
On Parallel Computational Technologies
of Augmented Domain Decomposition Methods

Y.L Gurieva1 and V.P Il’in1,2(B)

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

yana@lapasrv.sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

ilin@sscc.ru

Abstract. The performance of the parallel domain decomposition meth-
ods (DDM) for solving very large systems of linear algebraic equations
with non-symmetric sparse matrices depends on the convergence of the
iterative algorithms as well as on the efficiency of the computational
technologies. Usually in DDM approach the number of iterations grows
together with a growth of the degree of freedom. We consider the algo-
rithms for increasing the convergence rate based on the preconditioning
with using deflation and aggregation techniques which take low rank
approximations of the original systems of linear algebraic equations. The
efficiency of the proposed approaches is demonstrated on the represen-
tative set of model tasks.

1 Introduction

In general, the modern domain decomposition methods to solve very large sys-
tems of linear equations (SLAEs), which arise in the discrete approximation on
the non-structured meshes of the multi-dimensional boundary value problems
(BVPs) by the finite element or by other grid methods, can be presented by
three main mathematical approaches: external Krylov’s type iterative process
“on subdomains” which presents the additive Schwarz (or special block Jacobi)
algorithm, simultaneous solving the auxiliary BVPs in the subdomains which can
be carried out by a direct or an iterative algorithm, and preconditioning pro-
cedures to accelerate the external iterations, see [1–5] and the literature cited
there.

The last factor is very important for strongly scalable parallelized tasks,
because for a very large number of subdomains and corresponding block degree
of freedom, one can observe the considerable stagnation of the iterative process.
In recent decades, various versions of aggregation, deflation, and coarse grid
correction accelerators have been investigated and applied successfully by many
authors. The main goal of our paper consists namely in the numerical analysis of

The work is supported partially by Russian Science Foundation grant N 14-11-00485.
The experimental part of the paper is supported by the RFBR grant N 14-07-00128.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 35–46, 2015.
DOI: 10.1007/978-3-319-21909-7 4

36 Y.L Gurieva and V.P Il’in

several versions of aggregation accelerating based on low rank matrix approxima-
tions in different coarse subspaces. The program implemtation of the algorithms
is realized for the universal compressed sparse matrix format which is necessary
to solve the practical problems.

The conventional parallel technologies of DDMs include two levels: applica-
tion of MPI processes for corresponding subdomains, including interface commu-
nications between them at each outer (external) iteration, and implementation of
the multi-thread computing for the “internal” parallelezation on the multi-core
processors.

The problems are specified by three levels of the degrees of freedom: the
number of unknowns of SLAE (108−1011), the quantity of subdomains (102−105,
block dimension of the broblem), and coarse grid dimension (10 − 103) which
determine the scalability of the parallelism of the general computational process.

The bottleneck of DDM approach is in a minimization of a communica-
tion time. It can be done by simultaneous data transfer and synchronized com-
putations in the subdomains. In general, DDM performance depends on the
convergence properties of the iterative algorithms and on the efficiency of the
computational technologies whose variants are discussed later on. In Sect. 2, we
describe the algebraic and structured representation of the multi-level precon-
ditioned iterative processes in the Krylov subspaces. Section 3 is devoted to the
mapping of the parallel algorithms under consideration onto the computational
multi-processor system with the distributed and shared memory architecture.
The results of numerical experiments and an analysis of the various approaches
is carried out for different orders of the basic interpolation functions and for
different placement of the coarse grid nodes. The efficiency of the proposed algo-
rithms is demonstrated on the representative set of the model examples.

2 Statement of the Problem and Algorithms

Let us consider a SLAE

Au =
∑

l′∈ωl

al,l′ul′ = f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN , (1)

with the sparse matrix of large order with real entries arising from some discrete
approximation of a multi-dimensional BVP by the finite element or the finite
volume or other grid methods; ωl means a set of the indices of off-diagonal
entries in the l-th row of matrix A.

