
Victor Malyshkin (Ed.)

 123

LN
CS

 9
25

1

13th International Conference, PaCT 2015
Petrozavodsk, Russia, August 31 – September 4, 2015
Proceedings

Parallel Computing
Technologies

Lecture Notes in Computer Science 9251

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Victor Malyshkin (Ed.)

Parallel Computing
Technologies
13th International Conference, PaCT 2015
Petrozavodsk, Russia, August 31 – September 4, 2015
Proceedings

123

Editor
Victor Malyshkin
Russian Academy of Sciences
Novosibirsk
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21908-0 ISBN 978-3-319-21909-7 (eBook)
DOI 10.1007/978-3-319-21909-7

Library of Congress Control Number: 2015944720

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The PaCT 2015 (Parallel Computing Technologies) conference was a four-day
conference held in Petrozavodsk (Russia). This was the 13th international conference in
the PaCT series. The conferences are held in Russia every odd year. The first con-
ference, PaCT 1991, was held in Novosibirsk (Academgorodok), September 7–11,
1991. The next PaCT conferences were held in Obninsk (near Moscow), August 30 to
September 4, 1993; in St. Petersburg, September 12–15, 1995; in Yaroslavl, Septem-
ber, 9–12, 1997; in Pushkin (near St. Petersburg), September, 6–10, 1999; in Aca-
demgorodok (Novosibirsk), September 3–7, 2001; in Nizhni Novgorod, September,
15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in Pereslavl-Zalessky, September
3–7, 2007; in Novosibirsk, August 31 – September 4, 2009; in Kazan, September
19–23, 2011, and in St. Petersburg, September 30 to October 4, 2013. Since 1995 all
the PaCT proceedings are published by Springer in the LNCS series. PaCT 2015 was
jointly organized by the Institute of Computational Mathematics and Mathematical
Geophysics (Russian Academy of Sciences), Novosibirsk State University, Novosi-
birsk State Technical University, Institute of Applied Mathematical Research (Karelian
Research Centre of Russian Academy of Sciences), and Petrozavodsk State University.
The aim of the conference is to give an overview of new developments, applications,
and trends in parallel computing technologies. We sincerely hope that the conference
will help our community to deepen its understanding of parallel computing technolo-
gies by providing a forum for an exchange of views between scientists and specialists
from all over the world. The conference attracted 87 participants from around the
world, with authors from 13 countries submitting papers. Of these, 53 papers were
selected for the conference as regular ones; there was also an invited speaker. All the
papers were reviewed by at least three referees. Many thanks to our sponsors: the
Ministry of Education and Science, Russian Academy of Sciences, and Russian Fund
for Basic Research.

September 2015 Victor Malyshkin

Organization

PaCT 2015 was organized by the Supercomputer Software Department, Institute of
Computational Mathematics and Mathematical Geophysics (ICM&MG), Siberian
Branch, Russian Academy of Science, Novosibirsk State University (NSU), Novosi-
birsk State Technical University (NSTU), Institute of Applied Mathematical Research
(IAMR), Karelian Research Centre of Russian Academy of Sciences, and Petrozavodsk
State University (PetrSU).

Organizing Committee

Conference Co-chairs

Victor Malyshkin ICM&MG, Novosibirsk
Evgeny Ivashko IAMR, Petrozavodsk

Conference Secretary

Maxim Gorodnichev ICM&MG

Contact Volume Editor

Olga Bandman ICM&MG

Organizing Committee Members

Valentina Markova ICM&MG
Mikhail Ostapkevich ICM&MG
Yuri Medvedev ICM&MG
Georgy Schukin ICM&MG
Sergey Kireev ICM&MG
Vladimir Mazalov IAMR
Andrey Pechnikov IAMR
Evgeny Ivashko IAMR
Alexander Rumiantsev IAMR
Natalia Nikitina IAMR
Alexander Golovin IAMR
Vladimir Timofeev NTSU

Sponsoring Institutions

Ministry of Education and Science, Russia
Russian Academy of Sciences
Russian Fund for Basic Research

Program Committee

Victor Malyshkin Russian Academy of Sciences, Chair
Farid Ablaev Kazan Federal University, Russia
Sergey Abramov Russian Academy of Sciences
Farhad Arbab Leiden Institute for Advanced Computer Science,

The Netherlands
Stefania Bandini University of Milano-Bicocca, Italy
Olga Bandman Russian Academy of Sciences
Thomas Casavant University of Iowa, USA
Pierpaolo Degano University of Pisa, Italy
Dominique Désérable National Institute for Applied Sciences, Rennes, France
Sergei Gorlatch University of Münster, Germany
Bernard Goossens University of Perpignan, France
Yuri G. Karpov St. Petersburg State Polytechnical University, Russia
Alexey Lastovetsky University College Dublin, Ireland
Jie Li University of Tsukuba, Japan
Thomas Ludwig University of Hamburg, Germany
Mikhail Marchenko Russian Academy of Sciences
Giancarlo Mauri University of Milano-Bicocca, Italy
Nikolay Mirenkov University of Aizu, Japan
Dana Petcu West University of Timisoara, Romania
Viktor Prasanna University of Southern California, USA
Michel Raynal Research Institute in Computer Science and Random

Systems, Rennes, France
Bernard Roux National Center for Scientific Research, France
Mitsuhisa Sato University of Tsukuba, Japan
Carsten Trinitis University of Bedfordshire, UK and Technical

University of Munich, Germany
Mateo Valero Technical University of Catalonia, Spain
Roman Wyrzykowski Czestochowa University of Technology, Poland

Additional Reviewers

S. Abramov
D. Akhmed-Zaki
O. Bandman
T. Casavant
D. Deserable
B. Goossens
S. Gorlatch
H. Dirks
F. Wuebbeling
A. Rasch
M. Haidl

M. Gorodnichev
K. Kalgin
Y. Karpov
S. Kireev
A. Kireeva
Y. Klimov
A. Lastovetsky
V. Malyshkin
M. Marchenko
V. Markova
G. Mauri

I. Menshov
A. Nepomniaschaya
V. Perepelkin
D. Petcu
V.K. Prasanna
N. Shilov
V. Toporkov
R. Wyrzykowski
Y. Zagorulko

VIII Organization

Contents

Parallel Models, Algorithms and Programming Methods

Software System for Maximal Parallelization of Algorithms on the Base
of the Conception of Q-determinant. 3

Valentina N. Aleeva, Ilya S. Sharabura, and Denis E. Suleymanov

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors . . . 10
Oleg Bessonov

Hierarchical Optimization of MPI Reduce Algorithms 21
Khalid Hasanov and Alexey Lastovetsky

On Parallel Computational Technologies of Augmented Domain
Decomposition Methods. 35

Y.L. Gurieva and V.P. Il’in

A Modular-Positional Computation Technique for Multiple-Precision
Floating-Point Arithmetic . 47

Konstantin Isupov and Vladimir Knyazkov

Creation of Data Mining Algorithms as Functional Expression for Parallel
and Distributed Execution . 62

Ivan Kholod and Ilya Petukhov

Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky
Factorization. 68

Sergey Lebedev, Dmitry Akhmedzhanov, Evgeniy Kozinov,
Iosif Meyerov, Anna Pirova, and Alexander Sysoyev

Distributed Algorithm of Data Allocation in the Fragmented Programming
System LuNA. 80

Victor E. Malyshkin, Vladislav A. Perepelkin, and Georgy A. Schukin

Control Flow Usage to Improve Performance of Fragmented
Programs Execution. 86

V.E. Malyshkin, V.A. Perepelkin, and A.A. Tkacheva

Towards Application Energy Measurement and Modelling Tool Support 91
Kenneth O’Brien, Alexey Lastovetsky, Ilia Pietri, and Rizos Sakellariou

The Mathematical Model and the Problem of Optimal Partitioning
of Shared Memory for Work-Stealing Deques. 102

Andrew Sokolov and Eugene Barkovsky

http://dx.doi.org/10.1007/978-3-319-21909-7_1
http://dx.doi.org/10.1007/978-3-319-21909-7_1
http://dx.doi.org/10.1007/978-3-319-21909-7_2
http://dx.doi.org/10.1007/978-3-319-21909-7_3
http://dx.doi.org/10.1007/978-3-319-21909-7_4
http://dx.doi.org/10.1007/978-3-319-21909-7_4
http://dx.doi.org/10.1007/978-3-319-21909-7_5
http://dx.doi.org/10.1007/978-3-319-21909-7_5
http://dx.doi.org/10.1007/978-3-319-21909-7_6
http://dx.doi.org/10.1007/978-3-319-21909-7_6
http://dx.doi.org/10.1007/978-3-319-21909-7_7
http://dx.doi.org/10.1007/978-3-319-21909-7_7
http://dx.doi.org/10.1007/978-3-319-21909-7_8
http://dx.doi.org/10.1007/978-3-319-21909-7_8
http://dx.doi.org/10.1007/978-3-319-21909-7_9
http://dx.doi.org/10.1007/978-3-319-21909-7_9
http://dx.doi.org/10.1007/978-3-319-21909-7_10
http://dx.doi.org/10.1007/978-3-319-21909-7_11
http://dx.doi.org/10.1007/978-3-319-21909-7_11

Dynamic Load Balancing Based on Rectilinear Partitioning
in Particle-in-Cell Plasma Simulation . 107

Igor Surmin, Alexei Bashinov, Sergey Bastrakov, Evgeny Efimenko,
Arkady Gonoskov, and Iosif Meyerov

Unconventional Computing - Cellular Automata

A Behavioral Analysis of Cellular Automata . 123
Jan M. Baetens and Bernard De Baets

Contradiction Between Parallelization Efficiency and Stochasticity
in Cellular Automata Models of Reaction-Diffusion Phenomena 135

Olga Bandman

A Parallel Genetic Algorithm to Adjust a Cardiac Model Based on Cellular
Automaton and Mass-Spring Systems . 149

Ricardo Silva Campos, Bernardo Martins Rocha,
Luis Paulo da Silva Barra, Marcelo Lobosco,
and Rodrigo Weber dos Santos

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 164
Dominique Désérable and Rolf Hoffmann

The Influence of Cellular Automaton Topology on the Opinion Formation . . . 179
Tomasz M. Gwizdałła

Cellular Automata Model of Electrons and Holes Annihilation in an
Inhomogeneous Semiconductor . 191

A.E. Kireeva and K.K. Sabelfeld

Constructions Used in Associative Parallel Algorithms for Directed Graphs. 201
Anna Nepomniaschaya

Oscillatory Network Based on Kuramoto Model for Image Segmentation. . . . 210
Andrei Novikov and Elena Benderskaya

Using Monte Carlo Method for Searching Partitionings of Hard Variants
of Boolean Satisfiability Problem . 222

Alexander Semenov and Oleg Zaikin

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 231
Hiroshi Umeo, Masashi Maeda, Akihiro Sousa, and Kiyohisa Taguchi

CA - Model of Autowaves Formation in the Bacterial MinCDE System 246
Anton Vitvitsky

X Contents

http://dx.doi.org/10.1007/978-3-319-21909-7_12
http://dx.doi.org/10.1007/978-3-319-21909-7_12
http://dx.doi.org/10.1007/978-3-319-21909-7_13
http://dx.doi.org/10.1007/978-3-319-21909-7_14
http://dx.doi.org/10.1007/978-3-319-21909-7_14
http://dx.doi.org/10.1007/978-3-319-21909-7_15
http://dx.doi.org/10.1007/978-3-319-21909-7_15
http://dx.doi.org/10.1007/978-3-319-21909-7_16
http://dx.doi.org/10.1007/978-3-319-21909-7_17
http://dx.doi.org/10.1007/978-3-319-21909-7_18
http://dx.doi.org/10.1007/978-3-319-21909-7_18
http://dx.doi.org/10.1007/978-3-319-21909-7_19
http://dx.doi.org/10.1007/978-3-319-21909-7_20
http://dx.doi.org/10.1007/978-3-319-21909-7_21
http://dx.doi.org/10.1007/978-3-319-21909-7_21
http://dx.doi.org/10.1007/978-3-319-21909-7_22
http://dx.doi.org/10.1007/978-3-319-21909-7_23

Distributed Computing

Agent-Based Approach to Monitoring and Control of Distributed
Computing Environment . 253

Igor Bychkov, Gennady Oparin, Alexei Novopashin, and Ivan Sidorov

Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum . . . 258
Ilya Chernov and Natalia Nikitina

Partition Algorithm for Association Rules Mining in BOINC–Based
Enterprise Desktop Grid. 268

Evgeny Ivashko and Alexander Golovin

Task Scheduling in a Desktop Grid to Minimize the Server Load 273
Vladimir V. Mazalov, Natalia N. Nikitina, and Evgeny E. Ivashko

An HPC Upgrade/Downgrade that Provides Workload Stability 279
Alexander Rumyantsev

Job Ranking and Scheduling in Utility Grids VOs. 285
Victor Toporkov, Anna Toporkova, Alexey Tselishchev,
Dmitry Yemelyanov, and Petr Potekhin

Congestion Elimination on Data Storages Network Interfaces
in Datacenters. 298

P.M. Vdovin, I.A. Zotov, V.A. Kostenko, and A.V. Plakunov

Special Processors Programming Techniques

Use of Xeon Phi Coprocessor for Solving Global Optimization Problems. . . . 307
Konstantin Barkalov, Victor Gergel, and Ilya Lebedev

Increasing Efficiency of Data Transfer Between Main Memory and Intel
Xeon Phi Coprocessor or NVIDIA GPUS with Data Compression 319

Konstantin Y. Besedin, Pavel S. Kostenetskiy,
and Stepan O. Prikazchikov

Parallelizing Branch-and-Bound on GPUs for Optimization of Multiproduct
Batch Plants . 324

Andrey Borisenko, Michael Haidl, and Sergei Gorlatch

Optimal Dynamic Data Layouts for 2D FFT on 3D Memory
Integrated FPGA. 338

Ren Chen, Shreyas G. Singapura, and Viktor K. Prasanna

Contents XI

http://dx.doi.org/10.1007/978-3-319-21909-7_24
http://dx.doi.org/10.1007/978-3-319-21909-7_24
http://dx.doi.org/10.1007/978-3-319-21909-7_25
http://dx.doi.org/10.1007/978-3-319-21909-7_26
http://dx.doi.org/10.1007/978-3-319-21909-7_26
http://dx.doi.org/10.1007/978-3-319-21909-7_27
http://dx.doi.org/10.1007/978-3-319-21909-7_28
http://dx.doi.org/10.1007/978-3-319-21909-7_29
http://dx.doi.org/10.1007/978-3-319-21909-7_30
http://dx.doi.org/10.1007/978-3-319-21909-7_30
http://dx.doi.org/10.1007/978-3-319-21909-7_31
http://dx.doi.org/10.1007/978-3-319-21909-7_32
http://dx.doi.org/10.1007/978-3-319-21909-7_32
http://dx.doi.org/10.1007/978-3-319-21909-7_33
http://dx.doi.org/10.1007/978-3-319-21909-7_33
http://dx.doi.org/10.1007/978-3-319-21909-7_34
http://dx.doi.org/10.1007/978-3-319-21909-7_34

High-Performance Reconfigurable Computer Systems Based
on Virtex FPGAs . 349

Alexey I. Dordopulo, Ilya I. Levin, Yuri I. Doronchenko,
and Maxim K. Raskladkin

Parallelizing Biochemical Stochastic Simulations: A Comparison
of GPUs and Intel Xeon Phi Processors . 363

P. Cazzaniga, F. Ferrara, M.S. Nobile, D. Besozzi, and G. Mauri

Cost of Bandwidth-Optimized Sparse Mesh Layouts 375
Martti Forsell, Ville Leppänen, and Martti Penttonen

Toward a Core Design to Distribute an Execution on a Manycore
Processor . 390

Bernard Goossens, David Parello, Katarzyna Porada,
and Djallal Rahmoune

Heuristic Algorithms for Optimizing Array Operations in Parallel
PGAS-programs . 405

Ivan Kulagin, Alexey Paznikov, and Mikhail Kurnosov

Progressive Transactional Memory in Time and Space. 410
Petr Kuznetsov and Srivatsan Ravi

Wavelet-Based Local Mesh Adaptation with Application to Gas Dynamics. . . . 426
Kirill Merkulov

On Implementation High-Scalable CFD Solvers for Hybrid Clusters
with Massively-Parallel Architectures. 436

Pavel Pavlukhin and Igor Menshov

Parallelization of 3D MPDATA Algorithm Using Many
Graphics Processors. 445

Krzysztof Rojek and Roman Wyrzykowski

Performance Evaluation of a Human Immune System Simulator
on a GPU Cluster . 458

Thiago M. Soares, Micael P. Xavier, Alexandre B. Pigozzo,
Ricardo Silva Campos, Rodrigo W. dos Santos, and Marcelo Lobosco

HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics . . . 469
Vladimir V. Stegailov, Nikita D. Orekhov, and Grigory S. Smirnov

Automatic High-Level Programs Mapping onto Programmable Architectures. . . . 474
Boris Ya. Steinberg, Denis V. Dubrov, Yury Mikhailuts,
Alexander S. Roshal, and Roman B. Steinberg

XII Contents

http://dx.doi.org/10.1007/978-3-319-21909-7_35
http://dx.doi.org/10.1007/978-3-319-21909-7_35
http://dx.doi.org/10.1007/978-3-319-21909-7_36
http://dx.doi.org/10.1007/978-3-319-21909-7_36
http://dx.doi.org/10.1007/978-3-319-21909-7_37
http://dx.doi.org/10.1007/978-3-319-21909-7_38
http://dx.doi.org/10.1007/978-3-319-21909-7_38
http://dx.doi.org/10.1007/978-3-319-21909-7_39
http://dx.doi.org/10.1007/978-3-319-21909-7_39
http://dx.doi.org/10.1007/978-3-319-21909-7_40
http://dx.doi.org/10.1007/978-3-319-21909-7_41
http://dx.doi.org/10.1007/978-3-319-21909-7_42
http://dx.doi.org/10.1007/978-3-319-21909-7_42
http://dx.doi.org/10.1007/978-3-319-21909-7_43
http://dx.doi.org/10.1007/978-3-319-21909-7_43
http://dx.doi.org/10.1007/978-3-319-21909-7_44
http://dx.doi.org/10.1007/978-3-319-21909-7_44
http://dx.doi.org/10.1007/978-3-319-21909-7_45
http://dx.doi.org/10.1007/978-3-319-21909-7_46

Applications

Implementation of a Three-Phase Fluid Flow (“Oil-Water-Gas”) Numerical
Model in the LuNA Fragmented Programming System 489

Darkhan Akhmed-Zaki, Danil Lebedev, and Vladislav A. Perepelkin

Development of a Distributed Parallel Algorithm of 3D Hydrodynamic
Calculation of Oil Production on the Basis of MapReduce Hadoop
and MPI Technologies . 498

Darkhan Akhmed-Zaki, Madina Mansurova, Timur Imankulov,
Bazargul Matkerim, and Ekaterina Dadykina

A Two-Level Parallel Global Search Algorithm for Solution of
Computationally Intensive Multiextremal Optimization Problems 505

Victor Gergel and Sergey Sidorov

Efficient Parallel Implementation of Coherent Stacking Algorithms
in Seismic Data Processing. 516

Maxim Gorodnichev, Anton Duchkov, and Alexander Kupchishin

Accurate Parallel Algorithm for Tracking Inertial Particles in Large-Scale
Direct Numerical Simulations of Turbulence. 522

Takashi Ishihara, Kei Enohata, Koji Morishita, Mitsuo Yokokawa,
and Katsuya Ishii

Treating Complex Geometries with Cartesian Grids in Problems
for Fluid Dynamics . 528

Igor Menshov

Architecture, Implementation and Performance Optimization in Organizing
Parallel Computations for Simulation Environment 536

Maria Nasyrova, Yury Shornikov, and Dmitry Dostovalov

Author Index . 547

Contents XIII

http://dx.doi.org/10.1007/978-3-319-21909-7_47
http://dx.doi.org/10.1007/978-3-319-21909-7_47
http://dx.doi.org/10.1007/978-3-319-21909-7_48
http://dx.doi.org/10.1007/978-3-319-21909-7_48
http://dx.doi.org/10.1007/978-3-319-21909-7_48
http://dx.doi.org/10.1007/978-3-319-21909-7_49
http://dx.doi.org/10.1007/978-3-319-21909-7_49
http://dx.doi.org/10.1007/978-3-319-21909-7_50
http://dx.doi.org/10.1007/978-3-319-21909-7_50
http://dx.doi.org/10.1007/978-3-319-21909-7_51
http://dx.doi.org/10.1007/978-3-319-21909-7_51
http://dx.doi.org/10.1007/978-3-319-21909-7_52
http://dx.doi.org/10.1007/978-3-319-21909-7_52
http://dx.doi.org/10.1007/978-3-319-21909-7_53
http://dx.doi.org/10.1007/978-3-319-21909-7_53

Parallel Models, Algorithms
and Programming Methods

Software System for Maximal Parallelization
of Algorithms on the Base of the Conception

of Q-determinant

Valentina N. Aleeva(B), Ilya S. Sharabura, and Denis E. Suleymanov

South Ural State University, Chelyabinsk 454080, Russia
aleevavn@susu.ac.ru, run174@yandex.ru, kingmidas1992@gmail.com

Abstract. The development and the usage of parallel computing sys-
tems make it necessary to research parallelization resource of algorithms
for search of the most rapid implementation. The algorithm represen-
tation as Q-determinant is one of the approaches that can be applied
for that case. Such representation allows getting the most rapid possible
implementation of the algorithm evaluates its performance complexity.
Our work is to develop software system QStudio, which presents algo-
rithm in the form of Q-determinant using the flowchart, finds the most
rapid implementation of that one and builds an execution plan. The
obtained results are oriented to ideal model of parallel computer system.
However they can be a basis for automated execution of the most rapid
algorithm implementations for real parallel computing systems.

Keywords: Algorithm representation as Q-determinant · Paralleliza-
tion algorithm · Most rapid implementation of the algorithm · Execution
plan of the most rapid implementation · Parallel computing system

1 Introduction

The performance increase of parallel computing systems is one of the priorities
of the development of computer technology. One of the ways of solving that
problem is the most rapid implementation of algorithms due to maximal use
parallelization resource. Our work is devoted to the same research area.

The paper presents the results of work on the project Maximum Parallelization
of Algorithms, briefly, MPA. The aim of the project is to automate execution of
the most rapid implementations of algorithms for parallel computing systems.
To achieve that it is necessary to solve the following problems:

1. software engineering QStudio for the analysis of resource parallelization of
any algorithm including its most rapid implementation and constructing an
execution plan of the most rapid implementation of the algorithm or the most
effective implementation of the algorithm for parallel computer systems;

2. development and implementation of technology to execute the most rapid
parallel implementation of the algorithm for the parallel computer systems
using its execution plan.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 3–9, 2015.
DOI: 10.1007/978-3-319-21909-7 1

4 V.N. Aleeva et al.

The present article includes the results of the project MPA to solve the prob-
lem No 1 and those results will be used for solving the second problem.

The concept of Q-determinant is the basis of the studies conducted in the
framework of MPA.

2 The Conception of Q-determinant

First we describe the conception of Q-determinant [1]. The representation of
algorithm as Q-determinant allows obtaining all possible implementations of the
algorithm including detection of the most rapid implementation meaning that
every algorithm operation is performed if its operand values are ready. There are
some algorithms for those their most rapid implementation cannot be performed
because we need infinite number of operations need to perform at the same time.
Hence an infinite number of processors (compute nodes) are required. In [1] there
are analysis of the most rapid algorithm implementation and so it is possible
to obtain estimates of complexity: the number of processors and the number of
work cycles of computer system to accomplish one. As the result we can compare
the resources of algorithm parallelization for solving the maximal parallelization
problem and choose the algorithm with maximal resource of parallelization.

For a long time there were many investigations of algorithm parallelization,
but just the conception of Q-determinant allows to detect of possibility of the
most rapid algorithm implementation. There is no doubt that the investigation
parallel structure program is very important and advanced for their realizations
of parallel computer systems. One of the most significant researches in that
direction is the system V-Ray [2,3]. However, if you want to solve the task of
maximal algorithm parallelization then it is may be not advisable of the usage
of the program that realizes the algorithm because it may not contain all algo-
rithm realizations, particularly, the most rapid implementation. That’s why, in
our opinion the more correct approach is the algorithm parallelization of the
algorithm itself.

Now we give a brief description of the Q-determinant conception. Let α be an
algorithm to solve the algorithmic problem ȳ = F (N,B) where N is a parameter
dimension set of the problem, B is a set of input data, ȳ is a set of output data.
Let Q be a basic set of arithmetic and logical type operations. The expression
is called the set of operands of arithmetic or logical type that use operations
from Q. Q-term is the map from the problem dimension to a structured set of
expressions that we need to calculate one of the output variables of the problem.
The set of Q-terms can be unconditional, conditional and conditionally infinite
according to the structure of expression set.

Q-determinant is the set of Q-terms that we need to calculate each of the
problem output data. Let an algorithm α be in the form of yi = fi(i = 1, . . . , m)
where fi is Q-term to calculate yi, m is the number of output data. Then we
consider that the algorithm α represents in the form of Q-determinant. If the
algorithm has some representation as flowchart then it can be represent in the
form of Q-determinant [4].

Software System for Maximal Parallelization of Algorithms 5

We consider the Gauss–Jordan solution of a system of linear equations as
an example of representation of the algorithm in the form of Q-determinant.
Let Ax̄ = b̄ be a system of linear equations, where A = [aij]ij=1,...,n is a n × n

invertible matrix, x̄ = (x1, . . . , xn)T , b̄ = (a1,n+1, . . . , an,n+1)T . At the first step
we suppose that the leading element is the first nonzero element of the first row
of the original matrix, and at k-th step (2 ≤ k ≤ n) we select the first nonzero
element of the k-th row that obtained at (k−1)-th step. Then the Q-determinant
of Gauss–Jordan method consists of n conditional Q-terms and its representation
in the form of Q-determinant has the shape

xj =
{

(u1, w
j
1), . . . , (un!, w

j
n!)

}
(j = 1, . . . , n).

Unconditional Q-terms u1, . . . , un!, wj
1, . . . , w

j
n! (j = 1, . . . , n) depends on terms

of the matrix A and vector b. In detail their structure is described in [1].
The realization of the algorithm in the form of Q-determinant is called the

process of calculating the Q-terms fi(i = 1, . . . , m) that are included in the
Q-determinant. If the calculation of all Q-terms fi(i = 1, . . . , m) is produced
at the same time and as rapid as possible, i.e. the operations of the set are
executed as soon as they are ready to perform, in this case we have the most rapid
implementation of the algorithm. Generally speaking, the set Q may include any
operation, not only which are considered in the paper [1]. So the software system
QStudio allows specifying any operation, as well as if it is necessary to redefine
the basic ones. All operations both basic and asked again are the functions of
variable collections, so we will call them functions. All functions are separate
projects in the framework of using system QStudio.

3 The Software System QStudio

The software system QStudio makes possible to calculate Q-determinant of any
algorithm (if the algorithm has some representation as flowchart), to find the
most rapid possible implementation (in the sense mentioned above) and to build
its execution plan for the parallel system. The system was developed with the
help of the technology .Net in C# and the system for building client application
Window Presentation Foundation (WPF).

That software technology allows separating the application logic from the
client interface and for interface scaling. WPF with compiled markup language
XAML allows to redefine the appearance and behavior of default controls and
to create custom controls. That feature has allowed developing the library of
controls that can be used in development of other applications. The appearance
is stylized to look like Modern UL interfaces beginning from redefined Window
component to standard text labels. When we have developed the custom ele-
ments two classes were modified: class TabControl (now it allows to close tabs)
and class TreeViewControl (icons of elements were added). Besides redefining
default elements new custom elements were created such as console, file explorer
and text processor. They were allocated into a new library. By WPF utilization of

6 V.N. Aleeva et al.

routed events most components are noninteracting. In other words, the system
has weak connectivity.

The core of software system contains such basic structure as graph and Q-
determinant. Using this structure one can build the logic of most components and
due to object-oriented architecture it is also possible to extend the functionality.
In addition, the core contains the object converter of different data formats,
which allows standardizing input and output for all plugins. All project files are
contained in serialized format, so that a user cannot unintentionally change the
files. The basis of system is the common class Adapter<IDeterminant,IPlan>.
As Q-determinant and execution plan modules should support certain interfaces
their implementation was united in one class that allows changing the basic logic
without changing external modules and even other core classes.

All mentioned above is the system basis. All the rest can be implemented
as plugins. For example, the view of the execution plan in the form of visual
graph is possible only with the plugin ImplementationPlanViewer. Otherwise
QStudio will open it as text files in JSON. Similarly, QStudio will continue to
operate without components that implement IDeterminant or IPlan interfaces,
but the message will appear that there is no opportunity to define the resource
of parallelism. If several modules are detected then a user will be able to choose
what algorithm to use. To create it is necessary as dependents to enable core
and possibly the visual component. After that IPlugin Interface must be
implement. QStudio will enable and instantiate this plugin by itself.

The Compiler acts as separate software. GUI allows editing files, enabling
dependents, creating new projects, etc. as any IDE. Then the compiler on the
basis of all having processes data produces necessary operations to receive a
result. The given separation allows to develop two different projects indepen-
dently, namely, QStudio and Compiler. Since we have plugin support in QStudio
and reflexes support in Compiler the connectivity of project is weak.

The whole system is developed with the use TDD methodology that mini-
mizes unauthorized and undocumented states. Also, different patterns are used
such that Abstract factory, Adapter, Observer.

All the code of the project is an open source and is published in reposi-
tory on Github. That gives opportunity to conduct the remote teamwork and it
guarantees the code security.

4 Preparation Q-determinant Algorithm

As the source data for preparation Q-determinant of the algorithm the software
system QStudio uses a flowchart as it was proposed in [4]. The flowcharts can
be described in different formats, for example, XML or JSON. Furthermore, the
supported formats are MessagePack and GPB. QStudio converts the description
of the flowchart from one format to another. The methods of Q-determinant
preparation are contained in a separate class library that implements the inter-
face IDeterminant. The Q-determinant preparation of the algorithm is carried
out by using the module QDeterminant, which receives the flowchart as an input.

Software System for Maximal Parallelization of Algorithms 7

The module analyzes a flowchart to obtain Q-terms that are component of
Q-determinant. The analysis is produced at fixed parameters of dimension of the
problem. The algorithm starts from the terminal flowchart symbol Start then it
tracks all the ways to the terminal flowchart symbol End. If we use the approach
of [1] we can be get that every passage in the flowchart at fixed parameters
of dimension N̄ of the problem determines either an expression w(N̄), or a
pair of expressions u(N̄), w(N̄), relating to one of the Q-terms that makes up
the Q-determinant algorithm. The result of the work of the module is the Q-
determinant of the algorithm that is the set of Q-terms at fixed parameters of
dimension of the problem.

Analysis of flowchart elements depends on the type of elements. The expres-
sion written in the element to check the condition falls into unconditional logical
Q-term. The examples of such Q-terms are u1, . . . , un! from Q-determinant for
the Gauss–Jordan method. If the computable expression is contained in the
flowchart symbol then it can be added to unconditional Q-term of any type.

5 The Detection of the Most Rapid Algorithm
Realization and the Building of Plan of Its Execution

All processing algorithms of Q-determinant and receiving execution plan are
contained in the class library that implements the interface IPlan. The process-
ing of the Q-determinant and obtaining the execution plan are implemented by
the module ImplementationPlan.

By the module QDeterminant we obtain data structure that contains a
description of Q-determinant at fixed values of parameters of the dimension
problem. Then by the program it is divided into separate units, which repre-
sent a description of unconditional Q-terms or couples of unconditional Q-terms
that enter the Q-determinant. For example, for the Q-determinant of the Gauss-
Jordan method the blocks describe pairs (u1, w

j
1),. . . , (un!, w

j
n!) (j = 1, . . . , n).

Next it is made the following analysis: what operations and on which of
the work cycle should be performed to calculate the Q-terms simultaneously
and as fast as possible. That is the most rapid algorithm implementation.
If we have some restrictions of the number of processors or other restrictions
then sometimes we cannot receive the most rapid algorithm implementation.
Taking into account of the number of processors we get the most effective algo-
rithm implementation [5].

The software system QStudio builds its execution plan of the found realization
that is the directed tiered graph where the zero level contains the input data of
the algorithm and each non-zero level matches the cycle of the computer system
and contains all the operations of the algorithm running in parallel during this
cycle [6]. To construct the execution plan we use the principle of the reverse
Polish notation at which not string representation is placed into the stack but
the structure that describe the vertex of the graph. To evaluate the algorithm
parallelization resource we can count the number of functions performed at each
step simultaneously calculating oall Q-terms included in the Q-determinant.

8 V.N. Aleeva et al.

If it is necessary we can limit the number of processors and optimize execu-
tion plan in order to obtain execution plan of the most effective realization that
allows us to determine exactly how many cycles the algorithm will execute. The
execution plan can be optimized, i.e. eliminate duplicate input values and repet-
itive calculations. The flowchart and the execution plan can be converted into
different data formats and displayed in the graphical form for the convenience
and experience of the user.

The figure below displays the graph of the execution plan of the most rapid
implementation of the algorithm Scalar. That algorithm calculates the scalar
product of the vectors. In the given example the vector dimension is equal to 9.
The figure is obtained with the help of the system Qstudio Fig. 1.

Fig. 1. The example of the execution plan of the algorithm Scalar

6 Conclusion

This article describes the development of the software system QStudio designed
to find the most rapid and the most effective algorithm implementations and
to build their execution plans on parallel computer systems. In the design
we use the approach to parallelization algorithms based on the conception of
Q-determinant. The obtained results are the basis of the maximal resource usage
of parallelization algorithms at the implementation for parallel computer systems
which should lead to greater productivity.

The next step of the investigation is to generate to executable code on the
basis of the execution plan of the most rapid algorithm implementation plan.
Also we develop the idea how the algorithm execution plan of the most rapid algo-
rithm realization overlays on the architecture of a particular computer system.
As the first additional plugin it will be added the possibility of the transforma-
tion of the execution plan on the architecture of the supercomputer “Tornado”
of South Ural State University.

Software System for Maximal Parallelization of Algorithms 9

References

1. Aleeva, V.N.: Analysis of parallel numerical algorithms: Preprint No. 590. Novosi-
birsk, Computing Center of the Siberian Branch of the Academy of Sciences of the
USSR (1985)

2. Voevodin, V.V., Voevodin, V.V.: The V-ray technology of optimizing programs to
parallel computers. In: Vulkov, L.G., Yalamov, P., Waśniewski, J. (eds.) WNAA
1996. LNCS, vol. 1196, pp. 546–556. Springer, Heidelberg (1997)

3. Shamakina, A.V., Sokolinsky L.B.: Testing methodology of instrumental complexes
for constructing parallel programs. In: Scientific service on the Internet: Multicore
Computer World. 15 years RFBR: Proceedings of the all-Russian Scientific Con-
ference (Novorossijsk, Russia, September, 24–29, 2007), pp. 227–230. Publishing of
the Moscow State University, Moscow (2007)

4. Ignatyev, S.V.: Definition of parallelism resource of algorithms on the base of the
concept of Q-determinant. In: Scientific Service on the Internet: Supercomputer
Centers and Tasks: Proceedings of the International Supercomputer Conference
(Novorossijsk, Russia, September, 20–25, 2010), pp. 590–595. Publishing of the
Moscow State University, Moscow (2010)

5. Svirihin, D.I.: Definition of parallelism resource of algorithm and its effective use for
of a finite number of processors. In: Scientific Service on the Internet: the Search
for New Solutions: Proceedings of the International Supercomputer Conference
(Novorossijsk, Russia, September, 17–22, 2012), pp. 257–260. Publishing of the
Moscow State University, Moscow (2012)

6. Svirihin, D.I., Aleeva, V.N.: Definition the maximum effective realization of algo-
rithm on the base of the conception of Q-determinant. In: Parallel Computational
Technologies (PCT 2013): Proceedings of the International Scientific Conference
(Chelyabinsk, Russia, April, 1–5, 2013), p. 617. Publishing of the South Ural State
University, Chelyabinsk (2013)

Highly Parallel Multigrid Solvers for Multicore
and Manycore Processors

Oleg Bessonov(B)

Institute for Problems in Mechanics of the Russian Academy of Sciences, 101,
Vernadsky Avenue, 119526 Moscow, Russia

bess@ipmnet.ru

Abstract. In this paper we present an analysis of parallelization prop-
erties and implementation details of the new Algebraic multigrid solvers.
Variants of smoothers and multicolor grid partitionings are discussed.
Optimizations for modern throughput-oriented processors are consid-
ered together with different storage schemes. Finally, comparative per-
formance results for multicore and manycore processors are presented.

1 Introduction

This paper is devoted to the development of efficient parallel algebraic methods for
solving large sparse linear systems arising in discretizations of partial differential
equations. Historically, Conjugate Gradient methods have been widely used for
solving such linear systems [1]. In order to accelerate the solution, implicit pre-
conditioners of the Incomplete LU-decomposition type (ILU) are applied [2,3].
However, implicit preconditioners have limited parallelization potential and there-
fore can’t be efficiently employed on massively parallel computers.

On the other hand, there exists a separate class of implicit methods, multi-
grid, which possess very good convergence and parallelization properties. Multi-
grid solves differential equations using a hierarchy of discretizations. At each
level, it uses a simple smoothing procedure to reduce corresponding error com-
ponents.

In a single multigrid cycle, both short-range and long-range components are
smoothed. It means that information is propagated instantly throughout the
domain within a such cycle. As a result, this method becomes very efficient for
elliptic problems that propagate physical information infinitely fast.

At the same time, multigrid can be efficiently and massively parallelized
because processing at each grid level is performed in the explicit manner, and
data exchanges are needed only between adjacent subdomains at the end of a
cycle.

In this paper we will consider the Algebraic multigrid (AMG) approach [4]
which is based on matrix coefficients rather than on geometric parameters of a
domain. Parallelization properties and implementation details of this algorithm
will be analyzed, and performance results for modern throughput processors will
be presented.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 10–20, 2015.
DOI: 10.1007/978-3-319-21909-7 2

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors 11

2 Iterative Methods and Their Parallelization Properties

The multigrid approach will be presented here in the context of the hierarchy
of iterative methods. Iterative methods are used for solving large linear systems
arising in discretizations of partial differential equations in many areas (fluid
dynamics, semiconductor devices, quantum problems). They can be applied to
ill-conditioned linear systems, both symmetric and non-symmetric.

The most popular class of iterative methods is the Conjugate Gradient (CG).
In order to accelerate the convergence, this method requires preconditioning.
There are two main classes of preconditioners: explicit, that act locally by means
of a stencil of limited size and propagate information through the domain with
low speed, and implicit, that operate globally and propagate information almost
instantly. Due to this implicit preconditioners work much faster and have better
than linear dependence of convergence on the geometric size of the problem.

The same applies to stand-alone iterative methods that possess similar prop-
erties and may be classified as being explicit or implicit (we consider here the
nature of internal iterations rather than the outer properties of a method).

Parallel properties of iterative solvers strongly depend on how information is
propagated in the algorithm. For this reason methods with the implicit nature
of iterations can’t be easily parallelized, and many efforts are needed for finding
geometric or algebraic approached of parallelization [3].

However, some methods with explicit iterations are also essentially sequen-
tial, and their parallelization may become difficult. In particular, the Gauss-
Seidel and Successive Over-Relaxation (SOR) methods in their original form
need the sequential processing of grid points in a domain. In order to overcome
this problem, multicolored approaches are used when all grid nodes in a domain
are partitioned in such a way that each node has no connection with another
nodes of the same color. Owing to this, computations for all grid points with the
same color can be performed in any order thus allowing arbitrary splitting of the
domain. For the 7-point stencil in 3D, it is enough to use 2 colors (Red-black
partitioning), while the more general 27-point stencil requires 8 colors.

Fig. 1. Red-black (left) and multicolor (center) grid partitionings; splitting of a com-
putational domain with the red-black partitioning for the parallelization (right) (Color
figure online)

12 O. Bessonov

Figure 1 illustrates grid partitionings for 2 and 4 colors and splitting of a
computational domain into subdomains for processing them in parallel.

Properties of different iterative methods are presented in Table 1. Solutions of
the Poisson equation on two different uniform grids were used for this test, with
the convergence stopping criteria 10−10. The approximate cost of an iteration
is presented for each method (relative to the Jacobi method). For the Gauss-
Seidel and SOR, Red-black variants are given. Fortunately they have the same
convergence properties as their sequential counterparts. For the Conjugate Gra-
dient, several preconditioners were tested: plain diagonal one (CG), polynomial
Jacobi explicit preconditioner (CG Jacobi) and Incomplete LU in two variants
(CG ILU and MILU) [2,3]. For the multigrid, two implementations were used:
a plain AMG solver and an AMG-preconditioned Conjugate Gradient.

Table 1. Convergence of different iterative algorithms for square matrices of size N

Iterative method N = 65 N = 129 f(N) Cost of iteration

Jacobi 23650 90850 O(N2) 1

Gauss-Seidel 12210 46940 O(N2) 1

SOR 299 600 O(N) 1

CG 258 514 O(N) 1.5

CG Jacobi 130 257 O(N) 2.25

CG ILU 109 212 O(N) 3

CG MILU 48 68 O(N1/2) 3

AMG 8 8 O(1) 5

CG AMG 7 7 O(1) 6

The above results confirm that the convergence of the multigrid doesn’t
depend on the problem size. The next efficient method is the CG MILU with
the required number of iterations of the order of O(N1/2). This method is still
applicable and efficient for many problems that are not convenient for the multi-
grid (anisotropic grids, systems of equations etc.). However, the ILU methods
have very limited parallelization potential [2,3] and, for this reason, simple
explicit methods and preconditioners of the O(N) class remain attractive in
some cases.

Let’s consider now the Red-black Gauss-Seidel and SOR methods. These
methods become fully explicit and can be represented as two half-sweeps (Fig. 2).
Here parts 1 and 2 of a matrix represent grid nodes of the first and the second
color respectively. The principal operation in each half-sweep is the multiplica-
tion of a sparse matrix by a corresponding vector. Such kind of operations can be
massively and efficiently parallelized. Therefore they can be used as smoothers
in highly parallel implementations of the multigrid.

Efficient implementation of the matrix-vector multiplication for multicolor
grid partitionings requires reordering and reorganization of the original matrix.

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors 13

(D + L)xk+1 = b − LTxk

Two half-sweeps:
D(1)x

(1)
k+1 = b(1) − LTx

(2)
k

D(2)x
(2)
k+1 = b(2) − Lx

(1)
k+1

Explicit representation:
xk+1 = D−1(I − LD−1)(b − LTxk)

L

D(1) LT

D(2)

Fig. 2. Iteration of the Red-black Gauss-Seidel method for a symmetric matrix (Color
figure online)

3 Throughput-Oriented Processors and Storage Schemes

All modern high-performance microprocessors belong to the class of throughput-
oriented processors. This means that their performance is achieved in cooperative
work of many processor cores and depends not only on the computational speed
of cores but also on the throughput of the memory subsystem. The latter is
determined by characteristics of the cache memory hierarchy, number and width
of integrated memory controllers, memory access speed and capacity of inter-
core or interprocessor communications. Additionally some memory optimization
features are presented in the processor such as streamlined prefetch of regularly
accessed data, fast access to unaligned data and facilities for efficient indirect
accesses (gather, scatter) which are needed for processing sparse matrices.

Another main feature of throughput-oriented processors is vectorization: sev-
eral elements of data can be packed in a vector and processed simultaneously by
a single machine instruction. This feature is supported by the smart vectorizing
compilers which can be controlled by auxiliary directives in a source code.

Finally, shared memory organization with coherent caches is needed for par-
allelization, together with the appropriate software support (OpenMP compilers
and other parallel environments).

There are two principal classes of throughput-oriented processors – multicore
and manycore. Multicore means just a presence of several traditional processor
cores in a single semiconductor chip, with the typical number of cores up to 8–12,
clock frequency around 3 GHz and standard integrated memory interfaces (up to
4 64-bit channels of DDR3 or DDR4). Typical vector width is 128 or 256 bits.

Manycore (MIC) is a new class of processors with large number of simple and
relatively slow cores. Each core is equipped with a very powerful floating point
unit (FPU) that processes 512-bit vectors organized as 8 × 64-bit or 16 × 32-bit
words. The only current implementation of MIC is Intel Xeon Phi, that have the
following characteristics (for the model 5110P): 60 cores, up to 4 threads per core
(240 threads total), frequency 1.05 GHz, 8 channels of GDDR5 memory. Thus
manycore processors are also throughput-oriented, they possess all necessary
properties: parallelization, vectorization and memory optimization.

14 O. Bessonov

However, manycore processors differ from their multicore counterparts in the
balance between components of performance: they need much more threads to
saturate a processor (240 vs. 8–12), rely on slower scalar performance of a single
thread (speed ratio about 1:10), benefit from regular vectorized floating point
operations (512-bit vectors vs. 256-bit) and from very powerful memory subsys-
tem (150–20 GB/s vs. 40–50 GB/s). As a results they are able to demonstrate
the level of performance about 1.5 times higher than bi-processor systems built
on multicore processors when running realistic memory-bound applications.

Manycore is often considered just as a superfast arithmetic engine (like GPU).
However, it is conceptually a universal parallel processor and, compared to GPU,
its performance potential is much wider, as well as the range of applications.

Both multicore and manycore processors need special optimizations of appli-
cation programs in order to achieve high performance, such as contiguous data
placement, avoiding very sparse structures etc. It is a good programming practice
if the same source code is developed for both types of processors.

The most important points of these optimizations is a storage format for
sparse matrices. Usually, the Compressed Row Storage (CRS) is used, when
non-zero elements of a matrix are stored contiguously row-by-row, being accom-
panied with their column indexes. In this case, addressing elements of a vector
by which this matrix is being multiplied is performed indirectly. However, a set
of vector elements being processed for a given row can be located very sparsely:
for example, in the discretization of a regular 3D domain of the size n3, the
distance between elements will be O(n2). Such non-regular and non-contiguous
data accesses are very non-optimal for modern processors, especially if they are
performed using vectorized forms of data load operations (gather).

A good alternative is the Compressed Diagonal Storage (CDS). This format
is applicable for more-or-less regular discretizations with a stencil of the limited
size – in particular, for Cartesian discretizations in arbitrary domains (e.g. in
the Level set method). In this format, a matrix is considered as consisting of
the limited number of diagonals (more exactly, quasi-diagonals), and matrix
elements are stored contiguously within each diagonal, being accompanied with
their column indexes. Each diagonal must contain an element for each row even
if it is zero. On the other hand, corresponding vector elements being addressed
by the indexes are located almost densely. As a result, vectorized forms of data
load operations can be employed very efficiently.

Both storage schemes were evaluated using the Jacobi-preconditioned Con-
jugate Gradient solvers for two matrix sizes. For the smaller matrix (0.32 M grid
points), the performance gain of the CDS scheme was about 1.25 and 1.4 on
multicore processors (for the FPU vector size 128 bits and 256 bits, respectively)
and about 1.8 on a manycore (vector size 512 bits). For the large matrix (4.8 M
grid points), the full memory throughput rate of 80 GB/s was achieved on the
tested bi-processor multicore system (Sandy Bridge). On the manycore processor
(model 3120P), the achieved level was 120 GB/s that is also close to the limit.
Thus, these tests demonstrated the importance of adequate data structures and
access patterns for modern high-performance processors.

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors 15

4 Description of the Algebraic Multigrid

Algebraic multigrid (AMG) is based on matrix coefficients rather than on the
geometry of a computational domain. Owing to the strict mathematical founda-
tion, this method works fine and demonstrates excellent convergence on solving
ill-conditioned elliptic linear systems. For regular grids, however, the Algebraic
multigrid has the natural geometric interpretation.

Here we consider implementations of the AMG for Cartesian discretizations
in arbitrary domains. These discretizations produce unified 7-point stencils and,
as a result, it becomes possible to use more simple and regular data structures.

An iteration of the multigrid is usually represented as a V-cycle (Fig. 3).
Within this cycle, a smoothing procedure is performed on a hierarchy of dis-
cretizetions thus reducing high-frequency and low-frequency components of the
residual vector.

1 Pre-smooth x1 = S1 (x0, b)
2 Residual b1 = b − Ax1

3 Restriction b̃1 = Rb1
4 Next level Ãx̃2 ≈ b̃1
5 Prolongation x2 = P x̃2

6 Correction x3 = x1 + x2
7 Post-smooth x0 = S2 (x3, b)

1

2

3

...

last

12 3

123

123

123

4

4

4

4

exact

56 7

567

567

567V-cycle

Fig. 3. Multigrid algorithm (left) and illustration of V-cycle (right)

Smoothing is the most important part of the algorithm. It is first performed
in the beginning of each level reducing corresponding error components. Then
the residual vector is restricted (averaged) into the more coarse grid, and the
algorithm is recursively executed at the next level. After that, the new coarse
residual vector is prolongated (interpolated) into the current fine grid, the result
is corrected, and the smoothing procedure is performed again. At the last level,
the coarsest grid equation is solved either exactly or by a simple iterative pro-
cedure (not necessarily accurate).

At the initialization phase of the algorithm, a hierarchical sequence of grids
should be built, together with intergrid transfer operators R and P . Also, matri-
ces for all grid levels should be constructed.

A procedure of building the next (coarse) grid from the current (fine) grid
is called coarsening. At the particular level, a subset of variables (grid nodes) is
selected for the next level. They are called Coarse nodes (C-nodes), while the
remaining ones are Fine nodes (F-nodes). Different coarsening algorithms exist,
more or less aggressive. Here, the natural geometric coarsening is applied, when
the number of grid points is reduced by 8 at each level in 3D (Fig. 4).

16 O. Bessonov

Fig. 4. Fine grid and two levels of coarsening (left to right)

F-nodes can be connected to C-nodes either directly (strong connection) or
indirectly (weak connection). These connections are used for building intergrid
transfer operators, firstly the prolongation (interpolation) operator P (Fig. 3).

In the AMG, operator-dependent interpolations are used, which are based on
matrix coefficients. For strongly connected F-nodes, interpolations are performed
in accordance with coefficient weights in the connections to adjacent C-nodes
(direct interpolation). For weakly connected nodes, intermediate weights in the
connections to adjacent strong-F-nodes are used (standard interpolation). For
more weakly connected F-nodes, an additional interpolation step is needed [4].

The restriction (averaging) operator is constructed as a transpose of the
prolongation operator: R = PT.

The next step is to build a matrix for the coarser level from the current one
by means of the Galerkin operator (Fig. 5). It is related to the restriction (R)
and prolongation (P) operators. The Galerkin operator retains the symmetry
and some other properties of a matrix.

x̃ = Rx = PTx

Ã = RAP = PTAP

x = P x̃ x xR A P ~
A

Fig. 5. Building a coarser level matrix by the Galerkin operator

For the above interpolations (in 3D), all constructed matrices have 27 quasi-
diagonals, that corresponds to a 27-point discretization stencil at each level
except the first one (which has a 7-point stencil for orthogonal grids). Despite
this, the first level is the most computationally expensive because of the larger
number of grid points. The second level with 8 times less nodes is still expen-
sive because of 4 times larger stencil. Therefore, algorithms for the first two
levels should be well optimized while the remaining levels are less important for
performance.

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors 17

Within an AMG iteration, pre- and post-smoothers are the most impor-
tant parts of the algorithm both for efficiency and convergence. In the current
implementation, Red-black Gauss-Seidel or SOR smoothers are used at the first
level and 8-color Gauss-Seidel at others. Several iterations of the smoothing
algorithm can be applied. In particular, the typical number of iterations is 11

2
(3 half-sweeps) or 2 for the first two levels, and up to 3 or 4 for others.

At the first level, the Compressed Diagonal storage scheme is used for the
main matrix. The matrix is stored in two parts to separate red and black nodes.
This is necessary because at each step of the algorithm, only elements of a
particular color are processed, and storing them in the natural order (when red
and black elements alternate with each other) would lead to the twofold increase
of data being read from the memory.

For the next levels, matrix coefficients are stored densely with 27 elements
in a row, being accompanied with their column indexes in another dense array.

For storing the restriction operator R, a similar scheme is used at all levels
because this operator also corresponds to a 27-point stencil. On the other hand,
stencils of the prolongation operator P are not uniform and may have different
number of points, depending on the class of a grid node (C, strong-F, weak-F,
weak-weak-F). For this reason, several sparse structures are organized to assist
the interpolation.

Additionally, some auxiliary data array are build for storing different char-
acteristics of grid nodes (color, interpolation class, intergrid references etc.).

The above optimizations of sparse data structures allowed to eliminate dif-
ficulties in parallelization and vectorization of the algorithm and increase its
computational speed.

For the last grid level, a simple iterative solver of the Conjugate Gradient class
can be applied. This solver doesn’t need to be accurate, it is usually enough to
reduce the residual norm by only two orders of magnitude. The solver works fine
on multicore computer systems with a moderate number of threads. However,
on manycore processors there is too few computational work in each thread (for
the typical last-level matrix size about 500). At the same time, several barrier
synchronizations for all threads are needed at each iteration of the CG algorithm
that leads to large delays and increases the computational time.

In order to avoid this problem, a variant of the solver based on the matrix
inversion was developed. In this approach, the original last-level sparse matrix
is explicitly inverted by the Gauss-Jordan algorithm at the initialization phase.
The resulting full (dense) matrix is used at the execution phase in the very
simple algorithm of matrix-by-vector multiplication. This algorithm is perfectly
parallelized and doesn’t need synchronizations. The only requirement is that
the original last-level matrix should not be large, i.e. the sufficient number of
multigrid levels should be defined. This algorithm works well on both manycore
and multicore processors. Another point is that it is direct and therefore more
robust in comparison with iterative CG solvers.

The described multigrid solver for non-symmetric linear systems was imple-
mented in Fortran with OpenMP parallelization. The same source code works

18 O. Bessonov

both on multicore and manycore processors, demonstrating good parallelization
efficiency. The solver has many parameters for fine tuning the AMG algorithm.

5 Multigrid as a Preconditioner

Another approach is to use the multigrid idea for preconditioning in a solver of the
Conjugate Gradient class. In this approach, the meaning of a multigrid iteration
(V-cycle) is different. While in the plain multigrid V-cycles are repeated until con-
vergence, gradually reducing the residual norm, in the multigrid-preconditioned
CG a V-cycle is applied once in each CG iteration in order to reduce the condition
number of a matrix.

Surprisingly, the multigrid-preconditioned Conjugate Gradient method often
behaves substantially better than the plain multigrid: it is more robust and
converges faster.

Additionally, it becomes possible to use the single-precision arithmetic for
the multigrid part of the algorithm instead of the traditional double-precision
without loosing the overall accuracy. Due to this, the computational cost of the
algorithm can be decreased because of reduced sizes of arrays with floating point
data and corresponding reduction of the memory traffic.

As a result, the AMG-preconditioned CG solver becomes faster than the plain
AMG in a single iteration and at the same time needs less iterations to converge.
Currently the AMG CG solver is implemented for symmetric matrices only.
Later it will be extended for the nonsymmetric case as an AMG-preconditioned
BiCGStab. Typical iteration counts are shown below for the CG AMG solver
vs. the plain AMG for several test matrices:

– small spherical domain (0.32 M grid points): 7 vs. 10,
– large spherical domain (2.3 M grid points): 8 vs. 11,
– long cylindrical domain, aspect ratio 5:1 (2 M grid points): 9 vs. 14.

For the last problem, the CG AMG solver is about 1.7 times faster than the
plain AMG.

In order to achieve better convergence, some tuning of the algorithm is nec-
essary, such as defining the number of grid levels, the number of iterations (half-
sweeps) for smoothing at each level and the value of the over-relaxation factor
at the first level. In particular, the SOR factor around 1.15 is usually optimal
for convergence.

6 Performance of the Multigrid Solvers

Performance results of the new AMG-preconditioned Conjugate Gradient solver
in comparison with the Jacobi-preconditioned (explicit) Conjugate Gradient are
shown in Table 2. The following computer systems were used for these tests:

– Bi-processor Xeon E5-2690v2, 3 GHz, 2 × 10 cores, 20 threads;
– Xeon Phi model 5110P, 1.05 GHz, 59 cores, 236 threads.

Highly Parallel Multigrid Solvers for Multicore and Manycore Processors 19

Table 2. Performance results for multicore and manycore computer systems

Computer system CG Jacobi CG AMG AMG : CG

multicore bi-Xeon 4.87 s 0.172 s 28 : 1

manycore Xeon Phi 3.15 s 0.185 s 17 : 1

manycore : multicore 1.55 : 1 0.93 : 1 —

The test matrix represents a discretization in a long cylindrical domain with
the aspect ratio 5:1 (2 M grid points). Iteration counts are 9 for the CG AMG
and 690 for the CG Jacobi (this corresponds to 1380 iterations for the simple
diagonally-preconditioned CG [3]).

The above results demonstrate the great superiority of the AMG-preconditi-
oned method over the plain Conjugate Gradient. The important reason is that
this particular matrix represents a long domain with the number of grid points
about 400 in the longest direction, that determines the iteration count for explicit
CG algorithms. This example also confirms that the multigrid iteration count
doesn’t depend on the problem size.

On shorter domains, superiority of the multigrid is a little bit less. In par-
ticular, for a large spherical domain (2.3 M grid points), iteration counts are 8
and 350 respectively, and AMG : CG speed ratio is about 16:1 for the multicore
Xeon processor and about 10:1 for the manycore Xeon Phi. These proportions
are expected to be typical for most matrices of the similar size.

The comparison of the manycore Xeon Phi to the multicore bi-Xeon system
demonstrates its moderate superiority in the simple explicit CG which is a pure
memory-bound algorithm. The speed proportion 1.55:1 in favor of Xeon Phi
roughly corresponds to the ratio between achievable memory throughput rates
for these systems. The multigrid algorithm, in turn, is much more complicated
and less regular, especially in memory access patterns and at higher (coarser) grid
levels. For this reason, the relative performance of Xeon Phi becomes less. Nev-
ertheless this result should be considered as very reasonable taking into account
the highly parallel nature of this processor.

7 Conclusion

In this work we have presented new efficient parallel solvers for Cartesian dis-
cretizations in general domains. Two variants of the solvers are built, based on
the Algebraic multigrid approach (AMG) and on the Conjugate Gradient method
with the AMG preconditioning (CG AMG). Both solvers use the advanced
Compressed Diagonal storage format suitable for efficient processing on modern
throughput-oriented computer systems. The solvers are targeted on the solution
of Poisson-like and other ill-conditioned linear systems, both symmetric and
non-symmetric.

The new solvers have been evaluated and tested on multicore (bi-Xeon)
and manycore (Xeon Phi) processors using several matrices of different size.

20 O. Bessonov

In comparison to the Conjugate Gradient class solvers with explicit precondi-
tioning, they have demonstrated the speed increase up to 10–16 times typically
and up to 17–28 for elongated domains.

The obtained results have also demonstrated that manycore processors can
be efficiently employed for solving algebraic problems of the general class using
standard programming languages and parallel environments (Fortran, OpenMP).

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (project RFBR-15-01-06363) and by the Institute of mathematics (IMATH)
of the University of Toulon. Computations have been performed at the BULL’s Com-
puting Center, IMATH and Mésocentre of the University of Aix-Marseille, France.

References

1. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method without
the Agonizing Pain. Carnegie Mellon University, School of Computer Science,
Pittsburgh (1994)

2. Accary, G., Bessonov, O., Fougère, D., Gavrilov, K., Meradji, S., Morvan,
D.: Efficient parallelization of the preconditioned conjugate gradient method.
In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 60–72. Springer,
Heidelberg (2009)

3. Bessonov, O.: Parallelization properties of preconditioners for the conjugate gra-
dient methods. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 26–36.
Springer, Heidelberg (2013)

4. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309
(2001)

Hierarchical Optimization of MPI Reduce
Algorithms

Khalid Hasanov(B) and Alexey Lastovetsky

University College Dublin, Belfield, Dublin 4, Ireland
khalid.hasanov@ucdconnect.ie, Alexey.Lastovetsky@ucd.ie

Abstract. Optimization of MPI collective communication operations
has been an active research topic since the advent of MPI in 1990s.
Many general and architecture-specific collective algorithms have been
proposed and implemented in the state-of-the-art MPI implementations.
Hierarchical topology-oblivious transformation of existing communica-
tion algorithms has been recently proposed as a new promising approach
to optimization of MPI collective communication algorithms and MPI-
based applications. This approach has been successfully applied to the
most popular parallel matrix multiplication algorithm, SUMMA, and
the state-of-the-art MPI broadcast algorithms, demonstrating significant
multi-fold performance gains, especially for large-scale HPC systems. In
this paper, we apply this approach to optimization of the MPI reduce
operation. Theoretical analysis and experimental results on a cluster of
Grid’5000 platform are presented.

Keywords: MPI · Reduce · Grid’5000 · Communication · Hierarchy

1 Introduction

Reduce is important and commonly used collective operation in the Message
Passing Interface (MPI) [1]. A five-year profiling study [2] demonstrates that
MPI reduction operations are the most used collective operations. In the reduce
operation each node i owns a vector xi of n elements. After completion of the
operation all the vectors are reduced element-wise to a single n-element vector
which is owned by a specified root process.

Optimization of MPI collective operations has been an active research topic
since the advent of MPI in 1990s. Many general and architecture-specific col-
lective algorithms have been proposed and implemented in the state-of-the-art
MPI implementations. Hierarchical topology-oblivious transformation of exist-
ing communication algorithms has been recently proposed as a new promising
approach to optimization of MPI collective communication algorithms and MPI-
based applications [3,5]. This approach has been successfully applied to the most
popular parallel matrix multiplication algorithm, SUMMA [4], and the state-of-
the-art MPI broadcast algorithms, demonstrating significant multi-fold perfor-
mance gains, especially on large-scale HPC systems. In this paper, we apply this
approach to optimization of the MPI reduce operation.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 21–34, 2015.
DOI: 10.1007/978-3-319-21909-7 3

22 K. Hasanov and A. Lastovetsky

1.1 Contributions

We propose a hierarchical optimization of legacy MPI reduce algorithms without
redesigning them. The approach is simple and general, allowing for application
of the proposed optimization to any existing reduce algorithm. As by design the
original algorithm is a particular case of its hierarchically transformed counter-
part, the performance of the algorithm will either improve or stay the same in
the worst case scenario. Theoretical study of the hierarchical transformation of
six reduce algorithms, which are implemented in Open MPI [7], is presented.
The theoretical results have been experimentally validated on a widely used
Grid’5000 [8] infrastructure.

1.2 Outline

The rest of the paper is structured as follows. Section 2 discusses related work.
The hierarchical optimization of MPI reduce algorithms is introduced in Sect. 3.
The experimental results are presented in Sect. 4. Finally, Sect. 5 concludes the
presented work and discusses future directions.

2 Related Work

In the early 1990s, the CCL library [9] implemented collective reduce opera-
tion as an inverse broadcast operation. Later collective algorithms for wide-area
clusters were proposed [10], and automatic tuning for a given system by con-
ducting a series of experiments on the system was discussed [11]. Design and
high-performance implementation of collective communication operations and
commonly used algorithms, such as minimum-spanning tree reduce algorithm,
are discussed in [12]. Five reduction algorithms optimized for different message
sizes and number of processes are proposed in [13]. Implementations of MPI
collectives, including reduce, in MPICH [15] are discussed in [16]. Algorithms
for MPI broadcast, reduce and scatter, where the communication happens con-
currently over two binary trees, are presented in [14]. Cheetah framework [17]
implements MPI reduction operations in a hierarchical way on multicore sys-
tems, which supports multiple communication mechanisms. Unlike that work,
our optimization is topology-oblivious, and MPI reduce optimizations in this
work do not design new algorithms from scratch, employing the existing reduce
algorithms underneath. Therefore, our hierarchical design can be built on top of
the algorithms from the Cheetah framework as well. This work focuses on reduce
algorithms implemented in Open MPI such as flat, linear/chain, pipeline, binary,
binomial and in-order binary tree algorithms.

We extend our previous studies on parallel matrix multiplication [3] and
topology-oblivious optimization of MPI broadcast algorithms on large-scale dis-
tributed memory platforms [5,6] to MPI reduce algorithms.

Hierarchical Optimization of MPI Reduce Algorithms 23

2.1 MPI Reduce Algorithms

We assume that the time to send a message of size m between any two MPI
processes is modeled with Hockney model [18] as α+m×β, where α is the latency
per message and β is the reciprocal bandwidth per byte. It is also assumed
that the computation cost per byte in the reduction operation is γ on any MPI
process. Unless otherwise noted, in the rest of the paper we will call MPI process
just process.

– Flat tree reduce algorithm.
In this algorithm, the root process sequentially receives and reduces a message
of size m from all the processes participating in the reduce operation in p − 1
steps:

(p − 1) × (α + m×β + m×γ) . (1)

In a segmented flat tree algorithm, a message of size m is split into X segments,
in which case the number of steps is X×(p − 1). Thus, the total execution
time will be as follows:

X× (p − 1) ×
(
α +

m

X
×β +

m

X
×γ

)
. (2)

– Linear tree reduce algorithm.
Unlike the flat tree, here each process receives or sends at most one message.
Theoretically, its cost is the same as the flat tree algorithm:

(p − 1) × (α + m×β + m×γ) . (3)

– Pipeline reduce algorithm.
It is assumed that a message of size m is split into X segments and in one
step of the algorithm a segment of size m

X is reduced between p processes.
If we assume a logically reverse ordered linear array, in the first step of the
algorithm the first segment of the message is sent to the next process in the
array. Next, while the second process sends the first segment to the third
process, the first process sends the second segment to the second process, and
the algorithm continues in this way. The first segment takes p − 1 and the
remaining segments take X − 1 steps to reach the end of the array. If we also
consider the computation cost in each step, then overall execution time of the
algorithm will be as follows:

(p + X − 2) ×
(
α +

m

X
×β +

m

X
×γ

)
. (4)

– Binary tree reduce algorithms.
If we take a full and complete binary tree of height h, its number of nodes
will be 2h+1 − 1. In the reduce operation, a node at the hight h will receive
two messages from its children at the height h + 1. In addition, if we segment
a message of size m into X segments, the overall run time will be as follows:

2 (log2 (p + 1) + X − 2) ×
(
α +

m

X
×β +

m

X
×γ

)
. (5)

24 K. Hasanov and A. Lastovetsky

Open MPI uses the in-order binary tree algorithm for non-commutative oper-
ations. It works similarly to the binary tree algorithm but enforces order in
the operations.

– Binomial tree reduce algorithm.
The binomial tree algorithm takes log2(p) steps and the message communi-
cated at each step is m. If the message is divided into X segments, then
the number of steps and the message communicated at each step will be
X× log2(p) and m

X respectively. Therefore, the overall run time will be as
follows:

log2 (p) × (α + m×β + m×γ) . (6)

– Rabenseifner’s reduce algorithm.
The Rabenseifner’s algorithm [13] is designed for large message sizes. The algo-
rithm consists of reduce-scatter and gather phases. It has been implemented
in MPICH [16] and used for message sizes greater than 2 KB. The reduce-
scatter phase is implemented with recursive-halving, and the gather phase is
implemented with binomial tree. Therefore, the run time of the algorithm is
the sum of these two phases:

2 log2 (p) ×α + 2
p − 1

p
×m×β +

p − 1
p

×m×γ. (7)

The algorithm can be further optimized by recursive vector halving, recursive
distance doubling, recursive distance halving, binary blocks, and ring algorithms
for non-power-of-two number of processes. An interested reader can consult [13]
for more detailed discussion of those algorithms.

3 Hierarchical Optimization of MPI Reduce Algorithms

This section introduces a topology-oblivious optimization of MPI reduce algo-
rithms. The idea is inspired by our previous study on the optimization of the
communication cost of parallel matrix multiplication [3] and MPI broadcast [5]
on large-scale distributed memory platforms.

The proposed optimization technique is based on the arrangement of the
p processes participating in the reduce into logical groups. For simplicity, it
is assumed that the number of groups divides the number of MPI processes
and can change between one and p. Let G be the number of groups. Then
there will be p

G MPI processes per group. Figure 1 shows an arrangement of 8
processes in the original MPI reduce operation, and Fig. 2 shows the arrangement
in a hierarchical reduce operation with 2 groups of 4 processes. The hierarchical
optimization has two phases: in the first phase, a group leader is selected for
each group and the leaders start reduce operation inside their own group in
parallel (in this example between 4 processes). In the next phase, the reduce
is performed between the group leaders (in this example between 2 processes).
The grouping can be done by taking the topology into account as well. However,
in this work the grouping is topology-oblivious and the first process in each

Hierarchical Optimization of MPI Reduce Algorithms 25

group is selected as the group leader. In general, different algorithms can be
used for reduce operations between group leaders and within each group. This
work focuses on the case where the same algorithm is employed at both levels of
hierarchy. Algorithm 1 shows the pseudocode of the hierarchically transformed
MPI reduce operation. Line 4 calculates the root for the reduce between the
groups. Then line 5 creates a sub-communicator of G processes between the
groups, and line 6 creates a sub-communicator of p

G processes inside the groups.
Our implementation uses the MPI Comm split MPI routine to create new sub-
communicators.

P0 P1 P2 P3 P4 P5 P6 P7

MPI Op

P0

Fig. 1. Logical arrangement of processes in MPI reduce.

P0 P1 P2 P3

MPI Op

P0

P4 P5 P6 P7

MPI Op

P4

MPI Op

P0

Fig. 2. Logical arrangement of processes in hierarchical MPI reduce.

3.1 Hierarchical Transformation of Flat Tree Reduce Algorithm

After the hierarchical transformation, there will be two steps of the reduce opera-
tion: inside the groups and between the groups. The reduce operations inside the
groups happen between p

G processes in parallel. Then, the operation continues
between G groups. The cost of the reduce operations inside groups and between
groups will be (G − 1)×(α + m×β + m×γ) and (p

G − 1)×(α + m×β + m×γ)
respectively. Thus, the overall run time can be seen as a function of G:

F (G) =
(
G +

p

G
− 2

)
× (α + m×β + m×γ) (8)

The derivative of the function is (1 − p
G2)×(α + m×β + m×γ), it can be shown

that p =
√

G is the minimum point of the function in the interval (1, p). Then
the optimal value of the function will be as follows:

F (
√

p) = (2
√

p − 2) × (α + m×β + m×γ) (9)

26 K. Hasanov and A. Lastovetsky

Algorithm 1. Hierarchical optimization of MPI reduce operation.
Data: p - Number of processes
Data: G - Number of groups
Data: sendbuf - Send buffer
Data: recvbuf - Receive buffer
Data: count - Number of entries in send buffer (integer)
Data: datatype - Data type of elements in send buffer
Data: op - MPI reduce operation handle
Data: root - Rank of reduce root
Data: comm - MPI communicator handle
Result: The root process has the reduced message
begin

1 MPI Comm comm outer /* communicator between the groups */

2 MPI Comm comm inner /* communicator inside the groups */

3 int root outer /* root of reduce between the groups */

4 root outer = Calculate Root Outer(G, p, root, comm)

5 comm outer = Create Comm Between Groups(G, p, root outer, comm)

6 comm inner = Create Comm Inside Groups(G, p, root, comm)

7 MPI Reduce(sendbuf, recvbuf, count, datatype, op, root, comm inner)
8 MPI Reduce(sendbuf, recvbuf, count, datatype, op, root outer, comm outer)

3.2 Hierarchical Transformation of Pipeline Reduce Algorithm

If we sum the costs of reduce inside and between groups with pipeline algorithm,
the overall run time will be as follows:

F (G) =
(
2X + G +

p

G
− 4

)
×

(
α +

m

X
×β +

m

X
×γ

)
(10)

In the same way, it can be easily shown that the optimal value of the cost function
is as follows:

F (
√

p) = (2X + 2
√

p − 4) ×
(
α +

m

X
×β +

m

X
×γ

)
(11)

3.3 Hierarchical Transformation of Binary Reduce Algorithm

For simplicity, we will take p + 1≈p in the formula 5. Then the cost of the
reduce operations between the groups and inside the groups will be as follows
respectively: 2 log2(G)×(α+m×β +mγ) and 2 log2(

p
G)×(α+m×β +mγ). If we

add these two terms, the overall cost of the hierarchical transformation of the
binary tree algorithm will be equal to the cost of the original algorithm.

3.4 Hierarchical Transformation of Binomial Reduce Algorithm

Similarly to the binary reduce algorithm, the cost function of the binomial tree
will not change after hierarchical transformation.

Hierarchical Optimization of MPI Reduce Algorithms 27

3.5 Hierarchical Transformation of Rabenseifner’s Reduce
Algorithm

By applying the formula 7 between the groups with G processes and inside the
groups with p

G processes, we can find the run time of hierarchical transformation
of Rabenseifner’s algorithm. Unlike the previous algorithms, now the theoretical
cost increases in comparison to the original Rabenseifner’s algorithm. Therefore,
theoretically the hierarchical reduce implementation should use the number of
groups equals to one, in which case the hierarchical algorithm retreats to the
original algorithm.

2 log2(p)×α + 2m×β×
(

2 − G

p
− 1

G

)
+ mγ

(
2 − G

p
− 1

G

)
(12)

3.6 Possible Overheads in the Hierarchical Design

Our implementation of the hierarchical reduce operation uses MPI Comm split
operation to create groups of processes. The obvious questions would be to which
extent the split operation can affect the scalability of the hierarchical algorithms.
Recent research works show different approaches to improve the scalability of
MPI communicator creation operations in terms of run time and memory foot-
print. The research in [20] introduces a new MPI Comm split algorithm, which
scales well to millions of cores. The memory usage of the algorithm is O(pg) and
the time is O(g log2(p) + log22(p) + p

g log2(g)), where p is the number of MPI
processes, g is the number of processes in the group that perform sorting. More
recent research work in [21] improves the previous algorithm with two variants.
The first one, which uses a bitonic sort, needs O(log2(p)) memory and O(log22(p))
time. The second one is a hash-based algorithm and requires O(1) memory and
O(log2(p)) time. Having these algorithms, we can utilize MPI Comm split oper-
ation in our hierarchical design with negligible overhead of creating MPI sub-
communicators. There will not be any overhead at all for large messages as the
split operation does not depend on the message size.

4 Experiments

The experiments were carried out on the Grid’5000 infrastructure in France.
The platform consists of 24 clusters distributed over 9 sites in France and one
in Luxembourg which includes 1006 nodes, 8014 cores. Almost all the sites are
interconnected by 10 Gb/s high-speed network. We used the Graphene cluster
from Nancy site of the infrastructure as our main testbed. The cluster is equipped
with 144 nodes and each node has a disk of 320 GB storage, 16 GB of memory
and 4-cores of CPU Intel Xeon X3440. The nodes in the Graphene cluster inter-
connected via 20 Gb/s Infiniband and Gigabyte Ethernet. More comprehensive
information about the platform can be found on the Grid’5000 web site (http://
www.grid5000.fr).

http://www.grid5000.fr
http://www.grid5000.fr

28 K. Hasanov and A. Lastovetsky

The experiments have been done with Open MPI 1.4.5, which provides a few
reduce implementations. Among those implementations there are several reduce
algorithms such as linear, chain, pipeline, binary, binomial, and in-order binary
algorithms and platform/architecture specific algorithms, some of which are
reduce algorithms for Infiniband networks, and the Cheetah framework for mul-
ticore architectures. In this work, we do not consider the platform specific reduce
implementations. We used the same approach as described in MPIBlib [19] to
benchmark our experiments. During the experiments, the mentioned reduce algo-
rithms were selected by using Open MPI MCA (Modular Component Architec-
ture) coll tuned use dynamic rules and coll tuned reduce algorithm parameters.
MPI MAX operation has been used in the experiments. We have used Graphene
cluster with two experimental settings, one process per core and one process
per node with the Infiniband-20G network. A power-of-two number of processes
have been used in the experiments.

4.1 Experiments: One Process per Core

The nodes in the Graphene cluster are organized into four groups and connected
to four switches. The switches in turn are connected to the main Nancy router.
We have used 10 patterns of process to core mappings, but we will show exper-
imental results only with one such mappings where the processes are grouped
by their rank in increasing order. The measurements with different groupings
showed similar performance.

The theoretical and experimental results showed that the hierarchical app-
roach mainly improves the algorithms which assume flat arrangements of the
processes, such as linear, chain and pipeline. On the other hand the native Open
MPI reduce operation selects different algorithms depending on the message size,
the count and the number of processes sent to the MPI Reduce function. This
means the hierarchical transformation can improve the native reduce operation
as well. The algorithms used in the Open MPI decision function are linear, chain,
binomial, binary/in-order binary and pipeline reduce algorithms which can be
used with different sizes of segmented messages.

Figure 3 shows experiments with default Open MPI reduce operation with a
message of size 16 KB where the best performance is achieved when the group
size is 1 or p, in which case the hierarchical reduce obviously turns into the origi-
nal non-hierarchical reduce. Here for different numbers of groups the Open MPI
decision function selected different reduce algorithms. Namely, if the number of
groups is 8 or 64 then Open MPI selects the binary tree reduce algorithm between
the groups and inside the groups respectively. In all other cases the binomial tree
reduce algorithm is used. Figure 4 shows similar measurements with a message of
size 16 MB where one can see a huge performance improvement up to 30 times.
This improvement does not come solely from the hierarchical optimization itself,
but also because of the number of groups in the hierarchical reduce resulted in
Open MPI decision function to select the pipeline reduce algorithm with differ-
ent segment sizes for each groups. The selection of the algorithms for different
number of groups is described in Table 1.

Hierarchical Optimization of MPI Reduce Algorithms 29

20 22 24 26 28 210
0

1

2

3

·10−3

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 3. Hierarchical native
reduce. m =16 KB and p = 512.

20 22 24 26 28 210
0

2

4

6

8

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 4. Hierarchical native
reduce. m =16 MB and p = 512.

Table 1. Open MPI algorithm selection in HReduce. m =16 MB, p = 512.

Groups Inside groups Between groups

1 - Pipeline 32 KB

2 Pipeline 32 KB Pipeline 64 KB

4 Pipeline 32 KB Pipeline 64 KB

8 Pipeline 32 KB Pipeline 64 KB

16 Pipeline 64 KB Pipeline 64 KB

32 Pipeline 64 KB Pipeline 64 KB

64 Pipeline 64 KB Pipeline 32 KB

128 Pipeline 64 KB Pipeline 32 KB

256 Pipeline 64 KB Pipeline 32 KB

As mentioned in Sect. 3.6, it is expected that the overhead from the
MPI Comm split operation should affect only reduce operations with smaller
message sizes. Figure 5 validates this with experimental results. The hierarchical
reduce operation of 1 KB message with the underlying native reduce achieved
its best performance when the number of groups was one as the overhead from
the split operation itself was higher than the reduce.

It is interesting to study the pipeline algorithm with different seg-
ment sizes as it is used for large message sizes in Open MPI. Figure 6
presents experiments with the hierarchical pipeline reduce with a message
size of 16 KB with 1 KB segmentation. We selected the segment sizes using
coll tuned reduce algorithm segmentsize parameter provided by MCA. Figures 7
and 8 shows the performance of the pipeline algorithm with segment sizes of
32 KB and 64 KB respectively. In the first case, we see a 26.5 times improve-
ment, while with the 64 KB the improvement is 18.5 times.

Figure 9 demonstrates speedup of the hierarchical transformation of native
Open MPI reduce operation, linear, chain, pipeline, binary, binomial, and
in-order binary reduce algorithms with message sizes starting from 16 KB up to

30 K. Hasanov and A. Lastovetsky

16 MB. Except binary, binomial and in-order binary reduce algorithms, there is
a significant performance improvement. In the figure, NT is native Open MPI
reduce operation, LN is linear, CH is chain, PL is pipeline with 32 KB seg-
mentation, BR is binary, BL is binomial, and IBR denotes in-order binary tree
reduce algorithm. We would like to highlight one important point that Fig. 9
does not compare the performance of different Open MPI reduce algorithms, it
rather shows the speedup of their hierarchical transformations. Each of these
algorithms can be better than the others in some specific settings depending
on the message size, number of processes, underlying network and so on. At
the same time, the hierarchical transformation of these algorithms will either
improve their performance or be equally fast.

20 22 24 26 28
0

1

2

3

4

5
·10−4

Number of groups

T
im

e(
Se

c)

MPI Comm split HReduce
Reduce

Fig. 5. Time spent on
MPI Comm split and hierar-
chical native reduce. m = 1 KB,
p = 512.

20 22 24 26 28
0

5 · 10−2

0.1

0.15

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 6. Hierarchical pipeline
reduce. m = 16 KB, segment
1 KB and p = 512.

20 22 24 26 28
0

2

4

6

8

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 7. Hierarchical pipeline
reduce. m = 16 MB, segment
32 KB and p = 512.

20 22 24 26 28
0

1

2

3

4

5

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 8. Hierarchical pipeline
reduce. m = 16 MB, segment
64 KB and p = 512.

Hierarchical Optimization of MPI Reduce Algorithms 31

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9

11
13
15
17
19
21
23
25
27

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

Fig. 9. Speedup on 256 (left) and 512 (right) cores, one process per core.

4.2 Experiments: One Process per Node

The experiments with one process per node showed a similar trend to that of
with the one process per core setting. The performance of linear, chain, pipeline
and native Open MPI reduce operations can be improved by the hierarchical
approach. Figures 10 and 11 show experiments on 128 nodes with message sizes
of 16 KB and 16 MB accordingly. In the first setting, the Open MPI decision func-
tion uses the binary tree algorithm when the number of processes is 8 between
or inside groups, in all other cases the binomial tree is used.

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2
·10−3

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 10. Hierarchical native
reduce. m = 16 KB and p = 128.

20 21 22 23 24 25 26 27
0

1

2

3

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 11. Hierarchical native
reduce. m = 16 MB and p = 128.

The pipeline algorithm has similar performance improvement to that of with
512 processes, Fig. 12 shows experiments with a message of size 16 MB segmented
by 32 KB and 64 KB sizes. The labels on the x axis has the same meaning as in
the previous section.

Figure 13 presents speedup of the hierarchical transformations of all the
reduce algorihms from Open MPI “TUNED” component with message sizes

32 K. Hasanov and A. Lastovetsky

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2

2.5

Number of groups

T
im

e(
Se

c)

HReduce Reduce

20 21 22 23 24 25 26 27
0

0.5

1

1.5

Number of groups

T
im

e(
Se

c)

HReduce Reduce

Fig. 12. Hierarchical pipeline reduce. m = 16 MB, segment 32 KB (left) and 64 KB
(right). p = 128.

from 16 KB up to 16 MB on 64 (left) and 128 (right) nodes. Again, the reduce
algorithms wich has “flat” design and Open MPI default reduce operation have
multi-fold performance improvement.

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1

3

5

7

9

11

13

15

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1

3

5

7

9

11

13

15

17

19

Reduce algorithms and their hierarchical modifications

Message size(KB)

Sp
ee

du
p

Fig. 13. Speedup on 64(left) and 128(right) cores. 1 process per node.

5 Conclusion

Despite there has been a lot of research in MPI collective communications, this
work shows that their performance is far from optimal and there is some room
for improvement. Indeed, our simple hierarchical optimization, which trans-
forms existing MPI reduce algorithms into two-level hierarchy, gives significant
improvement on small and medium scale platforms. We believe that the idea can
be incorporated into Open MPI decision function to improve the performance
of reduce algorithms even further. It can also be used as a standalone software
on top of MPI based applications.

Hierarchical Optimization of MPI Reduce Algorithms 33

The key feature of the optimization is that it can never be worse than any
other optimized reduce operation. In the worst case, the algorithm can use one
group and fall back to the native reduce operation.

As the future work, we plan to investigate if using different reduce algorithms
in each phase and different number of processes per group can improve the
performance. We would also like to generalize our optimization to other MPI
collective operations.

Acknowledgments. This work has emanated from research conducted with the finan-
cial support of IRCSET (Irish Research Council for Science, Engineering and Technol-
ogy) and IBM, grant number EPSPG/2011/188, and Science Foundation Ireland, grant
number 08/IN.1/I2054.

The experiments presented in this publication were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

References

1. Message passing interface forum. http://www.mpi-forum.org/
2. Rabenseifner, R.: Automatic MPI counter proling of all users: first results on a

CRAY T3E 900–512. Proceedings of the Message Passing Interface Developers
and Users Conference 1999(MPIDC99), 77–85 (1999)

3. Hasanov, K., Quintin, J.N., Lastovetsky, A.: Hierarchical approach to optimiza-
tion of parallel matrix multiplication on large-scale platforms. J. Supercomput-
ing., 24p. March 2014 (Springer). doi:10.1007/s11227-014-1133-x

4. van de Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience 9(4), 255–274 (1997)

5. Hasanov, K., Quintin, J.-N., Lastovetsky, A.: High-level topology-oblivious opti-
mization of mpi broadcast algorithms on extreme-scale platforms. In: Lopes, L.,
Žilinskas, J., Costan, A., Cascella, R.G., Kecskemeti, G., Jeannot, E., Cannataro,
M., Ricci, L., Benkner, S., Petit, S., Scarano, V., Gracia, J., Hunold, S., Scott,
S.L., Lankes, S., Lengauer, C., Carretero, J., Breitbart, J., Alexander, M. (eds.)
Euro-Par 2014, Part II. LNCS, vol. 8806, pp. 412–424. Springer, Heidelberg (2014)

6. Hasanov, K., Quintin, J.N., Lastovetsky, A.: Topology-oblivious optimization
of MPI broadcast algorithms on extreme-scale platforms. Simulation Modelling
Practice and Theory. 10p. April 2015. doi:10.1016/j.simpat.2015.03.005

7. Gabriel, E., Fagg, G., Bosilca, G., Angskun, T., Dongarra, J., et al.: Open MPI:
goals, concept, and design of a next generation MPI implementation. In: Proceed-
ings of the 11th European PVM/MPI Users Group Meeting (2004)

8. Grid’5000. http://www.grid5000.fr
9. Bala, V., Bruck, J., Cypher, R., Elustondo, P., Ho, C.-T., Ho, C.-T., Kipnis,

S., Snir, M.: CCL: a portable and tunable collective communication library for
scalable parallel computers. IEEE TPDS 6(2), 154–164 (1995)

10. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe
MPIs collective communication operations for clustered wide area systems. In:
Proceedings of PPoPP99, 34(8): 131–140 (1999)

https://www.grid5000.fr
http://www.mpi-forum.org/
http://dx.doi.org/10.1007/s11227-014-1133-x
http://dx.doi.org/10.1016/j.simpat.2015.03.005
http://www.grid5000.fr

34 K. Hasanov and A. Lastovetsky

11. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective commu-
nications. In: Proceedings of ACM/IEEE Conference on Supercomputing (2000)

12. Chan, E.W., Heimlich, M.F., Purkayastha, A., Van de Geijn, R.A.: On optimizing
collective communication. In: Proceedings of IEEE International Conference on
Cluster Computing (2004)

13. Rabenseifner, R.: Optimization of collective reduction operations. In: Proceddings
of International Conference on Computational Science, June 2004

14. Sanders, P., Speck, J., Tráff, J.L.: Two-tree algorithms for full bandwidth broad-
cast. Reduct. Scan. Parallel Comput. 35(12), 581–594 (2009)

15. MPICH-A Portable Implementation of MPI. http://www.mpich.org/
16. Thakur, R., Gropp, W.D.: Improving the performance of collective operations in

MPICH. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003.
LNCS, vol. 2840, pp. 257–267. Springer, Heidelberg (2003)

17. Venkata, M.G., Shamis, P., Sampath, R., Graham, R.L.l, Ladd, J.S.: Optimizing
blocking and nonblocking reduction operations for multicore systems: hierarchical
design and implementation. In: Proceedings of IEEE Cluster, pp. 1–8 (2013)

18. Hockney, R.W.: The communication challenge for MPP: intel paragon and Meiko
CS-2. Parallel Comput. 20(3), 389–398 (1994)

19. Lastovetsky, A., Rychkov, V., O’Flynn, M.: MPIBlib: benchmarking MPI com-
munications for parallel computing on homogeneous and heterogeneous clusters.
In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS,
vol. 5205, pp. 227–238. Springer, Heidelberg (2008)

20. Sack, P., Gropp, W.: A scalable MPI comm split algorithm for exascale comput-
ing. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010.
LNCS, vol. 6305, pp. 1–10. Springer, Heidelberg (2010)

21. Moody, A., Ahn, D.H., de Supinski, B.R.: Exascale algorithms for generalized
MPI comm split. In: Proceedings of the 18th European MPI Users’ Group con-
ference on Recent advances in the message passing interface (EuroMPI 2011)
(2011)

http://www.mpich.org/

On Parallel Computational Technologies
of Augmented Domain Decomposition Methods

Y.L Gurieva1 and V.P Il’in1,2(B)

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

yana@lapasrv.sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

ilin@sscc.ru

Abstract. The performance of the parallel domain decomposition meth-
ods (DDM) for solving very large systems of linear algebraic equations
with non-symmetric sparse matrices depends on the convergence of the
iterative algorithms as well as on the efficiency of the computational
technologies. Usually in DDM approach the number of iterations grows
together with a growth of the degree of freedom. We consider the algo-
rithms for increasing the convergence rate based on the preconditioning
with using deflation and aggregation techniques which take low rank
approximations of the original systems of linear algebraic equations. The
efficiency of the proposed approaches is demonstrated on the represen-
tative set of model tasks.

1 Introduction

In general, the modern domain decomposition methods to solve very large sys-
tems of linear equations (SLAEs), which arise in the discrete approximation on
the non-structured meshes of the multi-dimensional boundary value problems
(BVPs) by the finite element or by other grid methods, can be presented by
three main mathematical approaches: external Krylov’s type iterative process
“on subdomains” which presents the additive Schwarz (or special block Jacobi)
algorithm, simultaneous solving the auxiliary BVPs in the subdomains which can
be carried out by a direct or an iterative algorithm, and preconditioning pro-
cedures to accelerate the external iterations, see [1–5] and the literature cited
there.

The last factor is very important for strongly scalable parallelized tasks,
because for a very large number of subdomains and corresponding block degree
of freedom, one can observe the considerable stagnation of the iterative process.
In recent decades, various versions of aggregation, deflation, and coarse grid
correction accelerators have been investigated and applied successfully by many
authors. The main goal of our paper consists namely in the numerical analysis of

The work is supported partially by Russian Science Foundation grant N 14-11-00485.
The experimental part of the paper is supported by the RFBR grant N 14-07-00128.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 35–46, 2015.
DOI: 10.1007/978-3-319-21909-7 4

36 Y.L Gurieva and V.P Il’in

several versions of aggregation accelerating based on low rank matrix approxima-
tions in different coarse subspaces. The program implemtation of the algorithms
is realized for the universal compressed sparse matrix format which is necessary
to solve the practical problems.

The conventional parallel technologies of DDMs include two levels: applica-
tion of MPI processes for corresponding subdomains, including interface commu-
nications between them at each outer (external) iteration, and implementation of
the multi-thread computing for the “internal” parallelezation on the multi-core
processors.

The problems are specified by three levels of the degrees of freedom: the
number of unknowns of SLAE (108−1011), the quantity of subdomains (102−105,
block dimension of the broblem), and coarse grid dimension (10 − 103) which
determine the scalability of the parallelism of the general computational process.

The bottleneck of DDM approach is in a minimization of a communica-
tion time. It can be done by simultaneous data transfer and synchronized com-
putations in the subdomains. In general, DDM performance depends on the
convergence properties of the iterative algorithms and on the efficiency of the
computational technologies whose variants are discussed later on. In Sect. 2, we
describe the algebraic and structured representation of the multi-level precon-
ditioned iterative processes in the Krylov subspaces. Section 3 is devoted to the
mapping of the parallel algorithms under consideration onto the computational
multi-processor system with the distributed and shared memory architecture.
The results of numerical experiments and an analysis of the various approaches
is carried out for different orders of the basic interpolation functions and for
different placement of the coarse grid nodes. The efficiency of the proposed algo-
rithms is demonstrated on the representative set of the model examples.

2 Statement of the Problem and Algorithms

Let us consider a SLAE

Au =
∑
l′∈ωl

al,l′ul′ = f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN , (1)

with the sparse matrix of large order with real entries arising from some discrete
approximation of a multi-dimensional BVP by the finite element or the finite
volume or other grid methods; ωl means a set of the indices of off-diagonal
entries in the l-th row of matrix A.

We can divide the total set of the vector indices Ω = {l} into P non-
intersected subsets, or algebraic subdomains,

Ω =
P⋃

s=1

Ωs, N =
N∑

s=1

Ns, (2)

each containing approximately equal number of elements Ns. For subdomains
Ωs, let us denote their boundaries Γ 0

s and closures as the following:

Γs ≡ Γ 0
s = {l′ ∈ ωl, l ∈ Ωs, l′ /∈ Ωs}, Ω̄0

s = Ωs

⋃
Γ 0

s . (3)

On Parallel Computational Technologies of Augmented Domain 37

Also, we can define the boundary layers of Ωs:

Γ t
s =

{
l′ ∈ ωl, l ∈ Ω̄t−1

s , Ω̄t
s = Ω̄t−1

s

⋃
Γ t

s , t = 1, 2, ...,Δs

}
. (4)

Parameter Δs presents the measure of an extension of the subdomain Ωs. The
set of Ω̄Δs

s forms the algebraic decomposition of the original domain Ω into sub-
domains with parametrized overlapping. Hystorically, it is known that increasing
of the overlapping yields the increasing of the iterative convergence of DDMs and
increasing of the cost of each iteration. For the subvectors

ūs = {ul, l ∈ Ω̄Δs
s } ∈ RN̄s , u =

P⋃
s=1

ūs,

the original system can be written in a block form

As,sūs +
∑

s′∈Qs

As,s′ ūs′ = fs, s = 1, ..., P, (5)

where Qs is the set of subdomains which are adjacent to the extended subdomain
Ω̄Δs

s .
To solve (5), the generalized block Jacobi iterative process is used:

B̄s(ūn+1
s − ūn

s) = f̄s − (Āūn)s ≡ r̄n
s , ūn

s ∈ RN̄s . (6)

Here r̄n
s is the residual subvector and B̄s is some preconditioning matrix which

takes into account the permutations of the “boundary” rows l ∈ ΓΔs
s , because of

using special interface conditions of Steklov-Poincare type between the neighbour
subdomains in the Schwarz iterations, see [2–4] for details.

The vector un of the sought for solution of original SLAEs (1) is not defined
uniquely in (6), because in the intersections of the neighbour subdomain Ω̄Δs

s we
have several values of the vector components for the various s. In order to avoid
such an indefiniteness, different approaches are used. We apply the restricted
alternating Schwarz (RAS) slgorithm, which is based on using the restricting
operators Rs ∈ RNs,N̄s :

un
s = Rsū

n
s = {un

l = (Rsū
n
s)l, l ∈ Ωs} ∈ RNs , (7)

where the subdomains Ωs, s = 1, ..., P , define the domain decomposition without
overlapping.

The RAS Jacobi type method can be written in the following form:

un+1 = un + B−1
rasr

n,

B−1
ras = RÂ−1WT , Â = WT AW = block-diag {As,s ∈ RN̄s,N̄s},

(8)

W = [w1...wP] ∈ RN,P is a rectangular matrix, each its column ws has the
entries equal to one in the nodes from Ω̄s and has zero entries otherwise. Let us
note that generally even if the original SLAE is symmetric, a preconditioning

38 Y.L Gurieva and V.P Il’in

matrix Bras from (8) is not a symmetric one. In addition, the inversion of the
blocks As,s of the matrix Â is actually reduced to the simultaneous solution of
independent subsystems in the corresponding subdomains.

We suppose that SLAE (1) is obtained from the approximation of a multi-
dimensional BVP for partial differential equations by the finite element, finite
volume or other method on some non-structured grid. For example, let the
Dirichlet problem for the diffusion-convection equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω,

u|Γ = g(x, y),
(9)

be solved in a computational domain Ω = (ax, bx) × (ay, by), where Γ is a
boundary of Ω, and the convection coefficients p, q are, for simplicity, the given
values. For the sake of brevity, we will use the symbol Ω to denote either the
computational domain or the grid domain according to the context.

The given boundary value problem is approximated on a uniform grid

xi = ax + ihx, yj = ay + jhy,
i = 0, 1, ..., Nx + 1; j = 0, 1, ..., Ny + 1;
hx = (bx − ax)/(Nx + 1), hy = (by − ay)/(Ny + 1),

(10)

by a five-point scheme of the form

(Au)l = ul,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Nx
ul−Nx

+ al,l+Nx
ul+Nx

= fl,
(11)

where l is a “global”, or natural, number of an inner grid node:

l = l(i, j) ≡ i + (j − 1)Nx = 1, ..., N = NxNy. (12)

A particular view of the coefficients al,l′ in (11) can be different, and specific
formulae can be found in [6,7]. Eq. (11) are written for the inner grid nodes,
moreover, for the nodes near the boundary, whose numbers are from a set of the
indices i = 1, Nx or j = 1, Ny, the values known from the boundary conditions
of the solution are substituted into the corresponding equations and moved to
their right-hand sides, so that the corresponding coefficients al,l′ in (11) equal
zero (it is the so- called “constraining” procedure).

We can think of the isomorphism between the vector entries in (1)–(5) and
the grid nodes: ul is the value of the grid function u in the l-th node at the grid
Ω which is a set of all nodes in the computational domain. The subdomains Ωs

in (2) can be redefined as the grid subdomains, and for the model problem (9) we
present a simple decomposition of Ω into a union of an identical non-interesecting
rectangle subdomains:

Ω =
P⋃

s=1

Ωs, P = PxPy,

each containing an equal number of the grid nodes

M = mxmy, Nx = Pxmx, Ny = Pymy, N = PM.

On Parallel Computational Technologies of Augmented Domain 39

One can find that the subdomains form a two-dimensional macrogrid, where
each macrovertex can be numbered by a pair of indices p, q (similarly to the grid
node indices i, j), and a “continuous” number of a subdomain is defined as

s = s(p, q) ≡ p + (q − 1)Px = 1, ..., P,
p = 1, ..., Px; q = 1, ..., Py.

(13)

We now turn from continuous numbering of nodes to their subdomain-by-
subdomain ordering: at first, we number all the nodes in Ω1, then in Ω2, etc.
The vector components u, f are ordered correspondingly, so that the SLAE (11)
takes the block-matrix form (5), where ūs ∈ RNs means a subvector of the vector
u, whose components correspond to the nodes from the grid subdomain Ωs, and
Qs means a set of the numbers of the grid subdomains adjacent to subdomain
Ωs. Hereinafter we assume that a local node ordering in every subdomain is a
natural one: local pairs of indices i′ = 1, ...,mx; j′ = 1, ...,my are introduced and
a continuous number is determined by the formula l′ = i′ + (j′ − 1)mx similar
to (12).

The rate of convergence of the iterative process (8) depends on the number
of the subdomains, or more precisely, on the diameter of a graph representing
a macrogrid formed by the decomposition. This can be clearly explained by the
fact that on a single iteration the solution perturbation in one subdomain is
transmitted only to the neighbouring, or adjacent, subdomains. To speed up the
iterative process, it is natural to use not only the nearest but also the remote
subdomain couplings at every step. For this purpose, different approaches are
used in decomposition algorithms: deflation, coarse grid correction, aggregation,
etc., which to some extent are close to the multigrid principle as well as the low-
rank approximations of matrices, see numerous publications cited at a special
site [8].

We will consider the following approach based on an interpolation principle.
Let Ωc be a coarse grid with the number of nodes Nc � N in the computational
domain Ω, moreover, the nodes of the original grid and the coarse grid may not
match.

Let us denote by ϕ1, ..., ϕNc
a set of the basis interpolating polynomials of

order Mc on the grid Ωc which are supposed to have a finite support and without
loss of generality form an expansion of the unit, i.e.

Nc∑
k=1

ϕk(x, y) = 1.

Then a sought for solution vector of SLAE (1) can be presented in the form of
an expansion in terms of the given basis:

u = {ui,j ≈ uc
i,j =

Nc∑
k=1

ckϕk(xi, yj)} = Φû + ψ, (14)

where û = {ck} ∈ RNc is a vector of the coefficients of the expansion in terms of
the basis functions, ψ is an approximation error, and Φ = [ϕ1...ϕNc

] ∈ RN,Nc is

40 Y.L Gurieva and V.P Il’in

a rectangular matrix with every k-th column consisting of the values of the basis
function ϕk(xi, yj) at N nodes of the original grid Ω (most of the entris of Φ
equal zero in virtue of the finiteness of the basis). The columns, or the functions
ϕk, can be treated to be the orthonormal ones but not necessarily. If at some
k-th node Pk of the coarse grid Ωc only one basis function is a nonzero one
(ϕk(Pk′) = δk,k′), then ûk = ck is the exact value of the sought for solution at
the node Pk. With a substitution of (14) into the original SLAE, one can obtain
the system

AΦû = f − Aψ, (15)

and if to multiply it by ΦT one can obtain

Âû ≡ ΦT AΦû = ΦT f − ΦT Aψ ≡ f̂ ∈ RNc . (16)

Assuming further that the error ψ in (14) is sufficiently small and omitting
it, one can obtain a system for an approximate coarse grid solution ǔ:

Âǔ = ΦT f ≡ f̌ . (17)

If the matrix A is a non-singular matrix and Φ is the full-rank matrix(the
rank is much less than N), we assume these facts to hold further, then from
(16) we have

u ≈ ũ = Φǔ = ΦÂ−1f̂ = B−1
c f, B−1

c = Φ(ΦT AΦ)−1ΦT .

For the error of the approximate solution we have

u − ũ = (A−1 − B−1
c)f. (18)

The error of the approximate solution can also be presented via the error of
the approximation ψ. Subtracting Eqs. (16) and (17) term by term we have

Â(û − ǔ) = −ΦT Aψ

what yields the required equation:

u − ũ = Φû + ψ − Φǔ = ψ − B−1
c Aψ.

The matrix B−1
c introduced above can be regarded as a low rank approx-

imation of the matrix A−1 and used as a preconditioner to build an iterative
process. In particular, for an arbitrary vector u−1 we can choose an initial guess
as

u0 = u−1 + B−1
c r−1, r−1 = f − Au−1. (19)

In doing so, the corresponding initial residual r0 = f − Au0 will be orthogonal
to a coarse grid subspace

Φ̂ = span {ϕ1, ..., ϕNc
} (20)

On Parallel Computational Technologies of Augmented Domain 41

in the sense of fulfilling the condition

ΦT r0 = ΦT (r−1 − AΦÂ−1ΦT r−1) = 0. (21)

The relations given in [10] are the basis for the conjugate gradient method
with deflation, wherein an initial direction vector is chosen by the formula

p0 = (I − B−1
c A)r0, (22)

which ensures that the following orthogonality condition holds:

ΦT Ap0 = 0. (23)

Further iterations are implemented using the following relations:

un+1 = un + αnpn, rn+1 = rn − αnApn,
pn+1 = rn+1 + βnpn − B−1

c Arn+1,
αn = (rn, rn)/(pn, Apn), βn = (rn+1, rn+1)/(rn, rn).

(24)

In this method, which we will refer to as DCG, at every step the following
relations hold:

ΦT rn+1 = 0, ΦT Apn+1 = 0. (25)

If now we turn back to the additive Schwarz method (11), we can try to
accelerate it by the coarse grid preconditioner B−1

c (in addition to the precondi-
tioner B−1

ras). We will consider this point in a more general formulation assuming
that matrix A is a non-symmetric one and that there are several but not only
two preconditioning matrices. Moreover, the preconditioners can change from
iteration to iteration what corresponds to the so-called dynamic, or flexible,
preconditioning.

The SLAE with the non-symmetric matrix A is solved by the well-known
BiCGStab algorithm [1].

3 Parallel Technologies of DDM

The objectives of our research consist in the verification, testing, and a compara-
tive analysis of the efficiency of different algorithms and computational technolo-
gies of solving big sparse SLAEs aimed at their optimization and including into
the KRYLOV library [9] of the parallel algebraic solvers. The main requirements
to develop a proper software are high and scalable performance and no formal
restrictions on the orders of the SLAEs and on the number of the processors
and computational cores used. According to [3], a strong and a weak scalability
can be distinguished. The first one describes a decrease in the execution time
of one big problem with an increase of the number of computing devices, while
the second one stands for approximate preservation of the solution time while
increasing the dimension (the number of degrees of freedom) of the problem and
the number of processors and/or cores.

42 Y.L Gurieva and V.P Il’in

The algorithms were coded with taking into account the architecture of the
SSCC SB RAS cluster [11] (where KRYLOV library is available) but without
GPGPU usage as their effective utilization in the considered domain decom-
position methods has its own technological and computational complexity and
requires a special study.

Computations are carried out in the following natural way: if a computational
domain is divided into P subdomains than the solution is performed on P + 1
MPI-processes (one is the root process and other ones correspond to their own
subdomains). During the program execution, the root MPI-process is used to
accumulate partial dot products from the subdomains thus also keeping the syn-
chronization of the computational work in the subdomains and upon completion
it accumulates the whole sought for solution vector.

A scalable parallelization of the algorithms is provided by synchronization of
the calculations in subdomains and by a minimization of the time losses during
interprocessors communication. The solutions to auxiliary algebraic subsystems
in the subdomains are obtained simultaneously on the multicore CPUs with the
usage of multithread OpenMP calculations. The reduced system 17 is formed
and solved in all the processes.

As algorithms from KRYLOV library are designed to solve large sparse
SLAEs arising from an approximation of multidimensional boundary value prob-
lems on non-structured grids, the well-known compressed sparse row format
of the matrix storage is used to keep the non-zero matrix entries. The global
matrix A is formed in the root MPI-process (in the simplest implementation)
at the preliminary stage, and then the distributed storage of the block rows Ās =
{As,s′ , s′ ∈ Qs} from (5) is done for the s-th extended subdomain
(i.e., on the corresponding MPI-processes). If the original matrix is very big, it
can be stored in a row-blocked form already and then the block rows be distrib-
uted among computational nodes (subdomains) thus keeping the global matrix
on the root MPI-process is not a bottleneck for the problem under consideration.

An important condition for the high performance computing consists in the
matching the arithmetic calculations and data communications between the sub-
domains by using MPI unblocked send-receive means. Moreover, the volume of
the data transfer is very small as only the short vectors corresponding to the
number of grid ponits on mutual boundary between the subdomains should be
exchasnged.

Let us note that for the examined grid boundary value problems, a two-
dimensional balanced domain decomposition into subdomains is considered,
when for an approximately equal number of nodes NS ≈ N/P in every sub-
domain the macrogrid daimeter d (for a macrogrid composed of subdomains)
is equal, approximately, to

√
P . As the number of the iterations of the addi-

tive Schwarz method even with the usage of the preconditioned Krylov methods
is proportional to dγ , γ > 0, this yields a significant advantage over a one-
dimensional decomposition for which d ≈ P .

