
Progressive Transactional Memory
in Time and Space

Petr Kuznetsov1 and Srivatsan Ravi2(B)

1 Télécom ParisTech, Paris, France
petr.kuznetsov@telecom-paristech.fr

2 TU Berlin, Berlin, Germany
srivatsan.ravi@inet.tu-berlin.de

Abstract. Transactional memory (TM) allows concurrent processes to
organize sequences of operations on shared data items into atomic trans-
actions. A transaction may commit, in which case it appears to have
executed sequentially or it may abort, in which case no data item is
updated.

The TM programming paradigm emerged as an alternative to conven-
tional fine-grained locking techniques, offering ease of programming and
compositionality. Though typically themselves implemented using locks,
TMs hide the inherent issues of lock-based synchronization behind a nice
transactional programming interface.

In this paper, we explore inherent time and space complexity of lock-
based TMs, with a focus of the most popular class of progressive lock-
based TMs. We derive that a progressive TM might enforce a read-only
transaction to perform a quadratic (in the number of the data items
it reads) number of steps and access a linear number of distinct mem-
ory locations, closing the question of inherent cost of read validation in
TMs. We then show that the total number of remote memory references
(RMRs) that take place in an execution of a progressive TM in which n
concurrent processes perform transactions on a single data item might
reach Ω(n log n), which appears to be the first RMR complexity lower
bound for transactional memory.

Keywords: Transactional memory · Mutual exclusion · Step complexity

1 Introduction

Transactional memory (TM) allows concurrent processes to organize sequences
of operations on shared data items into atomic transactions. A transaction may
commit, in which case it appears to have executed sequentially or it may abort,
in which case no data item is updated. The user can therefore design software
having only sequential semantics in mind and let the TM take care of handling

Petr Kuznetsov—The author is supported by the Agence Nationale de la Recherche,
ANR-14-CE35-0010-01, project DISCMAT.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 410–425, 2015.
DOI: 10.1007/978-3-319-21909-7 40

Progressive Transactional Memory in Time and Space 411

conflicts (concurrent reading and writing to the same data item) resulting from
concurrent executions. Another benefit of transactional memory over conven-
tional lock-based concurrent programming is compositionality : it allows the pro-
grammer to easily compose multiple operations on multiple objects into atomic
units, which is very hard to achieve using locks directly. Therefore, while still
typically implemented using locks, TMs hide the inherent issues of lock-based
programming behind an easy-to-use and compositional transactional interface.

At a high level, a TM implementation must ensure that transactions are con-
sistent with some sequential execution. A natural consistency criterion is strict
serializability [19]: all committed transactions appear to execute sequentially
in some total order respecting the timing of non-overlapping transactions. The
stronger criterion of opacity [13], guarantees that every transaction (including
aborted and incomplete ones) observes a view that is consistent with the same
sequential execution, which implies that no transaction would expose a patholog-
ical behavior, not predicted by the sequential program, such as division-by-zero
or infinite loop.

Notice that a TM implementation in which every transaction is aborted is
trivially opaque, but not very useful. Hence, the TM must satisfy some progress
guarantee specifying the conditions under which a transaction is allowed to abort.
It is typically expected that a transaction aborts only because of data conflicts
with a concurrent one, e.g., when they are both trying to access the same data
item and at least one of the transactions is trying to update it. This progress
guarantee, captured formally by the criterion of progressiveness [12], is satisfied
by most TM implementations today [6,7,14].

There are two design principles which state-of-the-art TM [6–8,11,14,21]
implementations adhere to: read invisibility [4,9] and disjoint-access paral-
lelism [5,16]. Both are assumed to decrease the chances of a transaction to
encounter a data conflict and, thus, improve performance of progressive TMs.
Intuitively, reads performed by a TM are invisible if they do not modify the
shared memory used by the TM implementation and, thus, do not affect other
transactions. A disjoint-access parallel (DAP) TM ensures that transaction
accessing disjoint data sets do not contend on the shared memory and, thus,
may proceed independently. As was earlier observed [13], the combination of
these principles incurs some inherent costs, and the main motivation of this
paper is to explore these costs.

Intuitively, the overhead invisible read may incur comes from the need of vali-
dation, i.e., ensuring that read data items have not been updated when the trans-
action completes. Our first result (Sect. 4) is that a read-only transaction in an
opaque TM featured with weak DAP and weak invisible reads must incremen-
tally validate every next read operation. This results in a quadratic (in the size of
the transaction’s read set) step-complexity lower bound. Informally, weak DAP
means that two transactions encounter a memory race only if their data sets are
connected in the conflict graph, capturing data-set overlaps among all concurrent
transactions. Weak read invisibility allows read operations of a transaction T to
be “visible” only if T is concurrent with another transaction. The lower bound is
derived for minimal progressiveness, where transactions are guaranteed to commit

412 P. Kuznetsov and S. Ravi

only if they run sequentially. Our result improves the lower bound [12,13] derived
for strict-data partitioning (a very strong version of DAP) and (strong) invisible
reads.

Our second result is that, under weak DAP and weak read invisibility, a
strictly serializable TM must have a read-only transaction that accesses a linear
(in the size of the transaction’s read set) number of distinct memory locations
in the course of performing its last read operation. Naturally, this space lower
bound also applies to opaque TMs.

