sequence is
created and assigned to mySeq.

2.1.5 Impact Model
After realizing all the features of a concern, the concern designer has to specify
the impact that the realization of each feature has on soft goals and system
qualities. In CORE, this is done with impact models, which are based on goal
modelling as defined by GRL [6]. For instance, the choice of ArrayList might
provide better access performance than LinkedList. However, ArrayList uses
more memory than LinkedList. Further details on how to define impact models
are provided in [3].

1 TouchCORE, the CORE tool, allows the reuse of existing classes provided by the
programming language or frameworks being used.

Concern-Oriented Behaviour Modelling 257

2.2 Reusing Concerns

Once a concern has been designed, the expert knowledge and solutions encap-
sulated within can be reused whenever possible. While designing a concern is
challenging, time consuming and requires in-depth domain expertise, reusing an
existing concern is simple, and involves three steps:

1. A concern user must first select the feature(s) with the best impact on rele-
vant soft-goals and system qualities from the variation interface of the con-
cern based on the provided impact analysis. Based on this configuration, the
TouchCORE tool then merges the models that realize the selected features to
yield a new model of the concern corresponding to the desired configuration.

2. Next, the concern user has to adapt the generated concern realization model
to the application context by mapping all customization interface elements,
i.e., the model elements designated by a ‘|’ prefix, to application-specific
model elements.

3. Finally, the concern user can use the functionality provided by the selected
concern feature’s usage interface within his own application models. This typ-
ically consists of instantiating classes provided by the concern, and invoking
their public operations from within the application-specific message views.

3 Requirements for Concern-Oriented Specification
of Invocation Protocols

Specifying complex behaviour of a concern by composing several partial behav-
iours described in multiple message views is a non-trivial and error-prone task.
Aspect message views can augment behaviour defined in other message views
to include additional control flow directives and operation invocations. Further-
more, if several aspect message views are applied to the same base behaviour,
the order in which the message views are applied usually changes the resulting
behaviour.

In order to help the concern designer in defining correct behavioural spec-
ifications that extend the behaviour of parent realization models and to help
the concern user to correctly invoke functionality provided by reused concerns,
we decided to introduce an additional behavioural view into CORE-RAM that
allows the concern designer to specify operation invocation protocols for the
classes encapsulated within a concern. Using those protocol models, model check-
ers can verify that the behavioural specifications expressed in the sequence dia-
grams within a concern as well as the behavioural specifications obtained by
composing models of reused concerns with the application model are valid, i.e.,
they do not violate any of the protocols defined for any of the features as well
as for the application. This makes it possible to detect unwanted and incor-
rect behaviour resulting from feature and concern interactions and erroneous
composition specifications.

In Subsect. 3.1 we list the requirements that a modelling notation needs to
fulfill in order to be useful in the context of concern-oriented modelling. Then, in

258 W. Al Abed et al.

Subsect. 3.2 we briefly present the Protocol Modelling approach (PM), and show
how we adapted it to fit our needs. Finally, in Subsect. 3.3 we highlight the key
differences between protocol machines and state views.

3.1 Requirements for the Protocol Specification Notation

Based on experience gained from creating several software design concerns with
CORE-RAM, the notation for expressing protocols must have the following prop-
erties:

1. Expressiveness: In CORE-RAM, the structural view presents the classes
together with the operations they offer, and the message views present the
interaction between objects when one of the public operations is invoked. This
does not convey complete information on the order in which operations can be
invoked on object instances. The notation we are looking for should support
the specification of such invocation protocols, i.e., it has to be possible to
state when an operation is allowed to be executed, and when it is forbidden.

2. Conciseness: The notation should be capable of specifying invocation proto-
cols of class instances in a straightforward and concise way. This requirement
is important to reduce accidental complexity [26].

3. Diversity: The notation should not be similar to sequence diagrams. This
will force the modeller who is specifying the protocols to look at the design
concern from a different point of view from how they specified the behaviour
of the operations with sequence diagrams.

4. Modularity: To be useful in the context of concern-orientation, the mod-
elling notation needs to be able to modularize the protocol of classes that
belong to a feature of the concern. It should be possible to specify the pro-
tocols for the classes within a feature in isolation from the protocols of other
classes of the concern.

5. Composition: Since a modeller can elaborate a complex design concern by
composing multiple CORE-RAM feature realization models, the modelling
notation for specifying protocols must support composition. Whether a child
feature extends properties of parent features, or whether concerns reuse other
concerns and therefore customize the realization model of the reused concern
to their specific application, the protocols for object instances can change.

To illustrate the kind of protocol compositions that the notation must
support, imagine the following example: Feature A is the parent of feature B
in concern R. The concern designer of R creates the realization model BReal
that realizes feature B and extends the model AReal that realizes the feature
A. The concern user of R selects A, and therefore customizes the model AReal
by mapping its customization interface to model elements in the application-
specific model App that he is building.
The composition operator(s) of the protocol notation must support:
(a) Adding New Operations: Both the concern user (in App) and the

concern designer (in BReal) might define new operations, which need to
be integrated by composition with the protocol of the classes in AReal.

Concern-Oriented Behaviour Modelling 259

In case of customization, the public protocol of classes in AReal need to
be integrated with the protocol of classes in App. In the case of model
extension, the complete protocol of AReal needs to be integrated with the
complete protocol of BReal.

(b) Adding Constraints: Both the concern user and the concern designer
might need to define additional constraints on the protocol of AReal. It
should therefore be possible to restrict the public or the complete protocol
of AReal, respectively, by forbidding the execution of an operation in
certain cases.

(c) Coupling Protocols: A CORE-RAM model can depend on multiple
other models. For example, BReal can both extend AReal and also reuse
another concern C. In that case, it should be possible for the concern
designer of BReal to specify a coupling between the protocols of AReal
and C in the case where classes from AReal and C are mapped to the
same class in BReal.

6. Verification: The protocol modelling notation should be appropriate for:
(a) Verifying Internal Consistency of CORE-RAM Models: It should be

possible to verify that a concern designer is specifying the behaviour
provided by the CORE-RAM model that realizes a feature in a consistent
way, i.e., that there are no contradictions between the specified object
invocation protocols and the interactions between objects specified in the
message views.

(b) Verifying Usage Consistency for concern reuses: It should be possible
to verify that a concern user is calling the public operations provided
by the customized CORE-RAM model of a reused concern in the right
order. In other words, the notation should support the definition of a
public protocol.

(c) Verifying Increment Consistency for CORE-RAM models that extend
parent realization models: It should be possible to verify that a concern
designer that extends a CORE-RAM model realizing a parent feature is
calling the operations provided by the parent in the right order. In other
words, the notation should support the definition of a complete protocol
that includes public, concern-private and private operations.

(d) Verifying Composition Consistency for woven CORE-RAM models:
To verify that the concern designer or concern user have specified the
behavioural compositions correctly, it should be possible to verify that all
scenarios specified within woven message views are acceptable according
to the combined protocol specifications of each model.