A solution to the isolated SLAEs in Ωs is produced by the direct or itera-
tive method requiring (N/P)γ1 , γ1 > 0 operations at every step of the two-level

On Parallel Computational Technologies of Augmented Domain 43

process. As it is necessary to exchange the data corresponding to peripheral
nodes of the adjacent subdomains only, the volume of such an information is
much less and proportional to (N/P)γ1/2 (for two-dimensional BVPs) thus allow-
ing one to carry out arithmetic and communication operations simultaneously.

A high performance of the code based on the presented approach is ensured
by an active usage of the standard functions and vector-matrix operations from
BLAS and Sparse BLAS included into Intel MKL [12].

4 Results of Numerical Experiments

We present the results of methodical experiments on solving five-point SLAEs
for 2D Dirichlet problem in the unit square computational domain on the square
grids with the number of nodes N = 1282 and 2562. Calculations were carried
out via P = 22, 42, 82 MPI-processes each of which corresponded to the sub-
domains forming the square macrogrid. Iterations over the subdomains were
realised with the help of BiCGStab algorithm [1] with the stopping criterion
||rn||2 ≤ ε||f ||2, ε = 10−8. Solving of the auxiliary subdomain subsystems was
carried out by the direct solver PARDISO from Intel MKL. The most time-
consuming part of LU matrix decomposition was done only once before the
iterations.

In the Table 1, each cell contains the numbers of iterations over the sub-
domains and the times of SLAEs solving (in seconds) on the grids 1282 and
2562. The upper figure in each cell corresponds to the zero convection coef-
ficients while the bottom figure – to the convection coefficients p = q = 4).
Domain decompositions were made for equal overlapping parameters in subdo-
mains: Δs = Δ = 0, 1, 2, 3, 4, 5. Interface boundary conditions of the Dirichlet
type between the adjacent subdomains were used in all experiments.

The results demonstrate that with Δ increasing up to 5, the number of the
iterations reduces 3 - 4 fold, but when the overlapping value is big, the time
of a subdomain solving begins to increase. So, for almost all the grids and
the numbers of MPI-processes (subdomains), the optimal Δ value is approxi-
mately 3 – 4 in terms of the total execution time. If the convection coefficients
p, q are nonzero ones, the number of the iterations increases by approximately
30–50 %. Let us notice that the figures for 4 and 16 subdomains were obtained
in the experiments when each MPI-process was ran on its own cluster node in
exclusive mode while the data for 64 subdomains were got in a series of exper-
iments on cluster nodes that were given to the tasks in non-exclusive mode
yielding some increase of the execution time. So the last line of the Table does
not present “pure” speedup of the algorithm.

In the Tables below, for the sake of bravity, the results for the Poisson equa-
tion are presented, i.e. when there are no convection coefficients in equation (1).
The experiments shown that with the moderate values of p, q (|p|+ |q| < 50) the
behavior of the iterative process varied slightly.

The numerous results for the different model and practical problems shown
that the behavior of iterations varied slightly in the considered algorithms when

44 Y.L Gurieva and V.P Il’in

Table 1. The numbers of iterations and the solution times (in seconds) on the grids
1282 and 2562 for different overlapping parameter Δ

P q N \ Δ 0 1 2 3 4 5

0 18 2.17 11 1.74 9 1.64 7 1.53 7 1.48 6 1.42

4 4 1282 31 2.85 17 2.10 13 1.87 12 1.81 11 1.74 10 1.74

4 0 2562 27 8.34 16 5.38 12 4.21 10 3.68 9 3.33 8 2.93

4 61 16.88 25 7.74 19 6.52 17 5.47 15 5.28 13 4.25

0 32 1.46 18 1.29 14 1.25 12 1.17 11 1.03 9 0.98

16 4 1282 41 1.60 25 1.40 19 1.31 16 1.18 14 1.17 14 1.10

16 0 2562 40 3.23 24 2.23 20 1.97 17 1.77 14 1.27 14 1.24

4 58 4.32 35 2.83 28 2.46 22 1.98 19 1.62 18 1.52

0 43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86

64 4 1282 57 2.02 34 1.91 26 1.78 21 1.98 20 1.69 18 1.35

64 0 2562 60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66

4 87 7.04 47 5.61 38 4.89 31 4.13 28 4.02 25 4.48

the initial error varied. The experiments given above were hold for the initial
guess u0 = 0 and the exact SLAE solution u = 1.

Table 2 shows the effect of applying of two deflation methods when the con-
jugate gradient algorithm without any additional preconditioning and without
additive Schwarz method is used for three square grids with different numbers
of nodes N and for different macrogrids with the number of the macronodes Nc.
The macronodes are taken in the vicinity of the subdomain corners, i.e. when
P = 22, 42, 82 the numbers of the macronodes, or the values of Nc, are 32, 52

and 92 respectively. The basis functions φk(x, y) were the bilinear finite func-
tions. Three right columns have the number of the iterations (the upper figures
in every cell) for the single orthogonalization of the form (23) while the iteration
number for the orthogonalization (25) on every iteration is the bottom figure.
If to compare these data with the algorithm when the deflation is not used at
all (the column with P = 0, i.e. no macrogrid is used) one can see the accel-
eration up to three times when P increases. However, it should be taken into
account that an implementation of the multiple orthogonalization makes each
iteration more expensive, so an additional investigation is required to optimize
the algirithms on practice.

The results from Table 3 present the same data but when using the additive
Schwarz method with the domain decomposition into P subdomains. The num-
bers of the coarse grid nodes are taken the same as that of the macronodes for
Table 2. The basis functions φk(x, y) as in the previous series of experiments from
Table 2 were the bilinear finite ones. Every cell of Table 3 contains the numbers
of the iterations carried out without deflation (the upper figures in each cell)
and the numbers of the iterations for the single orthogonalization of the initial
guess (the bottom figures in each cell). In every cell, the first column gives the

On Parallel Computational Technologies of Augmented Domain 45

Table 2. The deflation influence in the conjugate gradient method without additive
Schwarz

N \ P 0 22 42 82

176 167 166 103

642 118 87 56

338 309 255 181

1282 220 159 104

609 544 442 276

2562 376 294 190

Table 3. Aggregation influence in the additive Schwarz method (decomposition with
different overlapping parameter Δ)

N \ P 22 42 82

19 11 8 26 15 12 37 20 15

642 23 9 7 21 12 9 28 15 11

29 15 11 35 22 17 51 31 21

1282 24 14 10 26 16 12 36 21 15

38 21 17 53 31 23 71 43 32

2562 31 18 15 35 21 17 40 26 21

data for the zero value of the overlapping parameter Δ, the second column – for
Δ = 1, and the third column – for Δ = 2.

The presented results for the considered grids and macrogrids have approx-
imately the same character as in Table 2 when the increasing of the deflation
space yields to the decreasing of the iteration number together with the increas-
ing of the amount of computations at each step. In these experiments, the outer
iterations were carried out by the BiCGStab method.

Let us note that the experiments for Table 3 were hold for the initial guess
u0 = 0 and the exact SLAE solution u(xi, yj) = x2

i −y2
j . Naturally, the efficiency

of the considered “interpolation” deflation depends on the behaviour of the solu-
tion sought for. For example, if it is, e.g., u(xi, yj) = x − y, then the usage of
the bilinear basis functions ϕk(x, y) for Nc ≥ 4 yields to the convergence in one
iteration, and this fact was confirmed in the experiments.

5 Conclusion

We have studied experimentally the efficiency and the performance of several
advanced approaches for domain decomposition methods. The results presented
demonstrate a considerable increasing of the convergence rate of the iterative
process when the corresponding overlapping parameters and a coarse grid cor-
rection are used to accelerate the additive Schwarz algorithm. It should be

46 Y.L Gurieva and V.P Il’in

mentioned that the augmented versions of DDM have been implemented without
additional communication losses. Obviously, the further research should be held
to obtain some practical recommendations to optimize the performance when a
combination of various parametrized approaches are used simultaneously. The
efficient code optimization for multi-GPGPU and a multi-core implementation
is a challenge technology but it is an open question now. For example, it is inter-
esting to analyse two-level iterative FGMRES procedure with some dynamic
stopping criterion in subdomains and various basis functions in low rank matrix
approximations.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publications, New
York (2002)

2. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Springer, Heidelberg (2005)

3. Chapman, A., Saad, Y.: Deflated and augmented krylov subspace technique.
Numer. Linear Algebra Applic. 4(1), 43–66 (1997)

4. Il’in, V.P.: Parallel Methods and Technologies of Domain Decomposition (in
Russian). Vestnik YuUrGU. Series Computational mathematics and informatics.
46(305), 31–44 (2012)

5. Dubois, O., Gander, M.J., St-Cyr, A., Loisel, S., Szyld, D.: The optimized schwarz
method with a coarse grid correction. SIAM J. Sci. Comput. 34(1), 421–458 (2012)

6. Il’in, V.P.: Finite Difference and Finite Volume Methods for Elliptic Equations.
ICMMG Publisher, Novosibirsk (2001). (in Russian)

7. Il’in, V.P.: Finite Element Methods and Technologies. ICMMG Publisher, Novosi-
birsk (2007). (in Russian)

8. Official page of Domain Decomposition Methods. http://www.ddm.org
9. Butyugin, D.S., Gurieva, Y.L., Il’in, V.P., Perevozkin, D.V., Petukhov, A.V.: Func-

tionality and Algebraic Solvers Technologies in Krylov Library (in Russian). Vest-
nik YuUrGU. Series Computational mathematics and informatics. 2(3), 92–105
(2013)

10. Gander, M.J., Halpern, L., Santugini, K.: Domain decomposition methods in sci-
ence and engineering XXI. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G.,
Sassi, T., Widlund, O. (eds.) A New Coarse Grid Correction for RAS/AS. LNCSE.
Springer-Verlag, Switzerland (2013)

11. Siberian Supercomputer Centre. http://www2.sscc.ru
12. Intel Math Kernel Library (Intel MKL). http://software.intel.com/en-us/intel-mkl

http://www.ddm.org
http://www2.sscc.ru
http://software.intel.com/en-us/intel-mkl

A Modular-Positional Computation Technique
for Multiple-Precision Floating-Point Arithmetic

Konstantin Isupov(B) and Vladimir Knyazkov

Department of Electronic Computing Machines,
Vyatka State University, Kirov 610000, Russia

{ks isupov,knyazkov}@vyatsu.ru

Abstract. Floating-point machine precision is often not sufficient to cor-
rectly solve large scientific and engineering problems. Moreover, compu-
tation time is a critical parameter here. Therefore, any research aimed
at developing high-speed methods for multiple-precision arithmetic is
of great immediate interest. This paper deals with a new technique of
multiple-precision computations, based on the use of modular-positional
floating-point format for representation of numbers. In this format, the sig-
nificands are represented in residue number system (RNS), thus enabling
high-speed processing of the significands with possible parallelization by
RNS modules. Number exponents and signs are represented in the binary
number system. The interval-positional characteristic method is used to
increase the speed of executing complex non-modular operations in RNS.
Algorithms for rounding off and aligning the exponents of numbers in
modular-positional format are presented. The structure and features of a
new multiple-precision library are given. Some results of an experimental
study on the efficiency of this library are also presented.

Keywords: Multiple-precision arithmetic · Floating-point · Residue
number system · Non-modular operation · Rounding · Performance

1 Introduction

The increasing power of current computers enables one to solve more and more
complex problems. This, therefore, requires to perform a high number of floating-
point operations, each one leading to a rounding error. As Exascale computing
(1018 operations per second) is likely to be reached within a decade, getting accu-
rate results in machine-precision floating-point arithmetic on such computers
will be a challenge [1]. Many problems whose correct solution requires multiple-
precision arithmetic are already emerging [2,3]. The situation is complicated by
the fact that even with a small amount of computation in machine precision, a
result can be obtained, free of any significant digit [4,5].

A 128-bit IEEE format is currently one of the ways of improving the accuracy
of computations [6]. Here, the significand field is extended to 113 bits. However,
hardware support for this format requires considerable expenses [3] and, appar-
ently, such is not expected in the near future. A more common variant of high-
precision arithmetic implemented as software is known as the “double-double”
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 47–61, 2015.
DOI: 10.1007/978-3-319-21909-7 5

48 K. Isupov and V. Knyazkov

format. It provides an accuracy of about twice the standard 64-bit arithmetic
[7]. In this format, the number is expressed as a pair of 64-bit integers xh and xl,
where xh is a floating-point number next to the true value, while xl is the differ-
ence between the true value and xh. T.J. Dekker’s algorithms [8] can be used to
add or multiply numbers in this format. The “quad-double” format is based on
similar principles. Besides, there are some freely available software packages that
support arbitrary precision (when the number of digits is limited only by the
available memory). The most famous of these packages are the Arbitrary Preci-
sion Computation Package (ARPREC) [9], the GNU Multiple-Precision Arith-
metic Library (GMP) [10], the GNU Multiple-Precision Floating-Point Reliable
Library (MPFR) [11], and the Number Theory Library (NTL) [12].

A common disadvantage of methods and software for positional multiple-
precision arithmetic is that computation speed reduces greatly as precision
increases. It is noted in particular that computation in the “double-double” format
is usually five times slower than in the 64-bit format; in the “quad-double”, it is 25
times slower. When using arbitrary precision, the computation time can increase
by hundreds of times [3]. This is unacceptable when dealing with many major prob-
lems, particularly those related to real-time control of objects. Therefore, develop-
ing accelerated methods and software for multiple-precision arithmetic is a topical
area of research in the field of high-performance computing.

Next, we consider a new computation technique for multiple-precision arith-
metic. This technique is based on the use of non-positional number system to
represent significands – the residue number system.

2 Residue Number System

The residue number system (RNS) [13–16] is defined by a set of relatively prime
integers {p1, p2, . . . , pn} called modules. Its dynamic range is equal to the product
P =

∏n
i=1 pi. According to the Chinese remainder theorem (CRT) [16], every

integer X ∈ {0, 1, 2, . . . , P − 1} has a unique RNS (modular) representation:

X = 〈x1, x2, . . . , xn〉, (1)

where xi = |X|pi
↔ xi ≡ X mod pi. Generally, operations on various modules

pi are performed independently:

Z = X op Y =
〈|x1 op y1|p1 , |x2 op y2|p2 , . . . , |xn op yn|pn

〉
.

As a consequence, operations on large numbers can be effectively divided into
several modular operations executed in parallel and with reduced wordlength
[17]. This makes it possible to consider RNS as a prospective basis for high-
speed parallel multiple-precision computations.

However, the effective use of RNS is complicated due to the highly complex
nature of non-modular operations (magnitude-comparison, overflow detection,
scaling, etc.), which require much longer time to be executed than modular
operations. The problem becomes aggravated by the fact that when performing
long iterative floating-point computations, non-modular operations make up a
significant part of the total volume of arithmetic operations performed.

A Modular-Positional Computation Technique 49

3 Interval-Positional Characteristic Method
for Non-modular Operations in RNS

To perform non-modular operations on numbers in the form (1), one must have
information about their positional value, which is defined by the expression

X =

∣∣∣∣∣
n∑

i=1

xi|P−1
i |pi

Pi

∣∣∣∣∣
P

, (2)

where Pi = P/pi and |P−1
i |pi

is the multiplicative inverse of Pi modulo pi.
However, computing (2) directly is slow because it requires multi-digit addition
and reduction by large modulus P .

Mixed Radix Conversion (MRC) [14–16] is another method used to estimate
the magnitude of RNS numbers. But to calculate all mixed-radix coefficients,
you require O(n2) arithmetic operations, where n is the number of modules pi.
Parallel algorithms [18,19] reduce this evaluation to O(n), but are still expensive.
The MRC-II algorithm [20] allows to calculate the value of an RNS number for
O(n) operations. However, this involves dealing with large numbers.

The interval-positional characteristic method [21–23] is an alternative tech-
nique for estimating a magnitude in RNS. We will consider this in more detail.
Let’s denote X/P as the relative value of RNS number X, i.e. the ratio of its
positional value to the product of modules P . Dividing the equality (2) by P ,
we obtain the following expression for the relative value [16]:

X

P
=

∣∣∣∣∣
n∑

i=1

∣∣xi|P−1
i |pi

∣∣
pi

pi

∣∣∣∣∣
1

, (3)

where | |1 is the fractional part of the sum. It is obvious that X/P ∈ [0, 1).
Instead of calculating the exact value of X/P , which is quite costly in this
context, it would be more efficient to compute its approximation – interval-
positional characteristic.

Definition. Interval-positional characteristic (IPC) of RNS number X is closed
interval I(X/P) :=

[
X/P ,X/P

]
with directed rounded positional bounds that

satisfy inclusion condition: X/P ≤ X/P ≤ X/P .

IPC projects range [0, P) to the interval [0, 1), associating every RNS number
X with a pair of directed rounded positional numbers – bounds that localize its
relative value (3), as shown in Fig. 1.

We denote operations of addition, subtraction, multiplication and division as
�+ ,�− ,�· ,�÷ correspondingly executed with rounding down (toward −∞). Simi-
larly,
+ ,
− ,
· ,
÷ will be used to denote the operations with rounding up (toward
+∞). The operations are also supposed to be executed with the directed round-
ing if � or
 are placed before the group operator. For example,
∑n

i=1 xi

means that all of the n − 1 additions are rounded up. The issues referring to
rounding in floating-point arithmetic are described in papers [7,24].

50 K. Isupov and V. Knyazkov

Fig. 1. Interval approximation of the relative value of an RNS number (IPC)

To compute IPC bounds, the following expressions are correct:

X/P =

∣∣∣∣∣�
n∑

i=1

(∣∣xi|P−1
i |pi

∣∣
pi

�÷ pi

)∣∣∣∣∣
1

, X/P =

∣∣∣∣∣

n∑

i=1

(∣∣xi|P−1
i |pi

∣∣
pi

÷ pi

)∣∣∣∣∣
1

.

Sequential computation of these expressions requires performing O(n) elemen-
tary operations, while parallel computation requires O(log n) elementary opera-
tions, which is much less than MRC. Specialized algorithm ISaC (Iterative Shift
and Correction) [22,23] was developed to minimize the relative error when com-
puting the IPCs of small RNS numbers. The algorithm is based on the possibility
of error-free power-of-two scaling of normalized binary floating-point numbers.
It gives high-speed computation of IPC with a priori given accuracy, regardless
of the size of the RNS range, thus allowing to obtain highly accurate information
about the magnitude of the RNS number without the need for time-consuming
conversion to a positional number system. Studies have shown that at equal
high accuracy (the upper limit of the relative error of IPC is less than 1%),
ISaC algorithm is faster than its multiple-precision counterpart by more than
an order of magnitude [22].

If the IPCs of RNS numbers are computed, performing the main non-modular
operations on them becomes easy, as the task is reduced to analyzing posi-
tional interval bounds and assessing the validity of the result. For example, for
magnitude-comparison of the RNS numbers X and Y , the following steps need
to be performed (it is assumed that X �= Y):

1. Compute the IPCs for X and Y : I(X/P) and I(Y /P).
2. Ensure that the formal correctness conditions are met (discussed later).
3. Determine the result, comparing the two IPCs by interval arithmetic rules:

if X/P > Y /P , then X > Y ; if X/P < Y /P , then X < Y .

To determine the sign of a number in symmetric RNS, you only need to com-
pare I(X/P) with constant I

(
P−1
2P

)
by the above scheme. To establish whether

overflow of arithmetic sum X+Y has occurred, you only need to compare interval
sum

I(X/P) + I(Y /P) =
[
X/P �+ Y /P , X/P
+ Y /P

]
(4)

with constant I
(

P−1
P

)
. If X/P
+ Y /P ≤ P−1

P , then overflow will not occur;

if X/P �+ Y /P > P−1
P , then overflow will occur. A sign of an overflow when

A Modular-Positional Computation Technique 51

multiplying two RNS numbers X×Y is defined similarly. In this case, the product
of IPCs are calculated using the following formula:

I(X/P) × I(Y /P) =
[
(X/P �· Y /P) �÷ 1/P , (X/P
· Y /P)
÷ 1/P

]
, (5)

where 1/P and 1/P are constants approximating the ratio 1/P . Relations (4)
and (5) naturally take into account rounding errors, extending the IPC bounds
in accordance with the inclusion property of intervals [24].

Formal conditions for verifying the correctness of non-modular operations are
defined as follows. The absolute rounding error in computing IPC is characterized
by the IPC diameter

diam I(X/P) = X/P − X/P . (6)

When computing IPC, directed rounding increases the diameter (6), without
generally affecting the inclusion property X/P ∈ I(X/P). However, this is vio-
lated in some cases due to lack of accuracy – when the number X is very small in
relation to P or vice versa, when X is near P . In the first case, the lower bound
of IPC is computed incorrectly, in the second case, it is the upper bound that
falls the victim. In any case, diam I(X/P) < 0, and IPC is called “incorrect”.
Correctness of IPCs for all operands is the first formal condition for correct
execution of any non-modular operation. If this condition holds, then final con-
clusion on whether the result is correct or not is taken based on analysis of the
second formal condition (Table 1).

Table 1. Second formal correctness conditions for non-modular operations.

Operation Condition

Magnitude-comparison diam [I(X/P) ∩ I(Y /P)] < 0

Sign detection in symmetric RNS diam
[
I(X/P) ∩ I

(
P−1
2P

)]
< 0 ∨ X/P = P−1

2P

Overflow detection in the addition of
two unsigned numbers

diam
[
I(S/P) ∩ I

(
P−1
P

)]
< 0 ∨ S/P = P−1

P

Overflow detection in the
multiplication of two numbers

diam
[
I(Z/P) ∩ I

(
P−1
P

)]
< 0 ∨ Z/P = P−1

P

In Table 1, I(S/P) =
[
S/P , S/P

]
and I(Z/P) =

[
Z/P ,Z/P

]
are the sum of

IPCs (4) and product of IPCs (5) respectively. Intersection of IPCs is defined as
follows:

[I(X/P) ∩ I(Y /P)] =
[
max{X/P , Y /P}, min{X/P , Y /P}]

.

If the diameter (6) of this interval is less than zero, then the IPCs do not intersect
in a standard set-theoretic sense.

52 K. Isupov and V. Knyazkov

Conjunction of two formal conditions comprises of sufficient condition for
verifying the correctness of a non-modular operation that is invariant to the
number of RNS modules and their bit length. If the sufficient condition doesn’t
hold, it becomes possible to improve the accuracy of IPCs or use other methods
of performing non-modular operations (for example, MRC).

So, IPC is a sufficient universal positional characteristic for estimating the
magnitude of RNS numbers. Interval evaluation of rounding error, which does
not require considering the specifics of machine computations, makes this charac-
teristic easy for performance of a wide range of non-modular operations. Results
of experiments [22] showed significant speedup of the method based on IPC
compared with its classical counterparts (MRC and CRT).

4 Format for Representation of Floating-Point
Multiple-Precision Numbers

The following modular-positional floating-point format (MF-format) is proposed
for representation of multiple-precision numbers [25]:

x → {s,M, λ, I(M/P)}, (7)

where s = sgn(x) is the number sign, M = 〈m1,m2, . . . , mn〉 is the modular sig-
nificand represented in RNS modulo p1, p2, . . . pn, λ ∈ [λmin, λmax] is the integer
exponent with a sign, I(M/P) =

[
M/P ,M/P

]
is the IPC of the significand.

The value of the number in the form (7) is defined by the expression

x = (−1)s ·
∣∣∣∣∣

n∑
i=1

mi|P−1
i |pi

Pi

∣∣∣∣∣
P

· 2λ.

Significand M lies within the range [0, P), where P is the product of all pi.
Thus, variation in the number of modules allows setting arbitrary precision of
computations. The MF-format scheme is presented in Fig. 2 with indication of
data types.

Sign

int int ...

Modular (RNS) significandExponent Interval-positional
characteristic

real realintint int

Fig. 2. MF-format for representation of multiple-precision numbers: int – an integer
data type; real – a machine-precision floating-point data type

Inclusion of IPC in number representation is the main difference of MF-
format from previously known methods of floating-point representation in RNS
[26–29]. In terms of high-precision arithmetic, this offers the following benefits:

A Modular-Positional Computation Technique 53

– you can use a new arithmetic processing based on fast preliminary estimation
of the significand of the result;

– interval arithmetic enables you, while performing modular operations, to
reduce IPC computation time to several steps, using an algorithmic specifi-
cation only when performing non-modular procedures.

For MF-format (7), the following characteristics are defined: machine epsilon
ε = 2−�log2(P−1)�, unit in the last place ulp(x) = 2λ−�log2((P−1)/M)�; the absolute
and relative rounding errors are limited to the values ulp(x) and 2ε respectively
(when rounding the significand by truncation).

Apart from finite numbers, infinite numbers and not-a-number values (NaNs)
can be written in MF-format. Their encodings are given in Table 2.

Table 2. Encodings of modular-positional floating-point values. NaNs cannot be the
input data of operations, but can appear in the course of performing operations.

Type Exponent, λ Sign and modular significand, ±M

Zero 0 ±〈0, 0, . . . , 0〉
Finite numbers λmin ≤ λ ≤ λmax ±〈m1, m2, . . . , mn〉, ∃mi �= 0

Signed infinities λmax + 1 ±〈0, 0, . . . , 0〉
Not-a-Numbers (NaNs) λmax + 1 ±〈m1, m2, . . . , mn〉, ∃mi �= 0

Algorithms for rounding off, exponent alignment, addition, subtraction,
multiplication, division, and comparison of numbers were developed for multiple-
precision computations in MF-format. Using IPC for fast estimation of signifi-
cand allowed to implement a new scheme of rounding, shown in Fig. 3. Under
this scheme, the decision to round up is taken based on analysis of the IPCs of
operands immediately before arithmetic operation and not after its execution
(as in binary floating-point number systems).

A

op ...

op

A

R

R

Fig. 3. Rounding scheme in MF-format: A – analysis of operand significands (checking
the need for rounding), R – rounding, op – arithmetic operation

This scheme is preferable in terms of precision of computations and number
(less) of iterations of modular significand scaling, as it avoids unnecessary round-
ing in the case if the significand of the result of the subsequent operation will fall

54 K. Isupov and V. Knyazkov

within acceptable range [0, P). The greatest effect from the use of the scheme is
achieved when additive operations that do not lead to significant increase in the
bit length of the result are performed. Effective implementation of the scheme is
possible due to availability of IPC in number representation, which allows giving
a quick estimate of the significand. In accordance with the presented scheme,
the rounding task is divided into two sub-tasks:

1. Checking the need for rounding, the purpose of which is to determine the
value of the rsh(M) function – the smallest scaling factor for significand M
to avoid overflow when performing operation op.

2. Direct rounding – a reduction in the value of the modular significand by
2rsh(M) times with an increase in the exponent λ by rsh(M).

The method of calculating the rsh(M) function depends on the arithmetic
operation to be performed. For example, if the op is multiplication, then the
following is calculated for each factor:

rsh(M) = max
{�log2 M/P �− log2 α�, �log2 M/P
− log2 α�, 0}

,

where α = �√P − 1�/P (directed rounding is used when calculating logarithms).
If op is binary addition, then rsh(M) is defined as follows (for each term):

rsh(M) =

{
0, if M/P ≤ P−1

2P ;

1, otherwise.

If I(M/P) is known, the complexity of calculating rsh(M) is invariant to the
number of RNS modules. Further, if rsh(M) is greater than zero, then rounding
should be done in accordance with Algorithm 1.

Algorithm 1. Rounding numbers in MF-format.
Input: x → {s,M, λ, I(M/P)}, rsh(M).
Output: rounded number round(x) → {sr,Mr, λr, I(Mr/P)} .
1: If rsh(M) ≤ 0, then accept round(x) = x and end the algorithm, otherwise

proceed to the next step.
2: Calculate the exponent: λr = λ + rsh(M); set sr = s.
3: If λr > λmax, then it is taken that the arithmetic overflow criterion holds. In

this case, form the corresponding exception code and enter it into the status
register, set λr = (λmax + 1),Mr = 0, I(Mr/P) = [0, 0] (encoding infinity)
and end the algorithm. Otherwise, proceed to the next step.

4: Scale modular significand M with factor 2rsh(M): Mr = �M/2rsh(M)�.
5: Compute the IPC of rounded significand Mr based on the ISaC algorithm.

The most time-consuming in this algorithm is step 4. Here, a non-modular
scaling operation is performed in RNS. A new iterative method was developed
for power-of-two RNS scaling [25]. It enables to, in comparison with bisection
method, accelerate computations by q/(�q/h� + 1) times, where q is the scaling
factor logarithm and h is the scaling step logarithm. The maximum value of step
2h is limited only to the available memory and IPC computation accuracy.

A Modular-Positional Computation Technique 55

Remark. If log2 P is the bit length of the full variation range of the significand
(RNS range), then the effective bit length (the length of operands involved in
operations) is generally defined by the value log2

√
P − 1. It is the effective bit

length that should be a priori considered as “precision” in the terms of IEEE-754
[6], at least in the first approximation. The actual precision can be higher since
the entire significand representation range is used for addition and subtraction.

Exponent alignment operation plays an essential role in addition and sub-
traction of multi-scale values. The next alignment algorithm allows minimizing
loss of accuracy and accelerating computations by compensating the difference
in the number exponents through mutual correction of their significands.

Algorithm 2. Alignment of number exponents in MF-format.

Input: x → {sx,Mx, λx, I(Mx/P)}, y → {sy,My, λy, I(My/P)}.
Output: numbers x and y with aligned exponents λx = λy.
1: For a given exponent difference Δλ = λx − λy (it is assumed that Δλ < 0

otherwise x and y are interchanged), check the condition I(My/P) < 2Δλ.
If it holds, then set r = 0 (where r is the number of rounding digits) and
proceed to step 3, otherwise proceed to the next step.

2: Recalculate interval I(My/P) using the ISaC algorithm. The number
r = �log2 My/P + |Δλ|� is then calculated, where My/P is the upper bound
of I(My/P). If log2 Mx/P > (r − log2 P), where Mx/P is the lower bound
of I(Mx/P), then proceed to step 3, otherwise reset the number x to zero
and end the alignment algorithm (the difference between the exponents is
too large to be compensated by mutual alignment of operand significands).

3: Multiply modular significand My and both bounds of I(My/P) by 2|Δλ|−r;
deduct (|Δλ| − r) from λy.

4: Round the number x by scaling Mx with factor 2r; add r to λx.

After executing Algorithm 2, nonzero numbers x and y with the same expo-
nents will be obtained or one of them (the one whose exponent is less) will be
zero, while the second will not change.

A detailed description of the algorithms of addition, multiplication and divi-
sion of numbers in MF-format, as well as the algorithm for accelerated power-
of-two scaling of modular significands can be found in [25]. The developed algo-
rithms support arithmetic of infinities and exception handling (overflow, invalid
operation, division by zero, etc.). All the algorithms, except division, generally
have linear complexity in terms of number of RNS modules when calculating the
significand digits consecutively. In many cases, parallel processing reduces the
estimate to a logarithmic function.

5 High-Precision Arithmetic Library

5.1 Structure and Features

A program library (MF-Library) for multiple-precision modular-positional com-
putations is being developed based on the approach presented. The library is

56 K. Isupov and V. Knyazkov

written in C. It uses basic data type (mf t), which provides an arbitrary length
of floating-point numbers. This type corresponds to the MF-format (7) and con-
sists of five fields shown in Table 3.

Table 3. Data type used in MF-Library (mf t)

Field Basic C type Description

sign int Sign of number

residue long[n] Significand in RNS

exp int Binary exponent

ic bot double Lower bound of IPC

ic top double Upper bound of IPC

At the structural level, the library consists of three units: kernel unit, auxil-
iary routine unit and test unit. Each unit contains same-type subunits. Besides,
an auxiliary positional multiple-precision unit is used for automatic configuration
and switching to another RNS base (when changing the precision). The center-
piece is the kernel unit whose structure is presented in Fig. 4. The functionality of
the library is classified as follows: initialization routines, input/output routines,
arithmetic functions, rounding functions, tests of basic operations (arithmetic,
rounding, IPC computation, etc.), performance tests. At the moment, the basic
feature of the library has been developed and partially covered by tests. For
example, in computing the following polynomial proposed by S.M. Rump [5],

f(a, b) = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 + a/(2b),

with a = 77617.0 and b = 33096.0, correct answer −0.8273960599 . . . was
obtained with a 140-digit accuracy.

MF-format
subunit

Arithmetic
subunit

IPC
subunit

Rounding
subunit

I/O
subunit

Properties

Fig. 4. Structure of the MF-Library kernel: an arrow pointing from one subunit to
another indicates that the functions (or data) defined in the first subunit are used by
the second subunit

A Modular-Positional Computation Technique 57

5.2 Efficiency Evaluations

During the experiments, the performance of the MF-Library was compared to
its counterparts: MPFR 3.0.1, NTL 6.1.0 and Wolfram Mathematica 10.0. In all
experiments, computation precision was 239 bits. The time taken to transform
data into the target format was not taken into account. Test system: Intel Core
i5-3570 K / 8 Gb RAM / Intel C++ Compiler 13.0. The MF-Library operated
in vectorization of cycles of computation of modular significands and IPCs.

First experiment. The time used to execute multiple-precision operations
was measured: addition (add), subtraction (sub), multiplication (mult), division
(div), comparison (cmp), addition-accumulate (aac, x = x + y), subtraction-
accumulate (sac, x = x − y) and multiply-accumulate (mac, z = z + xy). 107

iterations were performed. For operations with accumulation, this means that by
the end of the cycle, the accumulator contained the results of 107 summations or
subtractions. The arithmetic average was chosen as the final time. The results
obtained are shown in Table 4.

Table 4. Timings in microseconds for some operations. Initial data – pseudo-random
239-bit floating-point numbers. The best results are marked bold. Higher speedup of
MF-Library is expected with an increase in precision and length of vector registers.

MF-library MPFR NTL Wolfram math.

add 0.041 0.057 0.154 0.480

sub 0.043 0.071 0.153 0.656

mult 0.028 0.211 0.549 0.416

div 6.360 0.357 0.649 0.946

cmp 0.034 0.004 0.099 0.246

aac 0.027 0.059 0.193 0.661

sac 0.037 0.058 0.190 0.946

mac 0.230 0.279 0.730 0.632

Multiplication is the most efficient operation in the library. It is performed
7.54 times faster than in MPFR. A more effective algorithm can be used to
accelerate division. The higher speed of the MF-Library as against the results
obtained previously [25] is due to code optimization that does not affect opera-
tion execution algorithms substantially. Wolfram Mathematica turned out to be
the slowest. It was not considered further.

Second experiment. The time used for high-precision multiplication of dense
real m-by-m matrices was studied. The order of matrix m varied in the range
of 100 to 800. The number of partial products that need to be summed to
provide the final element increases linearly with an increase in m. This allows
to evaluate the efficiency of exponent alignment and rounding algorithms. The
initial matrices were tightly filled with pseudo-random 239-bit numbers. The
experiment results are shown in Fig. 5.

58 K. Isupov and V. Knyazkov

Fig. 5. Time used for high-precision multiplication of dense real matrices. On average,
performance of the MF-Library is 2.29 times higher than that of MPFR and 5.75 times
higher than that of NTL.

Fig. 6. Time used for high-precision solution of heat equation. On average, performance
of the MF-Library is 1.51 times higher than that of MPFR and 4.05 times higher than
that of NTL.

Third experiment. The time taken for high-precision solution of the boundary
value problem for a one-dimensional heat equation with homogeneous boundary
conditions of the first kind was investigated:

∂u

∂t
= D

∂2u

∂x2
, u(t, 0) = u(t, 1) = 0. (8)

Equation (8) describes the dynamics of temperature u(t, x) in a unit-length rod
made of an isotropic material. 0.75 s of the physical process was modeled. A
four-point explicit difference scheme was used for solution. The computations
were performed at a constant ratio D = 0.03 on rectangular grids of different

A Modular-Positional Computation Technique 59

dimensions: 103 × 50 · 103 (h = 10−3, τ = 1.5 · 10−5), 103 × 75 · 103 (h =
10−3, τ = 10−5), 103 × 150 · 103 (h = 10−3, τ = 0.5 · 10−5), 103 × 300 · 103

(h = 10−3, τ = 0.25 · 10−5), where h and τ are steps on spatial and temporal
coordinates, respectively. The experiment results are presented in Fig. 6.

6 Conclusion

The technique for multiple-precision computations, which was considered, com-
bines the advantages of residue number systems and positional floating-point
arithmetic. Representation of significands in RNS allows you to process them
faster by separating slow operations on large numbers into several independent
modular operations that can be performed in parallel. On the other hand, the pres-
ence of a binary exponent ensures a wide dynamic range of values, which is of high
importance in scientific computations that often require processing of multi-scale
quantities.

By supplementing the number format with interval-positional characteris-
tic, which allows for rapid assessment of the magnitude of the modular signifi-
cand without conversion to a positional number system, we were able to signifi-
cantly weaken, and in some cases completely overcome the main disadvantages
of RNS that are related to the very complex nature of non-modular operations
(magnitude-comparison, overflow detection, scaling, etc.).

Consequently, the algorithms for modular-positional floating-point arith-
metic, implemented in new multiple-precision library MF-Library, have higher
performance (except division algorithm) than their counterparts that are based
on positional multiple-precision arithmetic (MPFR, NTL) and symbolic com-
putation (Wolfram Mathematica), both when performing individual operations
and long iterative computations that require multiple exponent alignments and
rounding.

Despite the fact that the main algorithms and library routines have been
developed, there are a number of important problems that remain to be solved:

1. Defining strict rounding error bounds when performing operations.
2. Precomputing the main mathematical constants.
3. Calculating mathematical functions (sqrt, exp, log, sin, cos, acos, atan etc.).
4. Accelerating division operation: the current division algorithm involves con-

verting the significand from RNS to a positional number system and this is,
therefore, slow.

5. Offering cross-platform service with hardware optimization features.

We also plan to investigate the possibility of efficiently implementing MF-
Library in parallel on graphics processors and specialized many-core accelerators
(Intel Xeon Phi). There is reason to believe that this will significantly speed up
computations involving numbers of extra high precision (4096 bits or above).

Acknowledgement. The reported study was supported by RFBR, research project
No. 14-07-31075 mol a.

60 K. Isupov and V. Knyazkov

References

1. Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Reproducible and accurate
matrix multiplication for high-performance computing. In: Nehmeier, M. (ed.)
Book of Abstracts of the 16th GAMM-IMACS International Symposium on Sci-
entific Computing, Computer Arithmetic and Validated Numerics (SCAN 2014),
pp. 42–43. Würzburg, Germany (2014)

2. Bailey, D.H., Barrio, R., Borwein, J.M.: High-precision computation: mathematical
physics and dynamics. Appl. Math. Comput. 218(20), 10106–10121 (2012)

3. Bailey, D.H., Borwein, J.M.: High-Precision Arithmetic: Progress and Challenges.
http://www.davidhbailey.com/dhbpapers/hp-arith.pdf

4. Ghazi, K.R., Lefèvre, V., Théveny, P., Zimmermann, P.: Why and how to use
arbitrary precision. Comput. Sci. Eng. 12(3), 62–65 (2010)

5. Rump, S.M.: Algorithms for verified inclusions - theory and practice. In: Moore,
R.E. (ed.) Reliability in Computing, pp. 109–126. Academic Press, New York
(1988)

6. IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754–2008, pp. 1–58.
IEEE Computer Society, New York (2008)

7. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2010)

8. Dekker, T.J.: A floating-point technique for extending the available precision.
Numerische Mathematik 18(3), 224–242 (1971)

9. Bailey, D.H., Hida, Y., Li, X.S., Thompson, B.: ARPREC: An Arbitrary Precision
Computation Package. Lawrence Berkeley National Laboratory, Technical report
(2002). http://www.davidhbailey.com/dhbpapers/arprec.pdf

10. The GNU Multiple Precision Arithmetic Library. https://gmplib.org
11. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A

multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2) (2007). Article No. 13

12. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl
13. Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. 8(2),

140–147 (1959)
14. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Application to Computer

Technology. McGraw-Hill, New York (1967)
15. Omondi, A., Premkumar, B.: Residue Number Systems: Theory and Implementa-

tion. Imperial College Press, London (2007)
16. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford

University Press, Oxford (2000)
17. Cardarilli, G.C., Del Re, A., Nannarelli, A., Re, M.: Programmable power-of-two

RNS scaler and its application to a QRNS polyphase filter. In: 2005 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS 2005), pp. 1002–1005. Kobe,
Japan (2005)

18. Huang, C.H.: A fully parallel mixed-radix conversion algorithm for residue number
applications. IEEE Trans. Comput. 32(4), 398–402 (1983)

19. Gbolagade, K.A., Cotofana, S.D.: An O(n) residue number system to mixed radix
conversion technique. In: IEEE International Symposium on Circuits and Systems
(ISCAS 2009), pp. 521–524. IEEE Press, New York (2009)

20. Akkal, M., Siy, P.: A new mixed radix conversion algorithm MRC-II. J. Syst.
Archit. 53, 577–586 (2007)

http://www.davidhbailey.com/dhbpapers/hp-arith.pdf
http://www.davidhbailey.com/dhbpapers/arprec.pdf
https://gmplib.org
http://www.shoup.net/ntl

A Modular-Positional Computation Technique 61

21. Isupov, K.S.: The method for implementation non-modular operations in modular
arithmetic with use of interval positional characteristics. University proceedings.
Volga region. Eng. Sci. 3, 26–39 (2013)

22. Isupov, K.S.: Calculation interval-positional characteristic algorithm for implemen-
tation non-modular operations in residue number systems. Bulletin of the South
Ural State University. Comput. Technol., Autom. Control, Radio Electron. 14(1),
89–97 (2014)

23. Isupov, K.S.: On an algorithm for number comparison in the residue number sys-
tem. Vestnik of Astrakhan State Technical University. Manage., Comput. Sci. Inf.
(3), 40–49 (2014)

24. Kulisch, U.: Implementation and Applications Computer Arithmetic and Valid-
ity - Theory, implementation, and applications. de Gruyter, Berlin (2008).
http://www.degruyter.com/view/product/178972

25. Isupov, K.S., Maltsev, A.N.: A parallel-processing-oriented method for the repre-
sentation of multi-digit floating-point numbers. Numer. Methods Program. 15(4),
631–643 (2014)

26. Sasaki, A.: The basis for implementation of additive operations in the residue
number system. IEEE Trans. Comput. 17(11), 1066–1073 (1968)

27. Kinoshita, E., Kosako, H., Kojima, Y.: Floating-point arithmetic algorithms in the
symmetric residue number system. IEEE Trans. Comput. 23(1), 9–20 (1974)

28. Kinoshita, E., Lee, K.-J.: A residue arithmetic extension for reliable scientific com-
putation. IEEE Trans. Comput. 46(2), 129–138 (1997)

29. Chiang, J.-S., Lu, M.: Floating-point numbers in residue number systems. Comput.
Math. Appl. 22(5), 127–140 (1991)

http://www.degruyter.com/view/product/178972

Creation of Data Mining Algorithms
as Functional Expression for Parallel

and Distributed Execution

Ivan Kholod(&) and Ilya Petukhov

Saint Petersburg Electrotechnical University “LETI”,
ul. Prof. Popova 5, Saint Petersburg, Russia

iiholod@mail.ru, ioprst@gmail.com

Abstract. The article describes extension of λ-calculation for creation of parallel
data mining algorithms. The proposed approach uses presentation of the algo-
rithm as a consequence of pure functions with unified interfaces. For parallel
execution we use special function that allows to change a structure of the algo-
rithm and to implement various strategies for processing of data set and model.

Keywords: Parallel algorithms � Data mining � Parallel data mining �
Distributed data mining � Data mining algorithms

1 Introduction

At present time, modern computing systems allow the accumulation of big data sto-
rages. For analyzing of big data need super quickest algorithms. Unfortunately, the
most data analyze algorithms use complex mathematical or heuristic approaches and
cannot work quickly. Therefore, it is very important to increase their performance by
means of algorithm parallelization. However, the creation of parallel algorithms and
achieving their high efficiency on parallel or distributed systems is no common task.
The key issues are the need for synchronization of access to the data, minimization of
interaction between the parallel components, load balancing and so on.

We suggest an approach which allows to transform a sequential algorithm into a
parallel one with various structures and implementation of various execution strategies
for various conditions. It is possible because we use principles of functional pro-
gramming and λ-calculus theory [1]. A peculiar feature of functional languages is the
absence of program status and therefore the need for its change. The functions process
only the variables being the arguments of these functions and not use global variables.
Such functions are “pure” functions.

2 Related Work

A lot of research is fulfilled currently in the field of parallel and distributed data mining
algorithm developing. As a matter of fact, separate focus areas can be distinguished within
the data mining field [2]: parallel data mining (PDM) and distributed data mining (DDM).

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 62–67, 2015.
DOI: 10.1007/978-3-319-21909-7_6

There are several problems in developing parallel algorithms for a distributed
environment with association discovery data mining which is being considered in
research work [3]: data distribution, minimizing communication, maximizing locality
and other, etc. Achieving all of the these goals in one algorithm is nearly impossible, as
there are tradeoffs between several of the above points.

As for the approach towards the elaboration of parallel data mining algorithms, two
main approaches can be singled out:

• individual parallelizing of algorithms: individual approach to each data mining
algorithm and choosing most efficient parallel structure for the given conditions;

• universal algorithm parallelizing: generalized approach to the data mining algo-
rithms, suggesting its decomposition into parts which can be run concurrently.

The main work in the sphere of parallel data mining is aimed at individual parallel-
ization of algorithms. Examples of data mining algorithms for specific types of com-
puting systems are reviewed in the paper [3]. With this approach the complexity and
effort for developing of parallel algorithms is very high. At that this effort is aimed at
adapting the algorithms to execution strictly in the required conditions. The changes to
the conditions lead to the necessity of conversion of the algorithm which is in fact a
creation of a new algorithm.

For example of the universal algorithm parallelizing approach we can refer to two
works: NIMBLE system [4] and method for data mining algorithms corresponding to
Statistical Query Model [5]. Both methods are MapReduce paradigm oriented. How-
ever not all data mining algorithms can be implemented on the basis of this paradigm
without substantial processing.

We offer universal approach to constructing parallel data mining algorithms with
the use of functional programming paradigm. This approach allows to easily convert
sequence algorithms into its parallel form for various conditions.

3 Data Mining Algorithm as Functional Expression

The main idea using in proposed approach is an algorithm must be decomposed into
thread-safe blocks. We modified approach proposed in the paper [6] by using the
functional language principles. They based on the λ-calculus theory [1] have this
feature, because classic functions in the functional languages are pure functions.
According to Church-Rosser theorem [1], reduction of functional expression of pure
function can be fulfilled in any order, also concurrently.

A data mining algorithm can be presented as a sequence of function calls:

dma ¼ fbn� fbn�1
�. . .� fbi�. . .�fb1 ¼ fbn d; fbn�1 d; . . .: fbi d; . . .: fb1 d; nilð Þ. . .ð Þ::ð Þð Þ;

where fbi : is function (function block) of the type FB:: D → M → M, where

• D: is input data set that is analyzed by the function fbi;
• M: is mining model that is built by the function fbi.

Creation of Data Mining Algorithms as Functional Expression 63

So according to Church-Rosser theorem reduction (execution) of such functional
expression (algorithm) can be doing concurrently.

As example of a presentation of data mining algorithms as functional expression,
we consider classification algorithm 1R [7]. It can be present as expression from two
functions of the FB type:

1R ¼ rulesCycle � vectorsCycle;where ð1Þ

• vectorsCycle: is function of cycle for vectors which builds the rule and computes its
error for each attribute of each vector;

• rulesCycle: is function of cycle for rules which selects of rule with minimal error for
the each value of the target.

One of the main advantages of elaborating algorithms from the function blocks is the
possibility of their concurrent execution. At that of practical value is the parallel
execution of the function blocks computing the arguments at applicative reduction
order. Thus, for the parallel execution of the data mining algorithm blocks they must be
invoked for computing the arguments of one function. For example, in an expression:

fbi d; fbj d; mð Þ; fbp d; mð Þ; fbq d; mð Þ� �

the blocks fbj, fbp and fbq can be computed concurrently. Such concurrent computa-
tions correspond to the task parallelism. The data mining algorithms containing such
blocks in their structure have inner parallelism and can be parallelized.

However, the data mining algorithms are mostly characterized with data parallel-
ism. In this case explicit conversion of the functional expression is needed with adding
of data partitioning function and subsequent aggregation of results. For the function
blocks the input parameters are input data set D and mining model M. Thus the
parallelizing can be fulfilled both for the input data D, and for the model M.

To make the concurrent execution of a data functional expression, it must be
converted into the form in which the function blocks will be invoked as arguments. For
this we added a function which will allow data-parallelizing in the algorithms:

\parallelization function name[¼ join � fb � splitD; splitMð Þ; where

• join: the function joining the mining models from the list [M] and returning the
merged mining model M: join :: [M] → M.

• fb: a function block is executed concurrently;
• splitD: the function fulfilling the splitting of the data set D and returning list from

the n split data sets [D]: splitD :: D → M → [D];
• splitM: the function fulfilling the splitting of the mining model M and returning lists

from the n split mining models [M]: splitM :: D → M → [M].

A combination of split functions allows to implement the following strategies for
concurrent execution of a data mining algorithms:

64 I. Kholod and I. Petukhov

• in part of data processing:
– single data set: in this case each parallel block processes a copy of one data set;
– separated data sets: in this case each parallel block processes a part of the source

data set.
• in part of model processing:

– same model: in this case each parallel block receives a model copy;
– separated model: in this case each parallel block receives a part of the general

model.

Implementations of the parallelization function for various strategies are presented in
the Table 1. In this function the fbi block is invoked to compute the arguments of the
join function, therefore can be executed concurrently (Church-Rosser theorem).

Thus, to a data mining algorithm presented as functional expressions can be execute
(reductive) parallel need to add the parallelization function to expression. It can be
added for any function block in the functional expression thus converting the
expression to the parallel form.

For example, we can execute parallel function vectorsCycle of the 1R algorithm
and implement the “separated data sets” strategy. For this, need to wrap function
vectorsCycle in parallelization function for the expression (1):

vectorsCycleParall ¼ join � vectorsCycle � splitD
1RVectorsCycleParallel ¼ rulesCycle � vectorsCycleParall:

ð2Þ

Another variant is parallel execution of rulesCycle function of the 1R algorithm and
implementation of the “separated model” strategy:

rulesCycleParall ¼ join � rulesCycle � splitM:

1RRulesCycleParallel ¼ rulesCycleParall � vectorsCycle
ð3Þ

Last variant of parallel form of 1R algorithm is parallel execution of both functions
and implementation two strategies at same time:

1RWholeParall ¼ join � ðrulesCycle � vectorsCycleÞ� splitD; splitMð Þ ð4Þ

Similarly we can parallel execute any function of a data mining algorithm presented
as functional expression.

Table 1. Implementations of the parallelization function for various strategies

Strategy Single data set Separated data set

Same
mining
mode

join ([fbi(d, m), …, fbi(d, m)) join ([fbi (m, splitD(d, m)[0]), …, fbi (m,
splitD(d, m)[n])])

Separated
mining
model

join ([fbi (splitM(d, m)[0], d),
…, fbi(splitM(d, m)[n], d)])

join ([fbi(splitM(d,m)[0], splitD(d,m)[0]),
…, fbi(splitM(d,m)[n], splitD(d, m)[n])])

Creation of Data Mining Algorithms as Functional Expression 65

4 Experimental Results

We modified the framework for multi threads execution of data mining algorithms
[6, 8] for the proposed approach and implemented for the 1R algorithm parallel vari-
ations (2), (3) and (4). We have performed several experiments for the implemented
algorithms. The experiments have been performed with various input data sets
(Table 1). These data sets contain various numbers of vectors and attributes. The
experiments have been done on a multicore computer the following configuration:
CPU: Intel i7 3.4 GHz, RAM: 4 Gb, OS: Windows 7, JDK 1.7. The parallel algorithms
have been executed for the numbers of threads equal to 2, 4 and 8, respectively. The
experimental results are provided in Table 2. Correctness of algorithms has been
verified by comparison of built mining models. All algorithms have built same mining
models for same data sets.

The experiments show that parallel execution of the 1R algorithms for data sets
with various parameters is different (Table 3). The parallel form of algorithm (2) is
more efficiently for data sets with a large number of vectors (W*). It is possible because
large number of iteration for all vectors is splitted between few threads. Unlike it the
parallel form of algorithm (3) is more efficiently for data sets with a large number of
attributes (A5 and A10). This is because 1R algorithm executes much iteration for rules
in case of these data sets and them processing are divided at the few threads. The
parallel form of algorithm (4) is efficiently for both types of data sets, but is less
efficiently than the form (2) for data sets W*, because it needs to execute the splitM
function, additional.

Table 2. Data sets

Data set W1 W3 W5 W10 A1 A3 A5 A10

Number of vectors 10 000 30 000 50 000 100 000 1 000 1 000 1 000 1 000
Number of attributes 10 10 10 10 100 300 500 1 000
Avg. number of classes 5 5 5 5 5 5 5 5

Table 3. Experement results

Algorithms Threads W1 W3 W5 W10 A1 A3 A5 A10

1R 1 125 376 614 1 205 360 2 317 5 731 31 776
1RVectorsCycle Parallel 2 109 266 390 815 203 1 330 3 236 15 910

4 47 250 371 601 153 953 2 328 11 202
8 36 130 297 455 101 892 2 000 10 339

1RRulesCycle Parallel 2 141 390 673 1 375 344 1 197 2 442 13 357
4 156 434 725 1 370 376 883 1 690 10 515
8 113 322 620 1 102 432 585 1 260 8 295

1RWhole
Parallel

2 109 251 401 875 223 1 457 3 607 21 956
4 93 206 329 630 181 1 126 3 092 16 382
8 78 119 309 550 98 820 2 836 14 515

66 I. Kholod and I. Petukhov

5 Conclusion

Presentation of a data mining algorithm as functional expression makes it possible to
divide the algorithm into functions of FB type (functional blocks). Such a splitting of
data mining algorithms into blocks allows us to easily create parallel algorithms from
the sequential algorithm by adding special structural elements for parallel execution.

The proposed approach in the present article makes it possible to construct different
variants of parallel data mining algorithms and to implement different efficiently exe-
cution strategies for various data sets. As future work we plan to extend distributed
environments for Actor model, MapReduce and other.

Acknowledgments. The work has been performed in Saint Petersburg Electrotechnical Uni-
versity “LETI” within the scope of the contract Board of Education of Russia and science of the
Russian Federation under the contract № 02.G25.31.0058 from 12.02.2013. This paper is also
supported by the federal project “Organization of scientific research” of the main part of the state
plan of the Board of Education of Russia and project part of the state plan of the Board of
Education of Russia (task # 2.136.2014/K).

References

1. Church, A., Barkley Rosser, J.: Some properties of conversion. Trans. AMS 39, 472–482
(1936)

2. Paul, S.: Parallel and distributed data mining. In: Funatsu, K. (ed.) New Fundamental
Technologies in Data Mining, pp. 43–54. INTECH Open Access Publisher (2011). http://www.
intechopen.com/books/new-fundamental-technologies-in-data-mining/parallel-and-distributed-data-
mining

3. Zaki, M.J., Ho, C.-T. (eds.): Large-Scale Parallel Data Mining. LNCS, vol. 1759, pp. 1–23.
Springer, Heidelberg (2000)

4. Amol, G., Prabhanjan, K., Edwin, P., Ramakrishnan, K.: NIMBLE: a toolkit for the imple-
mentation of parallel data mining and machine learning algorithms on MapReduce. In: Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2011), pp.334–342. San Diego, California, USA (2011)

5. Ng, A.Y., Bradski, G., Chu, C-T., Olukotun, K., Kim, S.K., Lin, Y-A., Yu, Y.Y.:
Map-Reduce for machine learning on multicore. In: Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, pp. 281–288. Vancouver, Canada.
(2006)

6. Kholod, I., Karshiyev, Z., Shorov, A.: The formal model of data mining algorithms for
parallelize algorithms. In: Wiliński, A., Fray, I.E., Pejaś, J. (eds.) Soft Computing in Com-
puter and Information Science. AISC, vol. 342, pp. 385–394. Springer, Heidelberg (2015)

7. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets.
Mach. Learn. 11, 63–90 (1993)

8. Kholod, I.: Framework for multi threads execution of data mining algorithms. In: Proceeding
of 2015 IEEE North West Russia Section Young Researchers in Electrical and Electronic
Engineering Conference. (2015 ElConRusW), pp. 74–80. IEEE Xplore (2015)

Creation of Data Mining Algorithms as Functional Expression 67

http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining/parallel-and-distributed-data-mining
http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining/parallel-and-distributed-data-mining
http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining/parallel-and-distributed-data-mining

Dynamic Parallelization Strategies
for Multifrontal Sparse Cholesky Factorization

Sergey Lebedev, Dmitry Akhmedzhanov, Evgeniy Kozinov,
Iosif Meyerov(&), Anna Pirova, and Alexander Sysoyev

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
meerov@vmk.unn.ru

Abstract. This paper discusses parallelization of the computationally intensive
numerical factorization phase of sparse Cholesky factorization on shared
memory systems. We propose and compare two parallel algorithms based on the
multifrontal method. Both algorithms are implemented in a task-based fashion
employing dynamic load balance. The first algorithm associates OpenMP tasks
with the nodes of an elimination tree and relies on the OpenMP scheduler. The
second algorithm employs a concurrent priority queue to implement balancing.
Experimental results on symmetric positive definite matrices from the University
of Florida Sparse Matrix Collection show that our implementation is comparable
to MUMPS and Intel MKL PARDISO in terms of performance and scaling
efficiency on shared memory systems.

Keywords: Sparse algebra � Cholesky factorization � Numerical phase �
Multifrontal method � High performance computing � Dynamic parallelization �
Task-based parallelism

1 Introduction

Systems of linear algebraic equations (SLAE) Ax = b with large sparse symmetric
positive definite matrix A arise in a wide range of scientific and engineering problems
from different domains. The need for solution of such SLAE springs up when modeling
various physical processes, e.g. in large scale finite element analysis in mechanical
engineering. For solution of sparse SLAE direct and iterative methods are applied. Both
approaches have advantages and disadvantages flowing out of the inward nature of the
methods.

Direct methods are based on matrix factorization with the following triangular
solutions which are much simpler. These methods are distinguished by their reliability
and numerical stability, but worse computational complexity. They also require addi-
tional extensive memory resources for keeping intermediate matrices. Iterative methods
in turn are based on consecutive approaching to the solution and are deprived to a
significant extent of the disadvantages mentioned, but in a number of instances may
demonstrate slow convergence.

In this paper we discuss the issues of the effective implementation of direct methods
of SLAE-solving with symmetric, positive definite matrix, oriented towards modern
multi-core architectures.

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 68–79, 2015.
DOI: 10.1007/978-3-319-21909-7_7

Prominent progress in the area of sparse direct SLAE-solving methods parallel-
ization has been achieved over the last decade. Thus, multilevel hierarchical memory
structure usage (supernode ideas), vector computing, parallelism for shared-memory
multiprocessors and for clusters and other approaches have been worked out. Also,
implementations for GPU-based computing are being developed [1]. The described
efforts have resulted in a variety of software solutions for direct solving –

MKL PARDISO, Cluster PARDISO, MUMPS, SuperLU, CHOLMOD, etc. Contem-
porary software packages allow to solve systems of millions of variables, which opens
wide possibilities of numerical modeling in physics, chemistry, biology, medicine, and
many other fields.

It should be noted, that even though significant results in solving methods and their
implementation have been reached, the research of the issue cannot be considered as
finished. Thus, permanent developing of computing architectures and programming
paradigms not only provides an opportunity to solve more and more complicated
problems, but also demands considerable efforts to increase SLAE-solving algorithms
and programs efficiency.

The multifrontal factorization concept is one of the most effective among the direct
methods. In this paper we propose a new way of parallelization of the multifrontal
method for shared memory systems. As opposed to the static parallelization method our
solver uses a dynamic scheme. We do load balancing via task based parallelism. Two
ways of parallelization are compared. The first scheme uses OpenMP tasks and the
second one operates with a task pool, organized as a priority queue. We show that both
approaches have advantages. Series of tests were done to compare our implementation
to the two state-of-the-art solvers – Intel MKL PARDISO and MUMPS. The results
show comparability of our implementation to the other solvers. The rest of the paper is
organized as follows: we summarize related work, give a short overview of the mul-
tifrontal method, describe our approach to parallelization for shared memory systems,
give numerical results on the matrices from the University of Florida Sparse Matrix
Collection, compare performance and scaling efficiency, and discuss the results.

2 Related Work

2.1 Direct Methods for Sparse SLAE

Consider SLAE Ax = b, where A is known square, sparse, symmetric, positive definite
matrix, x and b are dense vectors. On the assumption given, there exists a unique
Cholesky factorization of the form (1), where L is a lower triangular matrix.

A ¼ LLT ð1Þ

Fill-in of the matrix L is one of the central problems arising out of matrix factor-
ization. This problem cannot be solved completely, but matrix A rows and columns
reordering before the factorization allows to reduce the fill-in and decrease both
memory and processing time expenses. Further, during the direct solving procedure,

Dynamic Parallelization Strategies for Multifrontal Sparse 69

matrix A is being factorized, two triangular systems are being solved and components
of a solution x are being back transposed.

As a general rule, matrix factorization is the most computationally intensive step of
the direct solution. Calculations at that are usually divided into two phases: Symbolic
phase and Numerical Phase. In the course of the symbolic part a non-zero elements
pattern is performed, in the course of the numerical phase – filling the pattern with
values. It should be noted that the symbolic phase is carried out much faster than the
numerical one; therefore the combined effort of researchers is directed mostly at
optimization and parallelization of the numerical phase.

The main methods of numerical Cholesky factorization may be divided into three
groups – right-looking Cholesky [2], left-looking Cholesky [2], and Multifrontal
method [3]. The first two methods differ in the order of pivotal entry elimination. In the
column-oriented right-looking method a yet another column j of the factor is computed.
After that, the pivotal entry is eliminated in all following columns with a non-zero
element in a row j. The column-oriented left-looking is much the same, except the
second step, which treads to the right. The method mentioned demonstrates similar
efficiency. This statement is confirmed by the fact that a variety of modern solvers
employ various methods. Thus, in both CHOLMOD and MKL PARDISO left-looking
Cholesky is implemented, whilst MUMPS uses the multifrontal method [4, 5]. Even as
part of the same solver, various approaches may be used, for instance, left-looking
method in SuperLU_MT (parallel version for shared memory systems) and
right-looking method in SuperLU_Dist (parallel version for distributed memory sys-
tems) [6]. In this work the multifrontal method was chosen as primary.

2.2 Multifrontal Method Overview

The multifrontal method is one of the most effective and scalable numerical factor-
ization schemes. It has made the first appearance in Duff and Reid’s paper [7, 8] in
1983, has been developed by Liu [3, 9], by Amestoy et al. [10], by Amestoy et al. [11].
The approach lies in the fact that the factorization process is being divided into fac-
torization of small dense matrices that are called frontal. The multifrontal method can
effectively employ all of the cache-memory levels; also, if data structures are properly
implemented, BLAS 3 operations become dominant. Supernodal multifrontal concept
has appeared for the first time in the paper of Ashcraft et al. [12] in 1987, thereafter it
has been studied by Ng and Peyton [13, 14]. The key idea of the concept is in
allocation and further usage of supernodes [15] – groups of columns with similar or
exactly the same structure beneath the upper triangle. The approach given allows to use
optimized BLAS 3 dense matrix procedures for factorization in a blocked manner,
which significantly accelerates calculations. In general, high parallelization potential
can be regarded as an advantage of the multifrontal method. This assertion may be
proven by successful applying of the method for distributed memory systems in
MUMPS solver. Should be noted, though, that the necessity of intermediate results
presentation leads to high memory losses. This, and large number of floating point
operations are among limitations of the multifrontal method. The effect mentioned
often appears for problems originate from three-dimensional space discretization [16].

70 S. Lebedev et al.

Calculations in the multifrontal method are being conducted in accordance with a
task graph, which in the context of symmetric, positive definite matrix has the form of
tree and is called elimination tree. Each node of the tree corresponds to a matrix
column. Thus, in the multifrontal method leaves-to-root tree traversal takes place and,
when a succeeding node is attended, original matrix column is being processed with
following factor column obtaining. High-level multifrontal method description is
presented below.

Algorithm 1. High-level multifrontal method description

1 foreach node i of elimination tree in topological order
2 init_frontal_matrix(Fi)
3 foreach son j of i do
4 U ⊕ U
5 end for
6 assembly_frontal_matrix(F,U)
7 factorize(F)
8 form_update_matrix(Ui)
9 Li F(1,*)

10 end for

Herein procedures init_frontal_matrix, assemble_frontal_matrix and for-
m_update_matrix are accomplished through the use of corresponding BLAS functions.
More detailed description may be found in [3, 16].

There are two parallelization schemes that can be employed in terms of the mul-
tifrontal method: parallel BLAS functions usage and parallel solving of independent
tasks in correspondence with elimination tree structure. Let us give considerations to
these methods’ prospects.

2.3 Parallel BLAS Usage

The majority of computations in the multifrontal method fall within BLAS procedures,
such as matrix multiplication and the Gaussian elimination. Therefore, usage of
existing high-performance computation libraries, such as, for instance, Intel MKL, is
one of the most natural ways to parallel the numerical phase of Cholesky factorization.
Unfortunately, as experiments show, applying the approach mentioned more often than
not leads to disappointing results. It can be explained by the fact, that most of inter-
mediate matrices, arising during the calculations, have small dimension, so overhead
charges, associated with organization of the parallelism are not compensated with
following parallel processing benefits. Hence, desirable efficiency can be achieved only
if parallelizing on the basis of the elimination tree is selected as primary.

Dynamic Parallelization Strategies for Multifrontal Sparse 71

2.4 Parallelization in Terms of Elimination Tree

Paralleling of the multifrontal method can be accomplished drawing on the elimination
tree, which contains the knowledge about all the data dependencies that can occur
during the calculations. The fact, that the structure of the matrix L row is a subset of the
subtree of the elimination tree with a root at corresponding to that row node is a key
point here. Therefore, any node from the set of non-zero elements of the column j is a
descendant of the node j in the elimination tree. Thus, the column j cannot be processed
until the columns with numbers from the mentioned set have been processed.
Continuing this reasoning, it can be shown, that for calculating a consecutive column,
processing all the columns from the subtree of the conforming node is essential.
Nevertheless, other nodes are not employed in calculations, so they can be considered
independently. Hence, a couple of columns, i and j, can be processed in a parallel way
if and only if subtrees T[i] and T[j] do not intersect, in other words, do not have
common nodes. Both static and dynamic strategies can be used to parallel the com-
putations on the basis of the elimination tree.

2.5 Static Parallelization Strategies

There is a plurality of methods that use a static parallelization scheme, the main part of
them are based on the Geist-Ng algorithm [17]. The idea of the algorithm is in detection a
layer in the elimination tree, a set of nodes that are not compulsive on the same level, but
they do not have common descendants. The located layer must be balanced, which means
that the number of operations required to process subtrees’ nodes with roots among the
mentioned layer nodes complies with the preset threshold and is also much the same.

A comparison of static parallelization methods may be found in papers [18, 23].

3 Dynamic Parallelization Strategies

One of the main disadvantages of static schemes is impossibility of accurate evaluation
of workload demandable to process each node of the elimination tree. This is the reason
why we suggest one more way of balancing the assignment, based on the dynamic
scheme.

In terms of dynamic scheme a task pool is being built. At any step of the algorithm
a thread takes task from the queue and proceeds to its accomplishment.

Each task conforms to computing the corresponding column of the factor and
consists of four subtasks: calculating a node matrix, calculating a frontal matrix,
forming the factor column out of the frontal matrix, calculating a renew matrix.

3.1 OpenMP Tasks

One of the ways to implement the dynamic scheme is to use OpenMP tasks to par-
allelize computations. In this regard it is sufficient to organize the elimination tree
traversal in topological order.

72 S. Lebedev et al.

Algorithm 2. Parallel multifrontal method using OpenMP tasks (alg_task)

1 procedure process_node(node of elimination_tree)
2 foreach son of node in elimination_tree do
3 #pragma omp task
4 process_node(son)
5 end for
6 #pragma omp taskwait
7 multifrontal_step(node)
8 end procedure
9
10 procedure multifrontal_step(node of elimination tree)
11 i number of node in elimination tree
12 init_frontal_matrix(Fi)
13 foreach son j of i do
14 U U Uj

15 end for
16 assembly_frontal_matrix(F,U)
17 factorize(F)
18 form_update_matrix(Ui)
19 Li F(1,*)

20 end procedure

3.2 Priority Queue

Speaking of the second algorithm, the task pool is organized as a priority queue
(Fig. 1).

To form the task pool mentioned we use the algorithm that takes into account
varying tree node characteristics to achieve better balancing. The algorithm traverses all
the nodes of the tree in accordance with topological order that has been formed already.

Fig. 1. The dynamic parallelization strategy on the ground of the priority queue.

Dynamic Parallelization Strategies for Multifrontal Sparse 73

It also adds the concerned node to the queue. The priority of the node is a combination
of the primary and the secondary priorities. The first one corresponds to the proper
column traversal in the parallel multifrontal method, the second one corresponds to an
improvement of the balancing. The primary priority equals to the quantity of the node
children in the elimination tree, the secondary can be calculated as an estimation of
corresponding subtasks solving complexity. This complexity may be estimated as the
number of floating-point operations.

Algorithm 3. Parallel multifrontal method using priority queue (alg_queue)

1 #pragma omp parallel for
2 for k = 0 to n do
3 #pragma omp critical (queue)
4 i task_queue.get_task_with_highest_priority();
5 init_frontal_matrix(Fi)
6 foreach son j of i do
7 U U
8 end for
9 assembly_frontal_matrix(F,U)
10 factorize(F)
11 form_update_matrix(Ui)
12 Li F(1,*)

13 #pragma omp critical (queue)
14 task_queue.increase_task_primary_priority(parent(i))
15 end for

4 Numerical Results and Discussion

Experimental results have been measured using a cluster node that contains two
eight-core processors Intel Sandy Bridge E5-2660 2.2 GHz, 64 GB RAM under Linux
CentOS 6.4. Intel C++ Compiler and Intel MKL BLAS library from Intel Parallel
Studio XE 2013 SP1 have been used. For conducting experiments matrices from the
University of Florida matrix collection [19] have been chosen. Properties of the test
matrices are given below (Table 1). All of them are positive definite and symmetric.

4.1 Dependency of alg_queue Algorithm Performance on the Parameters

There are some downsides of paralleling the multifrontal method using the elimination
tree. Thus, unnecessary synchronizations happen during the processing of the lower
part of the tree. This effect appears because an access to a shared resource – the queue –
should be synchronized, even though it has a lot of independent tasks. As a solution to
the problem, the dynamic strategy algorithm has been changed – now not tasks are to

74 S. Lebedev et al.

be extracted, but blocks of tasks. This approach allows reducing the number of syn-
chronizations. A sequence of experiments has been conducted with matrices pointed
above and the block size as a parameter (Fig. 2). It could be seem, that this parameter
significantly influences the runtime, particularly with greater number of threads. Thus,
for one thread the execution time ranges within 6 %, for 8 threads it ranges within up to
16 %, and for 16 threads – up to 48 %. The optimal value has to be assorted inde-
pendently for every matrix. However, an appropriate value may be selected beforehand
on an assumption of matrix properties.

Fig. 2. A percentage difference between the minimal and maximal execution time depending on
the task block size.

Table 1. Test matrices properties

Matrix name Dimension Non-zeros in A Non-zeros in L

Pwtk 217 918 5 926 171 49 025 872
Msdoor 415 863 10 328 399 51 882 257
parabolic_fem 525 825 2 100 225 25 571 376
tmt_sym 726 713 2 903 835 28 657 615
boneS10 914 898 28 191 660 266 173 272
Emilia_923 923 136 20 964 171 1 633 654 176
audkiw_1 943 695 39 297 171 1 225 571 121
bone010_M 986 703 12 437 739 363 650 592
bone010 986 703 36 326 514 1 076 191 560
ecology2 999 999 2 997 995 35 606 934
thermal2 1 228 045 4 904 179 50 293 930
StocF-1465 1 465 137 11 235 263 1 039 392 123
Hook_1498 1 498 023 31 207 734 1 507 528 290
Flan_1565 1 564 794 59 485 419 1 451 334 747
G3_circuit 1 585 478 4 623 152 90 397 858

Dynamic Parallelization Strategies for Multifrontal Sparse 75

4.2 A Comparison with State-of-the-Art Solvers

A series of experiments has been conducted with test matrices using two prominent and
widely applied solvers:

• MKL PARDISO: Intel Math Kernel Library (as part of Intel Parallel Studio XE
2014)

• MUMPS (ver. 4.10.0)

For all the packages the exact same METIS-generated [20] orderings have been
used, but others reordering tools may be utilized as well [21, 22]. Also BLAS and
ScaLAPACK functions from Intel MKL library have been employed.

The results obtained are shown on the diagrams below (Fig. 3). The following
conclusions could be drawn from the results. On a single core our implementation
demonstrates performance similar to MUMPS.

Fig. 3. A comparison of numerical phase of solvers. Axes represent time. MKL PARDISO
execution time is taken for 1.

76 S. Lebedev et al.

In comparison with MKL PARDISO our implementation is behind on 5 matrices,
and is ahead on 5 matrices. The implementation shows the greatest acceleration of
13 % on audikw_1 matrix. Comparing alg_task and alg_queue it could be noted, that in
most cases the first algorithm demonstrates better performance, even though calcula-
tions are identical. The explanation of this is in the fact that for running one thread
OpenMP tasks use stubs, whereas alg_queue builds the task queue, computes priorities
and conducts operations with the queue during the calculations. All of those processes
bring in additional expenses. For running 4 threads MUMPS performance is remark-
ably lower in comparison with other solvers. The both implemented algorithms show
decent acceleration, leaving behind MUMPS and PARDISO with 7 and 6 matrices
(alg_queue) and 12 and 9 matrices (alg_task).

For running 8 threads, the execution time of the implemented algorithms and
MUMPS runtime resemble. Alg_queue is ahead of MUMPS with 9 matrices,
alg_task – with 8. Significant runtime leaps may be observed on the diagram for
experiments with matrices boneS10 and bone010, also with four matrices (pwtk,
msdoor, StocF-1465, Flan_1565) results are very similar. Need to note, that greater
consistence and larger sizes of supernodes of these matrices are their peculiarities. It
means that BLAS functions performance becomes major. In both of the implemented
algorithms a consequent version of BLAS is used whereas PARDISO and MUMPS
employ a parallel variant [23], which allows them to achieve greater acceleration in
experiments with matrices mentioned. This observation may explain the execution time
of the solvers for running 16 threads. The lower part of the elimination tree consists for
the most part of small tasks, so it can be quickly processed by a larger number of
threads, whilst the top part of the tree contains less possibilities for paralleling. Herein
processing tasks in parallel is not so important, but effective accomplishment of linear
algebra operations is essential. These operations are, for instance, matrix multiplication
and Gaussian elimination.

Conducting an insulated comparison of the algorithms proposed (Fig. 4) the fol-
lowing learnings can be made. Alg_task demonstrates better execution time for running

Fig. 4. The ratio of alg_task to alg_queue. The runs with alg_task superior to alg_queue are
shown in light grey, the opposite case is shown in dark grey, the runs with comparable
performance of both implementations are shown in white.

Dynamic Parallelization Strategies for Multifrontal Sparse 77

one thread with every matrix. Further, the OpenMP task scheduler deals with his job
quite well, but notable runtime leaps can appear, for example, with bone010_M matrix
for running 8 threads. Nevertheless, the information about specifics of the tasks
becomes a determinative factor for greater numbers of threads. This knowledge enables
the alg-queue algorithm to show better results for running 16 threads.

5 Conclusion and Future Work

We have presented a new parallel implementation of the multifrontal method for the
Numerical phase of Cholesky factorization. The key idea of our approach is to employ
load balancing using task-based parallelism to improve performance and scaling effi-
ciency on shared memory systems. We discuss and compare two ways of implemen-
tation. The first algorithm uses OpenMP tasks and works better on 1 to 8 cores on the
majority of tests. The second one employs concurrent priority queue to operate with the
task pool and effectively converts the information about the matrix into an additional
performance gain on 16 cores. Computational experiments on the symmetric, positive
definite matrices from the University of Florida Sparse Matrix Collection show that
both algorithms demonstrate reasonable performance and scaling efficiency compared
to MUMPS. Both are comparable to Intel MKL PARDISO on up to 8 cores, but
PARDISO outperforms our implementation on 16 cores thanks to better utilization of
computational resources and multilevel memory hierarchy.

The main directions of future work are improving performance and scaling effi-
ciency of our implementation. We plan to employ nested parallelism to use sequential
BLAS for small tasks at the bottom levels of an elimination tree and parallel BLAS for
large tasks at the top levels of the tree. Hybrid MPI + OpenMP code and improved
concurrent priority queue implementation could improve performance as well.

Acknowledgments. The study was partially supported by the RFBR, research project
No. 14-01-3145514 and by the grant 02.B.49.21.0003 of The Ministry of education and science
of the Russian Federation.

References

1. Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factorization on GPUs.
In: Proceedings of the Fourth Workshop on Irregular Applications: Architectures and
Algorithms. pp. 9–16. IEEE Press (2014)

2. Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamental of Algorithms, vol. 2.
SIAM, Philadelphia (2006)

3. Liu, J.W.: The multifrontal method for sparse matrix solution: theory and practice. SIAM
Rev. 34(1), 82–109 (1992)

4. Duff, I.S., et al.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)
5. Davis, T.A.: User Guide For Cholmod: A Sparse Cholesky Factorization and Modification

Package. Department of Computer and Information Science and Engineering, University of
Florida, Gainesville (2008)

78 S. Lebedev et al.

6. Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface. ACM
Trans. Math. Softw. (TOMS) 31(3), 302–325 (2005)

7. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM
Trans. Math. Softw. (TOMS) 9(3), 302–325 (1983)

8. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear equations.
SIAM J. Sci. Stat. Comput. 5(3), 633–641 (1984)

9. Liu, J.W.: The multifrontal method and paging in sparse Cholesky factorization. ACM
Trans. Math. Softw. (TOMS) 15(4), 310–325 (1989)

10. Amestoy, P.R., et al.: Vectorization of a multiprocessor multifrontal code. Int. J. High
Perform. Comput. Appl. 3(3), 41–59 (1989)

11. Amestoy, P.R., et al.: A fully asynchronous multifrontal solver using distributed dynamic
scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

12. Ashcraft, C.C., Grimes, R.G., Lewis, J.G., Peyton, B.W., Simon, H.D., Bjorstad, P.E.:
Progress in sparse matrix methods for large linear systems on vector supercomputers. Int.
J. High Perform. Comput. Appl. 1(4), 10–30 (1987)

13. Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM J. Sci. Comput. 14(5), 1034–1056 (1993)

14. Ng, E., Peyton, B.W.: A supernodal Cholesky factorization algorithm for shared-memory
multiprocessors. SIAM J. Sci. Comput. 14(4), 761–769 (1993)

15. Demmel, J.W., Eisenstat, S.C., et al.: A supernodal approach to sparse partial pivoting.
SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

16. L’Excellent, J.Y.: Multifrontal Methods: Parallelism, Memory Usage and Numerical
Aspects. Ph.D. thesis, Ecole normale superieure de lyon-ENS LYON (2012)

17. Geist, G., Ng, E.: Task scheduling for parallel sparse Cholesky factorization. Int. J. Parallel
Prog. 18(4), 291–314 (1989)

18. Ashcraft, C., Eisenstat, S.C., Liu, J.W., Sherman, A.H.: A comparison of three
column-based distributed sparse factorization schemes. Technical report, DTIC Document
(1990)

19. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math.
Softw. (TOMS) 38(1), 1 (2011)

20. Karypis, G., et al.: A fast and highly quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

21. Pellegrini, F.: Scotch and libScotch 6.0 User’s Guide. Technical report, LaBRI (2012)
22. Pirova, A.Yu., Meyerov, I.B.: MORSy – a new tool for sparse matrix reordering. In:

Proceedings of an International Conference on Engineering and Applied Sciences
Optimization, pp. 1952–1963 (2014)

23. L’Excellent, J.Y., Sid-Lakhdar, M.W.: Introduction of shared-memory parallelism in a
distributed-memory multifrontal solver (2013)

Dynamic Parallelization Strategies for Multifrontal Sparse 79

Distributed Algorithm of Data Allocation
in the Fragmented Programming System LuNA

Victor E. Malyshkin1,2,3, Vladislav A. Perepelkin1,2(B),
and Georgy A. Schukin1,3

1 Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

{malysh,perepelkin,schukin}@ssd.sscc.ru
2 Novosibirsk State National Research University, Novosibirsk, Russia

3 Novosibirsk State Technical University, Novosibirsk, Russia

Abstract. The paper presents distributed algorithm with local commu-
nications Rope-of-Beads for static and dynamic data allocation in the
LuNA fragmented programming system. LuNA is intended for implemen-
tation of large-scale numerical models on multicomputers with large num-
ber of processors and various network topologies. The algorithm takes into
account the structure of a numerical model, provides static and dynamic
load balancing and can be used in various network topologies.

Keywords: Dynamic data allocation ·Distributed algorithms with local
interactions · Fragmented programming technology · Fragmented pro-
gramming system LuNA

1 Introduction

Implementation of large-scale numerical models on supercomputers is a challeng-
ing problem in high-performance parallel computing. In the light of growing size
of supercomputers (in terms of memory capacity, number of cores, etc.) new sys-
tem algorithms are to be developed for data processing and computations’ orga-
nization, because to achieve good efficiency and scalability of parallel programs
one has to provide its dynamic properties, such as dynamic load balancing, effec-
tive resources allocation strategy, etc. So, the complexity of application parallel
programming becomes comparable to the one of system parallel programming.
To simplify creation of parallel programs, enabled to achieve good performance,
LuNA system was developed, that provides automatic parallel program genera-
tion [1–4].

In LuNA a program is assembled out of fragments of data and computations
on these data. Each fragment of computation (CF) can be viewed as indepen-
dent process, computing output data fragments (DF) from its inputs. Each DF is
single assigned and each CF is executed only once. Fragmented structure is pre-
served during execution, which allows fragments to migrate between processing
elements (PEs) of multicomputer and be executed in parallel.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 80–85, 2015.
DOI: 10.1007/978-3-319-21909-7 8

Distributed Algorithm of Data Allocation 81

The quality of parallel programs, generated by LuNA, heavily depends on the
quality of resources distribution. In the paper the authors propose a distributed
local algorithm of dynamic resources allocation, employed in LuNA system.

2 Related Works

The problem of efficient and scalable data allocation is actively researched.
Worth mentioning are scalable diffusion-like algorithms [6–8], since they do

not require global interactions, but they lack concerning data structures, bal-
ancing speed and allow global imbalance with low load gradient.

Data allocation problems are common in distributed databases [12–15] and
cloud services [16–18]. Due to relative small count of objects to distribute and
low migration rates, these systems use centralized algorithms, which, because of
potentially unlimited number of DFs and high migration rates, are not suitable
for large distributed multicomputers.

Good efficiency can be achieved for allocating data of particular structures,
such as meshes [19,20]. However, these algorithms have very limited application
domain.

Worth mentioning are static analysis algorithms, employed in compilers [9–11].
Their limitation is static decision making at compile time.

Algorithms in [21,22] do not take data structure into account and do not solve
the problem of data search. In [15] a relatively scalable algorithm is presented,
but it employs global communications, which should be avoided.

3 Requirements for Data Allocation Algorithm

In order to provide high efficiency and scalability, data allocation algorithm
should meet the following requirements:

– To provide equal load of available PEs (static and dynamic load balancing)
– To reduce communications length by taking into account the structure of data
– To tune to behavior of phenomena being modeled
– To be decentralized and use mostly local communications

4 Distributed Algorithms of Data Allocation

Two distributed algorithms of data allocation were developed: Hash-and-Track
(HaT) and Rope-of-Beads (RoB), RoB being an improvement over HaT. Next
sections present description and comparison of these algorithms.

82 V.E. Malyshkin et al.

4.1 Hash-and-Track Algorithm

The basic idea of the algorithm is that each PE is responsible for tracking actual
location of a subset of DFs. Each DF is tracked by exactly one PE (called
tracker PE), defined by static hash-function on DF identifier and thus known to
all other PEs.

Whenever a DF is created or transferred to another PE, the tracker PE is
notified about its new location. If a DF is required on some PE, the tracker PE
is queried first and then forwards the request to the actual location of the DF.
Thus fixed (three in the worst case) number of interactions is required to obtain
any DF from any PE.

The main advantage of the HaT algorithm is its scalability in terms of compu-
tational load and extra storage usage. Given the hash function provides uniform
distribution of values among PEs, the number of DFs to track will be nearly
equal for all PEs.

Drawback of the algorithm is extra non-local communications with tracker
PEs, which impede scalability (this is confirmed in ”Experiments” section).

Toovercomethe shortcomingsofHaTalgorithm,RoBalgorithmwasdeveloped.

4.2 Rope-of-Beads Algorithm

In the RoB algorithm each DF is statically mapped onto a line segment [0, 1]
(like beads on a rope – hence the name of the algorithm) and is assigned a real
number called coordinate. The segment [0, 1] is divided into sub-segments, one
for each PE, adjacent sub-segments are mapped to neighbouring (connected by
physical link) PEs, thus creating a line of PEs. In such a way, each DF is mapped
to a PE. For each DF each PE can compute its coordinate and, if it belongs to its
sub-segment, access required DF, or, depending on the value of the coordinate,
forward query to a next or previous PE in the line.

In many problems spatially close data elements in domain are related by data
dependencies. One good way to construct mapping from multi-dimensional data
domain to [0, 1] segment, which preserves locality of DFs, is to use space-filling
curves (SFC), for example, Hilbert curve [23,24].

Distribution of DFs with Hilbert curve on 4 PEs is shown on Fig. 1. Figure 1a
shows distribution of equally sized DFs among similar PEs, whereas Fig. 1b
shows distribution in a case of non-equally sized DFs and/or PEs having different
processing capabilities. In both cases uniform load of PEs is achieved.

The RoB algorithm has the following advantages:

– All communications are local, memory consumption is constant and compu-
tational overhead is constant.

– By usage of SFC spatially close DFs will be allocated on the same or neighbor
PEs.

– Load balancing is done by dynamic shift of the boundaries of sub-segments
and migrating DFs between adjacent PEs. Diffusion-like algorithms may be
used for load balancing.

Distributed Algorithm of Data Allocation 83

(a) (b)

Fig. 1. Usage of a Hilbert curve for domain decomposition

Drawbacks of the algorithm are:

– DFs structure is reduced to one dimension, therefore some potential locality
of the problem may not be utilized.

– The count of hops to find a DF is linear function of a number of PEs in the
worst case. However, the search distance is expected to be mostly equal to 0
or 1 for applications with good locality.

– For problems with statically unknown number of DFs, irregular domain struc-
ture or dynamically changing data locality it isn’t always possible to compute
good DFs mapping to [0, 1] segment statically. Therefore, communication over-
head may increase.

5 Experiments

To compare performance of the algorithms, LuNA implementation of a solver of
Poisson equation with an explicit finite-difference scheme on a regular 3D mesh
[5] was chosen.

Experiments were conducted on the cluster of Siberian Supercomputing Cen-
ter with quad core Intel Xeon 5540 processors. The test contained 100 iterations
of the solver on 400× 400× 400 mesh, subdivided into 16 fragments per each of
two decomposition dimensions.

For both algorithms network traffic and total execution time were monitored.
Hilbert curve and generic hash function were used for DF and CF distribution.

5.1 Experiment Results

Table 1 shows execution times for the both algorithms on different number of
PEs. HaT algorithm with hash function for distribution shows the worst results.
Usage of Hilbert curve greatly improved execution times. RoB algorithm showed
the best results in the majority of cases.

84 V.E. Malyshkin et al.

Table 1. Execution times (sec.) for the poisson solver

Number of PEs 1 2 4 8 16

HaT (hash) 214.5 1297.2 2360.4 2400.7 2568.7

HaT (Hilbert) 187.9 101.9 54.5 32.7 17.2

RoB (Hilbert) 175.6 95.6 44.8 26.4 15.2

6 Conclusion

The problematics of data distribution automation for implementation of large-
scale numerical models for supercomputers is considered. The RoB algorithm for
dynamic data allocation for LuNA fragmented programming system is proposed.
Performance tests of the RoB algorithm are presented.

Acknowledgments. This work was supported by Russian Foundation for Basic
Research (grants 14-07-00381 a and 14-01-31328 mol a).

References

1. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011)

2. Malyshkin, V.E., Perepelkin, V.A.: Optimization Methods of parallel execution
of numerical programs in the LuNA fragmented programming system. J. Super-
computing 61(1), 235–248 (2012)

3. Malyshkin, V.E., Perepelkin, V.A.: The PIC implementation in LuNA system of
fragmented programming. J. Supercomputing 69(1), 89–97 (2014)

4. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of
numerical models on MIMD-multicomputers. J. Future Gener. Comput. Syst.
17(6), 755–765 (2001)

5. Kireev, S.E., Malyshkin, V.E.: Fragmentation of numerical algorithms for parallel
subroutines library. J. Supercomputing 57(2), 161–171 (2011)

6. Kraeva, M.A., Malyshkin, V.E.: Dynamic load balancing algorithms for imple-
mentation of pic method on MIMD multicomputers. J. Programmirovanie, no. 1,
pp. 47–53 (1999) (In Russian)

7. Hu, Y.F., Blake, R.J.: An improved diffusion algorithm for dynamic load balanc-
ing. J. Parallel Comput. 25(4), 417–444 (1999)

8. Corradi, A., Leonardi, L., Zambonelli, F.: Performance comparison of load balanc-
ing policies based on a diffusion scheme. In: Lengauer, C., Griebl, M., Gorlatch, S.
(eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 882–886. Springer, Heidelberg (1997)

9. Anderson, J.M., Lam, M.S.: Global optimizations for parallelism and locality on
scalable parallel machines. In: ACM-SIGPLAN PLDI 1993, pp. 112–125. ACM,
New York (1993)

10. Li, J., Chen, M.: The data alignment phase in compiling programs for distributed-
memory machines. J. Parallel Distrib. Comput. 13(2), 213–221 (1991)

Distributed Algorithm of Data Allocation 85

11. Lee, P.: Efficient algorithms for data distribution on distributed memory parallel
computers. J. IEEE Trans. Parallel Distrib. Syst. 8(8), 825–839 (1997)

12. Kwok, Y.-K., Ahmad, I.: Design and evaluation of data allocation algorithms for
distributed multimedia database systems. IEEE J. Sel. Areas Commun. 14(7),
1332–1348 (1997)

13. Iacob, N.M.: Fragmentation and data allocation in the distributed environments.
Annals of the University of Craiova - Mathematics and Computer Science Series
38(3), 76–83 (2011)

14. Jagannatha, S., Geetha, D.E., Suresh Kumar, T.V., Rajani Kanth, K.: Load bal-
ancing in distributed database system using resource allocation approach. J. Adv.
Res. Comput. Commun. Eng. 2(7), 2529–2535 (2013)

15. Honicky, R.J., Miller E.L.: Replication under scalable hashing: a family of algo-
rithms for scalable decentralized data distribution. In: 18th International Parallel
and Distributed Processing Symposium (2004)

16. Alicherry, M., Lakshman, T.V.: Network aware resource allocation in distributed
clouds. In: INFOCOM 2012, pp. 963–971. IEEE (2012)

17. AuYoung, A., Chun, B.N., Snoeren, A.C., Vahdat, A.: Resource allocation in
federated distributed computing infrastructures. In: First Workshop on Operating
System and Architectural Support for the On-demand IT InfraStructure (2004)

18. Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource manage-
ment for high throughput computing. J. Cluster Comput. 2(1), 129–138 (1999)

19. Reddy, C., Bondfhugula, U.: Effective automatic computation placement and data
allocation for parallelization of regular programs. In: 28th ACM International
Conference on Supercomputing, pp. 13–22. ACM, New York (2014)

20. Baden, S.B., Shalit, D.: Performance tradeoffs in multi-tier formulation of a
finite difference method. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A.,
Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp.
785–794. Springer, Heidelberg (2001)

21. Ishikawa, K.-I.: ASURA: Scalable and Uniform Data Distribution Algorithm for
Storage Clusters. Computing Research Repository, abs/1309.7720 (2013)

22. Chawla, A., Reed B., Juhnke, K., Syed, G.: Semantics of Caching with SPOCA: A
Stateless, Proportional, Optimally-Consistent Addressing Algorithm. In: USENIX
Annual Technical Conference 2011, pp. 33–33. USENIX Association (2011)

23. Lawder, J.K., King, P.J.H.: Using space-filling curves for multi-dimensional index-
ing. In: Jeffery, K., Lings, B. (eds.) BNCOD 2000. LNCS, vol. 1832, pp. 20–35.
Springer, Heidelberg (2000)

24. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve. J IEEE Trans. Knowl. Data Eng.
13(1), 124–141 (2001)

Control Flow Usage to Improve Performance
of Fragmented Programs Execution

V.E. Malyshkin1,2,3, V.A. Perepelkin1,2(&), and A.A. Tkacheva1,2

1 Institute of Computational Mathematics and Mathematical Geophysics
of the Siberian Branch of Russian Academy of Sciences,

Novosibirsk, Russia
{malysh,perepelkin,tkacheva}@ssd.sscc.ru

2 National Research University of Novosibirsk, Novosibirsk, Russia
3 Novosibirsk Technical State University, Novosibirsk, Russia

Abstract. Dataflow-based systems of parallel programming, such as LuNA
fragmented programming system, often lack efficiency in high performance
computations due to a high degree of non-determinism of a parallel program
execution and execution overhead it causes. The authors concern defining
control flow in LuNA programs in order to optimize their execution perfor-
mance. The basic idea is to aggregate several fragments of a program and to
execute them under control flow, thus reducing both surplus parallelism and
system overhead. Tests presented show effectiveness of the proposed approach.

Keywords: High performance computing � Fragmented programming
technology � Luna fragmented programming system � Control flow

1 Introduction

Implementation of large-scale numerical models on supercomputers is often chal-
lenging, because a programmer has to develop a program, possessing a number of
dynamic properties, such as dynamic load balancing and tuning to available resources
in order to make the program efficient and scalable. To increase the accessibility of
supercomputers, a variety of parallel programming systems and tools were developed.
To hide low-level programming details they automate the provision of the dynamic
properties of programs. Examples of such systems are: LuNA [1], Charm++ [2], SMP
Superscalar [3], DPLASMA [4].

High level of a program brings forth problems of its efficient parallel execution on a
supercomputer. Since a programming system is able to execute the program in many
ways (non-determinism of a program), appropriate to different hardware configurations
or input data, the system faces the problem of dynamic choice of an efficient way of the
program’s execution. Often being NP-complete, this problem has to be overcome with
heuristics or particular solutions.

One of the common ways to improve parallel program execution performance for
such dataflow-based systems as LuNA is control flow usage. Control flow can presume
for a number of subtasks of a program the order of their execution statically, eliminating
the need to track data dependencies in run-time. This reduces the run-time system

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 86–90, 2015.
DOI: 10.1007/978-3-319-21909-7_9

overhead, thus improving the efficiency of the program execution. Although the par-
allelism degree of the program also decreases, this is often an advantageous trade-off.

The aim of the current work is the development of control flow support for LuNA
programming system.

2 Related Works

Control flow means are widely used to improve performance of declarative parallel
programming languages and systems.

In the systems SMP Superscalar [3], Cell Superscalar [5], ProActive Parallel Suite
[6], one can define control flow with priorities. This mechanism, while being flexible, is
not capable of defining complex program behavior. It also lacks readability for large
programs, which results in control errors probability increase. In the functional lan-
guages of parallel programming Haskell [7], SISAL [8] in order to improve perfor-
mance of algorithm’s execution there are dedicated language means to mark a loop as
parallel or sequential.

The library DPLASMA for linear algebra subroutines for dense matrices is built
over PaRSEC [9] system. This system analyses informational dependencies at compile
time, and the algorithm is represented in the Directed Acyclic Graph (DAG) form.

In such a way, while the idea is widely exploited, no general to construct control
flow has been developed, thus further research of the problem is necessary.

3 LuNA Fragmented Programming System

LuNA (Language for Numerical Algorithms) is a language and a parallel programming
system [1] intended for implementation of large-scale numerical models on super-
computers. It is being developed in the Institute of Computational Mathematics and
Mathematical Geophysics of the Siberian Branch of Russian Academy of Sciences.

In LuNA an application algorithm is represented in a single-assignment
coarse-grained explicitly parallel language LuNA as a bipartite graph of data frag-
ments (DF) and computational fragments (CF). DFs are basically blocks of data
(submatrixes, array slices, etc.). CFs are applications of pure functions on DFs. A CF
has a number of input DFs and a number of output DFs. Values of output DFs are
computed by the CF from the values of input DFs. Such representation is called
fragmented algorithm (FA).

LuNA program consists of the FA description in LuNA language and a dynamic
load library with a set of conventional sequential procedures. CFs are implemented as
calls to these procedures with input and output DFs. Execution of all the CFs is done in
accordance with partial order, that is imposed on the set of CFs by the information
dependencies, forms the FA execution.

A FA is executed by the LuNA run-time system. Fragmented structure of the FA is
kept in run-time, allowing the run-time system to dynamically assign CFs and DFs to
different computing nodes, execute CFs in parallel (if possible), balance computational
workload by redistributing CFs and DFs and so on.

Control Flow Usage to Improve Performance of Fragmented Programs 87

Since the run-time system makes most decisions on FA execution dynamically,
many checks for CFs being ready take place. This leads to significant overhead.

4 Suggested Approach

The basic idea of the suggested approach is to combine a subset of CFs into a single
CF. For example, a loop or a subroutine may be collapsed into a single CF. All DFs,
necessary to compute the CF, become input DFs, and all DFs produced become its
outputs. All the CFs combined are executed sequentially in a fixed order under the
control flow. Also, the number of CFs reduces, causing reduced system overhead.

Such FA transformation is possible for a set of CFs if the following condition is
true: once all input DFs are provided, the whole chain of CFs may be sequentially
executed without having to wait for other CFs to execute.

The transformation may be applied to both dependent and independent CFs. If the
latter is the case, then the overall degree of parallelism of the FA is reduced, therefore
control flow usage should not be overused.

To determine permissible order of CFs execution information dependencies anal-
ysis must be made. Creation of new aggregated CF means generation of new proce-
dure, which invokes other procedures in established order. Both dependencies analysis
and procedure generation were implemented as a part of LuNA project for a particular
case, i.e. when the part of FA being transformed contains statically defined set of CFs.

It is worth mentioning, that it is algorithmically hard to determine effectiveness of
control flow optimization in a given case. This problem is out of the scope of this work.
Instead, the LuNA language was extended with annotations, which explicitly define,
whether control flow transformation is required or not for given part of FA. Currently
the annotations are provided by a user, but annotations generation may be automated.

5 Performance Tests

To investigate the effectiveness of the suggested approach a number of performance
tests were conducted on a shared memory multiprocessor with 6 cores (Intel Xeon CPU
X5600 2.8GHz) and on the distributed memory cluster of National Research University
of Novosibirsk [10].

An application tested is a typical reduction problem on an array of numbers. The
array to reduce is split into a number of slices. Each slice is reduced sequentially, while
different slices may be processed independently. Two tests were performed: in the first
one the slices were reduced sequentially, in the second one the slices were reduced in
parallel. Both sequential and parallel tests were performed with and without control
flow optimization. Control flow was applied to all the slices. Slice size was a parameter
of the tests.

In all the tests “LuNA” stands for non-optimized execution and “static” stands for
execution with control-flow optimization.

From Fig. 1 it is seen that control flow significantly reduces the FA execution time
on the multiprocessor. The greater the slice size is, the more the benefit is. One can also

88 V.E. Malyshkin et al.

notice, that for small sizes parallel version executes slower. This is due to extra
overhead, which arises from extra CFs in parallel version of the test, and is not relevant
to the subject of the work.

Figure 2 shows the result of the similar testing on the distributed memory cluster. It
is seen, that usage of direct control benefits in performance by reducing system
overhead.

Fig. 1. Multiprocessor test. Dependency of the FA execution time on the slice size is shown.
Array size is 3 × 104.

Fig. 2. Multicomputer test. Dependency of the FA execution time on the slice size is shown.
Array size is 5 × 105. Number of computer nodes is 8.

Control Flow Usage to Improve Performance of Fragmented Programs 89

6 Conclusion

Profitability of direct control usage in LuNA fragmented programming system was
concerned. An approach to employ direct control in LuNA system was suggested and
implemented as a part of LuNA software. Performance tests demonstrate that control
flow usage significantly increases performance of program execution on the example of
the reduction problem.

Acknowledgements. This work was supported by Russian Foundation for Basic Research
(grants 14-07-00381 a and 14-01-31328 mol_a).

References

1. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions
and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol.
6873, pp. 53–61. Springer, Heidelberg (2011)

2. Acun, B., et al.: Parallel programming with migratable objects: charm++ in practice. In: SC
2014. ACM, New York, NY, USA (2014)

3. Perez, J.M., Badia, R.M., Labarta, J.: A flexible and portable programming model for SMP
and multi-cores. Technical report 03/2007, Barcelona Supercomputing Center, Barcelona,
Spain (2007)

4. Bosilca, G., et al.: Flexible development of dense linear algebra algorithms on massively
parallel architectures with DPLASMA. In: Proceedings of the Workshops of the 25th IEEE
International Symposium on Parallel and Distributed Processing (IPDPS 2011 Workshops),
pp. 1432–1441. IEEE, Anchorage, Alaska, USA (2011)

5. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: CellSs: a programming model for the cell
BE architecture. In: SC 2006: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, p. 86. ACM Press, New York, NY, USA (2006)

6. Caromel, D., Leyton, M.: ProActive parallel suite: from active
objects-skeletons-components to environment and deployment. In: César, E., Alexander,
M., Streit, A., Träff, J.L., Cérin, C., Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.) Euro-Par
2008 Workshops - Parallel Processing. LNCS, vol. 5415, pp. 423–437. Springer, Heidelberg
(2009)

7. Coutts, D., Loeh, A.: Deterministic parallel programming with haskel. Comput. Sci. Eng. 14
(6), 36–43 (2012)

8. Gaudiot, J.-C., DeBoni, T., Feo, J., Böhm, W., Najjar, W., Miller, P.: The Sisal project: real
world functional programming. In: Pande, S., Agrawal, D.P. (eds.) Compiler Optimizations
for Scalable Parallel Systems: Languages, Compilation Techniques, and Run Time Systems.
LNCS, vol. 1808, pp. 45–72. Springer, Heidelberg (2001)

9. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.: PaRSEC:
exploiting heterogeneity to enhance scalability. IEEE Comput. Sci. Eng. 15(6), 36–45
(2013)

10. National Research University of Novosibirsk cluster. http://www.nusc.ru/

90 V.E. Malyshkin et al.

http://www.nusc.ru/

Towards Application Energy Measurement
and Modelling Tool Support

Kenneth O’Brien1(B), Alexey Lastovetsky1, Ilia Pietri2,
and Rizos Sakellariou2

1 Heterogeneous Computing Laboratory,
School of Computer Science and Informatics, University College Dublin,

Dublin, Ireland
kenneth.obrien@ucdconnect.ie, alexey.lastovetsky@ucd.ie

http://hcl.ucd.ie
2 The University of Manchester, Manchester, UK

Abstract. We present a prototype toolkit for researchers to accurately
measure and model their application’s power and energy usage. We pro-
vide an analysis of a matrix multiplication application using our api
libhclenergy.

Keywords: Energy efficiency · Energy measurement · Software tools ·
High performance computing

1 Introduction

Energy has emerged as a new finite resource that must be considered by appli-
cation developers. Currently, developers optimise their applications for perfor-
mance by making the most efficient use of processor clock cycles, memory hier-
archies and network bandwidth, in order to reduce execution time.

In recent years Dennard scaling has ended. Dennard scaling was a law that
stated as transistor sizes decreased, the power a processor constructed of these
transistors requires, remained proportional to the area of that chip.

The practicalities of this breakdown are that processor manufacturers can-
not develop processors consisting of smaller transistors without drawing more
power and producing more heat. These factors have resulted in the stagnation of
processor clock frequencies and the rise of multicore and accelerator computing,
as performance improvements can be achieved by adding more cores without
shrinking transistors. This is not a complete solution as increasing the number
of cores in a processor increases the overall power consumption, more so than
what could be achieved if Dennard scaling had held.

This research is supported by the Structured PhD in Simulation Science which is
funded by the Programme for Research in Third Level Institutions (PRTLI) Cycle 5
and co-funded by the European Regional Development Fund. This work is partially
supported by EU under the COST Program Action IC1305: Network for Sustainable
Ultrascale Computing (NESUS).

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 91–101, 2015.
DOI: 10.1007/978-3-319-21909-7 10

92 K. O’Brien et al.

Our background is in application performance optimisation, therefore we
focus our efforts to application power monitoring and analysis. Efforts at the
hardware and data center configuration levels are beyond the scope of our study.

In order to optimise for this new resource we require tool support similar
to that which exists for performance optimisation. We first need the ability to
measure an application’s energy usage, as well as the application’s power usage,
which is the rate of consumption over time.

Advanced mathematical modelling methods and tool support exists for appli-
cations with respect to performance [9]. For application energy modelling to
develop further, we require equally advanced tool support.

In Sect. 2 we introduce our api for application power and energy monitoring.
In Sect. 3 we introduce a tool for power and energy model construction. In Sect. 4,
we demonstrate the capabilities of our tools. In Sect. 5 we describe related efforts
and in Sect. 6 we conclude and describe our future works.

2 Libhclenergy

2.1 Measurement Infrastructure

There are two application metrics we wish to study, power and energy. Power
is a rate of consumption of electricity, measured in units of Watts. Energy is a
measure of work done. It is measured in Watt Hours (Wh) or Watt Seconds,
commonly known as Joules (J). Power and energy are related by Eq. 1, where E
is energy in Joules, P is power in Watts and t is time in seconds.

E = P ∗ t (1)

Fig. 1. Power measurement infrastructure

For our measurements we assume the existence of an external measurement
device that records the power consumption of our node at regular intervals with-
out affecting the nodes consumption. Figure 1 shows the mechanism by which
we obtain our data.

Towards Application Energy Measurement and Modelling Tool Support 93

Our Compute Node 0 is instrumented by an external power measurement
device (Power Meter 0) which records the power draw through the mains elec-
tricity socket (shown as a). This data is reported from all compute nodes to
a centralised server(c), which can then be requested via HTTP, by any web
capable device (b).

Given the hostname of node and a time frame, the API returns a series of
measurements and the resolution at which the measurements were made. We use
this infrastructure at GRID5000 as the basis for our api libhclenergy.

