
Use of Xeon Phi Coprocessor for Solving
Global Optimization Problems

Konstantin Barkalov(&), Victor Gergel, and Ilya Lebedev

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
{barkalov,lebedev}@vmk.unn.ru, gergel@unn.ru

Abstract. This work considers a parallel algorithm for solving multidimen-
sional multiextremal optimization problems. The issue of implementation of the
algorithm on state-of-the-art computing systems using Intel Xeon Phi copro-
cessor is considered. Speed up of the algorithm using Xeon Phi compared to
using only CPU is experimentally confirmed. Computational experiments are
carried out using a set of a several hundred of multidimensional multiextremal
problems.

Keywords: Global optimization � Dimension reduction � Parallel algorithms �
Speedup � Intel Xeon Phi

1 Introduction

Optimization problems are of great practical importance. Almost each problem of
design of new devices, products or systems includes a stage where optimal variants are
selected. Among the most complex optimization problems are problems of global
optimization, where the criterion of optimality is multiextremal. While validation of
local optimality of a solution requires only analysis of its local neighborhood, global
minimum is an integral characteristic of the optimization problem solved and it requires
analysis of the whole search domain. As a result, search of a global optimum is reduced
to construction of a grid in the parameter domain. It leads to exponential growth of
computational effort with more dimensions (the so-called “curse of dimensionality”).

A decrease in computational effort can be provided through construction of a
non-uniform grid in the search domain: it has to be quite dense in the neighborhood of
the global optimum and more sparse farther from the required solution. There is a
number of methods allowing to build non-uniform grids of such kind (see, for example,
[1–4]). Among those, we note the global search algorithm and its modifications
developed within the framework of the information-statistical approach [5–9]. It is
experimentally confirmed in [8], that this algorithm is more effective than other known
methods of the same purpose.

Use of parallel computing systems significantly expands capabilities for solving
global optimization problems. Parallel versions are proposed for almost all existing
algorithms (see, for example, [10, 11]). However, the provided versions of algorithms
are parallelized in a CPU using MPI and/or OpenMP technologies, whereas currently
the main tendency in the field of parallel computing is use of accelerators. Of special

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 307–318, 2015.
DOI: 10.1007/978-3-319-21909-7_31

interest in this regard is the Intel Xeon Phi coprocessor. It is based on x86 architecture
and standard technologies and libraries can be used in programming for Xeon Phi
(unlike specialized and, as a rule, more complex programming technologies for GPU).

The present work contains the results of an analysis of parallel global search
algorithm developed within the framework of the information-statistical approach [8],
and its implementation using Xeon Phi.

2 Global Search Algorithm with Parallel Trials

Let us consider the problem of global minimum search of an N-dimensional function
φ(y) in hyperinterval D

uðy�Þ ¼ minfuðyÞ : y 2 Dg; ð1Þ

D ¼ fy 2 RN : ai � yi � bi; 1� i�Ng:

Let us assume that objective function φ(y) satisfies Lipschitz condition

uðy1Þ � uðy2Þj j � L y1 � y2k k; y1; y2 2 D;

with constant L, which in the general case is unknown.
The considered approach reduces solving multidimensional problems to solving

equivalent one-dimensional problems (reduction of the dimension). Thus, use of
continuous single-valued mapping like the Peano curve

fy 2 RN : �2�1 � yi � 2�1; 1� i�Ng ¼ fyðxÞ : 0� x� 1g

allows reduction of the problem of minimization in domain D to a problem of mini-
mization on interval [0,1]

uðy�Þ ¼ uðyðx�ÞÞ ¼ min uðyðxÞÞ : x 2 ½0; 1�f g

Problems of numerical construction of Peano-type space filling curves and the
corresponding theory are considered in detail in [8, 13]. Here we will note that a
numerically constructed curve (evolvent) is an approximation to a theoretical Peano
curve with accuracy 2�m, where m is an evolvent construction parameter. An important
property is preservation of boundedness of function relative differences: if function
φ(y) in domain D satisfies Lipschitz condition, then function φ(y(x)) on interval [0,1]
will satisfy a uniform Hölder condition

uðyðx1ÞÞ � uðyðx2ÞÞj j �H x1 � x2j j1=N ; x1; x2 2 ½0; 1�;

where Hölder constant H is linked to Lipschitz constant L by the relation

308 K. Barkalov et al.

H ¼ 2L
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 3

p
:

Therefore, it is possible, without limitation of generality, to consider minimization
of one-dimensional function

f ðxÞ ¼ uðyðxÞÞ; x 2 ½0; 1�;

satisfying Hölder condition.
An algorithm for solving problem (1) (let us formulate it here according to [12])

involves constructing a sequence of points xi, where the values of the minimized
function zi=f(xi)=φ(y(xi) converging to the solution of the problem are calculated. Let us
call the function value calculation process (including construction of image of yi=y(xi))
the trial, and pair (xi, zi) – the result of the trial. At each iteration of the method p of
trials is carried out in parallel, and the set of pairs {(xi, zi)}, 1≤i≤k=np, make up the
search information collected by the method after carrying out of n steps. The rules that
define the work of a parallel global search algorithm (PGSA) are as follows.

At the first iteration of the method p of arbitrary points x1; . . .; xp in interval [0,1]
(for example, these points can be uniformly located), and in these points trials are
carried out in parallel. The results of trials fðxi; ziÞg, 1� i� p, are saved in the search
base of the algorithm.

Suppose, now, that n� 1 iterations of the method have already been executed. The
trial points of the next (n+1)-th iteration are then chosen by using the following rules.

Step 1. Renumber points of the set

Xk ¼ fx1; . . .; xkg[0f g[1f g

which includes boundary points of interval [0,1], and points fx1; . . .; xkg of the pre-
vious k ¼ kðnÞ ¼ np trials, with subscripts in increasing order of coordinate values, i.e.

0 ¼ x0\x1\. . .\xkþ1 ¼ 1:

Step 2. Supposing that zi ¼ f ðxiÞ; 1� i� k, calculate values

l ¼ max
1� i� k

jzi � zi�1j
Di

; M ¼ rl; l[0;
1; l ¼ 0;

�
ð2Þ

where r[1 is a preset reliability parameter of the method, and Di ¼ ðxi � xi�1Þ1=N .
Step 3. Calculate characteristic for every interval ðxi�1; xiÞ; 1� i� k þ 1, accord-

ing to the following formulas

Rð1Þ ¼ 2D1 � 4
z1
M

;

Rðk þ 1Þ ¼ 2Dkþ1 � 4
zk
M

;

Use of Xeon Phi Coprocessor 309

RðiÞ ¼ Di þ ðzi � zi�1Þ2
M2Di

� 2
zi þ zi�1

M
; 1\i\k þ 1:

Step 4. Arrange characteristics RðiÞ; 1� i� k þ 1, in decreasing order

Rðt1Þ�Rðt2Þ� . . .�RðtkÞ�Rðtkþ1Þ ð3Þ

and select p maximum characteristics with interval numbers tj; 1� j� p.
Step 5. Carry out new trials in points xkþj; 1� j� p, calculated using formulas

xkþj ¼ xtj þ xtj�1

2
; tj ¼ 1; tj ¼ k þ 1;

xkþj ¼ xtj þ xtj�1

2
� signðztj � ztj�1Þ 1

2r
jztj � ztj�1j

l

� �N
; 1\tj\k þ 1:

The algorithm terminates if the condition Dtj � e is satisfied at least for one number
tj; 1� j� p; e[0 is the preset accuracy.

This method of organizing parallel computing has the following justification [8].
The characteristic R(i) used in the global search algorithm can be considered as
probability measure of the global minimum point location in the interval ðxi�1; xiÞ.
Inequalities (3) arrange intervals according to their characteristics, and trials are carried
out in parallel in p intervals with the largest probabilities.

3 Convergence and Speedup of the Parallel Algorithm

The following theorem form [8] identifies convergence conditions for the algorithm.