3.2 Specifying Protocols in a Concern-Oriented Way

Historically, protocols have been defined using state-based notations such as finite
automata. State diagrams in general are also significantly different from sequence
diagrams, which satisfies requirement 3. We therefore investigated several state-
based aspect-oriented approaches, including HiLa [27] and the framework designed
by Elrad et al. [4] (details on these approaches and their limitations for expressing

260 W. Al Abed et al.

protocols are given in Sect. 7). We ended up using the Protocol Modelling notation
(PM) [15], which was specifically designed for modelling protocols and comes with
a formally defined composition operator. In CORE-RAM, protocol models that
specify invocation protocols are elaborated within separate state views (SV), one
for each class that is present in the structural view.

The PM approach is based on the concept of a “Protocol Machine”, a reusable
behavioural component of the model that can either ignore, accept or refuse
events that are presented to it. By associating a protocol machine with each
class in a CORE-RAM model, we can therefore specify invocation protocols
for all instances. This satisfies requirement 1. The PM approach is modular: a
protocol model of a system is composed of a set of protocol machines and each
machine describes a partial behaviour. This satisfies requirement 4. PM supports
a highly compositional style of modelling; the partial behaviours are composed
together to create the behaviour of the full system using a parallel composition
operator (P || Q) as defined by Hoare in the Communicating Sequential Processes
(CSP) approach [5]. CSP || composition has the advantage of being a well-
defined and understood concept, and it enables the modeller to perform local
reasoning on models. Furthermore, it gives the modeller the ability to deduce
the properties of the whole system from the knowledge of the behaviour of the
composed protocols [13].

state view |Data

NotEmptyEmpty
|Data

add
add

remove

Accessible

|DatagetAssociated

contains

get

[size == 0]

getSize

Empty

state view IData

|Data add
add

remove

[size == 0]

getAssociated contains

get

NotEmpty

getAssociated contains

getgetSize getSize

Fig. 3. State view for the |Data class in Ordered

Figure 3a shows how we used PM to describe the protocol of the |Data class
of the Association<Ordered> CORE-RAM model shown in Fig. 2. The state
view of |Data has two state machines. The first one is describing the fact that
calling an add operation changes the state of a |Data object from Empty to
NotEmpty, and that remove operations should only be called after at least one
add was invoked. Also, when removing the last |Associated object from the
sequence of objects, the state of the |Data instance changes back to Empty. The
second state machine describes the protocol for the getter and query operations.
Since they do not alter the state of the object when called, there are no restric-
tions specified on their protocol. This is a great example on how PM supports
conciseness (requirement 2). Each state machine is simple: it only focuses on
operation invocations and how they alter the object’s logical state. To obtain

Concern-Oriented Behaviour Modelling 261

the complete protocol for |Data instances, the modeller can apply the CSP
operator mentally on the two state machines, which yields the composed state
machine shown in Fig. 3b. Notice that the state view with two state machines,
even for a simple class such as |Data, is easier to understand than the more
cumbersome composed state view.

3.3 Differences Between PM and State Views

PM is a powerful technique that was designed for a slightly different purpose.
While our requirements are clearly focussed on documentation and verification,
the goals of PM include system interaction modelling, protocol execution simu-
lation, test and code generation. For that reason, we decided to adapt the main
ideas of PM within CORE-RAM, but to omit some of the advanced features
that we do not currently have a need for. In summary, the differences between
the original PM approach and how we are currently using it in CORE-RAM are:

– While PM models specify any general event interchange, we only focus on
modelling operation invocations.

– PM focusses on modelling interactions with a system, and therefore presents
all the state machines of a system together. Consequently, all events are
global (to the system being modelled), so they need to have unique names.
To obtain the complete interaction protocol of the system, all state machines
are composed with each other. In the case of a CORE-RAM model, only state
machines that are contained in the same state view are related to each other
(and logically composed with each other). Additional state view relationships
are created when classes from different aspects are mapped together, which
results in a logical composition of all the state machines that the respective
views contain. Because of that, the events in CORE-RAM are not global to
the whole system; they only need to be unique within all state views that are
describing protocols of the same class. For example, the state view of |Data
in Fig. 3 is composed of two state machines separated by a dashed line. These
state machines are related to each other since they are in the same state
view and CSP composition is logically applied to them. Conversely, the state
machines of the state view |Data and those of Sequence (not shown in this
paper) are independent, since they describe the behaviour of objects that are
instances of different classes.

– PM introduces a new type of state – the derived state – which replaces transi-
tion guards. The main advantage of derived states is that they can be reused
by different state machines, unlike guards, which are attached to transitions.
Also, derived states offer the possibility to disallow events that could lead the
system into an undesired state. For example, a derived state could be used
to specify that a withdraw event should not be accepted on a bank account
object if it would lead to a negative balance. So far, we did not need such
expressive power in our case studies with CORE-RAM.

– Event abstraction in PM is realized by using special events called generic
events. This kind of event is used to abstract away the difference between

262 W. Al Abed et al.

events that have the same effect to enable reuse of existing protocol machines
in different contexts [14]. In the case of CORE-RAM, a similar kind of protocol
reuse is achieved when renaming an operation in an instantiation directive.

4 Integrating PM into CORE-RAM

This section describes how we integrated our customized version of PM into
CORE by extending the CORE-RAM metamodel.

The structural view and message view in CORE-RAM are based on class
diagrams and sequence diagrams as defined by the Unified Modelling Language
(UML) [17]. The metamodel for these two CORE-RAM views is, however, con-
siderably simplified compared to the UML metamodel, for instance, [22] describes
how this was achieved for message views. Following the same idea, we studied
the metamodel for PM and looked at the UML metamodel for state diagrams
and how it is integrated with UML class and sequence diagrams. Based on the
integration strategy outlined in [23], we then defined a simplified metamodel for
CORE-RAM state views as presented in the following subsections.

4.1 Current Metamodel of CORE

Before discussing the state view metamodel, an overview of the current meta-
model of CORE-RAM is presented so that the reader can understand what
existing model elements the state view metamodel can reuse/reference.

Overview. The unit of modelling in CORE is a concern. COREConcerns con-
tain at least two COREModels, a feature model and an impact model. The fea-
ture and impact model part of the CORE metamodel, however, is not shown here
for space reasons. For this paper, the most important model is the RAMAspect,
which contains all other model elements that realize a feature directly or indi-
rectly (see Fig. 4). An aspect is a CORENamedElement that has beside its Struc-
turalView and the AbstractMessageViews many Instantiations. An Instantiation
describes a dependency on some other aspect (which can either be a customiza-
tion, if the instantiation is part of a COREModelReuse, or an extension, if the
aspect extends an aspect that realizes a parent feature). The instantiation con-
tains COREMappings, that describe which element from the external aspect is
mapped to an element in the current aspect. ClassifierMapping and Operation-
Mapping describe mappings for classes and operations, respectively.