We can divide the total set of the vector indices Ω = {l} into P non-
intersected subsets, or algebraic subdomains,

Ω =
P⋃

s=1

Ωs, N =
N∑

s=1

Ns, (2)

each containing approximately equal number of elements Ns. For subdomains
Ωs, let us denote their boundaries Γ 0

s and closures as the following:

Γs ≡ Γ 0
s = {l′ ∈ ωl, l ∈ Ωs, l′ /∈ Ωs}, Ω̄0

s = Ωs

⋃
Γ 0

s . (3)

On Parallel Computational Technologies of Augmented Domain 37

Also, we can define the boundary layers of Ωs:

Γ t
s =

{
l′ ∈ ωl, l ∈ Ω̄t−1

s , Ω̄t
s = Ω̄t−1

s

⋃
Γ t

s , t = 1, 2, ...,Δs

}
. (4)

Parameter Δs presents the measure of an extension of the subdomain Ωs. The
set of Ω̄Δs

s forms the algebraic decomposition of the original domain Ω into sub-
domains with parametrized overlapping. Hystorically, it is known that increasing
of the overlapping yields the increasing of the iterative convergence of DDMs and
increasing of the cost of each iteration. For the subvectors

ūs = {ul, l ∈ Ω̄Δs
s } ∈ RN̄s , u =

P⋃

s=1

ūs,

the original system can be written in a block form

As,sūs +
∑

s′∈Qs

As,s′ ūs′ = fs, s = 1, ..., P, (5)

where Qs is the set of subdomains which are adjacent to the extended subdomain
Ω̄Δs

s .
To solve (5), the generalized block Jacobi iterative process is used:

B̄s(ūn+1
s − ūn

s) = f̄s − (Āūn)s ≡ r̄n
s , ūn

s ∈ RN̄s . (6)

Here r̄n
s is the residual subvector and B̄s is some preconditioning matrix which

takes into account the permutations of the “boundary” rows l ∈ ΓΔs
s , because of

using special interface conditions of Steklov-Poincare type between the neighbour
subdomains in the Schwarz iterations, see [2–4] for details.

The vector un of the sought for solution of original SLAEs (1) is not defined
uniquely in (6), because in the intersections of the neighbour subdomain Ω̄Δs

s we
have several values of the vector components for the various s. In order to avoid
such an indefiniteness, different approaches are used. We apply the restricted
alternating Schwarz (RAS) slgorithm, which is based on using the restricting
operators Rs ∈ RNs,N̄s :

un
s = Rsū

n
s = {un

l = (Rsū
n
s)l, l ∈ Ωs} ∈ RNs , (7)

where the subdomains Ωs, s = 1, ..., P , define the domain decomposition without
overlapping.

The RAS Jacobi type method can be written in the following form:

un+1 = un + B−1
rasr

n,

B−1
ras = RÂ−1WT , Â = WT AW = block-diag {As,s ∈ RN̄s,N̄s},

(8)

W = [w1...wP] ∈ RN,P is a rectangular matrix, each its column ws has the
entries equal to one in the nodes from Ω̄s and has zero entries otherwise. Let us
note that generally even if the original SLAE is symmetric, a preconditioning

38 Y.L Gurieva and V.P Il’in

matrix Bras from (8) is not a symmetric one. In addition, the inversion of the
blocks As,s of the matrix Â is actually reduced to the simultaneous solution of
independent subsystems in the corresponding subdomains.

We suppose that SLAE (1) is obtained from the approximation of a multi-
dimensional BVP for partial differential equations by the finite element, finite
volume or other method on some non-structured grid. For example, let the
Dirichlet problem for the diffusion-convection equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω,

u|Γ = g(x, y),
(9)

be solved in a computational domain Ω = (ax, bx) × (ay, by), where Γ is a
boundary of Ω, and the convection coefficients p, q are, for simplicity, the given
values. For the sake of brevity, we will use the symbol Ω to denote either the
computational domain or the grid domain according to the context.

The given boundary value problem is approximated on a uniform grid

xi = ax + ihx, yj = ay + jhy,
i = 0, 1, ..., Nx + 1; j = 0, 1, ..., Ny + 1;
hx = (bx − ax)/(Nx + 1), hy = (by − ay)/(Ny + 1),

(10)

by a five-point scheme of the form

(Au)l = ul,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Nx
ul−Nx

+ al,l+Nx
ul+Nx

= fl,
(11)

where l is a “global”, or natural, number of an inner grid node:

l = l(i, j) ≡ i + (j − 1)Nx = 1, ..., N = NxNy. (12)

A particular view of the coefficients al,l′ in (11) can be different, and specific
formulae can be found in [6,7]. Eq. (11) are written for the inner grid nodes,
moreover, for the nodes near the boundary, whose numbers are from a set of the
indices i = 1, Nx or j = 1, Ny, the values known from the boundary conditions
of the solution are substituted into the corresponding equations and moved to
their right-hand sides, so that the corresponding coefficients al,l′ in (11) equal
zero (it is the so- called “constraining” procedure).