We then turn our focus to strongly progressive TMs [13] that, in addition
to progressiveness, ensures that not all concurrent transactions conflicting over
a single data item abort. In Sect. 5, we prove that in any strongly progres-
sive strictly serializable TM implementation that accesses the shared memory
with read, write and conditional primitives, such as compare-and-swap and load-
linked/store-conditional, the total number of remote memory references (RMRs)
that take place in an execution of a progressive TM in which n concurrent
processes perform transactions on a single data item might reach Ω(n log n).
The result is obtained via a reduction to an analogous lower bound for mutual
exclusion [3]. In the reduction, we show that any TM with the above prop-
erties can be used to implement a deadlock-free mutual exclusion, employing
transactional operations on only one data item and incurring a constant RMR
overhead. The lower bound applies to RMRs in both the cache-coherent (CC)
and distributed shared memory (DSM) models, and it appears to be the first
RMR complexity lower bound for transactional memory.

2 Model

TM Interface. A transactional memory (in short, TM) supports transactions
for reading and writing on a finite set of data items, referred to as t-objects.
Every transaction Tk has a unique identifier k. We assume no bound on the
size of a t-object, i.e., the cardinality on the set V of possible different values
a t-object can have. A transaction Tk may contain the following t-operations,
each being a matching pair of an invocation and a response: readk(X) returns
a value in some domain V (denoted readk(X) → v) or a special value Ak /∈ V
(abort); writek(X, v), for a value v ∈ V , returns ok or Ak; tryCk returns Ck /∈ V
(commit) or Ak.

Implementations. We assume an asynchronous shared-memory system in
which a set of n > 1 processes p1, . . . , pn communicate by applying operations on
shared objects. An object is an instance of an abstract data type which specifies
a set of operations that provide the only means to manipulate the object. An
implementation of an object type τ provides a specific data-representation of τ
by applying primitives on shared base objects, each of which is assigned an initial
value and a set of algorithms I1(τ), . . . , In(τ), one for each process. We assume
that these primitives are deterministic. Specifically, a TM implementation pro-
vides processes with algorithms for implementing readk, writek and tryCk()
of a transaction Tk by applying primitives from a set of shared base objects.

Progressive Transactional Memory in Time and Space 413

We assume that processes issue transactions sequentially, i.e., a process starts
a new transaction only after the previous transaction is committed or aborted.
A primitive is a generic read-modify-write (RMW) procedure applied to a base
object [10]. It is characterized by a pair of functions 〈g, h〉: given the current state
of the base object, g is an update function that computes its state after the prim-
itive is applied, while h is a response function that specifies the outcome of the
primitive returned to the process. A RMW primitive is trivial if it never changes
the value of the base object to which it is applied. Otherwise, it is nontrivial. An
RMW primitive 〈g, h〉 is conditional if there exists v, w such that g(v, w) = v and
there exists v, w such that g(v, w) �= v. For e.g, compare-and-swap (CAS) and
load-linked/store-conditional (LL/SC) are nontrivial conditional RMW primi-
tives while fetch-and-add is an example of a nontrivial RMW primitive that is
not conditional.

Executions and Configurations. An event of a process pi (sometimes we say
step of pi) is an invocation or response of an operation performed by pi or a
rmw primitive 〈g, h〉 applied by pi to a base object b along with its response r
(we call it a rmw event and write (b, 〈g, h〉, r, i)). A configuration specifies the
value of each base object and the state of each process. The initial configuration
is the configuration in which all base objects have their initial values and all
processes are in their initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution
of an implementation I is an execution fragment where, starting from the initial
configuration, each event is issued according to I and each response of a rmw
event (b, 〈g, h〉, r, i) matches the state of b resulting from all preceding events.
An execution E · E′, denoting the concatenation of E and E′, is an extension of
E and we say that E′ extends E.

Let E be an execution fragment. For every transaction identifier k, E|k
denotes the subsequence of E restricted to events of transaction Tk. If E|k is non-
empty, we say that Tk participates in E, else we say E is Tk-free. Two executions
E and E′ are indistinguishable to a set T of transactions, if for each transaction
Tk ∈ T , E|k = E′|k. A TM history is the subsequence of an execution consisting
of the invocation and response events of t-operations.

The read set (resp., the write set) of a transaction Tk in an execution E,
denoted Rset(Tk) (and resp. Wset(Tk)), is the set of t-objects on which Tk

invokes reads (and resp. writes) in E. The data set of Tk is Dset(Tk) =
Rset(Tk) ∪ Wset(Tk). A transaction is called read-only if Wset(Tk) = ∅; write-
only if Rset(Tk) = ∅ and updating if Wset(Tk) �= ∅. Note that, in our TM model,
the data set of a transaction is not known apriori and it is identifiable only by
the set of data items the transaction has invoked a read or write on in the given
execution.

Transaction Orders. Let txns(E) denote the set of transactions that partic-
ipate in E. An execution E is sequential if every invocation of a t-operation
is either the last event in the history H exported by E or is immediately fol-
lowed by a matching response. We assume that executions are well-formed : no

414 P. Kuznetsov and S. Ravi

process invokes a new operation before the previous operation returns. Specifi-
cally, we assume that for all Tk, E|k begins with the invocation of a t-operation,
is sequential and has no events after Ak or Ck. A transaction Tk ∈ txns(E) is
complete in E if E|k ends with a response event. The execution E is complete
if all transactions in txns(E) are complete in E. A transaction Tk ∈ txns(E)
is t-complete if E|k ends with Ak or Ck; otherwise, Tk is t-incomplete. Tk is
committed (resp., aborted) in E if the last event of Tk is Ck (resp., Ak). The
execution E is t-complete if all transactions in txns(E) are t-complete.