Structural View. The StructuralView represents the class diagram and its
basic structure, and its metamodel is shown in Fig. 5. This view contains a list
of Classifier and Association. Classifier is a Type, i.e., an abstract class that has
a name and contains a list of operations. An Operation has a name, a return type,
may have one or more parameters, and is described by four properties: abstract,

Concern-Oriented Behaviour Modelling 263

RAMAspect

toElement
1

StructuralView

Instantiation
- type: InstantiationType

structuralView 1 mappings 0..*

instantiations
0..*

externalAspect

OperationMapping
0..*0..*

operationMappings

CORENamedElement
- name: String

AbstractMessageView

messageViews 0..*

<<enumeration>>
InstantiationType

- Depends
- Extends

COREMapping
T 1

<<bind T>> Operation

COREConcern COREModel
models

2..*

COREModelReuse

COREBinding

modelReuses 0..*

compositions
0..*

concern1

1

Fig. 4. Overview of the CORE-RAM metamodel

partial, static and visibility. A Parameter has a type and a name. Class inher-
its from Classifier, has a list of attributes, and is described by two properties:
abstract and partial. Classifier, Operation and Parameter are all MappableEle-
ments, meaning that they can be mapped when customizing or extending another
aspect.

StructuralView

Parameter

Operation
- abstract: boolean
- partial: boolean
- static: boolean
- visibility: Visibility

operations 0..*

classes

0..*

Class
- partial: boolean
- abstract: boolean

Attribute

NamedElement

attributes
0..*

Association
associations

1..*
assocation 1

Type

public
private
protected
package

<<enumeration>>
Visibility

type 1

parameters

0..*

returnType 1

1
type

MappableElement

type
1

superTypes 0..*

Fig. 5. Structural view metamodel

Message View. The MessageView represents the sequence diagram and an
excerpt of its general structure is shown in Fig. 6. The sequence diagrams used
in CORE-RAM, unlike UML sequence diagrams, describe only interchanges of
messages in the form of operation calls. A RAMAspect can contain more than
one MessageView. The latter is specified for a specific Operation (coming from
the structural view) and contains the specification of the operation’s behaviour.
However this is not mandatory, because partial operations don’t specify behav-
iour. Interaction describes the actual behaviour in the form of operation invoca-
tions. For this purpose it contains, besides other entities, at least one Message.

264 W. Al Abed et al.

One of the properties of a Message is its return value, and this information is
represented in the form of a ValueSpecification. The latter was inspired from the
UML ValueSpecification which is “an abstract metaclass used to identify a value
or values in a model. It may reference an instance or it may be an expression
denoting an instance or instances when evaluated” [17].

RAMAspect NamedElement
- name: String

Interaction

Operation

signature 1

1

0..1

MessageView

Message
- selfMessage: Boolean

messages 1..*

returns
0..1

AbstractMessageView

messageViews 0..*

Fig. 6. Simplified metamodel of message view

4.2 State View Metamodel Based on PM

The CORE-RAM state view metamodel presented in Fig. 7 supports the sim-
plified PM approach as described in Sect. 3. Three entities from the existing
CORE-RAM metamodel were reused in the state view metamodel: Classifier
and Operation from the structural view metamodel, and ValueSpecification from
the message view metamodel.

A RAMAspect can now have several StateViews, one StateView for each
Classifier in the StructuralView. Because state views are mainly used for docu-
mentation and verification purpose, we do not make them mandatory. Hence, an
aspect can have zero StateViews (which also makes the new metamodel back-
ward compatible with the old one). Besides, partial classes sometimes do not have
operations, thus a protocol cannot be defined for them. A StateView knows for
which Classifier it specifies a protocol for, and it contains a set of StateMachines.
A StateMachine has at least one state, exactly one start state and at least one
transition.

A StateMachine is the entity that defines the reusable protocol component
of the model, which can be composed with other StateMachines using the CSP
|| operator. This entity is composed of a set of states, one of which is the start
state, and a set of transitions.

A State represents a logical state of the object for which we are defining
the protocol. A State has a name, a set of outgoing Transitions, i.e., allowed
operation calls from this state, and a set of incoming Transitions, i.e., operation
calls that led the object to be in this State.

A Transition connects two states: startState designates the state in which
the object must be to accept an operation call, and endState is the new state of
the object after the call has been made. endState and startSate can refer to the
same state, since some operation calls, e.g. getters, do not alter the state of the

Concern-Oriented Behaviour Modelling 265

object. Since in RAM we are only interested in operation call events, a Transition
has a signature of type Operation, i.e., it stands for calls to that operation only.
Moreover, a Transition has at most one guard, which is a condition that has to
evaluate to true for the protocol to accept a call to the transition’s operation.
Guard is of type ValueSpecification, a component that was borrowed from the
MessageView metamodel, which in turn was inspired from the UML metamodel.

RAMAspect NamedElement
- name: String

StateView

Operation

stateViews 0..*
1

operations 0..*

StateMachine

stateMachines 1..*

State Transition

states 1..* transitions 1..*start1

signature
1

startState 1 outgoing 0..*

incoming

0..*
endState
1

guard
0..1

Fig. 7. State view metamodel

5 AspectOptima

AspectOptima [10,11] is an aspect-oriented framework providing customizable
transaction support to applications. The current AspectJ implementation of
AspectOptima consists of 42 aspects that modularize and implement critical
transaction system features in a reusable way. The aspects can be combined in
different ways to create different implementations of transaction models, concur-
rency control and recovery strategies.

To demonstrate the effectiveness of the new state views, we elaborated a
concern-oriented design of parts of the AspectOptima framework. So far, we
modelled 5 essential features of the Transaction concern: ExecutionContext, the
root feature, and the optional features Tracing, OutcomeAware, Checkpointing
and Recovering. The feature model is shown on the left side of Fig. 8. Each of
the features has been realized in one CORE-RAM model. The dependencies
between the realization models are depicted on the right side of Fig. 8. They all
directly or indirectly extend the base feature realization model ExecutionContext.
Also, some of them reuse other concerns, such as Traceable, Checkpointable, and
Association. Indirectly, the Copyable and AccessClassification concerns are also
reused.

For space reasons we can not present the complete CORE-RAM models in
this paper. The interested reader can download the complete models together
with our tool from [1].

The base feature is called ExecutionContext, and its realization model is
shown in Fig. 9. The main idea of ExecutionContext is that it allows instances of

266 W. Al Abed et al.

Recovering

CheckpointingTracing

Association Copyable

Outcome
Aware

ExecutionContext

Tracing

Legend
extension increment
customization increment

ExecutionContext

OutcomeAware
Checkpointing

Recovering

Traceable Checkpointable

CheckpointableTraceableAssociation

Legend
or choice

concern reuse

{Traceable}
{Ordered,
ArrayList}

{Checkpointable}

Fig. 8. Feature model (left) and CORE-RAM realization models with dependencies
(right) of AspectOptima

the class |Participant to enter what is called a Context – an abstraction of an
area of computation. When inside, the participant is associated with the context
until it leaves the context again. The |Participant class provides operations
for entering and leaving, and querying the current context.