2.2 Experimental Platform

We chose GRID5000 [4] as our prototyping platform. It is large scale testbed
for parallel computing. It provides a highly heterogeneous platform that can be
configured by the researcher for their experiments. Many of the nodes contain
accelerators and high speed interconnects representative of the current landscape
in supercomputing. These include Nvidia GPU, Intel Xeon Phi and Infiniband.
We believe our work here to be easily portable to other infrastructure. Recently
the HPC job scheduling software Torque [1] added support for power measure-
ment and management providing a suitable basis for production implementations
of our libhclenergy.

2.3 Measurement of Distributed Applications

In the case of a single process, our API will measure energy and power between
start and end time events as specified by the programmer. There can be multiple
events and they may overlap, providing the programmer with the granularity of
measurement that they require.

For the case of an application with multiple processes, we expose the total
value for the node only at present.

In the case of an MPI application, we produce an energy reading for each
participating node executing the application.

a0 a1

b0 b1

c0 c1

Time

a0 a1

b0 b1

c0 c1

Time

Fig. 2. Multiple processes on single node, both cases

There are two cases to be considered when measuring multiprocess or dis-
tributed applications. Firstly we can measure the power of all processes from
the launch of the application until the final process exits. This is useful in the

94 K. O’Brien et al.

context of a grid, where resources are reserved and the idle machines must be
taken into account. Secondly we can measure each node only when it’s executing
our application. This is the actual power of our application. We do not want to
measure a node with a high power draw if we’re only using it for a small unit
of time. Both cases are shown graphically in Fig. 2 for processes a, b and c. In
the first diagram, the energy calculated will be the same for either method of
calculation. For the second diagram however, the energy could be calculated for
all processes a, b and c for the duration of process a’s execution. Our alterna-
tive measurement method only accounts for energy of processes while they’re
executing.

2.4 API Features

Power consumption of a node can be characterised by the static(or idle) power
of the components powered on, and the dynamic power, which is the power
consumed by devices performing work. Our idle power consumption function
allows the user to measure both the static and dynamic power of their application
by simple subtraction.

We provide a utility function to calculate the idle power consumption of a
node. This function puts the calling process to sleep, after which it requests
the consumption for that period. The idle power is the baseline from which
deviations are considered characteristic of the running application. In addition,
we provide the energy cost in euros of running the application for a given price
per kWh, provided by the utility company.

Table 1 demonstrates our API’s key functions. Functions 1–3 provide a way
to initialise, start and stop a measurement. Functions 4–6 provide measurements.
The Raw variant of the PowerSeries function captures measurements for all par-
ticipating processes at all times, as opposed to only when executing. Functions 7
and 8 are only available when instrumenting MPI applications. Function 7 gath-
ers all measurements from all compute processes to the root process. Functions
9–11 are utilities, providing idle power of a compute node, average power of a
series of power measurements and cost of electricity for a given event.

As researchers we want to be confident in the accuracy of our measurements.
As such the developer may specify a confidence level and a tolerance for both
power and energy measurements. For a segment of instrumented code, the mea-
surements are repeated until the confidence level falls within tolerance or a set
maximum iterations is reached.

Figures 3 and 4 show examples of our API in use. Each time an application
is measured, the raw data is written to a file. In order to attain our required
accuracy we script a repetitive execution until the confidence interval is below
tolerance.

3 Greenman

We have developed a tool to profile applications, measure their energy consump-
tion and fit existing state of the art statistical models. To the authors’ knowledge,

Towards Application Energy Measurement and Modelling Tool Support 95

Fig. 3. Libhclenergy example of energy measurement

Fig. 4. Libhclenergy example of power measurement

these are representative of the current models found in the literature. This tool
builds on our hclenergy API to gather power and energy measurements.

Presented in Table 2 are some of the existing models we have implemented in
the tool. They are all statistical regression models. U components of the models
denote utilisation as a percentage of clock cycles for CPU, and total bytes written
and read in the cases of memory, disk and network.

The models parameterise the power consumed by a compute node. Energy
can be derived from Eq. 1 when execution time is known.

All models are fitted using a variety of standard and robust methods (bisquare,
cauchy, fair, huber, welsch and ordinary) from GSL [14]. Robust methods are used
to counteract the effect of outliers in the data. As a system is composed of many
processes, another scheduled process may interfere with data collection. Robust
methods dampen their effect on our model fitting.

We collect statistics at a per core granularity for c-state and p-state occu-
pancy, as well as percentage of clock cycles spent in our application. Modern
processor cores operate in various states of alertness known as c-states. In the
highest c-state C0, all features of the processor including clocks, caches and
voltages are at maximum capacity. In the lowest c-state C6 in the case of the
Core 2 Duo, a processor can reduce the voltage of it’s cores as low as 0 volts,
with all internal clocks and caches disabled. There are gradual steps between
these two extremes. Processors cores also have p-states representing each of the
discrete frequencies a processor core can execute. Lower frequencies mean lower
power consumption, but also lower performance. An application running at a low

96 K. O’Brien et al.

Table 1. Key hclenergy API calls

No Function

1 hclenergy t *hcl init();

2 void hcl start(hclenergy t *event);

3 void hcl stop(hclenergy t *event);

4 double energy consumed(hclenergy t *event);

5 struct host power series *getRawPowerSeries(hclenergy t *event)

6 struct host power series *getPowerSeries(hclenergy t *event);

7 struct host power series *gatherHostSeries(struct host power series *local);

8 double *energy per host(hclenergy t *event);

9 double idlePower();

10 double avg series(struct timeseries *series);

11 double cost(hclenergy t *event, double price);

Table 2. Selection of models currently implemented

frequency taking a longer time may use more energy. We also record network
packets per second per interface, memory footprint of the application, and bytes
read and written to disk drives.

The sample rate of our power measurements is relatively low compared to
our sample rate of application statistics. We interpolate our power readings in
order to approximate the correct measurement for the given point in time. We
provide approximation by akima, linear, cspline and polynomial splines.

The tool is executed on the Linux commandline as:

greenman <greenmanArguments> <resultsFolder> <Application> <Arguments>

As such the application under analysis does not require alteration. Any exe-
cutable can be non intrusively instrumented. The source code of the application
is not required for analysis.

If the user wishes to instrument segments of code in an application, the
user must alter their code to tell greenman where to start and stop measuring.
Models within this segment are calculated only using measurements collected
inside these segments.

Towards Application Energy Measurement and Modelling Tool Support 97

For each model we provide the researcher R2, R2Adj, F statistic, and p value
for each model parameter, χ2, covariance matrix and correlation.

The tool is available as opensource software and is extensible as newer models
arise. New models can be added by implementing a standard interface we pro-
vide. All models implemented so far use this interface, providing many examples
on which to base new ones. We foresee new measurements to be required in
the future and so we implement our measurement code in a similar extensible
fashion.

As our tool is built in part on top of the PAPI library [24], any counters
exposed now or in the future by it are supported.

When greenman is executed, it calls the fork() and exec() system calls to
begin executing the researcher’s application. We use the ptrace API which is
primarily designed for implementing system call tracing and breakpoint debug-
ging of applications. Ptrace allows us to control the application under analysis,
frequently sampling it’s application data from the/proc filesystem to build a
time-series profile of the applications performance.

4 Applying Our API

Here we demonstrate the use of our tools to analyse a matrix multiplication appli-
cation. We measure only during the kernel’s execution. Allocation and initialisa-
tion of memory are not considered. We wish to understand the effect of number
of the number of threads used in the computation. Using a non-distributed multi-
threaded implementation we vary the number of threads and measure the energy
consumed separately on two compute nodes (Sagittaire 30 and 72). Both nodes
are of dualcore x86 64 architecture(AMD Opteron 250) and are identical, with
the exception of Sagittaire 72 having an additional hard disk drive and 16 GB
instead of Sagittaire 30’s 2 GB of ram.

The results of our experiment are shown in Table 3. We report confidence
intervals at the 95% level. We note that Power while executing the applica-
tion does not vary with the number of threads used, but that it is heavily
influenced by the idle power of the machine. As the CPU is the most power
demanding component of most servers [13], the similarity between idle and active
power led us to investigate if the CPU was not using frequency scaling features.
We confirmed this to be true in our environmental setup. Enabling these features
would cause a reduction in power consumption.

We also observe that the execution time for both machines is similar for the
given number of threads. Energy however varies dramatically. For the same com-
putation, Sagittaire-72, uses 727.17 J and 369.12 J more than Sagittaire-30 for 1
and 2 threads respectively. This analysis tells us that we should use Sagittaire-30
for this computation as we will use less energy and not suffer any performance
degradation.

The cost of energy is shown in Table 4. Though the costs are low, we must
consider how they scale for longer running applications on a greater number of
compute nodes.

98 K. O’Brien et al.

Table 3. Power and energy measurements

Machine #Threads Power (W) Energy (J) Idle Time(s)

Sagittaire-30 1 175.14 ± 0.40 2900.37 ± 6.90 174.58 ± 0.38 16.56

Sagittaire-30 2 175.28 ± 0.32 1560.72 ± 3.33 174.586 ± 0.38 8.90

Sagittaire-72 1 218.53 ± 4.26 3627.53 ± 70.81 215.975 ± 0.69 16.60

Sagittaire-72 2 217.29 ± 0.91 1929.84 ± 8.21 215.975 ± 0.69 8.88

Table 4. Energy costs

Machine #Threads Cost(4.125 c/KWh)

Sagittaire-30 1 e 0.0033

Sagittaire-30 2 e 0.0017

Sagittaire-72 1 e 0.0041

Sagittaire-72 2 e 0.0022

5 Related Works

Related tools for model prediction include JouleTrack [26], a web based tool for
application profiling and energy estimation for StrongARM and Hitachi SH-4
processors. Dunkels [11], provides an energy estimation framework for small sen-
sor web devices based on work by [29] which assumes that a larger infrastructure
would be able to measure it’s own energy via ACPI [2]. While power measure-
ment via ACPI is part of the standard since version 4, we do not have access
to machines that support it. Neither of these tools target the architectures and
infrastructure that we do.

Barrachina [5] presents pmlib, a software package for measuring energy states
on CPUs. This library provides whole node level measurements accurately, but
does not capture finer grained measurements such as that of components and
accelerators. However, it has the advantageous ability to interface with high
frequency external measurement devices.

Cabrera provides EML [8] which are similar contributions to our libhclenergy,
but lacks the ability to report statistical confidence and also to transparently
calculate per node power in MPI applications.

In addition to these software methods, there are such as PowerPack [15] and
PowerMon2 [7] that intercept power rails of components to give component level.
These methods are difficult to deploy in real systems and are disadvantaged by
the complexity of measuring devices with multiple power rails [18].

To the authors’ knowledge there is no existing tool for energy profiling and
model testing.

Towards Application Energy Measurement and Modelling Tool Support 99

5.1 Existing Tools

We limit ourselves to a node level granularity, but should the reader be interested
in finer grained measurement at the device level, we advise you to consult the
following tools which are performance counter based.

Intel provide the RAPL interface [10] which is a software power model and
similarly AMD provides APM [3]. Though easily accessible, both have disadvan-
tages. Intel RAPL fails to provide power measurements, only providing energy
with no timestamp data, hindering indepth analysis [16] and AMD APM has
been shown to be inaccurate due to assumptions during sleep modes [16].

Likwid [28], a lightweight performance tool offers RAPL measurements from
Intel SandyBridge and IvyBridge x86 processors.

Nvidia, through their management library (NVML [25]) provides access to
milliwatt power consumption metrics, accurate to 5 %, as well as current Pstate
of each graphics card in a system. NVML also provides related metrics such a
fan speed and temperature.

6 Conclusion

We have provided a prototype implementation of a power and energy monitoring
API for a modern parallel infrastructure as well as a tool for model fitting. These
tools allow us to test a variety of schemes for power approximation when the
origin sample frequency is low. Both tools will be released under an opensource
license in the coming weeks.

Future hardware will likely by necessity include higher precision energy mea-
surement capability. Current accelerator devices are capable of updating their
power consumption data as frequently as 10 Hz.

7 Future Works

A current limitation of greenman is an inability to profile MPI applications due
to the design patterns used to construct the tool. We aim to resolve this in
subsequent releases.

Our api provides us with the ability to instrument sections of code. We plan
to use this api to instrument different tasks of workflow applications to best
allocate tasks for energy efficiency.

Current generations of Nvidia GPGPU and Intel Xeon Phi accelerators have
the facility to report their own board power consumption through their vendor
APIs [19,25]. As these are essentially performance counters, we will be adding
them to the metrics that greenman can record. From there, we will implement
existing accelerator power models [23,27] and provide an extensible interface for
researchers to add their own models.

We will be exploring functional models of applications on heterogeneous plat-
forms. The Heterogeneous Computing Lab has produced Fupermod [9] for pro-
ducing optimal data partitioning in heterogeneous environments. We will be
augmenting this software with energy measurements.

100 K. O’Brien et al.

Acknowledgment. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, being developed under the INRIA ALADDIN devel-
opment action with support from CNRS, RENATER and several Universities as well
as other funding bodies (see https://www.grid5000.fr).

References

1. Adaptive Computing, I: Torque resource manager (2015). http://www.
adaptivecomputing.com/products/open-source/torque/

2. H.P.C., et al.: Acpi v4.0a (2010). http://www.acpi.info/DOWNLOADS/
ACPIspec40a.pdf

3. AMD: Bios and kernel developerś guide(bkdg) for amd family 15h models 00h–0fh
processors (2013). http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2012/10/42301 15h Mod 00h0Fh BKDG1.pdf

4. Balouek, D., et al.: Adding virtualization capabilities to the Grid’5000 testbed.
In: Ivanov, Ivan I., van Sinderen, Marten, Leymann, Frank, Shan, Tony (eds.)
CLOSER 2012. CCIS, vol. 367, pp. 3–20. Springer, Heidelberg (2013)

5. Barrachina, S., Barreda, M., Catalán, S., Dolz, M.F., Fabregat, G., Mayo, R.,
Quintana-Ort́ı, E.S.: An integrated framework for power-performance analysis of
parallel scientific workloads. In: ENERGY 2013, The Third International Confer-
ence on Smart Grids, Green Communications and IT Energy-Aware Technologies,
pp. 114–119 (2013)

6. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A methodology
to predict the power consumption of servers in data centres. In: Proceedings of the
2nd International Conference on Energy-Efficient Computing and Networking, pp.
1–10. ACM (2011)

7. Bedard, D., Lim, M.Y., Fowler, R., Porterfield, A.: Powermon: fine-grained and
integrated power monitoring for commodity computer systems. In: Proceedings of
the IEEE SoutheastCon 2010 (SoutheastCon), pp. 479–484, March 2010

8. Cabrera, A., Almeida, F., Arteaga, J., Blanco, V.: Measuring energy consumption
using EML (energy measurement library). Comput. Sci. Res. Dev. 30(2), 135–143
(2015). http://dx.doi.org/10.1007/s00450-014-0269-5

9. Clarke, D., Zhong, Z., Rychkov, V., Lastovetsky, A.: Fupermod: a software tool
for the optimization of data-parallel applications on heterogeneous platforms. J.
Supercomput. 69(1), 61–69 (2014)

10. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: memory
power estimation and capping. In: 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pp. 189–194, August 2010

11. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: Proceedings of the 4th Workshop on Embedded Net-
worked Sensors, pp. 28–32. ACM (2007)

12. Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power
analysis and modeling for server environments. In: Proceedings of Workshop on
Modeling, Benchmarking, and Simulation, pp. 70–77 (2006)

13. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. ACM SIGARCH Comput. Archit. News 35(2), 13–23 (2007)

14. Galassi, M., et al.: Gnu Scientific Library Reference Manual, 3rd edn. Network The-
ory Ltd., Bristol (2009). http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz

https://www.grid5000.fr
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/42301_15h_Mod_00h0Fh_BKDG1.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/42301_15h_Mod_00h0Fh_BKDG1.pdf
http://dx.doi.org/10.1007/s00450-014-0269-5
http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz

Towards Application Energy Measurement and Modelling Tool Support 101

15. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.: Powerpack: energy
profiling and analysis of high-performance systems and applications. IEEE Trans.
Parallel Distrib. Syst. 21(5), 658–671 (2010)

16. Hackenberg, D., Ilsche, T., Schone, R., Molka, D., Schmidt, M., Nagel, W.: Power
measurement techniques on standard compute nodes: A quantitative comparison.
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 194–204, April 2013

17. Heath, T., Diniz, B., Horizonte, B., Carrera, E.V., Bianchini, R.: Energy conser-
vation in heterogeneous server clusters, pp. 186–195 (2005)

18. Hsu, C.H., Poole, S.: Power measurement for high performance computing: state
of the art. In: 2011 International Green Computing Conference and Workshops
(IGCC), pp. 1–6, July 2011

19. Intel Corporation: Intel manycore platform software stack (2015). https://software.
intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

20. Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral: dynam-
ically managing power, performance, and adaptation cost in cloud infrastructures.
In: 2010 IEEE 30th International Conference on Distributed Computing Systems
(ICDCS), pp. 62–73. IEEE (2010)

21. Kansal, A., Zhao, F.: Fine-grained energy profiling for power-aware appli-
cation design. ACM SIGMETRICS Perform. Eval. Rev. 36(2), 26 (2008).
http://portal.acm.org/citation.cfm?doid=1453175.1453180

22. Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of virtual
machines for real-time cloud services. Concurrency Comput. Pract. Exp. 23(13),
1491–1505 (2011)

23. Lai, Z., Lam, K.T., Wang, C.L., Su, J.: A power modelling approach for many-core
architectures. In: 2014 10th International Conference on Semantics, Knowledge
and Grids (SKG), pp. 128–132, August 2014

24. Mucci, P.J., Browne, S., Deane, C., Ho, G.: Papi: a portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

25. Nvidia Corporation: Nvidia management library (2015). https://developer.nvidia.
com/nvidia-management-library-nvml

26. Sinha, A., Chandrakasan, A.P.: Jouletrack: a Web based tool for software energy
profiling. In: Proceedings of the 38th Annual Design Automation Conference, pp.
220–225. ACM (2001)

27. Song, S., Su, C., Rountree, B., Cameron, K.W.: A simplified and accurate model
of power-performance efficiency on emergent gpu architectures (2013)

28. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool
suite for x86 multicore environments. In: 2010 39th International Conference on
Parallel Processing Workshops (ICPPW), pp. 207–216. IEEE (2010)

29. Zhao, Y.J., Govindan, R., Estrin, D.: Residual energy scan for monitoring sensor
networks. In: 2002 IEEE Wireless Communications and Networking Conference,
WCNC 2002, vol. 1, pp. 356–362. IEEE (2002)

https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://portal.acm.org/citation.cfm?doid=1453175.1453180
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

The Mathematical Model and the Problem
of Optimal Partitioning of Shared Memory

for Work-Stealing Deques

Andrew Sokolov(B) and Eugene Barkovsky

Institute of Applied Mathematical Research of the Karelian Research
Centre of the Russian Academy of Sciences, Pushkinskaya Str. 11,

185910 Petrozavodsk, Russia
avs@krc.karelia.ru, barkevgen@gmail.com

Abstract. In this paper we propose the mathematical model and solve
the problem of optimal partitioning of shared memory for work-stealing
deques. Operations have probabilistic characterisation and along with
sequential execution it is possible to execute operations on deques (with
given probabilities) in parallel.

Keywords: Work-stealing · Deques · Data structures · Markov chains ·
Random walks

1 Introduction

Currently, there are two ways of dynamic (regardless of the specific tasks)
scheduling of multi-thread parallel calculations on multi-core architecture [1,2].
Work-sharing is a centralized method of redistribution of tasks — scheduler
moves tasks from the most loaded processors to the less loaded ones. In the
work-stealing method the approach is different. Processors, which became free,
try to “steal” a portion of work from other processors. This method is imple-
mented in many systems like Cilk, Cilk++; TBB; TPL; X10 and others.

In this method of load balancing each processor (thread) has a pool of tasks.
Information about these tasks is stored inside a processor’s deque. We suppose
that elements, which are stored inside deque, have fixed size. When a thread
(processor) creates a new task, it adds an element to its deque; when it needs
a task, it takes an element from the top of its deque. If a thread detects that
the deque is empty, it “steals” a task from its “victim” — another thread. The
first two operations are similar to stack, while thefts occur from the base of
stack — like FIFO-queue. That is, we work with (in terminology of D.E. Knuth)
an input-restricted deque [3]. In [1] it was proposed to steal one element from a
random deque, in [4] — half of the elements.

There are different methods of representation of input-restricted deques in
memory. It is possible to implement “the linked representation” method. The
model of this method will be similar to the already constructed models of the
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 102–106, 2015.
DOI: 10.1007/978-3-319-21909-7 11

The Mathematical Model and the Problem of Optimal Partitioning 103

linked representation of stacks and queues [5]. In [6] the method of representation
of stacks and queues as a double-linked list of arrays (the paged implementation)
is proposed and analysed. In [7] this method is proposed for deques. In the linked
and paged implementations a portion of memory is allocated for pointers. In the
serial methods of work with several data structures, losses are occur when one
of the data structures is in overflow while there are still pieces of free memory.

In [8] the model of a work-stealing load balancer was proposed. This model
was constructed on the basis of apparatus of the queuing theory using Poisson
law of occurrences of events. In this model a specific method of representation
of deques in memory was not considered.

Here, we will construct the model for the serial circular method of represen-
tation of work-stealing deques (similar to FIFO-queues), where each deque is
located in a separate part of memory [9]. In the model on each step of discrete
time some operations on deques are performed with given probabilities. Previ-
ously, such models were constructed by our team to represent some dynamic
data structures: stacks, queues, priority queues [10–12] and others.

2 The Mathematical Model

Here, we describe case of two deques. This particular case is important not only
as a stepping stone in construction of the model, but it also has an independent
significance. Note that among multi-core architectures there are ones without
cache memory. For example, in the architecture AsAP-II each core has two FIFO
buffers and in the architecture SEAforth — two stacks (for storing data and
return addresses) [13]. In these architectures, queues and stacks are implemented
circularly and separate from each other with the possibility to lose items due to
overflow. But in our works we research situations, where to store several data
structures we use shared memory. In some cases this can minimize a number of
lost items.

Work-stealing deques may be implemented in the hardware, on the basis of
these architectures. In this case it is important to research an optimal organiza-
tion of two deques and then, in case of an arbitrary number of cores, obtain the
desired chips by composing them from a “two-deques” ones.

Suppose that in the memory size of m we work with two serial circular
deques, where elements are of fixed size in one conventional unit. For serial
representation of dequeues we will allocate each a number of memory units from
the total volume of m units. Suppose that s is a number of units allocated to
the first deque, then (m− s) is a number of units allocated to the second deque.

Some probabilistic characteristics of operations performed on the deques are
known in advance:

– insertion of an element in the first deque with the probability p1;
– insertion of an element in the second deque with the probability p2;
– insertion of elements in parallel in both deques — p12;
– deletion of an element from the first deque with the probability q1;

104 A. Sokolov and E. Barkovsky

– deletion of an element from the second deque with the probability q2;
– deletion of elements in parallel from both deques — q12;
– insertion in the first deque and deletion from the second one — pq12;
– insertion in the second deque and deletion from the first one — pq21;
– deques do not change their length with the probability r (reading or no oper-

ation).

p1 + p2 + p12 + q1 + q2 + q12 + pq12 + pq21 + r = 1. If you exclude an element
from an empty deque shutdown does not occur — empty deque begins to “steal”
elements from another deque (provided that victim deque has any elements).

Assume that x and y are current lengths of the first and the second deques,
respectively. We consider random walks in two-dimensional space on an integer
lattice in the area −1 ≤ x ≤ s+1, −1 ≤ y ≤ m−s+1 (Fig. 1) as a mathematical
model.

Fig. 1. Area of walk for two work-stealing deques.

Walk starts in the origin of coordinates. Lines x = s+1 and y = m−s+1 form
two absorbing screens — when we get to these lines the memory becomes full and
the program crashes (or memory is redistributed according to some principle);
lines x = −1, y = −1 form two reflective screens, which are designated for cases
of deletion of an element from the empty deque. Introduction of this screen takes
into account “theft” of an element. Formally, deque goes on the screen, but in
fact into the area 1 ≤ x < s, 1 ≤ y < m − s. Specific transition point depends
on the strategy of theft. For the case of stealing of one element: if we are located
on points (x,−1) or (−1, y) we will move to points (x − 1, 1) or (1, y − 1). For
the case of stealing half of the elements: we will move to points (x/2, x/2) or
(y/2, y/2) respectively. In case of uneven x or y (or if there is not enough memory
to allocate stolen elements) we round to the desired integer.

The Mathematical Model and the Problem of Optimal Partitioning 105

As the criterion of optimality we consider the maximum mean time to the
memory overflow (i.e. before hitting lines x = s + 1 and y = m − s + 1). Based
on the model described above we have solved following problems:

1. Problem of optimal partition of memory if we steal an element from one deque
when the other becomes empty;

2. Problem of optimal partition of memory if we steal half of the deque;
3. Comparison of these two strategies of thefts and issuing recommendations.

Table 1. The numerical results

The input data Maximum mean time to the memory overflow

(m = 10)

Stealing of one element Stealing half of the elements

The optimal Splitting in The optimal Splitting in

partition half (s = 5) partition half (s = 5)

p1 = 0.15, p2 = 0.05, p12 = 0.1

q1 = 0.05, q2 = 0.15, q12 = 0.1 48 (s = 6) 44 49 (s = 6) 47

pq12 = 0.1, pq21 = 0.1, r = 0.2

p1 = 0.19, p2 = 0.01, p12 = 0.1

q1 = 0.01, q2 = 0.19, q12 = 0.1 43 (s = 6) 37 47 (s = 6) 40

pq12 = 0.1, pq21 = 0.1, r = 0.2

Table 1 shows some results of calculations. Here, probabilities are theoreti-
cal — for greater visibility of results. In practice these probabilities should be
obtained by the preliminary statistical research.

Judging by results we can conclude following. When we portion memory
optimally the system works longer. For example, when we steal one element,
and the probabilities of insertions and deletions are unequal, the differences of
mean time to the memory overflow between the optimal partition and splitting
in half are 4 in the first case and 6 in the second one. That is, system works by
4 (or 6) operations longer if we partition memory optimally.

If we steal half of the elements (with the same probabilities as above), the
differences of mean time are 2 and 7. We can recommend this particular strategy
for systems with very asymmetrical probabilities — in this situation stealing half
of the elements is more beneficial that stealing of only one element.

3 Conclusion

The mathematical model describing the process of working with two parallel
cyclic work-stealing deques in shared memory was created. We have considered
two strategies of stealing: theft of one element; and theft of half of the elements.
The algorithm and the program for finding the optimal memory partitioning

106 A. Sokolov and E. Barkovsky

between deques, depending on their probabilistic characteristics, were created
for both strategies. To solve the problems we use apparatus of controlled random
walks, Markov chains.

Acknowledgments. This research work was supported by the Russian Foundation
for Basic Research, grant 15-01-03404-a.

References

1. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM. 46, 720–748 (1999)

2. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier,
Amsterdam (2008)

3. Knuth, D.: The Art of Computer Programming, vol. 1. Addison-Wesley, Redwood
City (2001)

4. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: The Twenty-first
Annual ACM Symposium on Principles of Distributed Computing, pp. 280–289
(2002)

5. Sokolov, A.V., Drac, A.V.: The linked list representation of n LIFO-stacks and/or
FIFO-queues in the single-level memory. Inf. Process. Lett. 13(19–21), 832–835
(2013)

6. Aksenova, E.A., Lazytina, A.A., Sokolov, A.V.: About optimal methods of repre-
sentation of dynamic data structures. Rev. Appl. Ind. Math. 10(2), 375–376 (2003)
(in Russian)

7. Hendler, D., Lev, Y., Moir, M., Shavit, N.: A dynamic-sized nonblocking work
stealing deque. Distrib. Comput. - Spec. Issue: DISC 2004 18(3), 189–207 (2006)

8. Mitzenmacher, M.: Analyses of load stealing models based on differential equations.
In: The ACM Symposium on Parallel Algorithms and Architectures, pp. 212–221
(1998)

9. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: The Seventeenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp.
21–28 (2005)

10. Aksenova, E.A., Lazutina, A.A., Sokolov, A.V.: Study of a non-markovian stack
management model in a two-level memory. Program. Comput. Softw. 30(1), 25–33
(2004)

11. Aksenova, E., Sokolov, A.: The optimal implementation of two FIFO-queues in
single-level memory. Appl. Math. 2(10), 1297–1302 (2011)

12. Sokolov, A.V., Drac, A.V.: Simulation of some methods of representation of n
FIFO-queues in the single-level memory. Heuristic Algorithms Distrib. Comput.
1(1), 40–52 (2014) (In Russian)

13. Kalachev, A.V.: Multi-core processors. Binom (2010) (In Russian)

Dynamic Load Balancing Based on Rectilinear
Partitioning in Particle-in-Cell Plasma

Simulation

Igor Surmin1, Alexei Bashinov1,2, Sergey Bastrakov1, Evgeny Efimenko1,2,
Arkady Gonoskov1,2,3, and Iosif Meyerov1(B)

1 Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
{bastrakov,meerov}@vmk.unn.ru,

{i.surmin,evgeny.efimenko,arkady.gonoskov}@gmail.com
2 Institute of Applied Physics of the Russian Academy of Sciences,

Nizhny Novgorod, Russia
avbk@mail.ru

3 Chalmers University of Technology, Gothenburg, Sweden

Abstract. This paper considers load balancing in Particle-in-Cell plasma
simulation on cluster systems. We propose a dynamic load balancing
scheme based on rectilinear partitioning and discuss implementation of
efficient imbalance estimation and rebalancing. We analyze the impact of
load balancing on performance and accuracy. On a test plasma heating
problem dynamic load balancing yields nearly 2 times speedup and bet-
ter scaling. On the real-world plasma target irradiation simulation load
balancing allows to mitigate particle resampling and thus improve accu-
racy of the simulation without increasing the runtime. Balancing-related
overhead in both cases are under 1.5 % of total run time.

Keywords: Load balancing · High performance computing · Plasma
simulation · Particle-in-cell

1 Introduction

Simulation of plasma dynamics is actively used in solving many fundamental
and applied physical problems, such as laser-driven particle acceleration using
various targets. Numerical plasma simulation is often based on the Particle-in-
Cell method [1], often abbreviated as PIC, with proper extensions [2]. Solving
up-to-date problems can require simulation of up to ∼109 particles and ∼108

grid nodes, which makes it computationally challenging. Therefore, there is a
need for high performance computing.

There are several widely used Particle-in-Cell plasma simulation codes, such
as VLPL [3], OSIRIS [4], and PIConGPU [5]. Since 2010 we develop the Particle-
in-Cell code PICADOR [6,7] oriented at heterogeneous cluster systems with
GPUs and Xeon Phi coprocessors.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 107–119, 2015.
DOI: 10.1007/978-3-319-21909-7 12

108 I. Surmin et al.

A key problem in developing a high performance Particle-in-Cell code is
efficient data and workload distribution between nodes of a cluster system [8–11].
The Particle-in-Cell method operates with two main data sets: an ensemble of
particles and grid values of the electro-magnetic field. Independent distribution
of particle and field data between computational nodes is impossible because
Particle–Grid interactions are spatially local. Thus, each node stores a subset of
particles and all spatially close grid values of the field. The particle distribution
may significantly change due to complex particle dynamics, potentially leading
to high workload imbalance between the computational nodes. All nodes are
synchronized after each time step, this raises the load balancing problem of
achieving uniform distribution of workload and memory consumption between
nodes of a cluster system and minimization of data transfers.

The most widely used approach to load balancing in Particle-in-Cell plasma
simulation is spatial decomposition: the simulation area is subdivided into
domains, each handled by a computational node that stores all particle and field
data of the domain. Due to spatial locality of the Particle-in-Cell method, each
domain needs data exchanges only with adjacent domains. Spatial decomposition
methods mostly differ in domain geometry and control of the maximum number
of adjacent domains. The orthogonal bisection [12] and Octree [13] methods are
based on recursive subdivision and provide good particle balancing but result in a
big amount of adjacent domains and, as consequently, intricate data exchange pat-
tern. The Quicksilver method [14] is based on dynamically floating domain bound-
aries and intermediate window area. Its modification One-handed help [15] pro-
vides ideal particle balancing and close to ideal grid balancing but at a price of
intensive exchanges of the grid values.

We propose a dynamic load balancing strategy based on rectilinear partition-
ing scheme [16]. Rectilinear partitioning is topologically equivalent to uniform
parallelepiped partitioning, therefore data exchange patterns are the same and
each domain communicates only with 26 adjacent domains. We discuss applica-
tion of rectilinear partitioning scheme to dynamic load balancing in Particle-in-
Cell plasma simulation and implementation of efficient imbalance estimation and
rebalancing. Performance and scaling of our implementation is demonstrated on
a benchmark plasma heating problem and the real-world simulation of irradia-
tion of a plasma target by two counter-propagating laser pulses.

The paper is organized as follows. The Particle-in-Cell method and our imple-
mentation PICADOR are described in Sect. 2. Load balancing problem, rectilin-
ear partitioning, the proposed dynamic load balancing strategy and implemen-
tation details are presented in Sect. 3. Experimental results and discussion on
test and real problems are given in Sects. 4 and 5, respectively.

2 PICADOR Particle-in-Cell Code

PICADOR [6,7] is a tool for three-dimensional plasma simulation using the
Particle-in-Cell method. The Particle-in-Cell method is based on a self-consistent
mathematical model representing plasma as an ensemble of negatively charged

Dynamic Load Balancing Based on Rectilinear Partitioning 109

electrons and positively charged ions, additional modules may include positively
charged positrons and chargless photons. The entire particle ensemble is rep-
resented by a smaller amount of macroparticles (super-particles) with constant
mass m and charge q, that have the same charge-to-mass ratio as the real par-
ticles, resulting in equivalent plasma dynamics. For brevity, macroparticles are
hereafter referred as particles. The Particle-in-Cell method operates on two main
sets of data: each particle of a particular type is characterized by its position r
and momentum p; electric field E , magnetic field B and current density j are
set on a uniform space grid.

The method implies numerical solving the equations of particle motion
together with the Maxwell’s equations on a discrete grid. Each time step is divided
into four stages: field update, field interpolation, particle push, and current deposi-
tion. We use the finite-difference time-domain method [18] to update the grid val-
ues of the electric and magnetic field according to the Maxwell’s equations. During
the particle push stage the field values are interpolated to compute the correspond-
ing force; for each particle only values in several nearest grid nodes are used. We
use Boris method [1] to solve particles’ equations of motion. The current deposition
stage implies computing the current density based on the positions and velocities of
the particles; each particle contributes to the current density values in only several
nearest grid nodes. The final current density values are determined by summariz-
ing contributions of all particles and are used during the next field update, thus
closing the loop.

PICADOR computational scheme for cluster systems is organized as follows.
We employ spatial decomposition of the simulation area: it is subdivided into
sub-domains, each processed by a node of a cluster using MPI. Each node stores
particle and field data corresponding to the sub-domain being processed. MPI
exchanges are used to keep near-boundary values up-to-date, at the boundaries
thin layers of ghost cells are stored in both nodes. Due to constraints on time and
spatial steps a particle can not move across multiple sub-domains in a single time
step, so all MPI exchanges concern only adjacent sub-domains. Field and current
density exchanges are done using 6 adjacent sub-domains, particle exchanges
require 26 adjacent sub-domains.

Features of PICADOR include FDTD and NDF field solvers, periodic bound-
ary conditions and absorbing boundary layer PML [17], Boris particle pusher,
CIC and TSC particle form factors, Esirkepov current deposition, ionization, and
moving frame. The code is capable of running on heterogeneous cluster systems
with CPUs, GPUs and Xeon Phi coprocessors.

3 Load Balancing Based on Rectilinear Partitioning

3.1 Rectilinear Partitioning

A scalable implementation of the Particle-in-Cell method requires a balanced
distribution of particles and grid values of the field. Decomposition of the sim-
ulation area into spatially equal domains does not provide a balanced workload
distribution as particle distribution is in many cases significantly non-uniform.

110 I. Surmin et al.

Another extreme approach is uniform distribution of particles between compu-
tational nodes and storing the whole set of grid values in each node, resulting
in massive exchanges of grid values of the field. We need a trade-off between
overheads caused by imbalance and communications.

We consider the following load balancing problem statement. Grid cells are
enumerated with 3D indices (i, j, k), 0 ≤ i < Nx, 0 ≤ j < Ny, 0 ≤ k < Nz,
where Nx, Ny, Nz are the numbers of cells along the corresponding axes. The
numbers of domains along the x, y and z axes are fixed and equal to m, n and
l, respectively. A rectilinear partitioning is defined by a triple of integer vectors
(P,Q,R). We denote the set of all possible ways of rectilinear partitioning as

S = {(P,Q,R) : P = (0, p1, p2, . . . , pm−1, Nx),
Q = (0, q1, q2, . . . , qn−1, Ny), R = (0, r1, r2, . . . , rl−1, Nz)}. (1)

Let (P,Q,R) ∈ S be a rectilinear partitioning in form (1). A domain (I, J,K)
contains cells with the following indices defined by the partitioning:

{(i, j, k) : pI ≤ i < pI+1, qJ ≤ j < qJ+1, rK ≤ k < rK+1} .

For each cell (i, j, k) we define a workload value Li,j,k = nParticlesi,j,k+1, where
nParticlesi,j,k is the number of particles in the cell . This workload function is
additive, the workload of a domain is a sum of workloads of its cells, namely, the
total number of particles and grid cells. We introduce a workload of a domain
(I, J,K) with partitioning (P,Q,R):

Work(P,Q,R, I, J,K) =
pI+1−1∑

i=pI

qJ+1−1∑
j=qJ

rK+1−1∑
k=rK

Li,j,k.

The choice of this particular workload function is determined by two factors.
First, theoretical complexity of the Particle-in-Cell method is linear in number of
particles and grid values. Second, the sum of number of particles and grid values
is nearly proportional to memory consumption. However, the real performance
is not linear in number of particles, especially for the low number of particles
per cell due to hardware-specific features. A more sophisticated performance and
workload models such as [19,20] could be used instead.

Imbalance of a partitioning is the ratio of the maximum workload to the
average:

Imbalance(P,Q,R) =
max

I=0,m−1,J=0,n−1,K=0,l−1
Work(P,Q,R, I, J,K)

1
mnl

∑m−1
I=0

∑n−1
J=0

∑l−1
K=0 Work(P,Q,R, I, J,K)

. (2)

The average workload in the denominator of (2) does not depend on a partition-
ing, but is a convenient normalization.

We need to solve the optimal rectilinear decomposition problem:

(P opt, Qopt, Ropt) = arg min
(P,Q,R)∈S

Imbalance(P,Q,R). (3)

Dynamic Load Balancing Based on Rectilinear Partitioning 111

The problem (3) is NP-complete [16]. Therefore we use a heuristic algorithm
to quickly find a reasonably good solution. The algorithm iteratively solves 1D
optimal rectilinear decomposition problem with fixed decomposition along the
other two axes, while the next decomposition decreases the imbalance.

3.2 Implementation Overview

Implementation of load balancing based on rectilinear partitioning requires effi-
cient computation of the imbalance on cluster systems. Each MPI process han-
dles a sub-domain and stores the corresponding particles and grid values. Gath-
ering information about workload in all cells in one process is inefficient because
of both high data transfer overhead and memory consumption.

We use a distributed scheme of workload and imbalance computation based
on prefix sums. Each process computes a 3D prefix sum of cell workloads and
exchanges it with adjacent domains. After all prefix sums are known, computing
workload in each domain takes constant time.

Load balancing is implemented in two forms: static, performed once at initial-
ization of the simulation, and dynamic that periodically estimates the imbalance
and performs rebalancing if the imbalance exceeds a threshold. The dynamic
scheme has two adjustable parameters: frequency of imbalance estimation and
imbalance threshold. These values are currently fixed throughout the whole simu-
lation. During rebalancing the simulation area is divided into blocks with respect
to union of boundaries of old and new partitioning. Data transfers is performed
in two stages to avoid deadlocks. First, blocks are transferred from processes
with lesser ranks to processes with greater ranks. Then senders and receivers are
interchanged. This scheme allows to only transfer field and particle data that
actually changes a domain and do not touch the rest of the data.

4 Evaluation of Load Balancing Efficiency on a Test
Plasma Heating Problem

As a test problem we consider simulation of heating of a small ball of plasma
with 42 M particles and 128 × 128 × 128 grid. During the heating particles drift
from the center in random directions. The experiments were done using 256 MPI
processes on cluster MVS-100K of Joint Supercomputing Center of RAS with 2
Intel Xeon E5450 CPUs and 8 GB RAM on each node, and Infiniband DDR.

Dynamic partitioning starts from the same domain geometry as the static
partitioning, but domain boundaries change during the simulation if the imbal-
ance exceeds the threshold. Dependence of the imbalance on time iteration is
presented at Fig. 1. In spatially uniform partitioning all particles are initially
located in central domains and gradually drift from the center reducing imbal-
ance. This effect is inverse for static rectilinear partitioning: the imbalance is
low initially, but increases over time. In dynamic load balancing scheme the
imbalance drops after each rebalancing and gradually grows in between.

112 I. Surmin et al.

Fig. 1. Imbalance of uniform, static and dynamic domain decomposition on the test
plasma heating simulation with 256 MPI processes

As the result static rectilinear partitioning is expectedly not beneficial com-
pared to uniform partitioning, but dynamic load balancing is superior by factor
of 2, see Fig. 2. In order to estimate how close is our balancing to the optimum
we consider ideally balanced problem with the same number of particles and
grid cells. Throughout the whole simulation particles are uniformly distributed
among the simulation area. Simulation of plasma heating with dynamic load
balancing takes 1.5 × longer compared to simulation of the ideally balanced
problem of the same size, see Fig. 2.

Fig. 2. Performance of uniform, static and dynamic rectilinear domain decomposition
on the test plasma heating problem. As ideally balanced problem we use a problem
with the same number of particles and grid cells that are equally distributed among
all processes

Dynamic Load Balancing Based on Rectilinear Partitioning 113

Figure 3 presents computational time distribution between processes, colors
correspond to different stages of the Particle-in-Cell method. In uniform parti-
tioning scheme most particles are located in central domains shown as pikes in
the center of the plot. In static rectilinear partitioning scheme most time is spent
on corner domains. In dynamic rectilinear partitioning computational time of all
processes is much closer.

Fig. 3. Computational time of processes on the test plasma heating simulation with 256
MPI processes. Left: uniform decomposition. Middle: static rectilinear decomposition.
Right: dynamic rectilinear decomposition

In all experiments for the dynamic scheme we checked imbalance each 50
time steps, imbalance threshold was 1.2. Overhead on estimation of imbalance
and rebalancing is under 1 % of total simulation time, thus our scheme could be
also applied for fairly well-balanced problems.

5 Load Balancing in Simulation of Plasma Target
Irradiation by Two Laser Pulses

5.1 Problem Statement

In order to reveal the benefits of dynamic load balancing scheme to the state-of-
the-art physical problems we performed numerical simulations of the micron-sized
plasma target irradiation by two counter-propagating relativistically strong laser
pulses with circular polarization. This problem is interesting from the point of
view of efficient conversion of laser energy into the energy of gamma radiation [21].
Complex dynamics of laser-plasma interaction, including target compression, layer
rotation and expansion stages, results in rapid change of characteristic scales by
more than order of magnitude, thus leading to a strongly non-uniform particles
distribution.

114 I. Surmin et al.

The important distinctive feature of this problem in comparison with the
test problem from the previous section is the increasing number of particles
during simulation due to quantum electrodynamics (QED) effects of photon
generation and electron-positron pair production [22]. The resampling algorithm
used in our simulations [2] limits the maximum number of particles in a domain
by the chosen value to prevent memory shortage and control computational
speed. The resampling inevitably reduces accuracy of simulation, increasing level
of computational noise. At the same time, the dynamic load balancing may
split the region of quick growth of particle number between several domains
thus preventing additional resampling. These considerations allow us to expect
that dynamic load balancing can speed up simulations and/or decrease level of
computational noise even in case of the rapidly growing number of particles.

The simulation area of 1.6µm × 4µm× 4µm was covered with 256× 1024×
1024 uniform grid. This subdivision was dictated by specific features of the
initial plasma distribution and laser-plasma interaction. The plasma target with
density 8 · 1023 cm−3, corresponding to the electron density of the fully ionized
aluminum foil, had dimensions 0.36µm × 2.4µm × 2.4µm and was located in
the center of the simulation area. Laser pulses with wavelength of 0.8µm had a
super-Gaussian transverse profile with diameter of 2.4µm at FWHM level and
the intensity at the maximum 1024 W/cm2. Laser pulses propagated along x
axis. Time envelope of laser pulses f(t) is defined as follows:

f(t) =

{
sin2(ωt/8), t < 4π

ω

1, otherwise,
(4)

where ω = 2.36·10−15 s−1 is laser frequency. The interaction of plasma with laser
pulses was considered during 12 periods of the laser field. PML [17] was used
to prevent the reflection of the electromagnetic field from the boundaries of the
simulation area, along with absorbing boundary conditions for particles. With
these parameters, the conversion efficiency of the laser energy into the gamma
radiation is about 35 %.

5.2 Load Balancing Efficiency

To estimate the efficiency of dynamic load balancing we performed two runs
with the parameters given in the previous subsection with and without dynamic
balancing. The numerical experiments were done on the MVS-100K cluster of
the Joint Supercomputing Center of RAS. The simulation area was subdivided
into 4×16×8 domains using 512 MPI processes. We measured the total run time
from the start of the simulation and the total number of particles as a function
of time iteration number, shown in Fig. 4.

The interaction dynamics is very complex and can be divided into several
stages. The initial stage corresponds to the compression of plasma target by
incident laser pulses in the direction of field propagation. During this stage the
imbalance of the uniform partitioning does not change, because particles are

Dynamic Load Balancing Based on Rectilinear Partitioning 115

Fig. 4. (a) The total run time from the start of the simulation and (b) the total number
of particles Nmacro as a function of time iteration number niter

compressed inside the same central domains they were initially and redistribu-
tion between domains does not occur. The dependence of the imbalance on time
iteration is depicted in Fig. 5. With dynamic load balancing enabled, the initial
decomposition is non-ideal, so the repartition is performed once to reduce the
imbalance and the resulting decomposition is also unchanged until the end of
the stage, when a thin electron layer with thickness much smaller than the wave-
length is formed. This size is also 30 times smaller than the initial longitudinal
size of the plasma target. At the next stage the compressed plasma layer rotates
at the frequency of the incident wave and emits gamma photons. The number of
particles starts to grow approximately five times over a laser period mainly due
to photon emission, and to a lesser degree due to photon decay into electron-
positron pairs in a strong electromagnetic field [23,24]. Electrons and positrons
remain mainly in the center of the simulation area, while photons propagate to
the periphery. The imbalance starts to grow quickly which is clearly seen for
the uniform decomposition in Fig. 5, but dynamic load balancing immediately

Fig. 5. Imbalance with and without dynamic load balancing

116 I. Surmin et al.

starts repartitioning of the simulation area, reducing imbalance approximately
by a factor of 2.5 and speeding up the computation at this stage.

During the next stage, rotating electron layer in the field of two counter-
propagating laser pulses produces electromagnetic field, that not only holds
plasma, but compresses it in the transversal direction. The transverse dimen-
sion of the plasma is reduced by the order of magnitude. The dynamic load
balancing tracks changes in the geometric dimensions of the plasma and per-
form repartitions, so that the spatial region of the rapid particle production is
shared between larger number of domains than in the calculation without re-
balancing. It leads to approximately 1.5 times larger number of particles and
reduces the number of resampled particles. On the one hand, larger number of
particles increases execution time of one iteration, however, on the other hand,
it decreases computational noise in the field, current and particle distribution.
In the considered case the computational noise with dynamic load balancing is
approximately 1.5 times less at the end of the simulation in comparison to no
balancing. The corresponding electron distributions along y axis are presented
at Fig. 6. Quadratic averaging over 5 points of particle distribution was used to
assess the level of noise, then the standard deviation is obtained from comparison
of exact and smoothed distributions.

The final stage is the expansion of the plasma. The process of birth of new
particles extends toward the incident laser pulses as the laser filed is strongly
screened, so the particle generation takes place in a thin layer of plasma, where
the laser field can penetrate and particle growth rate slows down. At this stage,
most of the photons reach the boundaries of simulation area, which leads to
decrease in the number of particles. The imbalance reaches the minimum value
of about two and slowly increases. As a result durations of calculations are
approximately equal with and without dynamic load balancing, although this
method shows speedup of approximately 1.2 times, after that increasing number

Fig. 6. Final electron distributions along y axis for simulations with load balancing,
shown in green, and no load balancing, shown in yellow. The black line corresponds
to a much less noisy simulation with an order of magnitude larger amount of particles
(Colour figure online)

Dynamic Load Balancing Based on Rectilinear Partitioning 117

of particles slows down the calculation. Dynamic load balancing maintains the
imbalance at the constant level, as it is supposed to do. However in case of
growth of particle number developed method equalizes and increases load at the
same time. But an advantage of it is better accuracy because of lesser number
of resampled particles. Load balancing overhead was ∼1.34% of total run time.

6 Summary

This paper considers load balancing for three-dimensional Particle-in-Cell plasma
simulation on cluster systems. We propose a dynamic load balancing scheme based
on rectilinear partitioning and discuss implementation of efficient imbalance esti-
mation and rebalancing. We analyze the impact of load balancing on performance
and accuracy of simulation. First, we consider the significantly imbalanced syn-
thetic plasma heating problem and show 2 times speedup compared to uniform
partitioning. We found that the overhead on dynamic load balancing is under 1 %
of total run time thus the scheme could also be applied for fairly balanced problems.

Then, we assess the applicability of the implemented load balancing scheme
to the up-to-date physical problems. For that, we simulate a micron-sized plasma
target irradiated by two counter-propagating relativistically strong laser pulses
with circular polarization. The increasing number of particles during simulations
due to gamma photon generation and electron-positron pair production results
in the need of using a particle resampling algorithm to prevent memory shortage
and control the run time by means of merging of particles with close properties.
The computational noise expansion is the obvious disadvantage of the resam-
pling procedure. Our experimental results show that dynamic load balancing
significantly improves accuracy of the simulation by increasing the overall num-
ber of particles and reducing the number of merging of particles. This effect is
the result of more uniform distribution of the particles between computational
nodes. Balancing-related overhead is under 1.5 % of total simulation time.

Our future work includes employing a more sophisticated workload model
and auto-tuning of parameters of the dynamic load balancing scheme: frequency
of imbalance estimation and imbalance threshold.

This study was partially supported by the RFBR, research projects No. 14-
07-31211 and No. 14-02-31495, and by the grant (the agreement of August 27,
2013 No. 02.B.49.21.0003 between The Ministry of education and science of
the Russian Federation and Lobachevsky State University of Nizhni Novgorod).
A. Bashinov acknowledges the Dynasty Foundation support.

References

1. Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor &
Francis Group, New York (2005)

2. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov,
I., Muraviev, A., Surmin, I., Wallin, E.: Extending PIC Schemes for The Study of
Physics in Ultra-Strong Laser Fields. arXiv:1412:6426 (2014)

118 I. Surmin et al.

3. Pukhov, A.: Three-dimensional electromagnetic relativistic particle-in-cell code
VLPL. J. Plasma Phys. 61, 425–433 (1999)

4. Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B.,
Deng, S., Lee, S., Katsouleas, T., Adam, J.C.: OSIRIS: a three-dimensional, fully
relativistic particle in cell code for modeling plasma based accelerators. In: Sloot,
P.M.A., Hoekstra, A.G., Tan Kenneth, C.J., Dongarra, J.J. (eds.) ICCS-ComputSci
2002, Part III. LNCS, vol. 2331, p. 342. Springer, Heidelberg (2002)

5. Burau, H., Widera, R., Honig, W., et al.: PIConGPU: a fully relativistic particle-
in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 33, 2831–2839 (2010)

6. Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov,
I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems.
J. Comput. Sci. 3, 474–479 (2012)

7. Bastrakov, S., Meyerov, I., Surmin, I., Efimenko, E., Gonoskov, A., Malyshev, A.,
Shiryaev, M.: Particle-in-cell plasma simulation on CPUs, GPUs and Xeon Phi
coprocessors. In: Kunkel, J.M., Ludwig T., Meuer, H.W. (eds.) ISC 2014. LNCS,
vol. 8488, pp. 513–514. Springer (2014)

8. Liewer, P.C., Decyk, V.K.: A general concurrent algorithm for plasma particle-in-
cell codes. J. Comput. Phs. 85, 302–322 (1989)

9. Walker, D.W.: Characterising the parallel performance of a large-scale, particle-
in-cell plasma simulation code. Concurr. Pract. Experience 2, 257–288 (1990)

10. Kraeva, M.A., Malyshkin, V.E.: Implementation of PIC method on MIMD mul-
ticomputers with assembly technology. In: Hertzberger, B., Sloot, P. (eds.) High-
Performance Computing and Networking. LNCS, vol. 1225, pp. 541–549. Springer,
Heidelberg (1997)

11. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of
numerical models on MIMD-multicomputers. Int. J. future Gener. Comput. Syst.
17, 755–765 (2001)

12. Fox, G.C.: A review of automatic load balancing and decomposition methods for
the hypercube. Numer. Algorithms Mod. Parallel Comput. Architect. 13, 63–76
(1988)

13. Barnes, J., Hutt, P.: A hierarchical O(N logN) force calculation algorithm. Nature.
324, 446–449 (1986)

14. Plimpton, S.J., Seidel, D.B., Pasik, M.F., Coats, R.S., Montry, G.R.: A load-
balancing algorithm for a parallel electromagnetic particle-in-cell code. Comput.
Phys. Commun. 152, 227–241 (2003)

15. Nakashima, H., Miyake, Y., Usui, H., Omura, Y.: OhHelp: a scalable domain-
decomposing dynamic load balancing for particle-in-cell simulations. In: 23rd Inter-
national Conference on Supercomputing, pp. 90–99. ACM New York (2009)

16. Nicol, D.N.: Rectilinear partitioning of irregular data parallel computations. J.
Parallel Distrib. Comput. 23, 119–134 (1994)

17. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic
waves. J. Comput. Phys. 114, 185–200 (1994)

18. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain
Method. Artech House, London (1995)

19. Corradi, A., Leonardi, L., Zambonelli, F.: Performance comparison of load balanc-
ing policies based on a diffusion scheme. In: Lengauer, C., Griebl, M., Gorlatch,
S. (eds.) Euro-Par’97 Parallel Processing. LNCS, vol. 1300, pp. 882–886. Springer,
Heidelberg (1997)

20. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and multi-
GPU platforms using functional performance models. IEEE Trans. Comput. 12,
14 (2014)

Dynamic Load Balancing Based on Rectilinear Partitioning 119

21. Bashinov, A.V., Kim, A.V.: On the electrodynamic model of ultra-relativistic laser-
plasma interactions caused by radiation reaction effects. Phys. Plasmas 20, 113111
(2013)

22. Bell, A.R., Kirk, J.G.: Phys. Rev. Lett. 101, 200403 (2008)
23. Ritus, V.: Quantum effects of the interaction of elementary particles with an intense

electromagnetic field. J. Sov. Laser Res. 6, 497–617 (1985)
24. Nikishov, A.: Problems of intense external-field intensity in quantum electrody-

namics. J. Sov. Laser Res. 6, 619–717 (1985)

Unconventional Computing -
Cellular Automata

A Behavioral Analysis of Cellular Automata

Jan M. Baetens(B) and Bernard De Baets

KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics,
Ghent University, Coupure Links 653, 9000 Ghent, Belgium

{jan.baetens,bernard.debaets}@ugent.be

Abstract. Although gaining full insight into the dynamics of cellular
automata still poses a challenge, significant advances have been made
through establishing an appropriate dynamical systems theory, similar
in spirit to the one that is in place for analyzing the dynamics of their
continuous counterparts such as (partial) differential equations. In this
work we will show not only how it can be relied on to characterize the
dynamics of cellular automata, but also how to quantify the effect of the
involved design parameters on the evolved dynamics. Furthermore, we
will illustrate that its scope is not limited to two-state CAs, as it is also
applicable to cellular automata that are based upon multiple states.

1 Introduction

Catalyzed by the emergence of modern computers, cellular automata (CAs)
became a full-fledged research domain in the eighties of the previous century.
Essentially, the relevant literature is of a dichotomous nature in the sense
that studies either focus on the spatio-temporal dynamics that is evolved by
CAs [20,37,38,40], while others merely use the CA paradigm to build a model
for a given biological, natural or physical process [10,16,32]. It goes without say-
ing that a profound understanding of CA dynamics is a prerequisite for building
realistic, identifiable CA-based models, though this is not straightforward due
the fact that a CA is discrete in all its senses (state, time, space). In an attempt
to quantify CA behavior in a meaningful and reproducible way, several so-called
behavioral measures have been proposed during the last two decades.

Roughly speaking, these measures can be divided into three categories. A first
one encloses measures that are directly based on the space-time diagrams evolved
by CAs, such as the Hamming distance and the (sequence) density [14,36,37],
and give insight into the local properties of CAs. The second class of measures
groups those that may be referred to as true complexity measures, such as the
Kolmogorov [9,19,33], Shannon [30] and Rényi entropies [27] (see [22] for a com-
prehensive review) and the Lempel-Ziv complexity [41]. Finally, the third class
of measures encloses those that have been proposed from a dynamical systems
point of view and includes measures like the Langton parameter [20], Boolean
derivatives [35], Derrida coefficients [11] and Lyapunov exponents [5,6]. Espe-
cially the latter two enable a deeper understanding of CAs as dynamical sys-
tems in the sense that they reflect how CAs react to small perturbations in their
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 123–134, 2015.
DOI: 10.1007/978-3-319-21909-7 13

124 J.M. Baetens and B. De Baets

configurations, i.e. they quantify the sensitive dependence on initial conditions,
one of the prerequisites to the emergence of chaos in dynamical systems [12].

Here, we will show how Lyapunov exponents and Boolean derivatives can be
used to get a complete picture of CA dynamics in the sense that they not only
make it possible to unravel the nature of a given CA, but also allow for assessing
the effect of changing model design parameters on the CA behavior [2–4], an
understanding that is a prerequisite for CA-based models to become appreciated
as a full-fledged modeling paradigm. Besides, we will also investigate whether
there is a link between the complexity of the configuration evolved by a CA and
its dynamics. Finally, we will illustrate how the scope of Lyapunov exponents
and Boolean derivatives is not limited to two-state CAs, as they can easily be
extended to CAs that are based upon multiple states.

This paper is organized as follows. In Sect. 2 we present the CA formalism
and we introduce the measures that will be used throughout this paper. The
main results of this paper are presented in Sect. 3, together with a description
of the experimental set-up.

2 Cellular Automata and Their Behavior

2.1 Cellular Automata

In this paper, we stick to the following definition of a CA.

Definition 1. A cellular automaton C is a fivetuple

C = 〈T , S, s,N, Φ〉,

where

(i) T is a countably infinite tessellation of an n-dimensional Euclidean space
R

n, consisting of cells ci, i ∈ N.
(ii) S is a finite set of k states.
(iii) The output function s : T × N → S yields the state value of cell ci at the

t-th discrete time step, i.e. s(ci, t).
(iv) The neighborhood function N : T → ∪∞

p=1T p maps every cell ci to a finite

sequence N(ci) = (ci)
|N(ci)|
j=1 , consisting of |N(ci)| distinct cells cij .

(v) Φ is a transition function governing the dynamics of cell ci, i.e.,

s(ci, t + 1) = Φ(s̃(N(ci), t))

where s̃(N(ci), t) = (s(cij , t))
|N(ci)|
j=1 .

Throughout this paper two CA families will be considered, being the family of
elementary CAs (ECAs) and the family of 2D (2, 7) irregular totalistic CAs. The
former can be recovered from Definition 1 upon restricting to one dimension, i.e.
n = 1, and choosing S = {0, 1} and N = (ci−1, ci, ci+1). For the second family,
it holds that n = 2, S = {0, 1}, the underlying tessellation is irregular, the

A Behavioral Analysis of Cellular Automata 125

neighborhood of a cell ci consists of those cells that share at least a vertex with
ci (Moore neighborhood) and the next state of a cell solely depends on the sum
of the states in ci’s neighborhood. In order to account for the fact that this sum
is theoretically unbounded in the case of irregular CAs, all inputs equal or larger
than 7 are mapped to the same state [5]. In practice, CAs have to be evolved on
finite lattices T ∗ of size |T ∗|. For the sake of brevity, the ∗ will be dropped in
the remainder of this paper. Besides, from the context it will be clear that we
refer to a finite tessellation.

2.2 Measures of Cellular Automaton Behavior

Although a detailed discussion of most measures that will be used throughout
this paper is beyond its scope and it might be redundant for some readers as
they are well established, we briefly present their definitions in the remainder
of this section. Special attention will be given to the Lempel-Ziv complexity in
Sect. 2.3 because the use of this complexity measure in the field of CAs has been
limited to a few recent exploratory papers [24–26].

Density. The density of a CA configuration at a given time step, denoted ρ(t),
is defined as the proportion of cells in state one, i.e.

ρ(t) =
1

|T |
|T |∑
i=1

s(ci, t) .

Sensitivity. A measure quantifying the sensitivity of a CA can be formalized on
the basis of the Boolean counterpart of a Jacobian matrix for continuous state
dynamical systems. More specifically, the entries of the Boolean Jacobian matrix
J t
ij at a given time step t are given by Boolean derivatives of s(ci, t + 1) with

respect to s(cj , t) [35], and the sensitivity measure μ̄ is given by the geometric
mean of

μ(t) =
1

|T |
|T |∑
i=1

1
|N(ci)|

∑
j:cj∈N(ci)

J t
ij (1)

for a large number of time steps T [6]. Informally, μ̄ may be understood as the
average proportion of cells in the neighborhood that affects the state of a given
cell ci at the t + 1-th time step if their state was perturbed, i.e. it reflects the
sensitivity of a CA. Given Eq. (1), a CA will evolve in exactly the same way
irrespective of whether and how many cells are perturbed at a given time step
if μ̄ = 0 (e.g. Rule 0), whereas introducing the smallest possible perturbation
at a given time step will always have an effect on the further evolution if the
sensitivity is equal to one (e.g. Rule 150).

126 J.M. Baetens and B. De Baets

Lyapunov Exponents. Following Wolfram’s suggestion to quantify the rate of
divergence between two initially close configurations [37], both directional and
non-directional Lyapunov exponents were established [6,31], the latter overcom-
ing the fact that the directionality of damage spreading gets blurred in higher-
dimensional CAs. In [6] the maximum Lyapunov exponent (MLE) of a CA is
defined as

λ = lim
t→∞

1
t

log
(

εt
ε0

)
, (2)

where εt denotes the total number of defects that are accumulated as the CA
evolved until the t time step starting from an initial configuration containing ε0
defects, where, typically, ε0 = 1. The important finesse that should be mentioned
with regard to this approach is that it involves tracking the defects in tangent
space rather than in configuration space as is the case in [31,37]. The reader who
is not yet familiar with this approach is referred to [1] for a more comprehensive
explanation.

Among ECAs the MLE varies between {−∞} ∪ [0, log(3)], where log(3) is
the maximum rate of exponential divergence that can be reached by any of the
ECAs, while it varies between {−∞} ∪ [

0, log(V̄)
]

for (2, 7) irregular totalistic
CAs, where V̄ denotes the average neighborhood size. Typically, the MLE is used
to classify CAs on the basis of their robustness to perturbations. More specif-
ically, when evaluating the MLE across an ensemble of initial configurations,
there will be CAs for which the MLE will always be −∞. Such CAs may be
referred to as unconditionally superstable, while the ones for which the contrary
is true, i.e. their MLE is positive irrespective of the initial configuration, may be
referred to as unconditionally unstable CAs. In addition to these uncondition-
ally superstable and unstable CAs, the discrete nature of CAs makes that there
are also CAs for which the MLE is positive only for some initial configurations,
while it is −∞ for others. Such rules are referred to as conditionally unstable or
superstable depending on the prevailing behavior across the ensemble.

2.3 Lempel-Ziv Complexity

Although the Lempel-Ziv complexity was originally conceived to quantify the
randomness of binary sequences for constructing random sequences [21], after
which it became established for data compression applications [41,42], it seems
to have been making its entrance in several disciplines during the last decade,
such as computer vision [8], medicine [18] and biochemistry [17]. Only very
recently it has been introduced in the field of CAs to quantify the randomness
of the consecutive CA configurations [24–26]. In order to define the Lempel-Ziv
complexity it is easier to first define a so-called Lempel-Ziv partition of a binary
sequence. For that purpose, let v = v1v2...vk and w = w1w2...wn be two binary
sequences and let us refer to a prefix v of w if it holds that vi = wi for 1 ≤ i ≤ k,
while v is said to be a proper prefix of w if k < n. Then the partition y1|...|yr is
called the Lempel-Ziv partition of w if (1) yi 	= yj for all i = 1, . . . , r − 1 and

A Behavioral Analysis of Cellular Automata 127

j = 1, . . . , i − 1; (2) w = y1y2...yr; and (3) every proper prefix of yi is equal to
some yj for all i = 1, . . . , r and some j = 1, . . . , i − 1.

If yr = yi for some i = 1, . . . , r − 1, w is referred to as an open sequence.
Otherwise, w is called a closed sequence. Given the Lempel-Ziv partition of a
binary sequence w, the Lempel-Ziv complexity of w, denoted �(w), is defined as
the number of distinct patterns in the Lempel-Ziv partition of w. In the case
of an open sequence, the Lempel-Ziv complexity will be equal to r − 1, rather
than r, thus agreeing with the maximal number of unique substrings in a given
binary sequence w. For example, the Lempel-Ziv partition of 111000111110100
is given by 1|11|0|00|111|110|10|0, such that we have �(111000111110100) = 7
because the last substring in the Lempel-Ziv partition is not unique.

Since the Lempel-Ziv complexity obviously depends on the length of the
considered binary sequence, it makes sense to normalize it in such a way that it
becomes possible to compare it across binary strings of different lengths. Here,
the normalized Lempel-Ziv complexity is defined as

�n =
� − �min

�max − �min
, (3)

where �min and �max represent the minimum and maximum Lempel-Ziv com-
plexity for a sequence of a given length, respectively. The normalized Lempel-Ziv
complexity obviously lies between zero and one. Given the definition above, the
normalized Lempel-Ziv complexity of a sequence �n increases as its degree of
randomness grows. As such, the normalized Lempel-Ziv complexity is zero for a
uniform configuration.

3 Behavioral Analysis

3.1 Experimental Setup

For all ECA simulations, a tessellation consisting of 500 cells with periodic
boundary conditions was used, whereas a tessellation of 675 irregular cells was
used to evolve the (2, 7) irregular totalistic CAs. Since a CA might not be able
to evolve to its most stable state as a consequence of its discrete nature [6],
all values reported in the remainder of this paper represent averages over an
ensemble E of 30 and 8 random initial configurations, respectively for the ECAs
and (2, 7) irregular totalistic CAs. Every representative CA was evolved for 500
time steps for each of the configurations in the ensemble. All simulations were
performed in Mathematica (Wolfram Research Inc., Champaign, USA) using the
high performance computing infrastructure of Ghent University.

Figure 1 depicts the behavioral signatures of both CA families. More specifi-
cally, it visualizes the relationship between the sensitivity μ̄ and the MLE λ for
the members of both CA families. Generally speaking, this figure indicates that
there exists a positive relationship between the sensitivity and the MLE, espe-
cially in the case of the (2, 7) irregular totalistic CAs. Besides, it is remarkable
that many CAs for which λ 	= −∞ for all members of E give rise to MLEs that
are close to the respective theoretical upper bound.

128 J.M. Baetens and B. De Baets

Fig. 1. Maximum Lyapunov exponent (λ) for the ECAs and (2, 7) irregular totalistic
CA versus sensitivity μ̄ after 500 time steps together with the theoretical upper bounds
on the MLE. Results are averages calculated over an ensemble of different initial con-
figurations E, and are only shown for those CAs for which λ �= −∞ for all members of
E (circles), and for rules giving rise to λ = −∞ for at most all but one member of E
(squares) [5].

3.2 Complexity versus stability

Whether or not there exists a link between the Lempel-Ziv complexity of an
ECA and its corresponding MLE, can be investigated by examining Fig. 2(a),
which depicts the normalized Lempel-Ziv complexity of the final ECA configura-
tion versus the corresponding normalized MLE for the 88 representative ECAs.
Recall that results represent averages calculated over an ensemble of different
initial configurations E, and note that they are only shown for those ECAs
leading to λ 	= −∞ for all members of E (circles), and those giving rise to
λ = −∞ for at most all but one member of E (squares). First of all, it is clear
that the rules giving rise to the highest possible MLE (i.e. Rules 105 and 150)
also evolve configurations that reach the highest possible degree of randomness,
but apparently there exist significantly more stable rules that evolve similarly
random configurations, such as Rules 15, 30, 45, 51, 60, 90, 106, 154, 170 and
204. This already hints that complexity in configuration space does not neces-
sarily imply pronouncedly unstable behavior from a dynamical systems point of
view, and vice versa. Secondly, Fig. 2(a) also points to the fact that the entire
range of Lempel-Ziv complexities is covered by rules of which the nMLE is only
marginally positive, which is a further confirmation of the decoupling between
complexity in configuration space and the nature of the dynamics underlying
the ECA evolution, which corroborates the recent findings of [26]. Moreover, it
is obvious that ECAs can evolve complex configurations, irrespective of whether
or not their dynamics is unstable, i.e. whether or not there is sensitive depen-
dence on initial conditions. So, contrary to what one could expect, perturbing
the state of a cell in the evolution of an ECA that produces relatively random
configurations might not cause a cascade of defects that makes the subsequent
ECA configurations diverge exponentially from the ones that would be evolved

A Behavioral Analysis of Cellular Automata 129

in absence of such a perturbation. Of course, in configuration space the evolved
configurations might still differ significantly, but this does not hold for the tan-
gent space where the defects are tracked. In Fig. 2(a) it can also be observed that
there are a few peculiar rules (57, 72, 104) with nMLEs between 0.6 and 0.65
that give rise to comparatively low complexity values. Essentially, these three
rules are the only ones in an otherwise unfrequented zone below the 1:1 line in
this scatterplot and their location in the (λn , �n)-plane can be understood by
acknowledging that they give rise to (diagonally) striped patterns.

Fig. 2. Normalized Lempel-Ziv complexity �n of the final ECA configuration (500 time
steps) versus the corresponding normalized Lyapunov exponent λn (a) and sensitivity
μ̄ (b) for the 88 representative ECAs. Results are averages calculated over an ensemble
of different initial configurations E, and are only shown for those ECAs leading to
λ �= −∞ for all members of E (circles), and those giving rise to λ = −∞ for at most
all but one member of E (squares).

To get an even better insight in how the complexity of ECA configurations
and the ECA dynamics are related, Fig. 2(b) depicts the normalized Lempel-Ziv
complexity �n of the final ECA configuration versus the corresponding sensi-
tivity μ̄ for the 88 representative ECAs. It shows that a critical sensitivity of
approximately 0.1 must be exceeded in order for an ECA to be able to evolve
configurations that have a positive normalized Lempel-Ziv complexity, and more-
over, that a sensitivity of at least 0.25 is a prerequisite for evolving truly random
configurations (�n > 0.6). Beyond this threshold there does not seem to be a link
between the randomness of the evolved ECA configurations, on the one hand,
and the sensitivity of the governing transition function μ̄, on the other hand,
because the normalized Lempel-Ziv complexity apparently can take any value
once this threshold is exceeded, irrespective of μ̄. Besides, Fig. 2(b) uncovers the
existence of zones in the (μ̄ , �n)-plane that are (almost) unreachable by evolv-
ing ECAs.

3.3 Interference Between CA Design and Behavior

Many studies have addressed how the choice of CA design parameters, such
as the kind of tessellation, the neighborhood structure, or the update mecha-

130 J.M. Baetens and B. De Baets

nism affects the CA behavior [13–15,23,28,29,34], though the majority of these
focuses on the qualitative differences between the results, obtained with different
design parameters. On the other hand, by resorting to the measures introduced
in Sect. 2, it becomes possible to investigate these interferences in a quantitative
way as their values can be compared across a series of designs. As an illustra-
tion, we will demonstrate how the effect of the update method and underlying
tessellation can be assessed in this way.

Figure 3 depicts the MLEs obtained by relying on the random order update
and exponential clocked update methods [7] versus the ones found by synchro-
nously updating the (2, 7) irregular totalistic CA. It should be mentioned that the
presented MLEs are normalized with respect to the governing upper bounds so
that they can be compared across different designs. Clearly, these upper bounds
are much lower in the case of asynchronously updated CAs because much fewer
cells get updated at every consecutive time step than in a synchronous set-
ting. As can be inferred from Fig. 3, the MLE of a synchronously updated CA
is typically higher than the one of its asynchronous counterpart, though there
are a few rules for which the contrary is true. Similar discrepancies between
synchronously and asynchronously updated CAs have been observed for other
asynchronous update methods [4], and reflect that these discrete dynamical sys-
tems may exhibit completely distinct behavior if their evolution is based upon a
different update method. Consequently, when it comes to the development of a
CA-based model for describing a given process, particular care should be given
to choosing the appropriate update method as it constitutes an inseparable part
of the CA-based model as a whole.

Fig. 3. Normalized MLE obtained by relying on the random order update method
(a) and exponential clocked update method (b) versus the normalized MLE found by
synchronous updating. The results are only shown for those rules within the family
of (2, 7) irregular totalistic CA that, for both concerned update methods, give rise to
λ∗ �= −∞ for at least one member of the ensemble E.

To illustrate the interference between a CA’s topology and its dynamics,
Fig. 4 illustrates how the normalized MLE of four different (2, 7) irregular total-
istic CAs changes as a function of the average neighborhood size V̄ . This figure

A Behavioral Analysis of Cellular Automata 131

demonstrates that there can be a significant impact of a CA’s topology on its
dynamics. There are rules like numbers 20 and 235 for which the MLE stays pos-
itive across the entire range of neighborhood sizes, though its magnitude varies
substantially, which indicates that the underlying topology affects how fast close
phase trajectories are diverging. In addition, there are rules for which not only
the rate of divergence is affected, but their stability properties as a whole in the
sense that they give rise to diverging trajectories for some neighborhood sizes,
whereas there exists sensitive dependence on initial conditions for others (e.g.
rules 244 and 246). Apparently, for the latter type of rules there seem to exist
critical neighborhood sizes where the dynamics of the underlying rule changes
dramatically. Consequently, such neighborhood sizes may be referred to as topo-
logical bifurcation points. All together this indicates that particular care should
be given to the definition of the topology underlying a CA-based model because
it is an indivisible part of the model.

Fig. 4. Normalized MLE λ versus average neighborhood size V̄ for (2, 7) irregular
totalistic CAs 20 (a), 235 (b), 244 (c) and 246 (d).

3.4 The Nature of Multi-state CAs

Although a detailed elaboration on how the Lyapunov exponents defined by
Eq. (2) should be computed in the case of multi-state CAs is considered to be
beyond the cope of this paper, it is important to realize that different types of

132 J.M. Baetens and B. De Baets

(a) (b)

(c) (d)

Fig. 5. Defect cone after 500 time steps for rules 1776 (a), 1893 (b), 1994 (c) and
2014 (d) starting from a random initial condition with defects in the 11 most centrally
located cell of a system consisting of 1001 cells.

defects can emerge in such a setting. More specifically, at most k(k−1)
2 different

types of defects can emerge during the course of the evolution of a k-state CA, one
for every possible combination of states, namely (0, 1), (0, 2), . . . , (0, k), (1, 2),
. . . , ((k − 1), k). Obviously, in the case of two-state CAs, there exists only one
type of defect, being the one that involves flipping state zero to one, or vice versa,
and sensitive dependence on initial conditions traces back unambiguously to that
particular type of defect. In contrast, in the case of three-state CAs for which
the state set is endowed with a cyclic ordering, there exist two types of defects,
namely so-called L-defects that invoke a shift to a left shift of a cell’s state and
R-defects that invoke an R-shift. For each of them, a distinct Lyapunov exponent
can be defined that quantifies how fast either L- or R-defects are accumulating.

In order to exemplify the nonuniform nature of defect propagation in multi-
state CAs, Fig. 5 visualizes the defect cone for four three-state one-dimensional
totalistic CAs with rule numbers, according to [39], 1776, 1893, 1994 and 2014
which are evolved for 500 time steps, starting from a random initial condition on
a system consisting of 1001 elements, upon introduction of both L- and R-defects
in the 11 most centrally located cells at t = 0. The defect cones depicted in this
figure demonstrate that the propagation of defects in multi-state CAs can be of
a very complicated nature in the sense that the different types of defects do not
necessarily have to coexist, while the way the different types of defects spread is
often spatially very heterogeneous.

A Behavioral Analysis of Cellular Automata 133

References

1. Baetens, J.M., De Baets, B.: A lyapunov view on the stability of two-state cellular
automata. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence. ECC,
vol. 2, pp. 31–40. Springer, Heidelberg (2013)

2. Baetens, J.M., De Baets, B.: Topology-induced phase transitions in cellular
automata. Phys. D: Nonlinear Phenom. 249, 16–24 (2013)

3. Baetens, J.M., De Loof, K., De Baets, B.: Influence of the topology of a cellular
automaton on its dynamical properties. Commun. Nonlinear Sci. Numer. Simul.
18, 651–668 (2013)

4. Baetens, J.M., Van der Weeën, P., De Baets, B.: Effect of asynchronous updating
on the stability of cellular automata. Chaos, Solitons Fractals 45, 383–394 (2012)

5. Baetens, J.M., De Baets, B.: Phenomenological study of irregular cellular
automata based on Lyapunov exponents and Jacobians. Chaos 20, 033112 (2010)

6. Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents
in cellular automata. Phys. Lett. A 172, 34–38 (1992)

7. Bandini, S., Bonomi, A., Vizzari, G.: What do we mean by asynchronous CA?
a reflection on types and effects of asynchronicity. In: Bandini, S., Manzoni, S.,
Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 385–394. Springer,
Heidelberg (2010)

8. Batista, L., Meira, M., Cavalcanti Jr., N.: Texture classification using local and
global histogram equalization and the Lempel-Ziv-Welch algorithm. In: Proceed-
ings Fifth International Conference on Hybrid Intelligent Systems (2005)

9. Chaitin, G.: On the length of programs for computing finite binary sequences. J.
Assoc. Comput. Mach. 5, 547–569 (1966)

10. Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J.
Stat. Phys. 64, 859–892 (1991)

11. Derrida, B., Stauffer, D.: Phase transitions in two-dimensional Kauffman cellular
automata. Europhys. Lett. 2, 739–745 (1986)

12. Devaney, R.L. (ed.): An Introduction to Chaotic Dynamical Systems. Addison-
Wesley, Redwood City (1987)

13. Fatès, N., Morvan, M.: Perturbing the topology of the game of life increases its
robustness to asynchrony. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.)
ACRI 2004. LNCS, vol. 3305, pp. 111–120. Springer, Heidelberg (2004)

14. Fatès, N.A., Morvan, M.: An experimental study of robustness to asynchronism
for elementary cellular automata. Complex Syst. 16, 1–27 (2005)

15. Fats, N.A.: Critical phenomena in cellular automata: perturbing the update, the
transitions, the topology. Acta Phys. Pol. B Proc. Suppl. 3, 315–325 (2010)

16. Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion
in excitable media. SIAM J. Appl. Math. 34, 515–523 (1978)

17. Han, G., Yu, Z.G., Anh, V., Krishnajith, A.P., Tian, Y.C.: An ensemble method
for predicting subnuclear localizations from primary protein structures. PLoS
ONE 8, 1 (2013)

18. Jouny, C., Lempel, A.: Characterization of early partial seizure onset: frequency,
complexity and entropy. Clin. Neurophysiol. 123, 658–669 (2012)

19. Kolmogorov, A.: Three approaches to the quantitative definition of information.
Probl. Peredachii Informatsii 1, 3–11 (1965)

20. Langton, C.: Computation at the edge of chaos. Phys. D 42, 12–37 (1990)
21. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. The-

ory 22, 75–81 (1976)

134 J.M. Baetens and B. De Baets

22. Lindgren, K., Nordahl, M.: Complexity measures and cellular automata. Complex
Syst. 2, 409–440 (1988)

23. Manzoni, L.: Some formal properties of asynchronous cellular automata. In:
Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol.
6350, pp. 419–428. Springer, Heidelberg (2010)

24. Ninagawa, S., Adamatzky, A., Alonso-Sanz, R.: Phase transition in elementary
cellular automata with memory. Int. J. Bifurcat. Chaos 24, 23–35 (2014)

25. Ninagawa, S., Martinez, G.J.: Compression-based analysis of cyclic tag system
emulated by rule 110. J. Cell. Automata 9, 23–35 (2014)

26. Ninagawa, S., Adamatzky, A.: Classifying elementary cellular automata using
compressibility, diversity and sensitivity measures. Int. J. Mod. Phys. C 25,
1350098 (2014)

27. Rényi, A.: On measures of entropy and information. In: Neyman, J. (ed.) Proceed-
ings of the Fourth Berkeley Symposium on Mathematical Statistics and Proba-
bility. pp. 547–561. University California Press, Los Angeles (1961)

28. Rouquier, J.-B., Morvan, M.: Combined effect of topology and synchronism per-
turbation on cellular automata: preliminary results. In: Umeo, H., Morishita, S.,
Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191,
pp. 220–227. Springer, Heidelberg (2008)

29. Schnfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. Biosystems 51, 123–143 (1999)

30. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
623–656 (1948)

31. Shereshevsky, M.: Lyapunov exponents for one-dimensional cellular automata. J.
Nonlinear Sci. 2, 1–8 (1992)

32. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model
for the effects of population movement and vaccination on epidemic propagation.
Ecol. Model. 133, 209–223 (2000)

33. Solomonoff, R.: A formal theory of inductive inference part I. Inf. Control 7, 1–22
(1964)

34. Valsecchi, A., Vanneschi, L., Mauri, G.: A study on the automatic generation of
asynchronous cellular automata rules by means of genetic algorithms. In: Bandini,
S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp.
429–438. Springer, Heidelberg (2010)

35. Vichniac, G.: Boolean derivatives on cellular automata. Phys. D 45, 63–74 (1990)
36. Wolfram, S.: Cellular automata. Los Alamos Sci. 9, 2–21 (1983)
37. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35

(1984)
38. Wolfram, S.: Two-dimensional cellular automata. J. Stat. Phys. 38, 901–946

(1985)
39. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-

Wesley, Reading, United States (1994)
40. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata, vol. 1.

Addison-Wesley, London, United Kingdom (1992)
41. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Inf. Theory 23, 337–343 (1977)
42. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.

IEEE Trans. Inf. Theory 24, 530–536 (1978)

Contradiction Between Parallelization Efficiency
and Stochasticity in Cellular Automata Models

of Reaction-Diffusion Phenomena

Olga Bandman(B)

Supercomputer Software Department ICM and MG, Siberian Branch,
Russian Academy of Sciences, Pr. Lavrentieva, 6, Novosibirsk 630090, Russia

bandman@ssd.sscc.ru

Abstract. Simulation of reaction-diffusion phenomena are usually done
using cellular automata with asynchronous mode of operation, which is
in accordance with the stochastic nature of such processes, though does
not provide acceptable parallelization efficiency, when the model is imple-
mented on a supercomputer. The contradiction is resolved by endowing
the asynchronous mode with some synchronization under the condition
that the result is not distorted. How much of synchronization is admis-
sible is not known. Moreover, it is not known what is the impact of syn-
chronization on the parallelization efficiency. In the paper an attempt is
made to answer these questions basing on the analysis of parallel exper-
imental simulations of typical subclasses of reaction diffusion processes
on a supercomputer.

Keywords: Reaction-diffusion processes · Cellular automata models ·
Asynchronous cellular automata · Composition of cellular automata ·
Parallel computations · Parallelization efficiency

1 Introduction

Mathematical modeling and computer simulation is now primarily focused on
nonlinear dissipative phenomena in chemistry and biology [1], rather than on
conventional physics. Most commonly, such phenomena are classified as reaction-
diffusion processes being described in terms of elementary displacements and
transformations of real or abstract particles. The displacements of particles are
represented as diffusion or convection, obeying conservation laws, while trans-
formations simulate phase transitions, chemical reactions, or some biological
transmutation, that are dissipative by nature. All these elementary actions are
performed in random with probabilities being in accordance with the rates of
their intensity. Such kind of kinetic probabilistic models are under intensive
development in chemistry and biology [2,3]. Moreover, reaction-diffusion phe-
nomena, expressed in terms of CA [4,5], are also studied and used in different

Supported by Presidium of Russian Academy of Sciences, Basic Research Program
N 15-9 (2015).

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 135–148, 2015.
DOI: 10.1007/978-3-319-21909-7 14

136 O. Bandman

fields of science. The most advanced CA models are used in microelecronics [8,9],
in pattern formation processes investigation [6], and in surface catalytic reactions
simulation [7]. Sometimes, they are referred to as “Kinetic Monte Carlo”method,
although most of them are versions and extensions of asynchronous CA (ACA),
differing from the Monte Carlo method in presentation manner and transition
functions composition.

Whereas there exists some experience in ACA simulation [10,11], there is
no systematic methodology for synthesize a model of a complex phenomenon
given by a description of involved elementary actions and their interactions. The
main problem is in constructing a global operator out of given elementary local
functions, which provides the best adequacy to the process under simulation on
one hand, and satisfies computational correctness and efficiency conditions on
the other hand. Moreover, parallel implementation conditions should be taken
into account [12]. It means that asynchronous behavior should be partially syn-
chronized, but in such a manner that does not cause distortion of the process.
The synchronization is induced [13] by transforming asynchronous mode into an
equivalent block-synchronous one. In [14] it is shown on a real life example of a
heterogeneous catalytic reaction simulation, that such a transformation induces
no errors in asynchronous CA behavior. This fact provokes the following ques-
tion: how much of synchronization may be admissible in reaction-diffusion CA.
The question was partially answered in [15]. But, the results of serial algorithms
study cannot be transferred directly to a parallel case, because parallel imple-
mentation conditions concerning correctness and performance of coarse grain
parallelism impose additional requirements onto the mode of operation. Orien-
tation to parallel implementation needs to allow for these requirements at the
earlier stages of model development. Hence, it should be clear how simulation
results depend on the chosen mode of elementary operations interaction. Just
this dependence is a subject of the investigation reported in the paper. Based
on the available experience, the main modes of operations are distinguished. For
them, the amount of additional computations needed for parallel computing and
the amount of data exchanges are assessed, and computer simulation of typical
reaction-diffusion processes are performed in 2D and 3D case. Computations are
executed on the cluster NKS-30 of Siberian Supercomputer Center.

Apart from Introduction and Conclusion the paper contains 3 sections. In the
second section necessary formal definition of reaction diffusion CA are given. In
the third section the peculiarities of parallel implementation are enlightened and
analytical assessment of parallel implementation efficiency is obtained. The rest
of the article is devoted for presenting the results of computational experiments.

2 Formal Representation of CA-Models

CA is defined by a triplet ℵ = 〈A,X,Θ(X)〉. A is a set of symbols, called
alphabet, which may be interpreted as designations of substances involved
in the process under simulation. X = {x} is a set of cell names, usually
given by a set of coordinates of a finite discrete space, x = (i, j, k), i =

Contradiction Between Parallelization Efficiency and Stochasticity 137

0, . . . , I, j = 0, . . . , J, k = 0, . . . , K. A pair (u,x), u ∈ A, x ∈ X, is called
a cell. The set of cells Ω = {(uk,xk)|xk �= xl}, forms a cellular array,
ΩA = (u1(x1), u2(x2), . . . , u|X|(x|X|)), or, simply, ΩA = (u1, . . . , u|X|), being
its global state. Θ(X) is a global operator which defines the transition of the CA
to the next global state, which constitutes an iterative step or iteration. The
sequence ΩA(0), . . . ΩA(t) . . . ΩA(t̂), is referred to as a CA evolution, t̂ being the
number of global operator executions. The global operator Θ(X) is the result
of application of elementary actions to all cells in the array. Each elementary
action is expressed as a substitution of the form

θ(x) : S(x)
p−→ S′(x), (1)

where S(x0) = (u0, . . . , un,) and S′(x) = (v0, . . . , vm), u, v ∈ A, m ≤ n, are local
configurations, expressed as vectors of cell states in the vicinity of x, defined by
its underlying template

T (x) = {x,x + a1, . . . ,x + an−1}, (2)

where aj is a shift vector such that the cell x + aj has the state uj , the maximum
component of all aj is referred to as the template radius R(T).

In (1) local configurations S(x) and S′(x) are vectors whose components are
states of cells named from their underlying templates T (x) and T ′(x), which are
in the ratio

T ′(x) ⊆ T (x). (3)

Application of θ(x) to a certain xk ∈ X replaces the states {u0, . . . , ui, . . . , um} ∈
S(xk) by the states

vi = fi(u0, . . . , ui . . . , un), i = 0, . . . , m, n = |S(xk)|, (4)

which are values of transition function fi(u1, . . . , un). Application of θ(x) is
performed with probability p, that is determined by physical properties of the
corresponding action. Application of θ(xk) is considered to be successful, if the
subset of cells named from T (xk) is included into Ω, i.e.

{(u0,xk), . . . , (un,xk + an)} ⊆ Ω. (5)

Otherwise the application of θ(x) fails, and nothing is changed in Ω(t) .
If the global operator Θ(X) contains only one substitution, then it is called

a simple global operator. Accordingly, a CA with simple Θ(X) is a simple CA.
Application of a simple Θ(X) consists of application θ(x) to all x ∈ X, the order
of cells to be chosen being defined by the mode of operation ρ. There are two
basic modes of simple CA operation.

Synchronous mode, ρ = σ, prescribes the following algorithm of application
Θ(X) to Ω(t) :

(1) a cell (u,x) is chosen from Ω(t), any order of choice being admissible,
(2) if condition (5) is satisfied, the next state of x is computed according

to (4),

138 O. Bandman

(3) when next states are obtained for all x ∈ X, they are adjusted all at once
transforming Ω(t) into Ω(t + 1).

Asynchronous mode, ρ = α, suggests the following algorithm of a global
operator application:

(1) a cell (u,x) is chosen from Ω(t) with probability p = 1/|X|,
(2) if condition (5) is satisfied, θ(x) is applied to x, adjusting the states of

cells from T ′(x) immediately,
(3) the global operator is considered to be executed, when (1) and (2) are

executed |X| times, completing the t-th iteration.
In reality, asynchronous computation process is not divided into iterations,

so the concept of iteration is accepted conditionally for making the comparison
with synchronous case more conceptual.

In reaction-diffusion CA Θ(x) is a complex global operator, being composed
of several (at least two) local operators

Θ(X) = Φ(θ1(x), . . . , θq(x)), (6)

which determines the CA functioning. For providing functioning correctness
Θ(X) must satisfy the following condition: no pair of substitution application
should aim at adjusting the same cell at the same time, i.e.

T ′
k(x)

⋂
T ′

l (y) = ∅ ∀(x,y) ⊂ X, (7)

where T ′
k(x) and T ′

l (y) are underlying templates for the right hand sides of (1)
in θk(x) and θl(x), including the case l = k.

In simple synchronous CA the correctness condition (7) is satisfied, when
|T ′

k(x)| ≤ 1. It yields a strong constraint in reaction-diffusion process synthesis,
but simplifies parallel implementation of a large scale CA on a cluster. Unlike
the synchronous case, asynchronous computation on one processor is always
correct due to its serial character, but its implementation on parallel processor
is absolutely inefficient.

Global operator Θ(X) (6) of a complex CA defines common behavior of
included in it substitutions, further referred to as complex mode of operation.
To be more concise let us further focus on reaction-diffusion CA, whose global
operator deals with two substitutions: θd(x) and θr(x), simulating elementary
acts of diffusion and reaction, respectively. The following complex modes deserve
detailed consideration.

Stochastic complex mode ΦS(θd(x), θr(x)) , when a randomly chosen substi-
tution θd(x) or θr(x) is applied to a randomly chosen cell x ∈ X, and, if the
condition (6) is satisfied, the cells of corresponding underlying template T ′(x)
are adjusted immediately. Coordination of the component reactions rates is done
by setting the probability of each θl execution equals to

pl = kl/(kd + kr), l ∈ {d, r}, (8)

where kl is the rate constant of the l-th action [7].

Contradiction Between Parallelization Efficiency and Stochasticity 139

Local complex mode ΦL(θd(x), θr(x)), when Θ(X) implies asynchronous
application of the superposition of substitutions, i.e. θd(x) is applied to the
result of θr(x) application to a randomly chosen cell x ∈ X,

Θ(X) = ΦL(θd(x), θr(x)) = Φ(θd(θr(x))), (9)

each substitution is applied with its own probability.
Global complex mode ΦG(θd(x), θr(x)), when Θ(X) is a superposition of sim-

ple global operators
Θ(X) = Φ(Θd(Θr(X))), (10)

where each Θi(X) is a global operator of θl(x), l = d, r, that may operate in
its own mode and with its own probability. It is worth to be mentioned, that
synchronous Θσ(X) may be included only in global superposition.

In [15] the comparative study of the above three composition modes applied
to three typical asynchronous CA, showed that their evolutions differ insignif-
icantly. The question is whether this thesis is valid for large scale CA parallel
implementation and how operation ordering in reaction-diffusion CA influences
parallel implementation performance.

3 Modes of CA Operation in Multiprocessor Environment

The homogeneous structure of CA prescribes using domain decomposition
method for distributing the computations among processors. There is an
ingrained opinion that coarse grained CA parallelization causes no problem:
the single thing that should be done is to cut the cellular array into parts of
suitable size. But, this is true only for synchronous CA. Parallelization of CA
that contains asynchronous operators requires inducing some synchronization for
making parallel implementation performance acceptable. This statement enters
in contradiction with the preposition about the stochastic character of reaction-
diffusion processes. To achieve a compromise, or at least come up close to it,
modes of CA operation in multiprocessors are further considered in detail.

3.1 Parallelization Costs for Simple CA

Let us at first assess time and space costs of parallelization for simple synchro-
nous ℵσ and asynchronous ℵα CA. For that, let us assume, that CA is allocated
on N processors of a cluster. Accordingly, CA’s naming set X is divided in N
equal parts called domains, X = X1 . . . ∪ Xl . . . ∪ XN , each being of the size
(Il + 2R(T)) × (Jl + 2R(T)) × (Kl + 2R(T)), where R(T) is the substitution
template radius (2).

In case of a simple synchronous CA the exchange of data is done once per
iteration yielding in the total amount of data to be transmitted by the lth domain
per iteration

Vsyn = 2R(T)(Il + Jl + Kl), l = 1, . . . , N, (11)

140 O. Bandman

Synchronous diffusion CA ℵσ,Diff = 〈A,X,Θ(X)〉 may be used only in
global complex modes. In 2D case ℵσ,Diff is known as “CA with Margolus
neighborhood”, proposed in [16], and studied in [17]. It is not really a simple
CA. Its global operator

ΘDiff (x) = Φ(Θσ(X0), Θσ(X1),
X0 = {(i, j) : (i + j)mod2 = 0}, X1 = {(i, j) : (i + j)mod2 = 1},

(12)

is performed in two stages: (1) θ(i, j) ia applied to all (i, j) ∈ X0 (even stage), and
(2) the same θ(i, j) ia applied to all (i, j) ∈ X1 (odd stage). The substitution
θ(i, j) has a 4-cell’s underlying template T (i, j) = {(i, j), (i, j + 1), (i + 1, j +
1), (i + 1, j)} and a probabilistic transition function

(v0, v1, v2, v3) =
{

(u1, u2, u3, u0) if r < p,
(u3, u2, u1, u0) if r ≥ (1 − p), (13)

where p is a probability of substitution application, and r is a random number,
0 < r < 1. When implemented in a cluster the exchange of data should be done
twice per iteration, the amount of transferred data being equal to Vsyn, since
each exchange is done only in one direction: “west → east” and “south → north”
at even stages, and “east → west” and “north → south ” at odd stages.

The 3D case is more complicated. It is executed as a superposition of three
synchronous 2D global operators, applied over the three sets of planes: (1) (i, j)-
planes for all k = 0, . . . , K, (2) (i, k)-planes for all j = 0, . . . , J , and (3) (j, k)-
planes for all i = 0, . . . , I. So, the amount of exchanges per iteration is six, and
the amount of exchanged data is V (3D) = 3Vsyn.

Synchronous reaction CA may represent quite different elementary trans-
formations: chemical reaction, phase transition, dissociation, emerging, disap-
pearing, etc. To satisfy correctness conditions (7) simple reaction CA contain a
substitution of a single-cell form:

θ(x) : (a,x)
p→ (b,x), a, b ∈ A. (14)

Such single cell substitutions mimic elementary actions like adsorption and
desorption on catalytic surface, phase transition (evaporation), etc. In parallel
implementation no exchange is needed.

In asynchronous case the application of θ(x) requires immediate adjustment
of several cells from T ′(x). Hence, any state change in a border domain cell should
be sent to the adjacent domain at once, requiring P ×R(T) acts of data exchange
per iteration, where P is the perimeter of the domain, R(T) — the template (2)
radius. This yields unacceptable parallelization efficiency and cannot be used.
The problem is solved by introducing some synchronization [13], that transforms
ℵα into a block-synchronous ℵβ according to the following algorithm.

(1) A template B(x), further referred to as a block, is defined in X such that

B(x) ⊇ T (x), B(x) = {x,x + a1, . . . ,x + an}, B(xi) ∩ B(xj) = ∅,

N⋃
i=1

B(xi) = X, i, j = 1, . . . N, N = |X|/n, (15)

Contradiction Between Parallelization Efficiency and Stochasticity 141

where T (x) is the underlying template of the local configuration S(x) of θ(x).
Most efficient parallelization is achieved with TB(x) = T (x).

(2) A partition Π = {Π1,Π2, . . . , Πn} is generated by the set of blocks
B = {B(xi) : i = 1, . . . , N}, in such a way that

Πk = {x : x = xi + ak ∈ B(xi)}, i = 1, . . . , N. (16)

(3) The iteration is divided into n stages, on each kth stage θ(x) is applied
synchronously to all x ∈ Πk.

So, the implementation of a simple asynchronous CA requires n exchanges
of data per iteration, the total amount of data to be transmitted by a domain
being the same as in synchronous case.

Asynchronous 2D diffusion CA-model, called “naive diffusion ” [16] is usually
represented by a substitution θ(i, j), based on the underlying template T5 =
{(i, j), (i−1, j), (i, j+1), (i+1, j), (i, j−1), }, that identifies a local configuration
S(i, j) = (uk : k = 0, 1, 2, 3, 4), adjusted by the substitution

θ(i, j) : (u0, . . . , u4)
pd−→ (uk, u0), (k − 1)/4 < r ≤ k/4, (17)

where pd is a probability of substitution application, r a random number between
0 and 1. To implement a “naive diffusion” in a cluster, Θd(X) should be trans-
formed into a block-synchronous mode using the above algorithm. Thereby it
may be done in two ways: (1) with the minimal block equal to the template T5,
and with the template T9, such that T9 ⊃ T5. The first way yields 5 exchange
stages per iteration. While the second — needs 9 stages, but due to the square
template form it is easy to deal with.

Asynchronous reaction simulate chemical transformations, where several par-
ticles interact when occur allocated in neighboring cells. For example, reaction of
oxidation, oxygen dissociation, production water molecules from hydrogen and
oxygen, etc. They are described by substitutions of the following form:

θ(x) : {(a0,x), . . . , (aq,x + aq} p−→ {(b0,x), . . . , (bq,x + aq)}, al, bl ∈ A. (18)

Naturally, when implemented on multiprocessor system, they should be trans-
formed into block-synchronous mode with q synchronous stages.

3.2 Parallelization of Reaction-Diffusion Complex CA

When simulating reaction-diffusion phenomena on a supercomputer with dis-
tributed memory, the following complex modes of operation are of interest:
(1) parallel stochastic mode, (2) parallel local superposition mode, and (3) paral-
lel global superposition mode). In all cases the cellular array Ω(0) is partitioned
into N domains, each domain being enlarged by R(TΦ) on each side, i.e.

TΦ = T ′
d ∪ T ′

r, (19)

T ′
d and T ′

r being the underlying templates of θd(x) and θr(x), respectively.

142 O. Bandman

Parallel stochastic mode ΨS is intended to simulate an asynchronous process
dealing with two local operators involved in it: θd(x) and θr(x). Interaction
between the domains requires transformation into block-synchronous mode. So,
the procedure of simulation is as follows.

(1) Determine the block B = TΦ and the subsets Π1, . . . , Πn, n = |B| accord-
ing to (15),(16).

(2) For each domain Xl, l = 1, . . . , N , for each iteration t, and for each subset
Π, i = 1, . . . , n:

– choose a random cell x ∈ X with probability p = 1/|Xl|,
– calculate the probabilities pd and pr according to (8),
– generate a random number r,
– if r < pd, then θd is applied to x, otherwise θr is applied to the same cell,
– send border cells states to the adjacent domains and receive border states

from them.

Operation in this mode requires n = |B| acts of data exchange between adjacent
domain borders per iteration, and 2×N×|X| calls to random numbers generator.

Parallel local superposition mode ΨL is also a process with asynchronous
θd(x) and θr(x). Hence for parallel implementation it should be transformed into
a block synchronous mode just in the same way, that it is done for stochastic
mode. The difference is in the interaction of the substitutions (point 2) which is
here sequential instead of random in ΨS :

– choose a random cell x ∈ X with probability p = 1/|Xl|,
– generate a random number r,
– if r < pd apply θd to x,
– generate a random number q,
– if q < pr apply θr to x,
– send border cells states to the adjacent domains and receive border states

from them.

Operation in this mode requires n = |B| acts of data exchange between adjacent
domains per iteration and N × |X| calls to random numbers generator.

Parallel global superposition mode ΨG is a superposition of two simple global
operators (Subsect. 3.1), each operating in its own mode. In all cases complexity
of parallel implementation is the sum of the corresponding values of each global
operator.

Experimental investigation of these three parallel modes aims to obtain and
compare the following computation characteristics:

– Time in sec and in iteration numbers (t̂).
– Weak parallelization efficiency

η = tp=1/tp=N , (20)

where tp=1 and tp=N are “times” (in seconds) needed for executing an iteration
under identical computing conditions.

Contradiction Between Parallelization Efficiency and Stochasticity 143

– Difference between the evolutions. In comparison procedures stochastic com-
position is taken as a reference, because it represents the most studied case,
being similar to Kinetic Monte-Carlo methods [7].

Two typical reaction-diffusion phenomena are simulated on multi processor
cluster with variation of parallel composition modes.

4 Simulation Results

4.1 Wave Front Propagation CA Models

The first mathematical model of a wave front propagation was studied in [18,19].
In [18] the process had been called “diffusion, combined with increase of sub-
stance”. The results turned out to be extremely fruitful not only from the point
of view of nonlinear mathematical analysis, but also for modeling a wide class
of processes, such as fire propagation, epidemics and weeds spreading, chemical
reactions expansion in active media. For contemporary computer simulation the
process of front propagation may be considered as a typical component of more
complex phenomena [20,21]. So, its CA model deserves to be investigated in
detail.

The propagation front kinetics is regarded as a discrete space, a part of
which is occupied by cloud of particles. The particles diffuse from the place of
high density towards the free space, the displacement being accompanied by a
reaction of the medium, which is described by a nth order polynomial function of
the substance density v(x). In continuous models [18,19] n = 2, and the function
looks like

F (v) = αv(1 − v), v ∈ [0, 1]. (21)

In a CA ℵ = 〈A,X,Θ(X)〉 with Boolean A = {0, 1}, u ∈ {0.1}, the substance
density is simulated by a real number 〈u(x)〉, equal to averaged value over an
area Av(x) around the cell x,

Fig. 1. Evolution of wave propagation process implemented in 64 processors.

144 O. Bandman

A CA, simulating a 2D wave front propagation process, ℵ = 〈A,X,Θ(X)〉
has A = {0, 1}, X = {(i.j) : i, j = 0, . . . , N}, and Θ(X) = Ψz(θd(i, j), θr(i, j)),
where Ψz is any of parallel mode of operation from {ΨS , ΨL, ΨG}, θd(i, j) being
a naive diffusion substitution (17), and θr(i, j) simulating reaction,

θr(i, j) : u
pr−→ u′, u′ =

{
1, if r < α〈u〉(1 − 〈u〉),
0 otherwise, (22)

where r is a random number, 0 < r ≤ 1, α is a constant, further taken as 0,5,
probabilities of diffusion and reaction being pd = 0.9, pr = 0.1

Fig. 2. Simulation of wave front propagation process: (a) dependence of total mass on
time, (b) dependence of propagation velocity on time

The simulation task was to implement front-propagation CA with different
modes of application to a cellular array Ω of size N = 2400 × 2400 = 5.76 × 109

cells using 64 processors in parallel. The cellular array was divided into equal
sized domains, size of n = 300 × 300. In the center of the array there was a
dense square cloud 100 × 100. During CA operation the dense cloud enlarges,
gradually filling the whole space (Fig. 1). Simulation was done for three parallel
modes of operation {ΨS , ΨL, ΨG}. In each case 100 runs have been done using
different random number sequences, statistical expectation ū(i, j) being taken
as a result. The following characteristic values were output at each iteration for
each parallel mode of operation: the total mass Γz(t), and the velocity of front
propagation V elz(t),

Γz(t) =
∑

(i,j)∈X

ū(i, j), V elz(t) =
1√
π

(
√

Γz(t) −
√

Γz(t − 1)), (23)

The results of simulation for three parallel modes of operation: stochastic, local
and global asynchronous are shown in Fig. 2 from which it follows, that all three
operation modes are qualitatively identical. Computational time and weak effi-
ciency are given in Table 1. The remarkable fact is that the weak parallelization
efficiency is larger that 1. It follows from two reasons:

1. block-synchronous mode requires a smaller amount of random generator calls,
2. periodic border conditions used in serial mode require calculation of modK

neighboring cells names, that takes additional time.

Contradiction Between Parallelization Efficiency and Stochasticity 145

Table 1. Computation time (sec) for sequential (n = 90×106 cells) and parallel (64n)
versions. Propagation velocity (V el), and weak parallelization efficiency (η) for three
parallel modes of operation

Mode Stochastic Local Global

Size n 64n n 64n n 64n

Time 89,8 62.7 92,3 78.3 115,0 89.5

V el 0.438 0.435 0.427 0.4434 0.43 0.44

η 1.432 1.17 1.28

Fig. 3. A schematic picture of simulation a process of a 3D diffusion-limited aggregation
initialized by four nuclei, the whole task being allocated in 64 processors

4.2 Diffusion Limited Aggregation

A phenomenon, identified as diffusion limited aggregation hereinafter called
aggregation cannot be represented by a continuous function or by differential
equations. Its first mathematical model was created for computer implementa-
tion and described in terms of interactions and displacement of particles [22].
The model is a representative of a wide range of phase transition processes such
as electro galvanization [23], formation of crystal structure [24], growing of set-
tlements [25] etc. . Most popular are CA models, where diffusion is given as a
random walk, and reaction transforms a walking particle into an immobile one,
if it occurs close enough to another immobile (sticking process) (Fig. 3).