Theorem 1. Let �x be the limit point of the sequence fxkg generated by PGSA during
minimization of the Hölder with constant H, 0\H\1, function f ðxÞ, x 2 ½0; 1�, and
number p of parallel trials is fixed, 1� p\1, and e ¼ 0 in the stop condition of the
algorithm. Then

• convergence to the internal point �x 2 ð0; 1Þ is bilateral;
• the point �x is locally optimal if the function f ðxÞ has a finite number of local

extremums;
• if, together with �x, another limit point x̂ exists then f ð�xÞ ¼ f ðx̂Þ;
• for all k� 1 it follows than f ðxkÞ� f ð�xÞ;
• if, at some step, for M from (2) the condition M[22�1=NH holds, then the set of

limit points of the sequence fxkg will coincide with the set of global minimizers of
the function f(x).

More general variants of parallel global search algorithm and corresponding con-
vergence theory are presented in [8].

310 K. Barkalov et al.

Let us describe theoretical properties of a parallel algorithm, which characterize its
speedup. One of the main indicators of efficiency of parallel algorithms (in any domain,
not only in global optimization) is speedup in time

SðpÞ ¼ Tð1Þ=TðpÞ

where T(1) is the time required for solving the problem by a sequential algorithm, and
T(p) is the time for solving the same problem by a parallel algorithm in a system with
p computing elements. The characteristic of efficiency of parallel algorithms (in relation
to algorithms of optimization) is also speedup in number of iterations

sðpÞ ¼ nð1Þp=nðpÞ;

where n(1) is the number of the trials carried out using the sequential method, and
n(p) is the number of the trials carried out using the parallel method with p processors.
This characteristic is especially important since in applied problems the time of car-
rying out of a trial exceeds the time of processing of its results.

It is obvious that number of trials n(p) for sequential and parallel algorithms will
differ. Actually, the sequential algorithm when selecting point xk+1 of the next (k+1)
trial possesses complete information received at the previous k iterations. The parallel
algorithm selects not one, but p points xk+j, 1≤j≤p, at iteration (k+1) based on the same
information. It means that selection of point xk+j is carried out in absence of information
on the results of the trial in points xk+i, 1≤i<j. Only the first point xk+1 will coincide with
the point selected by the sequential algorithm. Points of the other trials, generally
speaking, can not coincide with the points generated by the sequential algorithm.
Carrying out of such trials can reduce efficiency of use of parallel processors. There-
fore, let us consider such trials as “redundant”, and the value

kðpÞ ¼ ðnðpÞ � nð1ÞÞ=nðpÞ; nðpÞ[nð1Þ
0; nðpÞ� nð1Þ

(

as “method redundancy”.
Let us set the series of trials fxkg and fymg generated correspondingly by sequential

and parallel algorithms for solving the same problem with e ¼ 0 in the condition of
stopping. The following theorems from [8] determine the number of computing ele-
ments p, which can be involved for non-redundant parallelization.

Theorem 2. Suppose x� is the point of global minimum, x′ is the point of the local
minimum of function f(x), and the following conditions are fulfilled:

1. Inequality

f ðx0Þ � f ðx�Þ� d; d[0; ð4Þ

holds.

Use of Xeon Phi Coprocessor 311

2. The initial qðlÞ trials of the sequential and parallel methods coincide, i.e.

fx1; . . .; xqðlÞg ¼ fy1; . . .; yqðlÞg;

Where

x1; . . .; xqðlÞ
n o

� xk
� �

; y1; . . .; yqðlÞ
n o

� ymf g:

3. There exists a point yn 2 fymg, n\qðlÞ, such that x0 � yn � x� or x� � yn � x0.
4. For value M from (2) the following inequality

M[22�1=NH

holds, where H is Hölder constant of the minimized function.
Then a parallel algorithm of global search using two processors will be

non-redundant (i.e. sð2Þ ¼ 2; kð2Þ ¼ 0), while the following condition is satisfied

ðxtj � xtj�1Þ1=N [
4d

M � 22�1=NH
; j ¼ 1; 2; ð5Þ

where tj are determined according to (3).

Corollary. Let the objective function f ðxÞ have Q local minimum points x
0
1; . . .; x

0
Q

n o
,

for which condition (4) is fulfilled, and let there exist trial points yni , 1� i�Q, such as

yni 2 fy1; . . .; yqðlÞg;

ai � yni � aiþ1; ai; aiþ1 2 fx�; x01; . . .; x0Qg; 1� i�Q:

Then, if the theorem conditions are satisfied, the parallel algorithm of global search
with Qþ 1 processors will be non-redundant (i.e. sðQþ 1Þ ¼ Qþ 1, kðQþ 1Þ ¼ 0),
while condition (5) is satisfied.

