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Abstract. In this paper we present an analysis of parallelization prop-
erties and implementation details of the new Algebraic multigrid solvers.
Variants of smoothers and multicolor grid partitionings are discussed.
Optimizations for modern throughput-oriented processors are consid-
ered together with different storage schemes. Finally, comparative per-
formance results for multicore and manycore processors are presented.

1 Introduction

This paper is devoted to the development of efficient parallel algebraic methods for
solving large sparse linear systems arising in discretizations of partial differential
equations. Historically, Conjugate Gradient methods have been widely used for
solving such linear systems [1]. In order to accelerate the solution, implicit pre-
conditioners of the Incomplete LU-decomposition type (ILU) are applied [2,3].
However, implicit preconditioners have limited parallelization potential and there-
fore can’t be efficiently employed on massively parallel computers.

On the other hand, there exists a separate class of implicit methods, multi-
grid, which possess very good convergence and parallelization properties. Multi-
grid solves differential equations using a hierarchy of discretizations. At each
level, it uses a simple smoothing procedure to reduce corresponding error com-
ponents.

In a single multigrid cycle, both short-range and long-range components are
smoothed. It means that information is propagated instantly throughout the
domain within a such cycle. As a result, this method becomes very efficient for
elliptic problems that propagate physical information infinitely fast.

At the same time, multigrid can be efficiently and massively parallelized
because processing at each grid level is performed in the explicit manner, and
data exchanges are needed only between adjacent subdomains at the end of a
cycle.

In this paper we will consider the Algebraic multigrid (AMG) approach [4]
which is based on matrix coefficients rather than on geometric parameters of a
domain. Parallelization properties and implementation details of this algorithm
will be analyzed, and performance results for modern throughput processors will
be presented.
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2 Iterative Methods and Their Parallelization Properties

The multigrid approach will be presented here in the context of the hierarchy
of iterative methods. Iterative methods are used for solving large linear systems
arising in discretizations of partial differential equations in many areas (fluid
dynamics, semiconductor devices, quantum problems). They can be applied to
ill-conditioned linear systems, both symmetric and non-symmetric.

The most popular class of iterative methods is the Conjugate Gradient (CG).
In order to accelerate the convergence, this method requires preconditioning.
There are two main classes of preconditioners: explicit, that act locally by means
of a stencil of limited size and propagate information through the domain with
low speed, and implicit, that operate globally and propagate information almost
instantly. Due to this implicit preconditioners work much faster and have better
than linear dependence of convergence on the geometric size of the problem.

The same applies to stand-alone iterative methods that possess similar prop-
erties and may be classified as being explicit or implicit (we consider here the
nature of internal iterations rather than the outer properties of a method).

Parallel properties of iterative solvers strongly depend on how information is
propagated in the algorithm. For this reason methods with the implicit nature
of iterations can’t be easily parallelized, and many efforts are needed for finding
geometric or algebraic approached of parallelization [3].

However, some methods with explicit iterations are also essentially sequen-
tial, and their parallelization may become difficult. In particular, the Gauss-
Seidel and Successive Over-Relaxation (SOR) methods in their original form
need the sequential processing of grid points in a domain. In order to overcome
this problem, multicolored approaches are used when all grid nodes in a domain
are partitioned in such a way that each node has no connection with another
nodes of the same color. Owing to this, computations for all grid points with the
same color can be performed in any order thus allowing arbitrary splitting of the
domain. For the 7-point stencil in 3D, it is enough to use 2 colors (Red-black
partitioning), while the more general 27-point stencil requires 8 colors.

Fig. 1. Red-black (left) and multicolor (center) grid partitionings; splitting of a com-
putational domain with the red-black partitioning for the parallelization (right) (Color
figure online)
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Figure 1 illustrates grid partitionings for 2 and 4 colors and splitting of a
computational domain into subdomains for processing them in parallel.

Properties of different iterative methods are presented in Table 1. Solutions of
the Poisson equation on two different uniform grids were used for this test, with
the convergence stopping criteria 10−10. The approximate cost of an iteration
is presented for each method (relative to the Jacobi method). For the Gauss-
Seidel and SOR, Red-black variants are given. Fortunately they have the same
convergence properties as their sequential counterparts. For the Conjugate Gra-
dient, several preconditioners were tested: plain diagonal one (CG), polynomial
Jacobi explicit preconditioner (CG Jacobi) and Incomplete LU in two variants
(CG ILU and MILU) [2,3]. For the multigrid, two implementations were used:
a plain AMG solver and an AMG-preconditioned Conjugate Gradient.