A CA model of aggregation in 3D case is ℵ = 〈A,X,Θ(X)〉, where A =
{0, 1, b}, X = {(i, j, k)}, Θ(i, j) = Ψz(θd(i, j, k), θr(i, j, k)), Ψz representing one
of the parallel modes of operation: ΨS , ΨL or ΨG, where θd(i, j, k) is given by
(12) (for synchronous mode) or by (17) (for asynchronous mode). Sticking is
simulated by

θr(i, j, k)) : {(1, (i, j, k)), (b, (i′, j′, k′)),
pr−→ {(b, (i, j, k))}, (i′, j′, k′) ∈ T (i, j, k),

(24)
where T (i, j, k) contains six adjacent to (i, j, k) cells.

Computer simulation was performed on the cellular array size of 396× 396×
396. The initial global state Ω(0) contained uniformly distributed “ones” and
“zeros”, and 32 nuclei cubes 5×5×5 cells with u = b, allocated inside the array.
The whole array was put on 64 cores arranged in a cube 4 × 4 × 4, each core

146 O. Bandman

processing a domain of Ω size of 99 × 99 × 99 cells. To provide data exchange
between processes, each domain was enlarges up to 101×101×101 cells, the added
border cells (i = 0, j = 0, i = 100, j = 100) serving for sending-receiving data.
Two characteristics of the process were obtained by simulation: dependence of
the mass of the constructed structure on time (Γz(t)), and its fractal dimension δz

at the end of process at t̂ = 500 for three parallel modes of operation (Ψs, ΨL, ΨG).

Γz =
∑
X

(b, (i, j, k,)), δz = log
(∑

Sph

(b, (i, j, k,)/ log(R))
)
, (25)

where Sph is the number of cells in the sphere of radius R around the nucleus.
To assess possibility of using synchronous global mode ΨG(Θr,σ(X), Θd,σ(X)).
was also tested.

The results of simulation for three parallel composition modes: stochastic,
local and global synchronous are shown in Fig. 4. From Fig. 4 it follows, that all
three asynchronous modes are qualitatively identical, differing in computational
time, synchronous being faster both in sequential and in parallel case. In par-
allel case it is more faster, because requires minimal number of interprocessor
exchanges and no random generator calls.

Computational time and weak efficiency are given in Table 2.
It is worth to emphasize the fact that in all asynchronous modes indepen-

dently of the composition used, the weak efficiency is larger than 1, like in case
of front propagation. But when synchronous mode is used, which is initially free

Table 2. Computation time per 500 iterations (sec) for sequential (n = 970, 299cells)
and parallel (64n) versions, fractal dimension (δ), and weak parallelization efficiency
(η) for three modes of operation

Mode Stochastic Local Global Synchronous

Size n 64n n 64n n 64n n 64n

Time 2521 3408 2068 1849 2906 2656 198 955

δ 2.68 2.643 2.678 2.649 2.67 2.65 2.649 2.655

η 0.77 1.12 1.09 0.22

Fig. 4. Simulation of 3D diffusion limited aggregation process. Dependence of total
mass of immobile particles on time when implementing a) 480 × 480 × 400 cells on 64
cores, and b) sequentially 60 × 60 × 400 on one core.

Contradiction Between Parallelization Efficiency and Stochasticity 147

of additional computation of random numbers, performance is affected only by
data exchanges, which decrease the efficiency, resulting nonetheless in less time
consuming.

5 Conclusion

The results of comparative study of parallel simulation of reaction-diffusion
processes by CA differing by parallel modes of operation are presented. The
investigation aims to find a compromise between parallelization efficiency of
synchronous CA and inherent natural stochasticity of simulated phenomena.
Two typical reaction-diffusion processes (front propagation and diffusion limited
aggregation) have been simulated by CA, operating in stochastic mode, local
superposition mode and global superposition. Simulation results have been com-
pared by the obtained evolutions and basic characteristics of the processes. The
comparison revealed two points. The first is that all investigated modes of par-
allel operation are qualitatively equivalent, differing, however, in computational
time. The second is that weak parallelization efficiency is larger than 1 when
asynchronous modes are used. This information may be essentially helpful on
the stage of CA-model development, when the elementary operations interaction
should be determined allowing for parallel implementation conditions.

References

1. Hoekstra, A.G., Kroc, J.K., Sloot, P.M.A. (eds.): Simulating Complex Systems by
Cellular Automata. Springer, Heidelberg (2010)

2. Desai, R.C., Kapral, R.: Dynamics of Self-organized and Self-assembled Structures.
Cambridge University Press, Cambridge (2009)

3. Echieverra, C., Kapral, R.: Molecular crowding and protein enzymatic dynamics.
Phys. Chem. 14, 6755–6763 (2012)

4. Bandini, S., Bonomi, A., Vizzari, G.: What do we mean by asynchronous CA?
a reflection on types and effects of asynchronicity. In: Bandini, S., Manzoni, S.,
Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 385–394. Springer,
Heidelberg (2010)

5. Bouré, O., Fatès, N., Chevrier, V.: First steps on asynchronous lattice-gas models
with an application to a swarming rule. In: Sirakoulis, G.C., Bandini, S. (eds.)
ACRI 2012. LNCS, vol. 7495, pp. 633–642. Springer, Heidelberg (2012)

6. Kireeva, A.: Parallel implementation of totalistic cellular automata model of stable
patterns formation. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 330–
343. Springer, Heidelberg (2013)

7. Matveev, A.V., Latkin, E.I., Elokhin, V.I., Gorodetskii, V.V.: Turbulent and stripes
wave patterns caused by limited COads diffusion during CO oxidation over Pd(110)
surface: kinetic Monte Carlo studies. Chem. Eng. J. 107, 181–189 (2005)

8. Nurminen, L., Kuonen, A., Kaski, K.: Kinetic Monte-Carlo simulation on patterned
substrates. Phys. Rev. B 63, 03540:17–03540:7 (2000)

9. Chatterjee, A., Vlaches, D.: G.: An overview of spatial microscopic and accelerated
kinetic Monte-Carlo methods. J. Comput. Aided Mater. Des. 14, 253–308 (2007)

148 O. Bandman

10. Bandman, O.: Parallel composition of asynchronous cellular automata simulating
reaction diffusion processes. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G.
(eds.) ACRI 2010. LNCS, vol. 6350, pp. 395–398. Springer, Heidelberg (2010)

11. Kalgin, K.: Comparative study of parallel algorithms for asynchronous cellular
automata simulation on different computer architectures. In: Bandini, S., Manzoni,
S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 399–408. Springer,
Heidelberg (2010)

12. Bandman, O.: Implementation of large-scale cellular automata models on multi-
core computers and clusters. In: 2013 International Conference on IEEE Conference
Publications High Performance Computing and Simulation (HPCS), pp. 304–310
(2013)

13. Bandman, O.: Parallel simulation of asynchronous cellular automata evolution. In:
El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp.
41–47. Springer, Heidelberg (2006)

14. Bandman, O., Kireeva, A.: Stochastic cellular automata simulation of oscillations
and autowaves in reaction-diffusion systems. Numerical Analysis and Applications,
vol. 2 (2015)

15. Bandman, O.: Functioning modes of asynchronous cellular automata simulating
nonlinear spatial dynamics. Appl. Discrete Math. 1, 110–124 (2015). (in Russian)

16. Toffolli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, USA (1987)

17. Bandman, O.: Cellular automata diffusion models for multicomputer implementa-
tion. Bull. Novosibirsk Comput. Cent. Ser. Comput. Sci. 36, 21–31 (2014)

18. Kolmogorov, A.N., Petrovski, I.G., Piskunov, I.S.: Investigation of the equation of
diffusion, combined with the increase of substance and its application to a biological
problem. Bull. Moscow State Univ. A Issue 6, 1–25 (1937). (in Russian)

19. Fisher, R.A.: The genetical Theory of Natural Selection. Oxford University Press,
New York (1930)

20. Szakály, T., Lagzi, I., Izsák, F., Roszol, L., Volford, A.: Stochastic cellular automata
modeling excitable systems. Central Eur. J. Phys. 5(4), 471–486 (2007)

21. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 209–222
(2003)

22. Witten Jr., T.A., Sander, I.M.: Diffusion-limited aggregation, a kinetic critical
phenomenon. Phys. Rev. Lett. 47(19), 1400–1403 (1981)

23. Ackland, G.J., Tweedie, E.S.: Microscopic model of diffusion limited aggregation
and electro deposition in the presence of leveling molecules. Phys. Rev. E 73,
011606 (2006)

24. Bogoyavlenskiy, A., Chernova, N.A.: Diffusion-limited aggregation: a relationship
between surface thermodynamics and crystal morphology. Phys. Rev. E. N 2, 1629–
1633 (2000)

25. Batty, M., Longley, P.: Urban growth and form: scaling, fractal geometry, and
diffusion-limited aggregation. Environ. Plann. A 21, 1447–1472 (1989)

A Parallel Genetic Algorithm to Adjust
a Cardiac Model Based on Cellular Automaton

and Mass-Spring Systems

Ricardo Silva Campos, Bernardo Martins Rocha, Luis Paulo da Silva Barra,
Marcelo Lobosco, and Rodrigo Weber dos Santos(B)

Programa de Pós-Graduação em Modelagem Computacional, Universidade Federal de
Juiz de Fora, Juiz de Fora, MG, Brazil

{ricardo.campos,luis.barra,rodrigo.weber}@ufjf.edu.br,
{bernardomartinsrocha,marcelo.lobosco}@ice.ufjf.br

Abstract. This work presents an electro-mechanical model of the car-
diac tissue and an automatic way to tune its parameters. A cellular
automaton was used to simulate the action potential propagation, and
a mass-spring system to model the tissue contraction. A parallel genetic
algorithm was implemented in order to automatically adjust a simple and
fast discrete model, to reproduce simulations of another synthetic well
known model based on differential equations (DEs). Our results suggest
that the discrete model was able to qualitatively reproduce the results
obtained by DEs with much less computational effort.

1 Introduction

Cardiac diseases are the major cause of death worldwide. The mechanical con-
traction of the cardiac tissue that ejects blood is preceded and triggered by a
fast electrical wave, i.e. the propagation of the so called action potential (AP).
Abnormal changes in the electrical properties of cardiac cells as well as in the
structure of the heart tissue can lead to life-threatening arrhythmia and fibril-
lation.

A widely-used technique to observe the heart behavior is in silico experi-
ments. It comprises of mathematical models that can reproduce the heart’s tissue
function through computational tools. Generally these models are described by
differential equations, representing the cell’s electrical and mechanical activity
by ordinary differential equations (ODEs), and the electrical wave propagation
on the tissue and cardiac contraction via partial differential equations (PDEs).
Cardiac cells are connected to each other by gap junctions creating a channel
between neighboring cells and allowing the flux of electrical current in the form
of ions. An electrically stimulated cell transmits an electrical signal to the neigh-
boring cells allowing the propagation of an electrical wave to the whole heart
which triggers contraction.

Although PDEs are able to perform realistic tissue simulations, they involve
the simulation of thousands of cells, which make its numerical solution quite
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 149–163, 2015.
DOI: 10.1007/978-3-319-21909-7 15

150 R.S. Campos et al.

challenging. This is an issue for clinical softwares, that may demand accurate
results and real-time simulations. In this manner, some effort has been done
in speeding up the PDEs solvers by parallel computing, as well as by different
techniques to emulate PDEs simulations with less computational cost.

In this manner, this work proposes a new model by joining two previously
proposed models: The first one is based on cellular automaton (CA), it was pro-
posed by [1] and has been extensively used [2,3]. It represents the electrical exci-
tation of cells propagating according to simple rules in a regular, discrete and
finite network. It uses precomputed profiles of cell AP and force-development
that mimics those obtained by complex models based on ODEs. Although it
is less accurate than the models based on ODEs, it is much faster than PDE
based-simulators, making possible real time simulations of heart behavior [4].
The second model was proposed by [5,6] and it consists in a 3D mass-spring
system (MSS) adapted to control anisotropy. This is an important issue on sim-
ulating the heart behavior, since the cardiac muscle is composed by fibers. The
mechanical model is governed by Hooke’s Law and Newton’s Second Law.

Once we have the electro-mechanical model, we need to determine its parame-
ters. A genetic algorithm (GA) was developed for automatically tune parameters
to the mechanical model based in mass-spring systems and cellular automaton,
in order to reproduce the accurate simulations from partial differential equa-
tions (PDEs) simulators. The GA generates sets of parameters to the discrete
model and compare the resulting simulation with PDE simulations, which are
taken as the GA target. The GA was able to find suitable parameters and there-
fore the discrete model could reproduce simulations similar to those obtained by
PDEs. We also added OpenMP directives to GA code in order to decrease its
execution time.

The electro-mechanical model and the GA are parts of a software named
FisioPacer, that aims to perform low computational cost simulations of the car-
diac tissue with the forthcoming purpose of simulating the pacemaker
implantation.

2 Methods Part I: Discrete Model

This section presents the electro-mechanical model used by FisioPacer. The elec-
trical model uses cell cellular automate (CA) to represent the action potential
(AP) propagation over the tissue. The mechanical contraction is modeled by a
mass-spring system (MSS) coupled with the electrical model.

2.1 Modeling Action Potential Propagation with Cellular
Automaton

A cellular automaton is the model of a spatially distributed process that can be
used to simulate various real-world processes. A 2-dimensional cellular automa-
ton consists of a two-dimensional lattice of cells where all cells are updated syn-
chronously for each discrete time step. The cells are updated according to some
updating rules that will depend on the local neighborhood of a particular cell.

A Parallel GA to Adjust a Cardiac Model 151

Fig. 1. Part (A) Action potential of a cardiac cell computed by ordinary differential
equations and its representation via CA with five states (S0, S1, S2, S3, S4). Part (B)
Force development states (F0, F1, F2, F3). The black line represents the moment when
the change from S1 to S2 triggers the change in the force state from F0 to F1. (Adapted
from [4])

The idea of macroscopically simulating the excitation-propagation in the car-
diac tissue with CA was proposed in [1] and extensively used in the literature
[2–4]. The CA is build on the idea that a single cell gets excited if the electrical
potential exceeds a determined threshold. Once it is excited, it can trigger the
excitation of neighboring cells. In this manner, an electrical stimulus will propa-
gate through the CA grid as the time steps are computed. In this work, the CA
states are related to the action potential (AP) and force development in a cell.
To make CAs more efficient they are usually parametrized using simulated data
from accurate models. This means that the states related to the AP in the cell
will be related to a specific portion of the cardiac cell potential. Figure 1 Part
A presents the AP computed by ODEs, the AP divided into five different states
that represents the different physiological stages of the AP.

In state S0 the cell is in its resting potential where it can be stimulated, in
S1 the cell was stimulated and can stimulate the neighbors. In S2 the cell is still
able to stimulate the neighbors. In S3 the cell is in its absolute-refractory state
where it cannot be stimulated and does not stimulate its neighbors. In S4 the
cell is in its relative refractory state where it can be stimulated by more than
one neighbor but it does not stimulate its neighbors. As described, the states of
a cell generate rules for when a cell can stimulate a neighbor and when it can be
stimulated. These rules are an important aspect which will allow the stimulus
to propagate.

Another important point is how the cells change their states. The AP has a
predetermined period so that the states will be spontaneously changed after the
AP starts, where the time of each state is a parameter of the system. Our CA
is adapted to work with irregular meshes of tetrahedrons. In that case, the cells
of the system are the tetrahedrons and a cell is considered a neighbor of other
cell if they share at least one vertex. The distance between two neighbors cells
is computed as the distance between their barycenters, given by:

Xi
b =

1
4

4∑
a=1

xi
a, (1)

where xa are the coordinates of the vertices from tetrahedron xi.

152 R.S. Campos et al.

Equally important, CA states are updated at every discretized time, dt. Based
on the distance, velocity (passed as parameter to the model) and activation time
it is possible to calculate the time that a stimulus takes to travel from one CA cell
to another, in order to propagate the action potential. An anisotropic tissue was
used, so the propagation velocity is different in the three directions of interest in
heart tissue: fiber, sheet and normal-sheet. To find the time t for a stimulus travel
from one cell to another, first direction between the barycenters is computed and
then the distance d:

Dij = Xj
b − Xi

b (2)
d = ‖Dij‖, (3)

where Xi
b and Xj

b are the positions of the barycenter of elements i and its
neighbor j. Next, the total velocity of the AP is calculated, based on the velocities
in each one of the directions: vf , vs and vn:

V = vfF + vsS + vnN , (4)

v = |V · D̂ij |, (5)

where F , S and N are respectively fiber, sheet and normal normalized directions.
D̂ij is the normalized direction between element i and j. And then the traveling
time t of the propagation between them is:

t =
d

v
, (6)

So it verifies if there is enough time to propagate the stimulus by comparing the
time since the neighbor has been stimulated and time t.

Finally, electrical potential is coupled with the active force, which is responsi-
ble for starting the contraction of the cardiac tissue. When the cell is stimulated,
there is an increase in the concentration of calcium ions inside the cell, which
triggers the cell contraction. The force development has a delay after the cell is
stimulated because of its dependence on the calcium ions. The force development
of a cell can be represented in states that change over time like the electrical
potential states. Figure 1 Part B presents the force development states and its
relation with the electrical states. The force-development states will only pass
from state F0 (no contraction force) to state F1 when the electrical state of the
cell goes from state S1 to S2. After this change, force development will be time
dependent but will not depend on the electrical state of the cell.

2.2 Modeling Mechanical Contraction with Anisotropic
Mass-Spring Systems

The active force is responsible for the starting the contraction of the cardiac
tissue. This force is coupled with the electrical potential of the cell. When the
cell is stimulated, there is an increase in the concentration of calcium ions inside
the cell, which triggers the cell contraction. The force development has a delay

A Parallel GA to Adjust a Cardiac Model 153

after the cell is stimulated because of its dependence on the calcium ions. The
passive force on our simulator can be modeled as a mass-spring systems, where
masses are connected with the neighboring masses by springs. The active force
is applied to the system deforming its spatial distribution and then the springs
will try to bring the system back to its initial configuration. The cardiac tissue
does not have a linear stress-strain relation. However the linear model of the
Hooke’s law can be used as a simplification

The mechanical model was originally presented in [6]. In each tetrahedron,
there are six springs. Three springs are placed in the anisotropic axes and are
named as axial springs. The other three springs are named angular and they are
placed between each pair of axial springs. The points where the axes intercept
the tetrahedron faces are called interception points.

It follows that the active force must be applied on each tetrahedron, only on
the fiber direction:

at
2l = +

1
2
μf t

aζ̂
t

lS
t
2l, (7)

at
2l+1 = −1

2
μf t

aζ̂
t

lS
t
2l+1, (8)

where μ is a parameter of active pressure given in N/mm2, f t
a ∈ [0, 1] comes

from the force automaton, ζ̂l is the normalized fiber direction and St
2l and St

2l+1

are the area of the faces intercepted by the fiber. At last, at
2l and at

2l+1 are the
active forces on interception points.

Turning to the passive force, we present the equations that react to the
active force and bring the system to its initial geometry. The forces that each
axial spring apply on an interception point are based on Hooke’s Law:

δt
s =

|ζt
l | − |ζ0

l |
|ζ0

l |
, (9)

ht
2l = −klδ

t
sζ̂

t

lS
t
2l|ζ̂

t

l · nt
2l|, (10)

ht
2l+1 = +klδ

t
sζ̂

t

lS
t
2l+1|ζ̂

t

l · nt
2l+1|, (11)

where δt
s represents the displacement of the spring and |ζt

l | and |ζ0
l | are the

current and initial spring axial length. n is the normal of the face and kl is
the spring stiffness associate to axis l. It is another system parameter given in
N/mm2.

Next, it is presented the equations that control the angular forces (tor-
sion springs) between a pair of axial springs, defined by the interception points
(2m, 2m + 1) and (2l, 2l + 1):

δt
a = αt

lm − α0
lm, (12)

gt
2l = −kaδt

aζ̂
t

mSt
2l|ζ̂

t

l · nt
2l|, (13)

gt
2m = −kaδt

aζ̂
t

lS
t
2l+1|ζ̂

t

l · nt
2l+1|, (14)

gt
2l+1 = −gt

2l, (15)
gt
2m+1 = −gt

2m, (16)

154 R.S. Campos et al.

where δt
a is the variation of angle α between axis l and m, ka is the parameter

of angular stiffness of torsion springs. To make computations easier, the angles
α can be replaced by dot products, so:

δt
a = ζ̂

t

l · ζ̂
t

m − ζ̂
0

l · ζ̂
0

m. (17)

Now follows the volume preserving force, that tries to keep the tetrahedrons with
the same volume during the mesh contraction. This is a very important feature
of this model, whereas that the cardiac tissue is mostly composed by water
and therefore its volume does not have big variations. This force is computed
differently from the model proposed in [6], since we prefer to apply it in the
interception points, considering the axis directions. In the original model, this
force is applied from the barycenter to the tetrahedron vertices. So the volume
preserving force was changed for the purpose of avoiding instabilities on the
system:

δt
v =

vt − v0

v0
, (18)

lt2l = −kvδt
vζ̂

t

lS
t
2l|ζ̂

t

l · nt
2l|, (19)

lt2l+1 = +kvδt
vζ̂

t

lS
t
2l+1|ζ̂

t

l · nt
2l+1|, (20)

where vt and v0 are current and initial volume of the tetrahedron and kv is a
parameter associated with the volume preservation on axis l.

Finally it is added a damping force that prevents the system to oscillate
forever:

ζ̇
t

l = vt
2l − vt

2l+1, (21)

dt
2l = −kd(ζ̇

t

l · ζ̂
t

l)ζ̂
t

lS
t
2l|ζ̂

t

l · nt
2l|, (22)

dt
2l+1 = +kd(ζ̇

t

l · ζ̂
t

l)ζ̂
t

lS
t
2l+1|ζ̂

t

l · nt
2l+1|, (23)

where vt
2l and vt

2l+1 are the velocities of interception points and kd is the constant
parameter of damping.

To conclude, the algorithm must compute the total force on every interception
force on a tetrahedron:

f t
l = at

l + ht
l + (gt

lm + gt
ln) + ltl + dt

l . (24)

Next, the forces on interception points are distributed to vertices of the tetrahe-
dron’s face, via the interpolation function. Further details can be found in the
original text [6]. With the total force on each vertex in hands, it is possible to
find their acceleration by Newton’s second law F = ma:

at
i =

f t
i

mi
, (25)

where the mass of a vertex is given by:

mi =
1
4
ρ

n∑
k=1

vk, (26)

A Parallel GA to Adjust a Cardiac Model 155

where ρ is the mass density, vk is the tetrahedron volume, and n is the number of
tetrahedrons that vertex i belongs to. Several studies point that the mass density
of the cardiac tissue is around 1.055 g/ml [7]. For simplification we convert it to
0.001 g/mm3.

The final step consists in integrating the system of equations for each vertex in
the CA to simulate the mechanical deformation of the tissue. Using the Forward
Euler’s method:

vt+dt
i = vt

i + at
idt (27)

xt+dt
i = xt

i + vt
idt, (28)

where vt
i and xt

i are the velocity and position of a mass at time t.

3 Methods Part II: Continuum Model

The electrophysiology of cardiac tissue, considering the effects of deformation,
can be described by the monodomain model, which in this case is given by the
following equation

∂(Jv)
∂t

+ JIion = Div(JF −1DF −T Gradv), (29)

where v is the transmembrane potential, Iion is the ion current of the cell model,
F is the deformation gradient tensor and J = det(F). Here, the spatial derivates
are taken with respect to the original (underformed) configuration, as in [8].

The continuum model for cardiac biomechanics is computed by solving the
quasi-static equilibrium equations

div(FS) = 0, (30)

where S is the second Piola-Kirchhoff stress tensor. The second Piola-Kirchhoff
stress tensor is computed by differentiating the strain energy function Ψ with
respect to C = FTF, the left Cauchy-Green strain tensor. An orthotropic
model based on the microstructure of the cardiac tissue, proposed by Holzapfel-
Ogden [9], was used in this work. Its strain energy function Ψ is given by

Ψ(I1, I4f , I4s, I8fs) =
a

2b
{exp [b(I1 − 3)] − 1} +

∑
i=f,s

ai

2bi
{exp [bi(I4i − 1)2] − 1}

+
afs

2bfs

[
exp (bfs I28fs) − 1

]
, (31)

where a, af , as, afs, b, bf , bs and bfs are material parameters. The fiber and
sheet directions in the undeformed configuration are denoted here by f0 and s0,
respectively. This model has only 8 parameters and is defined in terms of the C
tensor and the following invariants

I1(C) = tr(C), I4k(C) = k · Ck, I8fs = f0 · Cs0, with k = {f0, s0}.

156 R.S. Campos et al.

Although this model is orthotropic, it can be simplified to the transversely
isotropic case by neglecting the terms with i = s and the last term.

The finite element method (FEM) was used for the discretization of the con-
tinuum models. For the mechanics, the resulting system of non-linear equations
was solved using Newton’s method. More details about the numerical methods
and parameters used for the simulations can be found in [10].

We used the active stress approach that splits the second Piola-Kirchhoff
stress in a passive and an active stress parts. The passive part is given by the
Holzapfel-Ogden model, described by equation (31), whereas the active stress
contribution is given by

Sa = Tmax
a Taf0 ⊗ f0, (32)

where Ta is the normalized active force from the Rice myofilament model and
Tmax

a is a scaling factor to achieve the active stress found in cardiac myocytes [10].

4 Methods Part III: Automatic Tuning Parameter
with Genetic Algorithm

Genetic algorithms (GA) are stochastic optimization methods inspired on Evo-
lution Theory and Natural Selection. In summary, these techniques starts with
random set of candidate solutions. Then the environmental pressure causes nat-
ural selection, where the fittest individual has more chances to survive and gen-
erates more children. The individual is evaluated and so a value is attributed
to it, the so-called fitness. So, the algorithm intend to maximize (or minimize)
the population fitness by applying genetic operators (selection, recombination
and mutation). In other words, at every generation, a new population is created
to replace the population of the previous generation. The operators are applied
to generate new individuals with better fitnesses. This is repeated for a limited
number of generations or until appears an individual with fitness small (or big)
enough.

The goal of our GA is to find the six parameters of the mechanical model
presented in Sect. 2. So each individual contains a candidate set of parameters,
a floating-point vector named chromosome p6i=1, while a single parameter pi is
called a gene. The fitness comes from a comparison between the discrete model
simulation and the continuum model, and then it applies the genetic operators
to minimize the difference between the simulations. There are many different
ways to select, mutate and recombine individuals, however we will describe only
the relevant operators to this work.

4.1 Computing Fitness

For each individual in one generation performed two simulations of 0.01s of tissue
activity in a coarse mesh. In the first, the fiber direction is parallel to Y-axis
and in the other the fiber direction changes from epicardium to endocardium
(−70 to 70, respectively). It was applied a constant active force during all time

A Parallel GA to Adjust a Cardiac Model 157

steps of the simulation. At the end of the simulations, we compared the final
configuration of the continuum and discrete simulations. Our GA does not need
to compute the continuum simulation, since it was previously computed. Two
meshes were used with the same dimensions (10×10×10mm) but with different
discretizations, for different purposes. The DE simulation, taken by GA as the
correct simulation, is used in the refined mesh. It takes a long time for finishing
the simulations but produces accurate results. However, the DE simulations were
only run once before the AG starts, therefore this was not an issue to the GA
performance. On the other hand, the FisioPacer simulation is demanded two
times for each GA individual and so its computational cost must be lower. To
achieve this we used a coarse mesh, that resulted in less accurate outcomes but
it is very fast to simulate. The meshes can be found in Fig. 2.

Fig. 2. Meshes: Coarse: 96 points and 295 elements; Refined: 2162 points and 10774
elements.

As for the fitness computation, it is computed the absolute error between the
eight vertices of the meshes on their final configurations:

φm =
8∑

i=1

(|X̄i
x − Xi

x| + |X̄i
y − Xi

y| + |X̄i
z − Xi

z|) (33)

where i is the index of the vertex and X is its coordinates. X̄ represents the
vertices computed by DE and X is computed by FisioPacer. Finally, the fitness
is computed by the sum of the fitness φ of each one of the two mesh configurations
(fibers directions parallel to y axis and fibers direction rotating).

4.2 GA Operators

Selection consists in choosing individuals of a spring to be parents of the new
individuals to be inserted on the next offspring. It must choose rather the indi-
viduals with best fitness, however the other individuals may also have a chance.
We have used the rank selection, that consists in choosing individuals by its
position (or rank) on a sorted population. The worst individual will be assigned
to fitness 1, and the second worst to fitness 2, and so on until the best individual

158 R.S. Campos et al.

has fitness n, where n is the population size. The selection probability of an
individual is proportional to its rank.

Once the parents were selected, they must generate new children. This is
done with crossover and in this work the blend crossoverBLX − α technique
was used. It consists in randomly choosing a new gene oi from a interval that
depends on the parent genes pi

1 and pi
2 and a user-defined parameter α, where

i ∈ [1, 6] is the index of the gene in the chromosome. Figure 3 shows the BLX−α
algorithm. This is done for each gene of the new individual until its chromosome
is complete.

1 Input : Parent genes pi
1 , pi

2 , parameter α
2 Output : Chi ldren gene oi

3 maxi = max(pi
1, p

i
2)

4 mini = min(pi
1, p

i
2)

5 ri = maxi − mini

6 return a random oi ∈ [mini − riα, maxi + riα]

Fig. 3. Blended crossover algorithm.

In order to ensure genetic diversity on the population mutation is applied,
that consists in a perturbation caused on the genes of a new individual just
after the crossover. This works uses non-uniform mutation, that finds a mutated
gene ōi:

ōi =
{

ci + Δ(t, bi − ci) if τ = 0
ci + Δ(t, ci − ai) if τ = 0 , (34)

Δ(t, y) = y(1 − rθ), (35)

θ =
(
1 − gt

gmax

)b
, (36)

where r ∈ [0, 1] is a random number, τ is random number, it can be only 0 or
1. gt is the current generation and gmax is last generation, b is an user-defined
parameter. Function Δ(t, y) generates a value in [0, y], that tends to 0 in the
later generations.

When a new offspring takes place of previous one, it is not ensured that
the best individual until that generation will remain in the population. However
loosing it can be catastrophic to GA success. To avoid this problem it is used
the elitism technique, that is keeping a certain number λ of the best individuals
on the next generation, where λ is a parameter of the algorithm.

4.3 Parallel Code

We add OpenMP directives to the GA code to parallelize it. The genetic oper-
ators are not computational expensive and are not worth parallelizing. How-
ever each individual must run the discrete model two times, what clearly is

A Parallel GA to Adjust a Cardiac Model 159

a time-consuming task. Moreover it is an embarrassingly parallel problem. So,
OMP directives were added to the loop that computes the fitness, like showed
on Fig. 4.

1 # pragma omp p a r a l l e l for schedu le (stat ic)
2 for (i=0;i<n − λ; i++){
3 φ0

i = runSimulat ion (0) ;
4 φ1

i = runSimulat ion (1) ;
5 Φi = φ0

i+φ1
i ;

6 }

Fig. 4. OMP parallel genetic algorithm.

5 Results

5.1 Automatic Tuning Parameter

GA was run three times, for 100 generations each. It was used an AMD Opteron
Processor 6272 with 64 processors running Red Hat 4.4.7-4 with gcc version
4.4.7. All the AG parameters can be find on Table 1.

Table 1. GA parameters

Threads 64 Generations 100 Prob. Crossover 85 % α Crossover 0,2

Population 128 Elite 4 Prob. Mutation 2 % b Mutation 5

The initial data interval of all parameters is [0; 1e6]. Anyway, only the initial
value of the parameters are limited to this interval, since the BLX-alpha crossover
is able to generate values out of the limits. Table 2 presents the best set of
parameters for each one of the three GA executions. It also presents the total
error of the FisioPacer simulation used as fitness, given in mm.

Table 2. Best parameters

- μ Kf
l Kt

l Kv Kd Ka Fitness

Exec. 1 386831 922663 332752 1.7e6 866 626519 6.1

Exec. 2 300561 687896 293176 1.1e6 515 569372 6.5

Exec. 3 236721 659103 195760 1.2e6 440 313015 7.1

160 R.S. Campos et al.

Figure 5 presents the fitness of all individuals during the GA generations.
This is the AG execution that resulted in the best set of parameters (Exec.
1). The black line highlights the best fitness of each generation and the gray
dots are the other fitnesses. It is possible to observe that in early generations
the range of fitness is large and over the generations, the individuals fitnesses
gradatively get closer to each other. This happens due the non-uniform mutation,
once it causes more genetic diversity in the beginning of the GA execution to
allow a good coverage of the search space. In later generations, the search space
decreases to allow a more refined tuning. The b Mutation is the GA parameter
that determines this fitnesses approaching.

Fig. 5. Fitness of all individuals (Exec. 1).

The final mesh configuration of each simulation is on Fig. 6. Gray volumes are
simulated with parameters found by GA execution 1. They are slightly different
from DE simulations, however this is expected, since there is an intrinsic lack
of accuracy by using a coarse mesh, and furthermore the methods used in this
discrete model are expected to be less accurate.

Finally we used the best set of parameter with the electrical model with
action potential. The value and time of both AP and active force for each state
of the automaton were manually tuned in order to reproduce the simulations.
This adjusting is a minor issue and therefore we decided to keep it manual
instead of using the GA. FisioPacer simulations propagated the AP through the
tissue in a similar manner to the DE simulations. However once again the mesh
discretization plays an important role. The AP propagation is not smooth in the
coarse mesh as it is in the refined one, since it contains bigger elements. The

A Parallel GA to Adjust a Cardiac Model 161

Fig. 6. Final configurations of the meshes: Gray volume is the FisioPacer output and
the black wireframe is the DE output

same problem happens to the mechanical model, however the tissue contraction is
qualitatively similar to the DE model. Moreover, the execution time of FisioPacer
simulation is around 3min, in contrast to the DE simulation that took 4h 30min
to compute, which means the discrete model is 90 times faster. The simulations
comparison can be found in Figs. 7 and 8, respectively y-parallel fiber and fibers
rotating direction from endo to epicardium.

Fig. 7. Simulations with Y-parallel fibers: (A) FisioPacer and (B) Continuum simula-
tor.

5.2 GA Parallel Performance

We perform three executions for each number of threads, and the average execu-
tion time, speedup and efficiency are shown in Table 3. The standard deviation
was less than 1 % in all cases. The parallel implementation of the code resulted
in a 44.5-fold in execution time, with 64 threads. The speedup was almost linear
until 16 threads, so in these cases the efficiency was close to 100 %. On the other
hand, with 32 and 64 threads there is a good decrease in the overall execution
time, however less than expected. This can be explained by the fact that this
processor has 64 cores but they share 32 floating-point units. Furthermore IO

162 R.S. Campos et al.

Fig. 8. Simulations with fibers rotating from endo to epicardium: (A) FisioPacer and
(B) DE simulator.

operations are a bottleneck in our code that may also have impaired parallel
performances: one thread writes the simulation output and the GA reads it to
compare with DE solution. When there is a lot of threads trying to access disk
simultaneously, each thread must wait some time while another is accessing the
hard disk.

Table 3. Performance evaluation

Threads 1 2 4 8 16 32 64

Time (min) 1085 544 272 137 71 42 24

Speedup - 2.0 3.9 7.9 15.4 25.7 44.5

Efficiency (%) - 100 100 99 96 80 70

6 Conclusions

This work presented a 3D simulator of the electro-mechanical activity of cardiac
tissue via the coupling of CA and mass-spring models and a genetic algorithm
to estimate parameters to the model. Although models based on PDEs are more
accurate and detailed, they are computationally expensive. CA has shown to
be an alternative for real-time simulation because of its fast performance. Our
model run 90 times faster than PDE and the pattern of propagation obtained
with CA was visually similar to the patterns obtained with PDE-based models.
Anyway, a more detailed comparison is still necessary. The tissue deformation
obtained with the mass-spring system has shown to be very responsive to the
force-development providing a qualitative demonstration of cardiac contraction.

The GA was able to find sets of parameters to the model that qualitatively
resulted in similar simulations to a DE model. The parallel implementation per-
formed a 44-fold improvement on computational time, that was very important
due the necessity of tuning the model as fast as possible.

A Parallel GA to Adjust a Cardiac Model 163

As future work, we want to perform a lot of different simulations with both
simulators and then do a detailed quantitative analysis on the outputs in order
to validate the model. Finally, in near future, we intend using the GA to find
parameters that reproduce real data obtained by clinical exams.

Acknowledgments. The authors thank CAPES, CNPq, FAPEMIG and UFJF for
supporting this work.

References

1. Gharpure, P.B.: A cellular automaton model of electrical wave propagation in
cardiac muscle. Ph.D. thesis, Department of Bioengineering, The University of
Utah (1996)

2. Bora, C., Serinagaoglu, Y., Tonuk, E.: Electromechanical heart tissue model using
cellular automaton. In: Biomedical Engineering Meeting (BIYOMUT) 1–4 (2010)

3. Gharpure, P.B., Johnson Christopher, R. Harrison, N.E.: A cellular automaton
model of electrical activation in canine ventricles: A validation study. Annal. Bio-
med. Eng, n. pag (1995)

4. Campos, R.S., Lobosco, M., dos Santos, R.W.: A GPU-based heart simulator with
mass-spring systems and cellular automaton. J. Supercomputing 69, 1–8 (2014)

5. Bourguignon, D., Cani, M.P.: Controlling Anisotropy in Mass-Spring Systems. In:
Magnenat-Thalmann, N., Thalmann, D., Arnaldi, B. (eds.) Computer Animation
and Simulation 2000, pp. 113–123. Springer, Vienna (2000)

6. Oussama Jarrouse: Modified Mass-Spring System for Physically Based Deforma-
tion Modeling. Ph.D. thesis, Karlsruher Instituts fur Technologie (2011)

7. Vinnakota, K.C., Bassingthwaighte, J.B.: Myocardial density and composition: a
basis for calculating intracellular metabolite concentrations. Am. J. Physiol. - Heart
Circulatory Physiol. 286, H1742–H1749 (2004)

8. Nobile, F., Quarteroni, A., Ruiz-Baier, R.: An active strain electromechanical
model for cardiac tissue. Int. J. Numer. Methods Biomed. Eng. 28, 52–71 (2012)

9. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a
structurally based framework for material characterization. Philos. Trans. Roy.
Soc. A 367, 3445–3475 (2009)

10. de Oliveira, B.L., Rocha, B.M., Toledo, E.M., Barra, L.P.S., Sundnes, J., dos
Santos, R.W.: Effects of deformation on transmural dispersion of repolarization
using in silico models of human left ventricular wedge. Int. J. Numer. Methods
Biomed. Eng. 29, 1323–1337 (2013)

Hexagonal Bravais–Miller Routing by Cellular
Automata Agents

Dominique Désérable1(B) and Rolf Hoffmann2

1 Institut National des Sciences Appliquées, 20 Avenue des Buttes de Coësmes,
35043 Rennes, France
domidese@gmail.com

2 Technische Universität Darmstadt, FB Informatik, FG Rechnerarchitektur,
Hochschulstraße 10, 64289 Darmstadt, Germany
hoffmann@ra.informatik.tu-darmstadt.de

Abstract. This paper describes an efficient novel router in which the
messages are transported by cellular automata (CA) agents. In order to
implement agents more efficiently, the CA-w model (with write access)
is used. The router is based upon a “Bravais–Miller” algorithm with
hexagonal coordinates that explores the symmetries in the triangular
lattice to provide a simple, deterministic, minimal routing scheme. As in
a previous work, it uses henceforth six channels per node with at most one
agent per channel so that one cell can host up to six agents. Each agent
in a channel has a computed minimal direction defining the new channel
in the adjacent node. In order to increase the throughput an adaptive
routing protocol is defined, preferring the direction to an unoccupied
channel. A strategy of deadlock avoidance is also investigated, from which
the agent’s direction can dynamically be randomized.

Keywords: Cellular automata agents · Multi-agent system · Hexagonal
Bravais–Miller Routing · Triangular torus

1 Introduction

Problem solving with agents has become more and more attractive [1–6]. Gen-
erally speaking, agents are intelligent and their capabilities can be tailored to
the problem in order to solve it effectively, and often in an unconventional way.
Owing to their intelligence, agents can be employed to design, model, analyze,
simulate, and solve problems in the areas of complex systems, real and artifi-
cial worlds, games, distributed algorithms and mathematical questions. Simply
speaking, a CA agent is an agent that can be modeled within the CA paradigm.
Usually an agent performs actions. Internal actions change the state of an agent,
either a visible or a non-visible state, whereas external actions change the state
of the environment. In this context, the “CA–w model” allows to write informa-
tion onto a neighbor [7,8]. This method has the advantage that a neighbor can

D. Désérable—Until 2013.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 164–178, 2015.
DOI: 10.1007/978-3-319-21909-7 16

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 165

directly be activated or deactivated, or data can be sent actively to it. Thus the
movement of agents can be described more easily [9].

Target searching has been studied in many variations [10,11]. We consider only
stationary targets, and multiple agents having only a local view [12–14]. This con-
tribution continues our preceding work on routing in the cyclic triangular grid with
cyclic connections [9,15–17] and derived from the arrowhead family [18,19]. A rele-
vant network of this family is the diamond, isomorphic to the arrowhead and home-
omorphic to an orthogonal representation denoted “Tn” therein and used again
herein. It is interesting to observe that the k–ary 2–cube [20], denoted “Sn” therein
with k = 2n, can be embedded into by eliminating one direction of link, namely
the “diagonal” direction in the orthogonal diamond. Note that another family of
“augmented” k–ary 2–cubes was investigated elsewhere [21] for any k but which
coincide with Tn only when k = 2n.

In a recent work [17], tori S and T were compared; evolved agents, with a
maximum of one agent per node, were used in both cases. It turned out that
routing in T is performed significantly better than in S. Another difference is
that in [16] the agent’s behavior was controlled by a finite state machine (FSM)
evolved by a genetic algorithm [14], whereas the behavior is now handcrafted.
Moreover, in [9,15] each node is provided with six channels so that up to six
agents per node are henceforth used, with one agent per channel.

The novelty in this paper is the use of hexagonal “Bravais–Miller” coordi-
nates which fit the symmetries in the triangular lattice [22,23]. The Cartesian
coordinates in the –orthogonal– T–grid turn into hexagonal coordinates in the
diamond and this simple transformation is embedded into the router. In short,
the “diagonal” direction is no more considered as a specific direction and the
three axes of the generating set fit a rotational, hexagonal symmetry. A first
use of this coordinate system was investigated in [24] to find a minimal route in
the infinite grid and in [25] the route was proven to be normalized by a simple
reduction scheme. The effect of this computation is to simplify the router code as
far as possible. This work finalizes a previous one investigating this novel router
with six channels [9,15] but using now our Bravais–Miller routing scheme [25].

2 Minimal Routing in the T Cyclic Grid

2.1 Distance and Bravais–Miller Indices

The triangular grid, often denoted “hexavalent grid” in the 2d space, is endowed
with a hexagonal coordinate system and spanned by the generating set

ΣH = {ε1, ε2, ε3} = {(0, 1,−1), (−1, 0, 1), (1,−1, 0)}. (1)

Geometrically, the grid is represented by the graph H = (VH , EH) where

VH = {(x1, x2, x3) ∈ ZZ3 : x1 + x2 + x3 = 0} (2)

and EH is such that any x ∈ VH is connected to x ± ε1, x ± ε2, x ± ε3.
In particular, the origin 0 = (0, 0, 0) is surrounded by the neighbors given by the

166 D. Désérable and R. Hoffmann

Fig. 1. The diamond DT 3: interconnection pattern and HBM labeling.

six permutations of (0, 1,−1) (negative integers are contracted for convenience).
These permutations are known in crystallography as Bravais-Miller indices for
the hexagonal arrangement: they are exactly the coordinates of the six points
ik−i′k (k �= k′) in an orthonormal 3d space and where {i1, i2, i3} is the set of unit
vectors [22,23]. From now on, we denote by “HBM” the hexagonal Bravais-Miller
coordinate system defined by (1).

Definition 1. Let dH : VH × VH → N such that, for any (x,y) ∈ VH × VH :

dH(x,y) = ‖x − y‖ = max
i∈I∗

|xi − yi| I∗ = (1, 2, 3). (3)

Function dH defines a distance of shortest path on the triangular grid. ��

2.2 Shortest Path Routing in the Diamond

Definition 2. The diamond is the graph DT n = (VH,n, EH,n) where

VH,n = {x ∈ VH | x = m2ε2 + m3ε3 (m2,m3) ∈ ZZ2n × ZZ2n} (4)

and any x ∈ VH,n is connected to x ± ε1, x ± ε2, x ± ε3. ��
The diamond is displayed in Fig. 1 for n = 3. It has N = 4n vertices and 3N
edges. The diameter, given by

Dn =
2
√

N − 1
3

or Dn =
2(

√
N − 1)
3

(5)

depending on the odd-even parity of n, defines an upper bound for the length of
any shortest path [26].

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 167

Definition 3. Let ΣH = {ε1, ε2, ε3} = (011̄, 1̄01, 11̄0) and I∗ = (1, 2, 3).
Let x and y be two distinct vertices in VH,n and u = (u1 u2 u3) = y − x.
Let k, k′, k′′ in I∗ such that |uk| ≥ |uk′ | ≥ |uk′′ |.
The function below defines a “ρ–reduction” acting on u as:

ρ : VH
−→ VH | ρ(u) =
{
u − 2nλεk′′ ukk′ > 2n

u otherwise
(6)

where ukk′ denotes the sum |uk| + |uk′ | in the reduction condition,

λ =
uk

|uk| · εk′′k = ±1 (7)

is the sense of reduction of u and wherein εk′′k is the k–coordinate of εk′′ . ��
The role of function ρ is to act on u by a translation of length 2n while keeping
the minimum of the {|ui|} invariant. If the reduction condition is fulfilled by u,
then its image is such that v = ρ(u) and ‖ v ‖ < ‖ u ‖.

Lemma 1. Let u = y − x and u∗ = ρ2(u). Then u∗ is minimal. ��
In other words, a given u = y − x computed in the infinite grid is normalized
in the diamond into a minimal u∗ after at most two ρ–reductions. Practically,
for a given pair (x,y) the reduction on u is often not applied, sometimes once,
seldom twice and never more. The following proposition provides a normalized
shortest path in the diamond.

Proposition 1. Given a source x and a destination y in VH,n.
Let u = y − x and u∗ = (u∗

1 u∗
2 u∗

3) be an irreducible representative of u.
Let π : I∗ → I∗ be the right cyclic permutation (231).
Then the path

σk(x,y) = u∗
π−1(k)επ(k) − u∗

π(k)επ−1(k) (8)

where k stands for the index of a maximum of the {|u∗
i |}, defines a shortest path

from x to y. ��
The application of Lemma 1 and Proposition 1 is illustrated hereafter from a few
examples, referring to the diamond DT 3 in Fig. 1. The symbol above ‘≡’ denotes
one of the six possible directions (−λεk′′) acted by the reduction function.

x = (23̄1) y = (1̄4̄5) u = (3̄1̄4) = u∗

⇒ σ3(x,y) = u∗
2ε1 − u∗

1ε2 = −ε1 + 3ε2.

x = (12̄1) y = (06̄6) u = (1̄4̄5)
+ε1≡ v = u + 8(011̄) = (1̄43̄) = u∗

⇒ σ2(x,y) = u∗
1ε3 − u∗

3ε1 = −ε3 + 3ε1.

x = (5̄1̄6) y = (77̄0) u = ((12)6̄6̄)
−ε3≡ v = u − 8(11̄0) = (426̄)
+ε2≡ w = v + 8(1̄01) = (4̄22) = u∗

⇒ σ1(x,y) = u∗
3ε2 − u∗

2ε3 = 2ε2 − 2ε3.

168 D. Désérable and R. Hoffmann

Fig. 2. The orthogonal T2 of order N = 16, labeled in the XY coordinate system;
redundant nodes in grey on the boundary. Inset: orientations W–E, N–S, NW–SE
according to an XY Z reference frame.

2.3 Bravais–Miller Routing in the Orthogonal Tn

The diamond DT n is topologically equivalent to the orthogonal Tn displayed
in Fig. 2 for n = 2. Referring back to the generating system ΣH in (1) and
knowing that ε1 = −(ε2 + ε3), the vertex set is now spanned by the vector basis
{ε2, ε3} = {1̄01, 11̄0} on the XY axis system. So let (e1, e2) = (10, 01) = (ε2, ε3)
be the usual XY orthonormal reference frame according to the inset of Fig. 2.
The orthogonal transformation of the routing scheme is straightforward. Given
some pair of vertices that denotes a source (Xs, Ys) and a destination (Xd, Yd)
in the XY reference frame, it suffices to compute UX = Xd −Xs , UY = Yd −Ys

and to convert (UX , UY) into HBM coordinates by applying the correspondence

u = (u1 u2 u3) = (UY − UX − UY UX) (9)

and to deal with the HBM routing of shortest path in Proposition 1.

2.4 Computing the Minimal Route in Tn

The algorithm below is the core of the router code: from the agent’s position
(source (Xs, Ys)) and its target position (destination (Xd, Yd)), the message
header will contain the length of the subpaths of the minimal route and their
respective channel identifier. Evidently, if the route is unidirectional, there will
only be one subpath.

1. Coordinate transformation: Given a source (Xs, Ys) and a destination
(Xd, Yd) in Cartesian coordinates, compute u from (9).

2. Normalize u: Get an irreducible u∗ from Lemma 1 and Definition 3.
3. Length of subpaths: The lengths are given by (| u∗

π−1(k) |, | u∗
π(k) |) from (8)

in Proposition 1.
4. Channel identifiers: The respective directions (επ(k), επ−1(k)) of subpaths

belong to the set {±ε1,±ε2,±ε3} and depend upon the sign of u∗
k as displayed

in Table 1.

Note that the apparent subpath order in (8) and Table 1. is in no wise settled
(the vector sum is commutative). As in [9], we adopt the cyclic, deterministic
convention “first dirR then dirL” where dirR and dirL define the “right”

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 169

Table 1. Length and direction of subpaths as a function of k and sign(u∗
k)

k u∗
k > 0 u∗

k < 0

1 −|u∗
3|ε2 +|u∗

2|ε3 +|u∗
3|ε2 −|u∗

2|ε3
2 −|u∗

1|ε3 +|u∗
3|ε1 +|u∗

1|ε3 −|u∗
3|ε1

3 −|u∗
2|ε1 +|u∗

1|ε2 +|u∗
2|ε1 −|u∗

1|ε2

Fig. 3. Deterministic convention“first dirR then dirL”. This directed graph is a
spanning tree of the torus showing the minimal path from a source node “0” to any
other node for a 8 x 8 network (n = 3, N = 64). The number in the nodes represents
their distance from the source node “0”. The maximal distance is the diameter D3 = 5
for this graph (refer back to Eq. (5)). Six antipodals are highlighted.

minimal subpath and the “left” minimal subpath respectively,1 viewed from the
“observer” agent as depicted in Fig. 3.

2.5 Deterministic, Adaptive and Randomized Routing

From the deterministic routing “first dirR then dirL” the agent follows always
the “right” minimal subpath. The minimal path can be computed only once at
the beginning and stored in the agent’s state. During the run, the agent updates
the remaining path to its target, decrementing its dirR counter until zero, then
decrementing its dirL counter if any, until completion. A problem with this
protocol is that it may not be optimal with respect to throughput, especially
in case of congestion. Formally, the deterministic routing is secure for an agent
alone.

The objective for adaptive routing is (i) to increase throughput, and (ii) to
avoid or reduce the probability of deadlocks. During the run, if the temporary
direction (e.g., dirR) points to an occupied channel, then the other channel
(e.g., dirL) can be used. A minimal adaptive routing may be roughly denoted
as “either dirR otherwise dirL”. The path from source to target remains
1 An equivalent symmetric protocol would be “first dirL then dirR”.

170 D. Désérable and R. Hoffmann

minimal on the condition that it remains inside the boundaries defined by the
minimal parallelogram.

It would also be useful to allow the agent to deviate from the minimal route
in case of congestion or for deadlock avoidance. The agent could route out of its
minimal parallelogram and move within an extended area although the minimal
route is of course prioritized. As a consequence, three possible moving directions,
instead of two, still remain adaptively possible to move forward. The three other
directions backwards are not allowed. But stronger protocols must sometimes
be carried out to avoid deadlock, like randomized routing where up to the six
possible directions are allowed. In this case, the agent should recompute its
minimal path at each timestep.

Deterministic, adaptive and deadlock-free strategies are investigated in Sect. 4.
A general insight on routing protocols can be found in [27].

3 Modeling the Multi-Agent System

This section is a digest of the description of the multi-agent system detailed in [9].
The dynamics of moving agents is recalled and the impact of the copy–delete rules
in the CA–w model is emphasized.

3.1 Dynamics of the Multi-Agent System

For clarity’s sake, the above adaptive protocol where three possible directions
are allowed to move the agent forward are considered.

Node Structure and Channel State: Each node labeled by its (x, y) coor-
dinates contains the 6–fold set

C = {C0, C1, C2, C3, C4, C5} = {E,SE, S,W,NW,N} (10)

of channels Ci oriented2 and labeled clockwise. Index i is called position or lane
number in this context. This position defines an implicit direction towards the
next adjacent node that an agent visits next on its travel. The direct neighbor
of channel Ci in the adjacent node is denoted by Mi where

M = {M0,M1,M2,M3,M4,M5} (11)

and Mj≡i+3 (mod 6) denotes the i–channel of the adjacent j–neighbor by sym-
metry. In the cardinal notation, e.g. for i = 0, “W.E” stands for the E–channel
of the W–neighbor (Fig. 4). The i–channel’s state at time t is defined by

ci(t) = (p, (x′, y′)) (12)

2 Except a homeomorphism.

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 171

Fig. 4. (a) An agent located in the E–channel of the western node W.E can move to one
channel in the “opposite” subset {E, N, SE}.Two agents in channels NW.SE and S.N
are possible competitors for a part of this subset. (b) As a consequence, channel C0 is
the arbiter of three possible concurrent agents in the right, straight, left requesting
channels R0, S0, L0 viewed from the “observer” C0. The same concurrent scheme is
valid all around from rotational invariance. A priority order is assigned clockwise by
any channel Ci ∈ C to its own requesting ordered set Mi = (Ri, Si, Li) : 1 to left, 2
to straight, 3 to right.

where (x′, y′) stands for the agent’s target coordinates and p ∈ P stands for the
agent’s direction as a pointer to the desired channel in the next node in the set

P = {−1, 0, 1, 2, 3, 4, 5} ≡ (Empty, toE, toSE, toS, toW, toNW, toN) (13)

symbolized by (→↘↓←↖↑) in a graphical representation and including an
empty channel encoded by ω = −1.

Agents and Arbiters: An agent can move to a 3–fold subset of channels at
most. For example, coming from channel W.E of W–neighbor at (x−1, y), going
to channel E or N or SE of current node (x, y) as shown in Fig. 4a. In the same
way, agents located in outer channels NW.SE and S.N are possible competitors
for a part of this subset {E,N, SE}. The intersection of those three requested
subsets is the channel E. From this observation, E can be chosen as arbiter of
three possible concurrent agents. In other words, a priority rule can be locally
defined for this channel. Arbiter E is C0 in Fig. 4b and this concurrent scheme
is invariant by rotation. This interaction between requesting agents and arbiter
channels is formalized hereafter. Let the 3–uple of channels

Ci = (Ci+1, Ci, Ci−1) (14)

and let us denote by

Mi = (Ri = Mi+4, Si = Mi+3, Li = Mi+2) (15)

the ordered 3–uple opposite to Ci and where Ri, Si, Li are the right, straight
and left outer channels for the three possible incoming agents viewed from the

172 D. Désérable and R. Hoffmann

“observer” channel Ci (i = 0 assumed herein). Conversely, Ci is the requested
channel subset for Si, as well as Ci−1 for Li and Ci+1 for Ri. Now

Ci−1 ∩ Ci ∩ Ci+1 = {Ci} (16)

from (14). This simple but important property allows to define a local priority
rule for channel Ci and invariant by rotation.

Priority Rule: Each channel Ci ∈ C computes the three exclusive conditions
selecting the incoming agent that will be hosted next, with a priority assigned
clockwise (Fig. 4b):

1. Agent wants to move from Li to Ci, priority 1: LtoC = (l = i)
2. Agent wants to move from Si to Ci, priority 2: StoC = (s = i) ∧ ¬LtoC
3. Agent wants to move from Ri to Ci, priority 3: RtoC = (r = i) ∧ ¬StoC.
In other words, this rule selects a winner among the three possible concurrent
agents requesting channel Ci and the selection is assigned clockwise: first to
left, second to straight, third to right, orientation viewed from the observer
channel.

Moving the Agents: The above priority scheme ensures a conflict-free dynam-
ics of moving agents3 in the whole network. The new target coordinates (x′, y′)∗

in the channel’s state are either invariant if the agent stays at rest or are copied
from Li or Si or Ri exclusively, depending of the selected incoming agent hosted
and to be received by the channel. Since the agent’s target coordinates are stuck
within its state, the agent must clearly carry them with it when moving. The
agent’s direction is then updated as

p∗ = ϕxy ((x′, y′)∗) (p∗ ∈ P) (17)

according to the used protocol which yields the new desired channel, either in the
current node (agent not moving) or in the adjacent node (after moving). Function
ϕxy is computed locally in the current node (x, y). Finally, the i–channel’s state
at time t + 1 becomes

ci(t + 1) = (p∗, (x′, y′)∗) (18)

and the new state is updated synchronously.

3.2 The CA–w Copy–Delete Rule

The synchronous transition (18) to the next timestep is governed by the copy–
delete operating mode of the CA–w model [7,8]. The CA–w model is especially
useful if there are no write conflicts by algorithmic design. This is here the
case, because an agent is copied by its receiving channel, after applying the
3 Except special deadlock or livelock situations pointed out in Sect. 4.

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 173

abovementioned priority scheme. Thus only this receiving channel is enabled to
delete the agent on the sending channel at the same time. A further advantage
is that only the short-range copy–neighborhood is sufficient to move an agent,
the wide-range delete–neighborhood (necessary for CA modeling) is not needed.
Therefore the 3–fold copy–neighborhood Mi that needs to be checked by Ci in
order to receive the hosted agent is given by (15), this agent in Mi is released by
Ci when firing the transition (18) and following the CA–w delete–copy operating
mode.

4 Simulating HBM Routing Protocols

4.1 Deadlock Situations and Protocols

A trivial deadlock can be produced if all 6N channels contain agents (fully
packed), thus no moving is possible at all. Another deadlock appears if

√
N = 2n

agents line up in a loop on all the channels belonging to the same lane, and all
of them want to travel in the same direction. Then the lane is completely full
and the agents are stuck. To escape from such a deadlock is only possible if the
agents could deviate from the shortest path, e.g. by choosing a random direction
from time to time. More interesting are the spatial cyclic deadlocks where the
agents form a cycle and are blocking each other (no receiving channel is free in
the cycle).

Several ways to resolve such deadlocks have been investigated elsewhere, e.g.
spatial inhomogeneity, redistribution of the agents on a node, deviation from the
minimal route [9], internal control by finite state machine [16] or optimization
by genetic algorithms [14]. Randomization is investigated thereafter and four
protocols are tested, according to Subsect. 2.5.

1. ProtR: the deterministic routing “first dirR then dirL”.
2. ProtRL: the minimal adaptive routing “either dirR otherwise dirL”.
3. Rand(ProtR): ProtR is randomized. The rightmost i–channel of the minimal

route to be used in the next node is modified to i − 1 (mod 6) counterclock-
wise, with the basic probability p0 = 1/2 and with the additional probability
p = 1/Q at each simulation time step. Thus the total probability is p0 × p.

4. Rand(ProtRL): ProtRL is randomized. The two possible channels (the right-
most i and the leftmost j = i − 1 (or j = i if there is only one) are modified,
either turned to the left (i → i − 1, j → j − 1) or to the right (i → i + 1,
j → j + 1) with an equal chance. This modification is done at each timestep
with the probability p = 1/Q.

4.2 Test Cases

Three test cases are used for evaluation, with k agents, s source nodes and m
target nodes:

174 D. Désérable and R. Hoffmann

1. First Test Case: All-to-One (m = 1, k = s). All agents move to the same
target. We set k = N − 1, meaning that an agent is initially placed on each
site, except on the target. The optimal performance would be reached if the
target consumes six messages at every timestep (t = (N − 1)/6). In order
to check the routing scheme exhaustively, the target location was varying,
yielding maximal N test configurations. We recall that the T–grid is vertex-
transitive, so the induced routing algorithm must yield the same result for
all N cases.

2. Second Test Case: Random Routes (k = s = m). The sources and target
are chosen randomly. The sources are mutually exclusive (each source is used
only once in a message set) as well as the targets. Source locations may act
as targets for other agents, too. We set k = N/2 which was also used in our
preceding works for comparison. Note that the minimum number of timesteps
t to fulfil the task is the longest distance between source and target contained
in the message set. For a high initial density of agents the probability is high
that the longest distance is close to the diameter of the network. Thus the
best case would be t = Dn (5).

2. Third Test Case. This is a special test case defined for the evaluation of the
routing protocol ProtRL. The sources and targets are chosen randomly as in
the second case, but the number of agents is now higher: k = N . Differing
from the second case, the target locations may now be used more than once.

4.3 Router Efficiency

First Test Case. All possible N initial configurations differing in the target
location were tested for N=64, 256, 1024, and 32 for N=4096 (Table 2).

ProtR, ProtRL (B): The time is independent of the position of the target.
This means that the router works totally symmetric as expected. An optimal
router would consume in every generation six agents at the target, leading to an
optimum of topt = (N − 1)/6. But this optimum cannot be reached because the
agents need an empty receiver channel in front for moving and they are jammed
in a queue. As it can be seen on the two first timesteps of the simulation sequences
in Fig. 5, the agents are consumed by the target at odd timesteps, generally
at the rate of six per odd timestep that yields a mean flow rate of three per
timestep. Thus in Table 2 we observe a transfer time (B) close to the optimum
topt = (N − 1)/3. As a consequence, the ratio t/Dn (B/A) is close to

√
N/2

from (5) and B/D ≈ 2 for large N . This phenomenon is easy to understand and
has a close relationship with Traffic Rule 184 in a 1–dimensional CA: a car with
a car straight ahead cannot move and must wait for the next timestep.

Both deterministic and minimal adaptive protocols need the same number of
time steps, although we expected that ProtRL could behave better than ProtR.
The reason is that the channels nearby the target are heavily congested in both
cases.

Rand(ProtR), Rand(ProtRL) (C1,C2): The deterministic and adaptive pro-
tocols did not produce any deadlocks. Nevertheless the randomized protocols

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 175

Table 2. First test case: k = N − 1 messages travel from all disjoint sources to the
same common target. Message transfer time (in timesteps) in the T–grid, averaged over
the number of checked initial configurations.

were tested, in order to check if they work securely. Table 2 shows that the num-
ber of time steps is slightly higher compared to the deterministic and minimal
adaptive protocols (B).

Second Test Case. The number of used initial configurations for averaging
were 256 for N=64, 256, 1024, and 32 for N=4096.

The best performance yields the protocol ProtRL (B2) in Table 3 with a
time ratio tRL/tR ≈ 0.95 (B2,B1). The randomized protocols are again slightly
slower, if we compare ProtR, Rand(ProtR) (B1,C1) and ProtRL, Rand(ProtRL)
(B2,C2).

The ratio tRL/Dn ≈ 1 (B2/A) is noteworthy and shows that the mean trans-
fer time is close to the diameter. This phenomenon is again easy to understand
from Traffic Rule 184 but now in a fluid traffic.

Third Test Case. The field size was N=4096 with N agents and random routes
and 32 configurations were simulated for averaging the time.

The mean time was t = 56.59, 50.91, 56.75, 51.41 respectively for ProtR,
ProtRL, Rand(ProtR), Rand(ProtRL) and the randomization probability was

Fig. 5. Simulation snapshots for the first scenario in a 8 × 8 grid T3, N − 1 agents
moving to the same target position. Agents are depicted as large triangles, visited
channels as small triangles: directions are symbolized by (→↘↓←↖↑)
(a) Routing protocol ProtR, (b) routing protocol ProtRL.

176 D. Désérable and R. Hoffmann

Table 3. Second test case: k = N/2 messages travel from disjoint sources to disjoint
targets. Message transfer time (in timesteps), averaged over the number of checked
initial configurations.

p = 1/128. We get a time ratio tRL/tR ≈ 0.90 and a similar ratio tr(RL)/tr(R)

with randomization. All results show that ProtRL performs generally better than
ProtR.

Testing Deadlock Situations. Two deadlocks D1, D2, shown in Fig. 6 at time
t = 0, were designed in order to demonstrate the behavior of the deterministic
and randomized protocols. In D1 the agents have to travel strictly on their
cycle. In D2 the agents can leave their cycle by choosing another minimal route
(direction dirL). The effective resolving of the deadlocks depends upon the used
protocol:

– ProtR: Both deadlocks cannot be resolved (not shown).

Fig. 6. Two designed deadlock situations D1 (upper-left) and D2 (lower-right).
Source–target positions ((xy), (x′y′)) for: −D1 ((00,12),(01,22),(12,21),(22,10),(21,00),(10,01)),
−D2 ((44,57),(45,60),(46,77),(47,76),(57,05),(67,74),(77,64),(76,53),(75,44),(74,45),(64,36),(54,47)). (a)
ProtRL: only D2 is resolved by using the alternate minimal route dirL. (b) Rand(ProtR):
the deadlocks can only be resolved by deviation from the minimal route dirR. (c)
Rand(ProtRL): D1 is resolved by randomization, D2 mainly by using the alternate
minimal route. Probability for deviation is p = 1/128.

Hexagonal Bravais–Miller Routing by Cellular Automata Agents 177

– (a) ProtRL: Only D2 can be dissolved, because the alternate minimal path
dirL is used. Deadlock D1 cannot vanish because dirR = dirL and there is
no alternative.

– (b) Rand(protR): At t = 12 one agent decides to deviate from the minimal
route. Thereby D1 is broken and at t = 19 it is dissolved. At t = 25 D2 is
broken and dissolved at t = 42.

– (c) Rand(protRL): Deadlock D2 is dissolved in 6 time steps as in (a), the
alternate minimal path dirL is used. Deadlock D1 is broken at t = 12 and
dissolved at t = 19.

5 Conclusion

An efficient novel router was presented in which the messages are transported
by cellular automata agents, implemented from the CA-w model. The minimal
routes are computed by a “Bravais–Miller” algorithm with hexagonal coordinates
that explores the symmetries in the triangular lattice. Four protocols were inves-
tigated, using a determined minimal route, an adaptive minimal route, as well as
their two randomized counterparts. The non-randomized ones were proven to be
not deadlock-free, though the deadlock events rarely occur owing to the number
of six channels per node. For the first all-to-one scenario, no deadlock appears
for all protocols and the performance is close to the optimum topt = (N − 1)/3.
For the second scenario with a population of N/2 agents routing to N/2 targets,
the best performance tRL ≈ Dn is reached by the minimal adaptive protocol,
close to the diameter of the network. For the third scenario with random routes,
no deadlocks appears for all protocols, and with a performance in timesteps
slightly higher than the diameter. Our Bravais–Miller routing scheme yields the
same routes than our XY –scheme in [9] but its symmetry now simplifies the
implementation of the router code.

References

1. Woolridge, M., Jenning, N.R.: Intelligent agents: theory and practice. Knowl. Eng.
Rev. 10(2), 115–152 (1995)

2. Franklin, S., Graesser, A.: Is it an agent, or just a program?: a taxonomy for
autonomous agents. In: Jennings, Nicholas R., Wooldridge, Michael J., Müller, Jörg
P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193. Springer, Heidelberg
(1997)

3. Holland, J.H., Emergence: From chaos to order, Perseus Book (1998)
4. Woolridge, M.: An Introduction to Multiagent Systems. Wiley & Sons, New York

(2002)
5. Pais, D.: Emergent collective behavior in multi-agent systems: an evolutionary

perspective, PhD Dissertation. Princeton University, Princeton NJ (2012)
6. Schweitzer, F.: Brownian Agents and Active Particles: Collective Dynamics in the

Natural and Social Sciences. Springer Series in Synergetics. Springer, Heidelberg
(2003)

178 D. Désérable and R. Hoffmann

7. Hoffmann, R.: The GCA-w massively parallel model. In: Malyshkin, V. (ed.) PaCT
2009. LNCS, vol. 5698, pp. 194–206. Springer, Heidelberg (2009)

8. Hoffmann, R.: GCA-w: global cellular automata with write-access. Acta Phys.
Polonica B Proc. Suppl. 3(2), 347–364 (2010)

9. Hoffmann, R., Désérable, D.: Routing by cellular automata agents in the triangu-
lar lattice. In: Sirakoulis, G., Adamatzky, A. (eds.) Robots and Lattice Automata.
Emergence, Complexity and Computation, pp. 117–147. Springer, Switzerland
(2015)

10. Loh, P.K.K., Prakash, E.C.: Performance simulations of moving target search algo-
rithms. Int. J. Comp. Games Tech. 3, 1–6 (2009)

11. Korf, R.E.: Real-time heuristic search. Artif. Intell. 42(2–3), 189–211 (1990)
12. Ediger, P., Hoffmann, R.: CA models for target searching agents. São José dos

Campos ENTCS 252(2009), 41–54 (2009)
13. Ediger, P., Hoffmann, R.: Routing based on evolved agents. In: 23rd PARS Work-

shop on Parallel System and Algorithms, ARCS, Hannover, Germany, pp. 45–53
(2010)

14. Ediger, P.: Modellierung und Techniken zur Optimierung von Multiagentensyste-
men in Zellularen Automaten, Dissertation, TU Darmstadt, Darmstadt, Germany
(2011)

15. Hoffmann, R., Désérable, D.: Efficient minimal routing in the triangular grid with
six channels. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 152–165.
Springer, Heidelberg (2011)

16. Ediger, P., Hoffmann, R., Désérable, D.: Routing in the triangular grid with evolved
agents. J. Cellular Automata 7(1), 47–65 (2012)

17. Ediger, P., Hoffmann, R., Désérable, D.: Rectangular vs triangular routing with
evolved agents. J. Cellular Automata 8(1–2), 73–89 (2013)

18. Désérable, D.: A family of Cayley graphs on the hexavalent grid. Discrete Appl.
Math. 93(2–3), 169–189 (1999)

19. Désérable, D.: Systolic dissemination in the arrowhead family. In: W ↪as, J., Sirak-
oulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 75–86. Springer,
Heidelberg (2014)

20. Dally, W.J., Seitz, C.L.: The Torus routing chip. Dist. Comp. 1, 187–196 (1986)
21. Xiang, Y., Stewart, I.A.: Augmented k-ary n-cubes. Inf. Sci. 181(1), 239–256

(2011)
22. Miller, W.H.: A Treatise on crystallography. J. & J.J. Deighton, London (1839)
23. Buerger, M.J.: Introduction to Crystal Geometry. McGraw-Hill, New York (1971)
24. Désérable, D.: Minimal routing in the triangular grid and in a family of related

tori. In: Lengauer, Christian, Griebl, Martin, Gorlatch, Sergei (eds.) Euro-Par 1997.
LNCS, vol. 1300. Springer, Heidelberg (1997)

25. Désérable, D.: Hexagonal Bravais-Miller routing of shortest path, IR#CU13220.1,
pp. 1–15 (2013) – Désérable, D., Dumont, E.: Routing algorithm in torus T6n,
IR#CU13220.2, pp. 1–8 (2013)

26. Désérable, D.: Arrowhead and diamond diameters, (submitted to Discrete Applied
Math. & Applications)

27. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks, Morgan Kaufmann
(2002)

The Influence of Cellular Automaton Topology
on the Opinion Formation

Tomasz M. Gwizda�l�la(B)

Department of Solid State Physics, University of �Lódź,
Pomorska 149/153, 90-236 �Lódź, Poland

tomgwizd@uni.lodz.pl

Abstract. We use the Cellular Automata to study the process of opin-
ion formation in the community. The crucial property characterizing the
existing models is the method of updating the system. In the paper we
choose the randomized Glauber method and concentrate on the influ-
ence of topology of the system on the opinion understood as the support
for specific real parties. We study also the relation between the topol-
ogy and the parameters of the Glauber method. We propose to perform
the analysis of the results based on the Fourier transform. This form of
presentation discloses some interesting properties of both real-world and
simulation results.

1 Introduction

The problem of opinion formation has been studied since many years by using
many different approaches. It was already in 1973 when Clifford and Sudbury
[1] proposed so called voter model. They analysed the competition between two
species and used the Glauber dynamics to perform the update of their system
in order to find the prevailing one. The approaches which found later a great
popularity was the Galam’s majority model [2] or the Sznajd model [3] char-
acterized by the outflow dynamics. It can be noticed that as well continuous
(e.g. Galam’s one) as discrete (e.g. Sznajd one) models were in extensive use.
Following the discrete models we can observe that a well-known physical model
- the Ising model is widely used in the study of opinion formation process. The
Ising-like models characterized by the discrete set of states, the short range
of interaction/information exchange provides an interesting instrumentation for
the analysis of opinion changes. Such an approach can be also easily described
within the frame of Cellular Automata related notions. Some recent Ising-based
attempts can be found in [4–9]. On the other hand, the topology describing the
community can lead to substantial differences in the simulation results. Usu-
ally, when considering the topology one takes into account such network models
like: the Erdös-Renyi, the Watts-Strogatz or the Barabasi-Albert ones (see e.g.
[10,11]).

In our paper we try to consider both the Ising-like model of opinion formation
and the problem of network topology. The crucial question which in our opinion

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 179–190, 2015.
DOI: 10.1007/978-3-319-21909-7 17

180 T.M. Gwizda�l�la

Fig. 1. The percentage support for different parties in several countries. Upper plot:
USA (squares), United Kingdom (circles), middle plot: Germany, lower plot: Denmark.
The countries are grouped according to their election system. The names of particular
parties are not presented, they are distinguished only by numbers.

should be answered when mention “opinion” is the one concerning the real-
world equivalent of the number produced in simulations. Quite often scientists
deal with the results related to some consumer’s opinions expressed in polls. In
our paper we take into account the more distinct effect of opinion formation,
i.e. the results of elections. We hope that despite of limited data (due to the
frequency of elections) it gives us the opportunity to analyse the data which are
not charged with the polling procedure and reflect the real data.

In Figs. 1 and 2 we show the results of parliamentary elections for several
countries. The plots in Fig. 1 present the percentage results of major parties
active in these countries. We choose such countries where the system was rel-
atively stable through last 60 years. The countries are divided in the way that
those ones with similar electoral systems are shown in the same plot. That is

The Influence of Cellular Automaton Topology on the Opinion Formation 181

Fig. 2. The amplitudes of Fourier spectra for countries and parties presented in Fig. 1.
The description of symbols is the same as in the earlier figure. The spectra are nor-
malized in the way that the highest amplitude corresponds to 1.

why United States and United Kingdom where the First Past The Post sys-
tem (one round majority system) exists are presented commonly. The second
plot contains data for Germany (the mixed system) while the last one shows the
results in Denmark (proportional d’Hondt system). Figure 2 contains the Fourier
transforms of data shown in the upper one. The data in both figures corresponds
one to another so the symbols in the second figure represents the data for the
same party as in the first one.

Certainly, some simplifications have to be made. We do not take into account
the correct date of elections but only order them in time and these data are used
in discrete Fourier transform. The time periods between the elections differ not
only between the countries (2 years for USA, 4 years for UK, 3/4 years in Scan-
dinavian countries) but can be different also for the particular country due to

182 T.M. Gwizda�l�la

e.g. early elections or the change of electoral law. We also have to point out that
the result of particular party may not correspond strictly to the notion of opin-
ion. This is due to the fact that parties form coalitions either after the election
or sometimes before it. This is e.g. typical for Denmark where, during the last
election in 2011, we observed two coalitions. Finally, the better result obtained
the alliance of as much as 4 parties (Socialdemokraterne, Det Radikale Ven-
stre, Socialistisk Folkeparti, Enhedslisten De Rod-Gronne) with the opposition
formed by 5 organizations.

When considering the spectrum especially two features can be taken into
account: the scaling properties and the excess observed for some specific har-
monics. The general remark is that it doesn’t exist the same scaling for all
spectra. When deducing the scaling properties with the exclusion of extremely
deviated points we can say that for majority systems we can observe linear
dependence (for the US parties it is almost constant) while for the other ones we
can assume either linear one or a power-law one. Concerning the distinctive har-
monics, it is interesting that often the fourth harmonic exceeds the neighboring
ones. This property can be seen for all countries except of Denmark where we
should mention rather the 5th harmonic to be lower. For the USA we can notice
also that the 8th and 12th harmonics are visibly higher than another ones. We
can mention here also the similarity between the spectra for UK and Germany
(in both cases the same number of harmonics is determined). When calculating
the correlation coefficient between the sets of amplitudes for these countries we
obtain value ρ ≈ 0.944.

2 The Ising-Based CA Opinion Formation Model

Cellular Automata (CA) presents the approach which is often used when study-
ing the processes of opinion formation. Generally CA can be described as a
discrete dynamical system with the well-defined function describing the process
of system update. The discrete character manifests itself in all aspects of CA
simulation starting from the methods of representing the system space up to the
definition of particular cell description. The n-dimensional space beeing the arena
of simulation is divided into separate cells of shape conforming to the properties
of problem under consideration. The most popular is here the seminal (known
e.g. from the Conway’s Game of Life) idea of building the n-dimensional cubes.
These cells can only be empty or filled by the state chosen from some closed set
St
i where i denotes position and t time. The crucial is however for CA the notion

of rule - the function which makes it possible to perform the transformation
St
i → St+1

i . Typically St+1
i = f(St

j1, S
t
j2, ...S

t
jn), where Sj1, Sj2, ...Sjn belong to

some neighborhood of cell i.
When applying the general model presented above to the particular case stud-

ied in the presented paper we have to point out some features which are in more
detail described in the following paragraphs. The structure of the space is the
main point of the paper and is addressed as the topology issue. We should men-
tion here that while the typical, most common uderstanding of space definition

The Influence of Cellular Automaton Topology on the Opinion Formation 183

is related to the physical, configurational space, here this view is a little changed.
Our space should be rather considered as the phase space, where the distance
between the cells corresponds to the difference described by some, other than
geometric length, value. The set of states for opinion formation problems can
be defined in different ways. When looking for some seminal papers, where only
two possible opinions were under consideration we can observe that while some
figures from Sznajd paper [3] can be understood like the application of {0, 1}
set, the Stauffer’s paper uses rather the physical spin analogy, corresponding to
the set {−1, 1}. In the situation, where the larger number of states is consid-
ered, like in our paper, we have the possibility to relate the representation with
some context. The good example is here the understanding of different opinions
within the frame of Nolan’s diagram, presented in the further part of this section.
Therefore, we want to discuss the particular representation in detail only in the
connection with the transition rule described below.

In the paper we generally follow the approach used in our earlier papers (see
[12,13] and references therein). However, since we are going to deal only with
the problems of opinion formation and not with the mandate assignment, we
present here the details related to the system definition and update.

In our earlier papers we often used different methods of system update such
as especially the Glauber’s and the Stauffer’s [14] rules were of interest. Here,
we concentrate on the former one. There are several reasons for this choice. The
main one is that we are going to study different topologies and the Stauffer’s
rules are only of use in the case of two dimensions. When studying the samples
with higher dimensionalities we would have to define the new rules and to discuss
initially their properties and usefulness. Additionally, the Stauffer’s rule is purely
deterministic and always leads to stable states, sometimes producing strange
patterns when approaching this stability (see e.g. [12]). Typically, such patterns
are quantified as the percentage of support for given opinion as well as about
secondary characteristics, like e.g. disproportionality indices.

In contrast to the above remarks, the Glauber’s rule can be applied without
any modification to arbitrary topology although some characteristic values of
parameters can be different for different dimensionalities. The basic property of
Glauber’s rule is the inclusion of a random factor when trying to change the
state of cell. The probability is given by the formula 1.

P =
1

1 + exp(−ΔE
kBT)

=
1

1 + exp(−βΔE)
. (1)

As it can be seen, the probability depends on two values that have specific
physical meaning: the temperature and the energy difference. The temperature
can be treated as the parameter, and represented in one of two equivalent phys-
ical forms shown in Eq. 1 (T or β, β = 1

kBT). The kB value, the Boltzmann
constant, can be in our calculations neglected (kB = 1).

The value of energy change depends on the set of values describing the state
of every cell and on details of the approach, usually reflecting some physically-

184 T.M. Gwizda�l�la

based model. We will follow the typical Ising-like approach where the energy
change can be calculated as:

ΔE = −J ∗
∑
j

(
si,updated ∗ sj,updated − si,old ∗ sj,old

)
. (2)

In the formula 2 si and sj are the cell states as selected from the set {−1, 1}
and J is the constant characterizing the intensity of interactions, here assumed
to equal 1. The index updated corresponds to the state after update while old
is the state before update. The above formula has to be, however, interpreted
differently, depending on the number of possible cell states. In our calculations
we use systems with two and four states. While the two-opinion system can be
well described by the {−1, 1} set, four-opinion system can be understood e.g.
within the frame of the Nolan’s diagram (see [12]).

Then, every opinion can be interpreted as containing two opinions concerning
two different aspects (originally social and economic). Such an approach can lead
also to 2 possible methods of energy change consideration (only for 4 opinions).
According to the first one the difference does not depend on the particular value
for single aspect. It means the energy difference will be the same independently
whether we pass to the state differing in the one or two aspects. As an example we
can show the update of the single cell from the state si,old = (1, 1). ΔE would the
same for all changed states of cell, those with one aspect different (si,updated =
(−1, 1), si,updated = (1,−1) and for two aspects different si,updated = (−1,−1).
We will further refer to this approach as to the “reduced energy difference”.
According to the second approach, the difference in the above example is for
si,updated = (−1,−1) twice as high as for si,updated = (−1, 1) since the opinions
differs in both aspects. This approach will be referred as “two-mode option”.

In the paper we study the dependence of the system on four topologies. Three
of them are typical array-like geometries defined by using the n-dimensional
rectangular system and we choose n = 2, 3, 4. The difference between them
lies in the fact that Their sites have still increasing number of neighbors, such
that opinions can possibly change faster. The fourth topology is the well-known
Barabasi-Albert (BA) network [15], where the number of neighbors is described
by a power-law distribution. The BA network is well recognized as describing
the structure of real world as well as virtual social networks, see e.g. [16,17].

All calculations in the paper are performed for the synchronous update. All
results are obtained after averaging of harmonics for 200–500 independent runs.

3 Results and Conclusions

All results presented in this section are shown in the form of Fourier spectra since
these can be easily compared to the curves in Fig. 1. The spectra are normalized
in such a way that the intensity of first harmonics always equals 1.

In the Fig. 3 we show the comparison of spectra for different number of opin-
ions and different topologies. Since the result of simulation can depend also on

The Influence of Cellular Automaton Topology on the Opinion Formation 185

Fig. 3. Typical Fourier spectra obtained for 2-opinion (upper plot) and 4-opinion (lower
plot) simulations. Symbols are for both cases same for the same topologies. In the lower
plot two methods of energy calculation are distinguished.

the temperature used in Glauber scheme (see Eq. 1) we choose the same value
of this parameter for all curves, T = 1.0.

The crucial observation is that by using the Glauber update we can pro-
duce almost arbitrary spectrum of opinion support. The general observation is
that the typical array-like topologies lead to a power-law character of presented
curves. It is quite clear, especially in the upper plot of Fig. 3 where the only
difference between those curves is the small shift for the 4 − dimensional case.
Since the dependencies are normalized for the amplitude of first harmonic the

186 T.M. Gwizda�l�la

breaking of power-law scaling for some small harmonic index (n ≈ 5–10) can
also be noticed. When considering 4−opinion scheme (Fig. 3, lower plot) we can
observe similar effects. The dependencies for array-like topologies can always
be described by a power-law functions but there often exist a breaking point,
beyond which the power-law scaling does not longer hold. The situation differs
for BA topology where there is no clear model to generally describe all three
shown cases. While for the upper plot the dependency can be easily scaled by
the exponential function, for the lower one there exist either the breaking of
exponential scaling or the scaling best described by the form exp(x−3/4).

An important observation connected to the Fig. 3 is that all presented depen-
dencies are relatively smooth and cannot reproduce the typical rough character
of spectra in Fig. 1. It should however be noticed that a choice of temperature can
strongly influence the results. Some characteristics for the 4−opinion simulation
and for different temperatures are shown in Figs. 4 and 5.

Due to some similarities between array-like topologies we choose only square
array, i.e. dimension = 2 for presentation. The results are averaged over 200
simulations. It is interesting that the increase of number of runs (we tested it
up to 500 independent runs) leads only to the slight smoothing of presented
dependencies and does not influence the visible maxima. We should draw the
attention of the reader to the fact that all plots are shown here, contrary to the
Fig. 3, in the linear scale.

Plots in Figs. 4 and 5 confirm only partially earlier observations made for
T = 1 and we observe however some new behavior. The case described ear-
lier (T = 1.0) turns out to present the dependence which is typical for low
temperatures. These values of temperatures correspond, according to Eq. 1 to
the situations where the probabilities of opinion change are relatively high so
we can say about the significant volatility of agents composing the sample. We
can also observe that for increasing temperatures the spectra for square array
present somehow “monotonic” behavior. It means that the curves for succes-
sive, increasing temperatures lies one over another what can be understood as
pursuing the independence of the amplitude on the number of harmonic. It is
however not reached for the parameters range presented. One should also point
out the change of scaling of the curves. Being initially, for low temperatures,
of power-law character it changes to the exponential or either linear form often
with some breaking point.

We can expect that for the Barabasi-Albert topology some changes may occur
for lower temperatures, since, due to generally larger number of neighbors, the
value of energy difference in the Eq. 1 can be greater. It turns out that the
shapes of curves strongly depend on the method how the total energy change is
computed as well as it almost arbitrary form of scaling can describe the observed
dependencies. It can be most clearly visibly in the Fig. 4 when with increasing
temperatures for BA topology we start from linear scaling through power-law-
one for T = 6.0 and finish once more with the linear one. It can be also observed
that a roughness of spectrum is always stronger for square array topology, as

The Influence of Cellular Automaton Topology on the Opinion Formation 187

Fig. 4. Fourier spectra for the simulation of 4 opinions with the reduced energy differ-
ence. Upper plot corresponds to the dimension 2 while the lower one to the Barabasi-
Albert network. The description of temperatures concerns both plots.

188 T.M. Gwizda�l�la

Fig. 5. Fourier spectra for the simulation of 4 opinions with the two-mode option.
Upper plot corresponds to the dimension 2 while the lower one to the Barabasi-Albert
network. The description of temperatures concerns both plots.

The Influence of Cellular Automaton Topology on the Opinion Formation 189

compared with the BA one and for the reduced energy mode as compared to the
two-mode one.

Considering the visible maxima, we have to emphasize the significance of high
temperatures. It seems that we have to once more take into account especially
the BA topology in Fig. 4 where the 6 − th, 11 − th and 19 − th harmonics have
visibly higher amplitudes that neighboring ones.

The original data concerning the opinion formation in the community
may present different behaviors as described by means of some mathemati-
cal approaches. We show that the Cellular Automata method based on some
physical notions with the stochastic Glauber update can reproduce that differ-
ent behaviors when considering some simple steering parameters especially for
the, in our opinion more realistic, Barabasi-Albert topology. It seems that most
interesting areas of future research would be to find the method of more precise
description of real results and to find the sociological interpretation of simulation
parameters.

References

1. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60, 581–588
(1973)

2. Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25,
403–406 (2002)

3. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod.
Phys. C 11, 1157 (2000)

4. Grabowski, A., Kosinski, R.: Ising-based model of opinion formation in a complex
network of interpersonal interactions. Physica A 361, 651–664 (2006)

5. Iniguez, G., Barrio, R.A., Kertesz, J., Kaski, K.K.: Modelling opinion formation
driven communities in social networks. Comput. Phys. Commun. 182, 1866–1869
(2011). Computer Physics Communications Special Edition for Conference on
Computational Physics Trondheim, Norway, 23–26 June 2010

6. Bordogna, C.M., Albano, E.V.: Dynamic behavior of a social model for opinion
formation. Phys. Rev. E 76, 061125 (2007)

7. Schmittmann, B., Mukhopadhyay, A.: Opinion formation on adaptive networks
with intensive average degree. Phys. Rev. E 82, 066104 (2010)

8. Krause, S.M., Bornholdt, S.: Opinion formation model for markets with a social
temperature and fear. Phys. Rev. E 86, 056106 (2012)

9. Sobkowicz, P., Kaschesky, M., Bouchard, G.: Opinion formation in the social
web: agent-based simulations of opinion convergence and divergence. In: Cao, L.,
Bazzan, A.L.C., Symeonidis, A.L., Gorodetsky, V.I., Weiss, G., Yu, P.S. (eds.)
ADMI 2011. LNCS, vol. 7103, pp. 288–303. Springer, Heidelberg (2012)

10. Prettejohn, B.J., McDonnell, M.D.: Effect of network topology in opinion formation
models. In: Guttmann, C., Dignum, F., Georgeff, M. (eds.) CARE 2009/2010.
LNCS, vol. 6066, pp. 114–124. Springer, Heidelberg (2011)

11. Hammer, R.J., Moore, T.W., Finley, P.D., Glass, R.J.: The role of community
structure in opinion cluster formation. In: Glass, K., Colbaugh, R., Ormerod, P.,
Tsao, J. (eds.) Complex 2012. LNICST, vol. 126, pp. 127–139. Springer, Heidelberg
(2013)

190 T.M. Gwizda�l�la

12. Gwizda�l�la, T.M.: The dynamics of disproportionality index for cellular automata
based sociophysical models. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012.
LNCS, vol. 7495, pp. 91–100. Springer, Heidelberg (2012)

13. Sendra, N., Gwizda�l�la, T.M.: Sznajd model with memory. In: Was, J., Sirakoulis,
G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 349–356. Springer,
Heidelberg (2014)

14. Stauffer, D., Sousa, A.O., de Oliveira, S.: Generalization to square lattice of Sznajd
sociophysics model. Int. J. Mod. Phys. C 11, 1239–1245 (2000)

15. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

16. Schnettler, S.: A structured overview of 50 years of small-world research. Soc. Netw.
31, 165–178 (2009)

17. Lattanzi, S., Panconesi, A., Sivakumar, D.: Milgram-routing in social networks.
In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E.,
Kumar, R. (eds.) Proceedings of the 20th International Conference on WWW, pp.
725–734. ACM (2011)

Cellular Automata Model of Electrons and Holes
Annihilation in an Inhomogeneous

Semiconductor

A.E. Kireeva(B) and K.K. Sabelfeld

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Pr. Lavrentjeva, 6, Novosibirsk, Russia

kireeva@ssd.sscc.ru, karl@osmf.sscc.ru

Abstract. An asynchronous CA model of annihilation of electrons and
holes in an inhomogeneous semiconductor is presented. The model is
based on the Monte Carlo algorithm of electron-hole annihilation. CA
model allows us to study the dynamics of electron-hole spatial distrib-
ution. The annihilation process is simulated for different values of the
modeling parameters. The spatial distributions of particles are analyzed.
It is found out that a segregation, i.e., a spatial separation of electron
and hole clusters occurs. This happens under certain conditions on the
diffusion and tunneling rates. In addition, the parallel implementation of
the CA model of the annihilation is performed using OpenMP standard.
The parallel implementation makes it possible to perform averaging over
a rich ensemble of initial distributions of particles.

Keywords: Cellular automata · Parallel implementation · Electron-
hole annihilation · Semiconductor · Recombination centers · Radiative
intensity

1 Introduction

Semiconductors are a foundation of modern electronics and optoelectronics
industry. Semiconductor devices and integrated circuits are used in computer
microprocessors, communications equipment, lighting equipment and other elec-
tronic devices which have significant impact on science and economy develop-
ment. In semiconductors a lot of phenomena arise that can not be observed in
metals and dielectrics. Therefore, a great attention of academia and industry is
attracted to study semiconductors.

Gallium nitride (GaN) is a direct wide band gap semiconductor, promis-
ing applications for developing of high-frequency, thermostable and high-power
semiconductor devices. Moreover, this semiconductor and its solid solutions
(InGaN) and (AlGaN) are considered as one of the most perspective materi-
als in the fields of short wavelength optoelectronic devices [1]. Gallium nitride is

Supported by Russian Science Foundation under Grant 14-11-00083.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 191–200, 2015.
DOI: 10.1007/978-3-319-21909-7 18

192 A.E. Kireeva and K.K. Sabelfeld

intensively studied by numerous research groups both by experimental methods
[2,3] and by means of computer simulation [4,5].

In [4,5], a Monte Carlo method based on spatially inhomogeneous nonlinear
Smoluchowski equations with random initial distribution density is used to sim-
ulate the annihilation of spatially separate electrons and holes in a disordered
semiconductor. The main idea of the Monte Carlo method for solving spatially
inhomogeneous Smoluchowski equations lies in the probabilistic interpretation
of the evolution of the interacting particles as a Markov chain [6]. Based on the
Monte Carlo algorithm [5] an asynchronous cellular automaton model of elec-
trons and holes annihilation in the inhomogeneous semiconductor is developed.

Cellular automaton is a discrete dynamical system whose behavior is defined
by local rules [7]. Cellular automaton includes a set of cells corresponding to a
space. Cells have states which correspond to the elements of the system under
study. Cell states are changed according to the rules imitating the system behav-
iour. The rules define new cell states depending on the states of their neighbour
cells. Local rules allow of describing complex multicomponent systems whose
behavior is determined by the local behavior of their constituent elements [8,9].
The main advantage of cellular automaton approach for simulation of the elec-
trons and holes annihilation in the semiconductor is the possibility to model
and study in great details the spatial distribution of ensembles of interacting
particles progressing in time.

Simulation of electrons and holes annihilation in inhomogeneous semicon-
ductors is a highly challenging problem because the particle kinetics for a very
long time (up to about 1014 nanoseconds) and for large number of interacting
particles is desired. Moreover, since stochastic processes are investigated, the
averaging over a large ensemble of initial distributions of particles is required to
obtain reliable results. Therefore, the purpose of this paper is developing of a
parallel implementation of cellular automaton model of the electrons and holes
annihilation and estimation of its efficiency.

The paper consists of Introduction, three sections and Conclusion. In the
first section a mechanism of electron-hole annihilation is described and a formal
definition of the cellular automaton model of this process is given. The second
section presents the parallel implementation of the cellular automaton and its
efficiency analysis. In the third section simulation results are discussed.

2 The Model of Annihilation of Electrons and Holes
in a Semiconductor

2.1 The Mechanism of Annihilation of Electrons and Holes
in a Semiconductor

In [4,5], a mechanism of annihilation of electrons and holes in an inhomogeneous
semiconductor is described as follows. On the gallium nitride semiconductor a
high frequency pulsed laser induces generation of an instant electron excess. The
electrons and holes can recombine with each other radiatively with emission

Cellular Automata Model of Electrons and Holes Annihilation 193

of a light quantum, a photon, or nonradiatively via capturing in recombination
centers. A recombination center is an immobile site of the semiconductor usually
formed by defects. Initially, a part of recombination centers is free for capturing
electrons, and the other part is free to capture holes. When an electron and a
hole meet each other in a recombination center, diffusively or via tunneling, they
recombine nonradiatively, and the center becomes free. In addition, electrons and
holes are generally able to diffuse in the semiconductor.

In [4,5], distributions of electrons, holes and recombination centers in a sam-
ple X with densities ρn(r; t), ρp(r; t), ρN (r) are considered, here r is a spatial
position, t is a time moment. A part of the recombination centers with a density
ρNn

(r; t) are in the state waiting for capturing an electron, while the remaining
centers with a density ρNp

(r; t) = ρN (r) − ρNn
(r; t) are waiting for capturing a

hole. The total density of all recombination centers ρN (r) keeps constant with
time, while the other densities are changed in time according to the following
differential equations:

∂ρn(r; t)

∂t
= Dn(r)Δρn(r; t) − ρn(r; t)

∫
B(|x|)ρp(r+x; t)dx

− D(r)ρn(r; t)ρp(r; t) − ρn(r; t)

∫
bn(|x|)ρNn(r+x; t)dx;

∂ρp(r; t)

∂t
= Dp(r)Δρp(r; t) − ρp(r; t)

∫
B(|x|)ρn(r+x; t)dx

− D(r)ρp(r; t)ρn(r; t) − ρp(r; t)

∫
bp(|x|)ρNp(r+x; t)dx;

(1)

∂ρNn(r; t)

∂t
= −ρn(r; t)

∫
bn(|x|)ρNn(r+x; t)dx + ρp(r; t)

∫
bp(|x|)ρNp(r+x; t)dx.

The relevant terms of these equations have the following physical sense.
Electron-hole pairs tunnel with the rate B(|x|) = B0 · exp(−|x|/anp), where
|x| is a distance between an electron and a hole, anp is a characteristic distance
of the electron-hole interaction. Analogously, bn(|x|) = bn0 ·exp(−|x|/anNn

) and
bp(|x|) = bp0 ·exp(−|x|/apNp

). Further, Dn(r) is an electron diffusion coefficient,
Dp(r) is a hole diffusion coefficient, and D(r) = Dn(r) + Dp(r). At the initial
time, the electrons, holes and recombination centers are randomly and uniformly
distributed with a mean number concentrations Cn0, Cp0, CNn0, CN0 ∈ Z,
which are the numbers of electrons, holes, recombination centers for electrons
and all recombination centers, respectively. The total number of all recombina-
tion centers is CN0 = CNn0 +CNp0, where CNn0 is the number of recombination
centers free for electrons, and CNp0 is the number of the recombination centers
free for holes.

The photon flux is defined by the following formula:

φ(t) =
〈∫

1
|X|dr

∫
B(|x|)ρn(r; t)ρp(r+x; t)dx

〉
, (2)

where the angle brackets stand for the mathematical expectation with respect
to the initial random distribution of electrons, holes and recombination centers,
and |X| is the sample area.

194 A.E. Kireeva and K.K. Sabelfeld

In this paper, based on the [4,5] a cellular automata model of the electron-
hole annihilation is developed.

2.2 The Cellular Automata Model of Annihilation of Electrons
and Holes in a Semiconductor

A cellular automaton (CA) is a discrete dynamical system consisting of a set of
cells [9,10]. A cell is determined as a pair (u,x), where u ∈ A is a state of a cell
from a set of admissible in a model states, which is named cells state alphabet
A. The second element of the pair x ∈ Xd is a coordinate of a cell in a discrete
space. All possible coordinates in a model space is named coordinate set X. A
set of cells with different coordinates is named cellular array. Simulation process
consists in the calculation of the cells states by special rules depending on own
states of cells and states of interacting with them cells. These rules are named
substitutions. A set of all rules specified in a model is named an operator Θ.
The interacting cells are specified by a template T . The template can be defined
either as the set of cells fixed related to a central cell, for example, adjacent
cells, or as a set of random cells of cellular array. The cells states are updated
according to a operation mode μ. There are synchronous σ and asynchronous
α modes. In the synchronous mode (σ), the operator is applied to all cells of
a cellular array, all being updated simultaneously. The asynchronous (α) mode
prescribes the operator to be applied to all cells of a cellular array in random
order, all cell states being updated immediately.

According to the definition of cellular automata (CA) given in [9], CA model
of the electrons and holes annihilation can be defined by the following notion:

ℵ = 〈A,X,Θ, α〉 (3)

Based on [5], A,X and Θ are defined as follows. The state alphabet is A =
{n, p,Nn, Np, ∅}, where n denotes an electron, p is a hole, Nn denotes an unoc-
cupied recombination center being able to capture an electron, Np is an occupied
by an electron recombination center being able to capture a hole and ∅ denotes
an empty site. The coordinates set X={x=(i, j), i = 1 . . . Sizei, j = 1 . . . Sizej}
is a two-dimensional square discrete space. Size of the cellular array corresponds
to the semiconductor surface size measured in nanometers (nm).

The operator is Θ = R{θ1, θ2, θ3, θ4}. The symbol R denotes a random order
of substitutions choice. The substitutions (4) correspond to the following events:
θ1 is a radiative electron-hole recombination, θ2 is a capturing of an electron by
an empty recombination center, θ3 is a capturing of a hole by a recombination
center filled with an electron, θ4 is an electron diffusion on an empty site or a
hole, or an empty recombination center:

θ1(x) : {(n,x), (p, ϕ(x)} p1·ω1→ {(∅,x), (∅, ϕ(x)},

θ2(x) : {(n,x), (Nn, ϕ(x)} p2·ω2→ {(∅,x), (Np, ϕ(x)},

θ3(x) : {(p,x), (Np, ϕ(x)} p3·ω3→ {(∅,x), (Nn, ϕ(x)},

θ4(x) : {(n,x), (u, ψ(x)} p4·1→ {(∅,x), (u′, ψ(x)},

(4)

Cellular Automata Model of Electrons and Holes Annihilation 195

u′ =

⎧
⎪⎨
⎪⎩

n, if u = ∅,

∅, if u = p,

Np, if u = Nn,

where, ϕ(x) ∈ Trnd = {y= rand(X), y �=x} is a cell interactive with the cell
x, ϕ(x) being randomly selected from the set X. Analogously, ψ(x) ∈ T4 =
{(i, j − 1), (i + 1, j), (i, j + 1), (i − 1, j)} is a neighbour of the cell x randomly
chosen by the template T4, being a cross with a center in the cell x. An electron
diffusion coefficient Dn is considerably greater than a hole diffusion coefficient
Dp, therefore a hole diffusion is neglected in the CA model.

A performance of Θ consists in the following. One of the substitutions θl, l =
1, 2, 3, 4 is chosen with probability pl, calculated by the formula (5):

pl = λl/λ, l = 1, . . . , 4, λ =
4∑

l=1

λl,

λ1 = Cn · Cp · B0 · exp {−rmin
np /anp},

λ2 = Cn · CNn
· bn0 · exp {−rmin

nNn
/anNn

},

λ3 = Cp · CNp
· bp0 · exp {−rmin

pNp
/apNp

},

λ4 = Cn · D,

(5)

where Cu, u ∈ {n, p,Nn, Np} is the number of particles of type u in the cellular
array, B0 is a rate of electron-hole recombination, bn0 is a rate of an electron
recombination in one of the nonradiative centers, bp0 is a rate of a hole recombi-
nation in one of the nonradiative centers filled by an electron, D is an electron
diffusion coefficient, rmin

uv is a minimum distance between all particles of type u
and v (where u ∈ {n, p}, v ∈ {p,Nn, Np}), analogously, auv is a characteristic
distance of interaction between particles of type u and v.

For the chosen substitution two cells (x and its neighbour ϕ or ψ) with
the relevant particles are randomly selected. A realization of the substitution
occurs with a probability ωl = exp ((rmin

uv − ruv)/auv), l = 1, . . . , 4, where u, v
correspond to types of particles in the substitution. If a random number rand <
ωl, rand ∈ (0, 1), then states of chosen cells are replaced by the states in the right
part of the corresponding substitution. As mentioned above, an electron and a
hole recombine with an emission of photon, therefore, the number of photons
φ is calculated during the simulation as follows. In the case of substitution θ1
realization or θ4 for u = p realization, the number of photons is increased by 1.

To compare simulation results with an experiment two time counters are
included in the CA model: a local time counter τ and a global time counter t.
The local time counter is increased after each application of the operator Θ by
Δτ = −ln(rand1)/λ, rand1 ∈ (0, 1) being a random number. The global time
counter is increased after a number of local time steps by Δt = t0 · qk, where t0
is an initial time step, q is a parameter responsible for a global step duration, k
is a global step number.

The main characteristics experimentally observed are the particle concen-
trations and a radiative intensity. In the CA model, the particle concentra-

196 A.E. Kireeva and K.K. Sabelfeld

tion Cu is calculated as the number of particles of type u ∈ {n, p,Nn, Np} in
the cellular array. The radiative intensity is calculated as the number of pho-
tons obtained during a time step tk divided by a length of the time interval:
I(tk) = φ/(tk − tk−1).

At the initial time, electrons, holes and recombination centers are randomly
and uniformly distributed. So, we deal with stochastic initial conditions, so the
annihilation process should be considered as a stochastic process. Therefore, to
obtain reliable values of statistical characteristics, an averaging over a sufficiently
large ensemble of initial distributions of particles is required. Simulations for a
large number of different initial conditions demand a lot of computer time. A
parallel implementation of these tasks allows us to essentially decrease a com-
putational time.

3 Parallel Implementation of the CA Model of Electrons
and Holes Annihilation

A conventional approach of a parallel implementation of a cellular automata is
a decomposition of a cellular array into subdomains. However, this method is
inefficient for the CA model of electrons and holes annihilation owing to the
possibility of an interaction of particles distributed over the whole cellular array.
A simultaneous execution of independent tasks for different initial conditions
and an averaging of obtained results is a reasonable approach in our case.

Some optimizations of the CA algorithm and its program implementation
have been performed. A calculation of minimum distances rmin

uv between all
particles is computationally expensive operation. Therefore the calculation of
minimum distance rmin

uv between all particles of type u and v is performed only
at the initial time or when either a particle of type u or v corresponding to
the rmin

uv has been deleted. When a new particle of type u emerges, distances
between the new particle and all particles of type v are calculated. If a minimum
of these distances is less than a current value of rmin

uv , then rmin
uv is assigned to

the new minimum distance. In addition, optimizations of arithmetic operations
and memory usage have been done.

Parallel implementation of the simulation process for different initial condi-
tions is performed using OpenMP standard. A set of tasks with different initial
particles allocations is distributed between available threads. The threads simul-
taneously calculate values of particle concentrations and radiative intensity. On
each global time step each thread summarizes the obtained values of concen-
trations and intensity in its own array. After all global steps, master thread
summarizes the values calculated by all threads.

To estimate the efficiency of the parallel implementation of the CA algorithm,
computing experiments have been performed for the following parameter values:
the rates B0 = 0.04 ns−1, bn0 = bp0 = 0.02 ns−1, the characteristic interaction
distances anp = 4 nm, anNn

= apNp
= 2 nm, the initial particle concentrations

Cn(0) = Cp(0) = 10000, CNn
(0) = 5000, CNp

(0) = 0, the diffusion coefficient

Cellular Automata Model of Electrons and Holes Annihilation 197

D = 1 nm2·ns−1, the surface size Sizei = Sizej = 1000 nm, the initial time t0 =
0.5 ns. The simulations are performed for 1024 different initial conditions for
times up to tfin = 108 ns on cluster “NKS-30T” of the Siberian Supercomputer
Center SB RAS.