We can think of the isomorphism between the vector entries in (1)–(5) and
the grid nodes: ul is the value of the grid function u in the l-th node at the grid
Ω which is a set of all nodes in the computational domain. The subdomains Ωs

in (2) can be redefined as the grid subdomains, and for the model problem (9) we
present a simple decomposition of Ω into a union of an identical non-interesecting
rectangle subdomains:

Ω =
P⋃

s=1

Ωs, P = PxPy,

each containing an equal number of the grid nodes

M = mxmy, Nx = Pxmx, Ny = Pymy, N = PM.

On Parallel Computational Technologies of Augmented Domain 39

One can find that the subdomains form a two-dimensional macrogrid, where
each macrovertex can be numbered by a pair of indices p, q (similarly to the grid
node indices i, j), and a “continuous” number of a subdomain is defined as

s = s(p, q) ≡ p + (q − 1)Px = 1, ..., P,
p = 1, ..., Px; q = 1, ..., Py.

(13)

We now turn from continuous numbering of nodes to their subdomain-by-
subdomain ordering: at first, we number all the nodes in Ω1, then in Ω2, etc.
The vector components u, f are ordered correspondingly, so that the SLAE (11)
takes the block-matrix form (5), where ūs ∈ RNs means a subvector of the vector
u, whose components correspond to the nodes from the grid subdomain Ωs, and
Qs means a set of the numbers of the grid subdomains adjacent to subdomain
Ωs. Hereinafter we assume that a local node ordering in every subdomain is a
natural one: local pairs of indices i′ = 1, ...,mx; j′ = 1, ...,my are introduced and
a continuous number is determined by the formula l′ = i′ + (j′ − 1)mx similar
to (12).

The rate of convergence of the iterative process (8) depends on the number
of the subdomains, or more precisely, on the diameter of a graph representing
a macrogrid formed by the decomposition. This can be clearly explained by the
fact that on a single iteration the solution perturbation in one subdomain is
transmitted only to the neighbouring, or adjacent, subdomains. To speed up the
iterative process, it is natural to use not only the nearest but also the remote
subdomain couplings at every step. For this purpose, different approaches are
used in decomposition algorithms: deflation, coarse grid correction, aggregation,
etc., which to some extent are close to the multigrid principle as well as the low-
rank approximations of matrices, see numerous publications cited at a special
site [8].

We will consider the following approach based on an interpolation principle.
Let Ωc be a coarse grid with the number of nodes Nc � N in the computational
domain Ω, moreover, the nodes of the original grid and the coarse grid may not
match.

Let us denote by ϕ1, ..., ϕNc
a set of the basis interpolating polynomials of

order Mc on the grid Ωc which are supposed to have a finite support and without
loss of generality form an expansion of the unit, i.e.

Nc∑

k=1

ϕk(x, y) = 1.

Then a sought for solution vector of SLAE (1) can be presented in the form of
an expansion in terms of the given basis:

u = {ui,j ≈ uc
i,j =

Nc∑

k=1

ckϕk(xi, yj)} = Φû + ψ, (14)

where û = {ck} ∈ RNc is a vector of the coefficients of the expansion in terms of
the basis functions, ψ is an approximation error, and Φ = [ϕ1...ϕNc

] ∈ RN,Nc is

40 Y.L Gurieva and V.P Il’in

a rectangular matrix with every k-th column consisting of the values of the basis
function ϕk(xi, yj) at N nodes of the original grid Ω (most of the entris of Φ
equal zero in virtue of the finiteness of the basis). The columns, or the functions
ϕk, can be treated to be the orthonormal ones but not necessarily. If at some
k-th node Pk of the coarse grid Ωc only one basis function is a nonzero one
(ϕk(Pk′) = δk,k′), then ûk = ck is the exact value of the sought for solution at
the node Pk. With a substitution of (14) into the original SLAE, one can obtain
the system