The theorem conclusion plays a special role for solving multidimensional problems
reduced to one-dimensional problems by means of Peano-like evolvent y(x). Evolvent
y(x), which is approximation to Peano curve, has the effect of “splitting” of a point of
the global minimum y� 2 D to several preimages in interval [0,1]. If function φ(y) has
the only global minimum in D, the “reduced” function f(x) can have up to 2N local
extremum points close (by value) to a global extremum point (see [8]). In the case of
applying a parallel global search algorithm for minimization of a similar function it is
possible receive non-redundancy when using up to 2N+1 computing elements.

312 K. Barkalov et al.

4 Implementation on Xeon Phi

At the end of 2012 Intel presented Xeon Phi processor with MIC (Many Integral Core)
architecture. The basis of MIC is using a large number of x86 computing cores in one
processor. As a result, standard technologies, including OpenMP and MPI, can be used
for parallel programming. Moreover, a vast number of tools and libraries has been
developed for x86 architecture. It is a significant advantage as compared to other
accelerators, for which special (usually more complex) technologies of parallel pro-
gramming (CUDA, OpenCL) are used.

Intel Xeon Phi supports a few modes of coprocessor use, which can be combined to
achieve maximum performance depending on characteristics of the solved problem.
The process can be started both in the basic operating system or in coprocessor OS.
Depending on the mode of use the computing capacity of either basic system pro-
cessors or coprocessor or basic system processors and coprocessor combined can be
used.

In the MPI mode the basic system and each Intel Xeon Phi coprocessor are con-
sidered as separate nodes, and MPI processes can be carried out on basic system
processors and Xeon Phi coprocessors in any combination.

During operation in the offload mode MPI processes are carried out only on basic
system processors, uploading and execution of functions on the coprocessor is used for
implementation of Xeon Phi computing capabilities.

Taking into account that peak performance of one Xeon Phi core is comparable to
peak CPU core performance (difference can make 5 – 10% depending on exact pro-
cessor type), it is preferable to use an accelerator to carry out complex operations not
requiring transfer of large amounts of data between the CPU and Phi. With regard to
the considered parallel global optimization algorithm such a complex operation is
parallel calculation of many objective function values. Transfers of data from the CPU
to Phi will be minimal: it is only required to transfer to Phi the trial points coordinates,
and to receive function values in these points. The functions that determine the trial
results processing according to the algorithm and requiring operation with a large
volume of collected search information can be efficiently implemented on the CPU.
The described organization scheme corresponds well to the accelerator offload mode.

The general scheme of organization of calculations using Xeon Phi is shown in
Fig. 1. According to this scheme steps 1–4 of the parallel global search algorithm are
performed on the CPU. Coordinates of the p trial points calculated at step 4 of the
algorithm are transferred to the accelerator. Calculation of function values in these
points is carried out on Xeon Phi, and then the trial results are transferred to the CPU.
We use Xeon Phi offload mode for synchronous computing p function values at each
iteration. Current implementation of the parallel algorithm supports only one
coprocessor.

We note here that parallel calculation of function values in several tens or hundreds
of points (up to 240 threads can be launched on Xeon Phi) not always gives speedup of
the search process by a factor of tens or hundreds. In this case, the conditions of the
theorem of non-redundant parallelization can be violated: the number of local extre-
mums will be less, than the number of computing cores. Then (according to the

Use of Xeon Phi Coprocessor 313

theorem and its corollary) the parallel global search algorithm will generate redundant
trial points. Nevertheless, despite some redundancy, use of Xeon Phi will reduce
overall algorithm operating time. It is confirmed by computational experiments, results
of which are given in Sect. 5.

5 Results of Numerical Experiments

Computing experiments were carried out on one of the nodes of a high-performance
cluster of the Nizhny Novgorod State University. The cluster node includes Intel Sandy
Bridge E5-2660 2.2 GHz CPUs, 64 Gb RAM, and Intel Xeon Phi 5110P. For
implementation of the parallel algorithm Intel C++ Compiler 14.0.2 under CentOS 6.4
was used.