Table 1 presents a speed-up S(th) = T (1)/T (th), and a strong scaling effi-
ciency Q(th) = T (1)/(T (th) · th) of the parallel implementation of ℵ, where T (1)
is the computation time obtained for the sequential version of the CA algorithm,
T (th) is computation time obtained for the distribution of the tasks between th
threads.

Table 1. Parallel implementation characteristics of the CA algorithm.

th 1 2 4 6 8 10 12

T (th), hour 25.8 13.7 7.2 4.7 3.7 2.9 2.5

S(th) 1 1.9 3.6 5.4 6.9 8.9 10.5

Q(th) 1 0.94 0.89 0.9 0.87 0.89 0.87

The table shows that the parallel implementation efficiency amounts to 0.87
for the distribution of the tasks between 12 threads.

4 Simulation Results

The annihilation of electrons and holes in an inhomogeneous semiconductor
is simulated by means of ℵ with different values of the modeling parameters:
B0, bn, bp, anp, anNn

, apNp
, D, t0, for various initial particle concentrations

Cn(0), Cp(0), CNn
(0), CNp

(0) and different cellular array size Sizei, Sizej .
Periodic boundary conditions are used in the model.

In the course of the simulation, the following characteristics of the electron-
hole annihilation process are obtained on each global time step t ∈ [t0; tfin]: the
particle densities per one cell ρu(t) = Cu(t)/(Sizei · Sizej), u ∈ {n, p,Nn, Np}
and the radiative intensity I(t), with Cu(t) and I(t) being calculated as described
above in Sect. 2.

Computing experiments are carried out in three cases: (1) pure electron-
hole annihilation without recombination centers, (2) electron-hole annihilation
in the vicinity of recombination centers, (3) electron-hole annihilation in the
vicinity of recombination centers and diffusion of electrons. Consider for example
annihilation dynamics for the following parameter values: B0 = 0.04 ns−1, bn0 =
bp0 = 0.02 ns−1, anp = 4 nm, anNn

= apNp
= 2 nm, D = 1 nm2 · ns−1,

t0 = 0.5 ns, Cn(0) = Cp(0) = 400, CNn
(0) = 200, CNp

(0) = 0, Sizei =
Sizej = 200 nm, where in the first case bn0 = bp0 = 0 ns−1, CNn

(0) = 0, D =
0 nm2 · ns−1 and in the second case D = 0 nm2 · ns−1.

In the case of pure annihilation, the particle dynamics is as follows. At the
beginning, electrons and holes are randomly and uniformly distributed over the

198 A.E. Kireeva and K.K. Sabelfeld

surface (Fig. 1a). The near particles interact more likely than distant particles.
Therefore, during the simulation, all pairs of electrons and holes, situated on the
close distance, disappear, that causes a spatial separation of electrons and holes
and cluster formation (Fig. 1b). Further, particles on the cluster boundaries are
annihilated. As a result, the clusters are slowly decreasing (Fig. 1c).

)c)b)a

)f)e)d

Fig. 1. A character of the electron-hole annihilation for the cellular array size 200×200
in the case of a) pure annihilation for the initial time t = 0.5 ns; b) pure annihila-
tion for t = 374 ns; c) pure annihilation for t = 1.06 · 105 ns; d) annihilation with
presence of the recombination centers for t = 374 ns; e) annihilation in the vicinity
of the recombination centers for t = 6.6 · 104 ns; f) annihilation in the vicinity of the
recombination centers and electron diffusion for t = 35 ns.

In the case of electron-hole annihilation in the vicinity of the recombination
centers, a formation of the electrons and holes clusters occur as well (Fig. 1d).
However, clusters are more rarefied than in the case of pure annihilation, because
electrons and holes inside the clusters are captured by the recombination cen-
ters. Moreover, some separation of unoccupied recombination centers and centers
with electrons emerges (Fig. 1e). In the case of diffusion presence for the para-
meter values mentioned above, particle separation did not occur (Fig. 1f) due
to continuous particle mixing. So, the initially distant electrons diffuse to the
holes and all electrons and holes rapidly annihilate. However, when the diffusion
rate is small compared to the tunneling recombination rate, a formation of the
electrons and holes clusters may also occur.

Cellular Automata Model of Electrons and Holes Annihilation 199

a)

b)

Fig. 2. The radiative intensities I(t) (a) and the electron densities ρn(t) (b), obtained
by the CA simulation for the cellular array size 200 × 200 in three cases: 1) the pure
annihilation with ρn(0) = ρp(0) = 0.01, 2) the annihilation in the vicinity of the
recombination centers ρNn(0) = 0.005 and 3) the annihilation in the vicinity of the
recombination centers and electron diffusion D = 1 nm2 · ns−1.

The electron densities ρn(t) and the radiative intensities I(t), obtained by
the CA simulation in these three cases are presented in Fig. 2. In [4], a long-
time asymptotics for the purely radiative annihilation is obtained theoretically
by means of correlation analysis. The asymptotics for the electron density is
ρ′

n(t) ∼ 1/ln(B0 · t), the asymptotics for the radiative intensity is I ′(t) ∼ 1/(B0 ·
t · ln (B0 · t)2). The values of the asymptotics ρ′

n(t) and I ′(t) agree well with the
values of ρn(t) and I(t) obtained by the CA simulation. Both the recombination
centers and the electron diffusion accelerate the electron-hole annihilation in
comparison with the case of pure annihilation.

5 Conclusion

Based on the Monte Carlo algorithm [4,5], an asynchronous CA model of the
annihilation of electrons and holes in inhomogeneous semiconductors has been
developed and investigated. The developed CA model has allowed us to study
the evolution of electron-hole spatial distribution in great details. Dynamics of

200 A.E. Kireeva and K.K. Sabelfeld

the process has been investigated in the case of pure electron-hole annihilation,
electron-hole annihilation in the vicinity of recombination centers and electron-
hole annihilation in the vicinity of recombination centers and electron diffusion.
It has been found out that in the case of low diffusion rates, clusters of electrons
and holes are formed on the surface. The cluster sizes are slowly decreasing due
to the annihilation of particles on their boundaries. In the case of high diffusion
rate, the cluster formation does not occur due to continuous particle mixing.

In addition, the parallel implementation of the CA model of the electron-
hole annihilation has been performed using OpenMP standard. The parallel
implementation has allowed us to calculate the characteristics of the simulated
process for a large ensemble of different initial distributions of the particles. The
radiative intensity and electron density, obtained by ℵ for the pure annihilation,
agree well with the large time asymptotics for these characteristics, that confirms
an accuracy of the CA model of the electron-hole annihilation.

References

1. DenBaars, S.P.: Gallium-nitride-based materials for blue to ultraviolet optoelec-
tronics devices. Proc. IEEE 85(11), 1740–1749 (1997). doi:10.1109/5.649651

2. Brosseau, C.-N., Perrin, M., Silva, C., Lenonelli, R.: Carrier recombination dynam-
ics in InxGa1−xN/GaN multiple quantum wells, Phys. Rev. B 88 (2010), Article
ID 085305

3. Caro, M., Schulz, S., and O’Reilly, E.: Theory of local electric polarization and its
relation to internal strain: Impact on polarization potential and electronic proper-
ties of group-III nitrides, Phys. Rev. B, vol. 88 (2013), Article ID 214103

4. Sabelfeld, K.K., Brandt, O., Kaganer, V.M.: Stochastic model for the fluctuation-
limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear
Smoluchowski equations. J. Math. Chem 53(2), 651–669 (2015)

5. Sabelfeld, K.K., Levykin, A.I., Kireeva, A.E.: Stochastic simulation of fluctuation-
induced reaction-diffusion kinetics governed by Smoluchowski equations. Monte
Carlo Methods Appl. 21(1), 33–48 (2015)

6. Sabelfeld, K.K., Kolodko, A.A.: Stochastic Lagrangian models and algorithms for
spatially inhomogeneous Smoluchowski equation. Math. Comput. Simul. 61, 115–
137 (2003)

7. Toffoli, T., Margolus N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, USA (1987)

8. Weimar, J.R., Tyson, J.J.W., Layne, T.: Diffusion and wave propagation in cellular
automaton model of excitable media. Physica D 55, 309–327 (1992)

9. Bandman, O.L.: Mapping physical phenomena onto CA-models, AUTOMATA-
2008. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., Martinez, G.J.,
Morita, K., Worsch, T. (eds.) Theory and Applications of Cellular Automata, pp.
381–397. Luniver Press, UK (2008)

10. Bandman, O.L.: Cellular automatic models of spatial dynamics. Syst. Inform.
Methods Models Mod. Program. 10, 59–113 (2006). (In Russian)

http://dx.doi.org/10.1109/5.649651

Constructions Used in Associative Parallel
Algorithms for Directed Graphs

Anna Nepomniaschaya(B)

Institute of Computational Mathematics and Mathematical Geophysics,
Russian Academy of Sciences, Pr. Lavrentieva, 6, Novosibirsk 630090, Russia

anep@ssd.sscc.ru

Abstract. The paper selects constructions that are used to implement a
group of algorithms for directed graphs on a model of associative parallel
systems with vertical processing (the STAR–machine). Moreover, a new
implementation on the STAR–machine of Dijkstra’s algorithm for finding
the single–source shortest paths is proposed.

Keywords: The single-source shortest path · Spanning tree · Adjacency
matrix · Transitive closure of a directed graph · Access data by contents

1 Introduction

Associative (content addressable) parallel processors of the SIMD type with
bit–serial (vertical) processing and simple processing elements (PEs) perform
the massively parallel search by contents and use 2D tables as the basic data
structure. In particular, such an architecture is best suited for natural and effi-
cient implementation of graph algorithms. In [4], we propose an abstract model
of the SIMD type (the STAR–machine) that simulates the run of such systems at
the micro level. Associative parallel algorithms are represented as corresponding
procedures for the STAR–machine. In [5], we present basic associative parallel
algorithms that are used to design different associative algorithms for different
applications. In [6], we select a group of constructions used to represent on the
STAR–machine the classical graph algorithms of Prim–Dijkstra and Kruskal for
finding a minimal spanning tree (MST) of an undirected graph, and the Gabow
algorithm for finding the smallest spanning tree with a degree constraint of a
vertex. In [7], we select constructions being used to implement on the STAR–
machine associative parallel algorithms for the dynamic edge update of an MST
and for the dynamic reconstruction of an MST after deleting and after inserting
a vertex along with its incident edges.

In this paper, we select constructions that are used to implement on the
STAR–machine a group of algorithms for a directed graph G having n vertices,
m edges, and a function wt(e) that assigns a weight to every edge. This group
includes Dijkstra’s algorithm for finding the single-source shortest paths, the
Italiano algorithms for the dynamic update of the transitive closure after insert-
ing and after deleting an edge, and the Ramalingam algorithms for updating the
shortest paths subgraph with a sink after inserting and after deleting an edge.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 201–209, 2015.
DOI: 10.1007/978-3-319-21909-7 19

202 A. Nepomniaschaya

2 Simultaneous Finding the Single-Source Shortest Paths
and Distances

We first recall the main idea of Dijkstra’s algorithm [1]. It assigns temporal labels
l(v) for each vertex v of the given directed graph G so that l(v) ≥ dist(s, v),
where dist(s, v) is the weight of the shortest path from the source vertex s to the
vertex v. The algorithm constructs a set of vertices F , where the shortest path
from s to any vertex of F passes only through vertices in F . Initially, F = {s},
l(s) = 0 and ∀v /∈ F l(v) = ∞. Let F consist of k vertices (k < n) and u be the
last vertex added to F . Then the (k + 1)-th vertex for F is defined as follows.
One first defines all arcs (u, vi), where vi /∈ F . Then for every vertex vi, one
determines the label l(vi). After that the vertex whose label has the minimum
value is included in the set F .

The associative version of Dijkstra’s algorithm [8] selects simultaneously
both the shortest path and the distance for all vertices of G. It is given as
procedure DistPath that uses, in particular, the number of bits h required for
representing infinity, and the binary representation of infinity inf . It returns
both the matrix Dist, whose every i-th row saves the distance from s to vi, and
the matrix Paths, whose every j-th column saves by bits ′1′ positions of vertices
included in the shortest path from s to vj .

In this paper, we first propose a new implementation of Dijkstra’s algorithm
on the STAR–machine. It simplifies the execution of the procedure DistPath due
to including the adjacency matrix Adj in the data structure and due to taking
into account the fact that only a single arc enters every vertex in a tree. Then
we select the main constructions used in this implementation.

The new implementation of Dijkstra’s algorithm uses the following data
structure: a Boolean matrix Adj; a matrix Weight that consists of n fields having
h bits each; a matrix Dist described above.

This implementation of Dijkstra’s algorithm uses, in particular, a slice U to
save by bits ′1′ positions of vertices that have not been included yet in the set
F and a matrix R1 to save a field of the matrix Weight.

procedure DistPath1(Adj:table; Weight:table; s,h:integer;
inf:word(Dist); var Dist:table; var Paths:table);

/* Here, s is the source vertex, h is the number of bits for representing
infinity, inf is the binary representation of infinity. */

var R1,R2:table;
U,X,Z:slice(Adj); v1:word(Dist); v2:word(Adj);
i,k:integer;

1. Begin SET(U); U(s):=’0’; k:=s;
Here, k saves the last vertex included in the set F . */
2. WCOPY(inf,U,Dist);
3. while SOME(U) do
4. begin TCOPY1(Weight,k,h,R1);
5. X:=COL(k,Adj);
6. X:=X and U;

Constructions Used in Associative Parallel Algorithms for Directed Graphs 203

/* In the slice X, we save positions of vertices that do not
belong to F , but they are adjacent to the vertex vk. */

7. v1:=ROW(k,Dist);
8. ADDC(R1,X,v1,R2);
/* The result of adding dist(s, vk) and wt(vk, vi) is written

in every i-th row of R2, which corresponds to X(i) =′ 1′. */
9. SETMIN(R2,Dist,X,Z);

10. TMERGE(R2,Z,Dist);
/* We decrease the label l(vi) to l(vk) + wt(vk, vi) in every i-th row

of the matrix Dist which corresponds to Z(i) =′ 1′. */
11. MIN(Dist,U,X); k:=FND(X);
12. U(k):=’0’;
/* A new vertex is included in F . */

13. v2:=ROW(k,Adj);
14. X:=CONVERT(v2);
15. X:=X and (not U);
16. i:=FND(X);
/* The vertex vi is the next to the vertex vk

in the shortest path from s to vk. */
17. X:=COL(i,Paths); X(i):=’1’;
18. COL(k,Paths):=X;
19. end;
20. End.

Let us select the main constructions used in the procedure DistPath1.
Construction 1. (Finding vertices adjacent to the current vertex included in

the set F .)
Let a slice U save the vertices vi /∈ F . Let vk be the current vertex included

in the set F . Then the vertices from U adjacent to vk are defined as intersection
of the k-th column of the matrix Adj and the slice U . Let a slice, say X, save
these vertices.

Construction 2. (Finding new labels for vertices adjacent to the current vertex
included in F .)

Let vk be the current vertex included in F . Let a slice X save the vertices from
the slice U adjacent to vk. Then we first select the k-th field in the matrix Weight
and the distance from s to vk in the matrix Dist. After that, we simultaneously
define l(vi) = dist(s, vk)+wt(vk, vi) for vertices vi that are saved in the slice X.
Let a matrix, say R2, save the labels l(vi).

Construction 3. (Finding a new vertex for including in F .)
Let vk be the current vertex included in F . Let a slice X save the vertices

adjacent to vk. Let a matrix R2 save the labels of vertices adjacent to vk. Then
we first simultaneously decrease the labels l(vi) in the matrix Dist to the new
labels in the matrix R2 for the vertices that are saved in the slice X. After
that, among the vertices not included in the set F , we select a vertex having the
minimal label in the matrix Dist. This vertex is included in the set F .

Construction 4. (Finding a new arc to include in F .)

204 A. Nepomniaschaya

Let a slice U save the vertices vr /∈ F . Let vk be the current vertex included
in F . A vertex vi ∈ F forming an arc (vi, vk) is defined by intersection of the
k-th row of the matrix Adj with the slice notU . Then we include the vertex k
in the i-th column of the matrix Paths.

It should be noted that the procedure DistPath1 takes the same time O(hn)
as the procedure DistPath [8].

Now we compare three implementations of Dijkstra’s algorithm on the
STAR–machine. The first implementation simultaneously finds the distances
from s to all vertices of G and builds a protocol of this computation. This
protocol allows one to restore the shortest path from s to a given vertex of G.
The next two implementations simultaneously find both the distances and the
shortest paths from s to all vertices of G. However, the new implementation of
Dijkstra’s algorithm simplifies the selection of vertices adjacent to the current
vertex included in the set F and the building of the matrix Paths.

3 Updating the Shortest-Paths Subgraph

In this section, we select constructions that are used to implement associative
versions of the Ramalingam algorithms [13] for updating the shortest-paths sub-
graph.

Informally, the Ramalingam algorithms define affective vertices for which
the new shortest paths to the sink should be defined after deleting and after
inserting an arc to the given graph G. Associative versions of these algorithms
employ a data structure that includes along with the matrices Adj, Dist, and
Weight an adjacency matrix SP of the shortest paths subgraph; a matrix Cost
that consists of n fields having h bits each, where the weight of an arc (i, j) is
written in the i-th row of the j-th field; a slice AffectedV that saves with bits
′1′ positions of all affected vertices.

We first consider constructions that are used in the associative version of
the Ramalingam decremental algorithm [11]. Let us recall the main idea of this
algorithm. Let an arc (i, j) be deleted from SP (G) and outdegree(i) = 0, that
is, the number of arcs outgoing from the vertex i is equal to zero. At first, one
determines the set of affected vertices and arcs obtained after deleting the arc
(i, j) from SP (G). Then affected arcs are deleted from SP (G). After that for
every affected vertex vi, one computes a new shortest path to the sink s and
updates SP (G).

The next two constructions use a slice WS to save the candidates among
which affected vertices are selected.

Construction 5. (Initial update of slices AffectedV and WS.)
Let an arc (i, j) be deleted from matrices G and SP . Let outdegree(i) = 0.

Then the slices AffectedV and WS are set to zeros, that is, AffectedV = ∅
and WS = ∅. After that the vertex i is included into the slice WS.

Construction 6. (Updating the matrix SP after selection of an affected vertex.)
Let the slice WS �= ∅. Then the position of the uppermost (first) bit ′1′ (say

k) is deleted from the slice WS and included into the slice AffectedV . After that

Constructions Used in Associative Parallel Algorithms for Directed Graphs 205

all arcs entering the vertex k are simultaneously deleted from SP . Finally, the
tail r of every deleted arc (r, k) is included into the slice WS if outdegree(r) = 0.

The following construction uses a similar idea as Construction 2.
Construction 7. (Finding a new distance from an affected vertex to the sink.)
Let matrices G, Weight, and Dist be given. Let k be an affected vertex.

Then, at first, by means of a slice (say Z), one saves non–affected heads of arcs
outgoing from the vertex k in the matrix G. After that by means of a matrix
(say W1), one saves the k-th field of the matrix Weight. Knowing the slice Z
and the matrices W1 and Dist, one simultaneously defines weights of different
paths from k to the sink. Finally, one selects the new distance from k to the sink
and saves it in the k-th row of the matrix Dist.

Construction 8. (Updating the arcs outgoing from an affected vertex.)
Let the current slice AffectedV and matrices G, SP , Weight, and Dist be

given. Let k be the current updated affected vertex. By means of the method
proposed in Construction 7, one first simultaneously defines the weights of dif-
ferent paths from the vertex k to the sink. Then by means of a slice (say Y), one
defines positions of those arcs (k, l) for which distnew(k) = wt(k, l) + distold(l).
Finally, positions of these arcs are saved in the matrix SP .

Construction 9. (Updating the arcs entering an affected vertex.)
Let the current matrices G, Cost, and Dist be given. Let k be the current

updated affected vertex. One first defines positions of arcs entering the vertex
k in G. Then knowing distnew(k) and the weights of arcs entering the vertex
k in the matrix Cost, one determines the weights of different paths to the sink
starting with the arc (r, k). After that by means of a slice one saves positions
of the tails of arcs (l, k) for which distnew(l) < distold(l). Finally, one writes
distnew(l) in the corresponding rows of the matrix Dist.

On the STAR–machine, the associative version of the Ramalingam decre-
mental algorithm is implemented as procedure DeleteArc [11]. It takes O(hk)
time, where h is the number of bits for coding the infinity and k is the number
of affective vertices obtained after deleting an arc.

Now, we select constructions that are used in the associative version of the
Ramalingam incremental algorithm for updating the shortest-paths subgraph
[12]. Let us briefly recall the main idea of this algorithm.

Let an arc (i, j) be added to G and its weight be added to matrices Weight
and Cost. If wt(i, j)+dist(j) = dist(i), then the arc (i, j) is added to the matrix
SP . If wt(i, j) + dist(j) < dist(i), then dist(i) := wt(i, j) + dist(j), the vertex
i becomes an affected one and it is assigned the maximal priority. Then one
updates every arc outgoing from the affected vertex and every arc entering it.
It should be noted that updating the arcs outgoing from an affected vertex is
performed by analogy with Construction 8.

To select affected vertices, the Ramalingam incremental algorithm uses a
data structure called a heap or a priority queue with keys. To simulate this data
structure on the STAR–machine, one uses a slice Z1 to save the selected affected
vertices and a matrix Queue whose every l-th row saves the distance from the
vertex l to the vertex i.

206 A. Nepomniaschaya

Construction 10. (Updating the arcs entering an affected vertex.)
Let the current matrices G, SP , Cost, and Dist be given. Let k be the current

updated affected vertex. By analogy with Construction 9, one first simultane-
ously determines the weights of different paths to the sink each starting with an
arc that enters the vertex k. After that by means of a slice, one saves positions
of those arcs (l, k) for which distnew(l) = wt(l, k)+distnew(k) and includes posi-
tions of these arcs into the matrix SP . Finally, by means of a slice (say Y), one
saves the tails of arcs (l, k) for which distnew(l) < distold(l) and writes distnew(l)
in the corresponding rows of the matrix Dist.

The following construction uses a slice Z1 described above, a slice Y obtained
in Construction 10, the matrix Queue, a row v2 to save the distance from the
vertex i to the sink before inserting the arc (i, j), and a row v3 to save the weight
of the shortest path to the sink that starts with the arc (i, j). Initially Z1 = ∅.

Construction 11. (The initial update of matrices Dist and Queue after adding
a new arc to G.)

Let an arc (i, j) be added to G and its weight be added to matrices Weight
and Cost. Let v3 < v2. Then the vertex i is included into the slice Z1, the weight
v3 is written in the i-th row of the matrix Dist, and the i-th row of the matrix
Queue consists of zeros.

Construction 12. (Finding new affected vertices.)
Let the matrix Queue and the slices Z1 and Y be given. Let Z1 �= ∅. Then

one selects the vertex (say k) that corresponds to the position of the minimal
row in the matrix Queue, and deletes this vertex from the slice Z1. After that
the arcs outgoing from the vertex k and the arcs entering it are updated as
described before. Let the slice Y save the tails of arcs (l, k) for which distnew(l) <
distold(l). Then one includes such vertices into the slice Z1, simultaneously finds
dist(l) − dist(i) and writes the results in the corresponding rows of the matrix
Queue.

In [12], the associative version of the Ramalingam incremental algorithm
is implemented on the STAR–machine as procedure InsertNewArc. It takes the
same O(hk) time as procedure DeleteArc.

4 Updating the Transitive Closure of a Digraph

In this section, we select the main constructions that are used in [10] to represent
the associative versions of the Italiano algorithms for updating the transitive
closure of a digraph.

In [2,3], Italiano proposed the following data structure to support the efficient
deletion and insertion of arcs in a digraph. The transitive closure of a graph G
is represented by associating to each vertex u a set Desc[u] of all descendants of
u in G. Any Desc[u] is organized as a spanning tree rooted at the vertex u. In
addition, a matrix of pointers Index is maintained, where Index[i, j] points to
the vertex j in the tree Desc[i] if j ∈ Desc[i] and it is Null, otherwise.

In [10], associative versions of the Italiano algorithms for updating the tran-
sitive closure use the following data structure: a Boolean matrix Adj; a Boolean

Constructions Used in Associative Parallel Algorithms for Directed Graphs 207

matrix Parent that consists of n submatrices (blocks) A1, A2, . . . , An, where
Ai is the adjacency matrix that corresponds to the spanning tree Ti; a Boolean
matrix Nodes, whose every i-th column saves with bits ′1′ all vertices of the
spanning tree Ti.

We first select the main constructions that are used in the associative version
of Italiano’s decremental algorithm. Let us briefly recall the main idea of this
algorithm.

Let an arc (i, j) be deleted from G. Then it is deleted from all spanning trees
in which it appears. Let (i, j) belong to Desc[u]. After deleting the arc (i, j)
from Desc[u] it splits into two subtrees. To obtain a new tree, it is necessary to
check whether there is such a vertex z in Desc[u] that (z, j) is an arc of G and
the corresponding u−j path avoids the vertex i. Such a vertex z is called a hook
for j. In this case, the arc (i, j) is replaced by the arc (z, j) and Desc[u] does not
change. Otherwise, the vertex j along with its outgoing edges are deleted from
Desc[u], and the seach for a hook for each son of j is recursively performed.

Construction 13. (Finding possible hooks for j.)
Let an arc (i, j) be deleted from the matrix Adj and the spanning tree Tr.

Then possible hooks for the vertex j are defined by intersection of the r-th
column of the matrix Nodes and the j-th row of the matrix Adj. Let the result
of this intersection be saved in a row, say u.

Construction 14. (A case when there is a hook for j.)
Let the assumption of Construction 13 be true and let a row u save the

possible hooks for the vertex j. Let u �= ∅. Then a hook for j is defined as the
leftmost vertex, say p, that corresponds to bit ′1′ in the row u. The arc (p, j) is
included into the spanning tree Tr.

The following construction uses a slice A to save the vertices that have not
been updated yet. Initially, A = ∅.

Construction 15. (A case when there is no hook for j.)
Let the assumption of Construction 13 be true and let a row u save the

possible hooks for the vertex j. Let u = ∅. Then the vertex j is deleted from the
r-th column of the matrix Nodes. After that all sons of j in the spanning tree
Tr are saved in the slice A. While A �= ∅, one selects the vertex that corresponds
to the uppermost bit ′1′ and updates it by means of Constructions 13 and 14.

In [10], the associative version of Italiano’s decremental algorithm is imple-
mented on the STAR–machine having no less than n PEs as procedure DelArc1.
For the considered data structure, it takes O(n) time and O(n3) space.

Now, we select constructions that are used in the associative version of Ital-
iano’s incremental algorithm. We first recall the main idea of Italiano’s algorithm.

Let a new arc (i, j) be added to G. Then this arc is added to the trees that
include the vertex i and do not include the vertex j. Let an arc (i, j) be added
to the spanning tree Desc[r]. Then this tree is updated as follows. The common
vertices in the trees Desc[r] and Desc[j] are deleted from the copy of Desc[j].
Then the pruned copy of Desc[j] is linked to the vertex i in Desc[r].

Construction 16. (Finding new vertices for Tr after adding an arc (i, j).)

208 A. Nepomniaschaya

Let a new arc (i, j) be added to the spanning tree Tr. Then by means of
the matrix Nodes, one first defines common vertices in the trees Tr and Tj and
deletes these vertices from the copy of Tj . After that one saves the pruned copy
of Tj in a slice, say Z. Finally, one includes the vertices from the slice Z into the
r-th column of the matrix Nodes.

Construction 17. (Finding new arcs for Tr after adding an arc (i, j).)
Let a new arc (i, j) be added to the spanning tree Tr. Let a slice Z save the

pruned copy of Tj . Then one first includes the arc (i, j) into the spanning tree
Tr. Then for every vertex p �= j saved in the slice Z, one determines the position
of an arc entering the vertex p in Tj and includes it in the spanning tree Tr.

In [10], the associative version of Italiano’s incremental algorithm is imple-
mented on the STAR–machine as procedure InsertArc1 that takes O(n) time per
an insertion and its space complexity is O(n3).

In [9], the associative version of Italiano’s decremental algorithm uses another
data structure that includes along wth the matrices Adj and Nodes a matrix
Code, whose every i-th row saves the binary representation of the vertex i; an
association of matrices Left and Right and a global slice X, where positions of arcs
belonging to G are marked with bits ′1′; a matrix Trans, whose every i-th column
saves positions of arcs belonging to the spanning tree Ti. For the considered
data structure, the associative version of Italiano’s decremental algorithm is
represented on the STAR–machine having no less than m PEs as procedure
DeleteArc that takes O(n log n) time per an deletion and its space complexity is
O(mn).

5 Conclusions

We have selected constructions that are used in parallel implementation on the
STAR–machine a group of sequential algorithms for directed graphs. The pro-
posed constructions and methods can be used, in particular, to solve in a natural
way other graph problems on vertical processing systems.

As shown in our previous papers, the access data by contents, the use of the
simple data structure given as 2D tables, and the vertical data processing allowed
us, in particular, to implement efficiently on the STAR–machine a lot of impor-
tant graph algorithms. Unfortunately, now there is no modern and proper hard-
ware to implement our approach. Nevertheless, there are some modern SIMD
systems that allow one to update data at the micro level. We are planning to
simulate the STAR–machine run by means of the Graphics Processing Unit.

References

1. Dijkstra, E.W.: A note on two problems in connection with graphs. J. Numerische
Mathematik. 1, 269–271 (1959)

2. Italiano, G.F.: Amortized efficiency of a path retrieval data structure. J. Theoret.
Comput. Sci. 48(2–3), 273–281 (1986)

Constructions Used in Associative Parallel Algorithms for Directed Graphs 209

3. Italiano, G.F.: Finding paths and deleting edges in directed acyclic graphs. J. Inf.
Process. Lett. 28, 5–11 (1988)

4. Nepomniaschaya, A.S., Dvoskina, M.A.: A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors. J. Fundamenta Infor-
maticae 43, 227–243 (2000). IOS Press

5. Nepomniaschaya, A.S.: Basic associative parallel algorithms for vertical processing
systems. In: Bulletin of the Novosibirsk Computing Center, IIS Special Issue 29,
pp. 63–77. NCC Publisher (2009)

6. Nepomniaschaya, A.S.: Constructions used in associative parallel algorithms for
undirected graphs. Part 1. In: Bulletin of the Novosibirsk Computing Center, IIS
Special Issue 35, pp. 67–81. NCC Publisher (2013)

7. Nepomniaschaya, A.S.: Constructions used in associative parallel algorithms for
undirected graphs. Part 2. In: Bulletin of the Novosibirsk Computing Center, Issue
36, pp. 65–78. NCC Publisher (2014)

8. Nepomniaschaya, A. S.: Concurrent selection of the shortest paths and distances in
directed graphs using vertical processing systems. In: Bulletin of the Novosibirsk
Computing Center, Issue 19, pp. 61–72. NCC Publisher (2003)

9. Nepomniaschaya, A.S.: Associative version of italiano’s decremental algorithm for
the transitive closure problem. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol.
4671, pp. 442–452. Springer, Heidelberg (2007)

10. Nepomniaschaya, A.S.: Efficient Implementation of the Italiano algorithms for
updating the transitive closure on associative parallel processors. J. Fundamenta
Informaticae. 89(2–3), 313–329 (2008). IOS Press

11. Nepomniaschaya, A.S.: Efficient parallel implementation of the Ramalingam decre-
mental algorithm for updating the shortest paths subgraph. J. Comput. Inform.
32, 331–354 (2013)

12. Nepomniaschaya, A.S.: Associative version of the Ramalingam algorithm for the
dynamic update of the shortest paths subgraph after inserting a new edge. J.
Cybern. Syst. Anal. 3, 45–57 (2012). Kiev: Naukova Dumka (in Russian) (English
translation by Springer)

13. Ramalingam, G.: Bounded Incremental Computation. LNCS, vol. 1089. Springer,
Heidelberg (1996)

Oscillatory Network Based on Kuramoto
Model for Image Segmentation

Andrei Novikov(&) and Elena Benderskaya

St.-Petersburg State Polytechnical University, St.-Petersburg 194064, Russia
spb.andr@yandex.ru, helen.bend@gmail.com

Abstract. Oscillatory networks represent biologically inspired models that
implement cognitive functions such as vision, motion and memory. Vision
functions are most attractive brain ability. Despite recognition problems have
been successfully solved by traditional neural networks, segmentation problems
still require close attention. In this paper, we propose oscillatory network based
on Kuramoto phase oscillator for image segmentation where each allocated
feature is encoded by ensemble of synchronous oscillators like in biologically
plausible systems. The proposed model is designed to perform color segmen-
tation and object segmentation using synchronization phenomena. Processes of
synchronization between oscillators during image processing and multi-core
implementation of the network for simulation are discussed. Experimental
results of segmentation by the network using formal and real images have been
presented.

Keywords: Oscillatory network � Phase oscillator � Synchronization �
Kuramoto model � Image segmentation

1 Introduction

Visual functions such as spatial orientation, segmentation and recognition are trivial
operations for vast of majority representatives of the animal world, but at the same time
these functions are complex problems for machines. For example, our brain easily
remembers new faces, objects and easily recognizes them in different places in the
presence of other objects in the field of view and most animals have these abilities.
Using conventional algorithms for achieving similar abilities requires many computing
and time resources. Therefore, close attention to biologically inspired models is
explained by desire to reach the same abilities for solving computer vision problems
using similar processing mechanisms [2, 5].

In contrast to the classical concept of neurons, oscillators are closer to the biological
plausible models of neurons, which are essentially non-linear dynamical systems.
There are many research papers that hypothesize and present experimental confirmation
that cognitive functions are implemented by synchronization processes between neu-
rons in the brain [1, 4]. Object features are encoded in-phase activity of neurons in
different areas of the cerebral cortex, in other words ensembles of synchronous neurons
encode only one feature of the object. Thus, understanding of the principles of the

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 210–221, 2015.
DOI: 10.1007/978-3-319-21909-7_20

processes in the mammalian brain gives a wide theoretical base for creation of
fundamentally new algorithms which provide a parallel and distributed processing.

Splitting images into disjoint fragments that correspond to visual features such as
colors, contours and objects is a relevant issue that is referred to segmentation. In an
informal formulation, image segmentation is a process of separation of a digital image
into several segments. The aim of segmentation is to change representation of the
image to make it simpler and easier to analyze, for instance for further recognition of
each segment and scene analysis. From the oscillatory theory point of view, each
feature of input image such as color or separate object or contour is encoded by one
ensemble of synchronous oscillators [7, 10].

The synchronization is important issue in the oscillatory theory because this process
is a key concept to the understanding of self-organization phenomena. Synchronization
occurs in pendulum clock, electrical, electromagnetic and quantum generators, and
even between organisms in collective, for instance, firefly flickers, poultry and fish in
flocks, marching or applauding people. In case of coupled oscillators synchronization
should occurs between oscillators that represent the same feature and at the same time
de-synchronization should be between ensembles of oscillators that represent different
features.

Many studies have been performed in order to build biologically inspired models of
oscillatory neural networks of visual cortex based on synchronization principles for the
last decades. The model of oscillatory network based on competition between syn-
chronous ensembles of oscillators using global inhibitor has been implemented in
LEGION [23, 24] based on the Van Der Pol model and performs object segmentation
of isolated objects on images. The idea of central element has been also implemented in
oscillatory network model based on Hodgkin-Huxley neuron model [8]. The model is
designed for color segmentation and the most interesting feature is that peripheral
neurons do not have any connections between themselves, all interaction takes place
though central element [4, 11, 12]. There are several papers devoted to contour seg-
mentation based on the Eckhorn model of pulse-coupled neural network [6, 14–16, 22]
that has been initially proposed for modeling a cat’s visual cortex [5].

In this paper, we propose a model of a double layer oscillatory network for image
segmentation where the first layer of the network encodes colors and the second layer
encodes objects using output information of the first layer. The network uses another
approach of synchronization between oscillators based on the modified Kuramoto
model [14]. Unit of the network is phase oscillator and each oscillator is associated
with pixel or with area of pixels whose description determines spatial position of each
oscillator in the layer. The end of the segmentation process is determined by the
evaluation of the synchronization in the network.

2 Preliminaries

Synchronization represents one of the forms of self-organization between objects.
There is dependence between coupling strength and convergence rate of synchroni-
zation, for example coupling strength can be hard like two interconnected wheels or it

Oscillatory Network Based on Kuramoto Model for Image Segmentation 211

can be soft like two pendulums that are fixed on the same beam, nevertheless
synchronization can be reached in both cases.

Consider the formal mathematical statement of the synchronization problem.
Suppose there is an interconnected system with k dynamic objects where state of each
object i is defined by r-dimensional vector x(s) = [x1(s), x2(s), …, xr(s)], s = 1, …, k,
components xj(s) are coordinates of object in phase space of the system. State of the
system is determined by the set of vectors x(s) and by the v-dimensional vector u = [u1,
u2, …, uv] that describes states of connections between objects. Phase space of the
system has r1 + r2 + … + rk + v dimensions. Thus, the system is synchronous if phase
coordinates are changed in line with following rule:

x sð Þ
j ¼ n sð Þ

j xt þ y sð Þ
j m sð Þ

j xt
� �

; j ¼ 1; . . .; rs;

up ¼ npxt þ vp mpxt
� �

; p ¼ 1; . . .; v

(

ð1Þ

In these equations, ω –positive constant, nj(s) and np –integer variables, mj(s) and
mp – positive integer variables, yj(s) and vp – periodical functions with periods
2π/mj(s) and 2π/mp on ωt. If nj(s) or np are equal to zero than corresponding coordinate
xj(s) can be considered as oscillatory. Using averaging operator for both parts of the
equation:

\ _x sð Þ
j [¼ n sð Þ

j x
\ _up [¼ npx

�
ð2Þ

In accordance to Eq. (2), oscillatory or average uniform motion for each phase
coordinate corresponds to synchronous movements of the system.

There are three general types of synchronization that can be observed in dynamic
systems:

• global synchronization means state of dynamic system where each oscillator has the
same phase coordinate in each dimension;

• local synchronization means state of dynamic system that consist of two or more
groups of oscillators with different phase coordinates but at the same time with the
same phases within groups;

• de-synchronization means state of dynamic system where no oscillators with the
same phase coordinates.

Kuramoto has proposed one of the well-known models for the synchronization.
Because of simplicity the model is flexible and can be adapted for solving various
problems. The model allows studying of synchronization processes in non-linear
dynamic systems such as oscillatory networks. The Kuramoto model that consists of a
population of N full-interconnected phase oscillators is described by the following
differential equation [13]:

_hi ¼ xi þ K
N

XN

j¼1

sin hj � hi
� � ð3Þ

212 A. Novikov and E. Benderskaya

Phase of oscillator θi is basic state variable that is distributed in the interval from
0 to 2π. Intrinsic frequency of oscillator ωi can be considered as bias that is randomly
initialized in line with some probability distribution. Couplings between oscillators are
defined by strength K is important parameter that affects processes of synchronization.

Synchronization plays important role in oscillatory neural networks, where each
ensemble synchronized oscillators corresponds to a single encoded feature. Oscillatory
networks that are based on Kuramoto model ensure all general states: global syn-
chronization, local or partial synchronization and de-synchronization. These states can
be set by coupling strength K between oscillators. High value of coupling strength
K ≥ N ensures quick switch to global synchronization state. De-synchronization state
can be ensured by coupling strength K that is less than critical value of coupling
strength Kc. The critical coupling strength Kc is defined by width of distribution of the
intrinsic oscillator frequency: Kc = 2γ. Thus when oscillatory network contains inho-
mogeneous connections whose coupling strengths are greater than critical coupling
strength then state of local synchronization can be established in the network. The state
of local synchronization implies existence of more than one ensemble of synchronized
oscillators.

Feature allocation is driven by state of synchronization that should be accurately
identified. Evaluation of synchronization degree can be used for state identification and
defined by following expression [13]:

r ¼ 1
N exp iuð Þ

XN

j¼1

exp ihj
� �

�����

�����
ð4Þ

Where r is distributed from 0 to 1, and φ is average phase of all oscillators in the
oscillatory network:

u ¼ 1
N

XN

j¼1

hj ð5Þ

In case of synchronization degree r tends to 1 the state can be identified as a global
synchronization, in case of r tends to 0 then the state corresponds to
de-synchronization. It can be assumed that local or partial synchronization are roughly
defined by values 0 < r < 1, but this expression is not always satisfied because of
boundary of de-synchronization area that is defined by critical value of coupling
strength Kc between oscillators. Condition of local synchronization in line with critical
coupling strength is following:

r !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Kc

K

r

ð6Þ

Convergence rate of synchronization process depends on structure of connections
between oscillators and also depends on number of oscillators. But convergence rate
can be improved by increasing coupling strength between oscillators in case of

Oscillatory Network Based on Kuramoto Model for Image Segmentation 213

networks that have differ structures from full-interconnected especially in network with
non-uniform punctured connections. Oscillatory network with a “grid” structure where
each oscillator has connections with four neighbors (right, left, top and bottom) is
characterized by quadratic dependence of convergence rate of synchronization O(n2).
Network with a “list” structure where each oscillator has connection with two neigh-
bors (right and left) is characterized by cubic dependence O(n3). These dependences
affect possibilities to use oscillatory networks for real practical problems [18]. One of
the ways for increasing convergence rate is usage of bio-inspired principles that have
been proposed in the paper [19] where input data space is encoded by self-organized
feature map that saves possibility to ensure parallel execution that is the hallmark of
neural networks.

There are studies devoted to adaptation of the Kuramoto model for solving vari-
ous problems, for example, several algorithms and approaches of cluster analysis
[3, 17, 20], image compression method [9], learning patterns [21], also there are papers
devoted to graph coloring problem that is solved by oscillatory network based on the
considered model with negative connections [25, 26]. In the following section, the
oscillatory network based on modified Kuramoto model has been presented for image
segmentation problem.

3 The Oscillatory Network for Image Segmentation

3.1 Oscillatory Network Architecture

The oscillatory network consists of two layers of phase oscillators. Total number of
oscillators in each layer determined by total number of pixel or area of pixels. Each
pixel or area of pixels defines spatial position of each oscillator. Such architecture
forms columns of oscillators that correspond to certain regions of input image. The
output dynamic of the first layer activates oscillators from the second layer. Oscillator
from the first layer is only able to activate oscillators located in his own column. Active
oscillators form separated groups of oscillators that interact with each other and each
group of active oscillators is defined by ensemble of synchronous oscillators in the first
layer. In other words, oscillators in active areas of the seconds layer interact with each
other within own group and do not have any relation with oscillators from other active
groups.

Connections between oscillators are formed in line with input image and similarity
parameter that is general parameter of the network and that is distributed from 0 to 1,
where 0 means no similarity when each fragment of image is unique and only totally
similar fragments of image should be taken into account by the network, and 1 means
total similarity when image represents one solid segment. In our model we use two
similarity parameters: the first for color similarity that is used by the first layer and the
second for spatial similarity that is used by the second layer. Connection between
oscillators in the first layer is established if similarity between spatial descriptions of
these oscillators is less than color similarity. Connections of the first layer are static and
they are formed once and never changed during simulation. Connections of the second
layer are dynamic because they depend on synchronization in the first layer, but they

214 A. Novikov and E. Benderskaya

also depend on spatial similarity in the same way. The primary rule for establishing
connection between oscillators in the second layer is synchronization in the first layer
i.e. connection can be established only between oscillators that are related to the same
active group of oscillators and thus spatial similarity is the secondary rule for forming
structure of the second layer. Similarity is often calculated via normalized distance
measure such as Euclidian distance, but also Jaccard coefficient or Tanimoto evaluation
can be used for that purpose. In our experiments, we have used normalized Euclidian
distance as similarity estimation.

The modified Kuramoto model describes dynamic of each oscillator:

_hi ¼ K
Ni

X

j2Ni

sin hj � hi
� � ð7Þ

Phase of oscillator is denoted by θi and it is key state variable that is distributed
from 0 to π. Distribution from 0 to 2π is undesirable because of unstable behavior that
follows from the Eq. (7) in case of odd number of oscillators equidistant from each
other (not random) in this range. All oscillators have the same value of frequency ω
therefore it is omitted in this equation due to permanent phase offset that reduces time
of synchronization. Coupling strength K between oscillators is also the same and it
affects the convergence rate of synchronization process. High values of coupling
strength can adversely affect process output result of the network that has punctured
connections and can lead to so-called “races” when oscillators are trying to synchronize
with each other. In our experiments, we have used coupling strength from 1 to 3 for
achieving adequate results. Ni denotes set of oscillators that have connections with
oscillator i.

The first layer receives color description of an input image, for example, it can be
RGB representation of pixel or area of pixels. Each oscillator i receives outputs of its
neighbors that are defined by set Ni and affect on current phase position in accordance
with mean field and thus synchronized with each other. During self-organization of
ensembles in the first layer, connections between oscillators are being changed in the
second layer. So initially the second layer contains connections in line with the spatial
parameter but during simulation connections can be changed by ensembles of oscil-
lators of the first layer until local synchronization is not reached and as a consequence
final state of synchronization in the second layer cannot be reach until it is not reached
in the first layer, thus segmentation is over when local synchronization is reached in
both layers of the network. When synchronization process reaches final state of local
synchronization that is described by the degree rc in the first layer then each syn-
chronous ensemble of oscillators encodes one color cluster and also forms local areas
of oscillators in the second layer which do not have connections with oscillators from
other areas and interact only with each other. Oscillators of the second layer use their
own spatial description in the layer for forming structure in line with similarity
parameter for the spatial. Connections in the second layer are formed in line with
similarity parameter and activated areas by the first layer. When process of synchro-
nization is over in the second layer each ensemble of oscillators of each activated area
corresponds to one separated object.

Oscillatory Network Based on Kuramoto Model for Image Segmentation 215

3.2 Enhancements for Real Image Segmentation

Number of connections in the network can be huge for real images because it depends
on number of oscillators and similarity parameters, and as result there are problems
with storing these connections in random access memory RAM. Full-interconnected
layer in the network contains N2 connections, where N – number of oscillators in the
layer, for instance, in the layer with 4096 oscillators requires 16.7 million connections
when one pixel is represented by one oscillator. There are two ways for resolving this
issue.

The first is usage of image areas instead of single pixels as it mentioned before
when each correspond to area of pixels that can be defined by some equation, for
example using usual average or more complexity compression algorithms.

The second way is encoding of connections between oscillators. The easiest way is
to use adjacent matrix for connection representation, this way ensures high perfor-
mance because of fast access to the matrix cell where connection is stored O(1). One
cell uses 4 bytes at least for storing state of connection if size of bool type is equal to
32-bit. Thus, the adjacent matrix requires a lot of memory, for example, in case of
image size 64 × 64 it requires about 67.1 MB for one layer, and for image 128 × 128 it
requires about 1073 MB. Moreover, size of adjacent matrix does not depend on real
number of connections. Set of neighbors can be used in this case, but it reduces
performance, because in worth case it requires O(n) in case of usual list and O(log2(n))
in case of balanced binary tree. Set of neighbors is effective method of representation if
real number of connections in the network is low, but in worth case it requires the same
memory block like usual adjacent matrix, but additionally increases complexity of
searching. The last way is bit map that can significantly reduce usage of memory and
ensure performance like in adjacency matrix (statement is applicable in case of C/C++
implementation). Bit map represents adjacency matrix where indexes of oscillators are
used for access to bit in memory. We have performed experimental study and have
found that bit map does not reduce performance of the network during simulation, but
it allows to process large images without compression. For example, image with size
64 × 64 requires about 16.7 MB and image 128 × 128 requires about 268 MB.

Segmentation of real images requires a lot computational resources on for calcu-
lating of differential equations in both layers. Originally, both layers in the network
should be simulated simultaneously, but for reducing numerical computations we
propose algorithm that simplifies complexity of simulation of the network.

The differential equation of the phase oscillator is simplified in following way:

hi k þ 1½ � ¼ hi k½ � þ K
Ni

X

j2Ni

sin hj½k� � hi½k�
� � ð8Þ

In this case accuracy is lower in comparison with the family of Runge-Kutta
methods, therefore we recommend to use coupling strength K = 1. Otherwise it may
lead to infinite process of simulation due to lack of convergence.

Both layers are simulated separately: the first layer is simulated until specified stop
condition (that is defined by the order of local synchronization, usually rc > 0.998) is
not reached. After that connections of the second layer are initialized once in line with

216 A. Novikov and E. Benderskaya

synchronous ensembles in the first layer and also in line with the similarity parameter.
Thus, there is no need to adjust connections between oscillators in the second layer
during simulation. Next, simulation of second layer is executed until stop condition is
not reached. Since there are no connections between activated areas of oscillators in the
second layer then separate simulation can be performed for each activated area.
Another one of the advantages of the separate simulation is reducing memory usage.

The proposed algorithm reduces amount of consumed memory by 8 times and
reduces time of processing by 186 times in case of single-core implementation and it
allows to use the network for segmentation of real images where memory usage and
performance play important role. Results of segmentation of real image by the oscil-
latory network will be shown later (Sect. 4).

3.3 Parallel Implementation of Oscillatory Network

The ability to be executed in parallel is one of the most important features of biologically
plausible systems such as oscillatory networks. In this section we consider implemen-
tation of the oscillatory network for multi-core station. Each oscillator is considered as a
separate unit that can be executed by processor core and each oscillator has own context
in memory where current state of each oscillator is stored (in our case it is current phase,
but also it can store frequency and other variables describes state of oscillator). The
context is read-only for other oscillators and it is available for writing only for the
oscillator that is owner of this context. Thus synchronization between execution units is
not required, but it is important to ensure lack of cache coherency using cache
write-back and cache invalidate operations if platform does not care about that.

We have used HP ProLiant BL460c Generation 7 (G7) workstation that has four
processors Intel Xeon X5660 (2.80GHz/6-core/12MB/95W, DDR3-1333, HT, Turbo
2/2/2/2/3/3) with 8 MB shared L3 cache for simulation of the multi-core implementation

Fig. 1. (Left) The scheme of the multi-core implementation of the oscillatory network. (Right)
The comparison of execution times of multi-core implementation and single-core implementation
with sizes from 2 to 24 oscillators during 100000 iterations.

Oscillatory Network Based on Kuramoto Model for Image Segmentation 217

of the oscillatory network. Each oscillator is simulated by separate thread that can be
executed by one of the 24 cores. The scheme of multi-core implementation is shown on
Fig. 1 (left). Average execution time of the multi-core implementation of the network
with sizes from 2 to 24 oscillators (this range has been used for obtaining results of
completely parallel execution) has linear character in comparison with the single-core
implementation as it is shown on Fig. 1 (right). In experiments, simulation of the
network has been performed with fixed number of iterations using 100000 steps. The
multi-core implementation is 3 times faster than the single-core in the small number of
oscillators (2–4) and in 5 times faster in case full loading (24 oscillators). In spite of the
limit in 24 cores, increase of number of oscillators leads to increase of difference by
several times in the execution time between the single and the multi-core implemen-
tation – results of simulation of networks with bigger sizes have been presented in
Table 1.

4 Image Segmentation Results

To illustrate general principle of segmentation in comprehended way simple ima-
ges 32 × 32 is used for the first example where three black letters are presented on
white background. The oscillatory network uses direct projection of the image (one
oscillatory column encodes only one pixel, total number of oscillators in each layer
N = 1024) with similarity between objects δobj = 0.12 and color similarity δcolor = 0.5
due to necessity to allocate black objects from the white background. Input image and
result of segmentation are presented on Fig. 2 where four objects are allocated and each
of them is denoted by black mask: background, letter ‘F’, letter ‘T’ and letter ‘K’.
Outputs of the network are obtained from the first layer and from the second layer and
both are presented on Fig. 3. Dynamic of the second layer is divided into two plots for
convenient presentation where dynamic of each plot corresponds to activated group of
oscillators. The first layer activates two groups of oscillators that are not interacted with
each other, the “white” group corresponds to white color and the “black” group cor-
responds to black color. At the beginning de-synchronization between oscillators are
observed in both groups, but after time process of self-organization is more apparent
that is considered as a process of synchronization between oscillators responsible for
the similar features. Simulation of the network is stopped when local synchronization
reaches r = 0.999. Activated group by white color converges to a single point that
means there is only one object (white background) and activated group by the black
color has three synchronous ensembles of oscillators and it means allocation of three
objects (black letters). Since one oscillator corresponds to only one pixel, it is easy to
decode allocated objects on the image.

Table 1. Comparison of execution times with various number of oscillators.

Oscillators, N 200 300 400 500 600 700 800 900 1000

Single-core., ms 915 2233 3618 5166 7110 10931 14279 16873 20101
Multi-core., ms 123 295 458 628 810 1211 1561 1775 2111
Difference, times 7.43 7.56 7.9 8.22 8.77 9.02 9.14 9.50 9.52

218 A. Novikov and E. Benderskaya

The next example demonstrates results of the network simulation in case of colored
image such as satellite image of the White Sea – Fig. 4. Image size is 128 × 128 and the
network uses direct projection of oscillator columns, color similarity δcolor = 0.15 and
object similarity δobj = 0.1. In this case result of segmentation can be obtained from the
first layer due to requirement of sea and land allocation as two segments since there is
only color difference. There are only two groups of synchronous oscillators in first layer
where one of them corresponds to the sea and another one corresponds to the land. The
separate island is not allocated by the second layer due to high level of object similarity
and as a consequence there is interconnection between oscillators that responsible for the
continental land and for the island. The island allocation can be performed by reducing
level of interaction between oscillators in the second layer using object similarity.

Fig. 2. Initial image ‘FTK’ at the left and then allocated segments from the image where back
masks represent allocated objects: background, letter ‘F’, letter ‘T’ and letter ‘K’ (δcolor = 0.12,
δobj = 0.5).

Fig. 3. Output of the oscillatory network (dynamic of the second layer) divided into two groups
(middle and right) that are activated by ensembles of synchronous oscillators of the first layer (left).
The middle is activated by oscillators that encode white color (background), and the right is
activated by oscillators that encode black color (black letters) (Color figure online).

Fig. 4. Initial image – map of the White Sea (left) and results of segmentation: the sea and the
land with island (δcolor = 0.15, δobj = 0.1) (Color figure online).

Oscillatory Network Based on Kuramoto Model for Image Segmentation 219

The following example demonstrates segmentation of the scene of four fruits where
two apples have the same color and two oranges have also the same color – Fig. 5. Size
of the image is 128 × 128 and the network uses direct projection with color similarity
δcolor = 0.06 and object similarity δobj = 0.15. The color similarity in this example
should be much lower due to red color is close to orange color in case of RGB
representation. For example, in case of δcolor = 0.2 the first layer has only two syn-
chronous groups of oscillators responsible for the white background and for the set of
fruits. In case of δcolor = 0.06 three synchronous ensembles of oscillators are formed in
the first layer that corresponds to allocated objects: white background, set of apples and
set of oranges. The second layer performs further segmentation and eventually two
synchronous ensembles are formed in each active group: two areas of background, two
apples and two oranges, thus six objects are allocated by the network during
simulation.

5 Conclusions

In this article we have proposed neural based approach for image segmentation
problem (color and object segmentation) using the double-layer oscillatory network
based on the modified Kuramoto model that provides result of coloring segmentation
from the first layer and result of object segmentation from the second layer. The
proposed algorithm uses biologically plausible principles of synchronization where
each feature is encoded by synchronous ensemble of oscillators. In addition, we have
proposed practical recommendation of the model usage and have described multi-core
implementation of the network for simulation on multiprocessor stations. Our experi-
ments demonstrate general capabilities of the network for real image segmentation.

References

1. Arenas, A., DiazGuilera, A., Kurths, Y., Moreno, Y., Changsong, Z.: Synchronization in
complex networks. Phys. Rep. 469, 93–153 (2008)

2. Basar, E.: Brain Function and Oscillations, p. 364. Springer, New York (1998)
3. Bohm, C., Plant, C., Shao, J., Yang, Q.: Clustering by synchronization. In: KDD 2010

Proceeding of the 16th ACM SIGKDD International Conference of Knowledge Discovery
and Data Mining, pp. 583–592 (2010)

4. Cumin, D, Unsworth, C.: Generalizing the Kuramoto model for the study of neuronal
synchronisation in the brain. Report University of Auckland School of Engineering 638 (2006)

Fig. 5. Initial image (left) and result of segmentation: six allocated objects: two areas of
background, two apples and two oranges (δcolor = 0.15, δobj = 0.06) (Color figure online).

220 A. Novikov and E. Benderskaya

5. Eckhorn, R., Reitbock, H., Arndt, M., Dicke, P.: A neural network for feature linking
via synchronous activity: results from cat visual cortex and from simulations. In: Cotterill,
R.M.J. (ed.) Models of Brain Function, pp. 255–272. Cambridge University Press,
Cambridge (1989)

6. Gu, X.: A new approach to image authentication using local image icon of unit-linking
PCNN. In: Proceedings of IJCNN 2006. International Joint Conference on Neural Networks,
pp. 1036–1041 (2006)

7. Haken, H.: Brain Dynamics, p. 238. Springer, Heidelberg (2007)
8. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application

to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
9. Ishihara, H., Yoshioka, K., Hirose, M.: Proposal on image compression method using

synchronization. In: Proceedings of ISOT 2012, International Symposium on
Optomechatronic Technologies, Paris, 29–31 October (2012)

10. Johnson, J., Padgett, M.: PCNN models and applications. IEEE Trans. Neural Netw. 10(3),
480–498 (1999)

11. Kazanovich, Y., Borisyuk, R.: Dynamics of neural networks with a central element. Neural
Netw. 12, 441–454 (1999)

12. Kazanovich,Y., Borisyuk,R.,Chik,D.,Tikhanoff, V., Cangelosi, A.:A neuralmodel of selective
attention and object segmentation in the visual scene: an approach based on partial synchro-
nization and star-like architecture of connections. Neural Netw. 22, 707–719 (2009). Elsevier

13. Kuramoto, Y.: Chemical Oscillations Waves, and Turbulence, p. 157. Springer, Heidelberg
(1984)

14. Li, Z.: A neural model of contour integration in the primary visual cortex. Neural Comput.
10, 903–940 (1998)

15. Li, Z.: Pre-attentive segmentation in the primary visual cortex. Spat. Vis. 13, 25–50 (2000)
16. Lindblad, T., Kisner, J.: Image Processing Using Pulse-Coupled Neural Networks, p. 164.

Springer, Heidelberg (2005)
17. Miyano, T., Tsutsui, T.: Data synchronization as a method of data mining. In: Proceeding of

International Symposium on Nonlinear Theory and its Applications (2007)
18. Novikov, A., Benderskaya, E.: SYNC-SOM Double-layer Oscillatory Network for Cluster

Analysis. In: 3rd International Conference on Pattern Recognition Applications and
Methods, Proceedings, ESEO, Angers, Loire Valley, France, pp. 305–309, 6–8 March 2014

19. Novikov, A., Benderskaya, E.: Oscillatory neural networks based on the Kuramoto model.
Pattern Recogn. Image Anal. 24(3), 365–371 (2014)

20. Shao, J., He, X., Bohm, C., Yang, Q., Plant, C.: Synchronization-inspired partitioning and
hierarchical clustering. IEEE Trans. Knowl. Data Eng. 25(4), 893–905 (2013)

21. Vassilieva, E., Pinto, G., Acacio, J., Suppes, P.: Learning pattern recognition through
quasi-synchronization of phase oscillators. IEEE Trans. Neural Netw. 22(1), 84–95 (2011)

22. Xiao, Z., Shi, J., Chang, Q.: Image segmentation with simplified PCNN. In: Proceeding of
CISP 2009 2nd International Congress on Image and Signal Processing, Tianjin, 17–19
October 2009, pp. 1–4 (2009)

23. Wang, D., Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE
Trans. Neural Netw. 6(1), 283–286 (1995)

24. Wang, D., Terman, D.: Image segmentation based on oscillatory correlation. Neural
Comput. 9, 805–836 (1997)

25. Wang, X., Jiao, L., Wu, J.: Extracting hierarchical organization of complex networks by
dynamics towards synchronization. Phys. A 388, 2975–2986 (2009)

26. Wu, J., Jiao, L., Chen, W.: Clustering dynamics of nonlinear oscillator network: application
to graph coloring problem. Physica D 240(2), 1972–1978 (2011)

Oscillatory Network Based on Kuramoto Model for Image Segmentation 221

Using Monte Carlo Method for Searching
Partitionings of Hard Variants of Boolean

Satisfiability Problem

Alexander Semenov(B) and Oleg Zaikin

Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia
biclop.rambler@yandex.ru, zaikin.icc@gmail.com

Abstract. In this paper we propose the approach for constructing par-
titionings of hard variants of the Boolean satisfiability problem (SAT).
Such partitionings can be used for solving corresponding SAT instances
in parallel. We suggest the approach based on the Monte Carlo method
for estimating time of processing of an arbitrary partitioning. We solve
the problem of search for a partitioning with good effectiveness via the
optimization of the special predictive function over the finite search
space. For this purpose we use the tabu search strategy. In our compu-
tational experiments we found partitionings for SAT instances encoding
problems of inversion of some cryptographic functions. Several of these
SAT instances with realistic predicted solving time were successfully
solved on a computing cluster and in the volunteer computing project
SAT@home. The solving time agrees well with estimations obtained by
the proposed method.

Keywords: Monte carlo method · SAT · Partitioning · Tabu search ·
Cryptanalysis

1 Introduction

The Boolean satisfiability problem (SAT) consists in the following: for an arbi-
trary Boolean formula (formula of the Propositional Calculus) to decide if it is
satisfiable, i.e. if there exists such an assignment of Boolean variables from the
formula that makes this formula true. The satisfiability problem for a Boolean
formula can be effectively (in polynomial time) reduced to the satisfiability prob-
lem for the formula in the conjunctive normal form (CNF). Hereinafter by SAT
instance we mean the satisfiability problem for some CNF.

Despite the fact that SAT is NP-complete (NP-hard as a search prob-
lem) it is very important because of the wide specter of practical applications.
A lot of combinatorial problems from different areas can be effectively reduced
to SAT [1]. In the last 10 years there was achieved an impressive progress in the
effectiveness of SAT solving algorithms. While these algorithms are exponential
in the worst case scenario, they display high effectiveness on various classes of
industrial problems.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 222–230, 2015.
DOI: 10.1007/978-3-319-21909-7 21

Using Monte Carlo Method for Searching Partitionings 223

Because of the high computational complexity of SAT, the development of
methods for solving hard SAT instances in parallel is considered to be relevant.
Nowadays the most popular approaches to parallel SAT solving are portfolio
approach and partitioning approach [6]. In the portfolio approach several copies
of the SAT solver process the same search space in different directions. The par-
titioning approach implies that the original SAT instance is decomposed into
a family of subproblems and this family is then processed in a parallel or in
a distributed computing environment. This family is in fact a partitioning of
the original SAT instance. The ability to independently process different sub-
problems makes it possible to employ the systems with thousands of computing
nodes for solving the original problem. Such approach allows to solve even some
cryptanalysis problems in the SAT form. However, for the same SAT instance
one can construct different partitionings. In this context the question arises: if
we have two partitionings, how can we know if one is better than the other? Or,
if we look at this from the practical point of view, how to find if not best parti-
tioning, then at least the one with more or less realistic time required to process
all the subproblems in it? In the present paper we study these two problems.

2 Monte Carlo Approach to Statistical Estimation
of Effectiveness of SAT Partitioning

Let us consider the SAT for an arbitrary CNF C. The partitioning of C is a set
of formulas

C ∧ Gj , j ∈ {1, . . . , s} (1)

such that for any i, j : i �= j formula C ∧ Gi ∧ Gj is unsatisfiable and

C ≡ C ∧ G1 ∨ . . . ∨ C ∧ Gs.

(where “≡” stands for logical equivalence). It is obvious that when one has a
partitioning of the original SAT instance, the satisfiability problems for CNFs
(1) can be solved independently in parallel.

There exist various partitioning techniques [6]. The results of the research
on estimating the time required to process SAT partitionings can be found in
a number of papers on logical cryptanalysis [4,10,11]. In the present paper we
propose to construct time estimations for the processing of SAT partitionings
using the Monte Carlo method in its classical form [8].

Consider the satisfiability problem for an arbitrary CNF C over a set of
Boolean variables X = {x1, . . . , xn}. We call an arbitrary set X̃ = {xi1 , . . . , xid},
X̃ ⊆ X a decomposition set. Consider a partitioning of C that consists of a set
of s = 2d formulas of the kind (1), where Gj , j ∈ {1, . . . , 2d} are all possi-
ble minterms over X̃. Note that an arbitrary formula Gj takes a value of true

on a single truth assignment
(
αj
1, . . . , α

j
d

)
∈ {0, 1}d. Therefore, an arbitrary

formula C ∧ Gj is satisfiable if and only if C
[
X̃/

(
αj
1, . . . , α

j
d

)]
is satisfiable.

224 A. Semenov and O. Zaikin

Here C
[
X̃/

(
αj
1, . . . , α

j
d

)]
is produced by setting values of variables xik to cor-

responding αj
k, k ∈ {1, . . . , d} : xi1 = αj

1, . . . , xid = αj
d. A set of CNFs

ΔC(X̃) =
{

C
[
X̃/

(
αj
1, . . . , α

j
d

)]}
(αj

1,...,αj
d)∈{0,1}d

is called a decomposition family produced by X̃. It is clear that the decomposi-
tion family is the partitioning of the SAT instance C.

Consider some algorithm A solving SAT. In the remainder of the paper we
presume that A is complete, i.e. its runtime is finite for an arbitrary input.
We also presume that A is a non-randomized deterministic algorithm. We denote
the amount of time required for A to solve all the SAT instances from ΔC

(
X̃

)
as

tC,A

(
X̃

)
. Below we concentrate mainly on the problem of estimating tC,A

(
X̃

)
.

Define the uniform distribution on the set {0, 1}d. With each randomly
chosen truth assignment (α1, . . . , αd) from {0, 1}d we associate a value
ξC,A (α1, . . . , αd) that is equal to the time required for the algorithm A to

solve SAT for C
[
X̃/ (α1, . . . , αd)

]
. Let ξ1, . . . , ξQ be all the different values that

ξC,A (α1, . . . , αd) takes on all the possible (α1, . . . , αd) ∈ {0, 1}d. Let us denote

ξC,A

(
X̃

)
=

{
ξ1, . . . , ξQ

}
, and let �ξj be the number of (α1, . . . , αd), such that

ξC,A (α1, . . . , αd) = ξj . Then ξC,A

(
X̃

)
is a random variable with distribution

P
(
ξC,A

(
X̃

))
= {p1, . . . , pQ}, where pk = �ξk

2d
, k ∈ {1, . . . , Q}. Thus, it is easy

to see that

tC,A

(
X̃

)
=

Q∑
k=1

(
ξk · �ξk

)
= 2d · E

[
ξC,A

(
X̃

)]
. (2)

To estimate the expected value E
[
ξC,A

(
X̃

)]
we will use the Monte Carlo

method [8], according to which, a probabilistic experiment, that consists of N
independent observations of values of an arbitrary random variable ξ, is used to
approximately calculate E [ξ]. Let ζ1, . . . , ζN be the results of the corresponding
observations. From the theoretical basis of the Monte Carlo method it follows

that if ξ has finite expected value and finite variance, then the value 1
N ·

N∑
j=1

ζj is

a good approximation of E [ξ] when the number of observations is large enough.
In our case from the assumption regarding the completeness of the algorithm
A it follows that random variable ξC,A(X̃) has finite expected value and finite
variance. We would like to mention that an algorithm A should not use ran-
domization, since if it does then the observed values in the general case will not
have the same distribution. The fact that N can be significantly less than 2d

makes it possible to use the preprocessing stage to estimate the effectiveness of
the considered partitioning.

Using Monte Carlo Method for Searching Partitionings 225

So the process of estimating the value (2) for a given X̃ is as follows. We con-
struct a random sample α1, . . . , αN , where αj =

(
αj
1, . . . , α

j
d

)
, j ∈ {1, . . . , N} is

a truth assignment of variables from X̃. Then consider values ζj = ξC,A

(
αj

)
, j =

1, . . . , N and calculate the value

FC,A

(
X̃

)
= 2d ·

⎛
⎝ 1

N
·

N∑
j=1

ζj

⎞
⎠. (3)

By the above, if N is large enough then the value of FC,A

(
X̃

)
can be con-

sidered as a good approximation of (2). Therefore, instead of searching for a
decomposition set with minimal value (2) one can search for a decomposition
set with minimal value of FC,A (·). Below we refer to function FC,A (·) as predic-
tive function.

3 Algorithm for Minimization of Predictive Function

As we already noted above, different partitionings of the same SAT instance can
have different values of tC,A

(
X̃

)
. In practice it is important to be able to find

partitionings that can be processed in realistic time. Below we will describe the
scheme of automatic search for good partitionings that is based on the procedure
minimizing the predictive function value in the special search space.

So we consider the satisfiability problem for some CNF C. Let X =
{x1, . . . , xn} be the set of all Boolean variables in this CNF and X̃ ⊆ X be
an arbitrary decomposition set. The set X̃ can be represented by the binary
vector χ = (χ1, . . . , χn). Here

χi =
{

1, if xi ∈ X̃

0, if xi /∈ X̃
, i ∈ {1, . . . , n}

With an arbitrary vector χ ∈ {0, 1}n we associate the value of function F (χ)
computed in the following manner. For vector χ we construct the corresponding
set X̃ (it is formed by variables from X that correspond to 1 positions in χ).
Then we generate a random sample α1, . . . , αN , αj ∈ {0, 1}|X̃| and solve SAT
for CNFs C

[
X̃/αj

]
. For each of these SAT instances we measure ζj — the

runtime of algorithm A on the input C
[
X̃/αj

]
. After this we calculate the

value of FC,A

(
X̃

)
according to (3). As a result we have the value of F (χ) in the

considered point of the search space. Then we solve the problem F (χ) → min
over the set {0, 1}n.

The minimization of function F (·) over {0, 1}n is considered as an iterative
process of transitioning between the points of the search space. By Nρ (χ) we
denote the neighborhood of point χ of radius ρ in the search space {0, 1}n. The
point from which the search starts we denote as χstart. We will refer to the

226 A. Semenov and O. Zaikin

decomposition set specified by this point as X̃start. The current Best Known
Value of F (·) is denoted by Fbest. The point in which the Fbest was achieved
we denote as χbest. By χcenter we denote the point the neighborhood of which
is processed at the current moment. We call the point, in which we computed
the value F (·), a checked point. The neighborhood Nρ (χ) in which all the points
are checked is called checked neighborhood. Otherwise the neighborhood is called
unchecked.

For the minimization of F (·) we employed the tabu search strategy [5].
According to this approach the points from the search space, in which we already
calculated the values of function F (·) are stored in special tabu lists, to which
we refer below as to L1 and L2. The L1 list contains only points with checked
neighborhoods. The L2 list contains checked points with unchecked neighbor-
hoods. Below we present the pseudocode of the tabu search algorithm for F (·)
minimization.

Algorithm 1. Tabu search altorithm for minimization of the predictive
function

Input: CNF C, initial point χstart

Output: Pair 〈χbest, Fbest〉, where Fbest is a prediction for C, χbest is a
corresponding decomposition set

1 〈χcenter, Fbest〉 ← 〈χstart, F (χstart)〉
2 〈L1, L2〉 ← 〈∅, χstart〉 // initialize tabu lists

3 repeat
4 bestValueUpdated ← false
5 repeat // check neighborhood

6 χ ← any unchecked point from Nρ(χcenter)
7 compute F (χ)
8 markPointInTabuLists(χ, L1, L2) // update tabu lists

9 if F (χ) < Fbest then
10 〈χbest, Fbest〉 ← 〈χ, F (χ)〉
11 bestValueUpdated ← true

12 until Nρ(χcenter) is checked
13 if bestValueUpdated then χcenter ← χbest

14

15 else χcenter ← getNewCenter(L2)

16

17 until timeExceeded() or L2 = ∅
18 return 〈χbest, Fbest〉

In this algorithm the function markPointInTabuLists(χ,L1, L2) adds the
point χ to L2 and then marks χ as checked in all neighborhoods of points from
L2 that contain χ. If as a result the neighborhood of some point χ′ becomes
checked, the point χ′ is removed from L2 and is added to L1. If we have processed
all the points in the neighborhood of χcenter but could not improve the Fbest

then as the new point χcenter we choose some point from L2. It is done via the

Using Monte Carlo Method for Searching Partitionings 227

function getNewCenter(L2). To choose the new point in this case one can use
various heuristics. At the moment the tabu search algorithm chooses the point
for which the total conflict activity [7] of Boolean variables, contained in the
corresponding decomposition set, is the largest.

4 Computational Experiments

The algorithms presented in the previous section were implemented as the MPI-
program PDSAT1. In PDSAT there is one leader process, all the other are
computing processes (each process corresponds to 1 CPU core). For every new
point χ = χ

(
X̃

)
from the search space the leader process creates a random sam-

ple of size N (we use neighborhoods of radius ρ = 1). Each assignment from this
sample in combination with the original CNF C define the SAT instance from
the decomposition family ΔC

(
X̃

)
. These SAT instances are solved by comput-

ing processes. The value of the predictive function is always computed assuming
that the decomposition family will be processed by 1 CPU core. The fact that
the processing of ΔC

(
X̃

)
consists in solving independent subproblems makes

it possible to extrapolate the estimation obtained to an arbitrary parallel (or
distributed) computing system. The computing processes use slightly modified
MiniSat solver2 for solving SAT instances.

Below we present the results of computational experiments in which PDSAT
was used on the computing cluster “Academician V.M. Matrosov” to estimate
the time required to solve problems of logical cryptanalysis of the A5/1 [2] and
Bivium [3] keystream generators. The SAT instances that encode these problems
were produced using the Transalg system [9]. All the estimations presented
below are in seconds.

4.1 Time Estimations for Logical Cryptanalysis of A5/1

For the first time we considered the logical cryptanalysis of the A5/1 keystream
generator in [10]. In that paper we described the corresponding algorithm in
detail, therefore we will not do it in the present paper. We considered the crypt-
analysis problem for the A5/1 keystream generator in the following form: given
the 114 bits of keystream we needed to find the secret key of length 64 bits, which
produces this keystream (in accordance with the A5/1 algorithm). During pre-
dictive function minimization PDSAT used random samples of size N = 104

SAT instances and worked for 1 day using 5 computing nodes (160 CPU cores
in total) within the computing cluster. Using the tabu search algorithm we found
the set S2 = {x2, ..., x10, x20, ..., x30, x39, x40, x42, ..., x52}. We compared the time
estimations for this set with that of the decomposition set S1, the structure of
which was described in [10]. The S1 set was constructed manually based on the

1 https://github.com/Nauchnik/pdsat.
2 http://minisat.se.

https://github.com/Nauchnik/pdsat
http://minisat.se

228 A. Semenov and O. Zaikin

analysis of the algorithmic features of the A5/1 keystream generator. The value
of predictive function for S1 is equal to 4.45140e+08, and for S2 is equal to
4.64428e+08.

Since the obtained estimations turned out to be realistic, we decided to solve
non-weakened cryptanalysis instances for A5/1. For this purpose we used the
BOINC-based volunteer computing project SAT@home3. In total we performed
two computational experiments on solving cryptanalysis of A5/1 in SAT@home.
In the first experiment we solved 10 cryptanalysis instances using the S1 set and
in the second we solved same 10 instances using the S2 set. To construct the
corresponding tests we used the known rainbow-tables for the A5/1 algorithm.
These tables provide about 88 % probability of success when analyzing 8 bursts
of keystream (i.e. 914 bits). We randomly generated 1000 instances and applied
the rainbow-tables technique to analyze 8 bursts of keystream, generated by
A5/1. Among these 1000 instances the rainbow-tables could not find the secret
key for 125 problems. From these 125 instances we randomly chose 10 and in
the computational experiments applied the SAT approach to the analysis of
first bursts of the corresponding keystream fragments (114 bits). In all cases we
successfully found the secret keys.

4.2 Time Estimations for Logical Cryptanalysis of Bivium

The Bivium keystream generator [3] uses two shift registers. The first register
contains 93 cells and the second contains 84 cells. To initialize the cipher, a secret
key of length 80 bit is put to the first register, and a fixed (known) initialization
vector of length 80 bit is put to the second register. All remaining cells are filled
with zeros. An initialization phase consists of 708 rounds during which keystream
output is not released.

In accordance with [11] we considered cryptanalysis problem for Bivium in
the following formulation. Based on the known fragment of keystream we search
for the values of all registers cells at the end of the initialization phase. Therefore,
in our experiments we used the CNF encoding where the initialization phase
was omitted. Usually it is believed that to uniquely identify the secret key it is
sufficient to consider keystream fragment of length comparable to the total length
of shift registers. Here we followed [4,11] and set the keystream fragment length
for Bivium cryptanalysis to 200 bits. In the role of X̃start for the cryptanalysis of
Bivium we chose the set formed by the variables encoding the cells of registers
of the generator considered at the end of the initialization phase. Further we
refer to these variables as starting variables. Therefore

∣∣∣X̃start

∣∣∣ = 177. During

predictive function minimization PDSAT used random samples of size N = 105

SAT instances and worked for 1 day using 5 computing nodes (160 CPU cores
in total) within the computing cluster. Time estimations obtained for the Bivium
cryptanalysis is Fbest = 3.769 × 1010.

In [4,11] a number of time estimations for logical cryptanalysis of Bivium
were proposed. In particular, in [4] several fixed types of decomposition sets were
3 http://sat.isa.ru/pdsat/.

http://sat.isa.ru/pdsat/

Using Monte Carlo Method for Searching Partitionings 229

analyzed. Time estimation for the best decomposition set from [4] is equal to
1.637 × 1013, it was calculated using random samples of size 102. Authors of [11]
constructed estimations for the sets of variables chosen during the solving process
and extrapolated the estimations obtained to time points of the solving process
that lay in the distant future. Apparently, as it is described in [11], the random sam-
ples of size 102 and 103 were used. In the Table 1 all three estimations mentioned
above are demonstrated. The performance of one core of the processor we used in
our experiments is comparable with that of one core of the processor used in [11].

Table 1. Time estimations for the Bivium cryptanalysis problem

Source Sample size Time estimation

From [4] 102 1.637 × 1013

From [11] 103 9.718 × 1010

Found by PDSAT 105 3.769 × 1010

To compare obtained time estimations with real solving time we solved sev-
eral weakened logical cryptanalysis problems for Bivium. Below we use the nota-
tion BiviumK to denote a weakened problem for Bivium with known values of
K starting variables. We used the volunteer computing project SAT@home to
solve 5 instances of Bivium9. For all considered instances the time required to
solve the corresponding instances agrees well with our estimations. An extended
version of this paper can be found online.4

Acknowledgements. The authors wish to thank Stepan Kochemazov for numerous
valuable comments. This work was partly supported by Russian Foundation for Basic
Research (grants 14-07-00403-a and 15-07-07891-a) and by the President of Russian
Federation grant for young scientists SP-1184.2015.5.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

2. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

3. De Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B.
(eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

4. Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In:
Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 63–76. Springer,
Heidelberg (2008)

4 http://arxiv.org/abs/1507.00862.

http://arxiv.org/abs/1507.00862

230 A. Semenov and O. Zaikin

5. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, NewYork
(1997)

6. Hyvärinen, A.E.J.: Grid Based Propositional Satisfiability Solving. Ph.d. thesis,
Aalto University (2011)

7. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere et al. [1], pp. 131–153

8. Metropolis, N., Ulam, S.: The monte carlo method. J. Amer. statistical assoc.
44(247), 335–341 (1949)

9. Otpuschennikov, I., Semenov, A., Kochemazov, S.: Transalg: a tool for trans-
lating procedural descriptions of discrete functions to SAT (tool paper). CoRR
abs/1405.1544 (2014)

10. Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis
of the generator A5/1 in BNB-grid system. In: Malyshkin, V. (ed.) PaCT 2011.
LNCS, vol. 6873, pp. 473–483. Springer, Heidelberg (2011)

11. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009)

A Class of Non-optimum-time 3n-Step FSSP
Algorithms - A Survey

Hiroshi Umeo(B), Masashi Maeda, Akihiro Sousa, and Kiyohisa Taguchi

Univ. of Osaka Electro-Communication,
Hastu-cho, 18-8, Neyagawa-shi, Osaka 572-8530, Japan

umeo@cyt.osakac.ac.jp

Abstract. Synchronization of large-scale networks is an important and
fundamental computing primitive in parallel and distributed systems.
The synchronization in cellular automata, known as firing squad syn-
chronization problem (FSSP), has been studied extensively for more
than fifty years, and a rich variety of synchronization algorithms has
been proposed. In the present paper, we give a brief survey on a class
of non-optimum-time 3n-step FSSP algorithms for synchronizing one-
dimensional (1D) cellular automata of length n in 3n±O(log n) steps and
present a comparative study of a relatively large-number of their imple-
mentations. We also propose two smallest-state, known at present, imple-
mentations of the 3n-step algorithm. The paper gives the first complete
transition rules sets for the class of non-optimum-time 3n-step FSSP
algorithms developed so far.

1 Introduction

The synchronization in ultra-fine-grained parallel computational model of cel-
lular automata has been known as the firing squad synchronization problem
(FSSP) since its development, in which it was originally proposed by J. Myhill
in the book edited by Moore (1964) to synchronize all/some parts of self-
reproducing cellular automata.

In the present paper, we give a brief survey on recent developments in a
class of non-optimum-time FSSP algorithms for one-dimensional (1D) cellu-
lar automata. Here we focus our attention to the 1D FSSP algorithms hav-
ing 3n ± O(log n) synchronization steps and present a comparative study of a
relatively large-number of their implementations. We also propose two smallest-
state, known at present, implementations included in the same class of the algo-
rithms. A class of 3n-step algorithms is an interesting class of synchronization
algorithms among many variants of FSSP algorithms due to its simplicity and
straightforwardness and it is important in its own right in the design of other
cellular algorithms. The first optimum-time FSSP algorithm designed by Goto
(1962) uses a 3n-step algorithm in its synchronization phase. This paper gives
the first complete transition rule sets for the class of non-optimum-time 3n-step
FSSP algorithms developed so far.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 231–245, 2015.
DOI: 10.1007/978-3-319-21909-7 22

232 H. Umeo et al.

Specifically, we attempt to answer the following questions:

– First, what is the local transition rule set for those FSSP algorithms?
– Are all previously presented transition rule sets correct?
– Do these rule sets contain redundant rules? If so, what is the exact rule set?
– How do the algorithms compare with each other?
– Are there still any new implementations of the non-optimum-time FSSP algo-

rithms?
– Can we generalize those algorithms to a generalized FSSP, where an initial

general is located at any position of the array?
– What is the state-change complexity in those algorithms?

In Sect. 2 we give a description of the 1D FSSP and review some basic results
on the 1D FSSP algorithms. Section 3 gives a survey on those non-optimum-time
FSSP algorithms. We make implementations of those algorithms on a computer,
check and compare their transition rule sets.

2 A Class of 3n-Step Synchronization Algorithms

2.1 Firing Squad Synchronization Problem

Fig. 1 shows a finite one-dimensional (1D) cellular array consisting of n cells.
Each cell is an identical (except the border cells) finite-state automaton. The
array operates in lock-step mode in such a way that the next state of each cell
(except border cells) is determined by both its own present state and the present
states of its left and right neighbors. All cells (soldiers), except the left end cell
(general), are initially in the quiescent state at time t = 0 with the property that
the next state of a quiescent cell with quiescent neighbors is the quiescent state
again. At time t = 0, the left end cell C1 is in the fire-when-ready state, which
is the initiation signal for the array. The firing squad synchronization problem
is to determine a description (state set and next-state function) for cells that
ensures all cells enter the fire state at exactly the same time and for the first
time. The set of states and the next-state function must be independent of n see
Umeo (2009) for details.

C1 C2 C4 Cn

...
C3

Fig. 1. A one-dimensional (1D) cellular automaton.

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 233

Gt = 0

t = 3n+α

t = 2
3n

G2 G2

G1

t = n-1

t = 2n-2

. . . . n

G3G3G3GG3

1 2 3

1/1

1/1

1/3

1/31

1/1

1/3

a-signal

1/1

R Q Q Q Q Q Q Q Q Q Q

Q R Q Q Q Q Q Q Q Q Q

Q Q R Q Q Q Q Q Q Q Q

Q Q Q R Q Q Q Q Q Q Q

Q Q Q Q R Q Q Q Q Q Q

Q Q Q Q Q R Q Q Q Q Q

Q Q Q Q Q Q R Q Q Q Q

Q Q Q Q Q Q Q R Q Q Q

Q Q Q Q Q Q Q Q R Q Q

Q Q Q Q Q Q Q Q Q Q Q

Z Q Q Q Q Q Q Q Q Q Q

C Z Q Q Q Q Q Q Q Q Q

A C Z Q Q Q Q Q Q Q Q

Q A C Z Q Q Q Q Q Q Q

Q Q A C Z Q Q Q Q Q Q

Q Q Q A C Z Q Q Q Q Q

Q Q Q Q A C Z Q Q Q Q

Q Q Q Q Q A C Z Q Q Q

Q Q Q Q Q Q A C Z Q Q

b-signal

r-signal

Zone T

Fig. 2. A space-time diagram for a class of 3n-step FSSP algorithm and its design
parameters: thread-width and Zone T in the space-time diagram.

2.2 A Class of 3n-Step Synchronization Algorithms

A class of 3n-step algorithms is an interesting class of synchronization algorithms
among many variants of FSSP algorithms due to its simplicity and straightfor-
wardness and it is important in its own right in the design of cellular algorithms.
Figure 2 shows a space-time diagram for the well-known 3n-step firing squad syn-
chronization algorithm. The synchronization process can be viewed as a typical
divide-and-conquer strategy that operates in parallel in the cellular space. An
initial general G, located at left end of the array of size n, generates two signals,
referred to as a-signal and b-signal, which propagate in the right direction at
a speed of 1/1 and 1/3, respectively. The a-signal arrives at the right end at
time t = n − 1, reflects there immediately, and continues to move at the same
speed in the left direction. The reflected signal is referred to as r-signal. The
b- and the r-signals meet at one or two center cells of the arry, depending on
the parity of n. In the case that n is odd, the cell C�n/2� becomes a general at
time t = 3�n/2� − 2. The general is responsible for synchronizing both its left
and right halves of the cellular space. Note that the general is shared by the
two halves. In the case that n is even, two cells C�n/2� and C�n/2�+1 become the
next general at time t = 3�n/2�. Each general is responsible for synchronizing
its left and right halves of the cellular space, respectively.

Thus, at time t = tcenter:

234 H. Umeo et al.

tcenter =

{
3�n/2� − 2 n: odd
3�n/2� n: even,

(1)

the array knows its center point and generates one or two new general(s) G1. The
new general(s) G1 generates the same 1/1- and 1/3-speed signals in both left
and right directions simultaneously and repeat the same procedures as above.
Thus, the original synchronization problem of size n is divided into two sub-
problems of size �n/2�. In this way, the original array is split into equal two,
four, eight, ..., subspaces synchronously. Note that the first general generated at
the center G1 itself is synchronized at time t = tcenter, and the second general
G2 are also synchronized, and the generals generated after that time on are also
synchronized. In the last, the original problem of size n can be split into small
sub-problems of size 2. In this way, by increasing the synchronized generals step
by step, the array can be synchronized. Most of the 3n-step synchronization
algorithms developed so far in Fischer (1965), Herman (1972), Minsky (1967),
Umeo, Maeda, and Hongyo (2006), and Yunès (1994, 2007, 2008) are based on
the similar scheme. It can be seen that, from the path of the b-signal with or
without 1 step delay at the center points at each halving iteration, the time
complexity T (n) for synchronizing n cells is T (n) = 3n ± O(log n).
A question is “How can we implement the synchronization diagram
above in terms of a small-state finite state automaton?”.

The three signals a-, b-, and r-signals in the space-time diagram in Fig. 2 play
an important role in finding the center cell(s). A triangle area circled by these
three signals is also important for its implementation. We call the area zone T .

2.3 Complexity Measures and Properties for Synchronization
Algorithms

– Time Any solution to the original FSSP with a general at one end can be
easily shown to require (2n − 2) steps for synchronizing n cells, since signals
on the array can propagate no faster than one cell per one step, and the time
from the general’s instruction until the final synchronization must be at least
2n − 2.

Theorem 1 Goto (1962) (Lower Bound) The minimum time in which the
firing squad synchronization could occur is 2n − 2 steps, where the general is
located on the left end.

Theorem 2 Goto (1962) There exists a cellular automaton that can synchro-
nize any 1D array of length n in optimum 2n − 2 steps, where the general is
located on the left end.

– Number of States The following three distinct states: the quiescent state,
the general state, and the firing state, are required in order to define any
cellular automaton that can solve the FSSP. Note that the boundary state
for C0 and Cn+1 is not generally counted as an internal state. Balzer (1967)

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 235

and Sanders (1994) showed that no four-state optimum-time solution exists.
Umeo and Yanagihara (2009), Yunès (2008), and Umeo, Kamikawa, and Yunès
(2009) gave some 5- and 4-state partial solutions that can solve the synchro-
nization problem for infinitely many sizes n, but not all, respectively. The
solution is referred to as partial solution, which is compared with usual full
solutions that can solve the problem for all cells.

Theorem 3 Balzer (1967), Sanders (1994) There is no four-state full solution
that can synchronize n cells.

Yunès (2008) and Umeo, Kamikawa, and Yunès (2009) developed 4-state par-
tial solutions based on Wolfram’s rules 60 and 150. They can synchronize any
array/ring of length n = 2k for any positive integer k. Details can be found
in Yunès (2008) and Umeo, Kamikawa, and Yunès (2009).

Theorem 4 Yunes (2008), Umeo et al. (2009) There exist 4-state partial solu-
tions to the FSSP.

Concerning the optimum-time full solutions, Waksman (1966) presented a 16-
state optimum-time synchronization algorithm. Afterward, Balzer (1967) and
Gerken (1987) developed an eight-state algorithm and a seven-state synchro-
nization algorithm, respectively, thus decreasing the number of states required
for the synchronization. Mazoyer (1987) developed a six-state synchronization
algorithm which, at present, is the algorithm having the fewest states for 1D
arrays.

Theorem 5 Mazoyer (1987) There exists a 6-state full solution to the FSSP.

– Number of Transition Rules Any k-state (excluding the boundary state)
transition table for the synchronization has at most (k−1)k2 entries in (k−1)
matrices of size k × k. The number of transition rules reflects a complexity of
synchronization algorithms.

– Filled-In Ratio To measure the density of entries in the transition table, we
introduce a measure filled-in ratio of the state transition table. The filled-in
ratio of the state transition table A is defined as follows: fA = e/etotal, where
e is the number of exact entries of the next state defined in the table A and
etotal is the number of possible entries defined such that etotal = (k − 1)k2,
where k is the number of internal states of the table A.

– Symmetry vs. Asymmetry Herman (1971, 1972) investigated the compu-
tational power of symmetrical cellular automata, motivated by a biological
point of view. Szwerinski (1982) and Kobuchi (1987) considered a computa-
tional relation between symmetrical and asymmetrical CAs with von Neu-
mann neighborhood.
A transition table is said to be symmetric if and only if the transition table

236 H. Umeo et al.

δ : Q3 → Q such that δ(x, y, z) = δ(z, y, x) holds, for any state x, y, z in Q.
A symmetrical cellular automaton has a property that the next state of a
cell depends on its present state and the states of its two neighbors, but it
is same if the states of the left and right neighbors are interchanged. Thus,
the symmetrical CA has no ability to distinguish between its left and right
neighbors.

– State-Change Complexity Vollmar (1982) introduced a state-change com-
plexity in order to measure the efficiency of cellular automata, motivated by
energy consumption in certain physical memory systems. The state-change
complexity is defined as the sum of proper state changes of the cellular space
during the computations. Vollmar (1982) showed that Ω(n log n) state-changes
are required by the cellular space for the synchronization of n cells in (2n−2)
steps. Gerken (1987) presented an optimum-time Θ(n log n) state-change syn-
chronization algorithm.

Theorem 6 Vollmar (1982) (Lower Bound) Ω(n log n) state-change is neces-
sary for synchronizing n cells.

Theorem 7 Gerken (1987) Θ(n log n) state-change is sufficient for synchro-
nizing n cells in 2n − 2 steps.

2.4 A Brief History of the Developments of the 3n-Step FSSP
Algorithms and Their Implementations

The 3n-step algorithm is a simple and straightforward one that exploits a par-
allel divide-and-conquer strategy based on an efficient use of 1/1- and 1/3-speed
of signals. After Minsky and McCarthy (See Minsky (1967)) gave an idea for
designing the 3n-step synchronization algorithm, Fischer (1965) also presented
a 3n-step synchronization algorithm, yielding a 15-state implementation, respec-
tively. Herman (1972) implemented the 3n-step algorithm in terms of 10-state
finite state automaton. Yunès (1994) developed two seven-state synchronization
algorithms. His algorithms were interesting in that he decreased the number
of internal states of each cellular automaton by extending the width of signal
threads in the space-time diagram. Umeo, Maeda, and Hongyo (2006) presented
a 6-state 3n-step algorithm. Afterward, Yunès (2008) also presented a 6-state
3n-step algorithm.

3 Implementations of the 3n-Step FSSP Algorithms

The non-optimum-time 3n-step FSSP algorithms that we discuss in this paper
are as follows:

– Fischer (1965) algorithm,
– Minsky-McCarthy (1967) algorithm,
– Herman (1972) 10-state algorithm,

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 237

– Yunès (1994) 7-state algorithm,
– Umeo-Maeda-Hongyo (2006) 6-state algorithm,
– Yunès (2008) 6-state algorithm,
– Two 6-state algorithms proposed in this paper, and
– Umeo-Yanagihara (2007) 5-state algorithm.

In this section, we examine the state transition rule sets for these firing squad
synchronization protocols developed so far above. Each state on the first row
(column) indicates a state of right (left) neighbor cell, respectively. Each entry
of the sub-tables shows a state at the next step. The state “*” that appears in
the state transition table is a border state for the left and right end cells. It is
noted that, according to the conventions in FSSP, the border state “*” is not
counted in the number of states. We have tested the validity of those tables for
any array of length n such that 2 ≤ n ≤ 500. It reveals that all of the rule tables
tested in this paper include no redundant rules. The transition table can also be
expressed in a usual 4-tuple W X Y → Z which represents a state transition rule
that an automaton in currently in state X, with its left neighbor in state W and
the right neighbor in state Y will enter state Z at the next step.

Fig. 3. A 15-state transition table of the Fischer (1965) algorithm.

3.1 Fischer’s Algorithm: A1

Fischer (1965) firstly presented an idea for synchronizing any 1D array in non-
optimum-time. We implemented his space-time diagram (See Fig. 1 in Fischer
(1965]) for the synchronization in terms of a finite state automaton with 15

238 H. Umeo et al.

states. The set Q of internal states for the Fischer’s algorithm is Q={G, Q, A,
B, C, a, b, c, R, L, X, Y, Z, K, F}, where the state G is the initial general state,
Q is the quiescent state, and F is the firing state, respectively. The table itself,
consisting of 188 4-tuple rules, is constructed newly in this paper. See Fig. 3.
The readers find that the table is very sparse in a sense that each table has
many empty entries. The filled-in ratio of the implementation is fFischer [1965]
= 188/14 × 15 × 15 = 5.9 (%). The time complexity for synchronizing any array
of length n is 3n − 4.

3.2 Minsky-McCarthy Algorithm: A2

Minsky and McCarthy (See Minsky (1967)) also presented an idea for designing
the 3n-step synchronization algorithm. Yunès (1994) gave an implementation of
the algorithm for 14 cells in terms of a 13-state finite state automaton. Figure 4,
consisting of 138 rules, is the transition table constructed in this paper based on
Fig. 2 in Yunès (1994). The set Q of internal states for the Minsky-McCarthy
algorithm is Q={I, Q, A, B, C, a, b, c, R, L, X, Y, F}, where the state I is the initial
general state, Q is the quiescent state, and F is the firing state, respectively. The
filled-in ratio of the implementation is fMinsky−McCarthy [1967] = 138/12 × 13 ×
13 = 6.8 (%). The time complexity for synchronizing any array of length n is
3n + O(log n).

Fig. 4. A 13-state transition table of the Minsky-McCarthy (1967) algorithm.

3.3 Herman’s 10-State Algorithm: A3

Herman (1972) also gave a 10-state implementation for the 3n-step synchro-
nization algorithm. Figure 5, consisting of 155 rules, is the transition table con-
structed in this paper based on Figs. 3, 4, and 5 in Herman (1972). The set Q of

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 239

Fig. 5. A 10-state transition table of the Herman (1972) algorithm.

Fig. 6. A 7-state transition table of the Yunès (1994) algorithm.

internal states for the Herman algorithm is Q={I, S, J, U, W, R, X, V, G, F}, where
the state I is the initial general state, S is the quiescent state, and F is the fir-
ing state, respectively. The filled-in ratio of the implementation is fHerman [1972]

= 155/9 × 10 × 10 = 17.2 (%). The time complexity for synchronizing any array
of length n is 3n + O(log n).

3.4 Yunès Seven-State Algorithm: A4

Yunès (1994) presented two 7-state implementations for the 3n-step FSSP algo-
rithms and decreased the number of states required. The set Q of internal states
for the first Yunès algorithm is Q={G, Q, A, C, d, Z, F}, where the state G
is the initial general state, Q is the quiescent state, and F is the firing state,
respectively. The following Fig. 6, consisting of 134 rules, is the transition table.
The filled-in ratio of the implementation is fYunès [1994] = 134/6×7×7 = 45.6 (%).
The time complexity for synchronizing any array of length n is 3n + O(log n).

240 H. Umeo et al.

Yunès (1994) also gave a different 7-state implementation for the 3n-step FSSP
algorithm. The set Q of internal states for the Yunès algorithm is Q={G, Q, A, C,
d, Z, F}, where the state Z is the initial general state, Q is the quiescent state, and
F is the firing state, respectively. The following Fig. 7, consisting of 134 rules,
is the transition table. The filled-in ratio of the implementation is fYunès [1994]

= 134/6× 7× 7 = 45.6 (%). The time complexity for synchronizing any array of
length n is 3n+O(log n). A major difference between these two implementations
is a center marking for each splitting.

Fig. 7. A 7-state transition table of the Yunès (1994) algorithm.

3.5 Umeo, Maeda, and Hongyo’s 6-State Algorithm: A5

Umeo, Maeda, and Hongyo (2006) presented a 6-state 3n-step FSSP algorithm.
The implementation was quite different from previous designs. The set Q of
internal states for the algorithm is Q={P, Q, R, Z, M, F}, where the state P
is the initial general state, Q is the quiescent state, and F is the firing state,
respectively. The following Fig. 8, consisting of 78 rules, is the transition table.
The filled-in ratio of the implementation is fUmeo,Maeda,andHongyo [2006] = 78/5 ×
6 × 6 = 52.0 (%). The time complexity for synchronizing any array of length

Fig. 8. A 6-state transition table of the Umeo, Maeda, and Hongyo (2006) algorithm.

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 241

n is 3n + O(log n). The number six was the smallest one known in the class of
3n−step synchronization algorithms. An important key idea was to increase the
number of cells being active during their computation. The algorithm can be
extended to a new non-trivial symmetrical six-state 3n-step generalized firing
squad synchronization algorithm. It is seen that the algorithm has O(n2) state-
change complexity.

Fig. 9. A 6-state transition table of the Yunès (2008) algorithm.

3.6 Yunès 6-State Algorithm: A6

Yunès (2008) presented a 6-state implementation for the 3n-step FSSP algo-
rithm. His implementation was based on wider threads. The set Q of internal
states for the Yunès (2008) algorithm is Q={A, Q, B, C, D, E}, where the state A is
the initial general state, Q is the quiescent state, and E is the firing state, respec-
tively. The following Fig. 9, consisting of 125 rules, is the transition table. The
filled-in ratio of the implementation is fYunès [2008] = 125/5 × 6 × 6 = 69.4 (%).
The time complexity for synchronizing any array of length n is 3n + O(log n).

3.7 A New 6-State Algorithm: A7

Here we present a new 6-state implementation for the 3n-step algorithm. The
set Q of internal states for the algorithm is Q={Z, Q, A, C, d, F}, where the
state Z is the initial general state, Q is the quiescent state, and F is the firing
state, respectively. The following Fig. 10, consisting of 114 rules, is the 6-state
transition table. The filled-in ratio of the implementation is fThis Paper = 114/5×
6 × 6 = 63.3 (%). The time complexity for synchronizing any array of length n
is 3n + O(log n).

3.8 A New 6-State Algorithm: A8

We also present a new 6-state O(n2)-state-change implementation for the
3n-step FSSP algorithm. The implementation is quite similar to the algorithm

242 H. Umeo et al.

Fig. 10. A 6-state transition table of the new algorithm.

Fig. 11. A transition table of a new 6-state O(n2)-state-change implementation.

A5. The set Q of internal states for the algorithm is Q={L, Q, G, M, X, F}, where
the state L is the initial gene ral state, Q is the quiescent state, and F is the firing
state, respectively. The following Fig. 11, consisting of 100 rules, is the transition
table. The table is nearly symmetric. The filled-in ratio of the implementation is
fThis Paper = 100/5 × 6 × 6 = 55.6 (%). The time complexity for synchronizing
any array of length n is 3n + O(log n). The state-change complexity is O(n2).

3.9 Umeo-Yanagihara 5-State Algorithm: A9

Umeo and Yanagihara (2007) presented a 5-state implementation for the 3n-
step FSSP algorithm. The solution is a partial solution that can synchronize
any array of length n such that n = 2k, k = 1, 2, 3, ..., . The set Q of internal
states for the implementation is Q={R, Q, S, L, F}, where the state R is the initial
general state, Q is the quiescent state, and F is the firing state, respectively. The
following Fig. 12, consisting of 125 rules, is the transition table. The filled-in ratio
of the implementation is fUmeoandYanagihara [2007] = 67/4×5×5 = 67.0 (%). The
time complexity for synchronizing any array of length n is 3n− 3. Note that the
state change complexity is O(n2).

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 243

Fig. 12. A transition table of the 5-state algorithm.

3.10 State-Change Complexity

Concerning the state-change complexity, the following theorems are established.

Theorem 8. The non-optimum-time algorithms developed by Fischer (1965),
Minsky-McCarthy (1967), Herman (1972), Yunès (1994), Yunès (2008), and
a new 6-state algorithm in this paper have O(n log n) optimum state-change
complexity for synchronizing n cells in 3n ± O(log n) steps.

Theorem 9. The non-optimum-time algorithms developed by Umeo-Maeda-
Hongyo (2006), a new one in this paper, and Umeo-Yanagihara (2007) have
O(n2) state-change complexity for synchronizing n cells in 3n ± O(log n) steps.

4 Discussions

We have given a survey on a class of non-optimum-time FSSP algorithms for
one-dimensional (1D) cellular automata, focusing our attention to the 1D FSSP

Table 1. Quantitative comparison of transition rule sets for non-optimum-time firing
squad synchronization algorithms. The “*” symbol in parenthesis shows the correction
and reduction of transition rules made in this paper.

Algorithm # States # Rules Time State- Generals’s Type Thread Filled-

complexity change position width in ratio

complexity (%)

Fischer (1965) 15 188∗ 3n − 4 O(n logn) left thread 1 5.9

Minsky- 13 138∗ 3n + O(logn) O(n logn) left thread 1 6.8

McCarthy

(1967)

Herman (1972) 10 155∗ 3n + O(logn) O(n logn) left thread 2 17.2

Yunès (1994) 7 134 3n ± O(logn) O(n logn) left thread 2 45.6

Yunès (1994) 7 134 3n ± O(logn) O(n logn) left thread 2 45.6

Umeo et al 6 78 3n + O(logn) O(n2) left plane – –

(2006)

Umeo et al 6 115 max(k, n − k + 1) O(n2) arbitrary plane – –

(2006) +2n+ O(logn)

Umeo and 5 67 3n − 3 O(n2) left plane — 67.0

Yanagihara n = 2k,

(2007) k = 1, 2, ..

Yunès (2008) 6 125 3n + �logn� − 3 O(n logn) left thread 2, 3 69.4

This Paper 6 114 3n + O(logn) O(n logn) left thread 2, 3 63.3

This Paper 6 100 3n + O(logn) O(n2) left plane – 55.6

244 H. Umeo et al.

algorithms having 3n±O(log n) time complexities. Here, we present a table based
on a quantitative comparison of non-optimum-time synchronization algorithms
and their transition tables discussed above (Table 1).

References

Balzer, R.: An 8-state minimal time solution to the firing squad synchronization prob-
lem. Inf. Control 10, 22–42 (1967)

Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J.
of ACM 12(3), 388–394 (1965)

Gerken, H.-D.: Über Synchronisations-Probleme bei Zellularautomaten. Diplomarbeit,
Institut für Theoretische Informatik, Technische Universität Braunschweig, pp. 50
(1987)

Goto, E.: A minimal time solution of the firing squad problem. Dittoed Course Notes
for Applied Mathematics, 298, pp. 52–59. Harvard University (1962)

Herman, G.T.: Models for cellular interactions in development without polarity of indi-
vidual cells. I. General description and the problem of universal computing ability.
Int. J Syst. Sci. 2(3), 271–289 (1971)

Herman, G.T.: Models for cellular interactions in development without polarity of
individual cells. II. Problems of synchronization and regulation. Int. J Syst. Sci.
3(2), 149–175 (1972)

Kobuchi, Y.: A note on symmetrical cellular spaces. Inf. Process. Lett. 25, 413–415
(1987)

Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theor. Comput. Sci. 50, 183–238 (1987)

Minsky, M.: Computation: Finite and Infinite Machines, pp. 28–29. Prentice Hall, New
Jersey (1967)

Moore, E.F.: The firing squad synchronization problem. In: Moore, F. (ed.) Sequential
Machines: Selected Papers, pp. 213–214. Addison-Wesley, Reading MA. (1964)

Sanders, P.: Massively parallel search for transition-tables of polyautomata. In: Pro-
ceedings of the VI International Workshop on Parallel Processing by Cellular
Automata and Arrays, (Jesshope, C., Jossifov, V., Wilhelmi, W. (eds.) Akademie,
pp. 99–108 (1994)

Szwerinski, H.: Symmetrical one-dimensional cellular spaces. Inf. Control 67, 163–172
(1982)

Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers,
R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574.
Springer, Heidelberg (2009)

Umeo, H., Kamikawa, N., Yunès, J.B.: A family of smallest symmetrical four-state
firing squad synchronization protocols for ring arrays. Parallel Process. Lett. 19(2),
299–313 (2009)

Umeo, H., Maeda, M., Hongyo, K.: A design of symmetrical six-state 3n-step firing
squad synchronization algorithms and their implementations. In: El Yacoubi, S.,
Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 157–168. Springer,
Heidelberg (2006)

Vollmar, R.: Some remarks about the “Efficiency” of polyautomata. Int. J. Theor.
Phys. 21(12), 1007–1015 (1982)

Waksman, A.: An optimum solution to the firing squad synchronization problem. Inf.
Control 9, 66–78 (1966)

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey 245

Yunès, J.-B.: Seven states solutions to the firing squad synchronization problem. Theor.
Comput. Sci. 127(2), 313–332 (1994)

Yunès, J.-B.: An intrinsically non minimal-time Minsky-like 6-states solution to the
firing squad synchronization problem. Theor. Inf. Appl. 42(1), 55–68 (2008)

Yunès, J.-B.: Simple new algorithms which solve the firing squad synchronization prob-
lem: a 7-states 4n-steps solution. In: Durand-Lose, J., Margenstern, M. (eds.) MCU
2007. LNCS, vol. 4664, pp. 316–324. Springer, Heidelberg (2007)

Yunès, J.B.: A 4-states algebraic solution to linear cellular automata synchronization.
Inf. Process. Lett. 19(2), 71–75 (2008)

CA - Model of Autowaves Formation
in the Bacterial MinCDE System

Anton Vitvitsky(B)

Supercomputer Software Department, ICM&MG, Siberian Branch,
Russian Academy of Sciences, Pr. Lavrentieva, 6, Novosibirsk 630090, Russia

vitvit@ssd.sscc.ru

Abstract. The MinCDE protein system exists in Escherichia coli and
some other bacteria. It prevents the bacteria from incorrect cell divi-
sion. Recent studies of MinCDE behavior in vitro showed it exhibits self-
organization forming protein autowaves and some other patterns. There
is a proposition that autowaves arises from an interplay of two opposing
mechanisms: cooperative binding of MinD to the membrane, and accel-
erated MinD detachment due to persistent MinE rebinding. On the basis
of this proposition we have developed a cellular automaton model of the
process. The behavior of protein concentration, obtained as a result of
computer simulations, reveals similarity with the results of experiments
in vitro. In addition, the protein autowaves resulting from computational
experiments are similar to those that emerge in vitro.