AΦû = f − Aψ, (15)

and if to multiply it by ΦT one can obtain

Âû ≡ ΦT AΦû = ΦT f − ΦT Aψ ≡ f̂ ∈ RNc . (16)

Assuming further that the error ψ in (14) is sufficiently small and omitting
it, one can obtain a system for an approximate coarse grid solution ǔ:

Âǔ = ΦT f ≡ f̌ . (17)

If the matrix A is a non-singular matrix and Φ is the full-rank matrix(the
rank is much less than N), we assume these facts to hold further, then from
(16) we have

u ≈ ũ = Φǔ = ΦÂ−1f̂ = B−1
c f, B−1

c = Φ(ΦT AΦ)−1ΦT .

For the error of the approximate solution we have

u − ũ = (A−1 − B−1
c)f. (18)

The error of the approximate solution can also be presented via the error of
the approximation ψ. Subtracting Eqs. (16) and (17) term by term we have

Â(û − ǔ) = −ΦT Aψ

what yields the required equation:

u − ũ = Φû + ψ − Φǔ = ψ − B−1
c Aψ.

The matrix B−1
c introduced above can be regarded as a low rank approx-

imation of the matrix A−1 and used as a preconditioner to build an iterative
process. In particular, for an arbitrary vector u−1 we can choose an initial guess
as

u0 = u−1 + B−1
c r−1, r−1 = f − Au−1. (19)

In doing so, the corresponding initial residual r0 = f − Au0 will be orthogonal
to a coarse grid subspace

Φ̂ = span {ϕ1, ..., ϕNc
} (20)

On Parallel Computational Technologies of Augmented Domain 41

in the sense of fulfilling the condition

ΦT r0 = ΦT (r−1 − AΦÂ−1ΦT r−1) = 0. (21)

The relations given in [10] are the basis for the conjugate gradient method
with deflation, wherein an initial direction vector is chosen by the formula

p0 = (I − B−1
c A)r0, (22)

which ensures that the following orthogonality condition holds:

ΦT Ap0 = 0. (23)

Further iterations are implemented using the following relations:

un+1 = un + αnpn, rn+1 = rn − αnApn,
pn+1 = rn+1 + βnpn − B−1

c Arn+1,
αn = (rn, rn)/(pn, Apn), βn = (rn+1, rn+1)/(rn, rn).

(24)

In this method, which we will refer to as DCG, at every step the following
relations hold:

ΦT rn+1 = 0, ΦT Apn+1 = 0. (25)

If now we turn back to the additive Schwarz method (11), we can try to
accelerate it by the coarse grid preconditioner B−1

c (in addition to the precondi-
tioner B−1

ras). We will consider this point in a more general formulation assuming
that matrix A is a non-symmetric one and that there are several but not only
two preconditioning matrices. Moreover, the preconditioners can change from
iteration to iteration what corresponds to the so-called dynamic, or flexible,
preconditioning.

The SLAE with the non-symmetric matrix A is solved by the well-known
BiCGStab algorithm [1].

3 Parallel Technologies of DDM

The objectives of our research consist in the verification, testing, and a compara-
tive analysis of the efficiency of different algorithms and computational technolo-
gies of solving big sparse SLAEs aimed at their optimization and including into
the KRYLOV library [9] of the parallel algebraic solvers. The main requirements
to develop a proper software are high and scalable performance and no formal
restrictions on the orders of the SLAEs and on the number of the processors
and computational cores used. According to [3], a strong and a weak scalability
can be distinguished. The first one describes a decrease in the execution time
of one big problem with an increase of the number of computing devices, while
the second one stands for approximate preservation of the solution time while
increasing the dimension (the number of degrees of freedom) of the problem and
the number of processors and/or cores.

42 Y.L Gurieva and V.P Il’in

The algorithms were coded with taking into account the architecture of the
SSCC SB RAS cluster [11] (where KRYLOV library is available) but without
GPGPU usage as their effective utilization in the considered domain decom-
position methods has its own technological and computational complexity and
requires a special study.