For transactions {Tk, Tm} ∈ txns(E), we say that Tk precedes Tm in the real-
time order of E, denoted Tk ≺RT

E Tm, if Tk is t-complete in E and the last event
of Tk precedes the first event of Tm in E. If neither Tk ≺RT

E Tm nor Tm ≺RT
E Tk,

then Tk and Tm are concurrent in E. An execution E is t-sequential if there are
no concurrent transactions in E.

Contention. We say that a configuration C after an execution E is quiescent
(and resp. t-quiescent) if every transaction Tk ∈ txns(E) is complete (and resp.
t-complete) in C. If a transaction T is incomplete in an execution E, it has
exactly one enabled event, which is the next event the transaction will perform
according to the TM implementation. Events e and e′ of an execution E contend
on a base object b if they are both events on b in E and at least one of them is
nontrivial (the event is trivial (and resp. nontrivial) if it is the application of a
trivial (and resp. nontrivial) primitive). We say that a transaction T is poised to
apply an event e after E if e is the next enabled event for T in E. We say that
transactions T and T ′ concurrently contend on b in E if they are each poised to
apply contending events on b after E.

We say that an execution fragment E is step contention-free for t-operation
opk if the events of E|opk are contiguous in E. We say that an execution fragment
E is step contention-free for Tk if the events of E|k are contiguous in E. We
say that E is step contention-free if E is step contention-free for all transactions
that participate in E.

3 TM Classes

TM-correctness. We say that readk(X) is legal in a t-sequential execution E
if it returns the latest written value of X, and E is legal if every readk(X) in H
that does not return Ak is legal in E.

A finite history H is opaque if there is a legal t-complete t-sequential history
S, such that (1) for any two transactions Tk, Tm ∈ txns(H), if Tk ≺RT

H Tm, then
Tk precedes Tm in S, and (2) S is equivalent to a completion of H.

A finite history H is strictly serializable if there is a legal t-complete
t-sequential history S, such that (1) for any two transactions Tk, Tm ∈ txns(H),
if Tk ≺RT

H Tm, then Tk precedes Tm in S, and (2) S is equivalent to cseq(H̄),
where H̄ is some completion of H and cseq(H̄) is the subsequence of H̄ reduced
to committed transactions in H̄.

We refer to S as an opaque (and resp. strictly serializable) serialization of H.

Progressive Transactional Memory in Time and Space 415

TM-liveness. We say that a TM implementation M provides interval-
contention free (ICF) TM-liveness if for every finite execution E of M such that
the configuration after E is quiescent, and every transaction Tk that applies the
invocation of a t-operation opk immediately after E, the finite step contention-
free extension for opk contains a matching response.

A TM implementation M provides wait-free TM-liveness if in every execution
of M , every t-operation returns a matching response in a finite number of its steps.

TM-progress. We say that a TM implementation provides sequential TM-
progress (also called minimal progressiveness [13]) if every transaction running
step contention-free from a t-quiescent configuration commits within a finite
number of steps.

We say that transactions Ti, Tj conflict in an execution E on a t-object X if
X ∈ Dset(Ti) ∩ Dset(Tj), and X ∈ Wset(Ti) ∪ Wset(Tj).

A TM implementation M provides progressive TM-progress (or progressive-
ness) if for every execution E of M and every transaction Ti ∈ txns(E) that
returns Ai in E, there exists a transaction Tk ∈ txns(E) such that Tk and Ti are
concurrent and conflict in E [13].

Let CObjH(Ti) denote the set of t-objects over which transaction Ti ∈
txns(H) conflicts with any other transaction in history H, i.e., X ∈ CObjH(Ti),
iff there exist transactions Ti and Tk that conflict on X in H. Let Q ⊆ txns(H)
and CObjH(Q) =

⋃

Ti∈Q

CObjH(Ti).

Let CTrans(H) denote the set of non-empty subsets of txns(H) such that a set
Q is in CTrans(H) if no transaction in Q conflicts with a transaction not in Q.

Definition 1. A TM implementation M is strongly progressive if M is weakly
progressive and for every history H of M and for every set Q ∈ CTrans(H) such
that |CObjH(Q)| ≤ 1, some transaction in Q is not aborted in H.

Invisible Reads. A TM implementation M uses invisible reads if for every
execution E of M and for every read-only transaction Tk ∈ txns(E), E|k does
not contain any nontrivial events.

In this paper, we introduce a definition of weak invisible reads. For any
execution E and any t-operation πk invoked by some transaction Tk ∈ txns(E),
let E|πk denote the subsequence of E restricted to events of πk in E.

We say that a TM implementation M satisfies weak invisible reads if for any
execution E of M and every transaction Tk ∈ txns(E); Rset(Tk) �= ∅ that is
not concurrent with any transaction Tm ∈ txns(E), E|πk does not contain any
nontrivial events, where πk is any t-read operation invoked by Tk in E.

Disjoint-Access Parallelism (DAP). Let τE(Ti, Tj) be the set of transactions
(Ti and Tj included) that are concurrent to at least one of Ti and Tj in E. Let
G(Ti, Tj , E) be an undirected graph whose vertex set is

⋃

T∈τE(Ti,Tj)

Dset(T) and

there is an edge between t-objects X and Y iff there exists T ∈ τE(Ti, Tj) such
that {X,Y } ∈ Dset(T). We say that Ti and Tj are disjoint-access in E if there is
no path between a t-object in Dset(Ti) and a t-object in Dset(Tj) in G(Ti, Tj , E).