1 Introduction

Bacterial cell division begins with formation of a ring-like structure on the cell
membrane at the midcell (Fig. 1). This ring is called the Z-ring, it consists of
FtsZ polymers (tubulin-like protein) and is a framework for downstream cell
division proteins [1]. A proper position of Z-ring in the midcell is controlled
by the certain self-organization mechanisms. A bright example of these self-
organization mechanisms is MinCDE protein system, which is present in the
Escherichia coli. Currently, the processes leading to a self-organization in this
MinCDE system are not quite clear, but are intensively studied [3,4].

In this paper, we propose the Cellular Automata (CA) model of autowaves
formation in MinCDE system, simulating results of detailed experimental studies
of the protein dynamics MinCDE in vitro, [3,4].

2 Oscillations in the Bacterial MinCDE System

The MinCDE system consists of the following interacting proteins: MinC, MinD
and MinE. At the beginning of an oscillation cycle (or in the front of the protein
wave) MinD starts to bind cooperatively to the membrane. This binding is ATP-
dependent, i.e., requires the presence of ATP-nucleotides. MinD also diffuses on

Supported by RFBR under Grant 14-01-31425- mol-a.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 246–250, 2015.
DOI: 10.1007/978-3-319-21909-7 23

CA - Model of Autowaves Formation in the Bacterial MinCDE System 247

Fig. 1. Z-ringassembles at the midcell where the concentration of negative regulators
of assembly is lowest [1].

the membrane and periodically detaches back into solution. With rise of MinD
density, its residence time on the membrane is increased, and diffusion slows
down. MinE from solution also starts to bind to membrane-bound MinD, but at
the beginning of an oscillation cycle the ratio of MinE/MinD is still too low and
therefore protein detachment, due to ATP-hydrolysis, hardly occurs.

At the middle of an oscillation cycle (or in the middle of the wave), the ratio of
MinE/MinD is increased, and correspondingly protein detachment occurs more
often. MinE continuously rebinds to a neighboring membrane-bound MinD.

At the end of an oscillation cycle (or in the rear of the wave), the ratio of
MinE/MinD reaches its maximum, and MinE, interacting with the membrane,
induces a conformational change, resulting in all MinC being displaced back
into solution. Finally, MinE stimulates bulk hydrolysis of MinD and all proteins
rapidly disappear from the membrane.

3 The Cellular-Automata Model of MinDE Autowaves
Formation

A cellular automaton (CA) is a discrete mathematical model consisting of a set
of finite state automata called cells [4]. Each cell is defined by a pair (u,x),
where u is a cell state from the finite set of states A, and x is a cell name from
the finite set of the name X. The set of cells Ω = {(u,x) : u ∈ A, x ∈ X} form
a cellular array.

The CA-model, presented here, simulates self-organization process of MinDE
proteins in vitro. The CA has a set of names X = {x : x(i, j), i =
1, ..,W, j = 1, ...,H}, where W × H - lattice size, and the set of states
A = {∅,MinD,MinE,MinDE}, where ∅ - means that the cell is “empty”, and
the remaining states correspond the presence of one of MinD,MinE proteins
or MinDE complex in the cell, respectively. At initial time, all cells (u,x) ∈ Ω
are set to ∅-state.Let us consider the CA-rules in detail:

1. MinD binding to the membrane:

∅ P1+k·|Nm|−−−−−−−−−−−→ MinD, (1)

where P1 is a basic probability of MinD binding to the membrane, k - coef-
ficient reflecting the strength of cooperative attraction MinD from the solu-
tion, |Nm| — the number of cells with the MinD-state from the Moore
neighborhood.

248 A. Vitvitsky

2. MinE binding to the membrane-bound MinD:

MinD
P2−−−−−→ MinDE, (2)

where P2 is a probability of MinE binding to MinD.
3. Hydrolysis of ATP and detachment of MinD from the membrane:

MinDE
P3−−−−−→ MinE, (3)

where P3 is a probability of ATP hydrolysis.
4. Membrane diffusion of MinD/MinDE :

The diffusion is presented by naive diffusion [3]. First, choose an empty cell
is randomly chosen in the Moore neighborhood. Then, with the probability
P4 the central cell exchangesr states with a chosen one.

5. Rebinding MinE to an available MinD: The rule of rebinding is similar to
the diffusion but it has some differences. First, we choose a cell with MinD-
state randomly in the neighborhood (larger than the Moore one). Then, with
the probability P5 the central cell changes its MinE-state to the empty-
state and the chosen cell changes its MinD-state to MinDE-state. If the
neighborhood does not contain any cell with MinD-state then the central cell
becomes empty.

4 Computer Simulation Results

A computational experiment has been carried out. The collected data resulting
from the simulation are compared to the data obtained in the experiments in
vitro. The model parameters of the computational experimenthave been chosen
empirically in such a way, that the graph of proteins surface density by time,
obtained as a result of computer simulation, matches the graph from the exper-
iments in vitro (Fig. 2).

The following parameters have been chosen: rectangular lattice consisting
of 600× 600 cells, P1 = 0.00001, P2 = 0.03, P3 = 1.0, P4 = 1.0, P5 = 0.8,
k = 0.034375.

(a () b)

Fig. 2. Protein surface densities by time. (a) Estimated surface densities of MinD and
MinE in vitro. Figure adapted from [3]. (b) Computer simulation result

CA - Model of Autowaves Formation in the Bacterial MinCDE System 249

Fig. 3. Visualization of computational experiment

Fig. 4. Emergence of concentric waves (left) and protein spirals (middle and right) in
the computational experiment

In Fig. 3 six snapshots of the CA-evolution are shown. On the beginning of
simulation (t=1) the membrane is empty. Then, MinD gradually begins to attach
to the membrane and attract other MinD dimmers as well as MinE binds to
membrane-bound MinD (t=100, t=500). MinE dimmers stimulate ATP hydrol-
ysis by MinD being followed by detachment of the proteins back to the cytosol
(t=800, t=1100). As a result, the membrane becomes empty again (t=1250) and
the cycle repeats. Self-organization of MinDE proteins is clearly observed after
a number of iteration thousands (Fig. 4).

5 Conclusion

The CA-model of the MinDE proteins self-organization, yielding autowaves
emergency has been developed. The model is based on the investigation of the
process in vitro from [3]. The graph of protein concentration, obtained as a

250 A. Vitvitsky

result of computer simulations, has revealed the similarity with the graphs from
the experiments in vitro from [3,4]. The visualization of computational exper-
iments has shown the emergency of protein waves and spirals similar to those
that emerge in vitro.

References

1. Lutkenhaus, J.: Assembly dynamics of the bacterial MinCDE system and spatial
regulation ofthe Z ring. Annu. Rev. Biochem. 76, 539–562 (2007)

2. Loose, M., Fischer-Friedrich, E., Herold, C., Kruse, K., Schwille, P.: Min protein
patterns emerge from rapid rebinding and membrane interaction of MinE. Nat.
Struct. Mol. Biol. 18(5), 577–583 (2011). doi:10.1038/nsmb.2037

3. Ivanov, V., Mizuuchi, K.: Multiple modes of interconverting dynamic pattern for-
mation by bacterial cell division proteins. Proc. Natl. Acad. Sci. 107(18), 8071–8078
(2010)

4. Bandman, O.: Cellular automata composition techniques for spatial dynamics sim-
ulation. In: Hoekstra, A.G., et al. (eds.) Simulating Complex Systems by Cellu-
lar Automata: Understanding Complex Systems, pp. 81–115. Springer, Heidelberg
(2010)

5. Toffolli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

http://dx.doi.org/10.1038/nsmb.2037

Distributed Computing

Agent-Based Approach to Monitoring
and Control of Distributed
Computing Environment

Igor Bychkov, Gennady Oparin, Alexei Novopashin,
and Ivan Sidorov(&)

Matrosov Institute for System Dynamics and Control Theory,
Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia

{bychkov,oparin,apn,ivan.sidorov}@icc.ru

Abstract. This paper discusses a problem of monitoring heterogeneous dis-
tributed computing environments which consist of loosely coupled multiplat-
form computing resources. We propose an approach to the organization of the
meta-monitoring system which collects data from existing local monitoring
systems and own software sensors, unifies and analyzes data, generates neces-
sary control actions. The approach is based on web-technologies, multi-agent
technologies, expert systems, methods of decentralized processing and distrib-
uted storage of data.

Keywords: Monitoring � Multi-agent systems � Expert systems � Distributed
computing environments � High-performance computer centre

1 Introduction

The paper considers distributed computing environments (DCE) intended for
resource-intensive computing experiments. DCE may include high-performance com-
puting (HPC) systems with different architectures and configurations: HPC-servers
based on GPU, coprocessors or FPGA; HPC-clusters controlled by various job man-
agement systems (PBS/Torque, LSF, SGE, etc.); hybrid computing systems with
unequal processor and memory architectures.

To organize DCE it is necessary to solve a number of problems including devel-
opment of control and monitoring tools. Control tools should provide coordinated work
of all DCE components. Examples of control functions are following: load balancing
among DCE nodes, command execution in parallel; power on/off compute nodes.
Monitoring tools should supply to operator structured and unified information about
environment state: values of node hardware sensors (e.g. temperature of CPU and
motherboard), load of computing nodes by parallel programs (CPU, RAM, I/O-system,
network usage, etc.), load of engineering infrastructure devices and others. With
increasing the number of compute nodes in DCE the amount of data which should be
analyzed by operator is growing. The risk of human errors is rising simultaneously.
Actual graphical and numerical data provided by monitoring system allow operator to
respond to any emergency situations in DCE and to identify causes of faults and
failures.

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 253–257, 2015.
DOI: 10.1007/978-3-319-21909-7_24

2 Related Work

The known monitoring tools have a number of disadvantages which make it very
difficult to collect and analyze data in complex computing systems. For example,
Ganglia [1] is not able to perform the processing of current values and the notification
about the critical and dangerous events. Nagios [2] and Zabbix [3] were initially
oriented to network monitoring and are not effective enough for DCE. The main
problem of ClustrX Watch [4] is the lack of data visualization means and tools for
adding new sensors. LAPTA [5] is designed for in-depth analysis of dynamic char-
acteristics of parallel programs, but it does not allow to control the DCE infrastructure.

Then we propose an approach to the creation of the meta-monitoring system, which
differs from the known ones by the set of unique properties: automatic control of
software and hardware resources using multi-agent technologies, decentralized scheme
of data storage and expert decision-making [6].

3 Model

Let the model of the meta-monitoring system is represented by the following structure:

D ¼ \N; L; M; B; V ; G; A; R; S[; ð1Þ

where N denotes the set of the DCE nodes; L – the set of the DCE links; M – the set of
metrics (characteristics); B – the set of metrics values; V – the set of thresholds for
metrics values; G – the set of local monitoring systems; A – the set of agents; R – the set
of inference rules for an expert subsystem; S – the set of control actions.

The following relations between the sets from (1) are defined: NM � N × M – the
metrics measured in nodes; MG �M × G – the metrics collected from local monitoring
systems; NT � N × L – the DCE topology; NA � N × A – the hierarchical structure of
agents; RM � R × M – the dependencies between inference rules and measured
metrics; SM � S × M – the dependencies between control actions and measured
metrics.

The meta-monitoring problem is defined as follows. Let ni ϵ N is one of the DCE
nodes and mi metrics are measured (mi � M) for ni. Then Bi(t) = {bik(t)} is the set of
metrics values for ni at the time t, where k = 1, 2, …, mi.

Steady state of a metric at the interval [t0, t1] is considered to be the one for which
the inequality (2) is satisfied.

jbikðtÞ � bikðt0Þj � cik; 8t 2 ½t0; t1�; 8k 2 ½1;mi�; ð2Þ

where cik is a positive constant defining the range of values for appropriate metric.
Significant event is a transition from the steady state Bi(t0) to the steady state Bi(t1),

when there is a change of any metric’s value more than relevant threshold vik ϵ V. The
list of the facts for an expert subsystem is formed after each significant event in the
interval [t0, t1]. Further the inference engine generates the control actions Si on basis of
the inference rules Ri for ni.

254 I. Bychkov et al.

4 Architecture

Architecture of the meta-monitoring system for DCE is shown on Fig. 1.

Apache web-server

Authorization module

REST-server

Web-browser
(MS IE, Firefox, Safari)

Application program
interface (API)

RPC-module

User level

Access level

Web -application

Top -level
agents

Command line
interface (CLI)

Web -service

REST HTTP

PHP -scripts Static files

R
E

S
T

Top -level storage subsystem

XML-RPC

Top -level agent

Control subsystem

Expert subsystem

Data collection module

Knowledge
base

RRD-data

SQL / RRD

S
Q

L / R
R

D

Middleware
agents

Middleware storage
subsystem

Middleware agent

Control subsystem

Expert subsytem

Data collection subsytem

Knowle
dge
base

RRD-
data

Bottom-level storage
subsystem

Bottom-level agent

Control subsystem

Expert subsystem

Data collection subs.

RRD-
data

Bottom-level storage
subsystem

Bottom level -agent

Control subsystem

Expert subsystem

Data collection subs.

XML-RPCXML-RPC

Bottom -level
agents

XML-RPC

Hardware
level

PBS-
module

CPU-
module

Ganglia-
module

Nagios-
module

Extensions for data collection

... APC-
module

Emerson-
module

Climate-
module

Extensions for data collection

...

Knowle
dge
base

RRD-
data

Knowle
dge
base

REST

Fig. 1. Architecture of the meta-monitoring system for DCE

Agent-Based Approach to Monitoring and Control of DCE 255

The architecture includes the following components:

– user level includes the user access tools for interaction with the meta-monitoring
system both in batch mode and interactive mode;

– access-level includes the data access control subsystem and the server part of a
graphical user interface;

– top-level agent performs the basic management functions of the meta-monitoring
system (in the central node);

– middleware agents take the part of the load from top-level agent (in the intermediate
nodes);

– bottom-level agents perform the functions of collecting and preprocessing data
about state of compute node components and other hardware-level devices;

– hardware-level includes devices of engineering and computing infrastructure of
DCE.

All agents of the meta-monitoring system are autonomous software components
[7]. Each agent includes the following subsystems:

– data collection subsystem reads data from software and hardware sensors, receives
data from the local monitoring systems and other agents, unifies the collected data
and translates them into an intermediate format of database subsystem;

– database subsystem aggregates data and checks the data integrity;
– expert subsystem analyzes the collected data within certain time interval to initialize

control actions if appropriate;
– control subsystem executes control actions and interacts with agents of upper levels.

5 Experimental Results

The developed model, methods and tools for meta-monitoring were successfully
approved in the Supercomputer Centre of ISDCT SB RAS [8] during solving some
complex science problems in bioinformatics, chemistry, satisfiability and others.

The meta-monitoring system allowed us to detect ineffective user applications,
optimize the load of compute nodes and increase the reliability of DCE. For example,
we found dominance of read/write operations to/from a network directory in relation to
the computing operations of processor cores for a number of user applications. In these
cases changing the applications settings to record results in a local directory has
improved computational efficiency up to 30 %.

Besides the meta-monitoring system is used as a power saving software tool for the
Matrosov compute cluster [8], which is part of DCE. We have analyzed statistics of
cluster usage for the last year and found that the average load of its nodes is less than
75 % (e.g., 90 % – May 2014, 50 % – July 2014, etc.). At the same time 25 % of idle
resources consume 3700 kWh per month. In order to save power we have developed an
extension for our meta-monitoring system, which includes sensors for PBS, inference
rules for an expert subsystem and control actions. As control actions (S from structure
(1)) we use operator notifications (e.g. about a huge length of a job queue) and
automatic shutdown/start compute nodes by using the IPMI protocol.

256 I. Bychkov et al.

6 Conclusions

In this paper the original approach to development of the meta-monitoring system for
distributed computing environments has been presented. The novelty of the approach
consists in the use of software agents which automatically collect data about state of
cluster nodes and infrastructure, perform the data analysis and generate the control
actions. The agents are able to make decisions independently or through interactions
with other agents. The agent architecture is universal. It makes possible to apply the
agents on the different levels of the meta-monitoring system. Using the multi-level
hierarchy of agents provides the load balancing between components of the monitoring
system and increases the reliability of DCE via decentralization of monitoring and
control functions. Furthermore, the agent-based approach guarantees high scalability of
the system for DCE with a large number of nodes.

References

1. Massie, M., Li, B., Nicholes, V., Vuksan, V.: Monitoring with Ganglia. O’Reilly Media,
Sebastopol (2012)

2. Josephsen, D.: Building a Monitoring Infrastructure with Nagios. Pearson Education, Boston
(2007)

3. Zabbix. https://www.zabbix.org
4. ClustrX Watch. http://www.t-platforms.com/products/software/clustrxproductfamily/clustrxwatch.

html
5. Adinets, A.V., Bryzgalov, P.A., Voevodin, V.V., Zhumatiy, S.A., Nikitenko, D.A.: About one

approach to monitoring, analysis and visualization of jobs on cluster system. In: Numerical
Methods and Programming, vol. 12, pp. 90–93. RCC MSU, Moscow (2011)

6. Giarratano, J.C., Riley, G.D.: Expert Systems: Principles and Programming, 4th edn. Course
Technology, Boston (2004)

7. Tweedale, J., Ichalkaranje, N.: Innovations in multi-agent systems. J. Netw. Comput. Appl.
30, 1089–1115 (2007). Elsevier, Melbourne

8. Irkutsk Supercomputer Centre of SB RAS. http://hpc.icc.ru

Agent-Based Approach to Monitoring and Control of DCE 257

https://www.zabbix.org
http://www.t-platforms.com/products/software/clustrxproductfamily/clustrxwatch.html
http://www.t-platforms.com/products/software/clustrxproductfamily/clustrxwatch.html
http://hpc.icc.ru

Virtual Screening in a Desktop Grid:
Replication and the Optimal Quorum

Ilya Chernov(B) and Natalia Nikitina

Institute of Applied Mathematical Research (IAMR),
Pushkinskaya 11, Petrozavodsk 185910, Russia

IAChernov@yandex.ru, nikitina@krc.karelia.ru

http://mathem.krc.karelia.ru

Abstract. We propose a mathematical model of a desktop grid com-
puting system that solves tasks with two possible answers. Replication is
used in order to reduce the error risk: wrong answers are returned with
some known probabilities and penalty is added to the calculation cost in
case of an error. We solve the optimization problems to determine the
optimal quorum for tasks of varying duration. Beside the general case,
we consider reliable answers of one kind. We apply the model to the
problem of virtual screening and show how replication reduces the aver-
age cost. Also we demonstrate that when penalties are close to but lower
than the critical values, taking different duration of tasks into account
significantly reduces the penalty threat at very low additional cost.

Keywords: Grid computing · Virtual screening · Optimal quorum ·
Replication · Volunteer calculations

1 Introduction

High-performance computing is widely used in science and industry. Recently
popularity of desktop grids [2] have increased; such grids connect heterogeneous
computers using networks of general purpose. Such grids are useful for problems
that demand much computational power due to large amount of independent
or weakly dependent tasks. Much effort has been paid recently to optimize the
calculation process and improve its reliability [1,3,5–10,12–14]. Batching tasks
in order to improve efficiency of a Desktop grid is considered in, e.g., [11], where
the author shows that replication is able to reduce the overall time of solving
multiple tasks. A distributed computing system with central architecture, but
different from Desktop grid, is considered in [3]: there computing nodes are
homogenous and computing tasks are strongly connected.

The answer returned by the computing node can be wrong, due to malfunc-
tion, errors in transaction, malicious actions; besides, the algorithm can provide
a wrong result due to different reasons. For example, gradient methods can
converge to local minima and fail to reach the true global minimum. In fact,
functions on multi-dimensional space typically have multiple minima; therefore
local minimization may fail to find the global solution.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 258–267, 2015.
DOI: 10.1007/978-3-319-21909-7 25

Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum 259

An obvious way to avoid errors is replication: each task is solved until the
given number (called the quorum) of identical answers is obtained. However, this
means increasing the computational time and/or cost. Another way to reduce
the risk is to use higher precision; this also increases the cost of calculation.
Provided that estimation of the cost of the wrong answer is known, we are
able to evaluate the expected cost and choose the optimal quorum and optimal
precision: the optimal strategy of solving the tasks can be obtained.

We consider the problem of optimizing the average cost of a task. The cost
consists of time spent on its solution and some penalty paid in case of accept-
ing a wrong answer. Obviously replication does not eliminate the risk, though
reduces it significantly. A mathematical model of the computation process and a
numerical optimization procedure are applied to the virtual screening problem.

Virtual screening is a computational technique to evaluate the binding energy
between a complex protein molecule and a smaller structure called a ligand. Lig-
ands can be substances (medicines, poisons, etc.) that somehow affect functions
performed by the protein. The predicted binding energy depends on spatial struc-
ture of both molecules. Ligands with lower predicted energy potentially can be
used and are to be further tested in a laboratory. However, a protein molecule
often has pockets: local minima of the connection energy. If the algorithm finds a
false pocket instead of the optimal one, the ligand will be rejected and probably
lost. Errors of the other kind are less likely. The algorithm can work with dif-
ferent given precision and uses random numbers; thus a few tries can, possibly,
reveal the mistake.

The structure of this article is the following: we give the mathematical
description of a problem, then show how to evaluate the optimal quorum; we pay
more attention to the special case when one kind of answer is always correct and
consider examples based on a piece of statistics from a virtual screening project.

2 The Model

Let us consider the grid computing system (or its part) solving numerous prob-
lems with two possible answers: YES or NO. The correct answers have some
probabilities q−, q+, both greater than 0.5. This means that if the correct answer
is YES, it is produced by a node with probability q+; the wrong answer comes
with probability 1 − q+ = p−. A priori probabilities of answers are α+ and α−.
They are evaluated from the statistics of real calculations. If the YES answer is
highly unlikely to be missed, we can assume that q+ = 1. However, q− < 1, i.e.,
false positive answer can be returned. These probabilities depend on parameters
of the algorithm, i.e., random seed or precision.

Of course, different computer nodes can have different probabilities q+, q−;
however, often the difference is not so significant to be taken into account; even
if it is, the nodes can be divided into groups and the results below be applied
to a group [5,11]; in case of a large number of nodes, average values of the
probabilities can be used; finally, it seems reasonable to use the upper bound of
the error probabilites to obtain the robust strategy.

260 I. Chernov and N. Nikitina

In order to reduce the risk of producing the wrong answer replication or
quorum can be used. Under the first approach we understand sending ν copies of
each task to randomly chosen computers and expecting equal answers; otherwise
the task is re-solved carefully. The second method is sending copies until ν
identical answers arrive; possible different answers are discarded. One of the
answers can be tested more carefully: so ν answers are enough for e.g. the NO
answer while μ > ν are needed to take the YES answer. In the q+ = 1 case,
obviously, the YES answers are not checked at all: ν = 1, while the NO answer
is checked carefully enough: μ > 1.

The obtained answer is given to the user and can possibly still be wrong.
The user figures out if the answer is correct or not, in the latter case some kind
of penalty F+ or F− is added to the time spent on the computation (or the cost
of this time) forming the cost function J . Therefore we have an optimization
problem: for large redundancy the cost is high, but the risk of the wrong answer
and thus of penalty is almost eliminated; while in case of insufficient quorum the
calculation cost is low, but instead penalty threat can be too expensive.

Penalties F+ and F− are losses due to the unnecessary (possibly expensive)
laboratory test, losses in case of a missed good ligand, reputational losses, etc.;
they can differ, because missing the correct “YES” answer and missing the cor-
rect “NO” answer can be errors of different cost. Obviously false positive result
is less costly because laboratory tests would inevitably reveal the mistake; on
the other hand, the false negative result means that the good ligand is missed,
possibly forever.

We fix the average computation time of a task as a cost unit. Let duration
of the considered task be C; some tasks are solved more quickly, so penalty is
effectively higher, others are more complex, so penalty seems lower. So possibly
short tasks can be tested more carefully. In the docking project time needed to
solve a single task varies 10–12 times.

We assume that the penalties are known, and determine the optimal quorums
depending on the real cost of a task, and also we show how parameters of the
algorithm (e.g., precision) can be chosen such that the expected cost be minimal.

3 Optimal Quorum

Let p− = 1 − q+, p+ = 1 − q−. The random cost is given in Table 1. Each
column shows the conditional binomial random variable: the number of tries
before acception of the correct/wrong YES/NO answer.

Table 1. Random cost, unequal answers

ν + i, ν + i + F+/C, μ + j, μ + j + F−/C,

i = 0 : μ − 1, i = 0 : μ − 1 j = 0 : ν − 1 j = 0 : ν − 1

α−
(

ν+i−1
ν−1

)
qν

−pi
+ α+

(
ν+i−1

ν−1

)
pν

−qi
+ α+

(
μ+j−1

μ−1

)
qμ
+pj

− α−
(

μ+j−1
μ−1

)
pμ
+qj

−

Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum 261

Denote its expectation E(ν, γ). We distinguish the basic replication ν that
is additional checks for both kinds of answers, and additional checks γ for the
answers of greater importance. Firstly we study influence of the basic replication
and then that of the additional one.

3.1 Basic Replication

Consider the increment of the expected cost

G(ν, γ) = E(ν, γ) − E(ν + 1, γ) = A+F+ + A−F− − B.

Let us evaluate A+ (see the details in the Appendix):

A+ = α+pν
−qμ

+

(
ν + μ − 1

ν

)(
1 − p−

ν + μ

μ

)
.

In the same way A− is evaluated:

A− = α−pμ
+qν

−

(
ν + μ − 1

μ

) (
1 − p+

ν + μ

ν

)
.

Note that, as μ = ν + γ ≥ ν, the coefficient A+ > 0 provided that p− ≤ 0.5.
But A− > 0 only if the node is “reliable”:

p+ <
ν

ν + μ
=

ν

2ν + γ
<

1
2
.

This threshold is important: for reliable computing nodes raising both penalties
pays, while for unreliable penalty F− reduces the average cost.

Also, for reliable computers we can choose the penalties in such a way that
any basic replication ν is optimal, even more, in a number of ways. While for less
reliable ones it can be reasonable (without other conditions) to choose F− = 0,
i.e. to forgive the cheap mistakes. Again, any replication ν can be made optimal
choosing only F+.

But in general the condition G(ν, γ) > 0 demands (for unreliable nodes)

F+

F−
> −A−

A+
,

which in the special case p+ = p+ = p, q = 1 − p looks like

F+

F−
>

α−
α+

· p(ν + μ) − ν

μ − p(ν + μ)
·
(

p

q

)γ

. (1)

It is easy to check that

0 <
p(ν + μ) − ν

μ − p(ν + μ)
< 1 for

ν

ν + μ
< p <

1
2

262 I. Chernov and N. Nikitina

If also F+ = F−, computers are always reliable (provided that p < 0.5); passing
from the quorum ν to ν + 1 pays if

F > Fν =
E0(ν + 1) − E0(ν)(
2ν−1
ν−1

)
(1 − 2p)pνqν

. (2)

The sequence Fν increases up to +∞. Also note that both low (≈ 0) and high
(≈ 0.5) probability of error makes redundancy less useful: in the first case the
penalty is unlikely, while in the second it is cheaper to pay the penalty without
hopeless costly attempts to avoid it. The quantity Fν as a function of p (given
by (2)) has a minimum in p∗(ν) ∈ (0, 0.5); This value is the critical level of reli-
ability: as we have said earlier, for higher values replication is not advantageous
because of too high risk of the wrong answer and thus the estimated penalty.

3.2 Additional Replication

Now let us see what the additional replication γ can give. Consider the difference

G(γ) = E(ν, γ) − E(ν, γ + 1) = a+F+ + a−F− − b.

As for a+, it is just an additional term

a+ = −α+pν
−qν+γ

+

(
2ν + γ − 1

ν − 1

)
,

which is a chance to miss the correct YES answer when it has been obtained μ
times. Let us evaluate a−. This is done in the similar way as A− above:

a− = α−pν+γ
+ qν

−

(
2ν + γ − 1

ν + γ

)
= α−pν+γ

+ qν
−

(
2ν + γ − 1

ν − 1

)
.

Note that a− is always positive. Additional checks for the YES answer only
improve the chance to get the correct NO answer. So inequality a+F++a−F− > 0
is necessary for G(γ) > 0, and is sufficient if penalties are large enough. In the
special case p+ = p− = p, q = 1 − p this inequality reduces to

F+

F−
≤ α−

α+

(
p

q

)γ

. (3)

Provided that F+, F− are given and ν, μ = ν + γ are chosen, inequality

A+F+ + A−F− ≥ B

shows if passing to ν + 1, μ + 1 is reasonable, while inequality

a+F+ + a−F− ≥ b

shows if passing to ν, μ + 1 pays. The optimal penalties are the solution to the
linear optimization problem:

Q+F+ + Q−F− + Q → min,

Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum 263

a−F− + a+F+ ≥ b,

A−F− + A+F+ ≥ B,

F+ ≥ 0, F− ≥ 0.

Here Q+, Q− are probabilities of errors and Q = E0,0(ν +1, γ+1). This problem
has a solution: existence of a single point in the domain is sufficient. For reliable
nodes such a point is F+ = 0, F− is high enough; for unreliable ones it is sufficient
to find a point such that a+F+ + a−F− > 0, A+F+ + A−F− > 0. Here a+ < 0,
A− < 0. So we need to check if

−a+

a−
< −A+

A−
.

This inequality reduces to

μ − p−(ν + μ) > p+(ν + μ) − ν.

We have used the unreliability, which makes the right-hand side positive; as
both probabilities are less than 0.5, inequality holds for all p+, p− if it does for
p+ = p− = 0.5 or at least become an equality. It is easily seen that it indeed
becomes an equality, so admissible points exist.

Note that for some cases one of the optimal penalties (F+) is zero: it is
reasonable to forgive one kind of mistakes. For example, the optimal penalties for
ν = 2, μ = 3, γ = 1, p+ = p− = 0.01 (reliable nodes) are F+ = 0, F− = 501.56,
with optimal cost E = 6.0025.

Let us consider a complex example with different error probabilities and non-
zero penalties for different kinds of answers; assume that p+ = 0.004, p− = 0.001,
α− = 0.9964, penalties be F+ = 3 · 105, F− = 4 · 104. The optimal quorums then
are ν = 2, μ = 4 with average cost E = 2.026. Table 2 shows how the expected
cost E depends on the quorums.

Table 2. Cost E with respect to the quorums.

μ − ν 0 1 2 3 4 5 6 7

ν = 1: 161.5 3.8 4.25 5.33 6.41 7.49 8.57 9.64

ν = 2: 3.92 2.028 2.026 2.04 2.05 2.06 2.07 2.08

ν = 3: 3.04 3.015 3.019 3.02 3.03 3.03 3.03 3.04

It is interesting that some quorums are not optimal for any penalties. For
example, if (ν, μ) = (3, 4) is better than (2, 3) and (3, 3), then ν = 1, μ = 4 is
optimal. However, ν = 3, μ = 5 is optimal for certain positive penalties.

264 I. Chernov and N. Nikitina

3.3 Reliable Positive Answers

Let us simplify the results for the case of reliable positive answers, i.e., q+ = 1:
the YES answer is for sure obtained. Then p− = 0 and also penalty F+ is never
paid. Also it is obvious that ν = 1: the NO answer is accepted without any check
because it can not be false. So from here on ν = 1. The random variable for the
cost is in Table 3. Expressions for the coefficients become simpler:

A+ = a+ = 0, A− = α−pμ
+q− (1 − p+(1 + μ)) , a− = α−pμ

+q−.

Table 3. Random cost, unequal answers

1 + i, i = 0 : μ − 1, μ, μ + F−C,

α−q−pi
+ α+ α−pμ

+

4 Examples

Let us consider a few examples of the presented approach; we use a piece of
statistics obtained in 2013–2014 in the Luebeck Institute for Experimental Der-
matology, University of Luebeck, Germany during virtual screening of ligands
for one protein. Open-source software Autodock Vina [15] was used in virtual
screening.

A priori probabilities of the answers were α+ = 0.036, α− = 0.964, proba-
bility of the error (the false positive answer) was p+ = 0.004, mean duration of
a task was 11.37 s. We neglect the risk of false negative answers: p− ≈ 0.

Minimal penalties F ∗ that make quorum μ better than μ−1 are given in the
Table 4.

Table 4. Minimal penalty making quorum μ optimal.

μ 2 3 4 5 6 7

F ∗ 1.91 2.28 · 102 5.67 · 104 1.42 · 107 3.54 · 109 8.86 · 1011

So, if the penalty is 1.5 units, then the optimal quorum for a task of the mean
cost is μ = 1, i.e., no checks are performed. Then the expected cost of a task with
penalty taken into account is 1.006: penalty threat is almost eliminated, as well as
conflicting answers. However, shorter tasks are relatively cheaper and therefore
quorum μ = 2 can become optimal. Taking this difference into account saves
0.14%, so that neglecting variance of duration/cost of tasks seems satisfactory.
Total duration of the calculation is 0.2% more, but instead the expected losses
for penalties are 44.79% less. In other words, probability of error is reduced from
4.0 · 10−3 to 2.2 · 10−3.

Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum 265

If we choose F ∗ = 1.92, then the optimal overall duration would be 0.42%
less (because expensive tasks are not checked), but the error probability would
grow: from 1.6 ·10−5 to 1.4 ·10−3. However, this probability is still less than that
of the no-check case.

For high penalties results are the same. For example, for F = 1.4 · 107 the
optimal quorum for a mean task is μ = 4. Taking task cost variance into account
saves 0.13%, total duration grows on 0.15%, instead the error probability is twice
less: 9.6 · 10−11 against 2.6 · 10−10. Note that if no replication is used, overall
duration is only 1.5% less, while the average cost per a task is more than 5 · 105

units (compare with optimal cost equal to 1.017).
As the penalty is not known and can not be known precisely, it is reasonable

to assume that it is equal to one of these critical values; then it is sufficient to
estimate the order of magnitude of the penalty and there is no need to evaluate
the precise value.

The highest gain is obtained when F ≈ F ∗ but F < F ∗ for any F ∗: many
(about one half) tasks are solved with a higher optimal quorum: they are checked
more carefully, thus the error probability is almost eliminated; additional time
spent on checks is small in the average, because additional checks are needed
rarely. If F > F ∗, but still is close to it, the situation is vice versa: longer tasks
are checked less, so total time is reduced; instead the error probability is higher.
The total gain is positive, yet small: about 0.03%.

Note that replication reduces the error probability significantly, so even great
penalty increases the average cost of a task only slightly. Table 5 shows penalties,
optimal quorums, and average costs. Note that E − 1, i.e., the expected loss for
penalty and additional checks, is much less than one unit. Taking variance of
task cost into account is not able to improve the optimal solution much.

Table 5. Penalties, optimal quorums μ, expected costs.

log10 F 1 2 3 4 5 6 7 8

μ 2 2 3 3 4 4 4 5

(E − 1) · 103 7.75 9.18 11.27 11.84 14.83 15.06 17.45 18.50

Table 6 shows how the average task cost changes with respect to μ.

Table 6. Expected cost with respect to quorum μ.

μ 1 2 3 4 5 6 7 8 9 10

E 55799 224.2 1.90 1.09 1.02 1.02 1.03 1.03 1.03 1.04

Growth for large μ is linear with gradient equal to α+ which is small. There-
fore the lower bound of the optimal quorum μ is necessary, while choosing too
high μ increases the average cost only slightly.

266 I. Chernov and N. Nikitina

Calculation can be performed with different precision; higher precision
demands more time, but reduces the error probability. For example, some preci-
sion allows p+ = 0.044 with unit average calculation time, while higher precision
provides p+ = 0.004 for eight times longer calculation. However, setting μ = 2
(the optimal value for penalty F between 1.13 and 3.0) or μ = 3 (optimal for
3 < F < 45) provides error probability at least 10 and 100 times less, respec-
tively. This reduction demands almost no price: the average cost of a task is 1.05
with difference in the third digit; note that this value includes expected penal-
ties, so pure duration per a task is even less. So, most tasks are solved only once,
rare additional checks almost do not change the cost, but effectively eliminates
the risk.

This shows that it can be reasonable to use lower precision with optimal
quorum.

Conclusion

We have described the cost of solving a recognition task in a desktop grid com-
puting system as a random variable that consists of the calculation cost and
the penalty in case of an error. The total cost is reduced by redundant checking
calculations. We show how to choose the optimal quorum in the general case
and how to improve the cost using task cost variance. We show that this gain
is maximal when the penalty is close to but lower than a critical value. This
theory has been applied to the virtual screening problem and tested on a piece
of statistics. It showed that:

– taking cost variance into account pays only when this variance is large;
– using quorums can reduce the average cost drastically;
– overestimation of the quorum is not costly if one kind of answers is reliable;
– the optimal quorum grows exponentially, so a rough estimation is sufficient

for evaluation of the quorum.

The results can be used in a task distributing manager of a desktop grid server.

Acknowledgments. The work has been supported by the Russian Foundation for
Basic Research (project a-13-07-00008)and the Program of strategic development of
Petrozavodsk State University. Perl Data Language [4] was used for calculations.

References

1. Ben-Yehuda, O.A., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: ExPERT:
pareto-efficient task replication on grids and a cloud. In: Parallel and Distributed
Processing Symposium (IPDPS), pp. 167–178 (2012)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable
virtual organizations. Int. J. Supercomputer Appl. 15(3), 200–222 (2001)

3. Ghare, G.D., Leutenegger, S.T.: Improving speedup and response times by
replicating parallel programs on a SNOW. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 264–287. Springer,
Heidelberg (2005)

Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum 267

4. Glazebrook, K., Economou, F.: PDL: the Perl Data Language. Dr. Dobb’s J. 22(9)
(1997). http://www.ddj.com/184410442. Accessed 19 September 2013

5. Han, J., Park, D.: Scheduling proxy: enabling adaptive-grained scheduling for
global computing system. In: Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing, pp. 415–420 (2004)

6. Jimènez-Peris, R., Patiño Mart̀ınez, M., Alonso, G., Kemme, B.: Are quorums an
alternative for data replication? ACM Transact. Database Syst. 28(3), 257–294
(2003)

7. Kondo, D., Chien, A., Casanova, H.: Scheduling task parallel applications for rapid
turnaround on enterprise desktop grids. J. Grid Comput. 5, 379–405 (2007)

8. Kondo, D., Taufer, M., Brooks, C., Casanova, H., Chien, A.: Characterizing and
evaluating desktop grids: an empirical study. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS) (2004)

9. Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak, G.,
Cappello, F.: Characterizing result errors in internet desktop grids. In:
Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641,
pp. 361–371. Springer, Heidelberg (2007)

10. Martins, F.S., Andrade, R.M., dos Santos, A.L., Schulze, B., de Souza, J.N.:
Detecting misbehaving units on computational grids. Concurr. Comput.: Practice
Exp. 22(3), 329–342 (2010). http://dblp.uni-trier.de/db/journals/concurrency/
concurrency22.html#MartinsASSS10

11. Rumiantsev, A.S.: Optimizing the execution time of a desktop grid project. Pro-
gram Syst.: Theory Appl. Online J. 5(1), 175–182 (2014). (in Russian)

12. Sangho, Y. Kondo, D., Bongjae, K.: Using replication and checkpointing for reliable
task management in computational grids. In: International Conference on High
Performance Computing and Simulation, pp. 125–131 (2010)

13. Silaghi, G.C., Araujo, F., Silva, L.M., Domingues, P., Arenas, A.E.: Defeating col-
luding nodes in desktop grid computing platforms. J. Grid Comput. 7(4), 555–573
(2009). http://dblp.uni-trier.de/db/journals/grid/grid7.html#SilaghiASDA09

14. Storm, C., Theel, O.: A general approach to analyzing quorum-based het-
erogeneous dynamic data replication schemes. In: Garg, V., Wattenhofer, R.,
Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 349–361. Springer,
Heidelberg (2008)

15. Trott, O., Olson, A.: AutoDock Vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. J. Comput.
Chem. 31, 455–461 (2010). doi:10.1002/jcc.21334

http://www.ddj.com/184410442
http://dblp.uni-trier.de/db/journals/concurrency/concurrency22.html#MartinsASSS10
http://dblp.uni-trier.de/db/journals/concurrency/concurrency22.html#MartinsASSS10
http://dblp.uni-trier.de/db/journals/grid/grid7.html#SilaghiASDA09
http://dx.doi.org/10.1002/jcc.21334

Partition Algorithm for Association Rules
Mining in BOINC–Based Enterprise

Desktop Grid

Evgeny Ivashko(B) and Alexander Golovin

Institute of Applied Mathematical Research,
Karelian Research Centre of Russian Academy of Sciences,

Petrozavodsk, Russia
{ivashko,golovin}@krc.karelia.ru

Abstract. The paper describes an approach to association rules mining
from big data sets using BOINC–based Enterprise Desktop Grid. An algo-
rithm of data analysis and a native BOINC–based application are devel-
oped. Several experiments with the aim of validation and performance
evaluation of the algorithm implementation are performed. The results of
the experiments show that the approach is promising; it could be used by
small and medium businesses, scientific groups and organizations.

Keywords: Enterprise Desktop Grid · BOINC · Distributed computing

1 Introduction

Data Mining methods are a popular tool for data analysis. It is also called
“knowledge discovery in databases” – the process of discovering interesting and
useful patterns and relationships in large volumes of data. The field combines
tools from statistics and artificial intelligence to analyze large data sets [11].

There are a number of methods aimed at extracting information from data.
One of the popular Data Mining methods is association rules mining [10]. Associ-
ation rules mining is a well-studied area, especially given its importance in many
problems of data analysis. Association rules express the association between
observations in a database transaction. The problem of discovering frequent
itemsets in a transactional data set (the so called FIM problem) is the first
step of association rules mining. A number of algorithms have been suggested
to discover frequent itemsets: Apriori [7], FP-Growth [8], Eclat [9], and others.

Development of new algorithms and technologies for mining association rules
is vital due to the need to process increasingly large data sets. One of the prob-
lems is computational complexity in discovering frequent itemsets, as with the
increasing number of elements in the input data exponentially increases the num-
ber of potential sets. Therefore such development requires use of parallel data

The work is supported by grants of Russian Fund for Basic Research 13-07-00008
and 15-07-02354.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 268–272, 2015.
DOI: 10.1007/978-3-319-21909-7 26

Partition Algorithm for Association Rules Mining 269

processing technology. There are algorithms adapted for use in parallel systems,
for example: Partition [4], PFP [5], FDM [6].

Analysis of big data sets requires the involvement of high-performance com-
puting systems. One of the high-performance computing technologies is Desktop
Grid. It utilizes the power of idle CPU time of desktop computer. There are two
concepts of computing resources gathering: Volunteer Desktop Grid aggregating
the power of volunteer computers over the Internet, and Enterprise Desktop Grid
consisting of computers belonging to the local-area network of an organization.
BOINC is one of the most commonly used Desktop Grid software.

The paper describes an approach to association rules mining from big data
sets using BOINC–based Enterprise Desktop Grid.

Use of Enterprise Desktop Grid for data processing requires appropriate
adaptation of the software. In case of BOINC, it is necessary to develop special
software that uses the BOINC API for implementing the interaction between a
BOINC client and a running application.

Some previous works have been focused on developing methods and tech-
nologies of big data sets analysis based on Data Mining and Desktop Grid
environment [14]. There are two main problems appear with the development
of the BOINC-based data mining application aimed at big data sets process-
ing [12]. First of all, such applications are not easily decomposable into a great
number of small enough independent tasks. Second, these applications are very
data-intensive, i.e. every task needs a large portion of data. The first prob-
lem is challenging, but it could be solved by development of a special algo-
rithm. Weka4WS [15] extend the Weka toolkit to allow the use of distributed
ad-hoc environment to perform data analysis. The project distributedDataMin-
ing.org uses BOINC and data mining tool RapidMiner for distributed data analy-
sis [3]; the article gave an overview for integration and interaction of the used
tools. However, to solve the second problem it is necessary to develop a spe-
cific workaround. For example, the paper [2] describes the approach employing
P2P networks and distributed cache servers to workaround the data-intensivity
problem. Our research is based on Enterprise Desktop Grid to work with data-
intensive applications with speed of local-area networks.

The Berkeley Open Infrastructure for Network Computing (BOINC) is an
open source software framework for distributed and grid computing [1]. BOINC is
based on the client/server model. It has a central server and project’s database
storing information about registered users and associated hosts, applications,
data of tasks and results of calculations and other information. Also there are
special services on the central server, the most important are

– Work generator generates workunits and corresponding input files.
– Scheduler assigns jobs to a client depending on its characteristics.
– Validator decides whether results are correct.
– Assimilator periodically checks the completed jobs and processes results
according to application-specific rules.

BOINC clients work at the computing nodes. A BOINC application has to
communicate to a BOINC-client itself to be runnable in the BOINC environment.

270 E. Ivashko and A. Golovin

2 Implementation of Partition Algorithm with BOINC

The association rules approach deals with a transactional database. The data-
base consists of a big number of transactions, each of them is a set of several
items. For example, such database can be a supermarket’s record of purchases
for a month: each transaction is a market basket and items are single prod-
ucts. Another example is a server logs database of Web-sites visits. Then each
transaction is a single user’s work session and items are visited sites.

Association rule is an implication X → Y , where X and Y are itemsets.
Such a rule has two main characteristics: support (s) and confidence (c). The
rule means that if a transaction contains X then it also contains Y ; there are
s% of transactions in the database containing both X and Y ; there are c% of all
transactions that contain X also contain Y .

We have chosen the Partition algorithm to solve the problem of finding fre-
quent itemsets in large volumes of data. Partition is a parallel modification of
a well-known Apriori algorithm, it has good scalability and performance. The
essence of the algorithm is as follows [4].

Below is the description of the BOINC-based Partition algorithm implemen-
tation scheme. There are three stages, two of which are executed in parallel on
the computing nodes of the grid network. The final stage is the association of
intermediate results. Consider this implementation in details.

At the Prepare stage, the work generator receives an input source file with
the transactional database and the following parameters: the minimum sup-
port and confidence, the number which determines into how many parts is the
source file divided and some BOINC-related workunit attributes. At stage I, the
BOINC scheduler distributes jobs to clients (computing nodes of the BOINC-
grid). BOINC-clients download input files (which are parts of the original trans-
actional database) from the server. Then the clients run an application that
extracts local frequent itemsets from their parts. After that clients upload the
output files to the server and report on completing the jobs. At the Merge
stage, the server side validation service validates the results. At the Interme-
diate stage completed jobs are handled by an assimilator which generates the
set of all global candidates based on the received local frequent itemsets. Also
this service forms new jobs. At the stage II the BOINC scheduler distributes
the new jobs to clients. Each BOINC-client calculates support for each global
candidate itemset in its part of the transactional database. After receiving the
canonical result the assimilator summarizes supports for each candidate and
removes the ones whose support is less than the specified minimum. At the
same step, the assimilator constructs the association rules.

3 Results of the Experiments

Several experiments with the aim of validation and performance evaluation of
the Partition algorithm implementation were performed. We used a BOINC-
based Enterprise Desktop Grid with up to 32 computing nodes connected to
BOINC-server by local network with a bandwidth of 100Mb/s.

Partition Algorithm for Association Rules Mining 271

Table 1. Characteristics of the test datasets

Filename Number of Average length Minimum

transactions of transaction support

I T10I4D100K.dat 100 000 10 1

II T25I20D100K.dat 100 000 25 1.5

III T40I10D100K.dat 100 000 40 5

Fig. 1. Results of the experiments on the test datasets.

First of all, we validated the application by test source datasets from the Fre-
quent Itemset Mining Dataset Repository (FIMDR) [13]. Characteristics of the
used datasets are presented in Table 1 (filename corresponds dataset of FIMDR).
The results of the experiments are presented in the Fig. 1.

The figure shows that use of BOINC can accelerate rules extraction up to
6–9 times. It also shows that the overall time of rules extraction depends on the
minimal support and length of transactions. The main performance limitation
in the performed experiments is still the network bandwidth. BOINC-server
should distribute a database between computing nodes that becomes a very
time-consuming operation. But the use of Enterprise Desktop Grid (and local-
area network) allows to improve the speed of data analysis.

4 Conclusion and Discussion

BOINC is becoming a more popular tool to perform large-scale computational
experiments. BOINC-based Enterprise Desktop Grid allows to small and medium
companies or small scientific groups to solve their private problems using their
own computing resources. One of such private problems is analysis of big
datasets.

This study shows the way to extract association rules from big data sets using
BOINC-based Enterprise Desktop Grid. We adapted the Partition algorithm for
BOINC and performed the experiments on performance evaluation of association

272 E. Ivashko and A. Golovin

rules extraction. Our results show that Enterprise Desktop Grid allows reducing
expended time for data analysis.

Further development of the study will be devoted to adapting other methods
of data analysis to BOINC-environment. Also it is important to combine the
developed tool with special visualization software.

References

1. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:
Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)

2. Cesario, E., De Caria, N., Mastroianni, C., Talia, D.: Distributed data mining
using a public resource computing framework. In: Desprez, F., Getov, V., Priol, T.,
Yahyapour, R. (eds.) Grids, P2P and Services Computing, pp. 33–44. Springer, US
(2010)

3. Schlitter, N., Laessig, J., Fischer, S., Mierswa, I.: Distributed data analytics using
RapidMiner and BOINC. In: Proceedings of the 4th RapidMiner Community Meet-
ing and Conference (RCOMM 2013), pp. 81–95 (2013)

4. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining asso-
ciation rules in large databases. In: Proceedings of 21st International Conference
on Very Large Data Bases, pp. 432–444. Morgan Kaufmann, San Francisco (1995)

5. Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: parallel fp-growth for
query recommendation. In: RecSys 2008 Proceedings of the 2008 ACM conference
on Recommender systems, pp. 107–114 (2008)

6. Cheung, D., Han, J., Ng, V.T., Fu, A. W., Fu, Y., Yongjian, A.W.: A fast dis-
tributed algorithm for mining association rules. In: Proceedings of International
Conference on PDIS 1996, pp. 31–42 (1996)

7. Agrawal, R., Srikant, R.: Fast discovery of association rules. In: Proceedings of the
20th International Conference on VLDB, pp. 307–328. Santiago, Chile (1994)

8. Han, J., Pei, H., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proceedings Conference on the Management of Data, pp. 1–12. Dallas, TX
(2000)

9. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data
Eng. 12(3), 372–390 (2000)

10. The 5th Annual Rexer Analytics Data Miner Survey. http://www.rexeranalytics.
com/Data-Miner-Survey-Results-2011.html

11. EncyclopediaBritannica. http://global.britannica.com/EBchecked/topic/1056150/
data-mining

12. Barbalace, D., Lucchese, C., Mastroianni, C., Orlando, S., Talia, D.: Min-
ing@HOME: public resource computing for distributed data mining. Concurrency
Comput. Pract. Experience 22(5), 658–682 (2010)

13. Frequent Itemset Mining Dataset Repository. http://fimi.ua.ac.be
14. Saad, M.K., Abed, R.M.: Distributed data mining on grid environment. Am. Acad.

Sch. Res. J. Spec. Iss. 4(5), 240–243 (2012)
15. Talia, D., Trunfio, P., Verta, O.: Weka4WS: a WSRF-enabled weka toolkit for

distributed data mining on grids. In: Jorge, A.M., Torgo, L., Brazdil, P.B.,
Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 309–320.
Springer, Heidelberg (2005)

http://www.rexeranalytics.com/Data-Miner-Survey-Results-2011.html
http://www.rexeranalytics.com/Data-Miner-Survey-Results-2011.html
http://global.britannica.com/EBchecked/topic/1056150/data-mining
http://global.britannica.com/EBchecked/topic/1056150/data-mining
http://fimi.ua.ac.be

Task Scheduling in a Desktop Grid
to Minimize the Server Load

Vladimir V. Mazalov, Natalia N. Nikitina(B), and Evgeny E. Ivashko

Institute of Applied Mathematical Research, Pushkinskaya 11,
Petrozavodsk 185910, Russia

{mazalov,nikitina,ivashko}@krc.karelia.ru
http://mathem.krc.karelia.ru

Abstract. Desktop Grids utilize computational resources of desktop
computers in their idle time. The BOINC middleware for organizing
Desktop Grids has an architecture developed to unite a large number of
computing nodes. However, a large flow of server requests may limit the
Desktop Grid performance. In the paper we present a game-theoretical
model of task scheduling in a Desktop Grid. The model allows to consider
the trade-off between the server load and the total time of computations.
The solution is illustrated on examples.

Keywords: Desktop grid · BOINC · Virtual screening · Hierarchical
game

1 Introduction

In the paper we consider the problem of task scheduling in a Desktop Grid.
The term stands for a distributed computing system that collects together desk-
top computers, servers, cluster nodes and other heterogeneous computational
resources connected by the Internet or a local network and working for the
Desktop Grid in their idle time. The BOINC middleware [1] can be considered a
de-facto standard for organizing Desktop Grids, as it is being actively developed
and has been successfully used in several computational projects since 1997.

The BOINC system has server-client architecture: a server distributes inde-
pendent tasks to the nodes which perform computations and return the results
to the server for further processing. Such division of a large resource-demanding
computational problem into many independent tasks allows to solve it effectively
in a shorter time. Many works ([2–4] etc.) evaluate performance of Desktop Grids
by the total computational time or the average throughput rate.

Computational process in a distributed system involves persons with various
interests: a system administrator, the users, the owners of computational nodes
etc. For this reason, the task of effectively managing distributed resources can
be solved using mathematical game theory ([5–7] etc.).

Quite often the independent computational tasks are short-running due to
the properties of a computational problem. In such cases Desktop Grid clients
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 273–278, 2015.
DOI: 10.1007/978-3-319-21909-7 27

274 V.V. Mazalov et al.

generate an intensive flow of requests to the server, reporting results and asking
for more work very frequently. With a fair number of clients, this can cause
an effect similar to a DDoS-attack, or at least make increased demands on the
server software or hardware. We illustrate the case as follows.

We ran a BOINC server on a virtual machine running CentOS, with eight
Intel R© Xeon R© E5620 CPUs each of 2.4 GHz. A sample short-running BOINC
application was used. We launched BOINC clients in parallel on a separate
virtual machine, varying their number from 10 to 230. As the number of clients
exceeded 70, some of clients’ HTTP requests to the server would fail. At the
same time, the average number of HTTP requests served by the server per
second practically did not change. Consequently, the system software such as
web server or the database can limit the scalability of the Desktop Grid or its
peak performance. Moreover, when an error occurs, the BOINC client will make
a pause before next request to the server. The length of such a pause will increase
exponentially if errors repeat. This leads to decreasing both the total number of
requests to the server and the average project performance as new clients join.

To reduce the server load we propose to group computational tasks into
parcels. We treat the overall cost of computing a parcel of tasks as the expenses
required to create an input data archive (instead of a single input file), transmit it
over the network, compute the tasks on the client, send the results back, unpack
and process the results. The expenses can be interpreted, for instance, as the
total CPU or wall-clock time consumed at the server, or the total electricity bill.
For simplicity, we assume that a computational error in a single task interrupts
the computation and causes a whole parcel to be sent to the client again.

Grouping tasks in order to increase work performance of a Desktop Grid is
considered, for example, in [3] where the possibility to decrease computational
time in the presence of task replication is investigated. In work [8] the authors
propose to group the geographically nearby nodes and assign one in each group to
be an intermediate scheduler. In this work we present a mathematical model of a
Desktop Grid as a two-level hierarchical game. The model describes the problem
of choosing an optimal parcel size and allows to reach the balance between the
amount of computations and the server load.

Particular performance measurements depend heavily on the server hard-
ware, the system software, the settings of the web server and the database etc.
In the examples we used a default installation of system software and BOINC.

2 The Model

Hierarchical games, one of domains of mathematical game theory, allow to model
situations in which participants make their choices subsequently. First, the player
of the top hierarchy level, or the “center”, makes its choice. Then the players of
the second level make choice within the restrictions imposed by the choice of the
“center”, aiming to maximize their own utilities. The “center” knows the rules
by which the second level players answer to each of its possible decisions, so its
choice maximizes its utility.

Task Scheduling in a Desktop Grid to Minimize the Server Load 275

Let us describe the computational process in a Desktop Grid as a two-level
hierarchical game of m + 1 players.

The server M0 has N computational tasks and wants to distribute them
among a set of clients M1, . . . ,Mm giving each one N1, . . . , Nm tasks corre-
spondingly. The server chooses a method of task distribution u = (N1, . . . , Nm),
where u belongs to U , a set of server strategies,

U = {u = (u1, . . . , um) : ui ∈ Z, 0 ≤ ui ≤ N,
m∑
i=1

ui = N}

As soon as client Mi knows server’s decision Ni, it chooses the parcel size ni

which will minimize its expenses. ni belongs to Vi(Ni), a set of client strategies,

Vi(Ni) =

{
vi ∈ Z :

{
1 ≤ vi ≤ Ni Ni ≥ 1,
vi = 0 Ni = 0

}

The utility function of a client Ci(Ni, ni) = −K(ni)
⌈
Ni

ni

⌉
represents its

expenses on computing �Ni

ni
� parcels, where K(ni) is the cost of computing a

parcel of ni tasks. The optimal parcel size n∗
i will minimize client’s expenses —

or, equally, maximize its utility function:

C∗
i = Ci(Ni, n

∗
i) = max

ni∈Vi(Ni)
Ci(Ni, ni)

As the server knows parcel sizes chosen by clients for given Ni, it aims to min-
imize its own expenses. The utility function of C0(N1, . . . , Nm, n1, . . . , nm) rep-
resents server’s expenses on creating parcels, waiting for the results and process-
ing them. The optimal tasks distribution u∗ = (N∗

1 , . . . , N
∗
m) minimizes server’s

expenses, that is, maximizes its utility function:

C∗
0 = C0(N∗

1 , . . . , N
∗
m, n∗

1, . . . , n
∗
m) = max

u∈U
C0(N1, . . . , Nm, n∗

1, . . . , n
∗
m)

We have a game Γ=
〈{M0,M1, . . . ,Mm}, {U, V1, . . . , Vm}, {C0, C1, . . . , Cm}〉

.
In 2014, a joint research project was completed between the IAMR and the

Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck
(Germany). During the project we created a Desktop Grid infrastructure using
available computers and used it to perform virtual drug screening for research
interests of the LIED. Virtual drug screening is an important example of the
problem being successfully solved on Desktop Grids. It is the computerized eval-
uation of very large libraries of chemical compounds in order to choose the ones
that are most likely to influence the course of disease.

In [9] we proposed analytical expressions of utility functions, optimal parcel
sizes and the resulting optimal tasks distribution for a Desktop Grid organized
within a group of research institutions. The server expenses expressed the total
computational time. The numerical solution was derived using statistical data.
The results of computational experiments showed that under all assumptions,

276 V.V. Mazalov et al.

in equilibrium situation grouping tasks into parcels would decrease 3.4–fold the
total server load in the model. Considering multi-processing, in equilibrium sit-
uation we would obtain both 3.5–fold decrease in the server load and 2.1–fold
decrease in total computational time in the model.

3 Performance of a Volunteer Computing System

In this section we illustrate how the proposed model may help to improve per-
formance of a BOINC-based volunteer computing system. We use the data pub-
lished in work [10] and provided by SAT@home project to define coefficients and
functions of the model, to find the optimal solution and interpret its effect for a
BOINC-based volunteer computing project.

In [10] the authors show that CPU is a bottleneck of the BOINC server.
We will interpret cost of one request to the server as the amount of CPU time
that the server spends serving this request. The maximal supported number of
BOINC clients in a single-server model [10] is 8.8 mln, and the average CPU
time that a workunit instance consumes at a client is 12 CPU hours. Hereof we
may consider that a single request to a server costs 8 800 000

12×3600 times more than
computing a single task on a client.

We assume that cost functions in the model are linear in parcel size and derive
coefficients from [10]. Note that the model [10] does not take into account errors
occuring at BOINC clients. We estimate the error probability 1−p = 0.064 basing
on statistical data from a volunteer computing project SAT@home [11]. Under
these statements, we obtain the optimal parcel size for a client n∗ = 4 (Fig. 1).

5 10 15 20

−4 · 1012

−2 · 1012

0

2 · 1012

4 · 1012

n

W
(n

)

Fig. 1. W (n), the increase in computational cost for a client due to packing N = 108

tasks into parcels of size n.

Using the model we calculate the total server load to create, distribute and
process N tasks to be 1.15214 × 10−2 × N CPU seconds without parcels and
0.581473 × 10−2 × N with parcels of optimal size. Consequently, using parcels
the considered BOINC server can support 1.15214

0.581473 = 1.98 times more volunteer
clients. The trade-off is that without additional clients, the total time to complete
N tasks would increase: in case of no parcels every client spends 524 265 CPU

Task Scheduling in a Desktop Grid to Minimize the Server Load 277

seconds to compute its share of 100 mln tasks, but with parcels of the optimal
size this time increases to 638 560 (+22%). This increase follows from the model
assumption that upon failure the whole parcel is sent to the client again.

Conclusion

In our work we present a game-theoretical model for task scheduling in a BOINC-
based Desktop Grid. Following the server-client architecture of BOINC, we con-
sider the server load to be minimized at client level and the total computational
time to be minimized at server level. As illustrated by computational experi-
ments, the proposed task scheduling discipline allows to significantly decrease
the server load with a comparatively small increase of total computational time.

Acknowledgments. The authors would like to thank Dr. Steffen Möller, PhD in the
LIED, for supervising the joint research project at Lübeck and all volunteer participants
of the computations both in the IAMR and the LIED for providing their computational
resources, discussion and help. The work is supported by grants of RFBR 13-07-00008,
15-07-02354 and the program of the Branch of Mathematics of the RAS “Algebraic
and combinatorial methods of mathematical cybernetics and information systems of
the new generation”.

References

1. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
pp. 4–10, Washington DC, USA (2004)

2. Kondo, D., Chien, A.A., Casanova, H.: Resource management for rapid application
turnaround on enterprise desktop grids. In: Proceedings of the 2004 IEEE/ACM
Conference on Supercomputing (SC 2004), pp. 17–30, Washington DC, USA (2004)

3. Rumiantsev, A.S.: Optimizing the execution time of a desktop grid project. Pro-
gram Syst. Theor. Appl. 5 1(19), 175–182 (2014). (in Russian)

4. Chernov, I. A.: Optimal quorum for the model of computational grid with redun-
dancy. applied problems in theory of probabilities and mathematical statistics
related to modeling of information systems. In: Proceedings of the Autumn Session
of the VIII International Workshop, pp. 648–651 (2014)

5. Zhao, H., Li, X.: Efficient grid task-bundle allocation using bargaining based self-
adaptive auction. In: 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, pp. 4–11 (2009)

6. Penmatsa, S., Chronopoulos, A.T.: Job Allocation Schemes in Computational
Grids Based on Cost Optimization. In: Proceedings of the IEEE International
Parallel and Distributed Processing Symposium, 180a (2005)

7. Donassolo, B., Legrand, A., Geyer, C.: Non-cooperative scheduling considered
harmful in collaborative volunteer computing environments. In: 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.
144–153 (2011)

8. Han, J., Park, D.: Scheduling proxy: enabling adaptive-grained scheduling for
global computing system. In: Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing, pp. 415–420 (2004)

278 V.V. Mazalov et al.

9. Mazalov, V.V., Nikitina, N.N., Ivashko, E.E.: Hierarchical Two-Level Game Model
for Tasks Scheduling in a Desktop Grid. Applied Problems in Theory of Probabili-
ties and Mathematical Statistics Related to Modeling of Information Systems, pp.
641–645. IEEE, Leonia, NJ, USA (2014)

10. Anderson, D.P., Korpela, E., Walton, R.: High-performance task distribution for
volunteer computing. In: Proceedings of the First International Conference on
e-Science and Grid Computing, pp. 196–203. IEEE, Washington DC, USA (2015)

11. Zaikin, O.S., Posypkin, M.A., Semenov, A.A., Khrapov, N.P.: Experience in orga-
nizing volunteer computing: a case study of the OPTIMA@home and SAT@home
projects. Vestnik of Lobachevsky State University of Nizhni Novgorod, No. 5–2,
pp. 340–347 (2012). (in Russian)

An HPC Upgrade/Downgrade
that Provides Workload Stability

Alexander Rumyantsev(B)

Institute of Applied Mathematical Research of the Karelian Research
Centre of the RAS, Pushkinskaya Str. 11, 185910 Petrozavodsk, Russia

ar0@krc.karelia.ru

Abstract. The workload model of a high-performance cluster is consid-
ered in the context of an upgrade (increase the computational power) or
downgrade (save energy) problems. Analytical solutions are found that
provide stochastic stability of the workload. The results of numerical
experiments with log-files of a real workload are presented.

Keywords: HPC workload · Green computing · Stochastic stability

1 Introduction

A high-performance computer cluster (HPC) is a computer system with a high
level of computational capacity, which is mainly built of a large number of
dedicated processors working together as a single homogeneous computational
resource. The HPC system is shared by multiple customers in a competitive
manner, where each customer may (depending on the configuration of the HPC)
partially or fully occupy the processors. When the workload of such a system
exceeds its computational capacity, the upgrade problem is basically solved as
follows:

1. either replace each processor with a more powerful one,
2. or increase the number of processors of the same type.

A somewhat similar problem arouses in the context of green computing [1,5,6].
The energy consumption of a typical HPC is roughly the same both in busy and
in idle periods. Hence, it is natural to dynamically decrease the computational
power in idle states, thus lowering the energy consumption of the system. The
downgrade problem has two major solutions:

1. either decrase the frequency and voltage of each processor (e.g. DVFS [5]),
2. or decrease the number of processors in the system (by powering them off).

In this work both the upgrade and downgrade problems are solved in terms of
stochastic stability.

The research is partially supported by Russian Foundation for Basic Research,
projects No. 13-07-00008, 14-07-31007, 15-07-02341, 15-07-02354 and the Program
of Strategic Development of the Petrozavodsk State University.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 279–284, 2015.
DOI: 10.1007/978-3-319-21909-7 28

280 A. Rumyantsev

2 Stability of an HPC Workload Model

Consider a queueing system with s identical processors serving Poisson flow of
customers (with intensity λ) arriving at a single queue (with FCFS queueing
discipline). A customer i occupies Ni � s processors simultaneously for the time
Si (i.i.d., exponentially distributed with intensity μ). Let i.i.d. {Ni}, i � 1 have
a distribution

p = {pk := P{N = k}, k = 1, . . . , s}. (1)

(The indices are omitted for generic elements of a stochastic sequence.) If the
number of idle processors at the time of i-th arrival is less than Ni, the customer
experiences a delay Di > 0 waiting for resources. We refer the reader to the
works [7–9] for a detailed discussion of the HPC workload model. Note that
the driving sequence {Ti, Si, Ni} for i � 0 may be extracted from the log-file of
the queue management software of an HPC (see e.g. the traces in [3]). Another
option is distribution sampling [4].

The HPC workload model is stable (where the delay Di converges weakly to
a stationary delay D < ∞ as i → ∞) iff

ρ :=
λ

μ
< C(s), (2)

where

C(s) :=

[∑
m∈M

∏s
i=1 pmi

f(m, s)

]−1

, (3)

f(m, s) := max{i :
i∑

j=1

mj � s}, (4)

and M = {1, . . . , s}s [10].

3 An Upgrade/Downgrade Problem

The aforementioned solutions of the upgrade/downgrade problem need to define
the border values

– find μ′ s. t. λ/μ′ = C(s);
– find s′ s. t. λ/μ = C(s′).

It is easy to find such m′ by

μ′ =
λ

C(s)
. (5)

To prove the existence of s′, we need the following convention:

pi := 0, i = s + 1, . . . , s′. (6)

In case of an upgrade problem, (6) means that after upgrade the tasks still
require no more than s processors; for a downgrade problem this is a necessary
requirement for the possibility of such a downgrade.

An HPC Upgrade/Downgrade that Provides Workload Stability 281

Lemma 1. For any s � 1 and s′ > s, provided (6),

C(s′) � C(s), (7)

and there exists s0 > s, s. t. C(s0) > C(s).

Proof. Fix s′ > s and m ∈ M. Denote M′ := {1, . . . , s}s′
and

M′(m) = {m′ ∈ M′ : m′
i = mi, i = 1, . . . , s}.

Then for m′ ∈ M′(m)

f(m, s) = max{i :
i∑

j=1

mj � s} � max{i :
i∑

j=1

m′
j � s′} = f(m′, s′). (8)

Hence,

C−1(s′) =
∑

m′∈M′

∏s′

i=1 pm′
i

f(m′, s′)
=

∑
m∈M

∑
m′∈M′(m)

∏s
i=1 pmi

∏s′

i=s+1 pm′
i

f(m′, s′)
�

�
∑

m∈M

∏s
i=1 pmi

f(m, s)

∑
m′∈M′(m)

s′∏
i=s+1

pm′
i
= C−1(s).

Now take s0 := s(s + 1) and note that (8) becomes strict inequality for any
m ∈ M by the fact that f(m′, s0) � s + 1 for any m′. ��

We note that s′ can be found numerically by a monotonicity property proven
in Lemma 1. However, an approximate solution can be found with the following
conjecture, that is true, as preliminary numerical experiments have shown (a
strict proof of this result is left for future research).

Conjecture 1. under the assumption (6) for s′ > s,

lim
s′→∞

[C(s′ + 1) − C(s′)] = δ :=

[
2s−1∑
k=1

rk

]−1

, (9)

where

rk :=
∑

1�i,s+i−k�s

pi

⎡
⎣

s∑
j=k−i+1

pj

⎤
⎦ , k = 1, . . . , 2s − 1. (10)

Limit (9) may be treated as C(s′) ≈ C(s) + δ(s′ − s) for sufficiently large
s′ > s. Thus, the approximate solution is as follows:

s′ ≈ s +
ρ − C(s)

δ
. (11)

282 A. Rumyantsev

4 Numerical Experiments

To illustrate both solutions, the hpcwld package [2] for the R language [11] was
used. The log-file of the Cornell Theory Center (CTC) IBM SP2 cluster was used
to illustrate the over-utilized HPC, whereas Ohio Supercomputing Center (OSC)
cluster was selected to illustrate the low utilization case. Both log files were taken
from [3] and imported into R by using FromSWF function of the aforementioned
package. We note that the experiments were held under the assumption of FIFO
scheduling discipline, whereas both machines use distinct schedulers (CTC uses
EASY Backfill, while OSC uses Maui scheduler). Thus, the results of experiment
may serve as some sort of “upper bound” for the system performance. We refer
the reader to [9] on details of the package usage for numerical verification of
stability.

The plan of both experiments is as follows:

1. parse the log-file and verify the stability by (2);
2. find μ′ from (5) and s′ from (11);
3. evaluate the delays Di(s, μ),Di(s, μ′),Di(s′, μ) (where Di(s, μ) is the delay of

customer i in the system with s processors with intensity μ) and graphically
verify the stability.

4.1 CTC SP2 Cluster

This HPC has s = 336 processors, and ρ = λ/μ = 29.72244 > C(s) = 26.02444.
Evaluating δ = 0.0910304 from (9), one gets s′ = 377 and μ′/μ = 1.142097,
i. e. either the frequency of each processor should be increased on ≈15 %, or the
number of processors should be increased to 377. The resulting sample paths of
the delays for all the 77221 customers from the log-file are depicted on Picture
1. Interestingly, both upgrade options give nearly the same sample path, that is
stable, whereas the delays in the original path (depicted in black) tend to grow
unbounded (Fig. 1).

4.2 OSC Cluster

This HPC has 178 processors, however, the maximum number of requested
processors per customer is 32, hence, (6) holds for i = 33, . . . , 178. Moreover,
ρ = 16.48379 is less, than C(s) = 72.81022. Evaluating δ = 0.417208 from (9),
one has s′ = 43 and μ′/μ = 0.2263939. However, this approximate solution needs
to be improved by a local search near the value of s′, which shows that (2) holds
for s1 = 47. The resulting sample paths of the delays for all the 36096 customers
from the log-file are depicted on Picture 2. Note that the original delays were
near zero (with mean 0.009 and maximum 83 s). Both downgraded systems seems
to be stable, although the delays are high enough. However, in case of a demand
for power budget reducing, switching off nearly 75 % of the system (or slowing
down the processors by a factor of 5) could be an inescapable option (Fig. 2).

An HPC Upgrade/Downgrade that Provides Workload Stability 283

0 20000 40000 60000 80000

0
50

00
00

15
00

00
0

Number of task

D
el

ay
, s

Fig. 1. Sample paths of the delays Di(s, µ) evaluated on CTC SP2 data: black
Di(336, µ), blue Di(377, µ), red Di(336, 1.142097µ) (Colour figure online)

0 10000 20000 30000

0e
+

00
4e

+
05

8e
+

05

Number of task

D
el

ay
, s

Fig. 2. Sample paths of the delays Di(s, µ) evaluated on OSC data: black Di(178, µ),
blue Di(47, µ), red Di(178, 0.2377136µ) (Color figure online)

5 Conclusion

As numerical experiments have shown, the presented method of solving the
upgrade/downgrade problem may be easily applied to real systems. An extention
of this work to the performance of an HPC is left for future research. We note,
however, that due to simplicity of model evaluation and stability condition vali-
dation, one could consider fine-tuning the parameters of the system numerically
to provide reasonable performance measures.

Acknowledgments. Author thanks E. V. Morozov for helpful discussions that
allowed to improve the work.

References

1. Alonso, M., et al.: Power saving in regular interconnection networks. Parallel Com-
put. 36(12), 696–712 (2010)

284 A. Rumyantsev

2. CRAN - Package hpcwld. http://cran.r-project.org/web/packages/hpcwld/index.
html

3. Feitelson D.G.: Parallel Workloads Archive: Logs. http://www.cs.huji.ac.il/labs/
parallel/workload/logs.html

4. Feitelson D.G.: Workload modeling for computer systems performance evaluation.
http://www.cs.huji.ac.il/feit/wlmod/wlmod.pdf

5. Gandhi, A., et al.: Optimal power allocation in server farms. ACM SIGMETRICS
Perform. Eval. Rev. 37, 157–168 (2009)

6. Gandhi, A., et al.: Power capping via forced idleness. In: Proceedings of Workshop
on Energy Efficient Design. pp. 1–6 (2009). http://researcher.watson.ibm.com/
researcher/files/us-lefurgy/weed2009 ghandi paper.pdf

7. Morozov, E.V., Rumyantsev, A.S.: Stability analysis of a multiprocessor model
describing a high performance cluster. In: XXIX International Seminar on Sta-
bility Problems for Stochastic Models and V International Workshop “Applied
Problems in Theory of Probabilities and Mathematical Statistics related to mod-
eling of information systems”, pp. 82–83. Institute of Informatics Problems RAS,
Moscow (2011)

8. Morozov, E.V., Rumyantsev, A.S.: Stochastic models of multiprocessor systems:
stability and moment properties. Inf. Appl. 6(3), 99–106 (2012)

9. Rumyantsev, A.: Simulating Supercomputer Workload with hpcwld package for R.
In: 15th International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies, pp. 138–143. IEEE (2014)

10. Rumyantsev, A.: Stabilization of a high performance cluster model. In: 6th Inter-
national Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), pp. 518–521. IEEE (2014)

11. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
http://www.R-project.org/

http://cran.r-project.org/web/packages/hpcwld/index.html
http://cran.r-project.org/web/packages/hpcwld/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
http://www.cs.huji.ac.il/feit/wlmod/wlmod.pdf
http://researcher.watson.ibm.com/researcher/files/us-lefurgy/weed2009_ghandi_paper.pdf
http://researcher.watson.ibm.com/researcher/files/us-lefurgy/weed2009_ghandi_paper.pdf
http://www.R-project.org/

Job Ranking and Scheduling
in Utility Grids VOs

Victor Toporkov1(&), Anna Toporkova2, Alexey Tselishchev3,
Dmitry Yemelyanov1, and Petr Potekhin1

1 National Research University “MPEI”,
ul. Krasnokazarmennaya, 14, Moscow 111250, Russia

{ToporkovVV,YemelyanovDM,PotekhinPA}@mpei.ru
2 National Research University Higher School of Economics,

ul. Myasnitskaya, 20, Moscow 101000, Russia
atoporkova@hse.ru

3 European Organization for Nuclear Research (CERN),
1211 Geneva, 23, Switzerland

Alexey.Tselishchev@cern.ch

Abstract. In this work, we propose approaches to creation of a ranked jobs
framework within a model of cycle scheduling in virtual organizations of utility
Grids with the decoupling of users from resource providers. Two methods for
job selection and scheduling are proposed and compared: the first one is based
on the knapsack problem solution, while the second one introduces a heuristic
parameter of a job and a computational resource set “compatibility”. Along with
these methods we present experimental results demonstrating the efficiency of
proposed approaches and compare them with random job selection.

Keywords: Grid � Virtual organization � Scheduling � Resource management �
Job � Flow � Batch � Knapsack problem

1 Introduction

The complexity of resource management and scheduling in distributed computing
environment like Grid is determined by geographical distribution, resource dynamism
and inhomogeneity of jobs and execution requirements defined by users of virtual
organizations (VO) [1, 2]. A matter of the utmost importance for the VO is to efficiently
manage available computational resources while fulfilling requirements of all stake-
holders: users, resource owners and VO administrators. The fact that resources of utility
Grids are non-dedicated makes the efficient scheduling problem even more complex. In
distributed computing with a lot of different participants and contradicting requirements
the most efficient approaches are based on economic principles [3–6]. Different
approaches to job flow scheduling can be classified based on dispatching methods.
When job-dispatching process is decentralized, schedulers usually reside and work on
the client side and fulfill end-user requirements (AppLeS [7], PAUA [8]). Centralized
job-dispatching implies that a meta-scheduler ensures the efficient usage of all the
resources. While managing the scheduling process the meta-scheduler works with

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 285–297, 2015.
DOI: 10.1007/978-3-319-21909-7_29

meta-jobs that are accompanied by a resource query, that contains resource charac-
teristics required for the job execution (X-Com [9], GrADS [10]). It is also possible to
evaluate job resource requirements by other means: statistically or by using expert
systems [11]. Generally job-flow scheduling problem is solved using standard methods
or algorithms [12–14], which include First-Come-First-Served, backfilling, user rank-
ing mechanisms and resource separation. Within these approaches it is important to
maintain the queue order and user priorities when executing these jobs. Even more
“honest” queue forming is based on economic principles [6], which takes into account
single job features and their impact on the queue.

Cycle scheduling scheme (CSS) [15–17] allows fulfilling VO requirements to a
greater extent. Such scheduling is based on the set of dynamically updated information
about the load of available resources. During the job batch execution the VO policy, as a
rule, has higher priority than single batch jobs. This allows optimizing overall job batch
execution parameters [18]. However, at the same time the queue order can be affected.
There are two main steps in CSS for a single job batch: firstly, several execution options
(alternatives) are found for each job for a given scheduling interval [17], and, secondly,
the set of alternatives (one alternative for each job) is chosen following the VO policy
[15, 16]. In order to fulfill VO user requirements the job batch is populated with the jobs
with the highest priority (e.g. those in the beginning of a standard queue). Execution
alternatives allocation is also performed sequentially for each job, which, in its turn,
guarantees, that the priorities are followed. When additionally, user optimization criteria
are used, one can guarantee a “fair” scheduling of the whole job batch [16, 19, 20].
However, it is worth noting, that job selection using simple user priorities can negatively
impact the scheduling efficiency of the whole job batch. In other words, in order to
increase the whole job batch scheduling efficiency according to the VO requirements
one should evaluate different methods of job framework ranking.

In this paper, we review common problems of job batch forming for the cycle
scheduling process. Two job batch forming approaches are proposed: the first one is
based on the knapsack problem [21], the second one is using a heuristic “compatibility”
parameter of a job and a resource domain for the job-flow distribution and job batch
selection. The rest of this paper is organized as follows. Section 2 contains brief
analysis of related works. In Sect. 3, there are approaches proposed to form a job
framework. Section 4 describes the experimental results. Final results and next steps are
defined in the summary Sect. 5.

2 Related Works

Many scheduling algorithms and heuristic-based solutions have been proposed for
parallel jobs in distributed environments [1–3, 5, 11, 17, 23–30]. In some well-known
models [2, 24–26] of distributed computing with non-dedicated resources, only the first
fit set of resources is chosen depending on the environment state, while job scheduling
optimization mechanisms are usually not supported. In other models [3, 5, 11], the
aspects related to the specifics of environments with non-dedicated resources, partic-
ularly dynamic resource loading, the competition between independent users, users’
global and owners’ local job flows, are not presented. In [5], heuristic algorithms for

286 V. Toporkov et al.

slot selection, based on user-defined utility functions, perform slot window allocation
under the maximum total execution cost constraint, but the optimization occurs only on
the stage of the best found offer selection. Architecture and an algorithm for performing
Grid resources co-allocation without the need for advance reservations based on syn-
chronous queuing of subtasks are introduced in [27]. Advance reservation-based
co-allocation algorithms are proposed in [24–26, 28, 29]. First fit resource selection
algorithms [2, 24–26] assign any job to the first set of slots matching the resource
request conditions without any optimization. Preference-based matchmaking [2] is not
focused on the scheduling process. In [23], an approach to resource matchmaking
among VOs combining hierarchical and peer-to-peer models of meta-schedulers is
proposed. The algorithms described in [28–30] suppose an exhaustive search.
Approaches in [29, 30] are based on linear integer programming (IP) or mixed-integer
programming (MIP) models. A linear IP-driven model with a genetic algorithm is
proposed in [1]. It allows obtaining the best meta-schedule that minimizes the com-
bined cost of all independent users in a coordinated manner. In [30], a MIP model
which performs the best scheduling in environments composed of multiple clusters that
act collaboratively. The scheduling approaches in [1, 28–30] are efficient under given
criteria: the processing cost, the overall makespan, resources utilization, load balancing
for related tasks, etc. It is worth remarking here, that complexity of the scheduling
process is extremely increased by the resources heterogeneity and the co-allocation
process of the tasks of parallel jobs across resource domain boundaries. In this work,
algorithms for efficient slot selection based on users’, resource owners’ and VO
administrators’ preferences with the linear complexity on the number of all available
time-slots are used [15–17]. Our approach takes into account preferences of diverse VO
stakeholders. Scheduling optimization is conducted at two levels – when selecting the
slots and when executing the job batch.

The CSS model [15–17] has the following basic resource request requirements to
computational nodes: the minimal performance p, required for job execution, the
maximum total job execution cost (budget) S, a number n of computing nodes needed for
the job, and resource reservation time t (estimated for a resource with the performance
p). The framework of independent jobs at each scheduling cycle is represented as a job
batch in a certain manner formed from the job flow. Such selection makes it possible to
increase overall scheduling efficiency in the VO compared to scheduling each job
individually due to optimization of the general criterion formalizing the VO policy and
fair resource sharing based on preferences of key stakeholders [2–6, 11, 15, 16, 20].

3 Job Framework Forming

3.1 Job Batch Size Restrictions

An important step bearing, at first glance, no relation to job flow cyclic scheduling
efficiency is determining the job batch size during each scheduling cycle. By varying
the job batch size limit (which can be expressed, for example, in a number of jobs in the
batch or their cumulative execution budget) scheduling efficiency can be increased
according to one or several different criteria. There are following scheduling efficiency

Job Ranking and Scheduling in Utility Grids VOs 287

criteria considered in our model: computing nodes utilization level; optimization cri-
terion formalizing the VO policy (for example, job flow execution time minimization,
with restriction on the total execution cost); number of execution alternatives found for
each job (in CSS a greater number of alternatives means greater scheduling optimi-
zation opportunities); number of scheduling cycles required for complete job flow
execution (minimizing this factor provides a higher throughput of the distributed
computing environment).

Specifying the batch size directly, for instance, by VO administrators, is not rea-
sonable. Under conditions when local schedules of computing nodes change dynami-
cally and parameters of incoming jobs differ significantly and are based on user
estimates which are often inaccurate, it is impossible to specify a limit in advance that
would allow increasing scheduling efficiency according to the criterion chosen in the
VO. A more flexible batch size limiting mechanism can be built based on relation
between job requirements and computing environment parameters. In the context of
economic principles it is logical to choose resource utilization cost and resource res-
ervation time as base characteristics for such relation. When using time limit, total time
of slot occupation is evaluated for each job. This time is normalized to a resource with a
base performance (p ¼ 1). To execute a job a set of suitable slots has to be allocated.
Each of the slots is characterized by start time, length and utilization cost [17]. A slot set
forms a “window”, for which total time and cost of slot utilization can be calculated.
Note that for the purpose of normalization these values need to be calculated to a
resource of the base performance. Thus, total time of slot utilization by a single job can
be evaluated as p � t � n. For a resource domain we evaluate a cumulative slot length. The
slot length is also calculated with regard to the base resource performance. The job batch
should be composed in a way that total time of the slot utilization by the batch jobs is not
greater than the cumulative slot length of the resource domain with a coefficient
L 2 ð0; 1�. VO administrators can use the coefficient L 2 ð0; 1� to control job flow
execution process in computing environment. Cost limit is similar to time limit: the
maximum job execution budget S is specified by user in the resource request (e.g. using
JSDL). At the same time cumulative cost of slots available for use in current scheduling
cycle is calculated for resource domain based on the VO pricing policy [4, 14]. As
opposed to a batch with a fixed number of jobs, time and cost limits introduction allows
adjusting the batch size under conditions of dynamically changing nodes utilization and
heterogeneity of the job flow. This is achieved by specifying the value of L 2 ð0; 1�.
Experimental study of this approach is conducted and presented in Sect. 4.

3.2 Job and Computing Environment Compatibility Indicator

Job batch grouping schemes proposed in this paper form the batch based on job and
computing environment characteristics compatibility. Thus, the batch is composed of
jobs which resource requests are most fitted for executing in a current scheduling
interval. As compatibility measure of an individual job and a resource domain an
empirical coefficient DQ (Distribution Quality) is proposed. DQ describes chances for a
job to be scheduled and executed successfully during the present resource domain
scheduling interval utilization level. It can have positive (high chance to be executed)

288 V. Toporkov et al.

or negative values (low chance to be executed). To figure out the DQ coefficient and to
find significant parameters of the job and the resource domain experimental studies
were conducted.

As a result, the following environment characteristics and resource request
parameters that most influence the probability of a successful scheduling outcome were
discovered.

• A “price/quality” ratio of the domain computational nodes (Q0) and user jobs (Q).
For an individual computing node Q0 is calculated as the ratio of the specified
utilization cost (per time unit) to its performance factor c=p. Thus the higher the
performance and the lower the utilization cost of the node, the lower the value of the
coefficient is. For a resource domain an average value of Q0 by all nodes is taken
into account. For an individual job the factor is evaluated in a similar manner:
Q ¼ S=ntp, where the average value of the maximum acceptable for the user single
node price is calculated as c ¼ S=nt.

• A number n0 of the available resources (nodes) in the resource domain and a
number n of the computing nodes required for the job execution respectively.

• An average slot length ls during the scheduling interval with regard to the resource
of the base performance and resource reservation time required for job execution,
also calculated with regards to the base resource performance: t � p.

• Total domain available processor time Vs (cumulative length of available slots) and
processor time t � p � n required for the job execution.

Thus, DQ consists of four summands, corresponding to the mentioned character-
istics of the resource domain and the user job. For each of the summands adjusting
parameters are introduced: Kq, Kn, Kl, and Kv – weight coefficients of the summands;
Cq, Cn, Cl, and Cv – threshold values, approximately determining the value at which at
least one alternative for the job is likely to be found.

The DQ coefficient is defined as the sum of the following terms:

DQ1 ¼ Kq Q=Q0 � Cq
� �

=Cq; ð1Þ

DQ2 ¼ Kn Cn � n=n0ð Þ=Cn; ð2Þ

DQ3 ¼ Kl Cl � t � p=lsð Þ=Cl; ð3Þ

DQ4 ¼ Kv Cv � t � p � n=Vsð Þ=Cv: ð4Þ

The term (1) normalizes the ratio of coefficients Q of the job and Q0 of the
environment. The greater the value of the ratio Q=Q0, the larger the value of the term is
and the higher the probability of successful job execution. For instance, the higher the
budget S, allocated by the user to execute a job, the larger the value of the term and
entire DQ is. The term (2) normalizes the ratio of the matching computing nodes
number in the domain and the number of nodes required to execute the job n=n0. The
term (3) normalizes the ratio of resource reservation time required to the job and the
average slot length. The term (4) characterizes the ratio of slot utilization time required
to execute the job and total processor time available during the considered scheduling

Job Ranking and Scheduling in Utility Grids VOs 289

cycle. Note, that parameters Q0, n0, ls, and Vs are calculated for the set of domain
resources that match the job against the minimum performance limit p. If there are no
such resources in the domain or the number of such resources is less than the value n
from the resource request, DQ is considered to have the value of negative infinity.
Using DQ coefficient as the sum of (1)−(4) it is possible to form the job batch in
different ways. One possible approach consists in selecting jobs with the maximum
value of DQ at each scheduling cycle.

However, in this case a situation similar to job selection by the cost criterion can
happen: after successful scheduling of the most “valuable” jobs of the flow at the first
cycles, scheduling efficiency may reduce abruptly for jobs left in the queue at sub-
sequent scheduling cycles. Job system generation methods proposed in this paper apply
a different policy and are based on selecting jobs with the minimal positive value of
DQ, i.e. the most “problem” jobs out of those that can be executed successfully at
current scheduling interval. This policy allows balancing of job flow execution during
many cycles and providing the most efficient resource utilization. On the other hand,
jobs with very high or negative values of DQ factor can be moved to other flows and
executed in other resource domains.

Two fundamentally different batch generation methods are proposed in the paper.
In the first method, a job batch grouping process is reduced to solving the problem of
optimal knapsack filling with dynamic programming methods [20, 21]. This approach
seems to be natural as it allows formalizing the job selection procedure under char-
acteristics of jobs and resource domains known in advance. The second method is
based on DQ coefficient and allows flexibly adjusting scheduling process to a
dynamically changing structure of resources and jobs of the flow. To compare the
methods both of them use the job batch size restriction rules while batch job grouping
is performed based on DQ indicator evaluation for each job.

The idea of knapsack problem application for scheduling is not new, however in the
known approaches [15, 16, 19, 21] it is usually used for optimal jobs allocation to
non-dedicated resources. We propose using it to fill the job batch, as a preparatory step
before scheduling. A weight limit of the batch and a weight of an individual job can be
either time or cost depending on the chosen limit type. The weight limit is chosen based
on summary resource characteristics with some coefficient L 2 ð0; 1�. A value of a job
is proposed to be calculated as 1=DQ: that is, the lower DQ coefficient, the higher the
value of the job is. This assumption is based on the logic of choosing jobs based on DQ,
and allows achieving a more even resource utilization during several scheduling cycles.
Note, that jobs whose value is less than or equal to zero will never be put into the batch,
since they make no positive contribution to the total batch value but occupy some
“useful weight”.

Another approach uses DQ indicator to select jobs into the batch. However, when
forming the batch based on the mentioned job and resource domain compatibility
factor, the use of simple DQ becomes insufficient: when adding jobs to the batch it is
necessary to take into account parameters of the jobs already put into this batch.

Thus, it is necessary to slightly modify the DQ terms. For instance, when time limit
is used, total processor time required by the jobs previously put into the batch is added

290 V. Toporkov et al.

to the term normalizing the ratio of job /domain required /available processor time. In
this case, DQ4 (4) is modified as follows:

DQ4 ¼ Kv Cv � t � p � nþ
XN
i¼1

ti � pi � ni
 !

=V
0
s

 !
=Cv: ð5Þ

The sum
PN
i¼1

ti � pi � ni in (5) includes parameters of all N jobs, already put into the

batch, and V
0
s is total processor time for all the jobs. In case of cost limit, the nominator

of the ratio includes the total execution budget of the jobs already put into the batch and
the denominator - cumulative cost of all the available slots.

As was mentioned earlier, the jobs with the minimal positive value of DQ coeffi-
cient have the highest priority during the selection process. When the number of jobs in
the batch increases, the value of DQ4 reduces and may take negative values. Batch
generation process continues until there are any jobs with the positive value of DQ left
in the job flow. Note, that in this batch grouping method the limiting coefficient VO
administrators operate is represented as adjusting the threshold parameter Cv. Unlike
the batch grouping method based on the knapsack problem solution, the batch size limit
for this method is not strict. When solving the knapsack problem the limit is strict and
cannot be exceeded. When using DQ, exceeding the limit will result in DQ4 taking a
negative value while entire DQ coefficient can still be positive, and then the job will be
put into the batch. The approach based on DQ allows keeping the job selection policy in
a more flexible way, as each time the job with the minimal positive value of the
coefficient is chosen. The main advantage of the method based on DQ consists in the
ability of taking into account the parameters of jobs already put into the batch. Note,
that for both batch grouping methods job ranking is used according to DQ coefficient in
descending order, i.e. the most “problem” jobs are placed in the beginning of the batch.
This allows improving scheduling efficiency indicators.

4 Simulation Studies

Many Grid simulators have already been developed [2], e.g. ChicSim, GridSim,
SimGrid, OptorSim, etc. We implement our own Grid simulator [22] in order to
maximize reuse a code base for CSS with original job flow and application level
scheduling algorithms and heuristics [15–17, 22].

Some realistic features are introduced into the experimental setup. The scheduling
interval length is assumed to be 600 units of time in simulation steps. The number of
nodes in the resource domain is equal to 24. The nodes performance level is given as a
uniformly distributed random value in the interval [2, 14]. This configuration provides
a sufficient resources diversity level while the difference between the highest and the
lowest resource performance levels will not exceed one order within a particular
resource domain. Uniform distribution was chosen in the assumption that the node
composition is formed by resource selection based on such hard constraints [11] as a
computing node type, performance, etc. The node prices are assigned during the pricing

Job Ranking and Scheduling in Utility Grids VOs 291

stage depending on the node performance level and a random “discount/extra charge”
value which is normally distributed. The number of jobs in the queue is assumed to be
150. The jobs budget limit is generated in such a way that the “richest” users can afford
to use “expensive” resources with the price formed as a “market value + 60 % extra
charge”, and the “poorest” users have been forced to rely on 60 % discounts. Jobs
expected runtimes are generated on a [50, 150] interval so the whole job queue exe-
cution requires several scheduling cycles for every batch grouping method. The fol-
lowing job batch grouping methods were studied:

• Random – each time the batch is filled with a constant number of jobs randomly
selected from the job flow;

• KnapsackT – the knapsack problem with a restriction on total reservation time is
solved to fill the job batch;

• KnapsackC – the knapsack problem with a restriction on total reservation cost is
solved to fill the job batch;

• DQT – the job batch is filled according to jobs DQ indicator with a restriction on
jobs reservation time;

• DQC – the job batch is filled according to jobs DQ indicator with a restriction on
jobs reservation cost.

Random grouping method represents a general job queue scheduling policy based
on a job submission natural order. The main goal of the experiment is to compare the
knapsack and the simple DQ heuristic job grouping approaches which attempt to
reorder a job queue according to the available meta data.

Table 1 contains job batch size limit values used during the simulation series. A job
batch size for the Random grouping method was specified accordingly to the average
size of the batches formed by other considered approaches.

Figure 1 presents a domain nodes utilization level (a) and an average number of
execution alternatives (b) found for the batch jobs depending on considered experiment
series (see Table 1). As expected, the graphs show that the available resource utilization
level increases and the number of possible execution alternatives decreases with
increasing the size of the formed job batch.

Figure 2 shows average job execution time (a), a number of alternatives found (b),
and an average number of completed scheduling cycles (c), depending on the resulting
resource utilization level. Section 3 introduces the coefficient L 2 ð0; 1� which defines
the weight restriction for the knapsack problem and hence the job batch size.

The relation between the coefficient and resource domain nodes utilization level
could be graphically seen from Fig. 1 (a). On the other hand, DQT(C) approaches use
DQ indicator which consists of main terms (1)-(5). Thus, even when one of the terms

Table 1. Job batch grouping limit parameters for different experiment series.

Experiment series # 1 2 3 4 5

Job batch size for Random grouping method 6 20 30 40 50
L value for KnapsackT, KnapsackC, DQT and DQC
grouping algorithms

0.1 0.3 0.5 0.7 0.9

292 V. Toporkov et al.

becomes negative due to the job batch time or cost limit exceeding, the cumulative
indicator value may stay positive. Such flexible restriction results in a greater number
of potentially executable jobs being selected into the job batch during each scheduling
cycle. This explains better scheduling criteria values and a relatively higher level of
resources utilization provided by DQT(C) approaches.

(a) (b)

Fig. 1. Average computational nodes utilization level (a) and possible execution alternatives
number (b) in different experiment series

(a) (b)

(c)

Fig. 2. Average job execution time (a), execution alternatives number (b), and number of
required scheduling cycles (c) depending on the nodes utilization level

Job Ranking and Scheduling in Utility Grids VOs 293

Figure 2 shows a 15 % advantage of DQT(C) approach over KnapsackT(C) by job
execution time (the main VO scheduling criterion), however both job batch grouping
algorithms managed roughly the same number of scheduling cycles to complete the
whole job flow. As can be seen from Fig. 2 (a), DQT(C) approach provides the best
scheduling results almost for every obtained resource utilization level. Figure 2(b) and
(c) are consistent and agree with this conclusion: approaches which provided better VO
scheduling criterion values accordingly provided more possible execution alternatives
during the scheduling process. The average number of the scheduling cycles required to
complete the job flow execution (Fig. 2 (c)) was approximately the same for each
grouping method with the same observed resources utilization level.

Figure 3 contains graphical data on the average execution alternatives number, the
job batch size and the number of job execution declines and returns to the job flow
depending on the scheduling cycle number. The data represents the dynamic job flow
scheduling results for every considered job batch grouping algorithm in the experiment
series #3 (see Table 1). As was mentioned earlier, DQT(C) approach aims to select jobs
with the minimal positive DQ compatibility indicator value. The job “weight” (pro-
cessor time or the total execution budget) is not considered during the selection: the
jobs are equally selected from the job flow according to DQ value until the total weight
limit is not exceeded. On the other hand, KnapsackT(C) approach maximizes the sum
of the batch jobs DQ values with a hard restriction on a total weight. As it turns out, this
policy tends to select more relatively small jobs since they make a smaller contribution
to the total batch weight. Thus, the job flow scheduling is uneven: relatively small jobs
are selected for the first scheduling cycles while jobs with higher resource demands
remain till the last cycles.

(a) (b)

(c)

Fig. 3. Average execution alternatives number (a), job batch size (b), and number of job
execution declines (c) depending on the scheduling cycle number

294 V. Toporkov et al.

The whole picture is presented by Fig. 3. At the first scheduling cycles KnapsackT
(C) forms batches of a larger size, while at later cycles with the same weight limit the
batch size decreases by several times. Similarly, the number of the alternatives found
with KnapsackT(C) approach can be explained. At the first scheduling cycles a large
number of relatively small jobs are competing for limited resources and each reserved
alternative further “granulates” available processor slots. This granulation makes the
execution alternatives search task even more complex, and it becomes difficult to
allocate even several execution alternatives for a batch of much more resource
demanding jobs. At the same time, the scheduling with DQT(C) is uniform from cycle
to cycle: there is now skew in the batches toward more or less resource demanding
jobs. The reduced job execution declines number during the ending scheduling cycles
can be explained by the fact that only jobs with a relatively higher DQ value (the most
“suitable” jobs) remain in the job flow. The scheduler tends to form a batch of jobs with
resource demands most appropriate for the particular resource domain. The compati-
bility is defined by the specified values of the DQ threshold coefficients. The execution
of the jobs too small or expensive for the particular resource domain (which should
have a higher DQ value) might granulate available processor time and hint on overall
job flow distribution inefficiency.

The obtained simulation results show that KnapsackT(C) job batch forming approach
provides better scheduling results with the restriction on the total batch jobs execution
budget. DQT and DQC approaches showed similar results in all considered experiments
and no noticeable advantages observed with cost or time limitation. The Random job
batch grouping scheme in some experiments provided the best values of average job
execution time and the considered job execution alternatives number. This can be
explained by the fact that the job batch was formed without any job-domain “compat-
ibility” rules with the only restriction on the preliminary defined total batch size. As a
consequence, the Random approach provided a lower average resource utilization level,
a greater number of job execution declines and required a larger number of scheduling
cycles for a complete job flow execution compared to other considered approaches.

5 Summary

In this paper, the problem of job selection for resource scheduling in virtual organi-
zation in utility Grids is considered. We propose the general compatibility parameter
DQ for a job and a chosen resource domain. Two methods based on different job
selection approaches for job batch forming using DQ are proposed and analyzed. The
first method, KnapsackT(C), forms job batches based on the knapsack problem solution
for preliminary calculated DQ for each job and has the strict limit for total execution
time or cost of the job batch execution. The second method, DQT(C), uses DQ for job
selection, which in its turn dynamically changes based on jobs that were already
selected and their characteristics, and uses less strict constraints for the job batch size.
Experiment results show significant advantage of DQT(C) over KnapsackT(C).

Further research is aimed at developing methods for job allocation between several
resource domains and forming a job framework while fulfilling requirements of all VO
participants.

Job Ranking and Scheduling in Utility Grids VOs 295

Acknowledgements. This work was partially supported by the Council on Grants of the
President of the Russian Federation for State Support of Young Scientists and Leading Scientific
Schools (grants YPhD-4148.2015.9 and SS-362.2014.9), RFBR (grants 15-07-02259 and
15-07-03401), the Ministry on Education and Science of the Russian Federation, task no.
2014/123 (project no. 2268), and by the Russian Science Foundation (project no. 15-11-10010).

References

1. Garg, S.K., Konugurthi, P., Buyya, R.: A linear programming-driven genetic algorithm for
metascheduling on utility grids. J Par., Emergent and Distr. Systems 26, 493–517 (2011)

2. Cafaro, M., Mirto, M., Aloisio, G.: Preference-based matchmaking of grid resources with
cp-nets. J. Grid Comput. 11(2), 211–237 (2013)

3. Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in grid computing. J. Concurrency Comput. 14(5), 1507–1542 (2002)

4. Toporkov, V.V., Yemelyanov, D.M.: Economic model of scheduling and fair resource
sharing in distributed computations. J. Program. Comput. Softw. 40(1), 35–42 (2014)

5. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid computing. In:
Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002)

6. Mutz, A., Wolski, R., Brevik, J.: Eliciting honest value information in a batch-queue
environment. In: 2007 8th IEEE/ACM International Conference on Grid Computing,
pp. 291–297. IEEE Computer Society (2007)

7. Berman, F., Wolski, R., Casanova, H., et al.: Adaptive computing on the grid using appLeS.
J. IEEE Trans. On Parallel Distrib. Syst. 14(4), 369–382 (2003)

8. Cirne, W., Brasileiro, F., Costa, L. et al.: Scheduling in bag-of-task grids: the PAUÁ case.
In: 16th Symposium on Computer Architecture and High Performance Computing, pp. 124–
131. IEEE (2004)

9. Voevodin, V.: The solution of large problems in distributed computational media. J. Autom.
Remote Control 68(5), 773–786 (2007)

10. Dail, H., Sievert, O., Berman, F., et al.: Scheduling in the grid application development
software project. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid resource
management, pp. 73–98. State of the Art and Future Trends. Kluwer Academic
Publishers, Dordrecht (2003)

11. Kurowski, K., Oleksiak, A., Nabrzyski, J., et al.: Multi-criteria grid resource management
using performance prediction techniques. In: Gorlatch, S., Danelutto, M. (eds.) JSSPP 2010,
pp. 215–225. Springer, Heidelberg (2010)

12. Moab Adaptive Computing Suite. http://www.adaptivecomputing.com/products/moab-
adaptive-computing-suite.php. Accessed November 2014

13. Kannan, S., Roberts, M., Mayes, P., et al.: Workload Management with LoadLeveler. IBM,
New York (2001)

14. Tsafrir, D., Etsion, Y., Feitelson, D.: Backfilling using system-generated predictions rather
than user runtime estimates. J. IEEE Trans. on Parallel Distrib. Sys. 18(6), 789–803 (2007)

15. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.:
Preference-based fair resource sharing and scheduling optimization in grid vos.
J. Procedia Comput. Sci. 29, 831–843 (2014)

16. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Core
heuristics for preference-based scheduling in virtual organizations of utility grids. In:
Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.) IDCVIII. SCI, vol. 570,
pp. 309–318. Springer, Heidelberg (2014)

296 V. Toporkov et al.

http://www.adaptivecomputing.com/products/moab-adaptive-computing-suite.php
http://www.adaptivecomputing.com/products/moab-adaptive-computing-suite.php

17. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot selection algorithms in
distributed computing. J. of Supercomputing 69(1), 53–60 (2014)

18. Zhou, Z., Lan, Z., Tang, W., Desai, N.: Reducing energy costs for ibm blue gene/p via
power-aware job scheduling. In: 17th Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 96–115. Boston (2013)

19. Soner, S., Özturan, C.: Integer programming based heterogeneous cpu-gpu cluster scheduler
for slurm resource manager. In: 14th IEEE International Conference on High Performance
Computing and Communication and 9th IEEE International Conference on Embedded
Software and Systems, pp. 418–424. IEEE, Liverpool (2012)

20. Toporkov, V., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Metascheduling strategies in
distributed computing with non-dedicated resources. In: Zamojski, W., Sugier, J. (eds.)
DPCIS. AISC, vol. 307, pp. 129–148. Springer, Heidelberg (2014)

21. Vanderster, D.C., Dimopoulos, N.J., Parra-hernandez, R., Sobie, R.J.: Resource allocation
on computational grids using a utility model and the knapsack problem. J. Future Gener.
Comput. Syst. 25(1), 35–50 (2009)

22. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Composite scheduling
strategies in distributed computing with non-dedicated resources. J. Procedia Comput. Sci. 9,
176–185 (2012)

23. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling
interoperability among grid meta-schedulers. J. Grid Comput. 11(2), 311–336 (2013)

24. Aida, K., Casanova, H.: Scheduling mixed-parallel applications with advance reservations.
In: 17th IEEE Int. Symposium on HPDC, pp. 65–74. IEEE CS Press, New York (2008)

25. Ando, S., Aida, K.: Evaluation of scheduling algorithms for advance reservations. In:
Information Processing Society of Japan SIG Notes HPC-113, pp. 37–42 (2007)

26. Elmroth, E., Tordsson, J.: A standards-based grid resource brokering service supporting
advance reservations, coallocation and cross-grid interoperability. J. of Concurrency
Comput. 25(18), 2298–2335 (2009)

27. Azzedin, F., Maheswaran, M., Arnason, N.: A synchronous co-allocation mechanism for
grid computing systems. Cluster Comput. 7, 39–49 (2004)

28. Castillo, C., Rouskas, G.N., Harfoush, K.: Resource co-allocation for large-scale distributed
environments. In: 18th ACM International Symposium on High Performance Distributed
Compuing, pp. 137–150. ACM, New York (2009)

29. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An advance reservation-based
co-allocation algorithm for distributed computers and network bandwidth on
QoS-guaranteed grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010.
LNCS, vol. 6253, pp. 16–34. Springer, Heidelberg (2010)

30. Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP model scheduling for
multi-clusters. In: Caragiannis, I., et al. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640,
pp. 196–206. Springer, Heidelberg (2013)

Job Ranking and Scheduling in Utility Grids VOs 297

Congestion Elimination on Data Storages
Network Interfaces in Datacenters

P.M. Vdovin(&), I.A. Zotov, V.A. Kostenko, and A.V. Plakunov

Moscow State University, Moscow, Russia
{pavel.vdovin,tridcatov,kostmsu}@gmail.com,

artacc@lvk.cs.msu.su

Abstract. In this paper we propose a model of a datacenter that provides an
ability to describe a wide class of data center architectures. The resource allo-
cation problem is considered that supports replication of data storage elements.
Replication procedure provides a way of congestion elimination on channels
connected to data storages with low write rates and high read rates. Experi-
mental investigation that was held with different resource allocation algorithms
is showing replication procedure to be able to increase the number of allocated
requests.