Computations are carried out in the following natural way: if a computational
domain is divided into P subdomains than the solution is performed on P + 1
MPI-processes (one is the root process and other ones correspond to their own
subdomains). During the program execution, the root MPI-process is used to
accumulate partial dot products from the subdomains thus also keeping the syn-
chronization of the computational work in the subdomains and upon completion
it accumulates the whole sought for solution vector.

A scalable parallelization of the algorithms is provided by synchronization of
the calculations in subdomains and by a minimization of the time losses during
interprocessors communication. The solutions to auxiliary algebraic subsystems
in the subdomains are obtained simultaneously on the multicore CPUs with the
usage of multithread OpenMP calculations. The reduced system 17 is formed
and solved in all the processes.

As algorithms from KRYLOV library are designed to solve large sparse
SLAEs arising from an approximation of multidimensional boundary value prob-
lems on non-structured grids, the well-known compressed sparse row format
of the matrix storage is used to keep the non-zero matrix entries. The global
matrix A is formed in the root MPI-process (in the simplest implementation)
at the preliminary stage, and then the distributed storage of the block rows Ās =
{As,s′ , s′ ∈ Qs} from (5) is done for the s-th extended subdomain
(i.e., on the corresponding MPI-processes). If the original matrix is very big, it
can be stored in a row-blocked form already and then the block rows be distrib-
uted among computational nodes (subdomains) thus keeping the global matrix
on the root MPI-process is not a bottleneck for the problem under consideration.

An important condition for the high performance computing consists in the
matching the arithmetic calculations and data communications between the sub-
domains by using MPI unblocked send-receive means. Moreover, the volume of
the data transfer is very small as only the short vectors corresponding to the
number of grid ponits on mutual boundary between the subdomains should be
exchasnged.

Let us note that for the examined grid boundary value problems, a two-
dimensional balanced domain decomposition into subdomains is considered,
when for an approximately equal number of nodes NS ≈ N/P in every sub-
domain the macrogrid daimeter d (for a macrogrid composed of subdomains)
is equal, approximately, to

√
P . As the number of the iterations of the addi-

tive Schwarz method even with the usage of the preconditioned Krylov methods
is proportional to dγ , γ > 0, this yields a significant advantage over a one-
dimensional decomposition for which d ≈ P .

A solution to the isolated SLAEs in Ωs is produced by the direct or itera-
tive method requiring (N/P)γ1 , γ1 > 0 operations at every step of the two-level

On Parallel Computational Technologies of Augmented Domain 43

process. As it is necessary to exchange the data corresponding to peripheral
nodes of the adjacent subdomains only, the volume of such an information is
much less and proportional to (N/P)γ1/2 (for two-dimensional BVPs) thus allow-
ing one to carry out arithmetic and communication operations simultaneously.

A high performance of the code based on the presented approach is ensured
by an active usage of the standard functions and vector-matrix operations from
BLAS and Sparse BLAS included into Intel MKL [12].

4 Results of Numerical Experiments

We present the results of methodical experiments on solving five-point SLAEs
for 2D Dirichlet problem in the unit square computational domain on the square
grids with the number of nodes N = 1282 and 2562. Calculations were carried
out via P = 22, 42, 82 MPI-processes each of which corresponded to the sub-
domains forming the square macrogrid. Iterations over the subdomains were
realised with the help of BiCGStab algorithm [1] with the stopping criterion
||rn||2 ≤ ε||f ||2, ε = 10−8. Solving of the auxiliary subdomain subsystems was
carried out by the direct solver PARDISO from Intel MKL. The most time-
consuming part of LU matrix decomposition was done only once before the
iterations.

In the Table 1, each cell contains the numbers of iterations over the sub-
domains and the times of SLAEs solving (in seconds) on the grids 1282 and
2562. The upper figure in each cell corresponds to the zero convection coef-
ficients while the bottom figure – to the convection coefficients p = q = 4).
Domain decompositions were made for equal overlapping parameters in subdo-
mains: Δs = Δ = 0, 1, 2, 3, 4, 5. Interface boundary conditions of the Dirichlet
type between the adjacent subdomains were used in all experiments.