416 P. Kuznetsov and S. Ravi

A TM implementation M is weak disjoint-access parallel (weak DAP) if, for all
executions E of M , transactions Ti and Tj concurrently contend on the same
base object in E only if Ti and Tj are not disjoint-access in E or there exists a
t-object X ∈ Dset(Ti) ∩ Dset(Tj) [5,20].

Lemma 1. ([5,18]) Let M be any weak DAP TM implementation. Let α · ρ1 ·
ρ2 be any execution of M where ρ1 (and resp. ρ2) is the step contention-free
execution fragment of transaction T1 �∈ txns(α) (and resp. T2 �∈ txns(α)) and
transactions T1, T2 are disjoint-access in α · ρ1 · ρ2. Then, T1 and T2 do not
contend on any base object in α · ρ1 · ρ2.

Fig. 1. Executions in the proof of Lemma 2; By weak DAP, Tφ cannot distinguish this
from the execution in Fig. 1(a)

4 Time and Space Complexity of Sequential TMs

In this section, we prove that (1) that a read-only transaction in an opaque TM
featured with weak DAP and weak invisible reads must incrementally validate
every next read operation, and (2) a strictly serializable TM (under weak DAP
and weak read invisibility), must have a read-only transaction that accesses a
linear (in the size of the transaction’s read set) number of distinct base objects
in the course of performing its last t-read and tryCommit operations.

We first prove the following lemma concerning strictly serializable weak DAP
TM implementations.

Lemma 2. Let M be any strictly serializable, weak DAP TM implementation
that provides sequential TM-progress. Then, for all i ∈ N, M has an execution
of the form πi−1 · ρi · αi where,

– πi−1 is the complete step contention-free execution of read-only transaction Tφ

that performs (i − 1) t-reads: readφ(X1) · · · readφ(Xi−1),
– ρi is the t-complete step contention-free execution of a transaction Ti that

writes nvi �= vi to Xi and commits,
– αi is the complete step contention-free execution fragment of Tφ that performs

its ith t-read: readφ(Xi) → nvi.

Progressive Transactional Memory in Time and Space 417

Proof. By sequential TM-progress, M has an execution of the form ρi · πi−1.
Since Dset(Tk) ∩ Dset(Ti) = ∅ in ρi · πi−1, by Lemma 1, transactions Tφ and Ti

do not contend on any base object in execution ρi · πi−1. Thus, ρi · πi−1 is also
an execution of M .

By assumption of strict serializability, ρi · πi−1 · αi is an execution of M in
which the t-read of Xi performed by Tφ must return nvi. But ρi · πi−1 · αi is
indistinguishable to Tφ from πi−1 · ρi ·αi. Thus, M has an execution of the form
πi−1 · ρi · αi.

Theorem 1. For every weak DAP TM implementation M that provides ICF
TM-liveness, sequential TM-progress and uses weak invisible reads,

(1) If M is opaque, for every m ∈ N, there exists an execution E of M such that
some transaction T ∈ txns(E) performs Ω(m2) steps, where m = |Rset(Tk)|.

(2) if M is strictly serializable, for every m ∈ N, there exists an execution E of
M such that some transaction Tk ∈ txns(E) accesses at least m − 1 distinct
base objects during the executions of the mth t-read operation and tryCk(),
where m = |Rset(Tk)|.

Proof. For all i ∈ {1, . . . , m}, let v be the initial value of t-object Xi.

(1) Suppose that M is opaque. Let πm denote the complete step
contention-free execution of a transaction Tφ that performs m t-reads:
readφ(X1) · · · readφ(Xm) such that for all i ∈ {1, . . . , m}, readφ(Xi) → v.

By Lemma 2, for all i ∈ {2, . . . , m}, M has an execution of the form Ei =
πi−1 · ρi · αi.

For each i ∈ {2, . . . ,m}, j ∈ {1, 2} and � ≤ (i−1), we now define an execution
of the form E

i
j� = πi−1 · β� · ρi · αi

j as follows:

– β� is the t-complete step contention-free execution fragment of a transaction
T� that writes nv� �= v to X� and commits

– αi
1 (and resp. αi

2) is the complete step contention-free execution fragment of
readφ(Xi) → v (and resp. readφ(Xi) → Aφ).

Claim 1. For all i ∈ {2, . . . , m} and � ≤ (i − 1), M has an execution of the
form E

i
1� or E

i
2�.

Proof. For all i ∈ {2, . . . , m}, πi−1 is an execution of M . By assumption of weak
invisible reads and sequential TM-progress, T� must be committed in πi−1 · ρ�

and M has an execution of the form πi−1 · β�. By the same reasoning, since Ti

and T� have disjoint data sets, M has an execution of the form πi−1 · β� · ρi.
Since the configuration after πi−1 · β� · ρi is quiescent, by ICF TM-liveness,

πi−1 · β� · ρi extended with readφ(Xi) must return a matching response.
If readφ(Xi) → vi, then clearly E

i
1 is an execution of M with Tφ, Ti−1, Ti being

a valid serialization of transactions. If readφ(Xi) → Aφ, the same serialization
justifies an opaque execution.

Suppose by contradiction that there exists an execution of M such that πi−1 ·
β� · ρi is extended with the complete execution of readφ(Xi) → r; r �∈ {Aφ, v}.

418 P. Kuznetsov and S. Ravi

The only plausible case to analyse is when r = nv. Since readφ(Xi) returns the
value of Xi updated by Ti, the only possible serialization for transactions is T�,
Ti, Tφ; but readφ(X�) performed by Tk that returns the initial value v is not
legal in this serialization—contradiction.