Keywords: Datacenter � IaaS � SLA � Replication � Data storage � Virtual link

1 Introduction

An opportunity to eliminate congestion on data storages interfaces in datacenters is
relevant for databases, which have a low write and high read rates. In this work
datacenters with Infrastructure-as-a-Service (IaaS) [1] model are considered with
guarantied service level agreements (SLA) for all resource types: computational
resources, data storages and network resources. In order to map resource requests onto
physical resources of DCs, it is necessary to solve three interdependent NP-hard
problems:

• Assign virtual machines onto computational resources.
• Assign storage elements onto data storages.
• Assign virtual links onto network resources.

All virtual elements have a vector of required resources, and assignment should be
performed so that the amount of corresponding physical resources is not exceeded on
each physical element.

In [2] the self-organizing cloud platform that is able to deploy administrative virtual
networks in datacenters and is compatible with OpenStack [3] platform is described.

The work is performed with financial support of The Ministry of Education and Science of The
Russian Federation. Agreement number 14.607.21.0070.

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 298–303, 2015.
DOI: 10.1007/978-3-319-21909-7_30

For deploying such networks and achieving high utilization of datacenter physical
resources a platform resource scheduler should have the following characteristics:

• Ability to set arbitrary set of SLA requirements.
• Requests assignments on computational resources, data storages and network

resources should be performed consistently with respect to requested SLAs.
• Ability to eliminate physical resource segmentation via virtual resources migration

in datacenter.
• Ability to balance between the algorithm complexity and the solution quality.
• Ability to add/remove virtual resources in scheduled virtual network (tenant).
• Ability to compactly allocate resources for virtual networks in terms of hop count

between network elements.
• Ability to eliminate congestion on storages network interfaces.

The investigation of algorithms, which are compatible with IaaS model [4–17],
showed that not all requirements presented above are taken into account. In works
[4–9] network resources are not considered, while in [10–14] network resources are
considered without SLA requirements (only routing is performed). In [15] data storages
are not represented as physical resources, and in [16] only tree topology of DCs is used.
None of the algorithms provides an ability to eliminate congestion on storage
interfaces.

In [17–20] various algorithms to resource allocation in the datacenters with
self-organizing cloud platforms are presented that satisfy all characteristics mentioned
above.

In this work we present the replication procedure for data storages network inter-
faces congestion elimination and the results of its effectiveness.

2 Replication Procedure

There are three algorithms of resource allocation in datacenters, presented in [17–20],
that uses the replication procedure for congestion elimination: algorithm with the unified
scheduler, algorithm with the individual schedulers and ant colony algorithm. In these
algorithms replication procedure is called if virtual link route between virtual machine
and storage element is failed to be build with respect to required virtual link bandwidth.

The replication is possible when one of the elements connected by the virtual link is
the storage element s for which the replication is available. The replication procedure
consists of searching for the data storage m that has sufficient resources for assigning
the replica (the replica requires as much resources as the given storage element s) such
that total routes length of all virtual links (that include the given storage element s) to
this replica of m is minimal. In addition, it is required to create a link l for maintaining
the consistency between the replica and the original storage element (the required
bandwidth of the link l is determined by the type of the storage element s). If the route
of the link l for maintaining the consistency failed to be built, then another data storage
s is considered in order of total length increment of virtual links routes.

If the replication procedure returns success, then the virtual links including given
storage element s can further be assigned to this replica of m. By rebuilding routes of

Congestion Elimination on Data Storages Network 299

some virtual links from data storage m to its replica, congestion on interfaces of
m (which correspond to data transmission channels connected to m) is eliminated and
further virtual links may be assigned to this data storage.

If m with a sufficient number of resources is not found or the route of the link l for
maintaining the consistency fails to be built, then the procedure returns failure.

3 Experimental Investigation of Replication Procedure
Efficiency

To demonstrate the efficiency of the replication procedure, the FatTree topology [21]
was used with total of 85 switches, 60 computational nodes and 60 data storages.

For investigating the effectiveness of replication procedure on congestion elimi-
nation, the virtual requests were generated so that the potential possible load of the
channels (under the optimal allocation) connected to data storages varied from 0.3 to
1.0. The load of the computation nodes and data storages was fixed to 0.75.

The number of requests in each test set was 100.
All the algorithms were executed once without the replication and once with the

replication allowed. The figures show the difference in the number of requests assigned
by each of the algorithms with the replication off and on.

Figures 1, 2 and 3 present the results of the algorithm with the individual resource
schedulers, unified resource scheduler and ant colony algorithm respectively.

The investigation of the algorithms shows that the replication procedure increases
the number of the assigned requests in the case when the potentially possible load of
channels connected to data storages is 0.7 or higher. Also note that the algorithm with
the unified scheduler assigns more requests than the algorithm with individual

100 100 100 100100 100 100 100

71

94
88

80

99

88
85

97

0

20

40

60

80

100

30 40 50 60 70 80 90 100

The potential load of channels connected to data storages, %

A
ss

ig
ne

d
re

qu
es

ts
, %

with replication

without replication

Fig. 1. The algorithm with individual schedulers

300 P.M. Vdovin et al.

schedulers. The ant colony algorithm is more efficient then these algorithms, but it has
the largest computational complexity among all three algorithms.

4 Conclusion

The performed experimental investigation of replication procedure efficiency showed
that more requests may be allocated on the same physical resources in comparison to
algorithms without replication procedure, which is the result of congestion elimination
of data storages network interfaces.

100 100 100 100

88

100 100 100 100 99 96
93

96
91

86

79

0

20

40

60

80

100

30 40 50 60 70 80 90 100

The potential load of channels connected to data storages, %

A
ss

ig
ne

d
re

qu
es

ts
,%

with replication

without replication

Fig. 2. The algorithm with the unified scheduler

100 100 100 100 100100 100 100 100 100

89

98
100

85

94
99

0

20

40

60

80

100

30 40 50 60 70 80 90 100

The potential load of channels connected to data storages, %

A
ss

ig
ne

d
re

qu
es

ts
, %

with replication

without replication

Fig. 3. The ant colony algorithm

Congestion Elimination on Data Storages Network 301

References

1. Amies, A., Sluiman, H., Tong, Q.G., et al.: Developing and Hosting Applications on the
Cloud. IBM Press, Boston (2012)

2. Vdovin, P.M., Zotov, I.A., Kostenko, V.A., Plakunov, A.V., Smelyansky, R.L.: Comparing
various approaches to resource allocating in data centers. J. Comput. Syst Sci. Intern 53(5),
689–701 (2014)

3. Pepple, K.: Deploying OpenStack. O’Reilly, California (2011)
4. Urgaonkar, B., Rosenberg, A.L., Shenoy, P.: Application placement on a cluster of servers.

Int. J. Found. Comput. Sci. 18, 1023–1041 (2007)
5. Bein D., Bein W., Venigella S.: Cloud storage and online bin packing.In: Proceedings of the

5th International Symposium on Intelligent Distributed Computing Delft: IDC, pp. 63–68
(2011)

6. Nagendram, S., Lakshmi, J.V., Rao, D.V., et al.: Efficient resource scheduling in data centers
using MRIS. Indian J. Comput. Sci. Eng. 2(5), 764–769 (2011)

7. Arzuaga E., Kaeli D.R.: Quantifying load imbalance on virtualized enterprise servers. In:
Proceedings of the First Joint WOSP/SIPEW International Conference on Performance
Engineering, pp. 235–242. ACM, San Josa (2010)

8. Mishra M., Sahoo A.: On theory of VM placement: anomalies in existing methodologies and
their mitigation using a novel vector based approach. In: IEEE International Conference on
Cloud Computing (CLOUD), pp. 275–282. IEEE Press, Washington (2011)

9. Zhu, Y., Ammar, M.H.: Algorithms for assigning substrate network resources to virtual
network components. In: 25th International Conference on Computer Communications
(INFOCOM), Barcelona, pp. 1–12 (2006)

10. Botero, J.F., Hesselbach, X., Fischer, A., et al.: Optimal mapping of virtual networks with
hidden hops. Telecommun. Syst. 51(4), 273–282 (2012)

11. Lischka J., Karl H.: A virtual network mapping algorithm based on subgraph isomorphism
detection. In: Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems
and Architectures, pp. 81–88. ACM, Barcelona (2009)

12. Yu, M., Yi, Y., Rexford, J., et al.: Rethinking virtual network embedding: substrate support
for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29
(2008)

13. Chowdhury N.M.M.K., Rahman M.R., Boutaba R.: Virtual network embedding with
coordinated node and link mapping. In: 28th International Conference on Computer
Communications (INFOCOM), Barcelona, pp. 783–791 (2009)

14. Cheng, X., Sen, S., Zhongbao, Z., et al.: Virtual network embedding through
topology-aware node ranking. ACM SIGCOMM Comput. Commun. Rev. 41(2), 38–47
(2011)

15. Jiang J.W., Tian L., Sangtae H., et al.: Joint VM placement and routing for data center traffic
engineering. In: 31th International Conference on Computer Communications (INFOCOM),
Orlando, pp. 2876–2880 (2012)

16. Korupolu M., Singh A., Bamba B.: Coupled placement in modern data centers. In: IEEE
International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–12, New
York (2009)

17. Kostenko, V., Plakunov, A., Nikolaev, A., Tabolin, V., Smeliansky, R., Shakhova, M.:
Selforganizing cloud platform. In: Proceedings of the International Science and Technology
Conference Modern Networking Technologies (MoNeTec). IEEE, Moscow, Russia, MAKS
Pess, pp. 77–82 (2014)

302 P.M. Vdovin et al.

18. Vdovin, P.M., Kostenko, V.A.: Algorithm for resource allocation in data centers with
independent schedulers for different types of resources. J. Comput. Syst. Sci. Intern 53(6),
854–866 (2014)

19. Zotov, I.A., Kostenko, V.A.: Resource allocation algorithm in data centers with a unified
scheduler for different types of resources. J. Comput. Syst. Sci. Int. 54(1), 59–68 (2015)

20. A. Plakunov, V. Kostenko.: Data center resource mapping algorithm based on the ant colony
optimization. In: Proceedings of the International Science and Technology Conference
Modern Networking Technologies (MoNeTec). IEEE, Moscow, Russia, MAKS Pess,
pp. 127–132 (2014)

21. Al-Fares, M., Loukissas, A., Vahdat, A.A.: Commodity data center network architecture.
ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

Congestion Elimination on Data Storages Network 303

Special Processors Programming
Techniques

Use of Xeon Phi Coprocessor for Solving
Global Optimization Problems

Konstantin Barkalov(&), Victor Gergel, and Ilya Lebedev

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
{barkalov,lebedev}@vmk.unn.ru, gergel@unn.ru

Abstract. This work considers a parallel algorithm for solving multidimen-
sional multiextremal optimization problems. The issue of implementation of the
algorithm on state-of-the-art computing systems using Intel Xeon Phi copro-
cessor is considered. Speed up of the algorithm using Xeon Phi compared to
using only CPU is experimentally confirmed. Computational experiments are
carried out using a set of a several hundred of multidimensional multiextremal
problems.

Keywords: Global optimization � Dimension reduction � Parallel algorithms �
Speedup � Intel Xeon Phi

1 Introduction

Optimization problems are of great practical importance. Almost each problem of
design of new devices, products or systems includes a stage where optimal variants are
selected. Among the most complex optimization problems are problems of global
optimization, where the criterion of optimality is multiextremal. While validation of
local optimality of a solution requires only analysis of its local neighborhood, global
minimum is an integral characteristic of the optimization problem solved and it requires
analysis of the whole search domain. As a result, search of a global optimum is reduced
to construction of a grid in the parameter domain. It leads to exponential growth of
computational effort with more dimensions (the so-called “curse of dimensionality”).

A decrease in computational effort can be provided through construction of a
non-uniform grid in the search domain: it has to be quite dense in the neighborhood of
the global optimum and more sparse farther from the required solution. There is a
number of methods allowing to build non-uniform grids of such kind (see, for example,
[1–4]). Among those, we note the global search algorithm and its modifications
developed within the framework of the information-statistical approach [5–9]. It is
experimentally confirmed in [8], that this algorithm is more effective than other known
methods of the same purpose.

Use of parallel computing systems significantly expands capabilities for solving
global optimization problems. Parallel versions are proposed for almost all existing
algorithms (see, for example, [10, 11]). However, the provided versions of algorithms
are parallelized in a CPU using MPI and/or OpenMP technologies, whereas currently
the main tendency in the field of parallel computing is use of accelerators. Of special

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 307–318, 2015.
DOI: 10.1007/978-3-319-21909-7_31

interest in this regard is the Intel Xeon Phi coprocessor. It is based on x86 architecture
and standard technologies and libraries can be used in programming for Xeon Phi
(unlike specialized and, as a rule, more complex programming technologies for GPU).

The present work contains the results of an analysis of parallel global search
algorithm developed within the framework of the information-statistical approach [8],
and its implementation using Xeon Phi.

2 Global Search Algorithm with Parallel Trials

Let us consider the problem of global minimum search of an N-dimensional function
φ(y) in hyperinterval D

uðy�Þ ¼ minfuðyÞ : y 2 Dg; ð1Þ

D ¼ fy 2 RN : ai � yi � bi; 1� i�Ng:

Let us assume that objective function φ(y) satisfies Lipschitz condition

uðy1Þ � uðy2Þj j � L y1 � y2k k; y1; y2 2 D;

with constant L, which in the general case is unknown.
The considered approach reduces solving multidimensional problems to solving

equivalent one-dimensional problems (reduction of the dimension). Thus, use of
continuous single-valued mapping like the Peano curve

fy 2 RN : �2�1 � yi � 2�1; 1� i�Ng ¼ fyðxÞ : 0� x� 1g

allows reduction of the problem of minimization in domain D to a problem of mini-
mization on interval [0,1]

uðy�Þ ¼ uðyðx�ÞÞ ¼ min uðyðxÞÞ : x 2 ½0; 1�f g

Problems of numerical construction of Peano-type space filling curves and the
corresponding theory are considered in detail in [8, 13]. Here we will note that a
numerically constructed curve (evolvent) is an approximation to a theoretical Peano
curve with accuracy 2�m, where m is an evolvent construction parameter. An important
property is preservation of boundedness of function relative differences: if function
φ(y) in domain D satisfies Lipschitz condition, then function φ(y(x)) on interval [0,1]
will satisfy a uniform Hölder condition

uðyðx1ÞÞ � uðyðx2ÞÞj j �H x1 � x2j j1=N ; x1; x2 2 ½0; 1�;

where Hölder constant H is linked to Lipschitz constant L by the relation

308 K. Barkalov et al.

H ¼ 2L
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 3

p
:

Therefore, it is possible, without limitation of generality, to consider minimization
of one-dimensional function

f ðxÞ ¼ uðyðxÞÞ; x 2 ½0; 1�;

satisfying Hölder condition.
An algorithm for solving problem (1) (let us formulate it here according to [12])

involves constructing a sequence of points xi, where the values of the minimized
function zi=f(xi)=φ(y(xi) converging to the solution of the problem are calculated. Let us
call the function value calculation process (including construction of image of yi=y(xi))
the trial, and pair (xi, zi) – the result of the trial. At each iteration of the method p of
trials is carried out in parallel, and the set of pairs {(xi, zi)}, 1≤i≤k=np, make up the
search information collected by the method after carrying out of n steps. The rules that
define the work of a parallel global search algorithm (PGSA) are as follows.

At the first iteration of the method p of arbitrary points x1; . . .; xp in interval [0,1]
(for example, these points can be uniformly located), and in these points trials are
carried out in parallel. The results of trials fðxi; ziÞg, 1� i� p, are saved in the search
base of the algorithm.

Suppose, now, that n� 1 iterations of the method have already been executed. The
trial points of the next (n+1)-th iteration are then chosen by using the following rules.

Step 1. Renumber points of the set

Xk ¼ fx1; . . .; xkg[0f g[1f g

which includes boundary points of interval [0,1], and points fx1; . . .; xkg of the pre-
vious k ¼ kðnÞ ¼ np trials, with subscripts in increasing order of coordinate values, i.e.

0 ¼ x0\x1\. . .\xkþ1 ¼ 1:

Step 2. Supposing that zi ¼ f ðxiÞ; 1� i� k, calculate values

l ¼ max
1� i� k

jzi � zi�1j
Di

; M ¼ rl; l[0;
1; l ¼ 0;

�
ð2Þ

where r[1 is a preset reliability parameter of the method, and Di ¼ ðxi � xi�1Þ1=N .
Step 3. Calculate characteristic for every interval ðxi�1; xiÞ; 1� i� k þ 1, accord-

ing to the following formulas

Rð1Þ ¼ 2D1 � 4
z1
M

;

Rðk þ 1Þ ¼ 2Dkþ1 � 4
zk
M

;

Use of Xeon Phi Coprocessor 309

RðiÞ ¼ Di þ ðzi � zi�1Þ2
M2Di

� 2
zi þ zi�1

M
; 1\i\k þ 1:

Step 4. Arrange characteristics RðiÞ; 1� i� k þ 1, in decreasing order

Rðt1Þ�Rðt2Þ� . . .�RðtkÞ�Rðtkþ1Þ ð3Þ

and select p maximum characteristics with interval numbers tj; 1� j� p.
Step 5. Carry out new trials in points xkþj; 1� j� p, calculated using formulas

xkþj ¼ xtj þ xtj�1

2
; tj ¼ 1; tj ¼ k þ 1;

xkþj ¼ xtj þ xtj�1

2
� signðztj � ztj�1Þ 1

2r
jztj � ztj�1j

l

� �N
; 1\tj\k þ 1:

The algorithm terminates if the condition Dtj � e is satisfied at least for one number
tj; 1� j� p; e[0 is the preset accuracy.

This method of organizing parallel computing has the following justification [8].
The characteristic R(i) used in the global search algorithm can be considered as
probability measure of the global minimum point location in the interval ðxi�1; xiÞ.
Inequalities (3) arrange intervals according to their characteristics, and trials are carried
out in parallel in p intervals with the largest probabilities.

3 Convergence and Speedup of the Parallel Algorithm

The following theorem form [8] identifies convergence conditions for the algorithm.

Theorem 1. Let �x be the limit point of the sequence fxkg generated by PGSA during
minimization of the Hölder with constant H, 0\H\1, function f ðxÞ, x 2 ½0; 1�, and
number p of parallel trials is fixed, 1� p\1, and e ¼ 0 in the stop condition of the
algorithm. Then

• convergence to the internal point �x 2 ð0; 1Þ is bilateral;
• the point �x is locally optimal if the function f ðxÞ has a finite number of local

extremums;
• if, together with �x, another limit point x̂ exists then f ð�xÞ ¼ f ðx̂Þ;
• for all k� 1 it follows than f ðxkÞ� f ð�xÞ;
• if, at some step, for M from (2) the condition M[22�1=NH holds, then the set of

limit points of the sequence fxkg will coincide with the set of global minimizers of
the function f(x).

More general variants of parallel global search algorithm and corresponding con-
vergence theory are presented in [8].

310 K. Barkalov et al.

Let us describe theoretical properties of a parallel algorithm, which characterize its
speedup. One of the main indicators of efficiency of parallel algorithms (in any domain,
not only in global optimization) is speedup in time

SðpÞ ¼ Tð1Þ=TðpÞ

where T(1) is the time required for solving the problem by a sequential algorithm, and
T(p) is the time for solving the same problem by a parallel algorithm in a system with
p computing elements. The characteristic of efficiency of parallel algorithms (in relation
to algorithms of optimization) is also speedup in number of iterations

sðpÞ ¼ nð1Þp=nðpÞ;

where n(1) is the number of the trials carried out using the sequential method, and
n(p) is the number of the trials carried out using the parallel method with p processors.
This characteristic is especially important since in applied problems the time of car-
rying out of a trial exceeds the time of processing of its results.

It is obvious that number of trials n(p) for sequential and parallel algorithms will
differ. Actually, the sequential algorithm when selecting point xk+1 of the next (k+1)
trial possesses complete information received at the previous k iterations. The parallel
algorithm selects not one, but p points xk+j, 1≤j≤p, at iteration (k+1) based on the same
information. It means that selection of point xk+j is carried out in absence of information
on the results of the trial in points xk+i, 1≤i<j. Only the first point xk+1 will coincide with
the point selected by the sequential algorithm. Points of the other trials, generally
speaking, can not coincide with the points generated by the sequential algorithm.
Carrying out of such trials can reduce efficiency of use of parallel processors. There-
fore, let us consider such trials as “redundant”, and the value

kðpÞ ¼ ðnðpÞ � nð1ÞÞ=nðpÞ; nðpÞ[nð1Þ
0; nðpÞ� nð1Þ

(

as “method redundancy”.
Let us set the series of trials fxkg and fymg generated correspondingly by sequential

and parallel algorithms for solving the same problem with e ¼ 0 in the condition of
stopping. The following theorems from [8] determine the number of computing ele-
ments p, which can be involved for non-redundant parallelization.

Theorem 2. Suppose x� is the point of global minimum, x′ is the point of the local
minimum of function f(x), and the following conditions are fulfilled:

1. Inequality

f ðx0Þ � f ðx�Þ� d; d[0; ð4Þ

holds.

Use of Xeon Phi Coprocessor 311

2. The initial qðlÞ trials of the sequential and parallel methods coincide, i.e.

fx1; . . .; xqðlÞg ¼ fy1; . . .; yqðlÞg;

Where

x1; . . .; xqðlÞ
n o

� xk
� �

; y1; . . .; yqðlÞ
n o

� ymf g:

3. There exists a point yn 2 fymg, n\qðlÞ, such that x0 � yn � x� or x� � yn � x0.
4. For value M from (2) the following inequality

M[22�1=NH

holds, where H is Hölder constant of the minimized function.
Then a parallel algorithm of global search using two processors will be

non-redundant (i.e. sð2Þ ¼ 2; kð2Þ ¼ 0), while the following condition is satisfied

ðxtj � xtj�1Þ1=N [
4d

M � 22�1=NH
; j ¼ 1; 2; ð5Þ

where tj are determined according to (3).

Corollary. Let the objective function f ðxÞ have Q local minimum points x
0
1; . . .; x

0
Q

n o
,

for which condition (4) is fulfilled, and let there exist trial points yni , 1� i�Q, such as

yni 2 fy1; . . .; yqðlÞg;

ai � yni � aiþ1; ai; aiþ1 2 fx�; x01; . . .; x0Qg; 1� i�Q:

Then, if the theorem conditions are satisfied, the parallel algorithm of global search
with Qþ 1 processors will be non-redundant (i.e. sðQþ 1Þ ¼ Qþ 1, kðQþ 1Þ ¼ 0),
while condition (5) is satisfied.

The theorem conclusion plays a special role for solving multidimensional problems
reduced to one-dimensional problems by means of Peano-like evolvent y(x). Evolvent
y(x), which is approximation to Peano curve, has the effect of “splitting” of a point of
the global minimum y� 2 D to several preimages in interval [0,1]. If function φ(y) has
the only global minimum in D, the “reduced” function f(x) can have up to 2N local
extremum points close (by value) to a global extremum point (see [8]). In the case of
applying a parallel global search algorithm for minimization of a similar function it is
possible receive non-redundancy when using up to 2N+1 computing elements.

312 K. Barkalov et al.

4 Implementation on Xeon Phi

At the end of 2012 Intel presented Xeon Phi processor with MIC (Many Integral Core)
architecture. The basis of MIC is using a large number of x86 computing cores in one
processor. As a result, standard technologies, including OpenMP and MPI, can be used
for parallel programming. Moreover, a vast number of tools and libraries has been
developed for x86 architecture. It is a significant advantage as compared to other
accelerators, for which special (usually more complex) technologies of parallel pro-
gramming (CUDA, OpenCL) are used.

Intel Xeon Phi supports a few modes of coprocessor use, which can be combined to
achieve maximum performance depending on characteristics of the solved problem.
The process can be started both in the basic operating system or in coprocessor OS.
Depending on the mode of use the computing capacity of either basic system pro-
cessors or coprocessor or basic system processors and coprocessor combined can be
used.

In the MPI mode the basic system and each Intel Xeon Phi coprocessor are con-
sidered as separate nodes, and MPI processes can be carried out on basic system
processors and Xeon Phi coprocessors in any combination.

During operation in the offload mode MPI processes are carried out only on basic
system processors, uploading and execution of functions on the coprocessor is used for
implementation of Xeon Phi computing capabilities.

Taking into account that peak performance of one Xeon Phi core is comparable to
peak CPU core performance (difference can make 5 – 10% depending on exact pro-
cessor type), it is preferable to use an accelerator to carry out complex operations not
requiring transfer of large amounts of data between the CPU and Phi. With regard to
the considered parallel global optimization algorithm such a complex operation is
parallel calculation of many objective function values. Transfers of data from the CPU
to Phi will be minimal: it is only required to transfer to Phi the trial points coordinates,
and to receive function values in these points. The functions that determine the trial
results processing according to the algorithm and requiring operation with a large
volume of collected search information can be efficiently implemented on the CPU.
The described organization scheme corresponds well to the accelerator offload mode.

The general scheme of organization of calculations using Xeon Phi is shown in
Fig. 1. According to this scheme steps 1–4 of the parallel global search algorithm are
performed on the CPU. Coordinates of the p trial points calculated at step 4 of the
algorithm are transferred to the accelerator. Calculation of function values in these
points is carried out on Xeon Phi, and then the trial results are transferred to the CPU.
We use Xeon Phi offload mode for synchronous computing p function values at each
iteration. Current implementation of the parallel algorithm supports only one
coprocessor.

We note here that parallel calculation of function values in several tens or hundreds
of points (up to 240 threads can be launched on Xeon Phi) not always gives speedup of
the search process by a factor of tens or hundreds. In this case, the conditions of the
theorem of non-redundant parallelization can be violated: the number of local extre-
mums will be less, than the number of computing cores. Then (according to the

Use of Xeon Phi Coprocessor 313

theorem and its corollary) the parallel global search algorithm will generate redundant
trial points. Nevertheless, despite some redundancy, use of Xeon Phi will reduce
overall algorithm operating time. It is confirmed by computational experiments, results
of which are given in Sect. 5.

5 Results of Numerical Experiments

Computing experiments were carried out on one of the nodes of a high-performance
cluster of the Nizhny Novgorod State University. The cluster node includes Intel Sandy
Bridge E5-2660 2.2 GHz CPUs, 64 Gb RAM, and Intel Xeon Phi 5110P. For
implementation of the parallel algorithm Intel C++ Compiler 14.0.2 under CentOS 6.4
was used.

It is significant, that widely known test problems from the field of multidimensional
global optimization are characterized by small time of objective function values cal-
culation. Usually, such a calculation is reduced to summation of several (according to
problem dimension) values of elementary functions. Therefore, for the purpose of
imitation of the computational complexity inherent to applied problems of optimization
[14], calculation of the objective function in all performed experiments was compli-
cated by additional calculations without changing the type of function and arrangement
of its minimums (series summation from 20 thousand elements).

In work [15] a GKLS generator allowing generation of multiextremal optimization
problems with known properties (number of local minimums, size of their domains of
attraction, global minimum point, etc.) is described.

The results of numerical comparison of three sequential algorithms – DIRECT [1],
DIRECTl [2] and global search algorithm (PGSA from Sect. 2 with p=1) – are pro-
vided below (results of work of the first two algorithms are given in [3]). Numerical
comparison was carried out on function classes Simple and Hard of dimension 4 and 5
from [3] since solving problems of dimension 2 and 3 requires a small number of

CPU
Algorithm

X
eo

n
Ph

i…
…

………

…

Iteration points

Function values

Fig. 1. Scheme of information exchanges

314 K. Barkalov et al.

iterations and use of accelerator for solving these problems is impractical. Global
minimum y� was considered as found, if the algorithm generated trial point yk in δ-
vicinity of the global minimum, i.e. yk � y�

�� ��� d. The size of the vicinity was selected

(according to [3]) as d ¼ b� ak k
ffiffiffiffi
DN

p
, N – problem dimension, a and b – borders of

search domain D, parameter D ¼ 10�6 at N ¼ 4 and D ¼ 10�7 at N ¼ 5. When using
the PGSA method for class Simple r ¼ 4:5 parameter was selected, for class Hard
r ¼ 5:6 was selected; evolvent construction parameter was fixed as m ¼ 10. The
maximum allowable number of iterations was Kmax ¼ 106.

The average number of iterations kav performed by the method for solving a series
of problems from these classes is shown in Table 1. Symbol “>” reflects a situation,
when not all problems of a class were solved by a method. It means that the algorithm
was stopped as the maximum allowable number of iterations Kmax was achieved. In this
case, Kmax value was used for calculation of the average value of number of iterations
kav that corresponds to the lower estimate of this average value. The number of
unsolved problems is specified in brackets.

Table 1 shows that PGSA outperforms DIRECT and DIRECTl methods on all
classes of problems by average number of iterations. And in class 5-Hard each of the
methods solved not all problems: DIRECT did not solve 16 problems, DIRECTl and
PGSA – 4 problems.

Let us estimate now the speedup when using PGSA implemented on CPU
depending on number of used cores p. Tables 2 and 3 show time speedup S(p) and

Table 1. Average number of iterations

N Problem class DIRECT DIRECTl PGSA

4 Simple >47282(4) 18983 11953
Hard >95708(7) 68754 25263

5 Simple >16057 (1) 16758 15920
Hard >217215 (16) >269064 (4) >148342 (4)

Table 2. Time speedup S(p) on CPU

p N = 4 N = 5
Simple Hard Simple Hard

2 2.45 2.20 1.15 1.32
4 4.66 3.90 2.82 2.59
8 7.13 7.35 3.47 5.34

Table 3. Iteration speedup s(p) on CPU

p N = 4 N = 5
Simple Hard Simple Hard

2 2.51 2.26 1.19 1.36
4 5.04 4.23 3.06 2.86
8 8.58 8.79 4.22 6.56

Use of Xeon Phi Coprocessor 315

iteration speedup s(p) respectively; speedup of parallel algorithm was measured in
relation to the sequential one (p=1). Table 4 shows the average redundancy λ(p) of the
method during solving a problem series.

The results of the experiments show considerable acceleration and low redundancy
of PGSA when using CPU.

Now let us perform a series of experiments using Xeon Phi. We will measure
acceleration and redundancy of an algorithm that uses Phi as compared to a CPU
algorithm that fully uses an eight-core CPU. In the experiments we will vary the
number of threads p on Xeon Phi. All other parameters of the method will not vary.

The results of the experiments (Table 5) show that in most cases an algorithm using
Phi is not less fast than a CPU algorithm: acceleration approximately 1.05 is observed.
Slowing down with class 4-Simple is explained by relative simplicity of the problems

Table 4. Redundancy λ(p) on CPU

p N = 4 N = 5
Simple Hard Simple Hard

2 0.00 0.00 0.23 0.29
4 0.00 0.00 0.47 0.18
8 0.00 0.00 0.00 0.27

Table 5. Time speedup S(p) on Phi

p N = 4 N = 5
Simple Hard Simple Hard

60 0.54 1.02 1.07 1.61
120 0.55 1.17 1.05 2.61
240 0.51 1.06 1.07 4.17

Table 6. Iteration speedup s(p) on Phi

p N = 4 N = 5
Simple Hard Simple Hard

60 8.13 7.32 9.87 6.55
120 16.33 15.82 15.15 17.31
240 33.07 27.79 38.80 59.31

Table 7. Redundancy λ(p) on Phi

p N = 4 N = 5
Simple Hard Simple Hard

60 0.00 0.02 0.00 0.13
120 0.00 0.00 0.00 0.00
240 0.00 0.07 0.00 0.00

316 K. Barkalov et al.

solved: the computational load on the coprocessor is not sufficient, the additional costs
of transmission of the problem parameters from CPU to Phi produce a significant effect.
With class 5-Hard, which is characterized by a high computational effort, a quadruple
acceleration is observed; additional costs produce no decisive impact here.

An important additional feature is also acceleration on number of iterations, which
goes up to a several dozens, if Phi is fully used (see Table 6). For example, solving a
problem from class 5-Hard required on average only 633 parallel iterations on Phi,
whereas when using all computing cores of the CPU the number of iterations was more
than 37 thousand. At the same time, an algorithm using Phi is almost non-redundant in
comparison to a CPU algorithm (see Table 7).

6 Conclusions

The work considers a parallel algorithm of global search developed within the
framework of the information statistical approach to multiextremal optimization. This
algorithm can be used for solving time-consuming optimization problems on
state-of-the-art multiprocessor systems as it allows efficient implementation through
use of Intel Xeon Phi coprocessor. The results of computational experiments confirm a
high efficiency and low redundancy of the parallel algorithm. This very well correlates
with the theoretical statements provided above.

Acknowledgements. The research is supported by the grant of the Ministry of education and
science of the Russian Federation (the agreement of August 27, 2013, № 02.B.49.21.0003).

References

1. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

2. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. of Glob.
Optim. 21(1), 27–37 (2001)

3. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set
of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

4. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math.
Model. Anal. 13(1), 145–159 (2008)

5. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum
functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)

6. Gergel, V.P.: A global optimization algorithm for multivariate functions with lipschitzian
first derivatives. J. Glob. Optim. 10(3), 257–281 (1997)

7. Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing
functions with lipschitzian derivatives. Comput. Math Appl. 37(4–5), 163–179 (1999)

8. Strongin, R.G., Sergeyev, Y.D.: Global optimization with non-convex constraints.
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

9. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of
checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)

Use of Xeon Phi Coprocessor 317

10. Evtushenko, Y., Malkova, V.U., Stanevichyus, A.A.: Parallel global optimization of
functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)

11. Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel branch and bound for global optimization
with combination of Lipschitz bounds. Optim. Meth. Softw. 26(3), 487–498 (2011)

12. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algorithms for
solving problems of global optimization. J. Glob. Optim. 10(2), 185–206 (1997)

13. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting
space-filling curves. Springer, Heidelberg (2013)

14. Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression
parameters optimization using parallel global search algorithm. In: Malyshkin, V. (ed.)
PaCT 2013. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013)

15. Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, Y.D.: Software for generation of classes of
test functions with known local and global minima for global optimization. ACM Trans.
Math. Softw. 29, 469–480 (2003)

318 K. Barkalov et al.

Increasing Efficiency of Data Transfer Between
Main Memory and Intel Xeon Phi Coprocessor

or NVIDIA GPUS with Data Compression

Konstantin Y. Besedin(B), Pavel S. Kostenetskiy, and Stepan O. Prikazchikov

South Ural State University, Chelyabinsk, Russia
besedin.k@gmail.com, {kostenetskiy,prikazchikovso}@susu.ru

Abstract. Efficient data transfer between main memory and Intel Xeon
Phi coprocessor or GPU plays crucial role in using this devices for data-
base processing. This paper addresses this problem by using data com-
pression methods such as RLE, Null Suppression, LZSS and combina-
tion of RLE and Null Suppression. The chosen compression methods
were implemented for Intel Xeon Phi coprocessors and NVIDIA GPUs.
It is shown experimentally that these compression methods can be used
to increase the efficiency of database processing using Intel Xeon Phi
coprocessor and NVIDIA GPUs under certain conditions imposed on the
data under treatment. It is also shown that, when a compression method
allows one to process data without decompression, such a processing
procedure can additionally increase the efficiency of this method.

1 Introduction

Processing of big amounts of data is an important part of modern scientific
world. This processing introduces a lot of challenges for scientists and software
engineers. Some of this challenges can be addressed by using parallel database
management systems (DBMS) [1–4]. Database community shows a growing inter-
est to increasing the performance of database processing by using devices like
Intel Xeon Phi or GPU [5,6]. Both GPUs and manycore coprocessors have spe-
cific characteristics that need to be considered for developing high performance
algorithms for these devices. The need to transfer data from main memory to
device via PCI-E bus is considered as one of main bottlenecks for GPU and
manycore coprocessors programming.

In this paper, we focus on three compression methods, used in DBMSs: RLE
(Run Length Encoding), Null Suppression and LZSS. We implemented decom-
pression algorithms for these compression methods for two hardware platforms:
for Intel Xeon Phi coprocessor and for NVIDIA GPUs. A number of experiments
have been done using these implementations. We also evaluate the effectiveness
of combinations of different compression methods. At this moment, only combi-
nation of RLE and Null Suppression is evaluated.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 319–323, 2015.
DOI: 10.1007/978-3-319-21909-7 32

320 K.Y. Besedin et al.

2 Compression Methods

Data compression is one of possible ways to increase efficiency of data transfer
between main memory and coprocessor or GPU. Data compression is already
used by database systems to decrease the amount of data involved in I/O oper-
ations [7,8].

There are a number of papers devoted to implementation of different com-
pressions methods for GPU [9,10]. Paper [6] shows that combining several simple
schemas like RLE and Null Suppression can additionally increase the efficiency
of compression.

To the best of our knowledge, there are no prior researches in using data
compression for database processing on Intel Xeon Phi coprocessors.

At this stage of research, we’ve implemented all chosen compression meth-
ods for Intel Xeon Phi coprocessor and for GPU NVIDIA Tesla K40m we
implemented RLE and Null Suppression methods. For Intel Xeon Phi we used
OpenMP technology and used coprocessor in offload mode. Implementation for
NVIDIA Tesla GPU was done with CUDA.

3 Experiments

Compression ratio of each compression method depends on characteristics of its
input method [6]. For each evaluated compression method we vary such charac-
teristic and show its impact on compression effectiveness. For RLE, LZSS and
combination of RLE and Null suppression we use number of runs to number of
elements ratio. For Null Suppression we use “value size” — the number of bytes
needed to represent compressed element without data loss.

For some compression methods, it is possible to process compressed data
without prior decompression [11]. In this paper, we evaluate three such methods:
RLE, Null Suppression and combination of Null Suppression and RLE.

We consider all experiments on 1500 Mb of input data. This data consist
of 64-bit unsigned integers. To generate it, we have implemented random gen-
erators that are able to generate test data with required value of one of data
characteristics described above. Experiments for LZSS and RLE methods were
using the same input data.

For each compression method we evaluate processing time for uncompressed
data, processing time for compressed data with prior decompression and process-
ing time for compressed data without prior decompression (if allowed by com-
pression method). By “processing time” we mean the sum of time of data transfer
to device memory, the time of decompression (if needed) and the time of apply-
ing an aggregate function to data. In our experiments we use sum as aggregate
function. We had to implement compression-aware version of aggregate function
to allow it to operate on data compressed with RLE compression method or
combination of RLE and Null Suppression. Null suppression method does not
require specific version of this aggregate function. During our experiments we
imply that data is already in main memory in compressed form.

Increasing Efficiency of Data Transfer 321

Fig. 1. Processing time for data, compressed with RLE

Fig. 2. Processing time for data, compressed with LZSS

Figure 1 show results of experiments with RLE compression method. Results
for experiments with LZSS compression method are presented on Fig. 2. Results
for Null Suppression experiments are summarized on Fig. 3. Results for combi-
nation of Null Suppression and RLE are shown on Fig. 4.

It can be seen that evaluated compression methods can be used to increase the
efficiency of database processing using Intel Xeon Phi coprocessor and NVIDIA
GPUs under certain conditions imposed on the data under treatment. Exper-
iments also show that processing data in compressed form can additionally
increase the efficiency of compression method.

4 Conclusion

This paper focuses on using data compression methods, such as RLE, Null Sup-
pression, LZSS and combination of RLE and Null Suppression to increase effi-

322 K.Y. Besedin et al.

Fig. 3. Processing time for data, compressed with Null Suppression

Fig. 4. Processing time for data, compressed with combination of RLE and Null Sup-
pression

ciency of data transfer between main memory and coprocessor. We implemented
decompression algorithms for these compression methods for two hardware plat-
forms: for Intel Xeon Phi coprocessor and for NVIDIA GPUs. We used these
implementations to show experimentally that these compression methods can be
used to increase the efficiency of data transfer between main memory and Intel
Xeon Phi coprocessor or NVIDIA GPUs under certain conditions imposed on
the data under treatment. We expect that these results can be applied not only
for data transfer through PCI-E bus, but also for other situations where efficient
data transfer is required, like network communications with Ethernet/Infiniband.
It is also shown that, when a compression method allows one to process data
without decompression, such a processing procedure can additionally increase
the efficiency of this method.

Increasing Efficiency of Data Transfer 323

Acknowledgment. This work was supported in part by the Ministry of Education
and Science of Russia under the Federal Targeted Programme for Research and Devel-
opment in Priority Areas of Development of the Russian Scientific and Technological
Complex in 2014–2020 (Agreement No. 14.574.21.0035).

References

1. Kostenetskii, P.S., Sokolinsky, L.B.: Simulation of hierarchical multiprocessor data-
base systems. Program. Comput. Softw. 39(1), 10–24 (2013)

2. Kostenetskiy, P.S., Sokolinsky, L.B.: Analysis of hierarchical multiprocessor data-
base systems. In: International Conference on High Performance Computing, Net-
working and Communication Systems, HPCNCS-07, Orlando, Florida, USA, pp.
245–251, 9–12 July 2007

3. Pan, C.S., Zymbler, M.L.: Taming elephants, or how to embed parallelism into
postgreSQL. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA
2013, Part I. LNCS, vol. 8055, pp. 153–164. Springer, Heidelberg (2013)

4. Sokolinskiy, L.B., Ivanova, E.V.: Using distributed column indexes for query execu-
tion over very large databases. In: The International conference “Advanced Mathe-
matics, Computations and Applications– 2014” Institute of Computational Math-
ematics and Mathematical Geophysics of Siberian Branch of Russian Academy of
Sciences, pp. 51–52. Academizdat, Novosibirsk, June 2014

5. Besedin, K.Y., Kostenetskiy, P.S.: Simulating of query processing on multiprocessor
database systems with modern coprocessors. In: 37th International Convention
on Information and Communication Technology, Electronics and Microelectronics,
MIPRO 2014, Opatija, Croatia, pp. 1614–1616, 26–30 May 2014

6. Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proc.
VLDB Endowment 3(1–2), 670–680 (2010)

7. Ng, W.K., Ravishankar, C.V.: Block-oriented compression techniques for large sta-
tistical databases. IEEE Trans. Knowl. Data Eng 9(2), 314–328 (1997)

8. Roth, M.A., Horn, S.J.V.: Database compression. SIGMOD Rec. 22(3), 31–39
(1993)

9. Wu, L., Storus, M., Cross, D.: Final project cuda wuda shuda: cuda compression
project. Technical report Cs315a, Stanford University (2009)

10. Ozsoy, A., Swany, M.: Culzss: Lzss lossless data compression on cuda. In: Proceed-
ings of the 2011 IEEE International Conference on Cluster Computing. CLUSTER
2011, pp. 403–411. IEEE Computer Society, Washington (2011)

11. Abadi, D.J., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Chicago, Illinois, USA, pp. 671–682,
27–29 June 2006

Parallelizing Branch-and-Bound on GPUs
for Optimization of Multiproduct Batch Plants

Andrey Borisenko1(B), Michael Haidl2, and Sergei Gorlatch2,3

1 Tambov State Technical University, Tambov, Russia
borisenko@mail.gaps.tstu.ru

2 University of Muenster, Muenster, Germany
{michael.haidl,gorlatch}@uni-muenster.de

3 Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), Muenster, Germany

Abstract. Parallel implementation of the Branch-and-Bound (B&B)
technique for optimization problems is a promising approach to accel-
erating their solution, but it remains challenging on Graphics Processing
Units (GPUs) due to B&B’s irregular data structures and poor com-
putation/communication ratio. The contributions of this paper are as
follows: (1) we develop two basic implementations (iterative and recur-
sive) of B&B on systems with GPUs for a practical application scenario -
optimal design of multi-product batch plants; (2) we propose and imple-
ment several optimizations of our CUDA code using both algorithmic
techniques of reducing branch divergence and GPU-specific properties
of the memory hierarchy; and (3) we evaluate our implementations and
optimizations on a modern GPU-based system and we report our exper-
imental results.

Keywords: GPU computing · CUDA · Branch-and-bound · Combina-
torial optimization · Multi-product batch plant design

1 Motivation and Related Work

Combinatorial optimization [8] is often very time-consuming due to “combinator-
ial explosion” – the number of combinations to be examined grows exponentially,
such that even the fastest supercomputers would require an intolerable amount
of time. A common approach in applications is to formulate a mixed-integer
nonlinear programing (MINLP) model [6,15] and to exploit the Branch-and-
bound (B&B) technique for solving it. In B&B, the search space is represented
as a tree whose root is the original problem, the internal nodes are partially
solved subproblems, and the leaves are the potential solutions. B&B proceeds in
several iterations where the best solution found so far (upper bound) is progres-
sively improved: a bounding mechanism is used to eliminate the subproblems
that are not likely to lead to optimal solutions and to cut their corresponding
sub-trees. This reduces the size of the explored search space, but can be still
time-consuming in practice and requires acceleration, for example using parallel
computing.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 324–337, 2015.
DOI: 10.1007/978-3-319-21909-7 33

Parallelizing Branch-and-Bound on GPUs for Optimization 325

Parallelization of B&B has been extensively studied, recently with a focus
on systems comprising Graphics Processing Units (GPUs). Recent approaches
usually address the most time consuming bounding mechanism of B&B [10].
The main difficulty in B&B are irregular data structures not well suited for
GPU computing and the low computation/communication ratio. In [2], a hybrid
implementation of B&B for the knapsack problem demonstrates that for small
problem sizes it is not efficient to launch the B&B computation kernels on GPU.
A parallel implementation in [3] with CUDA makes use of data y compression.
In [11], a hybrid CPU-GPU implementation is presented, and [16] studies the
design of parallel B&B in large-scale heterogeneous compute environments with
multiple shared memory cores, multiple distributed CPUs and GPU devices.

In this paper, we parallelize B&B and illustrate it with a practical applica-
tion – the optimal selection of equipment for multi-product batch plants [12]. We
develop and evaluate an implementation of the B&B method on a CPU-GPU
system using the CUDA programming environment [13] in two versions – an
iterative and a recursive one – and we describe their optimizations, as well as
compare them to each other. We report experimental results about the speedup
of our GPU-based implementations as compared to the sequential CPU version.

2 Problem Formulation

Our application use case is a Chemical-Engineering System (CES) – a set of
equipment (reactors, tanks, filters, dryers etc.) which implement the processing
stages for manufacturing certain products. CES comprises I processing stages;
i-th stage is equipped with units from a finite set Xi, with Ji being the number
of equipment variants in Xi. All equipment variants of a CES are described as
Xi = {xi,j}, i = 1, I, j = 1, Ji, where xi,j is the main size j (working volume) of
the unit suitable for stage i. A variant Ωe, e = 1, E of a CES, where E =

∏I
i=1 Ji

is the number of all possible system variants, is an ordered set of equipment unit
variants, selected from the respective sets. Each variant Ωe of a system must be
in an operable condition (compatibility constraint) i.e., it must satisfy the con-
ditions of a joint action for all its processing stages: S(Ωe) = 0 if compatibility
constraint is satisfied. An operable variant of a CES must run at a given pro-
duction rate in a given period of time (processing time constraint), such that it
satisfies the restrictions for the duration of its operating period T (Ωe) ≤ Tmax.

Thus, designing an optimal CES can be formulated as the following opti-
mization problem [9]: to find a variant Ω∗ ∈ Ωe, e = 1, E of a CES, where the
optimality criterion – equipment costs Cost(Ωe) – reaches a minimum, and both
compatibility constraint and processing time constraint are satisfied:

Ω∗ = argmin Cost(Ωe), e = 1, E (1)

Ωe = {x1,j1 , x2,j2 , . . . , xI,jI |ji = 1, Ji, i = 1, I}, e = 1, E (2)

xi,j ∈ Xi, i = 1, I, j = 1, Ji (3)

S(Ωe) = 0, e = 1, E (4)

326 A. Borisenko et al.

T (Ωe) ≤ Tmax, e = 1, E (5)

Figure 1 shows the search space as a tree: all possible variants of a CES with
I stages are represented by a tree of height I (see Fig. 1). Each tree level corre-
sponds to one processing stage of the CES, each edge corresponds to a selected
equipment variant taken from Xi, where Xi is the set of possible variants at
stage i of the CES. For example, the edges from level 0 correspond to elements
of X1. Each node ni,k at the tree layer Ni = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k =
1,Ki,Ki =

∏i
l=1(Jl) corresponds to a variant of a beginning part of the CES,

composed of equipment units for stages 1 to i. Each path from the root to one of
the leaves thus represents a complete variant of the CES. To enumerate all possi-
ble variants of a CES, a depth-first traversal of the tree is performed as in Fig. 1:
starting at level 0, all device variants of the CES at a given level are enumer-
ated and appended to the valid beginning parts of the CES obtained at previous
levels, starting with an empty beginning part at level 0. This process continues
recursively for all valid beginning parts resulting from appending device variants
of the current level to the valid beginning parts from previous levels. When a
leaf is reached, the recursive process stops and the new solution is compared to
the current optimal solution, possibly replacing it.

A complete tree traversal (selecting a device on each edge traversal) and
checking constraints (Eqs. 4 and 5)would result in a considerable computational
effort. E.g., for a CES consisting of 16 stages where each process stage can be
equipped with devices of 5 to 12 standard sizes [9], the number of choices is 516–
1216 (approximately 1011–1017). Hence, performing an exhaustive search (pure
brute-force solution) for finding a global optimum is usually impractical.

Fig. 1. Tree traversal in depth-first search.

Parallelizing Branch-and-Bound on GPUs for Optimization 327

3 Parallelization for GPU

Figure 2 illustrates our strategy for dividing the initial search tree into subtrees
for parallels processing: the sequential host process on the CPU dispatches com-
putations to multiple device threads on the GPU and then gathers the results
from these threads. The tree-like organization of B&B provides a potential for
parallelization, as all branches of the tree can be processed simultaneously.

Fig. 2. Dividing the search tree into subtrees for parallel processing.

All nodes Ni = {ni,1, ni,2, . . . , ni,k}, i = G + 1, I, k = 1,Ki, Ki =
∏i

l=1 Jl at
each layer i below G are traversed in an independent thread. The total number of
threads is Nthreads =

∑G
i=1 Ki, 1 ≤ G ≤ I. The granularity parameter G limits

the number of threads: each subtree below the granularity level will be processed
as one thread on the GPU. E.g., Fig. 2 shows a CES consisting of 4 stages (I = 4)
where each stage can be equipped with 2 devices (J1 = J2 = J3 = J4 = 2); the
number of all possible system variants is 24 = 16. We use granularity G = 2, so
the threads number is 22 = 4. All three nodes at layers from 0 to 2 are processed
on CPU, then partial solutions are transferred to GPU, and all other nodes at
layers from 3 to 4 are processed in parallel on GPU.

Host Code. We use the CUDA Runtime API [5,14]. The host (see Listing 1)
begins its work by loading input data from file by calling ReadInputData()
(line 2). The inData is a pointer to the structure whose fields store all neces-
sary input data for the calculation. The values of these data are not changed
during calculations and are the same for all threads, i.e. constant. Based on
the input data inData and granularity parameter G, the required number of
threads numThreads is computed by ThreadsNumber() (line 4) and used in

328 A. Borisenko et al.

PrepOperationalData() for preparing operational data (line 6). The oprData
is a pointer to the structure whose values are changed in the calculations inde-
pendently by each thread with thread index threadID.

1 main() { /* prepare all necessary data */

2 ReadInputData(inData);

3 /* number of threads */

4 numThreads = ThreadsNumber(inData , G);

5 /* prepare all operational data */

6 PrepOperationalData (oprData , inData , numThreads);

7 /* start tree traversal for dividing tree into */

8 /* subtrees and creating beginning parts of the CES */

9 EnumerateHost (0, 0);

10 /* send all necessary data to device */

11 cudaMemcpyHtoD(inData ,oprData ,W, G);

12 /* define parameters for kernel launch */

13 blocksPerGrid = numThreads / MAX_THREADS_PER_BLOCK + 1;

14 threadsPerBlock = MAX_THREADS_PER_BLOCK;

15 /* starting kernel function on device */

16 FindSolution <<<blocksPerGrid , threadsPerBlock >>>(G);

17 /* synchronize device */

18 cudaDeviceSynchronize ();

19 /* copy the results from device to host */

20 cudaMemcpyDtoH(W, Cost , minCost);

21 /* find global optimal solution */

22 for (n=1; n<= numThreads; n++) {

23 if(Cost[n] < minCost) { Wopt = W[n];

24 minCost = Cost[n]; }}}

25 EnumerateHost(threadID , level) {

26 for (j=1; j <= J[level]; j++) {

27 Wloc[level] = X[level , j];

28 if (level < G) { /* check granularity */

29 EnumerateHost(threadID , level + 1); }

30 else{ W[threadID] = Wloc;

31 threadID ++; }}}

Listing 1. The host pseudo-code.

Both ReadInputData() and PrepOperationalData() make all necessary
memory allocations and variables initialization. Then host performs a depth-
first traversal of the tree using recursive function EnumerateHost() to the level
defined by G (line 9). Here W is a two-dimensional array, represented as an array
of length numThreads each element of this is a vector of length I specifying the
device variant at each stage of the solution. In lines 25–31, the host creates begin-
ning parts of CES at levels from 0 to G and saves them in W. The host neither
checks constraints (Eqs. 4 and 5) nor evaluates upper and lower bounds of the
objective function (Eq. 1); this will be performed on the GPU. After the host

Parallelizing Branch-and-Bound on GPUs for Optimization 329

sends all necessary data to the device (line 11), it defines the number of blocks
(line 13) and threads (line 14) in one block and then starts the kernel function
FindSolution() (line 16).

A CUDA kernel launch is asynchronous and returns control to the CPU imme-
diately after starting the GPU process. By calling cudaDeviceSynchronize()
(line 18), the CPU is forced to idle until the GPU work has completed and the
host receives the results from the device (line 20). Here Cost is an array of size
numThreads; its elements are the local optimal costs of CES which were found
by each thread. The minCost is the global minimal cost of CES, whose value
is used to seek for the best optimal solution. The host compares local minimal
costs with global minimum and searches for the best CES-variant (lines 22–24).
Here, vector Wopt specifies the unit variant at each stage of the optimal solution.

Kernel Code. We have developed a recursive (Listing 2) and an iterative
(Listing 3) tree traversal implementations. The recursive approach can be used
on NVIDIA GPU devices of Compute Capability 2.0 and higher. On the older
NVIDIA devices, the iterative approach should be used.

1 g l o b a l void FindSolut ion (G)
2 { /∗ o b t a i n i n g th r e ad i d e n t i f i e r ∗/
3 threadID = blockDim . x ∗ blockIdx . x + threadIdx . x ;
4 /∗ i f th r ead ID not g r e a t e r maximal t h r e ad numbers ∗/
5 i f (threadID <= numThreads) {
6 /∗ s t a r t s u b t r e e t r a v e r s a l ∗/
7 EnumerateDevice (threadID , G + 1) ; }}
8 d e v i c e EnumerateDevice (threadID , l e v e l)
9 { for (j =1; j <= J [l e v e l] ; j++) {

10 /∗ append d e v i c e v a r i a n t to b e g i n n i n g pa r t ∗/
11 Wloc [l e v e l] = X[l e v e l , j] ;
12 i f (l e v e l < I) {
13 /∗ check c om p a t i b i l i t y c o n s t r a i n t and upper bound ∗/
14 i f (S(Wloc) == 0 && DefineCost (Wloc , l e v e l) < minCost){
15 /∗ s e a r c h r e c u r s i v e l y ∗/
16 EnumerateDevice (threadID , l e v e l + 1) ; }}
17 else {/∗ l e a f node ∗/
18 /∗ check o p t im a l i t y c r i t e r i o n ∗/
19 i f (Cost (Wloc) < minCost)) {
20 /∗ check p r o c e s s i n g t ime c o n s t r a i n t ∗/
21 i f (T(Wloc) <= Tmax) {
22 /∗ make s o l u t i o n new (l o c a l) op t ima l s o l u t i o n ∗/
23 W[threadID] = Wloc ;
24 Cost [threadID] = Def ineCost (Wloc , I) ;
25 atomicMinDbl (minCost , Cost [threadID]) ; }}}}}

Listing 2. The kernel pseudo-code using recursive approach.

The kernel function FindSolution() (Listing 2) calculates a global thread
identifier threadID (line 3) which is compared with the required number of
threads numThreads (line 5). This is necessary because of rounding of kernel
launch parameters (see Listing 1, line 13): the actual number of running threads
can be greater than numThreads, but all memory allocations for oprData are

330 A. Borisenko et al.

done for numThreads. For all threads with valid threadID, the kernel function
calls EnumerateDevice() at level G+1 (line 7). Within this function, the device
traverses the remaining sub-trees at levels from G+1 to I of the received CES’
beginning parts to find solutions. All unit variants of the CES at a given level are
enumerated and appended to the beginning parts of the CES. Valid beginning
parts are obtained at previous levels, starting at level G+1. This process continues
recursively for all valid beginning parts that result from appending unit variants
of the current level to the valid beginning parts from previous levels.

When a leaf node is reached, the recursive process stops and the current
solution is compared to the current optimal solution, possibly replacing it. When
traversing the tree, the compatibility constraint (Eq. 4, function S()) is checked
for the corresponding part of the CES. We also compare the cost for the cur-
rent beginning part of the CES, consisting of the first level stages (function
DefineCost()) with a global upper bound (variable minCost) (line 14). The ini-
tialization of the upper bound is done with the sum of all maximum units costs
for each production stage. If the current beginning part of the CES fulfills the
compatibility constraint and its costs do not exceed the global upper bound, we
recursively continue tree traversal to the next level (line 16). If a leaf node of the
tree is reached (17), a new full solution has been found and its costs (Eq. 1, func-
tion Cost()) are compared to the cost of the previous optimal solution minCost
(line 19). If a better solution is obtained, the processing time constraint (Eq. 5,
function T()) is checked for the corresponding CES (line 21). If this constraint
is fulfilled, a new valid optimal solution replaces the previous optimal solution
(line 23), saves it value (line 24) and its costs are taken as the new upper bound
and saved with atomic function atomicMinDbl (line 25).

The iterative stack-based traversal algorithm is presented in Listing 3. The
kernel function is the same like in Listing 2 (lines 1 – 7), so we omit it. In our
implementation, stack, which must be not smaller than the number of tree lev-
els, is a one-dimensional array stack of size MAX STACK SIZE (line 10). The stack
is accessed for adding and removing data elements through its top, variable
stackTop (line 11). The standard elementary stack operations are push (line 13),
pop (line 14), and empty (line 15). At first stack is empty and therefore the first
node (units variant for level 1) of the tree is added (line 17). While the stack is
not empty, we pop the stack, find all possible choices after the previous one and
push these choices onto the stack (line 19). At each loop iteration, the last item
on the stack is popped (line 20). If at the current level there are no other nodes,
we return to the previous level (line 22). Otherwise we push the next node at the
current level into the stack (line 24). If the current beginning part of the CES
fulfills the compatibility constraint and its costs do not exceed the global upper
bound (line 26), we append unit variants at the current level to the valid begin-
ning parts of CES from previous levels (line 28). Otherwise we discard deeper
levels of the tree and go to the next loop iteration. If the last level is not reached
(line 29), we continue tree traversal to the next level (line 30) and push the first
node at the next level into the stack (line 32). If a leaf of the tree is reached
(line 33), the algorithm works like recursive version (see Listing 2). The solution

Parallelizing Branch-and-Bound on GPUs for Optimization 331

cost is compared to the global cost of the previous optimal solution (line 35). If
a better solution is obtained, then processing time constraint is checked for the
corresponding CES (line 37). If this constraint is fulfilled, this mean that a new
optimal solution has been found which replaces the previous optimal solution
and its cost is taken as the new upper bound (lines 39 – 41).

7 . . .

8 d e v i c e EnumerateDevice (threadID , l e v e l)

9 { /∗ d e c l a r a t i o n o f s t a n d a r d l a s t −i n , f i r s t −ou t s t a c k ∗/

10 stack [MAX STACK SIZE] ;

11 stackTop = 0 ;

12 /∗ d e f i n i n g s t a n d a r d s t a c k o p e r a t i o n s ∗/

13 #define push (x) stack [stackTop++] = (x)

14 #define pop () s tack[−−stackTop]

15 #define empty (stackTop == 0)

16 /∗ add t o s t a c k f i r s t i t em on l e v e l 1 ∗/

17 push (1) ;

18 /∗ l o o p w h i l e s t a c k i s n o t empty ∗/

19 while (! empty) { /∗ r e t r i e v e t h e t o p node f r om s t a c k ∗/

20 j = pop () ;

21 /∗ i f on t h i s l e v e l a r e n o t o t h e r n o d e s ∗/

22 i f (j == J [l e v e l] + 1) { l e v e l −−;}
23 else { /∗ add t o s t a c k n e x t t r e e s node on c u r r e n t l e v e l ∗/

24 push (j + 1) ;

25 /∗ c h e c k c o m p a t i b i l i t y c o n s t r a i n t and upp e r bound ∗/

26 i f (S(Wloc) == 0 && DefineCost (Wloc , l e v e l) < minCost){
27 /∗ append d e v i c e v a r i a n t t o b e g i n n i n g p a r t ∗/

28 Wloc [l e v e l] = X[l e v e l , j] ;

29 i f (l e v e l < I) { /∗ go t o n e x t t r e e s l e v e l ∗/

30 l e v e l++;

31 /∗ add t o s t a c k f i r s t node on c u r r e n t l e v e l ∗/

32 push (1) ; }
33 else {/∗ l e a f node ∗/

34 /∗ c h e c k o p t i m a l i t y c r i t e r i o n ∗/

35 i f (Cost (Wloc) < minCost)) {
36 /∗ c h e c k p r o c e s s i n g t im e c o n s t r a i n t ∗/

37 i f (T(Wloc) <= Tmax) {
38 /∗ make s o l u t i o n new (l o c a l) o p t i m a l s o l u t i o n ∗/

39 W[threadID] = Wloc ;

40 Cost [threadID] = DefineCost (Wloc , I) ;

41 atomicMinDbl (minCost , Cost [threadID]) ; }}}}}}}

Listing 3. The kernel pseudo-code using iterative approach.

4 Optimizations

In our previous work [1] we have used Standard Template Library (STL), in
particular container class std::vector, for implementing the mathematical model
of CES. Since there is no implementation of STL containers in CUDA, we
revised the program code, using many (about 50) multidimensional (from 1-
to 5-dimensional) arrays. To keep the arrays’ contents contiguous, we simulate
a multidimensional array with a one-dimensional array which guarantees that
all array elements are in a flat chunk of memory. This is convenient for data
transfer with standard memcpy-like functions and faster for the memory access

332 A. Borisenko et al.

as compared to fragmented memory (e.g., there are fewer cache misses and bet-
ter performance). On the test platform presented in Sect. 5, this new sequential
CPU version without STL vectors is approximately 8 – 9 times faster than the
STL-based sequential version. Our experiments in the sequel are carried out for
this new CPU version of the program.

We perform and evaluate two optimizations: (a) shared memory utilization,
and (b)reducing branching in the kernel function.

Our target architecture (GPU) comprises Streaming Multiprocessors (SMs)
contains some Streaming Processors (SP) (since Fermi microarchitecture
NVIDIA changes the name SP to CUDA cores). The DRAM or Global mem-
ory is the biggest memory region (several gigabytes) on the graphic device. It is
off-SM, therefore relatively slow and can be accessed both by host and device.
In addition, every SM has a small on-chip memory that can be configured as
Shared memory and as L1 cache. In addition to the L1 cache, Kepler introduces
a Read-only data cache for data for the duration of the function. The L2 cache
is the primary point of data unification between the SM units, servicing all load
and store requests and providing data sharing across the GPU.

2 ...

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 __shared__ sharedMemory [];

5 /* send data by shared memory pointer */

6 __device__ SendDataByMemoryPtr (Wloc , sharedMemory);

7 #ifdef ITERATIVE

8 __device__ SendDataByMemoryPtr (stack , sharedMemory);

9 #endif

10 /* if threadID not greater maximal thread numbers */

11 if(threadID <= numThreads){

12 /* start subtree traversal */

13 EnumerateDevice(threadID , G + 1);}

14 ...

Listing 4. The kernel pseudo-code with optimization O1.

Listing 4 shows our first memory optimization: we move the local array
Wloc (line 6) from global memory to shared memory using device function
SendDataByMemoryPtr() and for the iterative approach we move the stack
too (line 8) (optimization O1). Moreover we move inData from the constant to
the shared memory, as shown in Listing 5 line 6 (optimization O2), using func-
tion SendDataByMemoryPtr() which is a device function for sending data to the
specified memory address.

The SMs of an NVIDIA GPU only get one instruction at a time and all
CUDA cores execute the same instruction. Threads within a warp (a group of
32 thread, which are used in the hardware implementation to coalesce memory
access and instruction dispatch) execute the same instruction in each cycle, dis-
abling threads that are not on the same path of control-flow; this is also known

Parallelizing Branch-and-Bound on GPUs for Optimization 333

as thread or branch divergence [4,7]. The most common code construct that can
cause thread divergence is branching for conditionals in an if-then-else state-
ment. Branch divergence can hurt performance due to lower utilization of the
processing elements, which cannot be compensated for via increased amount of
parallelism [7].

2 ...

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 __shared__ sharedMemory [];

5 /* send data by shared memory pointer */

6 SendDataByMemoryPtr (inData , sharedMemory);

7 /* if threadID not greater maximal thread numbers */

8 if(threadID <= numThreads){

9 /* start subtree traversal */

10 EnumerateDevice(threadID , G + 1);}

11 ...

Listing 5. The kernel pseudo-code with optimization O2.

In addition to shared memory utilization, we reduce the branch divergence
by removing the checking of the compatibility constraint and the upper bound
(Listing 2 line 14, Listing 3 line 26). In this case all restrictions are checked only
at the last tree level, such that code paths have fewer branches (this effectively
transforms B&B into an exhaustive search). The implementations optimized this
way get suffix ’m’ (e.g., Recursion O1m, Iteration O2m) in our evaluation.

As an additional advantage, this optimization also reduces the stall time of
GPU threads which finish their work earlier and remain idle while waiting for
the last thread of the same warp to finish. The stall times of threads could
alternatively be minimized by a more complex work distribution across threads.
However this would arguably introduce more thread divergence, and also require
additional information exchanges across threads, as well as higher load on the
registers and shared memory, with more atomic operations, which together would
negatively affect the kernel’s runtime.

5 Experimental Results

Our experiments are conducted on a hybrid system comprising: (1) CPU: Intel
Xeon E5-1620 v2, 4 cores with Hyper-Threading, 3.7 GHz with 16 GB RAM,
and (2) GPU: NVIDIA Tesla K20c with 13 SMs, each with 192 CUDA Cores
(total 2496 CUDA Cores), 5GB of global memory and up to 48 KB of shared
memory per SM. We use Ubuntu 14.04.1, NVIDIA Driver version 340.29, CUDA
version 6.5 and GNU C++ Compiler version 4.8.2. We study the design of a CES
consisting of 16 processing stages with 3 variants of devices at every stage as
test case (total 316 = 43 046 721 CES variants).

334 A. Borisenko et al.

Fig. 3. Results of memory optimization. Run-time depending on granularity.

Fig. 4. Results of branch optimization. Run-time depending on granularity.

Our first experiment (see Fig. 3) concerns selecting a suitable granularity
value which sets the level of parallelism and, therefore, is important for paral-
lel program performance. On the one hand, increasing the number of threads
increases the performance of the parallel program on the GPU, but on the other
hand, it needs more memory: each thread needs own memory in oprData. We
run our CUDA-based implementation setting granularity values from 1 to 11.

Parallelizing Branch-and-Bound on GPUs for Optimization 335

We observe in Fig. 3 that the runtime is reduced with increasing granularity,
but for larger granularity values, too many threads are created and too much
memory is required for operational data oprData, such that the implementation
runs out of global memory for certain versions, and for granularity greater than
11 it runs out of memory for all versions.

The results of our memory optimization are also shown in Fig. 3 (the vertical
axis has a logarithmic scale). For optimization O1, we use shared memory for
array Wloc (recursive approach) and for Wloc and stack (iterative approach). For
granularity greater than 6 for recursive and greater than 5 for iterative approach,
we run out of shared memory. The total runtime of our program consists of the
runtimes of the CPU-part and the GPU-part. Our measurements show that the
CPU runtime affects insignificantly the total runtime (CPU takes about 0.1 %
of the total runtime). While optimization O1 does not have a significant impact
on the runtime, optimization O2 significantly reduces the execution time, on
average by 48 %. We observe that the recursive implementation (Listing 2) is
faster than the iterative one (Listing 3) on average by about 2.2 times.

The results of branch optimization are presented in Fig. 4: in addition to the
shared memory utilization, we remove the checking of the compatibility con-
straint and the upper bound (Listing 2 line 14, Listing 3 line 26). We observe in
Fig. 4 that the branch optimization has significantly different effects for recur-
sion and iteration: for recursion the runtime was slightly increased within 5 %;
for iteration the runtime was decreased on average by 60 %. Based on the exper-
imental data, we conclude that for the recursive version the fastest is the O2 -
optimization, and for the iterative version the O2m-optimization is the fastest.

Fig. 5. Experimental results. Measured speedup.

336 A. Borisenko et al.

The fastest recursive version for our test example is faster than the fastest iter-
ative version by about 5 %.

In Fig. 5, the speedups of our parallel GPU versions for Recursion O2 and
Iteration O2m tree traversal implementations are presented as compared to the
sequential CPU-program.

We have run several test cases for problems of larger dimension and we
measured the speedup of the parallel GPU-based implementation vs. sequential
CPU-program. Our experiments were carried out for the above example (16
processing stages) but with 4 (total 164 = 4294 967 296 CES variants) and 5
(total 165 = 152 587 890 625 CES variants) units, correspondingly.

We observe in Fig. 5 that the speedup value for the recursive version is
between 2.66 and 5.79, and for the iterative version it is between 1.67 and 4.43.

6 Conclusion

We proposed two parallelization approaches to implement a parallel B&B algo-
rithm for solving the optimization problem for multi-product batch plants on a
CPU-GPU platform.

Two basic implementations – based on recursive and iterative approaches
to the tree traversal – have been presented. We analyzed the impact of the
degree of parallelism controlled by the granularity parameter, and conducted
GPU-specific optimizations of our programs: using shared memory and reducing
branch divergence. Our results show that the recursion-based implementation
in general is faster than the iteration-based on our test platform, and that our
optimizations significantly reduce the total runtime. Our future work will extend
the optimization space using the most modern features of the GPU programming
approaches.

Acknowledgement. This work was partially supported by the Deutsche Forschungs-
gemeinschaft (DFG), Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), Univer-
sity of Muenster, Germany. Andrey Borisenko was supported by the DAAD (German
Academic Exchange Service) and by the Ministry of Education and Science of the
Russian Federation under the “Mikhail Lomonosov II”-Programme.

References

1. Borisenko, A., Kegel, P., Gorlatch, S.: Optimal design of multi-product batch plants
using a parallel branch-and-bound method. In: Malyshkin, V. (ed.) PaCT 2011.
LNCS, vol. 6873, pp. 417–430. Springer, Heidelberg (2011)

2. Boukedjar, A., Lalami, M.E., El Baz, D.: Parallel branch and bound on a CPU-
GPU system. In: PDP, pp. 392–398. Citeseer (2012)

3. Boyer, V., El Baz, D., Elkihel, M.: Solving knapsack problems on GPU. Comput.
Oper. Res. 39(1), 42–47 (2012)

4. Chakroun, I., Mezmaz, M., Melab, N., Bendjoudi, A.: Reducing thread divergence
in a GPU-accelerated branch-and-bound algorithm. Concurr. Comput. Pract. Exp.
25(8), 1121–1136 (2013)

Parallelizing Branch-and-Bound on GPUs for Optimization 337

5. Farber, R.: CUDA Application Design and Development. Elsevier, Amsterdam
(2011)

6. Fumero, Y., Corsano, G., Montagna, J.M.: A mixed integer linear programming
model for simultaneous design and scheduling of flowshop plants. Appl. Math.
Model. 37(4), 1652–1664 (2013)

7. Han, T.D., Abdelrahman, T.S.: Reducing branch divergence in GPU programs. In:
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics
Processing Units, p. 3. ACM (2011)

8. Hoffman, K., Padberg, M.: Combinatorial and integer optimization. In: Hoffman,
K.L., Padberg, M. (eds.) Encyclopedia of Operations Research and Management
Science, pp. 94–102. Springer, Heidelberg (2001)

9. Malygin, E., Karpushkin, S., Borisenko, A.: A mathematical model of the func-
tioning of multiproduct chemical engineering systems. Theo. Found. Chem. Eng.
39(4), 429–439 (2005)

10. Melab, N., Chakroun, I., Mezmaz, M., Tuyttens, D.: A GPU-accelerated branch-
and-bound algorithm for the flow-shop scheduling problem. In: IEEE International
Conference on Cluster Computing (CLUSTER), pp. 10–17. IEEE (2012)

11. Meyer, X., Chopard, B., Albuquerque, P.: A branch-and-boundalgorithm using
multiple GPU-based LP solvers. In: 20th International Conference on HighPerfor-
mance Computing (HiPC), pp. 129–138. IEEE (2013)

12. Mokeddem, D., Khellaf, A.: Optimal solutions of multiproduct batch chemical
process using multiobjective genetic algorithm with expert decision system. J.
Anal. Meth. Chem. 2009, 1–9 (2009)

13. NVIDIA Corporation: CUDA C programming guide 6.5, August 2014. http://docs.
nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

14. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
Gpu Programming. Addison-Wesley Professional, Boston (2010)

15. Terrazas-Moreno, S., Grossmann, I.E., Wassick, J.M.: A mixed-integer linear pro-
gramming model for optimizing the scheduling and assignment of tank farm oper-
ations. Ind. Eng. Chem. Res. 51(18), 6441–6454 (2012)

16. Vu, T., Derbel, B.: Parallel branch-and-bound in multi-core multi-CPU multi-GPU
heterogeneous environments (2014). https://hal.inria.fr/hal-01067662

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://hal.inria.fr/hal-01067662

Optimal Dynamic Data Layouts for 2D
FFT on 3D Memory Integrated FPGA

Ren Chen(B), Shreyas G. Singapura, and Viktor K. Prasanna

University of Southern California, Los Angeles, CA 90089, USA
{renchen,singapur,prasanna}@usc.edu

Abstract. FPGAs have been widely used for accelerating various appli-
cations. For many data intensive applications, the memory bandwidth
can limit the performance. 3D memories with through-silicon-via connec-
tions provide potential solutions to the latency and bandwidth issues. In
this paper, we revisit the classic 2D FFT problem to evaluate the perfor-
mance of 3D memory integrated FPGA. To fully utilize the fine grained
parallelism in 3D memory, optimal data layouts so as to effectively utilize
the peak bandwidth of the device are needed. Thus, we propose dynamic
data layouts specifically for optimizing the performance of the 3D archi-
tecture. In 2D FFT, data is accessed in row major order in the first
phase whereas, the data is accessed in column major order in the second
phase. This column major order results in high memory latency and low
bandwidth due to high row activation overhead of memory. Therefore,
we develop dynamic data layouts to improve memory access performance
in the second phase. With parallelism employed in the third dimension
of the memory, data parallelism can be increased to further improve the
performance. We adopt a model based approach for 3D memory and we
perform experiments on the FPGA to validate our analysis and evaluate
the performance. Our experimental results demonstrate up to 40x peak
memory bandwidth utilization for column-wise FFT, thus resulting in
approximately 97 % improvement in throughput for the complete 2D
FFT application, compared to the baseline architecture.

1 Introduction

FPGAs have been used as accelerators for many applications such as Signal
Processing, Image Processing, Packet classification etc. The general purpose
processors cannot keep up with the demands of these applications in terms of per-
formance. Even with the high performance of FPGAs, meeting the throughput
requirement of these applications is a challenging task. Most of the applications
are data intensive and this translates to frequent accesses to the memory. The
bottleneck in these cases is the low bandwidth and high latency of the memory.

3D memory has been widely studied in the research community with the high
bandwidth and short latency access being the important parameters. 3D mem-
ories consist of stack of layers connected using Through Silicon Vias (TSVs) [9].

This material is based in part upon work supported by the National Science Foun-
dation under Grant Number ACI-1339756.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 338–348, 2015.
DOI: 10.1007/978-3-319-21909-7 34

Optimal Dynamic Data Layouts for 2D FFT 339

The high speed vertical TSVs along with the third dimension of memory result
in short latencies and packs in large memory sizes compared to the conventional
2D memories. Although 3D memories are expected to provide 10× bandwidth
compared to 2D memory, this is subject to the ideal conditions. These include
data layouts which reduce row activation overhead, high page hit rate for stride
access, etc. These problems are similar to the issues in the conventional planar
memories. But, employing the solutions in the context of 3D memory is not
trivial due to the structure and organization of 3D memory.

In this paper, we target 2D FFT application on 3D memory integrated FPGA
and evaluate its performance with throughput and latency as the target metrics.
2D FFT is a data intensive application with stride memory access patterns. 2D
FFT consists of two phases and the access patterns in the two phases require
mutually conflicting data layouts. The ideal data layout in the first phase is
row major data layout whereas, the second phase requires a column major data
layout. Therefore, a static data layout trying to improve the performance in
one phase will lower the performance in the other phase. The main reasons for
this low performance are high number of row activations and low page hit rate.
Therefore, with a static data layout the true capability of 3D memory cannot
be realized. We address this problem by extending our solution of dynamic data
layouts [6] to 3D memory. The main contributions in this paper are:

1. Model the 2D FFT application on 3D memory integrated FPGA.
2. Develop optimal dynamic data layouts to optimize performance of 2D FFT

on 3D memory.
3. Evaluation of optimized and baseline implementation with throughout and

latency as the performance metrics.

2 Related Work

As the well-known simplest multidimensional FFT algorithm, the row-column
algorithm has been commonly used to implement 2D FFT by performing a
sequence of 1D FFTs [10,15]. In this algorithm, input elements hold by an
N ×N array are stored in row-major order in the external memory such as
DRAM. One major issue in the implementation of the 2D FFT architecture is
the considerable delay caused by DRAM row activation which are mainly intro-
duced by the strided memory access in the column wise 1D FFTs. To solve this
problem, the authors in [2] propose a tiled data mapping method to improve the
external memory bandwidth utilization. They logically divide the input N ×N
input array into N

k × N
k tiles and map the elements in each tile to consecutive

memory locations. They conclude that the DRAM bandwidth utilization is max-
imized when the size of each tile is set to be the size of the DRAM row buffer.
However, this solution introduces non-trivial on-chip hardware resource cost for
local transposition. Various traditional 2D memory based 2D FFT architectures
achieving high throughput performance have been developed in [10,16]. In [10],
the authors propose a 2D decomposition algorithm which enables local 2D FFT

340 R. Chen et al.

on sub-blocks. In this way, the times of DRAM row activation is minimized.
Vector radix 2D FFT in [16] presents a general structure theorem to construct
a multi-dimensional FFT architecture by decomposing a large size problem into
small size 2D FFTs. The external memory row activation overhead is not con-
sidered.

3D memory is expected to provide bandwidth higher than the 2D memory
by an order of magnitude. There have been many works which have focused
on this aspect of 3D memory. Reference[17] implements matrix multiplication
and 2D FFT on a Logic-in-Memory architecture. The architecture consists of
a logic layer is interleaved between two segments of memory layers to form a
3D architecture. The performance metrics are energy efficiency and bandwidth.
In [8], the authors develop power efficient FFT on an architecture consisting of
memory layers stacked on multiple FPGA layers. The authors focus on energy
efficiency improvement while moving to a 3D architecture from a 2D architecture.

Fig. 1. (a) 3D MI-FPGA architecture (b) 3D memory

3 3D Memory Integrated FPGA (3D MI-FPGA)

Our model of 3D architecture consists of 3D memory integrated with FPGA
interacting through TSVs. We extend our previous work on 3D architectures
[13,14]. Here, we provide a brief overview of 3D Memory Integrated FPGA (3D
MI-FPGA). The architecture consists of three components: 3D memory, FPGA
and TSVs. Figure 1 illustrates the architecture of 3D memory integrated FPGA.
The memory is composed of several layers (L) vertically stacked one above the
other. Each of these layers is partitioned into several banks. Vaults are defined
as the group of banks (1, 2, 3, 4 in Fig. 1) across layers which share a set of
interconnects (TSVs). This set of banks residing on one layer which belong to
the same vault (B) is analogous to the number of banks in a chip in the 2D
memory. The reason being these set of banks share the bus in 2D memory and
they share the TSVs in the 3D memory architecture. This set of TSVs shared
by the banks in a vault is denoted by Ntsv . Each vault has a dedicated memory
controller which handles the memory accesses to that particular vault. These

Optimal Dynamic Data Layouts for 2D FFT 341

memory controllers form a separate layer in the memory. Vaults can be activated
at the same time as they do not share the TSVs. On the other hand, the banks
in a given vault share the TSVs and the activation of these banks has to be
pipelined or interleaved as in the case of 2D memory. Denoting by BW vault

the bandwidth of a vault, the total bandwidth of 3D memory is V ×BW vault .
The FPGA architecture is similar to that of the conventional FPGA consisting
reconfigurable logic, DSP blocks, on-chip memory (Block RAM and Distributed
RAM) and memory controllers. The difference is that we model the FPGA to
interact with the memory through the set of TSVs connecting the FPGA and
the memory. These TSVs are between memory controllers on FPGA and those
in the memory. FPGA accesses the data in the memory through the TSVs which
are high speed, low latency vertical interconnects. The TSVs are characterized
by the number of TSVs and latency of data transfer across them. These two
parameters affect the amount of data that can be transferred between memory
and FPGA in a given unit of time. Each TSV can transfer 1 bit of data at a
time. Therefore, higher the number of TSVs, higher the bandwidth.

3.1 Timing Parameters

Bandwidth and latency of accesses to the 3D memory depend on a certain set of
timing parameters and we discuss these in this section. Data in the 3D memory
is stored in rows which combine to form a bank and which group together to
form a vault. Therefore, each row belongs to a specific bank and vault. When
memory is accessed, depending on the address a specific row, bank and vault
are activated. Therefore, although some of the parameters overlap with that of
the 2D memory, certain additional parameters have to be defined taking into
account the architecture and different accesses possible in the context of a 3D
memory. We model the 3D memory using the following parameters:

1. tdiff-row: minimum time required between issuing two successive activate com-
mands to different rows in the same bank

2. tdiff-bank: minimum time required between successive activate commands to
different rows in different banks in same or different vaults

3. t in-row: minimum time required between successive accesses to elements in
the same row in the same bank

4. t in-vault: minimum time required between accesses to different rows in different
banks in the same vault

The values of the above parameters have a significant impact on latency and
bandwidth of the 3D memory. In general, accessing data from different vaults
causes zero latency. Hence, a parameter such as tdiff-vault is not defined. This
is because, since vaults are completely independent and can be active at the
same time, this parameter is equal to zero. Since the banks located in different
layers but belonging to the same vault can be activated in a pipeline, this latency
(t in-vault) is lower than that of accessing data from banks belonging to the same
layer and same vault. Other parameters are similar to the parameters of 2D

342 R. Chen et al.

memory. Therefore, accessing data from the same row in a bank (t in-row) is
faster than accessing data from two rows in different banks (tdiff-bank). The
highest latency is seen when we access data from two different rows in the same
bank in the same vault denoted by tdiff-row .

4 2D FFT Architecture

4.1 1D FFT Kernel

An N -point (floating-point) 1D FFT kernel is implemented by concatenating
several basic components including radix block, data path permutation (DPP)
unit, and twiddle factor computation (TFC) unit. The design of each architecture
component relies on the FFT algorithm in use. Implementation details of those
components will be introduced next. We applied several energy optimizations
discussed in [3–5] onto the design components to reduce their energy consump-
tion. The 1D FFT kernel supports processing continuous data streams so as to
maximize design throughput and the memory bandwidth utilization.

Fig. 2. (a) Radix-4 block (b) Data permutation unit (c) Twidlle factor coeffcient unit

Radix Block. The radix block is used to perform a butterfly computation
on some input samples. For example, the radix block for radix-4 FFT takes
four input samples, performs the butterfly computation and then generates four
results in parallel. Each radix block is composed of complex adders and subtrac-
tors. The structure of a radix block is determined by the FFT algorithm in use.
Figure 2a shows the structure of radix block for radix-4 FFT.

DPP Unit. DPP unit is used for data permutation between butterfly compu-
tation stages in FFT. A DPP unit is composed of multiplexers and data buffers.
In subsequent clock cycles, data from previous butterfly computation stage are
first multiplexed and written into several data buffers. Each stored data element
will be buffered with a certain number of clock cycles and then read out. Out-
puts from data buffers will also be multiplexed and fed into the next butterfly

Optimal Dynamic Data Layouts for 2D FFT 343

computation stage. Figure 2b shows the DPP unit used for a radix-4 based FFT
design. Each DPP unit consists of eight 4-to-1 multiplexers and four data buffers.
In each cycle, a data buffer may be read and written simultaneously on different
addresses. The size of each data buffer depends on the ordinal number of its
present butterfly computation stage and the FFT problem size. Note that each
data element is a complex number including both its real part and imaginary
part, hence the data width is 64 bit.

TFC Unit. A TFC unit consists of two parts: the TFC generation logic and
the complex number multiplier. As shown in Fig. 2c, the TFC generation logic
includes several lookup tables (functional ROMs) for storing twiddle factor coef-
ficients, where the data read addresses will be updated with the control signals.
The size of each lookup table is determined by the ordinal number of its present
butterfly computation stage and the FFT problem size. Each lookup table can
be implemented using a BRAM or distributed RAM (dist. RAM) on FPGA [1].
Each complex number multiplier consists of four real number multipliers and
two real number adders/subtractors.

Fig. 3. 2D FFT processor architecture

The proposed 2D FFT architecture is shown in Fig. 3, in which a controlling
unit (CU) and a permutation network are introduced. The permutation network
is developed based on our work in [7]. The CU is responsible for reconfiguring
the permutation network to achieve the dynamic data layout.

4.2 Baseline Architecture

In baseline architecture, when performing column-wise 1D FFTs, memory
address is increased with a stride equals to FFT problem size N after each
memory access. However, a minimum activate-to-activate delay exists when suc-
cessively accessing two rows in the same bank, same vault or accessing in two
banks in the same vault. This delay results in a decline in 3D memory bandwidth
utilization, thus the entire system throughput is impaired.

344 R. Chen et al.

4.3 Optimized Architecture

In the optimized architecture, the controlling unit is responsible for reconfigur-
ing the permutation network dynamically to ensure data results of row-wise 1D
FFTs are mapped onto the different vaults using the optimal dynamic data lay-
out. Through this data remapping, vault row activation will be only needed after
several successive accesses on the same row rather than every memory access.
Thus, the impact of vault row activations on the entire system throughput will
almost be minimized. Furthermore, to reduce the times of vault row activation,
data inputs of several consecutive column-wise 1D FFTs will be moved from
vaults to local memory together, without waiting for the completion of the cur-
rent executed 1D FFT.

4.4 Optimal Dynamic Data Layouts

Our work in this paper is based on the dynamic data layouts (DDL) developed for
the traditional 2D external memory in [12]. In this approach, the data layout in
memory is dynamically reorganized during computation. After reorganizations,
non-unit stride accesses are converted to unit stride accesses, thereby reducing
cache misses. The data layout is optimal from the performance point of view as it
maximizes the memory bandwidth utilization. However, the data reorganization
overhead with regarding to latency and on-chip SRAM buffer consumption has
not been considered. In [6] , we proposed the optimal dynamic data layouts for 2D
memory such that peak memory bandwidth utilization is achieved with minimal
data reorganization overhead. The data reorganization overhead is evaluated
using the reorganizing latency and the on-chip buffer consumption. We further
optimized our approach in [6] so that this technique is applicable for 3D memory
based architecture. In the baseline, row major order data layouts are employed.
In our approach, instead of mapping results of row-wise FFTs to 3D memory in
row major order, we employ block-based dynamic data layout, and the results
are read block-by-block by the column-wise 1D FFT. The dynamic data layout
is organized into blocks, each of size w ×h . w and h represent the width and
height, respectively. w is dynamically determined by the stride permutation to
be performed in 1D FFTs. We assume the row buffer size in each 3D memory
vault is s, the number of memory banks in each vault is b, the number of valuts
to be accessed in parallel is nv . To achieve the optimal dynamic data layout, h
is calculated based on the equation below:

h =

⎧
⎪⎨
⎪⎩

nv · sb/m if 0 < m < sb
tdiff row

tin row
;

nv · tdiff bank/tin row if sb tdiff row

tin row
≤ m < sb ;

nv · tdiff row/tin row if m ≥ sb.

(1)

Note that w = s/h . The permutation network will be employed for permut-
ing the data in these blocks locally. Due to the limitation of space, we cannot
give all the relevant details. For more information, please refer our previous work
in [6].

Optimal Dynamic Data Layouts for 2D FFT 345

4.5 Metrics of Evaluation

We evaluate the performance of 2D FFT on 3D memory integrated FPGA with
respect to the metrics throughput and latency for the entire application.

Throughput: defined as the maximum bandwidth of the memory supported
by the application. It is measured in Giga Bytes per second (GB/s). Since our
architecture is streaming data every cycle, the bandwidth at which memory
operates determines the total execution time of the application. Therefore, higher
the throughput, lower the execution time.

Latency: defined as the time elapsed between accessing first input from the
memory and the time at which the first output is generated by the FFT kernel.
We measure latency in the unit of ns. This penalty is paid just once and at the
beginning of the processing. As we employ a streaming architecture, after the
first output is generated, the subsequent outputs are generated every cycle of
operation.

5 Experimental Results

Before evaluating the performance of the entire design, we separately estimate
the throughput for both the baseline and the optimized architecture for the
3D architecture described in Sect. 3. Table 1 shows the throughput performance
of the 3D memory before and after the proposed optimization. There is no
much performance difference between the baseline architecture and the opti-
mized architecture regarding memory access by row-wise 1D FFTs. The reason
for that is the system throughput is almost not affected by row-wise 1D FFTs in
both architectures. From the Table 1, it shows that performance loss for column-
wise FFT increases with a larger problem size. Through the proposed optimiza-
tion, the peak bandwidth utilization is improved to 40.0 %, 32.0 %, and 28.8 %
for 1024×1024, 4096×4096 and 8192×8192 size 2D FFTs respectively.

In order to give a thorough view of the performance of the complete 2D
FFT implementation, we evaluate the entire system architecture based on our
memory model and our actual implementation of 2D FFT design on FPGA.
Table 2 presents the throughput and latency performance comparison between

Table 1. Throughput comparison: column-wise FFT

1024 × 1024 4096 × 4096 8192 × 8192

2D FFT 2D FFT 2D FFT

Throughput of column-wise
FFT (Baseline)

6.4 Gb/s 3.2 Gb/s 3.2 Gb/s

Peak bandwidth utilization 1.00 % 0.5 % 0.5 %

Throughput of column-wise
FFT (Optimized)

32 GB/s 25.6 GB/s 23.04 GB/s

Peak bandwidth utilization 40.0 % 32.0 % 28.8 %

346 R. Chen et al.

the baseline 2D FFT architecture and the optimized 2D FFT architecture. It
shows that the optimized 2D FFT architecture achieves 32.0, 25.6 and 23.0 GB/s
in throughput for 1024×1024, 4096×4096 and 8192×8192 problem sizes,
respectively. The throughput performance is improved by 95.1 %, 97.0 %, 96.6 %
for 1024×1024, 4096×4096 and 8192×8192 point 2D FFT, respectively. The
latency is reduced by up to 3x by using our proposed optimizations. Comparing
the results of the throughput in the 1D FFT kernel and the entire 2D FFT
architecture, we observe that the optimization for 3D memory access makes a
major contribution in the performance improvement. Moreover, the sustained
throughput of the optimized 2D FFT architecture achieves up to 40 % of the
peak memory bandwidth, which is an upper bound on the performance of the
chosen FFT algorithm and 3D system architecture. Note that when calculating
the peak memory bandwidth, we ignored the run-time behavior of the target
applications.

Table 2. Performance Comparison: Entire 2D FFT application

6 Conclusion

In this paper, we proposed dynamic data layout optimizations to obtain a high
throughput 2D FFT architecture on 3D memory integrated architecture. The
proposed architecture achieves high throughput by maximizing and balancing
the bandwidth between the external memory and FFT kernel on FPGA. By
proposing the dynamic data layouts realized with the on-chip permutation net-
work, the delay caused due to row activation overhead is highly reduced, thus
leading to significant performance improvement. The experimental results com-
paring with the baseline architecture show that our implementation outperforms
in throughput and latency. In the future, we plan to build a design framework
targeted at throughput-oriented signal processing kernels, which enables auto-
matic data layout optimizations addressing new 3D memory technologies.

Optimal Dynamic Data Layouts for 2D FFT 347

References

1. Virtex-7 FPGA Family. http://www.xilinx.com/products/virtex7
2. Akin, B., Milder, P., Franchetti, F., Hoe, J.: Memory bandwidth efficient two-

dimensional fast fourier transform algorithm and implementation for large problem
sizes. In: 20th International Symposium on Field-Programmable Custom Comput-
ing Machines, pp. 188–191. IEEE, April 2012

3. Chen, R., Park, N., Prasanna, V.K.: High throughput energy efficient parallel FFT
architecture on FPGAs. In: IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp. 1–6. IEEE (2013)

4. Chen, R., Prasanna, V.K.: Energy-efficient architecture for stride permutation on
streaming data. In: International Conference on Reconfigurable Computing and
FPGAs, pp. 1–7 (2013)

5. Chen, R., Prasanna, V.K.: Energy efficient parameterized FFT architecture. In:
International Conference on Field-programmable Logic and Application. pp. 1–7.
IEEE (2013)

6. Chen, R., Prasanna, V.K.: DRAM row activation energy optimization for stride
memory access on FPGA-based systems. In: Sano, K., Soudris, D., Hübner, M.,
Diniz, P.C. (eds.) Applied Reconfigurable Computing. LNCS, vol. 9040, pp. 349–
356. Springer, Switzerland (2015)

7. Chen, R., Prasanna, V.K.: Energy and memory efficient bitonic sorting on FPGA.
In: International Symposium on Field-Programmable Gate Arrays, pp. 45–54.
ACM/SIGDA (2015)

8. Gadfort, P., Dasu, A., Akoglu, A., Leow, Y.K., Fritze, M.: A power efficient recon-
figurable system-in-stack: 3D integration of accelerators, FPGAs, and DRAM. In:
International Conference on System-on-Chip Conference (SOCC), pp. 11–16. IEEE
(2014)

9. Hybrid Memory Cube Consortium: Hybrid Memory Cube Specification. http://
hybridmemorycube.org/files/SiteDownloads/HMC Specification%201 0.pdf

10. Kim, J.S., Yu, C.L., Deng, L., Kestur, S., Narayanan, V., Chakrabarti, C.: FPGA
architecture for 2D discrete fourier transform based on 2D decomposition for large-
sized data. In: IEEE Workshop on Signal Processing Systems, pp. 121–126. IEEE,
October 2009

11. Langemeyer, S., Pirsch, P., Blume, H.: Using SDRAMs for two-dimensional
accesses of long 2n × 2m-point FFTs and transposing. In: International Confer-
ence on Embedded Computer Systems (SAMOS), pp. 242–248. IEEE, July 2011

12. Park, N., Prasanna, V.: Dynamic data layouts for cache-conscious implementation
of a class of signal transforms. IEEE Trans. Signal Process. 52(7), 2120–2134 (2004)

13. Singapura, S.G., Panangadan, A., Prasanna, V.K.: Performance modeling of matrix
multiplication on 3D memory integrated FPGA. In: 22nd Reconfigurable Archi-
tectures Workshop, IPDPDS. IEEE (2015) (to appear)

14. Singapura, S.G., Panangadan, A., Prasanna, V.K.: Towards performance mod-
eling of 3D memory integrated FPGA architectures. In: Sano, K., Soudris, D.,
Hübner, M., Diniz, P.C. (eds.) Applied Reconfigurable Computing. LNCS, vol.
9040, pp. 443–450. Springer, Switzerland (2015)

15. Wang, W., Duan, B., Zhang, C., Zhang, P., Sun, N.: Accelerating 2D FFT with
non-power-of-two problem size on FPGA. In: International Conference on Recon-
figurable Computing and FPGAs, pp. 208–213. IEEE, December 2010

http://www.xilinx.com/products/virtex7
http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf
http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf

348 R. Chen et al.

16. Wu, H., Paoloni, F.: The structure of vector radix fast fourier transforms. IEEE
Trans. Acoust. Speech Signal Process. 37(9), 1415–1424 (1989)

17. Zhu, Q., Akin, B., Sumbul, H.E., Sadi, F., Hoe, J.C., Pileggi, L., Franchetti, F.:
A 3D-stacked logic-in-memory accelerator for application-specific data intensive
computing. In: IEEE International Conference on 3D Systems Integration Confer-
ence (3DIC). pp. 1–7. IEEE (2013)

High-Performance Reconfigurable Computer
Systems Based on Virtex FPGAs

Alexey I. Dordopulo1(&), Ilya I. Levin2, Yuri I. Doronchenko2,
and Maxim K. Raskladkin2

1 Southern Scientific Centre of the Russian Academy of Sciences,
Rostov-on-Don, Russia

scorpio@mvs.tsure.ru
2 Scientific Research Centre of Supercomputers and Neurocomputers Co. Ltd.,

Taganrog, Russia
levin@mvs.sfedu.ru, doronchenko@mvs.tsure.ru,

raskladkin@mail.ru

Abstract. The paper covers architectures and comparison characteristics of
reconfigurable computer systems (RCS) based on field programmable gate
arrays (FPGAs) of the Xilinx Virtex-7 family and technologies of task solving
by means of software development tools. In the paper we also consider archi-
tecture and assembly of next-generation RCS with a liquid cooling system and
give results of calculations and prototyping of principal technical solutions
which provide the performance of 1 PFlops for a standard computational 47U
rack with the power of 150 kWatt. This is promising approach because of RCS
with a liquid cooling system have a considerable advantage for lot of engi-
neering and economical parameters such as real and specific performance,
power efficiency, mass and dimension characteristics, etc., in comparison with
similar systems.

Keywords: FPGA � High-level programming language for reconfigurable
computer systems � Programmable soft-architecture � Architecture description
language

1 Introduction

One of the promising approaches which provide achievement of high real performance
of a computer system is adaptation of its architecture to the structure of the solving task
and creation of a computing device which performs structural and procedural fragments
of calculations with the same efficiency. That is why domestic [1] and foreign vendors
of computers use field programmable gate arrays (FPGAs) more and more frequently.
FPGAs speedup calculations of computationally laborious fragments. It is possible to
create stand-alone accelerators which contain one or two FPGAs, or computing

This work was financially supported in part by the Russian Ministry of Education under Grant
RFMEFI57814X0006

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 349–362, 2015.
DOI: 10.1007/978-3-319-21909-7_35

complexes. Such corporations as Nallatech [2] and Pico Computing, Inc. [3] produce
accelerators and base boards with small number (up to 4) of FPGAs which are used as
components of servers and heterogeneous clusters of such vendors as Hewlett-Packard
and IBM.

Convey Computer [4] and Maxeler Technologies [5] create hybrid supercomputers
based on their own heterogeneous cluster nodes, Each node can contain 1-4 FPGAs and
some general-purpose processors. The company SRC Computers [6] uses a similar
solution. It produces nodes such as MAP processor for 1U, 2U and 4U MAPstation
rack. MAPstation 1U contains one MAP processor. MAPstation 2U contains up to
three MAP processors. MAPstation 4U can contain up to 10 different nodes such as
MAP processor, a node with a general-purpose microprocessor or a memory node.

Scientific team of Scientific Research Centre of Supercomputers and Neurocom-
puters (SRC SC & NC Co. Ltd., Taganrog, Russia) together with scientists of Scientific
Research Institute of Multiprocessor Computer Systems at Southern Federal University
(SRI MCS SFU, Taganrog, Russia) and Southern Scientific Centre of the Russian
Academy of Sciences (SSC RAS, Rostov-on-Don, Russia) design and produce
reconfigurable computer systems, similar to supercomputers which contain a set of
FPGAs, united into computational fields by high-speed data transfer channels, and
considered as the principal computational resource.

The range of designed and produced items is rather various: from completely
stand-alone small-size reconfigurable accelerators (computational blocks), desk-top
computational modules or computational modules which are to be placed into a rack, to
computer systems, which can consist of several computational racks and must be
placed in a specially equipped computer room.

Reconfigurable computer systems which contain large computational FPGA-fields,
are usually used for solving computationally laborious problems in various fields of
science and technology, because of several considerable advantages in comparison
with cluster-type multiprocessor computer systems such as high real and specific
performance, high power efficiency, etc.

2 RCS Based on Xilinx Virtex-7 FPGAs

Reconfigurable computational block Celaeno. On basis of Xilinx Virtex-7 FPGAs we
have designed a reconfigurable computational 1U block (RCB) Celaeno intended for
data processing. Data is received via Gigabit Ethernet channel with no support of
IP-protocols.

Figure 1a shows the RCB Celaeno. Figure 1b shows the open block (no top cover)
and its printed circuit board. The RCB Celaeno is produced in two modifications:
Celaeno-K based on Kintex-7 XC7K160T FPGAs and Celaeno-V based on Virtex-7
XC7VX485TFPGAs. Specifications of the RCB Celaeno of these two modifications
are given in Table 1.

The RCB Celaeno contains 6 FPGAs of the computational field, an embedded
host-computer, a power supply system, a control system, a cooling system and other
subsystems. All FPGAs of the computational field are connected according a

350 A.I. Dordopulo et al.

lattice-like structure by LVDS-channels, and each FPGA is connected to its own units
of dynamic memory of 256 Mbyte each.

To control and configure the computational field of the RCB an embedded computer
(computer-on-module of the Kontron COM-Express family) is used. It is placed on the
printed circuit board of the computational module. It provides connection with
peripheral devices, development and debugging of parallel applications of computa-
tionally laborious tasks, generation of initial data files, which, together with the exe-
cutable file of the application, are loaded into the computational field via PCI-Express

b)

a)

Fig. 1. RCB Celaeno and its components

Table 1. Specifications of the RCB Celaeno-K and Celaeno-V

Parameter Celaeno-K Celaeno-V

Number and type of FPGAs 6 6
Total number of equivalent gates in the FPGAs of the
computational field, million

96 288

RAM size, Gb 3 3
Performance of the computational module Pi32/Pi64,
GFlops

150/75 440/220

Working frequency, MHz 330 400
Rate of data exchange via Ethernet channel, Gb/sec 1 1
Rate of data transfer via LVDS between FPGAs of the
computational field, MHz

900 1200

Power, Watt 200 320
Dimensions, mm 480 × 270 × 70 480 × 270 × 70
Cost, million rubles 1.3 2.0

High-Performance Reconfigurable Computer Systems 351

bus and LVDS-channel. When the task is done, its results are transferred into the
COM-Express processor unit.

Possible areas of application of the RCB Celaeno are symbolic processing, math-
ematical physics, simulation and computational experiment, digital signal processing,
linear algebra, etc.

Reconfigurable. According to the state contract №14.527.12.0004 from 03.10.2011
the scientific team of SRI MCS SFU designed a reconfigurable computer system
RCS-7 based on Virtex-7 FPGAs, which contains a computational field of 576 Virtex-7
XC7V585T-FFG1761 FPGAs (58 million of equivalent gates each), assembled into
one 47U computational rack with the peak performance of 1015 fixed-point operations
per second. The principal structural component of the RCS-7, intended for placement
into a standard 19'' computational rack, is a computational module (CM) 24V7-750
(CM Pleiad), which contains 4 boards of the computational module (BCM) 6V7-180
(see Fig. 2); a control unit CU-7; a power supply subsystem; a cooling subsystem, and
other subsystems. Figure 2 shows the CM 24V7-750.

Each board of the CM 24V7-750 contains 6 Virtex-7 XC7V585T-1FFG1761
FPGAs of the computational field, connected sequentially, and 12
MT47H128M16HR-25E chips of distributed dynamic memory, organized as
128 M*16 with read/write frequency up to 400 MHz. The total size of distributed
dynamic memory is 12 GByte. Data can be transferred between the FPGAs via 144
LVDS differential lines at frequency of 800 MHz.