Table 1. Convergence of different iterative algorithms for square matrices of size N

Iterative method N = 65 N = 129 f(N) Cost of iteration

Jacobi 23650 90850 O(N2) 1

Gauss-Seidel 12210 46940 O(N2) 1

SOR 299 600 O(N) 1

CG 258 514 O(N) 1.5

CG Jacobi 130 257 O(N) 2.25

CG ILU 109 212 O(N) 3

CG MILU 48 68 O(N1/2) 3

AMG 8 8 O(1) 5

CG AMG 7 7 O(1) 6

The above results confirm that the convergence of the multigrid doesn’t
depend on the problem size. The next efficient method is the CG MILU with
the required number of iterations of the order of O(N1/2). This method is still
applicable and efficient for many problems that are not convenient for the multi-
grid (anisotropic grids, systems of equations etc.). However, the ILU methods
have very limited parallelization potential [2,3] and, for this reason, simple
explicit methods and preconditioners of the O(N) class remain attractive in
some cases.

Let’s consider now the Red-black Gauss-Seidel and SOR methods. These
methods become fully explicit and can be represented as two half-sweeps (Fig. 2).
Here parts 1 and 2 of a matrix represent grid nodes of the first and the second
color respectively. The principal operation in each half-sweep is the multiplica-
tion of a sparse matrix by a corresponding vector. Such kind of operations can be
massively and efficiently parallelized. Therefore they can be used as smoothers
in highly parallel implementations of the multigrid.

Efficient implementation of the matrix-vector multiplication for multicolor
grid partitionings requires reordering and reorganization of the original matrix.
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Fig. 2. Iteration of the Red-black Gauss-Seidel method for a symmetric matrix (Color
figure online)

3 Throughput-Oriented Processors and Storage Schemes

All modern high-performance microprocessors belong to the class of throughput-
oriented processors. This means that their performance is achieved in cooperative
work of many processor cores and depends not only on the computational speed
of cores but also on the throughput of the memory subsystem. The latter is
determined by characteristics of the cache memory hierarchy, number and width
of integrated memory controllers, memory access speed and capacity of inter-
core or interprocessor communications. Additionally some memory optimization
features are presented in the processor such as streamlined prefetch of regularly
accessed data, fast access to unaligned data and facilities for efficient indirect
accesses (gather, scatter) which are needed for processing sparse matrices.

Another main feature of throughput-oriented processors is vectorization: sev-
eral elements of data can be packed in a vector and processed simultaneously by
a single machine instruction. This feature is supported by the smart vectorizing
compilers which can be controlled by auxiliary directives in a source code.

Finally, shared memory organization with coherent caches is needed for par-
allelization, together with the appropriate software support (OpenMP compilers
and other parallel environments).

There are two principal classes of throughput-oriented processors – multicore
and manycore. Multicore means just a presence of several traditional processor
cores in a single semiconductor chip, with the typical number of cores up to 8–12,
clock frequency around 3 GHz and standard integrated memory interfaces (up to
4 64-bit channels of DDR3 or DDR4). Typical vector width is 128 or 256 bits.

Manycore (MIC) is a new class of processors with large number of simple and
relatively slow cores. Each core is equipped with a very powerful floating point
unit (FPU) that processes 512-bit vectors organized as 8 × 64-bit or 16 × 32-bit
words. The only current implementation of MIC is Intel Xeon Phi, that have the
following characteristics (for the model 5110P): 60 cores, up to 4 threads per core
(240 threads total), frequency 1.05 GHz, 8 channels of GDDR5 memory. Thus
manycore processors are also throughput-oriented, they possess all necessary
properties: parallelization, vectorization and memory optimization.
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However, manycore processors differ from their multicore counterparts in the
balance between components of performance: they need much more threads to
saturate a processor (240 vs. 8–12), rely on slower scalar performance of a single
thread (speed ratio about 1:10), benefit from regular vectorized floating point
operations (512-bit vectors vs. 256-bit) and from very powerful memory subsys-
tem (150–20 GB/s vs. 40–50 GB/s). As a results they are able to demonstrate
the level of performance about 1.5 times higher than bi-processor systems built
on multicore processors when running realistic memory-bound applications.

Manycore is often considered just as a superfast arithmetic engine (like GPU).
However, it is conceptually a universal parallel processor and, compared to GPU,
its performance potential is much wider, as well as the range of applications.

Both multicore and manycore processors need special optimizations of appli-
cation programs in order to achieve high performance, such as contiguous data
placement, avoiding very sparse structures etc. It is a good programming practice
if the same source code is developed for both types of processors.