An execution context on its own is not very useful. This is why the sub-
features of ExecutionContext are related to it with an or dependency. At least

structural view

0..1

myContext

aspect Transaction.ExecutionContext realizes ExecutionContext

+ |Participant getCurrent()
+ createAndEnterContext()
+ Context getContext()
~ setContext(Context c)
+ enterContext(Context c)
+ leaveContext()

|Participant

 0..1

myParticipant

|Participant

~ Context create()
~ addParticipant(|Participant)
~ removeParticipant(|Participant)
~ contextCompleted()
~ destroy()

Context

message view contextCompleted

message view createAndEnterContext

caller: Caller target:|Participant

myContext := create()

enterContext(myContext)

createAndEnterContext()

myContext: Context

message view enterContext
caller: Caller target: |Participant c: Context

enterContext(c)
addParticipant(target)

setContext(c)

message view leaveContext caller: Caller target: |Participant myContext: Context

leaveContext()
removeParticipant(target)

setContext(null)

contextCompleted()

message view setContext is Getter<myContext>

Fig. 9. ExecutionContext CORE-RAM model

Concern-Oriented Behaviour Modelling 267

one of the features must be chosen for an execution context to be of use. Tracing
is one of those sub-features, and its structural view is presented in Fig. 10.

structural view

aspect Tracing extends ExecutionContext reuses Traceable, Association<Ordered>

+ * |tracedMethod<AccessKind>(..)

|Traced

|Participant
|Traced

|tracedMethod<AccessKind>
+ |Participant getCurrent()
+ Context getContext()
+ createAndEnterContext()
+ leaveContext()

|Participant

~ Context Context()
+ boolean wasAccessed(|Traced)

+ Set<|Traced> getAccessed()
+ List<Trace> getTraces()
+ removeTraces(Set<|Traced>)
+ addTrace(Trace trace)
+ removeTrace(Trace trace)
+ getNbTraces()

Context

Concern Reuses:
Traceable:

Association<Ordered>

|Traceable |Traced; |traceableMethod |tracedMethod; Trace Trace; AccessKind
AccessKind
|Data Context; |Associated Trace; getAssociated getTraces; add addTrace; remove

removeTrace; getSize getNbTraces, mySeq myTraces

Read
Write
Update

<<enumeration>>
AccessKind

Trace

Fig. 10. Structural view of the Tracing CORE-RAM realization model

Tracing depends on several other models to implement its behaviour. First,
it is an extension of the ExecutionContext model, which already defines the
classes Context and |Participant together with the behaviour that allows a
participant to enter and leave a context. Tracing adds additional behaviour that
ensures that while inside a context, all operation invocations on instances of the
class |Traced are recorded with the context. Such a feature can be useful for
debugging or logging purposes. To achieve the desired behaviour, Tracing reuses
the Traceable concern to provide the behaviour of creating a trace for a method
invocation, and also Association<Ordered> (see Fig. 2) to associate an ordered
list of traces with the context.

In Subsect. 3.1 we listed several consistency verifications that we would like to
be able to conduct using our new state views. The following subsections illustrate
some of them.

5.1 State Views for Public Operations

One requirement was verifying usage consistency, meaning that it should be
possible to use the state view to ensure that a model user specifies behaviour in
the sequence diagrams that call the operations of the customized aspect in the
right order. Since a model user can only call public operations of the model it is
customizing, it is in this case enough to define a state view that only specifies
the protocol for the public operations.

For instance, Tracing customizes the Association<Ordered> model to enable
a Context instance to store a list of Traces. In this case the concern designer
of Tracing, which is the concern user of Association needs to understand the
public behaviour of the |Data class to be able to use it correctly. All invoca-
tions of the operations on the |Data class must respect the public protocol as

268 W. Al Abed et al.

specified in Fig. 3. For example, Fig. 11 shows the message view of the oper-
ation removeTraces. This operation, given a set of Traced objects, removes
all the traces that belong to these objects from the context. The operations
used by this message view, getTraces and removeTrace, are added to the
Context class because the reuse instantiation directive maps |Data to Context,
getAssociation to getTraces and remove to removeTrace (see reuse compart-
ment in Fig. 10). Since there is no restriction for calling getAssociated before
remove according to the public state view of Association<Ordered> (Fig. 3), the
message view of removeTraces is using the operations of |Data class correctly.
The CORE modelling tool should detect protocol violations and signal them to
the concern users.

message view removeTraces

removeTraces(t)

target := getTarget()

target: Context

loop [tr within traces]

opt [remove]

tr: Trace

remove := contains(target)

t: Set<|Traced>traces := getTraces()

removeTrace(tr)

Fig. 11. removeTraces message view

Available

Context
getTraces

getAccessed

wasAccessed

TraceAvailableNoTraces

addTrace

addTrace

removeTraces

Context

getNbTraces

[size == 0]

state view Context

Fig. 12. Public SV Tracing.Context

Applying the same idea to the next level, the concern designer should specify
a public state view for Tracing that documents the correct use of the concern
to the concern users and allows the modelling tool to verify its correct use.
To model the public state view of the class Context, a model designer needs to

Concern-Oriented Behaviour Modelling 269

consider the public operations of this class and determine for each operation the
possible constraints for calling it. In our case, the major constraint for Context
is that the operation removeTraces can not be called unless a trace was added
previously through addTrace. Figure 12 describes a public state view for Context
that expresses this constraint.

5.2 Internal State Views

To be able to do a similar verification for model increments, a more elaborate
“internal” state view needs to be defined that describes the invocation protocol
detailing not only the public, but also the internal operation invocations that
are acceptable during the life time of an object. This internal state view should
describe how non-public operation invocations relate to public ones and to each
other. This makes it possible to verify increment consistency and composition
consistency.

state view Context

Idle Active

Context

contextCompleted

addParticipant

removeParticipant

Completed

Fig. 13. Internal SV EC.Context

For example, Fig. 13 shows the state view of the class Context of theExecution-
Context realization model (see structural view in Fig. 9). It states a participant can
be added to a context and removed again multiple times in a row, if desired. How-
ever, once contextCompleted is invoked, no more operation calls are allowed on a
context instance. The Context state view is an internal state view, since this class
does not have any public operations. Because Tracing extends ExecutionContext,
the Context class in Tracing is mapped to the Context class in ExecutionContext.
The model designer of Tracing should hence specify any protocol restrictions that
should be defined between the operations added to Context by Tracing and the
operations that come from ExecutionContext.

One constraint that a Context object in Tracing must not violate is the fact
that the operation addTrace should only be called when a participant entered
the context, i.e., when the context is in the state Active after addParticipant
is called. Figure 14 shows the state machine that expresses such a behavioural
constraint.