We now prove that, for all i ∈ {2, . . . , m}, j ∈ {1, 2} and � ≤ (i− 1), transaction
Tφ must access (i − 1) different base objects during the execution of readφ(Xi)
in the execution πi−1 · β� · ρi · αi

j .
By the assumption of weak invisible reads, the execution πi−1 · β� · ρi · αi

j is
indistinguishable to transactions T� and Ti from the execution π̃i−1 · β� · ρi · αi

j ,
where Rset(Tφ) = ∅ in π̃i−1. But transactions T� and Ti are disjoint-access in
π̃i−1 · β� · ρi and by Lemma 1, they cannot contend on the same base object in
this execution.

Consider the (i− 1) different executions: πi−1 ·β1 ·ρi, . . ., πi−1 ·βi−1 ·ρi. For
all �, �′ ≤ (i−1);�′ �= �, M has an execution of the form πi−1 ·β� ·ρi ·β�′

in which
transactions T� and T�′ access mutually disjoint data sets. By weak invisible
reads and Lemma 1, the pairs of transactions T�′ , Ti and T�′ , T� do not contend
on any base object in this execution. This implies that πi−1 · β� · β�′ · ρi is an
execution of M in which transactions T� and T�′ each apply nontrivial primitives
to mutually disjoint sets of base objects in the execution fragments β� and β�′

respectively (by Lemma 1).
This implies that for any j ∈ {1, 2}, � ≤ (i − 1), the configuration Ci after

Ei differs from the configurations after Ei
j� only in the states of the base objects

that are accessed in the fragment β�. Consequently, transaction Tφ must access
at least i − 1 different base objects in the execution fragment πi

j to distinguish
configuration Ci from the configurations that result after the (i − 1) different
executions πi−1 · β1 · ρi, . . ., πi−1 · βi−1 · ρi respectively.

Thus, for all i ∈ {2, . . . , m}, transaction Tφ must perform at least i − 1 steps

while executing the ith t-read in πi
j and Tφ itself must perform

m−1∑

i=1

i = m(m−1)
2

steps.

(2) Suppose that M is strictly serializable, but not opaque. Since M is strictly
serializable, by Lemma 2, it has an execution of the form E = πm−1 · ρm · αm.

For each � ≤ (i − 1), we prove that M has an execution of the form E� =
πm−1 · β� · ρm · ᾱm where ᾱm is the complete step contention-free execution
fragment of readφ(Xm) followed by the complete execution of tryCφ. Indeed,
by weak invisible reads, πm−1 does not contain any nontrivial events and the
execution πm−1 · β� · ρm is indistinguishable to transactions T� and Tm from
the executions π̃m−1 · β� and π̃m−1 · β� · ρm respectively, where Rset(Tφ) = ∅
in π̃m−1. Thus, applying Lemma 1, transactions β� · ρm do not contend on any
base object in the execution πm−1 · β� · ρm. By ICF TM-liveness, readφ(Xm)
and tryCφ must return matching responses in the execution fragment ᾱm that
extends πm−1 · β� · ρm. Consequently, for each � ≤ (i − 1), M has an execution
of the form E� = πm−1 · β� · ρm · ᾱm such that transactions T� and Tm do not
contend on any base object.

Progressive Transactional Memory in Time and Space 419

Strict serializability of M means that if readφ(Xm) → nv in the execution
fragment ᾱm, then tryCφ must return Aφ. Otherwise if readφ(Xm) → v (i.e. the
initial value of Xm), then tryCφ may return Aφ or Cφ.

Thus, as with (1), in the worst case, Tφ must access at least m − 1 distinct
base objects during the executions of readφ(Xm) and tryCφ to distinguish the
configuration Ci from the configurations after the m − 1 different executions
πm−1 · β1 · ρm, . . ., πm−1 · βm−1 · ρm respectively.

5 RMR Complexity of Strongly Progressive TMs

In this section, we prove every strongly progressive strictly serializable TM pro-
viding wait-free TM-liveness that uses only read, write and conditional RMW
primitives has an execution in which in which n concurrent processes perform
transactions on a single data item and incur Ω(log n) remote memory refer-
ences [2].

Remote Memory References(RMR) [3]. In the cache-coherent (CC) shared
memory, each process maintains local copies of shared objects inside its cache,
whose consistency is ensured by a coherence protocol. Informally, we say that an
access to a base object b is remote to a process p and causes a remote memory
reference (RMR) if p’s cache contains a cached copy of the object that is out of
date or invalidated ; otherwise the access is local.

.

420 P. Kuznetsov and S. Ravi

In the write-through (CC) protocol, to read a base object b, process p must
have a cached copy of b that has not been invalidated since its previous read.
Otherwise, p incurs a RMR. To write to b, p causes a RMR that invalidates all
cached copies of b and writes to the main memory.

In the write-back (CC) protocol, p reads a base object b without causing a
RMR if it holds a cached copy of b in shared or exclusive mode; otherwise the
access of b causes a RMR that (1) invalidates all copies of b held in exclusive
mode, and writing b back to the main memory, (2) creates a cached copy of b in
shared mode. Process p can write to b without causing a RMR if it holds a copy
of b in exclusive mode; otherwise p causes a RMR that invalidates all cached
copies of b and creates a cached copy of b in exclusive mode.

In the distributed shared memory (DSM), each register is forever assigned
to a single process and it remote to the others. Any access of a remote register
causes a RMR.