The results demonstrate that with Δ increasing up to 5, the number of the
iterations reduces 3 - 4 fold, but when the overlapping value is big, the time
of a subdomain solving begins to increase. So, for almost all the grids and
the numbers of MPI-processes (subdomains), the optimal Δ value is approxi-
mately 3 – 4 in terms of the total execution time. If the convection coefficients
p, q are nonzero ones, the number of the iterations increases by approximately
30–50 %. Let us notice that the figures for 4 and 16 subdomains were obtained
in the experiments when each MPI-process was ran on its own cluster node in
exclusive mode while the data for 64 subdomains were got in a series of exper-
iments on cluster nodes that were given to the tasks in non-exclusive mode
yielding some increase of the execution time. So the last line of the Table does
not present “pure” speedup of the algorithm.

In the Tables below, for the sake of bravity, the results for the Poisson equa-
tion are presented, i.e. when there are no convection coefficients in equation (1).
The experiments shown that with the moderate values of p, q (|p|+ |q| < 50) the
behavior of the iterative process varied slightly.

The numerous results for the different model and practical problems shown
that the behavior of iterations varied slightly in the considered algorithms when

44 Y.L Gurieva and V.P Il’in

Table 1. The numbers of iterations and the solution times (in seconds) on the grids
1282 and 2562 for different overlapping parameter Δ

P q N \ Δ 0 1 2 3 4 5

0 18 2.17 11 1.74 9 1.64 7 1.53 7 1.48 6 1.42

4 4 1282 31 2.85 17 2.10 13 1.87 12 1.81 11 1.74 10 1.74

4 0 2562 27 8.34 16 5.38 12 4.21 10 3.68 9 3.33 8 2.93

4 61 16.88 25 7.74 19 6.52 17 5.47 15 5.28 13 4.25

0 32 1.46 18 1.29 14 1.25 12 1.17 11 1.03 9 0.98

16 4 1282 41 1.60 25 1.40 19 1.31 16 1.18 14 1.17 14 1.10

16 0 2562 40 3.23 24 2.23 20 1.97 17 1.77 14 1.27 14 1.24

4 58 4.32 35 2.83 28 2.46 22 1.98 19 1.62 18 1.52

0 43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86

64 4 1282 57 2.02 34 1.91 26 1.78 21 1.98 20 1.69 18 1.35

64 0 2562 60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66

4 87 7.04 47 5.61 38 4.89 31 4.13 28 4.02 25 4.48

the initial error varied. The experiments given above were hold for the initial
guess u0 = 0 and the exact SLAE solution u = 1.

Table 2 shows the effect of applying of two deflation methods when the con-
jugate gradient algorithm without any additional preconditioning and without
additive Schwarz method is used for three square grids with different numbers
of nodes N and for different macrogrids with the number of the macronodes Nc.
The macronodes are taken in the vicinity of the subdomain corners, i.e. when
P = 22, 42, 82 the numbers of the macronodes, or the values of Nc, are 32, 52

and 92 respectively. The basis functions φk(x, y) were the bilinear finite func-
tions. Three right columns have the number of the iterations (the upper figures
in every cell) for the single orthogonalization of the form (23) while the iteration
number for the orthogonalization (25) on every iteration is the bottom figure.
If to compare these data with the algorithm when the deflation is not used at
all (the column with P = 0, i.e. no macrogrid is used) one can see the accel-
eration up to three times when P increases. However, it should be taken into
account that an implementation of the multiple orthogonalization makes each
iteration more expensive, so an additional investigation is required to optimize
the algirithms on practice.

The results from Table 3 present the same data but when using the additive
Schwarz method with the domain decomposition into P subdomains. The num-
bers of the coarse grid nodes are taken the same as that of the macronodes for
Table 2. The basis functions φk(x, y) as in the previous series of experiments from
Table 2 were the bilinear finite ones. Every cell of Table 3 contains the numbers
of the iterations carried out without deflation (the upper figures in each cell)
and the numbers of the iterations for the single orthogonalization of the initial
guess (the bottom figures in each cell). In every cell, the first column gives the

On Parallel Computational Technologies of Augmented Domain 45

Table 2. The deflation influence in the conjugate gradient method without additive
Schwarz

N \ P 0 22 42 82

176 167 166 103

642 118 87 56

338 309 255 181

1282 220 159 104

609 544 442 276

2562 376 294 190

Table 3. Aggregation influence in the additive Schwarz method (decomposition with
different overlapping parameter Δ)

N \ P 22 42 82

19 11 8 26 15 12 37 20 15

642 23 9 7 21 12 9 28 15 11

29 15 11 35 22 17 51 31 21

1282 24 14 10 26 16 12 36 21 15

38 21 17 53 31 23 71 43 32

2562 31 18 15 35 21 17 40 26 21

data for the zero value of the overlapping parameter Δ, the second column – for
Δ = 1, and the third column – for Δ = 2.