Composing the public and the internal state views using CSP composition
results in the state view shown in Fig. 15. The composed view can subsequently

270 W. Al Abed et al.

Idle Active
Context

addParticipant

removeParticipant

addTracestate view Context

Fig. 14. Internal SV of Tracing.Context

be used to verify the consistency of message views that were specified in models
that reuse or extend Tracing.2

Idle_NoTraces Active_NoTraces

Context
contextCompleted addParticipant

removeParticipant

Completed_NoTraces

addTrace

Active_TraceAvailable

addTrace

removeTraces

Idle_TraceAvailable
removeParticipant

Completed_TracesAvailable

contextCompleted

removeTracesremoveTraces

addParticipant

removeTraceremoveTraceremoveTrace

[size == 0] [size == 0] [size == 0]

state view Context

Fig. 15. Composed SV of Context with features ExecutionContext and Tracing

6 Discussion

This subsection discusses how our new state views satisfy the requirements we
detailed in Subsect. 3.1.

Expressiveness and Diversity: The structural view in a CORE-RAM model
specifies the classes that a feature defines and what functionalities they offer.
The message views show how instances of these classes interact with each other
and with objects of other concerns to achieve this functionality. They also show
for these scenarios in what sequence the operations of an object are called.
For example, the removeTraces message view (Fig. 11) presents an overview
of the interactions between Context, Trace and Set<|Traced> objects when
the removeTraces(Set<|Traced>) operation is called, and shows the scenario
where getTraces is called before removeTrace(Trace). From a diversity per-
spective, the state views of Context (Figs. 12 and 14) complement the message
views by giving information about how individual objects are to be used, i.e., the
2 For simplicity and readability reasons, the state machine with the getters and query

operations from Association<Ordered> were not added to Fig. 15. To create the
actual woven model it suffices to add to each of the depicted states all self-transitions
of the state Available from the state view in Association<Ordered>.

Concern-Oriented Behaviour Modelling 271

order in which an object’s operations should be called, from a state perspective.
For example, the fact that addTrace should be called after addParticipant is
invoked is clearly expressed as a constraint in the Context state view in Fig. 14.
We have so far not encountered a situation in which it was not possible to express
a protocol using our new state views.

Conciseness: Measuring conciseness of a modelling notation objectively is diffi-
cult [19], and we therefore discuss conciseness of the protocol modelling notation
only informally. The protocol of the objects can be concisely described using
public and private state views. Woven state views that combine the protocol
of several models can be generated on demand. To further increase conciseness,
we made it optional to specify a protocol for operations that have no effect on
the conceptual state of an object. In other words, if no transition is defined
for an operation we assume that there is no restriction on its use. Finally, we
added generic events to increase conciseness of state views, which can be used
to group operations when operations affect the state of an object in the same
way. For example, the getters and query operations in Context can be replaced
by one event that can be called getters queries as follows: getters queries =
{wasAccessed OR getAccessed OR getTraces OR wasModified OR getNbTraces}.
As a result, only one transition needs to be shown in the state view, where oth-
erwise five transitions with the same source and target states would have to be
shown.

Modularity: CSP || composition allows the concern designer to specify the
state views for each feature within a concern independently, and compose them
together to form the complete description of the protocol of a class. Likewise,
protocols of classes within a concern are modelled independently, and the con-
cern user can specify how to combine the protocols of the concern classes with
his application classes when customizing the model during the reuse process.
For example, the Tracing feature was modelled separately of the Association
concern, i.e., the protocols for Context and |Data are specified separately, and
combined by the concern user by mapping |Data to Context. Modularity can
even be exploited within a CORE-RAM model, since the concern designer can
specify the protocol of a class using multiple state machines if he judges that
using one state machine will be too complicated or cumbersome. For example,
the getters and query operations of the class Context in Tracing were mod-
elled in a separate state machine in the public state view to increase readability
(see Fig. 12).

Composition: The CSP || composition operator offers a straightforward way
to support adding of new operations, adding of constraints and coupling of pro-
tocols.

– Adding new operations: This kind of transformation is easily expressed by
adding a new state machine that integrates the new operation into the existing
protocol. For example, Tracing.Context is using the operations of Associa-
tion<Ordered>.|Data to manage the list of Traces, and additionally defines
a new operation removeTraces. This operation affects the conceptual state of

272 W. Al Abed et al.

|Data, and therefore needs to be integrated in the protocol defined for |Data.
For this reason, a state machine was defined (Fig. 12) to clarify the relation-
ship between the behaviour of |Data and the new added operation. Other
operations were added, i.e., wasAccessed, wasModified and getAccessed,
but since they do not affect the state of a |Data object they were added
to the queries state machine. Notice that Context of Tracing is extending
the behaviour of Context coming from ExecutionContext by adding all the
operations coming from |Data and all the newly defined operations. To deter-
mine the complete protocol of the new, composed Context object, the state
views of the three classes, i.e., ExecutionContext.Context, Tracing.Context
and Association<Ordered>. |Data are composed.

– Adding constraints: CSP || composition works by synchronizing state
machines on events that are common in the alphabets of these entities. Reg-
ulation of the behaviour of an object by restricting operations is possible due
to the ability of a composed state machine (M1 || M2) to refuse an event if M1
or M2 can not process this event in the current state. For instance, the feature
Recovering, whose structural view is not shown here for space reasons, needs to
change the protocol of Context defined in ExecutionContext. In EC.Context,
a participant can enter a context, leave it, enter it again, and so on, as shown
in Fig. 13. In a recovering context, once a participant is added, it has to set
the outcome of the context before leaving. Furthermore, once this is done, no
participants can be added anymore. Figure 16 shows the protocol defined by
Recovering, which is composed with the state views of ExecutionContext,

state view Context

Idle

Context

contextCompleted

addParticipant

removeParticipant

Completed ParticipantRemoved
contextCompleted

restoreCheckpoints discardCheckpoints

Undecided

setOutcome

Decided

CheckpointAndAdd

Fig. 16. Adding constraints example

OutcomeAware, Checkpointing and Tracing. Once the Context is created
and addParticipant, setOutcome and removeParticipant operations are
invoked, the context object will be in the state Idle in the machine of Fig. 13,
and ParticipantRemoved in the machine of Fig. 16. According to the rules of
PM, it is not allowed for addParticipant to be called again on the object.
The machine in ExecutionContext allows processing addParticipant, but the
machine of Recovering has the operation in its events but it does not allow
processing from the state ParticipantRemoved. As a result, addParticipant
is rejected by the composition. Only contextCompleted is allowed by the
composed protocol.