Mutual Exclusion. The mutex object supports two operations: Enter and Exit,
both of which return the response ok. We say that a process pi is in the critical
section after an execution π if π contains the invocation of Enter by pi that
returns ok, but does not contain a subsequent invocation of Exit by pi in π.

A mutual exclusion implementation satisfies the following properties:
(Mutual-exclusion) After any execution π, there exists at most one process

that is in the critical section.
(Deadlock-freedom) Let π be any execution that contains the invocation of

Enter by process pi. Then, in every extension of π in which every process takes
infinitely many steps, some process is in the critical section.

(Finite-exit) Every process completes the Exit operation within a finite num-
ber of steps.

5.1 Mutual Exclusion from a Strongly Progressive TM

We describe an implementation of a mutex object L(M) from a strictly serializ-
able, strongly progressive TM implementation M providing wait-free TM-liveness
(Algorithm 1). The algorithm is based on the mutex implementation in [15].

Given a sequential implementation, we use a TM to execute the sequential code
in a concurrent environment by encapsulating each sequential operation within an
atomic transaction that replaces each read and write of a t-object with the trans-
actional read and write implementations, respectively. If the transaction commits,
then the result of the operation is returned; otherwise if one of the transactional
operations aborts. For instance, in Algorithm 1, we wish to atomically read a
t-object X, write a new value to it and return the old value of X prior to this
write. To achieve this, we employ a strictly serializable TM implementation M .
Moreover, we assume that M is strongly progressive, i.e., in every execution, at
least one transaction successfully commits and the value of X is returned.

Shared Objects. We associate each process pi with two alternating identities
[pi, facei]; facei ∈ {0, 1}. The strongly progressive TM implementation M is used
to enqueue processes that attempt to enter the critical section within a single

Progressive Transactional Memory in Time and Space 421

t-object X (initially ⊥). For each [pi, facei], L(M) uses a register bit
Done[pi, facei] that indicates if this face of the process has left the critical
section or is executing the Entry operation. Additionally, we use a register
Succ[pi, facei] that stores the process expected to succeed pi in the critical
section. If Succ[pi, facei] = pj , we say that pj is the successor of pi (and pi

is the predecessor of pj). Intuitively, this means that pj is expected to enter
the critical section immediately after pi. Finally, L(M) uses a 2-dimensional bit
array Lock: for each process pi, there are n−1 registers associated with the other
processes. For all j ∈ {0, . . . , n− 1} \ {i}, the registers Lock[pi][pj] are local to pi

and registers Lock[pj][pi] are remote to pi. Process pi can only access registers
in the Lock array that are local or remote to it.

Entry Operation. A process pi adopts a new identity facei and writes false
to Done(pi, facei) to indicate that pi has started the Entry operation. Process
pi now initializes the successor of [pi, facei] by writing ⊥ to Succ[pi, facei]. Now,
pi uses a strongly progressive TM implementation M to atomically store its
pid and identity i.e., facei to t-object X and returns the pid and identity of its
predecessor, say [pj , facej]. Intuitively, this suggests that [pi, facei] is scheduled
to enter the critical section immediately after [pj , facej] exits the critical section.
Note that if pi reads the initial value of t-object X, then it immediately enters
the critical section. Otherwise it writes locked to the register Lock[pi, pj] and sets
itself to be the successor of [pj , facej] by writing pi to Succ[pj , facej]. Process pi

now checks if pj has started the Exit operation by checking if Done[pj , facej]
is set. If it is, pi enters the critical section; otherwise pi spins on the register
Lock[pi][pj] until it is unlocked.

Exit Operation. Process pi first indicates that it has exited the criti-
cal section by setting Done[pi, facei], following which it unlocks the register
Lock[Succ[pi, facei]][pi] to allow pi’s successor to enter the critical section.

5.2 Proof of Correctness

Lemma 3. The implementation L(M) (Algorithm 1) satisfies mutual exclusion.

Proof. Let E be any execution of L(M). We say that [pi, facei] is the successor
of [pj , facej] if pi reads the value of prev in Line 25 to be [pj , facej] (and [pj , facej]
is the predecessor of [pi, facei]); otherwise if pi reads the value to be ⊥, we say
that pi has no predecessor.

Suppose by contradiction that there exist processes pi and pj that are both
inside the critical section after E. Since pi is inside the critical section, either
(1) pi read prev = ⊥ in Line 23, or (2) pi read that Done[prev] is true (Line 29)
or pi reads that Done[prev] is false and Lock[pi][prev.pid] is unlocked (Line 30).

(Case 1) Suppose that pi read prev = ⊥ and entered the critical section. Since
in this case, pi does not have any predecessor, some other process that returns
successfully from the while loop in Line 25 must be successor of pi in E. Since
there exists [pj , facej] also inside the critical section after E, pj reads that either
[pi, facei] or some other process to be its predecessor. Observe that there must

422 P. Kuznetsov and S. Ravi

exist some such process [pk, facek] whose predecessor is [pi, facei]. Hence, without
loss of generality, we can assume that [pj , facej] is the successor of [pi, facei]. By
our assumption, [pj , facej] is also inside the critical section. Thus, pj locked the
register Lock[pj , pi] in Line 27 and set itself to be pi’s successor in Line 28.
Then, pj read that Done[pi, facei] is true or read that Done[pi, facei] is false and
waited until Lock[pj , pi] is unlocked and then entered the critical section. But
this is possible only if pi has left the critical section and updated the registers
Done[pi, facei] and Lock[pj , pi] in Lines 36 and 37 respectively—contradiction to
the assumption that [pi, facei] is also inside the critical section after E.