The most important points of these optimizations is a storage format for
sparse matrices. Usually, the Compressed Row Storage (CRS) is used, when
non-zero elements of a matrix are stored contiguously row-by-row, being accom-
panied with their column indexes. In this case, addressing elements of a vector
by which this matrix is being multiplied is performed indirectly. However, a set
of vector elements being processed for a given row can be located very sparsely:
for example, in the discretization of a regular 3D domain of the size n3, the
distance between elements will be O(n2). Such non-regular and non-contiguous
data accesses are very non-optimal for modern processors, especially if they are
performed using vectorized forms of data load operations (gather).

A good alternative is the Compressed Diagonal Storage (CDS). This format
is applicable for more-or-less regular discretizations with a stencil of the limited
size – in particular, for Cartesian discretizations in arbitrary domains (e.g. in
the Level set method). In this format, a matrix is considered as consisting of
the limited number of diagonals (more exactly, quasi-diagonals), and matrix
elements are stored contiguously within each diagonal, being accompanied with
their column indexes. Each diagonal must contain an element for each row even
if it is zero. On the other hand, corresponding vector elements being addressed
by the indexes are located almost densely. As a result, vectorized forms of data
load operations can be employed very efficiently.

Both storage schemes were evaluated using the Jacobi-preconditioned Con-
jugate Gradient solvers for two matrix sizes. For the smaller matrix (0.32 M grid
points), the performance gain of the CDS scheme was about 1.25 and 1.4 on
multicore processors (for the FPU vector size 128 bits and 256 bits, respectively)
and about 1.8 on a manycore (vector size 512 bits). For the large matrix (4.8 M
grid points), the full memory throughput rate of 80 GB/s was achieved on the
tested bi-processor multicore system (Sandy Bridge). On the manycore processor
(model 3120P), the achieved level was 120 GB/s that is also close to the limit.
Thus, these tests demonstrated the importance of adequate data structures and
access patterns for modern high-performance processors.
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4 Description of the Algebraic Multigrid

Algebraic multigrid (AMG) is based on matrix coefficients rather than on the
geometry of a computational domain. Owing to the strict mathematical founda-
tion, this method works fine and demonstrates excellent convergence on solving
ill-conditioned elliptic linear systems. For regular grids, however, the Algebraic
multigrid has the natural geometric interpretation.

Here we consider implementations of the AMG for Cartesian discretizations
in arbitrary domains. These discretizations produce unified 7-point stencils and,
as a result, it becomes possible to use more simple and regular data structures.

An iteration of the multigrid is usually represented as a V-cycle (Fig. 3).
Within this cycle, a smoothing procedure is performed on a hierarchy of dis-
cretizetions thus reducing high-frequency and low-frequency components of the
residual vector.

1 Pre-smooth x1 = S1 (x0, b)
2 Residual b1 = b − Ax1

3 Restriction b̃1 = Rb1
4 Next level Ãx̃2 ≈ b̃1
5 Prolongation x2 = P x̃2

6 Correction x3 = x1 + x2
7 Post-smooth x0 = S2 (x3, b)
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Fig. 3. Multigrid algorithm (left) and illustration of V-cycle (right)

Smoothing is the most important part of the algorithm. It is first performed
in the beginning of each level reducing corresponding error components. Then
the residual vector is restricted (averaged) into the more coarse grid, and the
algorithm is recursively executed at the next level. After that, the new coarse
residual vector is prolongated (interpolated) into the current fine grid, the result
is corrected, and the smoothing procedure is performed again. At the last level,
the coarsest grid equation is solved either exactly or by a simple iterative pro-
cedure (not necessarily accurate).

At the initialization phase of the algorithm, a hierarchical sequence of grids
should be built, together with intergrid transfer operators R and P . Also, matri-
ces for all grid levels should be constructed.

A procedure of building the next (coarse) grid from the current (fine) grid
is called coarsening. At the particular level, a subset of variables (grid nodes) is
selected for the next level. They are called Coarse nodes (C-nodes), while the
remaining ones are Fine nodes (F-nodes). Different coarsening algorithms exist,
more or less aggressive. Here, the natural geometric coarsening is applied, when
the number of grid points is reduced by 8 at each level in 3D (Fig. 4).
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Fig. 4. Fine grid and two levels of coarsening (left to right)

F-nodes can be connected to C-nodes either directly (strong connection) or
indirectly (weak connection). These connections are used for building intergrid
transfer operators, firstly the prolongation (interpolation) operator P (Fig. 3).