Concern-Oriented Behaviour Modelling 273

structural view

aspect Checkpointable.Checkpointable reuses Association<Ordered>, Copyable

+ Checkpoint Checkpoint()
~ Set<|Checkpointable> getCheckpointables()
+ checkpointAndAdd(|Checkpointable c)
+ restoreCheckpoint()
+ discardCheckpoint()

Checkpoint
|Checkpointable

|Checkpointable

|Copyable |Checkpointable
|Data |Checkpoint; |Associated |Checkpointable; getAssociated getCheckpointables;
add addCheckpointable; get getCheckpointable; remove removeCheckpointable;
contains containsCheckpointable;
|Data |Checkpoint; |Associated |Checkpointable; getAssociated getBackupCopies;
add addBackupCopy; get getBackupCopy; remove removeBackupCopy ; contains
containsBackupCopy;

Concern Reuses:
Copyable:
Association<Ordered>:

Association<Ordered>:

state view Checkpoint

Empty
Checkpoint

checkpointAndAdd

discardCheckpoint

restoreCheckpoint

checkpointAndAdd

CheckpointExist

Checkpoint A1 A2
addCheckpointable

addBackupCopy

checkpointAndAdd

restoreCheckpoint

discardCheckpoint

A3

removeCheckpointable
removeBackupCopy

Accessible

Checkpoint

gettersQueries

gettersQueries = {getCheckpointable OR
getBackupCopy OR getCheckpointables OR
getBackupCopies OR containsCheckpointable OR
containsBackupCopy}

Fig. 17. CORE-RAM model of Checkpointable

– Coupling Protocols: Orchestrating the behaviour of the concerns that a
model is extending and depending on is done simply by specifying the com-
mon behaviour in a separate state machine. For example, in Tracing, the class
Context is mapped on the one hand to the class Context in ExecutionCon-
text and on the other hand to the class |Data of Association<Ordered>. The
behaviour of the object |Data is restricted by the behaviour of the object
Context of the ExecutionContext concern as follows: adding traces should
be done only when the Context is active, meaning the operation addTrace
(coming from add in Association<Ordered>) should only be invoked after the
invocation of addParticipant and before that of removeParticipant. The
internal state view of Context shown in Fig. 14 presents the state machine
needed to specify such an orchestration.

Sometimes orchestrating the behaviour of multiple objects can be tricky.
Figure 17 shows the design of a concern called Checkpointable. This concern
can be used to add fault tolerance to a software application: it provides the
functionality to create snapshots of the state of objects and restore the states
in case of a failure. The class |Checkpointable represents the object that
contains the state that needs to be recoverable and Checkpoint is the class
responsible for handling the process. The Checkpoint needs to keep two lists
of objects: the first contains references to the original “checkpointed” objects

274 W. Al Abed et al.

and the second contains the copies of the original objects at a specific moment
of their life cycle. Whenever an object is “checkpointed”, it is added to the
first list and its copy is added to the second list. Therefore, Checkpointable
needs the functionality offered by Association<Ordered> to manage these
lists twice, and the protocols of the two lists need to be synchronized.

Figure 17 shows the state view of Checkpoint. Adding a backup copy
should always follow adding a checkpointable, and the same goes for removing.
The behaviour of the two |Data objects needs to be orchestrated, and this is
described by the bottom left state machine. The operation checkpointAndAdd
is the public operation responsible for creating the copy and adding both
the object and its copy to the lists. Calling this operation includes calling
addCheckpointable and addBackupCopy,3 which means that, according to
the state view of |Data, removeCheckpointable and removeBackupCopy can
be called at this point.

Verification: Section 5 discussed in detail how the CORE state views can be
used to verify internal consistency, usage consistency, increment consistency and
composition consistency.

7 Related Work

State transition modelling is an effective concept to capture software systems
behaviour and protocols. In this section we describe some approaches that applied
aspect-oriented modelling techniques in the context of state transition modelling.

The UML Superstructure document [17] describes several concepts for design-
ing object-oriented systems. This modelling language provides different views to
capture the static and dynamic behaviour of a software system. UML class dia-
grams represent the artifact used to model and describe the structural view
of objects. This view is complemented by a state transition modelling arti-
fact inspired from David Harel’s statecharts. The document defines a State
Machine Package where two kinds of state machines are described: Behaviour
State Machines and Protocol State Machines.

Behaviour State Machines are used to specify discrete behaviour of a part
of a designed system through finite state transitions. It can be attached to a
“behavioured classifier” which is called its context. The latter defines which
attributes and operations are defined for this state machine. State machines can
have orthogonal regions.

Protocol State Machine is a specialization of Behaviour State Machine. It
expresses the usage protocol or lifecycle of a classifier. It specifies the allowed
call sequences on the classifier’s operations.

In UML, a state machine can be extended, i.e., regions, vertices and transi-
tions can be added and redefined. A simple state can be redefined to a composite
state and a composite state can be extended by extending its regions or adding
3 addCheckpointable and addBackupCopy are the same operation add of class |Data

as it is shown in the instantiation compartment of the Fig. 17.

Concern-Oriented Behaviour Modelling 275

new ones. State machine extension was introduced following the example of
class specialization. Unlike CORE-RAM, where the general and the specialized
state machines can be composed together, the relationship between states that
extend other states in UML is not clear. There is no explicit composition defined
between state machines belonging to different classifiers, neither is event abstrac-
tion or event reinterpretation. Moreover, there is no tool, to our knowledge, that
supports state machine inheritance.

The approach by Mahoney et al. [4] extends Harel’s statecharts to create
reusable orthogonal abstract statecharts. In order to be able to take advantage of
existing CASE tools, their methodology uses UML semantics without adding any
major extensions. The approach performs implicit weaving of statecharts based
on orthogonality and event propagation. This makes it possible to adapt existing
behaviour by adding aspects orthogonally, thus extending the model without
impacting any of the other orthogonal regions. The approach also defines design
guidelines that, when followed, enable traceability of crosscutting requirements
from the design to code.

The main drawback of the approach that was noticed by the authors was the
tight coupling between the core and the aspect statechart due to the explicit
event propagation performed by the developer. To avoid such coupling, the
authors introduced the concept of event reinterpretation, i.e., high-level declara-
tions allowing an event in one statechart to be treated as a completely different
event in another statechart.

A Java framework was implemented as a proof of concept that permits the
translation of a statechart design into skeleton code for a class. However, the
authors do not provide an integrated and concrete model view where aspects
would already be woven into base classes.

Zhang et al. [27] propose the High-Level Aspects for UML State Machines
(HiLA) approach, in which they significantly extend UML state machines with
aspect-oriented modelling techniques. They use state machines to specify behav-
iour of base machines and aspect machines, which can be parameterized using
UML template parameters similar to what is done during CORE-RAM cus-
tomization. They provide several asymmetric pointcut-advice composition mech-
anisms that enable aspects to disallow and restrict transitions, describe mutual
exclusion between two states in orthogonal regions and coordinate multiple
state machines. This approach, while powerful for specifying detailed behav-
ioural designs, is not adequate for our needs because of the complex composition
semantics of the different composition operators.

8 Conclusion

In concern-driven software development, concerns are modelled separately, and
model composition is used to create complex models in which these concerns are
tightly coupled. In such a context, specifying the composition of the models is
a non-trivial task, in particular when it comes to specifying the composition of
behavioural models.