(Case 2) Suppose that pi did not read prev = ⊥ and entered the critical
section. Thus, pi read that Done[prev] is false in Line 29 and Lock[pi][prev.pid]
is unlocked in Line 30, where prev is the predecessor of [pi, facei]. As with case
1, without loss of generality, we can assume that [pj , facej] is the successor of
[pi, facei] or [pj , facej] is the predecessor of [pi, facei].

Suppose that [pj , facej] is the predecessor of [pi, facei], i.e., pi writes the value
[pi, facei] to the register Succ[pj , facej] in Line 28. Since [pj , facej] is also inside
the critical section after E, process pi must read that Done[pj , facej] is true in
Line 29 and Lock[pi, pj] is locked in Line 30. But then pi could not have entered
the critical section after E—contradiction.

Suppose that [pj , facej] is the successor of [pi, facei], i.e., pj writes the value
[pj , facej] to the register Succ[pi, facei]. Since both pi and pj are inside the
critical section after E, process pj must read that Done[pi, facei] is true in
Line 29 and Lock[pj , pi] is locked in Line 30. Thus, pj must spin on the reg-
ister Lock[pj , pi], waiting for it to be unlocked by pi before entering the critical
section—contradiction to the assumption that both pi and pj are inside the
critical section.

Thus, L(M) satisfies mutual-exclusion.

Lemma 4. The implementation L(M) (Algorithm 1) provides deadlock-
freedom.

Proof. Let E be any execution of L(M). Observe that a process may be stuck
indefinitely only in Lines 23 and 30 as it performs the while loop.

Since M is strongly progressive and provides wait-free TM-liveness, in every
execution E that contains an invocation of Enter by process pi, some process
returns true from the invocation of func() in Line 23.

Now consider a process pi that returns successfuly from the while loop in
Line 23. Suppose that pi is stuck indefinitely as it performs the while loop in
Line 30. Thus, no process has unlocked the register Lock[pi][prev.pid] by writing
to it in the Exit section. Recall that since [pi, facei] has reached the while loop in
Line 30, [pi, facei] necessarily has a predecessor, say [pj , facej], and has set itself
to be pj ’s successor by writing pi to register Succ[pj , facej] in Line 28. Consider
the possible two cases: the predecessor of [pj , facej is some process pk;k �= i or
the predecessor of [pj , facej is the process pi itself.

(Case 1) Since by assumption, process pj takes infinitely many steps in E,
the only reason that pj is stuck without entering the critical section is that

Progressive Transactional Memory in Time and Space 423

[pk, facek] is also stuck in the while loop in Line 30. Note that it is possible for
us to iteratively extend this execution in which pk’s predecessor is a process that
is not pi or pj that is also stuck in the while loop in Line 30. But then the last
such process must eventually read the corresponding Lock to be unlocked and
enter the critical section. Thus, in every extension of E in which every process
takes infinitely many steps, some process will enter the critical section.

(Case 2) Suppose that the predecessor of [pj , facej is the process pi itself.
Thus, as [pi, face] is stuck in the while loop waiting for Lock[pi, pj] to be unlocked
by process pj , pj leaves the critical section, unlocks Lock[pi, pj] in Line 37 and
prior to the read of Lock[pi, pj], pj re-starts the Entry operation, writes false to
Done[pj , 1 − facej] and sets itself to be the successor of [pi, facei] and spins on
the register Lock[pj , pi]. However, observe that process pi, which takes infinitely
many steps by our assumption must eventually read that Lock[pi, pj] is unlocked
and enter the critical section, thus establishing deadlock-freedom.

We say that a TM implementation M accesses a single t-object if in every exe-
cution E of M and every transaction T ∈ txns(E), |Dset(T)| ≤ 1. We can now
prove the following theorem:

Theorem 2. Any strictly serializable, strongly progressive TM implementation
M providing wait-free TM-liveness that accesses a single t-object implies a
deadlock-free, finite exit mutual exclusion implementation L(M) such that the
RMR complexity of M is within a constant factor of the RMR complexity of L(M).

Proof. (Mutual-exclusion) Follows from Lemma 3.
(Finite-exit) The proof is immediate since the Exit operation contains no

unbounded loops or waiting statements.
(Deadlock-freedom) Follows from Lemma 4.
(RMR complexity) First, let us consider the CC model. Observe that every

event not on M performed by a process pi as it performs the Entry or Exit oper-
ations incurs O(1) RMR cost clearly, possibly barring the while loop executed in
Line 30. During the execution of this while loop, process pi spins on the register
Lock[pi][pj], where pj is the predecessor of pi. Observe that pi’s cached copy
of Lock[pi][pj] may be invalidated only by process pj as it unlocks the register
in Line 37. Since no other process may write to this register and pi terminates
the while loop immediately after the write to Lock[pi][pj] by pj , pi incurs O(1)
RMR’s. Thus, the overall RMR cost incurred by M is within a constant factor
of the RMR cost of L(M).

Now we consider the DSM model. As with the reasoning for the CC model,
every event not on M performed by a process pi as it performs the Entry or
Exit operations incurs O(1) RMR cost clearly, possibly barring the while loop
executed in Line 30. During the execution of this while loop, process pi spins on
the register Lock[pi][pj], where pj is the predecessor of pi. Recall that Lock[pi][pj]
is a register that is local to pi and thus, pi does not incur any RMR cost on
account of executing this loop. It follows that pi incurs O(1) RMR cost in the
DSM model. Thus, the overall RMR cost of M is within a constant factor of the
RMR cost of L(M) in the DSM model.