In the AMG, operator-dependent interpolations are used, which are based on
matrix coefficients. For strongly connected F-nodes, interpolations are performed
in accordance with coefficient weights in the connections to adjacent C-nodes
(direct interpolation). For weakly connected nodes, intermediate weights in the
connections to adjacent strong-F-nodes are used (standard interpolation). For
more weakly connected F-nodes, an additional interpolation step is needed [4].

The restriction (averaging) operator is constructed as a transpose of the
prolongation operator: R = PT.

The next step is to build a matrix for the coarser level from the current one
by means of the Galerkin operator (Fig. 5). It is related to the restriction (R)
and prolongation (P ) operators. The Galerkin operator retains the symmetry
and some other properties of a matrix.

x̃ = Rx = PTx

Ã = RAP = PTAP

x = P x̃ x xR A P ~
A

Fig. 5. Building a coarser level matrix by the Galerkin operator

For the above interpolations (in 3D), all constructed matrices have 27 quasi-
diagonals, that corresponds to a 27-point discretization stencil at each level
except the first one (which has a 7-point stencil for orthogonal grids). Despite
this, the first level is the most computationally expensive because of the larger
number of grid points. The second level with 8 times less nodes is still expen-
sive because of 4 times larger stencil. Therefore, algorithms for the first two
levels should be well optimized while the remaining levels are less important for
performance.
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Within an AMG iteration, pre- and post-smoothers are the most impor-
tant parts of the algorithm both for efficiency and convergence. In the current
implementation, Red-black Gauss-Seidel or SOR smoothers are used at the first
level and 8-color Gauss-Seidel at others. Several iterations of the smoothing
algorithm can be applied. In particular, the typical number of iterations is 11

2
(3 half-sweeps) or 2 for the first two levels, and up to 3 or 4 for others.

At the first level, the Compressed Diagonal storage scheme is used for the
main matrix. The matrix is stored in two parts to separate red and black nodes.
This is necessary because at each step of the algorithm, only elements of a
particular color are processed, and storing them in the natural order (when red
and black elements alternate with each other) would lead to the twofold increase
of data being read from the memory.

For the next levels, matrix coefficients are stored densely with 27 elements
in a row, being accompanied with their column indexes in another dense array.

For storing the restriction operator R, a similar scheme is used at all levels
because this operator also corresponds to a 27-point stencil. On the other hand,
stencils of the prolongation operator P are not uniform and may have different
number of points, depending on the class of a grid node (C, strong-F, weak-F,
weak-weak-F). For this reason, several sparse structures are organized to assist
the interpolation.

Additionally, some auxiliary data array are build for storing different char-
acteristics of grid nodes (color, interpolation class, intergrid references etc.).

The above optimizations of sparse data structures allowed to eliminate dif-
ficulties in parallelization and vectorization of the algorithm and increase its
computational speed.

For the last grid level, a simple iterative solver of the Conjugate Gradient class
can be applied. This solver doesn’t need to be accurate, it is usually enough to
reduce the residual norm by only two orders of magnitude. The solver works fine
on multicore computer systems with a moderate number of threads. However,
on manycore processors there is too few computational work in each thread (for
the typical last-level matrix size about 500). At the same time, several barrier
synchronizations for all threads are needed at each iteration of the CG algorithm
that leads to large delays and increases the computational time.

In order to avoid this problem, a variant of the solver based on the matrix
inversion was developed. In this approach, the original last-level sparse matrix
is explicitly inverted by the Gauss-Jordan algorithm at the initialization phase.
The resulting full (dense) matrix is used at the execution phase in the very
simple algorithm of matrix-by-vector multiplication. This algorithm is perfectly
parallelized and doesn’t need synchronizations. The only requirement is that
the original last-level matrix should not be large, i.e. the sufficient number of
multigrid levels should be defined. This algorithm works well on both manycore
and multicore processors. Another point is that it is direct and therefore more
robust in comparison with iterative CG solvers.

The described multigrid solver for non-symmetric linear systems was imple-
mented in Fortran with OpenMP parallelization. The same source code works
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both on multicore and manycore processors, demonstrating good parallelization
efficiency. The solver has many parameters for fine tuning the AMG algorithm.

5 Multigrid as a Preconditioner

Another approach is to use the multigrid idea for preconditioning in a solver of the
Conjugate Gradient class. In this approach, the meaning of a multigrid iteration
(V-cycle) is different. While in the plain multigrid V-cycles are repeated until con-
vergence, gradually reducing the residual norm, in the multigrid-preconditioned
CG a V-cycle is applied once in each CG iteration in order to reduce the condition
number of a matrix.

Surprisingly, the multigrid-preconditioned Conjugate Gradient method often
behaves substantially better than the plain multigrid: it is more robust and
converges faster.