276 W. Al Abed et al.

In this paper, we provided insight on the benefits that modelling of invoca-
tion protocols can have when used in combination with behavioural specifications
expressed using sequence diagrams. Concretely, we showed how we applied this
technique to augment the CORE approach, which expresses the structure of
software design concerns within structural views based on class diagrams and
the behaviour of software design concerns using sequence diagrams, with addi-
tional state views that describe invocation protocols. We detailed why Protocol
Modelling, a compositional modelling approach based on state diagrams, is an
ideal notation to specify such a protocol view, and show how we added support
for protocol modelling to the CORE metamodel and the TouchCORE tool [1].
We explained that the new state views can be used to assist both the concern
designer as well as the concern user in the model composition specification task.
We outlined how the protocol view can be exploited to verify the correctness of
compositions.

To demonstrate the effectiveness of our approach and to analyze its strengths
and limits, we started the concern-oriented design of the AspectOptima case
study. The paper partially presented some of the features of the Transaction
concern. The complete models of the Transaction concern that includes Exe-
cutionContext, OutcomeAware, Tracing, Checkpointing and Recovering can be
downloaded together with our TouchCORE tool [1]. In the near future, we are
planning to complete the design of the AspectOptima case study to include
the remaining features needed for basic transaction support with optimistic and
pessimistic concurrency control: Nested, 2-Phase-Locking, Deferring and Vali-
dating. Finally, to fully support Open Multithreaded Transactions [8], we also
need to add Collaborative, EntrySynchronizing, ExistSynchronizing, SpawnSup-
porting, Closable and OutcomeVoting.

References

1. TouchCORE Tool. http://touchcore.cs.mcgill.ca
2. Al Abed, W., Bonnet, V., Schöttle, M., Yildirim, E., Alam, O., Kienzle, J.:

TouchRAM: a multitouch-enabled tool for aspect-oriented software design. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 275–285. Springer,
Heidelberg (2013)

3. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

4. Elrad, T., Bader, A., Mahoney, M., Aldawud, O.: Using aspects to abstract and
modularize statecharts. In: 5th Aspect-Oriented Modeling Workshop in Conjunc-
tion with UML 2004 (2004)

5. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International,
London (1985)

6. International Telecommunication Union (ITU-T). Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition, October 2012

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software Engi-
neering Institute, CMU (1990)

http://touchcore.cs.mcgill.ca

Concern-Oriented Behaviour Modelling 277

8. Kienzle, J.: Open Multithreaded Transactions – A Transaction Model for Con-
current Object-Oriented Programming. Kluwer Academic Publishers, Dordrecht
(2003)

9. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented multi-view modeling. In: Pro-
ceedings of the 8th International Conference on Aspect-Oriented Software Devel-
opment - AOSD 2009, 1–6 March 2009, pp. 87–98. ACM Press, March 2009

10. Kienzle, J., Duala-Ekoko, E., Gélineau, S.: AspectOPTIMA: A case study on aspect
dependencies and interactions. In: Rashid, A., Ossher, H. (eds.) Transactions on
AOSD V. LNCS, vol. 5490, pp. 187–234. Springer, Heidelberg (2009)

11. Kienzle, J., Gélineau, S.: AO challenge: implementing the ACID properties for
transactional objects. In: Proceedings of the 5th International Conference on
Aspect-Oriented Software Development - AOSD 2006, 20–24 March 2006. ACM
Press, pp. 202–213, March 2006

12. Klein, J., Kienzle, J.: Reusable aspect models. In: 11th Aspect-Oriented Modeling
Workshop, Nashville, TN, USA, 30 September 2007, September 2007

13. McNeile, A., Roubtsova, E.: Composition semantics for executable and evolvable
behavioral modeling in MDA. In: BM-MDA 2009 Proceedings of the 1st Workshop
on Behaviour Modelling in Model-Driven Architecture, pp. 1–8 (2009)

14. McNeile, A., Roubtsova, E.: Aspect-oriented development using protocol model-
ing. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-Oriented
Software Development VII. LNCS, vol. 6210, pp. 115–150. Springer, Heidelberg
(2010)

15. McNeile, A., Simons, N.: Protocol modelling: a modelling approach that supports
reusable behavioural abstractions. Softw. Syst. Model. 5(1), 91–107 (2006)

16. Miller, G.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psycholog. Rev. 63(2), 81 (1956)

17. Object Management Group. Unified Modeling Language: Superstructure (v 2.4.1),
December 2011

18. Rashid, A., Ossher, H. (eds.): Transactions on Aspect-Oriented Development
(TAOSD VI), vol. 5490. Springer, Heidelberg (2009). Special Issue on Dependencies
and Interactions with Aspects

19. Rossi, M., Brinkkemper, S.: Complexity metrics for systems development methods
and techniques. Inf. Syst. 21(2), 209–227 (1996)

20. Rumpe, B.: Towards model and language composition. In: Proceedings of the First
Workshop on the Globalization of Domain Specific Languages, GlobalDSL 2013,
pp. 4–7. ACM, New York (2013)

21. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39, 41–47 (2006)
22. Schöttle, M.: Aspect-Oriented Behavior Modeling in Practice. M.Sc. Thesis,

Department of Computer Science, Karlsruhe University of Applied Sciences,
September 2012

23. Schöttle, M., Kienzle, J.: On the challenges of composing multi-view models. In:
The GEMOC 2013 Workshop Co-located with the 16th International Conference
on Model Driven Engineering Languages and Systems (MODELS 2013), October
2013

24. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci.
12(2), 257–285 (1988)

25. Whittle, J.: The truth about model-driven development in industry -
and why researchers should care (2012). http://www.slideshare.net/jonathw/
whittle-modeling-wizards-2012/

http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/
http://www.slideshare.net/jonathw/whittle-modeling-wizards-2012/

278 W. Al Abed et al.

26. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
adoption of model-driven engineering: are the tools really the problem? In: Moreira,
A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 1–17. Springer, Heidelberg (2013)

27. Zhang, G., Hölzl, M.: HiLA: high-level aspects for UML state machines. In: Ghosh,
S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg (2010)

Author Index

Al Abed, Wisam 250
Ayed, Abir 250

Dingel, Jürgen 82

Goedicke, Michael 197
Gogolla, Martin 31

Hamann, Lars 31
Harel, David 113
Hilken, Frank 31
Hölzl, Matthias M. 59

Jepsen, Jesper 133

Kienzle, Jörg 250
Kilov, Haim 3

Kindler, Ekkart 133
Konersmann, Marco 197

McNeile, Ashley 167

Nitzan, Shani 113

Roubtsov, Serguei 220
Roubtsova, Ella 220

Schöttle, Matthias 250
Sedlmeier, Matthias 31
Simons, Nicholas 167

Zhang, Gefei 59
Zurowska, Karolina 82

	Preface
	Reviewing Committee
	Contents
	Modelling Practices
	Business Modelling: Understandable Patterns, Practices, and Tools
	Abstract
	1 Abstraction and Reusable Patterns
	2 Where Do the Patterns Come from?
	3 Structure Over Content
	4 Purposeful Behaviour
	5 The Stable Basics: The Business Domain
	6 Modelling Practices
	7 Barriers to Adoption
	8 Tools
	9 Conclusions and Future Work
	References