The presented results for the considered grids and macrogrids have approx-
imately the same character as in Table 2 when the increasing of the deflation
space yields to the decreasing of the iteration number together with the increas-
ing of the amount of computations at each step. In these experiments, the outer
iterations were carried out by the BiCGStab method.

Let us note that the experiments for Table 3 were hold for the initial guess
u0 = 0 and the exact SLAE solution u(xi, yj) = x2

i −y2
j . Naturally, the efficiency

of the considered “interpolation” deflation depends on the behaviour of the solu-
tion sought for. For example, if it is, e.g., u(xi, yj) = x − y, then the usage of
the bilinear basis functions ϕk(x, y) for Nc ≥ 4 yields to the convergence in one
iteration, and this fact was confirmed in the experiments.

5 Conclusion

We have studied experimentally the efficiency and the performance of several
advanced approaches for domain decomposition methods. The results presented
demonstrate a considerable increasing of the convergence rate of the iterative
process when the corresponding overlapping parameters and a coarse grid cor-
rection are used to accelerate the additive Schwarz algorithm. It should be

46 Y.L Gurieva and V.P Il’in

mentioned that the augmented versions of DDM have been implemented without
additional communication losses. Obviously, the further research should be held
to obtain some practical recommendations to optimize the performance when a
combination of various parametrized approaches are used simultaneously. The
efficient code optimization for multi-GPGPU and a multi-core implementation
is a challenge technology but it is an open question now. For example, it is inter-
esting to analyse two-level iterative FGMRES procedure with some dynamic
stopping criterion in subdomains and various basis functions in low rank matrix
approximations.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publications, New
York (2002)

2. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Springer, Heidelberg (2005)

3. Chapman, A., Saad, Y.: Deflated and augmented krylov subspace technique.
Numer. Linear Algebra Applic. 4(1), 43–66 (1997)

4. Il’in, V.P.: Parallel Methods and Technologies of Domain Decomposition (in
Russian). Vestnik YuUrGU. Series Computational mathematics and informatics.
46(305), 31–44 (2012)

5. Dubois, O., Gander, M.J., St-Cyr, A., Loisel, S., Szyld, D.: The optimized schwarz
method with a coarse grid correction. SIAM J. Sci. Comput. 34(1), 421–458 (2012)

6. Il’in, V.P.: Finite Difference and Finite Volume Methods for Elliptic Equations.
ICMMG Publisher, Novosibirsk (2001). (in Russian)

7. Il’in, V.P.: Finite Element Methods and Technologies. ICMMG Publisher, Novosi-
birsk (2007). (in Russian)

8. Official page of Domain Decomposition Methods. http://www.ddm.org
9. Butyugin, D.S., Gurieva, Y.L., Il’in, V.P., Perevozkin, D.V., Petukhov, A.V.: Func-

tionality and Algebraic Solvers Technologies in Krylov Library (in Russian). Vest-
nik YuUrGU. Series Computational mathematics and informatics. 2(3), 92–105
(2013)

10. Gander, M.J., Halpern, L., Santugini, K.: Domain decomposition methods in sci-
ence and engineering XXI. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G.,
Sassi, T., Widlund, O. (eds.) A New Coarse Grid Correction for RAS/AS. LNCSE.
Springer-Verlag, Switzerland (2013)

11. Siberian Supercomputer Centre. http://www2.sscc.ru
12. Intel Math Kernel Library (Intel MKL). http://software.intel.com/en-us/intel-mkl

http://www.ddm.org
http://www2.sscc.ru
http://software.intel.com/en-us/intel-mkl

	On Parallel Computational Technologies of Augmented Domain Decomposition Methods
	1 Introduction
	2 Statement of the Problem and Algorithms
	3 Parallel Technologies of DDM
	4 Results of Numerical Experiments
	5 Conclusion
	References