It is significant, that widely known test problems from the field of multidimensional
global optimization are characterized by small time of objective function values cal-
culation. Usually, such a calculation is reduced to summation of several (according to
problem dimension) values of elementary functions. Therefore, for the purpose of
imitation of the computational complexity inherent to applied problems of optimization
[14], calculation of the objective function in all performed experiments was compli-
cated by additional calculations without changing the type of function and arrangement
of its minimums (series summation from 20 thousand elements).

In work [15] a GKLS generator allowing generation of multiextremal optimization
problems with known properties (number of local minimums, size of their domains of
attraction, global minimum point, etc.) is described.

The results of numerical comparison of three sequential algorithms – DIRECT [1],
DIRECTl [2] and global search algorithm (PGSA from Sect. 2 with p=1) – are pro-
vided below (results of work of the first two algorithms are given in [3]). Numerical
comparison was carried out on function classes Simple and Hard of dimension 4 and 5
from [3] since solving problems of dimension 2 and 3 requires a small number of

CPU
Algorithm

X
eo

n
Ph

i…
…

………

…

Iteration points

Function values

Fig. 1. Scheme of information exchanges

314 K. Barkalov et al.

iterations and use of accelerator for solving these problems is impractical. Global
minimum y� was considered as found, if the algorithm generated trial point yk in δ-
vicinity of the global minimum, i.e. yk � y�

�� ��� d. The size of the vicinity was selected

(according to [3]) as d ¼ b� ak k
ffiffiffiffi
DN

p
, N – problem dimension, a and b – borders of

search domain D, parameter D ¼ 10�6 at N ¼ 4 and D ¼ 10�7 at N ¼ 5. When using
the PGSA method for class Simple r ¼ 4:5 parameter was selected, for class Hard
r ¼ 5:6 was selected; evolvent construction parameter was fixed as m ¼ 10. The
maximum allowable number of iterations was Kmax ¼ 106.

The average number of iterations kav performed by the method for solving a series
of problems from these classes is shown in Table 1. Symbol “>” reflects a situation,
when not all problems of a class were solved by a method. It means that the algorithm
was stopped as the maximum allowable number of iterations Kmax was achieved. In this
case, Kmax value was used for calculation of the average value of number of iterations
kav that corresponds to the lower estimate of this average value. The number of
unsolved problems is specified in brackets.

Table 1 shows that PGSA outperforms DIRECT and DIRECTl methods on all
classes of problems by average number of iterations. And in class 5-Hard each of the
methods solved not all problems: DIRECT did not solve 16 problems, DIRECTl and
PGSA – 4 problems.

Let us estimate now the speedup when using PGSA implemented on CPU
depending on number of used cores p. Tables 2 and 3 show time speedup S(p) and

Table 1. Average number of iterations

N Problem class DIRECT DIRECTl PGSA

4 Simple >47282(4) 18983 11953
Hard >95708(7) 68754 25263

5 Simple >16057 (1) 16758 15920
Hard >217215 (16) >269064 (4) >148342 (4)

Table 2. Time speedup S(p) on CPU

p N = 4 N = 5
Simple Hard Simple Hard

2 2.45 2.20 1.15 1.32
4 4.66 3.90 2.82 2.59
8 7.13 7.35 3.47 5.34

Table 3. Iteration speedup s(p) on CPU

p N = 4 N = 5
Simple Hard Simple Hard

2 2.51 2.26 1.19 1.36
4 5.04 4.23 3.06 2.86
8 8.58 8.79 4.22 6.56

Use of Xeon Phi Coprocessor 315

iteration speedup s(p) respectively; speedup of parallel algorithm was measured in
relation to the sequential one (p=1). Table 4 shows the average redundancy λ(p) of the
method during solving a problem series.

The results of the experiments show considerable acceleration and low redundancy
of PGSA when using CPU.

Now let us perform a series of experiments using Xeon Phi. We will measure
acceleration and redundancy of an algorithm that uses Phi as compared to a CPU
algorithm that fully uses an eight-core CPU. In the experiments we will vary the
number of threads p on Xeon Phi. All other parameters of the method will not vary.