	Standards in Behaviour Modelling
	Modeling Behavior with Interaction Diagrams in a UML and OCL Tool
	1 Introduction
	2 Running Example
	3 General Behavioral Modeling Issues: Abstraction, Best Practices, Tool Support
	4 Validation and Verification with USE
	5 UML Metamodel for Interactions
	6 Sequence Diagrams
	7 Communication Diagrams
	8 Selection Mechanisms in Communication and Sequence Diagrams
	9 Systematic Selection Mechanisms for Views in UML Interactions and Further Use of OCL
	10 Related Work
	11 Conclusion
	References

	A Set of Metrics of Non-locality Complexity in UML State Machines
	1 Introduction
	2 UML State Machines
	2.1 Concrete Syntax and Informal Semantics
	2.2 Non-locality Complexity

	3 Metrics
	3.1 Notation
	3.2 Metrics Regarding State Activation
	3.3 Metrics Regarding State Deactivation
	3.4 Metrics Regarding Cross-Region Dependency
	3.5 Applications

	4 Related Work
	5 Conclusions and Future Work
	References

	A Customizable Execution Engine for Models of Embedded Systems
	1 Introduction
	2 Analysis Support with Customizable Execution Engine
	3 Overview of the UML-RT Language
	4 Elements of the Execution Engine
	4.1 Elements of Execution Rules
	4.2 Execution Rules for Standard and Abstract Semantics
	4.3 Execution Rules for Abstract Execution Semantics

	5 Results of Executing UML-RT Models
	5.1 Symbolic Execution
	5.2 Structural Abstraction
	5.3 State Aggregation
	5.4 Summary

	6 Extending TUMLE to Support Additional Customizations
	7 Related Work
	8 Conclusions
	References

	New Ways of Behaviour Modelling: Events in Modelling
	Programming Animation Using Behavioral Programming
	1 Introduction
	2 Behavioral Programming
	2.1 Basic Idioms
	2.2 Behavioral Programming in Java
	2.3 Live Sequence Charts

	3 Animation in Behavioral Programming
	3.1 Motion B-Threads
	3.2 Control B-Threads
	3.3 Improving and Adding B-Threads

	4 Using Behavioral Programming for Billiard
	5 Adding Continuous Behaviors
	5.1 How it is Done
	5.2 Blocking Unwanted Continuous Behaviors
	5.3 Random Continuous Behaviors

	6 Flock Movements
	7 Future Work
	References

	The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse
	1 Introduction
	2 ECNO: An Example
	2.1 Petri Nets
	2.2 Formalizing Petri Nets

	3 ECNO: Concepts
	3.1 Object-Oriented Modelling
	3.2 ECNO: Basic Concepts
	3.3 ECNO: Event Synchronisation and Parameters
	3.4 ECNO: Inheritance
	3.5 ECNO: More Concepts
	3.6 Execution Engine

	4 ECNO: Modelling a Workflow Engine
	4.1 Core Model
	4.2 Models for Aspects and Formalisms
	4.3 Workflow Engine and GUI

	5 Related Work
	6 Conclusion
	References

	New Ways of Behaviour Modelling: Protocol Modelling
	Protocol Modelling
	1 Introduction
	1.1 Background and Purpose
	1.2 Structure of the Paper

	2 Underlying Concepts
	2.1 Events
	2.2 Protocol Machines
	2.3 Protocol Systems

	3 Modelling Objects
	3.1 Object Identifiers
	3.2 Repertoire Specification
	3.3 Binding
	3.4 Single Binding Rule
	3.5 Object Types

	4 Machine Metadata
	4.1 Machine Meta-Repertoire
	4.2 Machine Behaviour
	4.3 A Graphical Notation
	4.4 Example
	4.5 State Spaces
	4.6 Proto Machines

	5 Protocol Models
	5.1 Full Binding
	5.2 Determination of Stability
	5.3 OIDs in Models
	5.4 Object Creation
	5.5 Attribute Typing
	5.6 Design Time Binding
	5.7 Example
	5.8 Extended Models

	6 Behaviour Reuse
	6.1 Approach to Re-Use
	6.2 Conditional Repertoire Entries
	6.3 Full Binding Revisited
	6.4 Conditional Entries and Reuse
	6.5 Repertoire Macros

	7 Discussion
	7.1 Behaviour Encapsulation
	7.2 MDA

	8 Implementations
	References

	Integrating Protocol Contracts with Program Code -- A Leightweight Approach for Applied Behaviour Models that Respect Their Execution Context
	1 Motivation
	2 Conceptual Foundations
	2.1 Architecture-Carrying Software
	2.2 Protocol Contracts

	3 Model Integration
	3.1 Design Time Meta Model
	3.2 Integration Mechanisms
	3.3 Example

	4 Execution Runtime
	4.1 Run Time Meta Model
	4.2 Monitoring and Debugging

	5 Model Editor
	6 Discussion
	7 Future Work
	8 Related Work
	9 Conclusion
	References

	Decision Modules in Models and Implementations
	1 Introduction
	2 Definition of Decision Module
	3 Related Work
	4 Case Study: Preparation of a Document by Several Participants
	5 Decision Modules in Requirements
	6 Decision Modules in Protocol Models
	6.1 Protocol Modeling
	6.2 Protocol Model with Decision Modules in the Case Study
	6.3 Properties of Decision Modules in Protocol Models

	7 Decision Modules in Java
	7.1 Using Object Composition
	7.2 Using Publisher-Subscriber Design Pattern and Java Reflection
	7.3 Using Interceptors Within Enterprise Java Beans Framework
	7.4 Using Enterprise Java Beans Framework and Decorator Design Pattern
	7.5 Using AspectJ
	7.6 Using Mixins
	7.7 Properties of Decision Modules in Java Implementations

	8 Discussion
	8.1 Decision Abstractions in Behaviour Modelling Practice
	8.2 Decision Modules in Implementations. The Way to Go?

	9 Conclusion
	References

	Concern-Oriented Behaviour Modelling with Sequence Diagrams and Protocol Models
	1 Introduction
	2 Background on CORE
	2.1 Designing a Concern
	2.2 Reusing Concerns

	3 Requirements for Concern-Oriented Specification of Invocation Protocols
	3.1 Requirements for the Protocol Specification Notation
	3.2 Specifying Protocols in a Concern-Oriented Way
	3.3 Differences Between PM and State Views

	4 Integrating PM into CORE-RAM
	4.1 Current Metamodel of CORE
	4.2 State View Metamodel Based on PM

	5 AspectOptima
	5.1 State Views for Public Operations
	5.2 Internal State Views

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Author Index