Additionally, it becomes possible to use the single-precision arithmetic for
the multigrid part of the algorithm instead of the traditional double-precision
without loosing the overall accuracy. Due to this, the computational cost of the
algorithm can be decreased because of reduced sizes of arrays with floating point
data and corresponding reduction of the memory traffic.

As a result, the AMG-preconditioned CG solver becomes faster than the plain
AMG in a single iteration and at the same time needs less iterations to converge.
Currently the AMG CG solver is implemented for symmetric matrices only.
Later it will be extended for the nonsymmetric case as an AMG-preconditioned
BiCGStab. Typical iteration counts are shown below for the CG AMG solver
vs. the plain AMG for several test matrices:

– small spherical domain (0.32 M grid points): 7 vs. 10,
– large spherical domain (2.3 M grid points): 8 vs. 11,
– long cylindrical domain, aspect ratio 5:1 (2 M grid points): 9 vs. 14.

For the last problem, the CG AMG solver is about 1.7 times faster than the
plain AMG.

In order to achieve better convergence, some tuning of the algorithm is nec-
essary, such as defining the number of grid levels, the number of iterations (half-
sweeps) for smoothing at each level and the value of the over-relaxation factor
at the first level. In particular, the SOR factor around 1.15 is usually optimal
for convergence.

6 Performance of the Multigrid Solvers

Performance results of the new AMG-preconditioned Conjugate Gradient solver
in comparison with the Jacobi-preconditioned (explicit) Conjugate Gradient are
shown in Table 2. The following computer systems were used for these tests:

– Bi-processor Xeon E5-2690v2, 3 GHz, 2 × 10 cores, 20 threads;
– Xeon Phi model 5110P, 1.05 GHz, 59 cores, 236 threads.
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Table 2. Performance results for multicore and manycore computer systems

Computer system CG Jacobi CG AMG AMG : CG

multicore bi-Xeon 4.87 s 0.172 s 28 : 1

manycore Xeon Phi 3.15 s 0.185 s 17 : 1

manycore : multicore 1.55 : 1 0.93 : 1 —

The test matrix represents a discretization in a long cylindrical domain with
the aspect ratio 5:1 (2 M grid points). Iteration counts are 9 for the CG AMG
and 690 for the CG Jacobi (this corresponds to 1380 iterations for the simple
diagonally-preconditioned CG [3]).

The above results demonstrate the great superiority of the AMG-preconditi-
oned method over the plain Conjugate Gradient. The important reason is that
this particular matrix represents a long domain with the number of grid points
about 400 in the longest direction, that determines the iteration count for explicit
CG algorithms. This example also confirms that the multigrid iteration count
doesn’t depend on the problem size.

On shorter domains, superiority of the multigrid is a little bit less. In par-
ticular, for a large spherical domain (2.3 M grid points), iteration counts are 8
and 350 respectively, and AMG : CG speed ratio is about 16:1 for the multicore
Xeon processor and about 10:1 for the manycore Xeon Phi. These proportions
are expected to be typical for most matrices of the similar size.

The comparison of the manycore Xeon Phi to the multicore bi-Xeon system
demonstrates its moderate superiority in the simple explicit CG which is a pure
memory-bound algorithm. The speed proportion 1.55:1 in favor of Xeon Phi
roughly corresponds to the ratio between achievable memory throughput rates
for these systems. The multigrid algorithm, in turn, is much more complicated
and less regular, especially in memory access patterns and at higher (coarser) grid
levels. For this reason, the relative performance of Xeon Phi becomes less. Nev-
ertheless this result should be considered as very reasonable taking into account
the highly parallel nature of this processor.

7 Conclusion

In this work we have presented new efficient parallel solvers for Cartesian dis-
cretizations in general domains. Two variants of the solvers are built, based on
the Algebraic multigrid approach (AMG) and on the Conjugate Gradient method
with the AMG preconditioning (CG AMG). Both solvers use the advanced
Compressed Diagonal storage format suitable for efficient processing on modern
throughput-oriented computer systems. The solvers are targeted on the solution
of Poisson-like and other ill-conditioned linear systems, both symmetric and
non-symmetric.

The new solvers have been evaluated and tested on multicore (bi-Xeon)
and manycore (Xeon Phi) processors using several matrices of different size.
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In comparison to the Conjugate Gradient class solvers with explicit precondi-
tioning, they have demonstrated the speed increase up to 10–16 times typically
and up to 17–28 for elongated domains.

The obtained results have also demonstrated that manycore processors can
be efficiently employed for solving algebraic problems of the general class using
standard programming languages and parallel environments (Fortran, OpenMP).
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