The results of the experiments (Table 5) show that in most cases an algorithm using
Phi is not less fast than a CPU algorithm: acceleration approximately 1.05 is observed.
Slowing down with class 4-Simple is explained by relative simplicity of the problems

Table 4. Redundancy λ(p) on CPU

p N = 4 N = 5
Simple Hard Simple Hard

2 0.00 0.00 0.23 0.29
4 0.00 0.00 0.47 0.18
8 0.00 0.00 0.00 0.27

Table 5. Time speedup S(p) on Phi

p N = 4 N = 5
Simple Hard Simple Hard

60 0.54 1.02 1.07 1.61
120 0.55 1.17 1.05 2.61
240 0.51 1.06 1.07 4.17

Table 6. Iteration speedup s(p) on Phi

p N = 4 N = 5
Simple Hard Simple Hard

60 8.13 7.32 9.87 6.55
120 16.33 15.82 15.15 17.31
240 33.07 27.79 38.80 59.31

Table 7. Redundancy λ(p) on Phi

p N = 4 N = 5
Simple Hard Simple Hard

60 0.00 0.02 0.00 0.13
120 0.00 0.00 0.00 0.00
240 0.00 0.07 0.00 0.00

316 K. Barkalov et al.

solved: the computational load on the coprocessor is not sufficient, the additional costs
of transmission of the problem parameters from CPU to Phi produce a significant effect.
With class 5-Hard, which is characterized by a high computational effort, a quadruple
acceleration is observed; additional costs produce no decisive impact here.

An important additional feature is also acceleration on number of iterations, which
goes up to a several dozens, if Phi is fully used (see Table 6). For example, solving a
problem from class 5-Hard required on average only 633 parallel iterations on Phi,
whereas when using all computing cores of the CPU the number of iterations was more
than 37 thousand. At the same time, an algorithm using Phi is almost non-redundant in
comparison to a CPU algorithm (see Table 7).

6 Conclusions

The work considers a parallel algorithm of global search developed within the
framework of the information statistical approach to multiextremal optimization. This
algorithm can be used for solving time-consuming optimization problems on
state-of-the-art multiprocessor systems as it allows efficient implementation through
use of Intel Xeon Phi coprocessor. The results of computational experiments confirm a
high efficiency and low redundancy of the parallel algorithm. This very well correlates
with the theoretical statements provided above.

Acknowledgements. The research is supported by the grant of the Ministry of education and
science of the Russian Federation (the agreement of August 27, 2013, № 02.B.49.21.0003).

References

1. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

2. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. of Glob.
Optim. 21(1), 27–37 (2001)

3. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set
of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

4. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math.
Model. Anal. 13(1), 145–159 (2008)

5. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum
functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)

6. Gergel, V.P.: A global optimization algorithm for multivariate functions with lipschitzian
first derivatives. J. Glob. Optim. 10(3), 257–281 (1997)

7. Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing
functions with lipschitzian derivatives. Comput. Math Appl. 37(4–5), 163–179 (1999)

8. Strongin, R.G., Sergeyev, Y.D.: Global optimization with non-convex constraints.
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

9. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of
checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)

Use of Xeon Phi Coprocessor 317

10. Evtushenko, Y., Malkova, V.U., Stanevichyus, A.A.: Parallel global optimization of
functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)

11. Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel branch and bound for global optimization
with combination of Lipschitz bounds. Optim. Meth. Softw. 26(3), 487–498 (2011)

12. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algorithms for
solving problems of global optimization. J. Glob. Optim. 10(2), 185–206 (1997)

13. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting
space-filling curves. Springer, Heidelberg (2013)

14. Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression
parameters optimization using parallel global search algorithm. In: Malyshkin, V. (ed.)
PaCT 2013. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013)

15. Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, Y.D.: Software for generation of classes of
test functions with known local and global minima for global optimization. ACM Trans.
Math. Softw. 29, 469–480 (2003)

318 K. Barkalov et al.

	Use of Xeon Phi Coprocessor for Solving Global Optimization Problems
	Abstract
	1 Introduction
	2 Global Search Algorithm with Parallel Trials
	3 Convergence and Speedup of the Parallel Algorithm
	4 Implementation on Xeon Phi
	5 Results of Numerical Experiments
	6 Conclusions
	Acknowledgements
	References