424 P. Kuznetsov and S. Ravi

Theorem 3. ([3]) Any deadlock-free, finite-exit mutual exclusion implementa-
tion from read, write and conditional primitives has an execution whose RMR
complexity is Ω(n log n).

Theorems 2 and 3 imply:

Theorem 4. Any strictly serializable, strongly progressive TM implementation
providing wait-free TM-liveness from read, write and conditional primitives that
accesses a single t-object has an execution whose RMR complexity is Ω(n log n).

6 Related Work and Concluding Remarks

Theorem 1 improves the read-validation step-complexity lower bound [12,13]
derived for strict-data partitioning (a very strong version of DAP) and (strong)
invisible reads. In a strict data partitioned TM, the set of base objects used
by the TM is split into disjoint sets, each storing information only about a
single data item. Indeed, every TM implementation that is strict data-partitioned
satisfies weak DAP, but not vice-versa. The definition of invisible reads assumed
in [12,13] requires that a t-read operation does not apply nontrivial events in
any execution. Theorem 1 however, assumes weak invisible reads, stipulating
that t-read operations of a transaction T do not apply nontrivial events only
when T is not concurrent with any other transaction.

The notion of weak DAP used in this paper was introduced by Attiya
et al. [5].

Proving a lower bound for a concurrent object by reduction to a form of
mutual exclusion has previously been used in [1,13]. Guerraoui and Kapalka [13]
proved that it is impossible to implement strictly serializable strongly progressive
TMs that provide wait-free TM-liveness (every t-operation returns a matching
response within a finite number of steps) using only read and write primitives.
Alistarh et al. proved a lower bound on RMR complexity of renaming prob-
lem [1]. Our reduction algorithm (Sect. 5) is inspired by the O(1) RMR mutual
exclusion algorithm by Hyonho [15].

To the best of our knowledge, the TM properties assumed for Theorem 1
cover all of the TM implementations that are subject to the validation step-
complexity [6,7,14]. It is easy to see that the lower bound of Theorem 1 is tight
for both strict serializability and opacity. We refer to the TM implementation
in [17] or DSTM [14] for the matching upper bound.

Finally, we conjecture that the lower bound of Theorem 4 is tight. Proving
this remains an interesting open question.

References

1. Alistarh, D., Aspnes, J., Gilbert, S., Guerraoui, R.: The complexity of renaming.
In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, 22–25 October, 2011, pp. 718–727, Palm Springs, CA, USA (2011)

Progressive Transactional Memory in Time and Space 425

2. Anderson, T.E.: The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

3. Attiya, H., Hendler, D., Woelfel, P.: Tight RMR lower bounds for mutual exclusion
and other problems. In: Proceedings of the Twenty-seventh ACM Symposium on
Principles of Distributed Computing, PODC 2008, pp. 447–447, New York, NY,
USA. ACM (2008)

4. Attiya, H., Hillel, E.: The cost of privatization in software transactional memory.
IEEE Trans. Comput. 62(12), 2531–2543 (2013)

5. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory Comput. Syst. 49(4), 698–719
(2011)

6. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining STM by abolishing
ownership records. SIGPLAN Not. 45(5), 67–78 (2010)

7. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

8. Dice, D., Shavit, N.: What really makes transactions fast? In: Transact (2006)
9. Dice, D., Shavit, N.: TLRW: return of the read-write lock. In: SPAA, pp. 284–293

(2010)
10. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of concurrent

objects. SIAM J. Comput. 41(3), 519–536 (2012)
11. Fraser, K.: Practical lock-freedom. Technical report, Cambridge University Com-

puter Laborotory (2003)
12. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional

memory. SIGPLAN Not. 44(1), 404–415 (2009)
13. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-

tures on Distributed Computing Theory. Morgan and Claypool, San Rafael (2010)
14. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional

memory for dynamic-sized data structures. In: Proceedings of the Twenty-Second
Annual Symposium on Principles of Distributed Computing, PODC 2003, pp. 92–
101, New York, NY, USA. ACM (2003)

15. Hyonho, L.: Local-spin mutual exclusion algorithms on the DSM model using fetch-
and-store objects (2003). http://www.cs.toronto.edu/pub/hlee/thesis.ps

16. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong
shared memory primitives. In: PODC, pp. 151–160 (1994)

17. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 112–127. Springer, Heidelberg (2011)

18. Kuznetsov, P., Ravi, S.: On partial wait-freedom in transactional memory. In:
Proceedings of the 2015 International Conference on Distributed Computing and
Networking, ICDCN 2015, Goa, India, p. 10, 4–7 Jan 2015

19. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26, 631–653 (1979)

20. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In:
PODC, pp. 16–25 (2010)

21. Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: Nztm: nonblocking
zero-indirection transactional memory. In: Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 204–
213, New York, NY, USA. ACM (2009)

http://www.cs.toronto.edu/pub/hlee/thesis.ps

	Progressive Transactional Memory in Time and Space
	1 Introduction
	2 Model
	3 TM Classes
	4 Time and Space Complexity of Sequential TMs
	5 RMR Complexity of Strongly Progressive TMs
	5.1 Mutual Exclusion from a Strongly Progressive TM
	5.2 Proof of Correctness

	6 Related Work and Concluding Remarks
	References