The performance of the one board is 645.9 GFlops for processing of 32-digit
floating point data, and the performance of the CM 24V7-750 is 2.58 TFlops for
processing of 32-digit floating point data.

Reconfigurable computational module Taygeta. The scientific team of SRC SC &
NC has designed a 19” 2U computational module Taygeta, based on Virtex-7 FPGAs
and intended for high-performance multirack RCSs. Figure 3a shows the CM Taygeta,

b)

a)

Fig. 2. Computational module (CM) 24V7-750 (a – boards of the CM Pleiad, b – CM Pleiad
with no top cover/with a top cover)

352 A.I. Dordopulo et al.

which contains 4 boards 8V7-200, an embedded host-computer, a power supply sys-
tem, a control system, a cooling system, and other subsystems. The boards of the CM
Taygeta are connected by LVDS-channels, running at frequencies up to 1000 MHz.
Figure 3b shows the board 8V7-200.

The board of the computational module (BCM) 8V7-200 is a 20-layer printed circuit
board with double-side mounting of elements. It contains 8 XC7VX485T-1FFG1761
FPGAs (48.5 million equivalent gates each), 16 chips of distributed memory
DDR2 SDRAM with total capacity of 2 GByte, LVDS and Ethernet interfaces, and
other components.

The performance of one BCM 8V7-200 is 667 GFlops for processing of 32-digit
floating point data, and the performance of the CM Taygeta is 2.66 TFlops,
respectively.

RCS based on CM Pleiad and CM Taygeta. On the base of already considered CM
Pleiad, in 2013 we had designed a reconfigurable computer system RCS-7 (Fig. 4a),
which contained 24 computational modules, and which can be extended up to 36
computational modules. The performance of RCS-7, when it contains from 24 to 36
24V7-750 CMs is from 62 to 93 TFlops for processing of 32-digit floating point data,
and 19.4 ÷ 29.4 TFlops for processing of 64-digit floating point data, respectively.
Fields of application of RCS-7 and RCS-7-based computer complexes are digital signal
processing and multichannel digital filtering (Ali M. Reza, 2013; Mazher et al., 2013).

Figure 4b shows an RCS, designed on the base of the CMTaygeta. The performance of its
one rack, which contains 18 CMs Taygeta is 48 TFlops for processing of floating point
data with single precision, and 23 TFlops for processing of 64-digit floating point data.

High-performance RCSs based on the CM Taygeta are intended for solving
computationally laborious problems of science and industry, drug design and symbolic
processing, and for such problems they provide a significant advantage of the majority
of technical and economical parameters such as specific performance, power efficiency,
etc., in comparison with cluster-type multiprocessor computer systems.

b)a)

Fig. 3. The CM Taygeta (a – the CM Taygeta without top cover, b – BCM 8V7-200)

High-Performance Reconfigurable Computer Systems 353

3 Next-Generation Reconfigurable Systems Based on Xilinx
UltraScale FPGAs

Further development of open scalable architecture (Levin, 2010), used for design of
RCSs based on Xilinx Virtex-7 FPGAs, is a variety of next-generation components for
new designed products – Xilinx FPGAs of a new generation family UltraScale, based
on 20 nm technol. In comparison with FPGAs of Virtex-7 family they have lower
power consumption and higher performance.

Reconfigurable Computational Block Based on UltraScale FPGAs. The designed
RCB Celaeno-U will also be produced as a 1U block, but in contrast to its precursors
Celaeno-K and Celaeno-V, it will contain 4 Xilinx UltraScale XCVU095 FPGAs (95
million equivalent gates each), which will create a computational field of 380 million
equivalent gates in total. Figure 5 shows the structure chart of the RCB Celaeno-U and
assembly outline of the board.

The keys of Fig. 5:

– DD1-DD4 – the computational Xilinx UltraScale XCVU095 FPGAs;
– DD5 – Xilinx UltraScale XCKU040 FPGA of the BCM controller;
– A1-A9 – distributed memory modules;
– X2-X4, X7-X12 – connectors of different types of interfaces.
– In comparison with the previous version of the RCB Celaeno-V the performance of

the RCB Celaeno-U will increase in 1.7–1.8 times while its power will grow not
more than in 1.3 times.

b)a)

Fig. 4. RCS based on Xilinx Virtex-7 FPGAs (a – RCS-7 on the base of the CM Pleiad,
b – RCS-7 on the base of the CM Taygeta)

354 A.I. Dordopulo et al.

RCS with Liquid Cooling Based on UltraScale FPGAs. The time of air cooling
systems, used in modern high-performance computer systems and supercomputers,
designed on their basis, including reconfigurable supercomputers, is practically over.
The majority of computer designers are oriented to liquid cooling systems which will
help to solve problems of cooling of the designed computer complexes. It is reasonable
to use liquid cooling, particularly submersion of boards of computational modules into
a liquid cooling agent (mineral oil), for computational modules of RCSs designed on
the base of next-generation FPGA families.

The direction of design of next-generation RCSs based on liquid cooling is actively
developed in SRC SC & NC. New designs of printed boards and computational
modules with high board density are designed. Specifically, next-generation

b)

a)

Fig. 5. RCB Celaeno-U (a – structure chart, b – assembly outline of the RCB board)

High-Performance Reconfigurable Computer Systems 355

computational modules Scate-8 for multirack RCSs of super-high performance are
designed at present.

The board of the next-generation computational module contains 8 Virtex Ultra-
Scale FPGAs (not less than 100 million equivalent gates each). The computational
module consists of two sections: the first section contains 16 boards of the computa-
tional module with the power of up to 800 Watt each, completely submerged into
electrically neutral liquid cooling agent. The second section contains a pump system
and a heat-transfer device, which provide flow and cooling of the cooling agent.
Figure 6a shows the 3U CM outline.

According to performed analysis, use of liquid cooling and creation of computer
systems on the base of the CM Scate-8 provide more than petaflops-like performance of
a single computational rack of the RCS. The computational 19'' rack of the super-
computer can contain up to 12 CM Scate-8 with liquid cooling. Figure 6b shows the
outline of the rack. Table 2 contains the performance and the power of the
next-generation RCS.

b)a)

Fig. 6. The outline of the computer system based on liquid cooling (a – the outline of the CM
Scate-8, b – the outline of the Scate-8 based computational rack)

Table 2. The Performance and Power of the Next-Generation RCS on the Base Xilinx
UltraScale FPGAs

Parameter Value

Performance of the CM Scate-8 105 TFlops
Performance of the computational rack based on the CM Scate-8 1 PFlops
Power of the CM Scate-8 13 kWatt
Power of the computational rack based on the CM Scate-8 150 kWatt

356 A.I. Dordopulo et al.

On basis of reconfigurable systems, produced in SRC SC & NC, it is possible to
watch growth rates of RCS performance when the FPGA family is changed.

In 2015–2016 on base of the described design we will create super-high-
performance computer complexes with effective cooling of computational FPGAs
both of the UltraScale family and of the next-generation FPGA family.

4 RCS Software

At present there are plenty of various development suits for development of structural
solutions of applied tasks for FPGAs. The most popular suits which can be used as
separate development tools and as parts of some complexes are synthesizers, developed
by FPGA vendors: ISE and Vivado (Xilinx, Inc.) [8], Quartus II (Altera Corporation)
[9] and Actel Libero IDE (Actel Corporation) [10]. These software tools, besides the
development environment of digital devices, contain a number of utilities: analyzers of
timing characteristics, placing editors, FPGA programming units, systems of digital
device simulation, etc. Owing to a wide range of tools these development suits provide
a complete cycle of digital device development within single FPGA: development of
the initial description of the project, synthesis, simulation, placement, tracing, chip
programming.

Continuous growth of FPGA capacity makes design of applied task solutions for
FPGAs by means of hardware description languages (VHDL, AHDL, Verilog, etc.)
[11] and design of digital devices by means of graphic editors more and more labo-
rious. That is why at present the leading vendors of FPGAs and reconfigurable com-
puters are oriented to high-level languages. As a result, the new development
environment Vivado by Xilinx, Inc. contains a new design tool Vivado HLS, based on
a high-level language. The development kit Altera SDK [12], used for Altera FPGA
design, contains tools for a new standard OpenCL of parallel programming of heter-
ogeneous systems. These solutions use translators of C-like languages, which generate
code in the hardware description languages on the register transfer level (RTL,
C-to-RTL) from the program in some C-like high-level programming language.

In spite of similarity of syntaxes of C-like languages with the C language, such
approach does not mean that initial C-code, developed for a PC or a cluster computer
system will be correctly interpreted by C-to-RTL translators. The language C was
chosen as a basic one because of its wide popularity, which makes mastering of new
FPGA application development and design tools much easier.

Table 3. Performance of Reconfigurable Supercomputers

Product, year of
production, FPGA family

Board performance
Pi32/Pi64, GFlops

CM performance
Pi32/Pi64, GFlops

Performance
of 47U rack
Pi64, TFlops

Taygeta, years
2012/2013, Virtex-7

900/300 3600/1200 68–100

Scate, years 2015/2016,
UltraScale

7250/2500 82500/30000 1000–1250

High-Performance Reconfigurable Computer Systems 357

In addition, when we use C-to-RTL translators the whole application or its
explicitly selected procedures are translated into RTL-descriptions of single FPGAs.
Such development suits have no tools of automatic decomposing of the parallel pro-
gram into fragments for a set of interconnected FPGAs.

When we use Vivado HLS, the project is designed within one FPGA, and if the
application developer needs hardware resource more than the resource of one FPGA,
then he himself must distribute calculations between several projects for each FPGA
and synchronize control and data streams between them.

The OpenCL standard is used by the company Nallatech (vendor of reconfigurable
computers) and allows use of several FPGAs in one project. In this case solutions in
FPGAs are programmed by means of functions, called from the library of tools of
Altera SDK. Each FPGA involved in computational process performs calculations
described by a certain fragment of code. So, the program written according to the
OpenCL standard is a basic code, written for traditional processors, and some separate
fragments of code, written for FPGAs, involved into computational process as
co-processors. In this case the problem of data synchronization is responsibility of the
programmer.

Another well-known FPGA programming tool is a complex created by the com-
pany Mitrionics Inc., which contains a Mitrion Virtual Processor (MVP), programmed
by means of the high-level programming language Mitrion-C, and a library of functions
MithalAPI included in the development kit Mitrion SDK [13] for development of
host-programs. The developed Mitrion-C program must be completely realized on a
single virtual processor MVP. It is impossible to program multichip RCSs, and as a
result, it considerably reduces effectiveness of the software complex of the company
Mitrionics Inc. To program multichip RCSs which consist of interconnected FPGAs
the programmer himself must realize an interface (protocol) of data exchange between
FPGAs and solve problems concerning data flow synchronization. In this case the RCS
program degenerates into a program for a cluster (a set of MVP), implemented in
FPGAs, and it considerably reduces effectiveness of tasks realized on multichip RCSs.

5 Language COLAMO and Software Complex for Multichip
RCS

An alternative approach to RCS programming is suggested in SRI MCS SFU which
deals with design of multichip reconfigurable computer systems of various architec-
tures and configurations for more than 15 years.

The experience of SRI MCS SFU in solving problems of various types has proved
that effective solving of modern laborious problems requires programming tools which
can provide:

– programming in a high-level programming language;
– support of multichip programming;
– high operating frequency of FPGAs;
– high density of placement in FPGAs;

358 A.I. Dordopulo et al.

– support of pipeline and macropipeline organization of calculations. Specialists of
SRIMCS SFUhave developed andwidely used a software complex, which consists of:

– a translator of the programming language COLAMO, which translates of the initial
code written in COLAMO into an information graph of a parallel application;

– a synthesizer Fire!Constructor of scalable circuit solutions on the level of FPGA
logic gates, which maps the information graph, generated by the translator of the
COLAMO-language, on an RCS architecture, places the mapped solution into
FPGAs and provides automatic synchronization of the fragments of the information
graph in different FPGAs;

– a library of IP-cores, which correspond to operators of the COLAMO-language
(self-contained structurally implemented hardware devices) for various problem
domains, and interfaces which match the rate of data processing and connect all
components into a single computing structure;

– debugging tools, access tools, and tools of monitoring of RCS condition.

The high-level language COLAMO is intended for description of the parallel
algorithm and creation of a special-purpose computing structure, generated according to
the principles of structural procedural organization of calculations [1, 14, 15], within the
RCS architecture. Such computing structure implies sequential change of structurally
(hardwarily) implemented fragments of the information graph of the task. Each fragment
is a computational data flow pipeline. So, the application (applied task) for the RCS
consists of the structural component, represented as a set of hardwarily implemented
fragments of calculations, and of the procedural component, represented as a control
program of sequential change of computing structures and organization of dataflows.
The control component is, one and the same for all structural fragments. To provide such
organization of calculations the programming language contains such structure as
“cadr”. A cadr is a program-indivisible component, a set of operators implemented as
arithmetic-logic instructions and read/write instructions, performed on various func-
tional devices, interconnected according to the information structure of the algorithm.

The language COLAMO has no explicit forms of parallelism description. Parall-
elization is provided by declaration of types of access to variables and by indexing of
array items, which is typical for data flow languages. To address to data it is possible to
use two principal access methods: parallel access (declared by Vector type) and
sequential access (declared by Stream type). The degree of parallelism is defined
according to the minimal value of the parameter of parallelization. For Stream type the
degree of parallelism is 1, and for Vector type it is defined according to the minimal
value of Vector type of each array, involved in computing process. For parallel type of
access it is possible to process concurrently all dimensions of arrays, declared as
Vector. In this case the hardware resource, needed for calculations, will grow, but the
processing time will drop down.

Multidimensional data arrays can have plenty of dimensions. Each dimension can
have sequential or parallel access type, declared by keywords Stream or Vector,
respectively. Change of access type allows very simple control of the degree of par-
allelism of calculations on the level of data structure description, the processing rate,
and the occupied resource. Owing to this, the programmer can describe various types of
parallelism in a rather short form.

High-Performance Reconfigurable Computer Systems 359

Besides the access type, the variable in the language COLAMO also has type of
storage: memory (Mem), register (Reg) and commutation (Com).

The memory variable is stored in a cell of distributed memory, and hence it keeps
its value till the next reassignment. For the memory variable it is possible to perform
only one process at the same time. That is why, according to semantics of the COL-
AMO language, in any cadr any memory variable complies with two rules: the
single-assignment rule and the rule of single substitution. The single-assignment rule
means that the memory variable changes its value only once in the cadr. The rule of
single substitution means that the variable in the cadr can be used for only one process
of reading or writing.

To describe connections between the elements of the information graph of the task
the COLAMO language has switching variables. Since the switching variable describes
information connections, it requires no computational hardware resource for itself. It is
impossible to get access to the value of the switching variable when the cadr is done.
The translator needs switching variables to define information dependencies during
generation of the computing structure of the task. As memory variables, switching
variables comply the single-assignment rule, but not the rule of single substitution.
Owing to use of switching variables data flows can be easily forked and duplicated, but
it is impossible to create recursion.

To realise recursion the COLAMO language has a register variable, which is a
hardware register used to store intermediate data, received during computational pro-
cess. The single-assignment rule is the only restriction for register variables in the cadr.

To translate the program written in the high-level language COLAMO means to
generate a circuit configuration of the computer system (a structural component) and a
parallel program which controls data flows (a stream component and a procedural
component) [1,14,15]. To generate the structural component means to create a com-
putational graph which corresponds to information dependencies between results of
calculations. In this case for each operation, used in the program, a specialized com-
puting unit is substituted according to data access, data types, their capacity, etc. The
synthesized information graph of the task is transferred to the synthesizer Fire!Con-
structor for mapping on the multichip RCS hardware resource [16].

The problem of automatic mapping of the parallel program on the multichip RCS
hardware resource consists of three steps: partition of the information graph into dis-
joint subgraphs, placement of the subgraphs into RCS FPGAs, and tracing of external
connections of the placed subgraphs within the RCS communication system.

The result of the synthesizer Fire!Constructor is a set of files of VHDL-descriptions,
time constraints, and user constraints. VHDL-files describe structural implementation of
the fragments of the parallel program. These files and the library of circuit components
are the basis for projects, created by the synthesizer ISE for each single FPGA. Then the
synthesizer ISE generates FPGA bitstream files which are loaded into the RCS.

The COLAMO-application is developed within a single project and can be trans-
lated for any RCS, which has a description and all required libraries, included into the
RCS software suit. In contrast to other existing RCS application development suits, the
programmer has no need to define in the text of the program, which fragments and in
which FPGAs will be performed. The synthesizer Fire!Constructor provides automatic
splitting of the computing structure of the COLAMO-program into several projects by

360 A.I. Dordopulo et al.

means of the synthesizer Xilinx ISE, and, in addition, it provides synchronization of
data flows both inside each FPGA and between them.

6 Conclusion

According to Table 3, FPGAs as principal components of reconfigurable supercom-
puters provide a permanent, practically linear growth of the RCS performance and give
new prospects of creation of supercomputers of petaflops performance. It is possible to
claim that design solutions used for the next-generation computational modules, based
on Xilinx Virtex UltraScale FPGAs, will help to concentrate a powerful computational
resource in a single 47U computational rack and to provide the specific performance of
the RCS, based on Xilinx Virtex UltraScale FPGAs, on the level of the best world
characteristics for cluster supercomputers. Owing to this, UltraScale-based RCSs can
be considered as a basis for the next-generation high-performance computer com-
plexes, which provide high efficiency of calculations and practically linear growth of
performance for extending computational resource.

References

1. Kalyaev, I.A., Levin, I.I., Semernikov, E.A., Shmoilov, V.I.: Reconfigurable multipipeline
computing structures. Nova Science Publishers, New York (2012)

2. Nallatech, a subsidiary of Interconnect Systems Inc.,http://www.nallatech.com/
3. Picocomputing. http://picocomputing.com/
4. Convey computer. http://www.conveycomputer.com
5. Maxeler Technologies. http://www.maxeler.com/
6. SRC computers. http://www.srccomp.com/
7. Levin, I.I.: Reconfigurable computer systems with open scalable architecture. In: Proceedings

of the 5th International Conference Parallel calculations and Control Problems, PACO 2010,
pp. 83–95. V.A. Trapeznikov Institute of control problems of the Russian Academy of
Sciences, Moscow (2010)

8. Zotov, V.I.: Design of digital devices based on XILINX FPGAs using WebPACK ISE.
Goryachaya liniya-Telekom, Moscow (2003)

9. Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis. Altera Corporation
(2010)

10. Libero IDE v9.1 User’s Guide. Actel Corporation (2010)
11. Design for Xilinx FPGAs using high-level languages and Vivado HLS. J. Components and

technologies. 12, (2013)
12. Altera measurable advantage. http://www.altera.com/literature/lit-opencl-sdk.jsp
13. Mitrionics. http://www.mitrionics.com/
14. Kalyaev, I.A., Levin, I.I., Dordopulo, A.I., Slasten, L.M.: Reconfigurable Computer Systems

Based on Virtex-6 and Virtex-7 FPGAs. In: IFAC Proceedings Volumes, Programmable
Devices and Embedded Systems, vol. 12, part 1, pp. 210–214 (ISSN 14746670) (2013)

15. Kalyaev, I.A., Levin, I.I., Dordopulo, A.I., Slasten, L.M.: FPGA-based reconfigurable
computer systems. In: Science and Information Conference (SAI), pp. 148–155. London, 7–
9 October 2013

High-Performance Reconfigurable Computer Systems 361

http://www.nallatech.com/
http://picocomputing.com/
http://www.conveycomputer.com
http://www.maxeler.com/
http://www.srccomp.com/
http://www.altera.com/literature/lit-opencl-sdk.jsp
http://www.mitrionics.com/

16. Gudkov, V.A., Gulenok, A.A., Kovalenko, V.B., Slasten, L.M.: Multi-level Programming of
FPGA-based Computer Systems with Reconfigurable Macroobject Architecture. In: IFAC
Proceedings Volumes Programmable Devices and Embedded Systems, vol. 12, part 1,
pp. 204–209 (ISSN 14746670) (2013)

17. Gudkov, V.A., Gulenok, A.A., Dordopulo, A.I., Slasten, L.M.: programming tools of
reconfigurable multiprocessor computer systems. In: TSURE Proceedings “Intelligent and
multiprocessor systems”, 16(71), pp. 16–20. TSURE Publishing, Taganrog (2006)

18. Semernikov, E.A., Kovalenko, V.B.: Organization of multilevel programming of
reconfigurable computer systems. Herald of computer and information technologies. 9,
pp. 3–10. Mashinostroyeniye, Moscow (2011)

19. Gudkov, V.A., Gulenok, A.A., Kovalenko, V.B., Slasten, L.M.: Preprints of the 12th IFAC
Conference on Programmable Devices and Embedded Systems PDES, pp. 65–70. Technical
University of Ostrava, Czech Republic (2013)

362 A.I. Dordopulo et al.

Parallelizing Biochemical Stochastic Simulations:
A Comparison of GPUs and Intel Xeon Phi

Processors

P. Cazzaniga1, F. Ferrara2, M.S. Nobile2, D. Besozzi3(B), and G. Mauri2

1 Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo,
Piazzale S. Agostino 2, 24129 Bergamo, Italy

paolo.cazzaniga@unibg.it
2 Dipartimento di Informatica, Sistemistica e Comunicazione,

Università degli Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
{nobile,mauri}@disco.unimib.it

3 Dipartimento di Informatica, Università degli Studi di Milano,
Via Comelico 39, 20135 Milano, Italy

besozzi@di.unimi.it

Abstract. Stochastic simulations of biochemical reaction networks can
be computationally expensive on Central Processing Units (CPUs), espe-
cially when a large number of simulations is required to compute the
system states distribution or to carry out advanced model analysis. Any-
way, since all simulations are independent, parallel architectures can be
exploited to reduce the overall running time. The purpose of this work is
to compare the computational performance of CPUs, general-purpose
Graphics Processing Units (GPUs) and Intel Xeon Phi coprocessors
based on the Many Integrated Core (MIC) architecture, for the execu-
tion of Gillespie’s Stochastic Simulation Algorithm (SSA). To this aim,
we consider an ad hoc implementation of SSA on GPUs, while exploiting
the peculiar capability of MICs of reusing existing CPUs source code. We
measure the running time needed to execute several batches of simula-
tions, for various biochemical models of increasing size. Our results show
that in all tested cases GPUs outperform the other architectures, and
that reusing available code with the MICs does not represent a clever
strategy to fully leverage Xeon Phi horsepower.

1 Introduction

Mechanistic models of biochemical reaction networks are more and more becoming
a valuable mean to elucidate the functioning of complex biological systems [1,2],
thanks to their capability of achieving a global-level understanding of emergent
dynamics. For this purpose, efficient and reliable algorithms are needed to simulate
the temporal evolution of biochemical reaction networks. In the case of stochastic
mechanistic models, one of the most applied approach relies on Gillespie’s Stochas-
tic Simulation Algorithm (SSA), based on the stochastic formulation of chemical
kinetics [3], that was proven to be equivalent to the Chemical Master Equation
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 363–374, 2015.
DOI: 10.1007/978-3-319-21909-7 36

364 P. Cazzaniga et al.

[4]. However, SSA is computationally very expensive, and the same holds for other
stochastic simulation algorithms thereafter introduced to improve the computa-
tional efficiency (see, e.g., [5]). Moreover, a typical analysis of stochastic models
usually requires the execution of a large number of independent simulations, in
order to explore the multi-dimensional space of kinetic parameters (see, e.g., the
work presented in [6] concerning the problem of parameter estimation). Therefore,
an efficient strategy for the parallelization of SSA is essential to achieve an effective
reduction of the computational costs.

The traditional methods to parallelize algorithms consist in multi-threading
[7], distributed computing on clusters [8], custom circuitry produced with Field
Programmable Gate Array (FPGA) [9], or general-purpose Graphics Processing
Unit (GPGPU) computing [10–12]. Anyway, these technologies require either a
custom implementation of the code, that cannot be directly ported on a parallel
architecture, or a scheduler to manage the parallel execution of processes over
a distributed architecture. An alternative solution is nowadays represented by
the family of Intel Xeon Phi coprocessors, based on the Many Integrated Core
(MIC) architecture. One of the most important features of the MIC architecture
is that the code implemented for Intel Central Processing Units (CPUs) can be
directly compiled and executed on the Xeon Phi coprocessors.

The aim of this work is to compare the computational performance of CPUs,
GPUs and Intel Xeon Phi coprocessors for the execution of increasing numbers
of SSA simulations, for the analysis of stochastic models of different biochemical
systems. To the best of our knowledge, this is the first attempt in the evaluation
of the Xeon Phi coprocessors performance for such kind of tasks.

Several works previously investigated the performance of the Intel Xeon Phi
coprocessors and compared its speed-up with respect to other parallel archi-
tectures, showing different outcomes according to the investigated problem. For
instance, [13] presented a comparison between Xeon Phi 5100P and Nvidia Tesla
K20s video card for the the simulation of spin systems, highlighting that a care-
ful implementation of the C code allows the Xeon Phi to compete with the GPU.
The parallelization of non-bonded electrostatic computation for Virtual Screen-
ing was introduced in [14], showing that Nvidia Tesla K20x outperforms Xeon
Phi 5100. In particular, this work emphasized that OpenMP source code must be
optimized to improve performance. In [15] the authors presented the performance
comparison for a tracking algorithm based on the Hough transform, executed on
a multi-core Intel CPU, an Nvidia Tesla K20c GPU, and an Intel Xeon Phi
7120 coprocessor. Their results highlighted that, for this particular problem, the
CPU performs better than both GPU and Xeon Phi, and the authors conclude
that an implementation with offloaded calculations to the coprocessors might be
desirable to achieve better performances. A multi-threaded version of an algo-
rithm to tackle the tensor transpose problem was given in [16], implemented for
a multicore CPU, the Intel Xeon Phi and the Nvidia Tesla K20x. The results
showed a significant speed-up achieved with the multicore CPU and the Xeon
Phi coprocessor with respect to the Nvidia GPU, since the optimization of L1
cache is easier than the implementation of a coalesced global memory access on

Parallelizing Stochastic Simulations: GPUs vs Xeon Phi 365

the GPU. Finally, [17] presented a comparison of the acceleration on Xeon Phi
5110P and Nvidia Tesla K20x for protein docking calculation based on the fast
Fourier transform. In this case, the GPU proved to be 5 times faster than the
Xeon Phi coprocessor, considering that they required comparable implementa-
tion costs.

In this work, we compare the performance of MIC, GPUs and CPUs for the
execution of different batches of parallel simulations of a mechanistic model of
prokaryotic gene regulation [18], as well as different synthetic models of increas-
ing size. So doing, we can also evaluate the impact of the model size on the
computational performance, irrespective of any actual dynamical properties (i.e.,
oscillations, bistability, etc.) that the biochemical system could present. In addi-
tion to the computational time, we evaluate the costs and power consumption
of the hardware employed, and discuss the effort to port the existing code on
parallel architectures.

The paper is structured as follows. In Sect. 2 we briefly introduce SSA, and
describe the GPU and MIC parallel architectures. In Sect. 3 we show the speed-
up obtained by Xeon Phi and Nvidia Tesla K20s with respect to CPU and
discuss the comparison of their computational performance. Finally, in Sect. 4
we conclude with some final remarks and future directions of this work.

2 Methodology

2.1 Stochastic Simulation of Biochemical Reaction Networks

A classic mathematical approach for the investigation of biochemical reaction
networks consists in defining a system of coupled Ordinary Differential Equations
(ODEs), which describe the rate of change of each molecular species according
to all the chemical reactions where species appear either as reactant or prod-
uct. The dynamics of this system can then be simulated by means of numeric
solvers [19]. However, when the biological system is characterized by molecular
species occurring in low amounts, the randomness affecting the temporal evolu-
tion cannot be neglected. In this case, stochastic algorithms represent a valuable
alternative to ODEs, which are not appropriate to capture the effects of stochas-
tic processes [2]. One of the most used procedures is the Stochastic Simulation
Algorithm (SSA) [3], which allows to achieve an exact reproduction of the tem-
poral evolution of biochemical networks, under the following assumptions: the
reactions occur within a single volume, whose physical conditions (e.g., pressure,
temperature) remain constant during the whole simulation time; the volume
is well-stirred, that is, molecules are uniformly distributed inside the reaction
volume; the amount of each molecular species is represented by the (integer)
number of molecules.

According to the stochastic formulation of chemical kinetics [3], a mech-
anistic model of a biochemical network can be defined by specifying the set
of N molecular species, S = {S1, . . . , SN}, interacting through a set of M
chemical reactions, R = {R1, . . . , RM}. A reaction is formally defined as

366 P. Cazzaniga et al.

Rj :
∑N

i=1 αjiSi
cj−→ ∑N

i=1 βjiSi, where cj is a stochastic constant encompassing
the physical and chemical properties of Rj , and αji, βji ∈ N are the stoichio-
metric coefficients associated, respectively, to the i-th reactant and to the i-th
product of the j-th reaction, for i = 1, . . . , N and j = 1, . . . , M . The state of
the system at time t is represented by the vector x = x(t) ≡ (x1(t), . . . , xN (t)),
where xi(t) ∈ N denotes the number of molecules of species Si occurring in the
system at time t. Given the system state x, SSA identifies the reaction to execute
in the next time interval [t, t+ τ], by calculating the probability of each reaction
Rj to occur in the next infinitesimal time step [t, t+ dt]. This probability is pro-
portional to aj(x)dt, being aj(x) = cj · dj(x) the propensity function of reaction
Rj , where dj(x) is the number of distinct combinations of the reactant molecules
in Rj occurring in state x. The time τ before a reaction takes place is computed

as τ = 1
a0(x)

ln
(

1
ρ1

)
, where a0(x) =

∑M
j=1 aj(x). The index j of the reaction to

be executed is the smallest integer in [1,M] such that
∑j

j′=1 aj′(x) > ρ2 · a0(x).
Finally, ρ1, ρ2 are random numbers sampled in [0,1] with a uniform probability.
We refer to [3] for further details.

The simulation of a stochastic model by means of SSA can be very time
consuming. Moreover, a single SSA run is in general not sufficient to properly
investigate the dynamics of a biochemical system, which usually requires the
collection of multiple temporal evolutions to assess the probability distribution
of chemical species at a given time. Both these issues motivate the development
of accelerated stochastic simulators.

2.2 Graphics Processing Units

The emerging field of GPGPU computing allows developers to exploit the great
computational power of modern multi-core GPUs, by giving access to the under-
lying parallel architecture that was conceived for speeding up real-time three-
dimensional computer graphics [20]. GPUs represent a valuable alternative to
traditional high-performance computing infrastructures, since they are charac-
terized by low costs and a reduced energy consumption, allowing the access to
tera-scale computing on common workstations of mid-range price. Nevertheless,
a direct porting of sequential code on the GPU is most of the times unfeasible,
due to the innovative architecture and the intrinsic limitations of this technol-
ogy. As a consequence, the full exploitation of GPUs computational power and
massive parallelism is still challenging [21].

Among the existing libraries for GPGPU computing, Nvidia’s Compute Uni-
fied Device Architecture (CUDA) is probably the most mature. CUDA is a par-
allel computing platform and programming model introduced by Nvidia in 2006,
which combines the Single Instruction Multiple Data (SIMD) architecture with
multi-threading and automatically handles the conditional divergence between
threads. However, this flexibility has a drawback, since any divergence of the
execution flow among threads results in a serialization of instructions execution,
affecting the overall performances.

Parallelizing Stochastic Simulations: GPUs vs Xeon Phi 367

Fig. 1. Architecture of CUDA’s threads and memory hierarchy. Left side. Threads
organization: a kernel is invoked from the CPU (the host) and is executed in multiple
threads on the GPU (the device). Threads are organized in three-dimensional structures
named blocks, which are organized in three-dimensional grids. The programmer must
decide the dimensions of blocks and grids before the kernel launch. Right side. Memory
hierarchy: threads can access data from multiple kind of memories, all with different
scopes and features. Registers and local memories are private for each thread; shared
memory lets threads belonging to the same block communicate, and has low access
latency; all threads can access the global memory, which suffers of high latencies, but
it is cached since the introduction of the Fermi architecture; texture and constant
memory can be read from any thread and are equipped with a cache as well.

Following the naming conventions used in CUDA, a C/C++ function, called
kernel, is loaded from the host (the CPU) to the devices (one or more GPUs)
and replicated in many copies named threads. Threads can be organized in three-
dimensional structures named blocks which, in turn, are contained in three-
dimensional grids (Fig. 1, left side). Whenever the host runs a kernel function,
the GPU creates the corresponding grid and automatically schedules each block
of threads on an available streaming multi-processor of the GPU, thus allowing
a transparent scaling of performances on different devices. GPUs are equipped
with different types of memory (Fig. 1, right side). The GPU memory hierarchy
consists in the global memory (accessible from all threads), the shared mem-
ory (accessible from threads of the same block), the local memory (registers
and arrays, accessible from owner thread), and the constant memory (cached
and not modifiable). The best performances in the execution of CUDA code are
achieved by exploiting the constant and shared memories as much as possible.
Unfortunately, they are very limited resources; on the contrary, the global mem-
ory is very large (thousands of MBs), but suffers of high latencies. In order to
mitigate this issue, starting from the Fermi architecture the global memory has
been equipped with a L2 cache.

Despite the remarkable advantages concerning the computational speed-up,
computing with GPUs usually requires either the re-design or the development

368 P. Cazzaniga et al.

and implementation of ad hoc algorithms, since GPU-based programming sub-
stantially differs from CPU-based computing. As a consequence, scientific appli-
cations of GPUs might undergo the risk of remaining a niche for few specialists.
To avoid such limitations, several packages and software tools for GPUs were
recently released for the study of biological systems (see, e.g., [11,12,22]), so that
also users with no knowledge of GPUs hardware and programming can access
the high-performance computing power of graphics engines.

2.3 Many Integrated Core Architecture

The Xeon Phi is a coprocessor developed by Intel, based on the concept of Many
Integrated Core (MIC) architecture. A single MIC integrates multiple cores based
on the x86 instruction set, interconnected by means of an on-die bidirectional
ring, which also connects the GDDR memory controllers (GDDR MC) and the
PCI express (PCIe) interface logic (Fig. 2). Each core of the MIC can run up to
4 simultaneous threads in hardware and is equipped with a 512-bit wide vector
unit (VPU) with 32 vector registers per thread. VPUs allow a further level of
parallelism, by executing up to 8 double-precision operations per cycle. Each core
is also equipped with a L2 cache, which is kept coherent by a global-distributed
tag directory (TD). Similarly to GPUs, Xeon Phi coprocessors are connected to
the main host computer through a PCIe system interface; differently from GPUs,
Xeon Phi machines do not rely on a SIMD paradigm and run an embedded Linux
μOS. Thanks to the OS and the x86 technology, the main advantage of Xeon
Phi is the capability of leveraging the existing software for regular Intel (and
compatible) processors. Specifically, the Xeon Phi can be programmed in two
ways: the native mode, in which the application runs directly on the Xeon Phi
and communicates with the host by means of the system bus, exploiting multi-
threading libraries like openMP and MPI; the offload mode, in which the main
application on the host offloads a portion of highly parallel code, defined by
means of compiler directives.

Fig. 2. Scheme of the Intel Xeon Phi coprocessor. It is composed of a bidirectional
ring interconnecting multiple processing cores, caches, memory controllers and a PCI
express interface.

Parallelizing Stochastic Simulations: GPUs vs Xeon Phi 369

In this work we rely on the native mode to investigate the computational
speed-up that can be realized without the need of reimplementing or modifying
the source code.

3 Results

To compare CPUs, GPUs and Xeon Phi coprocessors, we exploited EURORA
(EURopean many integrated cORe Architecture [23]), a supercomputer created
by the Italian consortium CINECA. This machine—designed to satisfy the most
relevant HPC constraints (sustainable performance, space occupancy and costs)—
combines multiple state-of-the-art accelerators, i.e., Intel Xeon Phi coprocessors
and Nvidia GPUs based on the Kepler architecture. Specifically, EURORA con-
sists of 64 compute nodes, and is equipped with a total of 64 Intel Xeon Phi 5120D
coprocessors (60 cores, clock 1.05 GHz) and 64NvidiaTeslaK20GPUs (2496 cores,
clock 706 MHz). Half of the compute nodes are equipped with Intel Xeon Sandy-
Bridge E5-2658 (8 cores, clock 2.10 GHz); the other half of the compute nodes are
equipped with Intel Xeon SandyBridge E5-2687W (8 cores, clock 3.10 GHz). In our
tests, we considered the nodes equipped with the E5-2687W processors as reference
CPUs. Thanks to its peculiar hybrid architecture, EURORA represents an ideal
machine for a direct comparison between CPUs, GPUs and Xeon Phi coproces-
sors, exploited for the same intensive computation. In particular, we compare the
computational performance of these three architectures for the specific task of exe-
cuting stochastic simulations of biochemical systems, as described hereafter.

3.1 Experimental Setting

We implemented two different versions of SSA: one compatible with the Intel
Xeon SandyBridge E5-2687W and the Intel Xeon Phi 5120D, and one specifically
conceived for the Nvidia Tesla K20 architecture. Both versions were implemented
in C language, with the exception of CUDA kernels. CPU and MIC exploit the
Intel Math Kernel Library for the generation of random deviates. The CUDA
version exploits peculiar GPU memories for the state of the system (which is
stored in the shared memory) and the matrices of stoichiometric coefficients
(which are stored in the constant memory).

To compare the performances of the three architectures for SSA execution,
in the first batch of tests we performed an increasing number of simulations on
the CPU, GPU and MIC of a biological model describing a prokaryotic gene
regulatory network (PGN) [18]. In all simulations we stored 1000 time points of
the dynamics of all species.

In the PGN, a gene (DNA), transcribed into the messenger RNA (mRNA)
and translated into a protein (P), is inhibited by the binding with a dimer (P2)
of the protein itself (DNA · P2). The model consists in 8 chemical reactions:
R1: DNA+P2

c1−→ DNA·P2; R2: DNA·P2
c2−→ DNA+P2; R3: DNA

c3−→ DNA+
mRNA; R4: mRNA

c4−→ λ; R5: 2P
c5−→ P2; R6: P2

c6−→ 2P ; R7: mRNA
c7−→

mRNA + P ; R8: P
c8−→ λ, where λ denotes the degradation of the chemical

370 P. Cazzaniga et al.

Fig. 3. Comparison of the running time to execute an increasing number of stochastic
simulations of the PGN model on the three different architectures: CPU (left bars),
MIC (middle bars) and GPU (right bars). The solid line represents the estimation of
the running time on the MIC assuming a number of cores larger than 60: a linear
regression highlights the degradation of performances when the number of parallel
threads is larger than 240. In all tested cases, the GPU largely outperforms the other
architectures. Moreover, the running time of the GPU remains basically constant up to
320 parallel simulations, thanks to the large number of available cores.

species. The stochastic constants used in the following tests are (c1, . . . , c8) =
(0.1, 0.7, 0.35, 0.3, 0.1, 0.9, 0.2, 0.1). The initial state of the system assumes 250
molecules of DNA and 0 molecules of the other species.

In the second batch of tests we evaluated the impact of the size of the bio-
chemical reaction network on the computational performance of the Intel Xeon
Phi coprocessor. Since for these tests we were not interested in any dynami-
cal properties (i.e., oscillations, bistability, etc.) that the system could present,
we exploited the methodology used in [10,24] to randomly generate different
synthetic models, having a number of species N and of reactions M equal to
(20 × 20), (40 × 40), (80 × 80), (160 × 160), and stochastic constants randomly
sampled in the uniform interval (0, 1).

3.2 Computational Results

In Fig. 3 we show the results concerning the first batch of tests, related to the
comparison of the running times for the simulation of the PGN model on the
CPU (left bars), MIC (middle bars) and GPU (right bars). These results clearly
highlight that GPUs outperform the other architectures. It is worth noting that
the running time of GPU remains constant throughout all tests, thanks to the
high number of cores it contains, which allow to completely distribute all the
simulations on this architecture. As a matter of fact, during the simulation of
the PGN model, the K20 was far from a full usage of resources. In the case of
320 parallel simulations of the PGN model, the GPU achieves a speed-up of 26×
with respect to the CPU and of 18.5× with respect to Xeon Phi. Concerning the
MIC, we obtained a speed-up of 1.4× with respect to the CPU.

The acceleration provided by MIC increases up to 240 simulations, thanks
to the fact that Xeon Phi executes up to 4 concurrent threads on each one of
the 60 available cores. In order to highlight this trend, we estimated by linear

Parallelizing Stochastic Simulations: GPUs vs Xeon Phi 371

Fig. 4. Break-even of the running time to execute stochastic simulations of the PGN
model on the three different architectures: CPU (left bars), MIC (middle bars) and
GPU (right bars). When a few simulations are executed, the CPU outperforms the other
architectures thanks to its higher clock frequency. The GPU become advantageous
when more than 10 simulations are executed. The break-even for the MIC is around
20 simulations.

regression the running time of MIC in the case of 280 and 320 simulations,
using the running times obtained in the case of 1, . . . , 240 simulations (Fig. 3,
solid line). We observe that the measured running times are higher than the
expected running time of MIC in the case of 280 and 320 simulations, proving
that launching more than 240 simulations (4 threads × 60 cores) reduces the
speed-up provided by the MIC (from 1.7× to 1.4×, in these tests), since 240
simulations fully occupy the computing resources.

It is also worth noting that when only a few simulations need to be executed,
the CPU outperforms both GPU and MIC thanks to its higher clock frequency.
Figure 4 shows that the break-even between CPU and MIC is around 20 simu-
lations, while the break-even between CPU and GPU is around 10 simulations.
However, a further increase of the speed-up achieved by MIC could be obtained
by exploiting MIC’s vectorial instruction set, which is currently not considered
in our SSA implementation.

In the second batch of tests, we investigated the influence of the size of the
simulated model (i.e., number of species and reactions) on the performance of
the Xeon Phi coprocessor. Figure 5 shows the results obtained by increasing
both the number of parallel simulations and the size of the model. As expected,
the running time increases with the number of parallel simulations; however, a
4-fold increase of the size of the synthetic model leads to a 2-fold increase of the
running time.

Finally, we highlight that the performance of GPUs (since the introduc-
tion of the Fermi architecture) and MICs are affected by the Error Correct-
ing Code (ECC), used to avoid any error caused by natural radiations [25].
This functionality—which is enabled on both accelerators on the EURORA
supercomputer—introduces a relevant overhead due to bits verification. Tests
performed by Fang et al. revealed that ECC causes a bandwidth reduction
greater than 20% on the MIC [25]. GPUs support ECC over the whole mem-
ory hierarchy, including global memory, L1 and L2 caches, and registers [20].

372 P. Cazzaniga et al.

Fig. 5. Comparison of MIC running time to execute an increasing number of stochastic
simulations (from 1 to 240) of synthetic models having a number of species N and of
reactions M equal to (20×20), (40×40), (80×80), (160×160), and stochastic constants
randomly sampled in the uniform interval (0, 1).

According to Kraus et al. [26], also for GPUs the bandwidth reduction is around
20%. Thus, the speed-up that we obtained using GPUs and MIC for stochas-
tic simulation (26× and 1.4×, respectively) could still increase by disabling the
ECC functionality.

4 Conclusion

We investigated the performances of different architectures—focusing on the
Intel Xeon Phi coprocessors—to perform stochastic simulations of the dynamics
of mechanistic models of biological and synthetic systems. Our results highlight
how the GPU outperforms the CPU and the MIC when more than 10 simulations
are required. We believe that this analysis will facilitate the choice of a proper
parallelization methodology when a large number of independent simulations are
needed, as is the case of many computationally expensive tasks that are typical
in the study of biological systems (e.g., parameter sweep, parameter estimation,
sensitivity analysis [6,27,28]).

An additional issue that should be considered during the selection of a proper
parallel architecture concerns the costs required to port the code onto GPU and
MIC. In particular, in the case of GPGPU computing on Nvidia video cards, the
effort necessary to re-implement the source code using the CUDA programming
technique is relevant and must be taken into account. On the contrary, Xeon
Phi coprocessors should be fully compatible with CPUs; however, according to
our experience, the code has to be adapted in order to be correctly executed on
MIC (considering the native mode).

We also tested the offload capability of the Xeon Phi coprocessor, that is, the
possibility of automatically distributing independent calculations over multiple
threads (e.g., the instructions contained in a for cycle). However, our prelimi-
nary offload tests highlighted that data structures such as matrices, defined by
means of multiple pointers to the memory, should be avoided in order to auto-
matically exploit this parallelization mode; otherwise, the source code must be

Parallelizing Stochastic Simulations: GPUs vs Xeon Phi 373

re-implemented. As a future development of this work, we plan to modify our
implementation of the SSA algorithm, by using linear data structures which can
leverage the offload compiler directives, necessary to parallelize the appropriate
regions of the source code (e.g., the evaluation of propensity functions and the
update of the system state) with Xeon Phi coprocessors.

An additional comparison between different architectures might be based on
the evaluation of the cost, power consumption and theoretical peak performance.
In the case of the devices tested in this work, the CPU Intel Xeon SandyBridge
E5-2687W has a cost of around $1800, with a power consumption of 150 W and
theoretical peak performance of 198.4 GFlops. The characteristics of the other
devices are: Intel Xeon Phi 5120D $ 2700, 245W, 2022 GFlops, and Nvidia Tesla
K20 $ 2700, 225 W, 3520 GFlops. Considering this information, to achieve the
theoretical peak of the Tesla K20 GPU, either 18 CPUs or 2 Xeon Phi 5120D
would be required (with a consequent increase in terms of cost and power con-
sumption). However, to fully leverage the computational power of these devices,
CPU’s multi-threading and MIC’s vectorial instruction set should be exploited,
both requiring further relevant modifications of the existing source code.

References

1. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical
modelling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203 (2006)

2. Wilkinson, D.: Stochastic modelling for quantitative description of heterogeneous
biological systems. Nat. Rev. Genet. 10, 122–133 (2009)

3. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

4. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A
188, 404–425 (1992)

5. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-
leaping simulation method. J. Chem. Phys. 124, 044109 (2006)

6. Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: Reverse engineer-
ing of kinetic reaction networks by means of Cartesian Genetic Programming and
Particle Swarm Optimization. In: IEEE Congress of Evolutionary Computation,
pp. 1594–1601 (2013)

7. Tian, T., Burrage, K.: Parallel implementation of stochastic simulation of large-
scale cellular processes. In: 8th International Conference on High-Performance
Computing in Asia-Pacific Region, pp. 621–626 (2005)

8. Kent, E., Hoops, S., Mendes, P.: Condor-COPASI: high-throughput computing for
biochemical networks. BMC Syst. Biol. 6, 91 (2012)

9. Macchiarulo, L.: A massively parallel implementation of Gillespie algorithm on
FPGAs. In: International Conference of the IEEE on Engineering in Medicine and
Biology Society, pp. 1343–1346 (2008)

10. Nobile, M.S., Cazzaniga, P., Besozzi, D., Pescini, D., Mauri, G.: cuTauLeaping:
A GPU-powered tau-leaping stochastic simulator for massive parallel analyses of
biological systems. PLoS ONE 9, e91963 (2014)

11. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: cupSODA: A
CUDA-powered simulator of mass-action kinetics. In: Malyshkin, V. (ed.) PaCT
2013. LNCS, vol. 7979, pp. 344–357. Springer, Heidelberg (2013)

374 P. Cazzaniga et al.

12. Nobile, M.S., Cazzaniga, P., Besozzi, D., Mauri, G.: GPU-accelerated simulations
of mass-action kinetics models with cupSODA. J. Supercomput. 69, 17–24 (2014)

13. Bernaschi, M., Bisson, M., Salvadore, F.: Multi-Kepler GPU vs. multi-Intel MIC
for spin systems simulations. Comput. Phys. Commun. 185, 2495–2503 (2014)

14. Fang, J., Varbanescu, A.L., Imbernon, B., Cecilia, J.M., Perez-Sanchez, H.: Parallel
computation of non-bonded interactions in drug discovery: NVidia GPUs vs. Intel
Xeon Phi. In: Proceedings of the 2nd International Work-Conference on Bioinfor-
matics and Biomedical Engineering. pp. 579–588 (2014)

15. Halyo, V., LeGresley, P., Lujan, P., Karpusenko, V., Vladimirov, A.: First evalu-
ation of the CPU, GPGPU and MIC architectures for real time particle tracking
based on Hough transform at the LHC. J. Instrum. 9, P04005 (2014)

16. Lyakh, D.I.: An efficient tensor transpose algorithm for multicore CPU, Intel Xeon
Phi, and NVidia Tesla GPU. Comput. Phys. Commun. 189, 84–91 (2015)

17. Shimoda, T., Suzuki, S., Ohue, M., Ishida, T., Akiyama, Y.: Protein-protein dock-
ing on hardware accelerators: comparison of GPU and MIC architectures. BMC
Syst. Biol. 9, S6 (2015)

18. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based
multi-swarm PSO method for parameter estimation in stochastic biological systems
exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S.
(eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012)

19. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley
& Sons, New York (2003)

20. Nickolls, J., Dally, W.J.: The GPU computing era. Micro IEEE 30, 56–69 (2010)
21. Farber, R.M.: Topical perspective on massive threading and parallelism. J. Mol.

Graph. Model. 30, 82–89 (2011)
22. Harvey, M.J., Fabritiis, G.D.: A survey of computational molecular science using

graphics processing units. WIREs Comput. Mol. Sci. 2, 734–742 (2012)
23. Cavazzoni, C.: EURORA: a European architecture toward exascale. In: Proceed-

ings of the Future HPC Systems: The Challenges of Power-Constrained Perfor-
mance, 1, ACM (2012)

24. Komarov, I., D’Souza, R.M., Tapia, J.J.: Accelerating the Gillespie τ -leaping
method using graphics processing units. PLoS ONE 7, e37370 (2012)

25. Fang, J., Varbanescu, A.L., Sips, H., Zhang, L., Che, Y., Xu, C.: Benchmarking
Intel Xeon Phi to guide kernel design. Technical report, Delft University of Tech-
nology, Netherlands (2013)

26. Kraus, J., Pivanti, M., Schifano, S.F., Tripiccione, R., Zanella, M.: Benchmarking
GPUswith a parallel Lattice-Boltzmann code. In: IEEE 25th International Sym-
posium on ComputerArchitecture and High Performance Computing, pp. 160–167
(2013)

27. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: The
role of feedback control mechanisms on the establishment of oscillatory regimes in
the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinform. Syst. Biol.
2012 (2012)

28. Gunawan, R., Cao, Y., Petzold, L.R., Doyle, F.J.: Sensitivity analysis of discrete
stochastic systems. Biophys. J. 88, 2530–2540 (2005)

Cost of Bandwidth-Optimized Sparse Mesh
Layouts

Martti Forsell1,2,3, Ville Leppänen1,2,3(B), and Martti Penttonen1,2,3

1 VTT, Computing Platforms, Oulu, Finland
2 Department of Information Technology, University of Turku, Turku, Finland

3 Department of Computer Science, University of Eastern Finland, Joensuu, Finland
Ville.Leppanen@utu.fj

Abstract. The requirements of interconnection networks for shared
memory chip multiprocessors (CMP) differ from those used in traditional
application-specific networks on chip (NOC). This is because modern
CMP cores tend to inject memory references to the network frequently
(up to once per clock cycle) and the latency of references should be as
low as possible. The throughput computing paradigm is a mechanism to
trade the low latency requirement to high throughput in CMPs by over-
lapping memory references from processors with a help of multithreading.
To meet the bandwidth requirements of throughput computing CMPs we
have studied using d-dimensional sparse meshes and tori. Unfortunately
it has turned out that either there is too much bandwidth leading to high
silicon area and energy consumption of the links get longer decreasing
the clock rate. In this paper we study the cost of bandwidth-optimized
2-dimensional meshes and tori for CMPs using the throughput comput-
ing paradigm. We present the layout as well as determine link length,
degree of node and compare them to those of d-dimensional meshes and
tori. For area and power efficiency considerations, we also give estimates
on silicon area and power consumption.

Keywords: NOC · Under-populated networks · Layout · Sparse
networks · Throughput computing

1 Introduction

Network-on-chip (NOC) is an extensively studied design paradigm for commu-
nication subsystems of highly integrated multi-resource systems like e.g. chip
multiprocessors (CMP) and Systems-on-Chip (SOC) [4,12]. Majority of NOC
investigations focus on connecting a set of heterogeneous resources (application-
specific) [20]. Such interconnection designs are often done without supporting
scalability with some fixed communication throughput requirement. We consider
that there exists growing importance for supporting high-performance systems
aimed at general purpose use. Moreover, we consider it likely that such sys-
tems are based on high-bandwidth networks and rather homogeneous resource
structures due to the usefulness of re-programmability and design re-use.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 375–389, 2015.
DOI: 10.1007/978-3-319-21909-7 37

376 M. Forsell et al.

The purpose of this paper is to consider so-called underpopulated – or sparse –
NOCs supporting high-throughput computing. Specifically, we aim to estimate the
efficiency of proposed layouts by using an analytical methodology. For throughput
computing, it is characteristic the processing nodes are enabled to useful opera-
tions, although the executed computations as such might contain suboperations
with long delays like loading/storing data to/from the memory [17]. The essential
“trick” of efficient throughput computing is to hide the latency of such long oper-
ations simply by interleaving elementary instructions (or sequences) from several
threads at each computing node. The latency hiding succeeds we there is enough
work to distribute (enough executable threads per node) and enough data mov-
ing capacity (enough network bandwidth). In this paper we only consider sparse
networks with enough bandwidth.

Most NOC related studies consider networks, where all nodes can participate
into communication by being original sources and sinks. In this paper, we call
these “ordinary” networks as dense networks (fully populated). Dense networks
have problems with scalability under constant throughput assumption. Con-
sider that nodes are assumed to inject (and received) messages/packets at some
constant rate 1/α, meaning one message/packet per α (logical program) steps.
It is easy to see that dense constant degree networks cannot be scaled up while
still preserving the injection rate 1/α, since scaling means longer expected route
for the messages and thus higher expected needed message moving capacity per
node (but that remains constant for constant degree networks). Consequently,
dense networks have insufficient communication bandwidth considering scala-
bility, and the only practical possibilities are to either increase communication
locality or limit the communication frequency of nodes (that is decrease the α).

An an opposite to dense networks are so-called underpopulated networks [2]
or sparse networks [1,5–8,11,15,22–25]. In sparse networks, all nodes are not
sources and sinks, only some fraction. A large fraction of the nodes are interme-
diate nodes enabling sufficiently increased communication capacity to meet the
needs of throughput computing. The focus of this paper is in presenting layouts
for mesh-based scalable sparse network topologies that are capable to support
some constant (sustained) injection rate 1/α, independent of the network size.

Despite the rather large interest towards various kind of the sparse networks,
only a few studies consider the NOCs context. Moreover, comparisons regarding
the efficiency of layouts for sparse network has previously studied only by us in [6].
In this paper, we extend the analysis with new kinds of sparse mesh-based topolo-
gies and new layouts.

In Sect. 2 we present on the basics of cost metrics for layouts of sparse net-
works. Actual used metrics are then defined based on the basic framework in
Sect. 4. In all cases, layout is made for plane (2D). In Sect. 3, we present def-
initions for various sparse networks (both sparse meshes and tori) and natu-
rally also consider layouts for them. Layouts are given for 2D, 3D and 4D ver-
sions of mesh-based networks. Moreover, we also describe a recursive layout
construction method for higher dimensions. In Sect. 4 we make a comparison of
actual layouts. Our results vary network sizes and provide information on the

Cost of Bandwidth-Optimized Sparse Mesh Layouts 377

power consumption, maximum frequency, chip area, frequency/power and fre-
quency/area. Finally, conclusions are given in Sect. 5.

2 Basics of Layout Structures

2.1 Setting for Layouts

In the following, we denote by p the NOC size meaning that there exists p
source/sink nodes communicating with each other – exchanging messages by
using the network connections. Moreover, we assume that each such node of the
NOC can communicate with any other node. We make no particular assumption
about the nature of communication. Considering the efficiency of routing, the
distribution of routing distances of course matters. Naturally low latency is a
desired property, but we assume no means to increase locality of communication
and thus decrease expected latency – rather we consider there to exist rather
high average latency L, and require that the following bandwidth and slackness
conditions are met. By the slackness condition we assume that in a time period of
L steps, a node produces at most L packets to be sent. The bandwidth condition
on the other hand requires that the network capacity makes it possible to move
pφ messages per time step, where φ is the network diameter. Thus, we set the
latency L to be proportional to 2φ.

The meaning of bandwidth condition above is that the network enables
throughput computing. In general, without any assumptions on communication
patterns, it can be proved that having constant degree network and the require-
ment to move Ω(pφ) messages per logical step implies that at most a fraction of
O(1/φ)’th of nodes can be sinks/sources. Ordinary dense meshes are unable to
support sustained throughput computing and thus those are not considered in
this paper.

For simplicity, we make the assumption that the NOC layout is a grid-like cell
structure consisting of

√
p × √

p similar cells. As shown in Fig. 1, a cell consists
of a slot for processing node, and an infrastructure for intermediate network,
consisting of wiring and some intermediate router nodes which are considered to
be very much simpler components (in size) than the processing nodes. Typically,
the memory of processing node requires a lot of chip area. See also Fig. 2 for a
more concrete illustration.

In this paper, we assume uniform size w×w for all the cells so that w = W/
√

p
and the side length of chip is W . For the total area of each cell, we also include
(besides processing node located into the cell) the area related to the wiring that
connects the nodes to each other, and thus the area is related to W and w. For
the distance from a node within (i, j) to a node in another cell (k, l) we use the
Manhattan metrics, i.e., it is (|k − i| + |l − j|) × w. However, the connections
between intermediate nodes inside a cell are considered to have a small non-zero
length independent of W . We consider only regular networks, we all nodes have
a uniform (topology dependent) in-degree and out-degree.

378 M. Forsell et al.

infrastructure

slot

cell

Fig. 1. An illustration on grid-noc structure.

2.2 On Cost Metrics

As the purpose of this paper is to compare various sparse networks and their
layouts, we need a cost metrics that is normalized with respect to p, the num-
ber of processing nodes. As individual metrics we will use e.g. normalized fre-
quency/chip area and frequency/power. It is tempting to consider the bandwidth
or routing capacity as a parameter for sparse network cost metric. However, the
bandwidth depends on p and thus it is implicitly taken into account for area and
power).

In Sect. 3, we will describe layouts for sparse networks defined in the following
section. The purpose of describing layouts exactly is to calculate values for a set
of properties as the basis of cost evaluation of a given sparse network. We assume
that in all cases a sparse network N has p sink/source nodes with resources and
IN (p) intermediate routing nodes. For layout descriptions, we assume that one
slot is reserved for each sink/source node + its resources and such slots are
distributed evenly over the layout area. As a practical simplification, we assume
the overall chip area to consists of

√
p × √

p equally sized rectangular cells so
that all cell consists of one slot, a set of allocated intermediate routing nodes,
and the needed crossing wiring. Despite the regularity of sparse network, due to
the topology of sparse network, allocation of nodes to cells, and consequently
due to the layout of wiring, the actual cells can be quite different. For the above
reasons, we make no common assumption on the slot position within each cell.
In the following, we call the above layout as grid-noc layout, see Fig. 1.

Finally, for being able to compare grid-noc layouts, we denote by wL(p) the
width of cells for given layout L. Estimated wire length distribution is denoted
by a function of distL : 0 . . . 2

√
p �→ R whereas distL(i) = x simply means that

L has x wires of length ≈ wL(p)× i. In distL, the wires placed fully inside a cell
are considered to have wire length 0 (yet, we use value 0.5 in the evaluations of
Sect. 4). For non-local wires between two nodes in different cells, we use y×wL(p)
as wire length distance estimation, where y is the Manhattan distance.

Cost of Bandwidth-Optimized Sparse Mesh Layouts 379

3 Definitions and Layouts for Mesh-Based Networks

Many sparse network topologies have been defined in the literature. In fact, it
is possible to define a sparse network using almost any dense network as the
basis and setting only a fraction of the nodes as “processors”. As there are
plenty of such networks, we are interested only of some of them: On sparse
networks providing some fixed sustained throughput between the “processors”.
More precisely, we expect that there exists a constant cN so that each “processor”
of N can send/receive a message every cN ’th steps on the average.

We call scalable a sparse network topology N , if cN is independent of the size
of the network (of p). Such scalable sparse networks have special characteristics.
For a network with p sources and an average routing distance (often of the same
order as the diameter) φ, the network must be able to move Ω(pφ) packets in each
step. For a network with degree δ, it means that the network must have Ω(pφ/δ)
intermediate nodes. Scalable sustained throughput is not possible otherwise.
Notice that this is sensible when such intermediate nodes are much simpler than
the sources. Also, although a packet has an average latency Ω(φ) to arrive to
its target, the sources and sinks can send and receive packets at constant rate.
Assuming that computations on the processors tolerate this latency (as is with
throughput computing), then the processors do no busy waiting and are fully
employed by computations.

Next, we present sparse mesh-based networks – most of which are previ-
ously defined in the literature. For the networks, we give a corresponding grid-
noc layout that we believe to be the best and state properties of such layouts
(e.g. wire length distributions). We should mention that non-mesh-based sparse
solutions have also been proposed: for the butterfly network (used e.g. in the
SB-PRAM [1] and Fluent machine [18,19] constructions); for the cube-connected-
cycles (CCC) in [15] as it can be seen as a sparse version of the hypercube
(constant-degree version). Sparse version of mesh of trees network is quite
natural – it has been studied in [13] and also used in the Paraleap [3]. However,
we focus on sparse meshes/tori (e.g. since we have used those e.g. in Eclipse [5,8]
and investigated in [11]).

3.1 Definition of Sparse Meshes

In the literature, there are several definitions for sparse meshes/tori. In [7,14],
the processing nodes (source/sink) are placed on the outer surface of mesh – this
is problematic considering tori, since there is no natural outer surface. Thus, we
adopt the most natural definition used in several publications [5,10,11,21]: The
p processor nodes are placed as a (d − 1)-dimensional plane. This definition is
also natural considering tori.

Definition 1. A regular d-dimensional n-sided mesh is a graph Gn,d
mesh = (V,E),

where
V =

{
Va1,a2,...,ad

∣∣∣0 ≤ ai ≤ n − 1, 1 ≤ i ≤ d
}

380 M. Forsell et al.

is a set of p = nd nodes, and

E =
{

(Va1,a2,...,ad
, Vb1,b2,...,bd)

∣∣∣

d∑
i=1

|ai − bi| = 1, 0 ≤ ai, bi ≤ n − 1, 1 ≤ i ≤ d
}

defines the connections between the nodes (no wrap-around connections allowed).
The degree of a mesh is 2d, and the diameter is d d

√
p − d.

Definition 2. A regular d-dimensional n-sided toroidal mesh (torus) is a graph
Gn,d

torus = (V,E), where

V =
{

Va1,a2,...,ad

∣∣∣0 ≤ ai ≤ n − 1, 1 ≤ i ≤ d
}

is a set of nd nodes, and

E =
{

(Va1,a2,...,ad
, Vb1,b2,...,bd)

∣∣∣
d∑

i=1

(ai − bi) mod n = 1, 0 ≤ ai, bi ≤ n − 1, 1 ≤ i ≤ d
}

defines the connections between the nodes. The degree of a torus is 2d, and the
diameter is d

2
d
√

p (if n mod 2 = 0). The torus is completely symmetric.

3.2 Layouts

The layouts user here for sparse meshes/tori are defined already in [6]. We review
the definition next. A layout for a 2-d n × n sparse mesh is constructed by
mapping all nodes Vj,0, . . . Vj,n−1 to cell Cj . The n − 1 connections along the
Y-axis are all within cells, and thus from the view point of this study, the actual
layout of the nodes within the cells is not seen an interesting issue. Only, the
connections along X-axis are implemented as purely between the cells. Notice
that there are only n connections between each pair of cells Cj and Cj+1, for
0 ≤ j < n − 1. In order to minimize the length of such connections, the cells
should be organized in form of a “snake”, where the cell Cj+1 is always a neighbor
of the cell Cj , for 0 ≤ j < n − 1, in the underlying grid. It is easy to see that
there exists a plenty of such “snakes” for all values of n.

Let distd,nsm(x) denote the number of connections of length x cells in a
d-dimensional n-sided sparse mesh. Connections that are internal to a cell are
considered to have length 0. Thus, dist2,nsm(0) = n× (n−1), and also dist2,nsm(1) =
n × (n − 1). Clearly, dist2,nsm(x) = 0, for x > 1.

The case of 2-d n×n tori is almost identical. The toroidal connections within
each cell are easy to arrange. The cells Cn−1 and C0 can also be placed next to
each other, if n is even. The existence of such a Hamiltonian cycle is easy to see.

Cost of Bandwidth-Optimized Sparse Mesh Layouts 381

However for an odd n, no such cycle seems to exist – yet, only one pair of cells
needs to placed at distance 2 cells from each other.

Let distd,nst (x) denote the number of connections of length x cells in d-
dimensional n-sided sparse tori. Thus, dist2,nst (0) = n2. Also dist2,nst (1) = n2,
if 2|n. If n is odd, then dist2,nst (1) = n(n − 1) and dist2,nst (2) = n.

When constructing layouts for higher dimensional sparse meshes and tori,
the above constructions are useful. E.g., the layout for a 3D sparse mesh is a
generalization of the 2D case: Simply pack each pile of nodes along z-axis as a cell.
We illustrate the situation in Fig. 2 and omit the the more detailed descriptions
of layouts.

x=0 x=1 x=2 x=3

y=0

y=1

y=2

y=3

Fig. 2. 3D sparse mesh: A grid-noc layout.

3.3 Bandwidth-Optimized 2-Dimensional Meshes and Tori

The bandwidth or data moving capacity of previously discussed sparse meshes
and tori is in fact unnecessarily large. For example, if in the d-dimensional sparse
torus packets would be routed by using the axes only in one direction, the average
routing distance between processor nodes would be d(n − 1)/2. Since a torus is
symmetric, the average routing distance from any node can be evaluated by
considering the distances from the corner node (0, 0, . . . , 0). It is easy to observe
that the sum of such routing distances to all processor nodes from the corner
node is d×nd−2 ×n(n−1)/2. Since there are nd−1 processors, the claim follows.
If routing is done to both directions along each axes, the average routing distance
is halved to d(n − 1)/4. As the d-dimensional sparse torus can move d packets
(or 2d) per intermediate node at each step, the data moving capacity exceeds
the minimal data moving requirement by a factor

382 M. Forsell et al.

dnd

nd−1 × d(n − 1)/4
≈ 4.

Similar calculations can be presented for the sparse meshes, see e.g. [5].
Since, the bandwidth can be regarded sub-optimal in the presented sparse

torus and mesh network, we consider bandwidth-optimized variants of the 2-
dimensional meshes and tori by organizing the processor and routing nodes in
the way done e.g. in [8].

Definition 3. A bandwidth-optimized 2-dimensional sparse mesh (torus) is as
a regular 2-dimensional p/4 × p/4-sided mesh (torus) where all the nodes are
intermediate nodes. The processors are extra nodes that are evenly distributed
across the network and attached to groups of

√
p/4×√

p/4 adjacent intermediate
nodes so that the processor at processor-wise position (ai, aj) is attached to the
intermediate nodes at intermediate node-wise positions (ak, al), where i

√
p/4 ≤

k ≤ (i + 1)
√

p/4 − 1 and j
√

p/4 ≤ l ≤ (j + 1)
√

p/4 − 1.

As an illustration, in a bandwidth-optimized 2-dimensional 8 × 8 processor
sparse mesh, each processor node is attached to 2×2 group of intermediate nodes.
Both 2-dimensional sparse mesh and torus have p2/16 intermediate nodes.

Definition 4. A bandwidth-optimized 2-dimensional multimesh (torus) is as
a collection of

√
p/4 interleaved regular 2-dimensional

√
p-sided meshes (tori)

where all the nodes are intermediate nodes. The processors are extra nodes that
are evenly distributed across the network and attached to groups of corresponding
intermediate nodes from the interleaved meshes (tori) so that the processor at
processor-wise position (ai, aj) is attached to the intermediate nodes at interme-
diate node-wise positions (ai, aj) at each mesh (torus).

Figure 3 shows a bandwidth optimized 2-dimensional 8×8 processor multi-
mesh, where the small white squares are intermediate nodes grouped as groups
of 2 nodes and large grey squares are processors. The number of intermediate
nodes for 2D multimesh (and torus) is

√
p × √

p × √
p/4 = p3/2/4.

The layouts of the 2-dimensional bandwidth optimized sparse meshes and
tori are straightforward since the processors and attached intermediate nodes
are already organized as cells.

3.4 Summary of Properties for Comparison

To compare the layouts presented above, we have calculated a set of characteris-
tic values: I: amount of intermediate routers, Δ: the max degree of nodes, lenavg:
the average wire length of links, wt: the max amount of parallel wires (X-axis
or Y-axis) crossing a cell, lenmax: max length of links, and logical diameter of
sparse network. These characteristic values are shown in Table 1.

Cost of Bandwidth-Optimized Sparse Mesh Layouts 383

Fig. 3. A layout of a 2-dimensional bandwidth-optimized multi mesh. All connections
between the nodes are shown.

4 Comparison

4.1 Preliminaries

We need to link Table 1 to known properties of silicon technology. Assume a
CMP with P processors based on the layouts of Table 1. Besides a processor,
each cell consists of SRAM with Sd/P bytes data capacity, an SRAM to hold
Si/P bytes instruction, and I + 1 intermediate routers, where Sd and Si are
amounts of data / instruction SRAM per CMP, respectively.

We assume synchronous NOC operation, and therefore for interconnects
the minimum clock cycle is Dc = Ds + 2Dl, where delays Ds and Dl are for
the intercommunication switch and the signal of longest interconnect (that is
lenmax × wL). Due to handshaking, we count the signal delay twice. The max
clock frequency is 1/Dc.

Typically in NOCs, an interconnect is implemented as multiple layers of
parallel wires connecting adjacent switches. The signal delay in such a setting
can be approximated using so-called parasitic wire model and employing an
optimal number of scaled repeaters as shown in [16] and in our 100+ parameter
performance-area-power model [9]. The details are not discussed here.

As discussed in [6], based on the models, the silicon area of a cell is Ac =
(
√

Ap + Am + As(I + P)/P + Wl × wt)2, where Ap is the area of the processor,
Am is the area taken by the local instruction and data SRAM blocks, As is the
area of the interconnection switch, and Wl is the width of a link and wt is the
maximum number of parallel links per row and column. Similarly in [6], it is
argued that the power consumption of CMP is Pcmp = P (Pp + Pm + Ps(I +
P)/P) + Pw, where Pp is the power consumption of a processor, Pm is the

384 M. Forsell et al.

Table 1. Properties of layouts for sparse networks.

Network layout p I Δ wt lenavg lenmax logical diameter

Sparse mesh, 2d n p2 − p 4 2p 0.75 1 2p

Sparse torus, 2d n p2 − p 4 3p 0.75 1 p

Sparse mesh, 3d n2 p3/2 − p 6 2
√

p 5/6 1 3
√

p

Sparse torus, 3d n2 p3/2 − p 6 3
√

p 1.5 2 3/2 × √
p

Sparse mesh, 4d n3 p4/3 − p 8 ≈ p1/2 ≈ p1/6 p1/6 4p1/3

Sparse torus, 4d n3 p4/3 − p 8 ≈ 2p1/2 ≈ 2p1/6 2p1/6 2p1/3

Optimized sparse
mesh, 2d

4n (p/4)2 4
√

p/4 4/
√

p 1 p/2

Optimized sparse
torus, 2d

4n (p/4)2 4
√

p/4 8/
√

p 2 p/4

Multimesh, 2d (4n2)2/3 p3/2/4 4
√

p/4 1 1 2
√

p

Multitorus, 2d (4n2)2/3 p3/2/4 4
√

p/4 2 2
√

p

power consumption of local SRAM blocks, Ps is the power consumption of an
interconnect switch, and Pw is the power consumption of the interconnect links.
We can approximate Pw by summing the power consumption of individual links
together and taking the link length distribution into account. For individual links
of length Lw the power consumption can be obtained from the equation Pl =
WlinkAwK(HCdrv + Cs/K)V 2

p /Dcycle, where Wlink is the number of parallel
wires per link, Aw is the average activity factor of the link, K is the number
of repeaters, H is the size of the repeaters, Cdrv is the input capacitance of a
minimum sized inverter, Cs is the self capacitance of the wire, Vp is the voltage,
and Dcycle is the clock cycle.

4.2 Results

Our results are shown in Figs. 4, 5, 6, 7, 8, 9, 10 and 11. To yield actual
values for the Figures, we applied standard 65 nm silicon parameters for the
models, assumed the CMP to have 8 . . . 128 processor cores, 1 MB and 0.7 MB
data/instruction SRAM, and 105 nm as the minimal global wire width. We con-
sider that the practical goodness is best illustrated with the frequency/power
and frequency/area figures.

Analysing the figure above and Table 1, we make the following observations:

– Based on Table 1, the 2-dimensional sparse meshes and tori are most costly
in terms of area for intermediate routers.

– Layouts with constant maximum length of links is possible, but only for 2D
and 3D sparse meshes and tori.

– The shortest, only 2p1/3 logical diameter is for 4D sparse torus whereas it is
longest for 2D sparse mesh (proportional to p).

Cost of Bandwidth-Optimized Sparse Mesh Layouts 385

0

200

400

600

800

1000

1200

8 16 32 64 128

Ma
xim

um
 fr

eq
ue

nc
y (

MH
z)

Number of processor nodes

2d-mesh
2d-torus
3d-mesh
3d-torus
4d-mesh
4d-torus
2d-omesh
2d-otorus
2d-mmesh
2d-mtorus

Fig. 4. Results on max clock frequencies.

0

500

1000

1500

2000

2500

3000

3500

2d-
mesh

2d-
toru

s

3d-
mesh

3d-
toru

s

4d-
mesh

4d-
toru

s

2d-
om

esh

2d-
oto

rus

2d-
mmesh

2d-
mtoru

s

Si
lic

on
 ar

ea
 (m

m
^2

)

Interconnect
Memory
Processor

Fig. 5. Results on silicon area for P = 64.

0

10

20

30

40

50

60

70

80

8 16 32 64 128

Si
lic

on
 ar

ea
 p

er
 ce

ll (
m

m
^2

)

Number of processor nodes

2d-mesh
2d-torus
3d-mesh
3d-torus
4d-mesh
4d-torus
2d-omesh
2d-otorus
2d-mmesh
2d-mtorus

Fig. 6. Results on silicon area per cell.

386 M. Forsell et al.

0

500

1000

1500

2000

2500

2d-
mesh

2d-
toru

s

3d-
mesh

3d-
toru

s

4d-
mesh

4d-
toru

s

2d-
om

esh

2d-
oto

rus

2d-
mmesh

2d-
mtoru

s

Po
we

r c
on

su
m

pt
io

n
(W

)
Interconnect
Memory
Processor

Fig. 7. Results on power consumption for P = 64.

0
5

10
15
20
25
30
35
40
45

8 16 32 64 128

Po
we

r c
on

su
m

pt
io

n
pe

r c
ell

 (W
)

Number of processor nodes

2d-mesh
2d-torus
3d-mesh
3d-torus
4d-mesh
4d-torus
2d-omesh
2d-otorus
2d-mmesh
2d-mtorus

Fig. 8. Results on power consumption per cell.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

8 16 32 64 128

Su
m

m
ed

 fr
eq

ue
nc

y/a
re

a (
MH

z/m
m

^2
)

Number of processing nodes

2d-mesh
2d-torus
3d-mesh
3d-torus
4d-mesh
4d-torus
2d-omesh
2d-otorus
2d-mmesh
2d-mtorus

Fig. 9. Results on summed frequency/silicon area.

Cost of Bandwidth-Optimized Sparse Mesh Layouts 387

0

200

400

600

800

1000

1200

8 16 32 64 128

Su
m

m
ed

 fr
eq

ue
nc

y/p
ow

er
 (M

Hz
/W

)

Number of processor nodes

2d-mesh
2d-torus
3d-mesh
3d-torus
4d-mesh
4d-torus
2d-omesh
2d-otorus
2d-mmesh
2d-mtorus

Fig. 10. Results on summed frequency/power consumption.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

8 16 32 64 128

Su
m

m
ed

 p
ow

er
/fr

eq
ue

nc
y (

W
/M

Hz
)

Number of processor nodes

2d-mesh
2d-torus
3d-mesh
3d-torus
4d-mesh
4d-torus
2d-omesh
2d-otorus
2d-mmesh
2d-mtorus

Fig. 11. Results on summed power consumption/frequency.

– Tori provide worse maximum clock rates than meshes. Our 2D bandwidth-
optimized multimesh has the highest clock rate whereas 4D torus has the
lowest.

– The higher dimensional sparse meshes and tori have clearly smaller silicon
area requirement for the interconnection network – 2D is the worst. However,
even for P = 64 the layout area for interconnections requires a large frac-
tion of total area. The bandwidth-optimized 2-dimensional networks have the
smallest silicon area. The same is trend is true for power consumption but
bandwidth-optimized 2-dimensional networks do not perform equally well.

– Scaling the dimension of the network up will have a positive effect on both the
area and power costs. Scaling up the number of processor nodes will increase
the relative area and power costs per cell due to the additional intermediate
router nodes.

– The most illustrating summed frequency/power and frequency/area figures
will decrease as the amount of processors is increased. Overall based on these
metrics, 4D and 3D meshes perform the best whereas 2D torus is the weakest.

388 M. Forsell et al.

5 Conclusions

In this paper, we have given a set of layouts for sparse NOCs for the purpose of
supporting high-throughput CMPs. We calculated characteristic values on lay-
outs and applied power and area cost models to compare the goodness of layouts
in case of certain kind of 2D silicon implementation technology. According to our
comparison, the bandwidth-optimized multimesh and sparse mesh perform the
best in most tests. If we do not count the performance-optimized networks, the
3D sparse mesh is seen as the best considering clock frequency and frequency
per area figures. However, perhaps surprisingly 4D sparse mesh outperforms the
others in the frequency/power consumption comparison. In the comparisons, all
meshes are found to perform better than tori. It appears that in the model the
effect of higher achievable maximum frequency (toroidal connection increase link
length) is more dominating than having shorter logical diameter.

In future work, we plan to consider also 3D layouts for the sparse structures
as co-called through-silicon-via’s effectively enable 3D stacking of 2D layouts.
We also consider ways to make the comparisons normalized with respect to the
routing capacity/bandwidth. The bandwidth-optimized constructions we found
better essentially because the ordinary sparse meshes/tori simply have too much
routing capacity. We also consider studying higher than 4-dimensional sparse
structures, and model the effect of routing algorithms.

References

1. Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W., Scheerer, D.: On the physical
design of PRAMs. Comput. J. 36(8), 756–762 (1993)

2. Azizoglu, M., Egecioglu, Ö.: Lower bounds on communication loads and optimal
placements in torus networks. IEEE Trans. Comput. 49(3), 259–266 (2000)

3. Balkan, A.O., Qu, G., Vishkin, U.: An area-efficient high-throughput hybrid inter-
connection network for single-chip parallel processing. In DAC 2008: Proceedings
of the 45th annual Design Automation Conference, pp. 435–440 (2008)

4. Benini, L., Micheli, G.D.: Networks on chips: a new SoC paradigm. Computer
35(1), 70–78 (2002)

5. Forsell, M.: A scalable high-performance computing solution for network on chips.
IEEE Micro 22(5), 46–55 (2002)

6. Forsell, M., Leppänen, V., Penttonen, M.: Cost of sparse mesh layouts supporting
throughput computing. In: Proceedings of 14th Euromicro Conference on Digital
System Design, DSD 2011, pp. 316–323. IEEE Computer Society, August 2011

7. Forsell, M., Leppänen, V., Penttonen, M.: Efficient two-level mesh based simulation
of PRAMs. In: Proceedings of International Symposium on Parallel Architectures,
Algorithms and Networks, ISPAN 1996, pp. 29–35. IEEE (1996)

8. Forsell, M., Leppänen, V.: High-bandwidth on-chip communication architecture
for general purpose computing. In: Proceedings of the 9th World Multiconference
on Systemics, Cybernetics and Informatics, pp. 1–6, vol. IV (2005)

9. Forsell, M.: On the performance and cost of some PRAM models on CMP hard-
ware. Int. J. Found. Comput. Sci. 21(3), 387–404 (2010)

Cost of Bandwidth-Optimized Sparse Mesh Layouts 389

10. Honkanen, R., Leppänen, V., Penttonen, M.: Hot-potato routing algorithms for
sparse optical torus. In: International Conference on Parallel Processing, ICPP
2001, pp. 302–307 (2001)

11. Honkanen, R.T., Leppänen, V., Penttonen, M.: Address-free all-to-all routing in
sparse torus. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 200–205.
Springer, Heidelberg (2007)

12. Jantsch, A., Hannu, T. (eds.): Networks on Chip. Kluwer Academic Publishers,
San Francisco (2003)

13. Leppänen, V.: On implementing EREW work-optimally on mesh of trees. J. Univ.
Comput. Sci. 1(1), 23–34 (1995)

14. Leppänen, V., Penttonen, M.: Work-optimal simulation of PRAM models on
meshes. Nordic J. Comput. 2(1), 51–69 (1995)

15. Leppänen, V., Penttonen, M., Forsell, F.: A layout for sparse cube-connected cycles
network. In: Procceedings of 12th International Conference on Computer Systems
and Technologies, ICPS, vol. 578, pp. 32–37. ACM Press (2011)

16. Pamunuwa, D., Zheng, L.-R., Tenhunen, H.: Maximizing throughput over parallel
wire structures in the deep submicrometer regime. IEEE Trans. VLSI Syst. 11(2),
224–243 (2003)

17. Sun Microsystems.: Throughput Computing: Changing the Economics and Ecology
of the Data Center with Innovative SPARC Technology (2005)

18. Ranade, A.: How to emulate shared memory. J. Comput. Syst. Sci. 42(3), 307–326
(1991)

19. Ranade, A., Bhatt, S., Johnsson, S.: The fluent abstract machine. In: Proceedings
of 5th MIT Conference on Advanced Research in VLSI, pp. 71–93 (1988)

20. Salminen, E., Kulmala, A., Hämäläinen, D.: Survey of Network-on-chip Proposals,
March 2008. White paper OCP-IP

21. Sibeyn, J.F.: Solving fundamental problems on sparse-meshes. In: Arnborg, S. (ed.)
SWAT 1998. LNCS, vol. 1432, pp. 288–300. Springer, Heidelberg (1998)

22. Valiant, L.: General purpose parallel architectures. In: Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science: Algorithms and Complexity, vol. A, pp. 943–971.
Elseiver, Amsterdam (1990)

23. Xu, T., Leppänen, V., Forsell, M.: DSNOC: a hybrid dense-sparse network-on-chip
architecture for efficient scalable computing. In: Proceedings of ScalCom 2013 - The
13th IEEE International Conference on Scalable Computing and Communication,
pp. 528–535. IEEE (2013)

24. Xu, T., Leppänen, V., Forsell, M.: Exploration of a heterogeneous concentrated-
sparse on-chip interconnect for energy efficient multicore architecture. In: Pro-
ceedings of 14th IEEE International Conference on Computer and Information
Technology (CIT 2014), pp. 204–211. IEEE (2014)

25. Xu, T.C., Leppänen, V.: Cache- and communication-aware application map-
ping for shared-cache multicore processors. In: Pinho, L.M.P., Karl, W.,
Cohen, A., Brinkschulte, U. (eds.) ARCS 2015. LNCS, vol. 9017, pp. 55–67.
Springer, Heidelberg (2015)

Toward a Core Design to Distribute
an Execution on a Manycore Processor

Bernard Goossens1,2(B), David Parello1,2, Katarzyna Porada1,2,
and Djallal Rahmoune1,2

1 DALI, UPVD, 66860 Perpignan Cedex 9, France
2 LIRMM, CNRS: UMR 5506 - UM2, 34095 Montpellier Cedex 5, France

{bernard.goossens,david.parello,katarzyna.porada,
djallal.rahmoune}@univ-perp.fr

Abstract. This paper presents a parallel execution model and a core
design to run C programs in parallel. The model automatically builds
parallel flows of machine instructions from the run trace. It parallelizes
instruction fetch, renaming, execution and retirement. Predictor based
fetch is replaced by a fetch-decode-and-partly-execute stage able to com-
pute in-order most of the control instructions. Tomasulo’s register renam-
ing is extended to memory with a technique to match consumer/producer
pairs. The Reorder Buffer is adapted to parallel retirement. A sum reduc-
tion code is used to illustrate the model and to give a short analytical
evaluation of its performance potential.

Keywords: Microarchitecture · Parallelism · Manycore · Automatic
parallelization

1 Introduction

Every parallel machine programmer dreams he can run his unchanged C pro-
grams on a parallel computer.

Figure 1 shows a C version and a pthread version of a sum reduction function.
The difference does not lie in the code text (based on the same algorithm)

but in its execution. The C code is run sequentially using a stack and the pthread
code is run in parallel with the help of the pthread system primitives.

This paper aims to show that if we change the execution model, the C code
run can have the same behaviour as the pthread run, i.e. parallel execution.
Section 2 explains how to run a C program in parallel. Section 3 evaluates the
Instruction Level Parallelism (ILP) in benchmarks based on parallel algorithms
and lists the main published works on ILP. Section 4 describes the parallel exe-
cution model and its core microarchitecture. Section 5 gives an analytical eval-
uation of the performance potential of the proposed model and core design. It
also mentions the on-going developments of simulators and concludes.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 390–404, 2015.
DOI: 10.1007/978-3-319-21909-7 38

Toward a Core Design to Distribute an Execution on a Manycore Processor 391

Fig. 1. A vector sum reduction: C and pthread implementations

Fig. 2. The sum function in X86

2 Running a C Program in Parallel

Figure 2 shows the sum function translation into x86 (AT&T syntax; rightmost
operand is the destination). The code is run sequentially because the hardware
is unable to fork at lines 12 and 20. The control flow travels along the binary
tree of calls depth first, leading to a 59 instructions run trace shown on Fig. 3
(Fig. 4 left part shows the call tree for sum(t,5)).

Figure 5 shows a modified code for the sum function. The hardware is
assumed to be able to fork, i.e. start a second instruction flow or section which
occurs on lines 10 and 16 (fork instructions replace call instructions). Unlike a
call instruction, a fork instruction does not save a return address.

Non volatile registers (i.e. rbx, rdi and rsi in this example) are copied to
the forked section, replacing the stack save/restore pair. Hence push and pop are
removed. The stack pointer (SP) itself (rsp) is copied to the forked section1.

The endfork instruction ends a section. Unlike a return, the endfork does not
give control back to a return address.

Figure 6 shows the parallel run. It starts on core 1 which fetches and executes
instructions 1-1 to 1-5. The fork instruction starts a new section on core 2.
The new section matches the resume path after fork, i.e. instruction subq on
line 11 (Fig. 5). Core 1 continues its own section (callee path back to line 1,

1 The stack in each section keeps its local variables, e.g. temp on Fig. 5.

392 B. Goossens et al.

Fig. 3. The instruction trace for the run of sum(t,5).

Fig. 4. The call tree (left) for the run of sum(t,5) and its sections (right).

instruction cmpq). Both sections are run in parallel, leading to the fetch and
execution of instructions 1-6 to 1-11 (core 1 section) and 2-1 to 2-16 (core 2
section).

As core 2 receives valid copies of registers rdi, rsi, rbx and rsp, instructions
2-1 and 2-3 to 2-6 can be executed. Only instruction 2-2 must wait until register
rax is set by core 1 section. The synchronisation need is easy to detect, thanks
to register renaming. Instruction 2-2 consumes a source rax produced by the
closest instruction writing to rax on the sequential path. As soon as instruction
1-10 writes to rax, the written value is forwarded to instruction 2-2.

Fig. 5. The sum function in X86 modified by fork instructions.

Toward a Core Design to Distribute an Execution on a Manycore Processor 393

The full run is divided by forks into 5 sections (Fig. 4, right part). Each section
is framed by a red rectangle. The longest section is composed of 16 instructions
(sections 2, from 2-1 to 2-16). Sections are numbered in execution trace order as
indicated by the green arrows. Instructions framed by a blue rectangle belong
to the same call level (e.g. instructions 1-1 to 1-5, 2-1 to 2-6 and 5-1 to 5-3 form
the same call level). A section is a full recursive descent (e.g. section 1 combines
1-1 to 1-5 for n = 5 and 1-6 to 1-11 for n = 2).

Out-of-order execution is crucial to parallelize fetch. As instruction 2-2 does
not block 2-6, the second call can be run in parallel with the first one.

This example shows that if the hardware is changed, the sum function can
run in parallel as in the pthread implementation. However in the pthread or MPI
models, any link between threads must be explicitely added to the code through
OS communication primitives (e.g. MPI Send and MPI Recv or socket based
communications in pthread).

In the parallel model, the sections are totally ordered. New sections are
inserted in place in the list of existing sections, possibly in parallel, building
the sequential trace of the run. This structure and the renaming process (which
assigns a new location to each write of each instruction in the sequential trace)
ensure that each read can match the most recent preceding write. In the pthread
or MPI models, this sequential structuration of threads is not available.

For example in MPI, if x is local to task tx and y is local to task ty, to copy y
into x task ty sends y to task tx, which receives it (rendezvous). In pthread, if x is
global, threads tx and ty can communicate through x but they must synchronize
writes and reads with pthread mutex. The OS must be invoked to link the sender
and the receiver or to synchronize multiple writers and readers.

Fig. 6. The instruction trace for the parallel run of sum(t,5).

394 B. Goossens et al.

In our parallel model, the equivalent of thread ty is section sy writing to y
and the equivalent of thread tx is section sx reading y to copy it into x. Section
sy has instruction iy writing to y (say iy is addq %rbx,%rax, with y in rax, i.e.
y = y + z for some z in rbx) and section sx has instruction ix reading y (say ix
is movq %rax,%rcx, with rcx being x, i.e. x = y). Instruction iy allocates rax0

to rename rax destination. Instruction ix renames its source rax. As sections
sy and sx are ordered and no instruction updates rax between iy and ix, the
renaming of rax in ix matches rax0. Moreover, the hardware synchonizes the
reader ix with the writer iy until rax0 is full. Hence, rendezvous or mutex are
not necessary and the OS need not be sollicited.

Renaming is the key to synchronization and communication between depen-
dent sections. Renaming should be extended to all hardware locations. For exam-
ple, instruction 5-1 reads the top of stack word 0(rsp). This memory location is
written by instruction 2-2. If instruction 2-2 destination a = 0(rsp) is renamed
r, instruction 5-1 renames the same address a with the same name r, exhibiting
the dependency with instruction 2-2. Instruction 5-1, which computes the final
sum, executes after it has received rax from section 4 (second half of the sum)
and a from section 2 (first half of the sum).

3 ILP in Programs

Figure 7 displays the ILP of ten benchmarks of the PBBS suite [1]. The PBBS
benchmarks implement various classical parallel algorithms (see Table 1).

On Fig. 7, for each of the 10 benchmarks, the 11 leftmost bars (those with
numbered keys) match eleven parallel runs of the benchmark with increasing
datasets. The rightmost bar (blue colour, seq11 key) matches sequential runs
with the same dataset as key 11 parallel runs.

Fig. 7. ILP of ten benchmarks parallel and sequential runs (Colour figure online)

Toward a Core Design to Distribute an Execution on a Manycore Processor 395

Table 1. Ten benchmarks of the PBBS suite

Benchmark

01 : breadthFirstSearch/ndBFS 02 : comparisonSort/quickSort

03 : convexHull/quickHull 04 : dictionary/deterministicHash

05 : integerSort/blockRadixSort 06 : maximalIndependentSet/ndMIS

07 : maximalMatching/ndMatching 08 : minSpanningTree/parallelKruskal

09 : nearestNeighbors/octTree2Neighbors 10 : removeDuplicates/deterministicHash

The sequential runs consider all the dependencies excluding the register false
ones (Write After Read and Write After Write), assuming an unlimited register
renaming capacity, and excluding the control flow ones, assuming perfect branch
prediction. The sequential runs ILP measures the ultimate performance of actual
out-of-order speculative processors.

The parallel runs assume the trace is available when the run starts (no fetch
delay) and in the same time all the destinations (including memory) are renamed.
The SP dependencies are not considered. The parallel runs ILP measures the
ultimate performance an ideal parallel machine achieves when the run order
only depends on the producer to consumer dependencies, excluding the SP. Each
instruction on the trace is run at the cycle next to the last source reception. The
processor is assumed to run all the ready instructions in the same cycle with a
single cycle latency (as in the sequential runs).

All runs are continued until completion. For each benchmark, the 11 parallel
runs vary from 1M to 1G instructions (increasing factor 2) and the sequential
runs are 1G instructions long. The figure shows that sequential runs have a very
low ILP (ranging from 3.2 to 5.6) and parallel runs have a very high ILP (ranging
from 600 to 508 K for dataset 11). The difference comes from the dominating
distant ILP. Moreover, when a benchmark is data parallel its parallel run ILP
increases proportionally to the dataset (e.g. benchmarks 1, 2, 5, 6, 9 and 10).

The sequential run ILP we have measured confirms ILP reported values (such
as [2]). Since 50 years many successive research works on ILP were published.

In 1967, Tomasulo [3] presented an algorithm to run floating point instruc-
tions out-of-order. He introduced register renaming which is still used in today’s
speculative cores to parallelize on-the-fly instructions. In 1970, Tjaden and
Flynn [4] measured the available parallelism in a 10 instructions window. They
ran their test programs at 1.86 instructions per cycle.

In 1984, Nicolau and Fisher [5] measured the available parallelism to feed
a VLIW processor. In their experiments, they included a measure of ILP from
runs on an ideal machine with infinite resources. They discovered that scientific
codes present a high ILP, over 1000.

In 1991, David Wall presented the first study centered on ILP [2]. He mea-
sured that the available parallelism a “real” processor finds in 13 benchmarks is

396 B. Goossens et al.

5 on average, ranging from 3 to 452. In an “ideal” processor3, ILP ranges from
6 to 60 with an average at 25. From this study, we know that there is ILP but
it seems impossible to catch more than 5 independent instructions per cycle.

In 1992, Austin and Sohi [6] measured the SPEC89 suite ILP and analyzed
its distribution. They showed that ILP is arbitrarily distant from the instruction
pointer. They also pointed out the serializing effect of the stack manipulations.
The same year, Lam and Wilson [7] studied the impact of control on ILP. Their
measures showed that a processor with a perfect branch predictor could dra-
matically improve its performance. As in Austin and Sohi work, distant ILP was
detected. To capture this distant ILP, a processor must be able to speculate on
the control flow and use multiple instruction pointers. In 1997, Moshovos and
Sohi have proposed memory renaming in [8], using a predictor to find the store
renaming a load. In 1999, Postiff et al. [9] measured SPEC95 suite ILP. They
pointed out that the stack introduces many parasitic dependencies. To capture
distant ILP, the application should be multi-threaded.

In 2004, Cristal et al. [10] described a kilo-instructions microarchitecture. The
authors suggested that to capture more ILP, the processor must have access to
instructions far from the fetch point. They gave solutions to allocate later and
free sooner the needed resources to optimize their usage and so, take care of
more “on-the-fly” instructions with the same resources. In 2012, Sharafeddine
et al. [11] proposed an architecture to partition a run into parallel threads,
forking the leading thread at call. In the sum example this leads to fork on both
of the highest levels calls but not on the lower levels, capturing only a small part
of the distant ILP. In 2013, Goossens and Parello [12] analyzed distant ILP and
showed that ILP could be highly increased when removing stack pointer updates
and false memory dependencies.

From these works, we deduce that (i) high ILP is available, (ii) most of it
comes from very distant instructions and (iii) sequential fetch and stack are the
main obstacles on the ILP capture. Two ideas are suggested to help capture
distant ILP: following multiple instruction flows [7] and renaming memory [8].

4 An Execution Model to Run Programs in Parallel
and Its Core Implementation

In Sect. 3 we assumed the full trace is available at run start and all the destina-
tions are pre-renamed. This is not realistic. However, code fetch and destinations
renamings should occur as soon as possible to allow distant ILP capture.

4.1 Parallelizing Fetch

A section is composed of dynamically contiguous instructions. A section starts
when a fork instruction creates it. It ends when an endfork instruction is reached.
2 “Good” model with a 2 K instructions window size, 64 instructions issued per cycle,

256 renaming registers, a branch predictor based on an infinite number of 2-bits
counters and a perfect memory aliasing disambiguation.

3 “Perfect” model enhances “good” model: infinite renaming, perfect branch predictor.

Toward a Core Design to Distribute an Execution on a Manycore Processor 397

A control flow instruction (jump, call or branch) does not end a section. The
same section continues after the control flow instruction.

When a new section is forked, a message is sent to a hosting core4. The
message contains the forked Instruction Pointer (IP), its SP and the set of non
volatile registers. The registers copies remove stack push/pop, i.e. stack and
SP dependencies. The message also contains the identification of the neighbour
sections (e.g. the current creating section). The choosen core queues the message
while it fetches another section. When the section creation message is dequeued,
it fills the register file local to the fetch pipeline stage. The IP, the SP and the
non volatile registers are initialized and other registers are emptied.

For example, when instruction 1-5 forks, a section creation message is sent to
core 2 (say), including register rdi value t, register rsi value 2 and register rbx
value 5. When instruction 2-6 forks, the SP is transmitted to section 5, pointing
on the same stack word as section 2. Hence, sections 2 and 5 share the same
stack portion. Thanks to memory renaming5, when instruction 5-1 reads stack
word 0, it matches with instruction 2-2 write to stack word 0. Both instructions
compute the same address a = rsp + 0.

The fetch pipeline stage fetches along the section pointed to by IP. The fetch
stage has no branch predictor. There are two reasons for such a choice. First,
moving fast along the flow is better obtained by a parallel fetch along multiple
control-computed sections than by a sequential fetch along a single predicted
path, even if the prediction is perfect. Second, a predictor is less cost-effective
in a core if the flow is divided into sections and distributed on multiple cores.
For these reasons, the fetch stage computes its control rather than predicting
it. To keep the stage hardware simple, each cycle fetches and computes a single
instruction. As a result, each core fetches more slowly than an actual speculative
core but the cores fetch much faster altogether.

Figure 8 shows the fetch-and-decode pipeline stage. The IP addresses the
Instruction Memory Hierarchy (IMH, i.e. L1 instruction cache). The fetched
instruction addresses the Register File (RF) to read full registers sources. If all
the needed sources are full, the instruction is computed in the ALU. Floating
point instructions, memory accesses, complex integer instructions and instruc-
tions having empty sources are not computed in the fetch stage but later6. Com-
puted instructions results are written back to RF, setting the destination register
to full. Uncomputed instructions set their destination register(s) to empty.

The fetch stage includes instruction decoding (not shown). When a fork
instruction is decoded, it generates a section creation message. The created
section starts at the next instruction. The current section continues at the fork
instruction target. It ends when an endfork instruction is decoded. Then, IP

4 Hosting core choice to optimize load balancing is out of the scope of this paper.
5 Memory renaming duplicates same address based stack frames. This allows multiple

sections to update their local variables in their frames in parallel.
6 In the sum example, the conditional branches are all computed in the fetch stage,

allowing the parallelization of the fetch by fetching fastly the fork instructions.

398 B. Goossens et al.

register is set to empty and at the next cycle the fifo head message is dequeued
and IP and RF are initialized, which starts the fetch of a new section.

As mentioned on Fig. 8, the stage critical path is longer than in a speculative
out-of-order pipeline, including a L1 cache traversal, an instruction decoding, a
register file read (2 read ports), an ALU (Arithmetic and Logic Unit) compu-
tation and a register file write (1 write port). This leads to a slow frequency
processor. Core slowness is to be compensated by parallelism.

Fig. 8. Fetch-decode pipeline stage

4.2 Core Pipeline Microarchitecture

Figure 9 shows the six-stages pipeline building the core microarchitecture. On
the bottom part of the design we find a full size rectangle dedicated to commu-
nications with other cores in the processor chip (assumed to be connected by a
Network-on-Chip). The forking request unit (FRU) handles the income/outcome
of section creation messages. The register renaming request unit (RRRU) han-
dles the income/outcome of source registers renamings. The register exporting
request unit (RERU) handles the import/export of renamed registers values. The
address renaming request unit (ARRU) handles the income/outcome of source
memory addresses renamings. The memory exporting request unit (MERU) han-
dles the import/export of renamed memory values. The instruction exporting
request unit (IERU) handles the outcome of retired instructions.

The fetch-decode and register-rename stages follow a single section up to
its end. Renamed instructions enter in-order in a Reorder Buffer (ROB in the
retire stage) and in the Instruction Queue (IQ in the execute-write-back stage).
Load/store instructions enter in-order in the address renaming queue (ARQ in
the address-rename stage). Register-register instructions from multiple sections
are mixed in the execute-write-back stage. They read sources in a memory keep-
ing the core renamed registers (register renaming memory or RRM). Load/store
instructions compute the access address in the execute-write-back stage and save

Toward a Core Design to Distribute an Execution on a Manycore Processor 399

Fig. 9. Six-stages core pipeline

it in the ARQ. Memory addresses in ARQ are renamed in-order and renamed
memory access instructions enter the Load/Store Queue (LSQ). As these instruc-
tions are renamed they can be run out-of-order.

Register Renaming. Each instruction in the core can be uniquely identified
by its section identifier and its ordinal number in the section. If we assume
the number of sections hosted by a core is bounded by max section and the
number of instructions in a section is bounded by max instruction, a core can
host at most max section ∗max instruction instructions, i.e. as many renamed
destinations. Each renamed destination can be uniquely identified by a pair
(#section, #instruction) (or (s,i) in short).

The fetch-decode stage delivers a partially evaluated instruction to the
rename stage which renames the empty sources, i.e. either find their local (s,i)
renaming or, if not hosted by the local core, look for the producing core.

If a source s may not be locally renamed by an instruction inst (no instruction
previously fetched in the same section has written to s), its value is requested
to the preceding section, i.e. to another hosting core through the RRRU. In the
same time, a destination d is allocated in RRM for the missing register, as if s
would be locally written. This destination d serves as a caching of the missing
source s. Later references to s in the same section are renamed d.

The renaming request travels from section to section until a producer is found
(i.e. an instruction writing to s). In the sum function example, the only register
to be renamed is register rax in instructions 12 and 17. In both cases, for any
size of the data, the producer is the section just preceding the renaming one.

Each core on the travel receives the renaming request in its RRRU. It renames
source s. If the renaming misses, the request is propagated through the RRRU. If
it hits, an export instruction is added to the IQ where it waits for the requested
value. When it is written, the export instruction is notified in IQ and run. It
reads the value in RRM and send it to the requester through the RERU.

400 B. Goossens et al.

The value reaches the requesting core through its RERU. It is written in
RRM, entry d. The IQ is notified that destination d is ready, which allows the
waiting instruction inst to start execution and read d in RRM as source s.

Renaming seems very sequential. To find the producer of source s, the trace of
executed instructions must be travelled backward from the consumer down to the
first instruction writing to s. However, (i) only the portion of code ranging from
the producer to the consumer is to be visited and (ii) SP based variables with
a positive offset (e.g. 0(rsp)) benefit from a shortcut eliminating instructions
belonging to a call level deeper than the consumer. Statement (i) implies that
if a producer is close from a consumer, the portion of code to consider is short.
This is the case for function results used by the resume code (register rax in
the sum function example). Statement (ii) implies that if a consumer and a
producer address the same stack frame, the portion of code to consider is also
short, excluding in between function calls. This is the case for local variables set
at function start and later used (stack location 0(rsp) in the sum example).

Only for global variables and heap pointers the travel from producer to con-
sumer can represent a long path, as all the in between sections must be visited
to make sure they do not contain any more recent producer of the consumed
address. However, the caching feature ensures that the high price is rarely paid.
Once renamed in an intermediary consuming section, a global or heap variable
is cached and it can be consumed by neighbour sections for cheap.

Instruction 2-2 on Fig. 6 illustrates fast renaming applying statement
(i). After the renaming of register rax misses in section 2, a request is sent
to the core hosting section 1. The renaming hits in section 1 (instruction 1-10)
and t[0] + t[1] in rax is sent to the core hosting section 2.

Instruction 5-1 illustrates fast renaming applying statement (ii). After the
renaming of stack location 0(rsp) at address a misses in section 5, a request is
sent to section 2, bypassing sections 3 and 4 which are at a lower call level than
instruction 5-1. The renaming hits in section 2 (instruction 2-2) and t[0] + t[1]
in 0(rsp) is sent to the core hosting section 5.

Instruction 1-8 illustrates high price renaming of global variable t[0]. The
request travels back to the loader which installs code and global initialized data.
The hardware can (i) access to full cache lines instead of single words and (ii)
cache the accessed lines along the return path. From statement (i), instruction
1-8 gets its own word t[0] but also instruction 1-10 word t[1]. Moreover, from
statement (ii), core 1 caches the memory line containing t[0] up to t[4] which
can be consumed cheaply by sections 2 (t[2]) and 3 (t[3] and t[4])7.

Memory Renaming. Memory renaming is done like register renaming. Instead
of a Register Alias Table (RAT), the address-rename stage uses a Memory
Address Alias Table (MAAT). There is one MAAT per section, each MAAT

7 Stores update full lines. The loader sets a cleared line and loops to update it suc-
cessively with t[0] up to t[4]. The full line right padded with zeros is exported to its
first consumer, i.e. section 1. Sections 2 and 3 get section 1 cached copy.

Toward a Core Design to Distribute an Execution on a Manycore Processor 401

having one entry per instruction in the section. Each MAAT is a fully associa-
tive cache. Renaming address a in section s means looking for a in section s
MAAT. If the search misses, it indicates that section s does not write to a and
the renaming should be looked for in the section preceding s.

A memory renaming request works like a register one. When renaming
address a misses, a memory line is allocated in the MRM to host line la contain-
ing a (it caches la). The renaming request travels along contiguous sections until
a producer of la is found. Each visited core receives the request in its ARRU.
The renaming request is enqueued in the ARQ to avoid bypassing renamings of
addresses of the same section not yet done. When the request is dequeued, if
the renaming misses, it is propagated to the preceding section. When it hits, an
instruction to export la is added to the LSQ. The exported memory line travels
back to the requesting core where it is received in the MERU. From there, it is
written to the MRM and the LSQ is notified that a is ready.

Memory renaming transforms the code at run time into a single assign-
ment form. Synchronisation of consumers with their producers and single assign-
ment ensure sequential consistency without any coherency protocol requirement.
Hence, the cores distributed memory is coherent.

Parallelizing Retirement. Sections are created in parallel by fork instruc-
tions. To keep cores loads acceptable (at most max section hosted in a core),
terminated sections should retire at the same speed, i.e. retirement should be
parallelized. Retirement frees the sections in the cores to allow new sections in.

Instructions retire in-order (within their section) by exporting their result
to the successor section8. To be retired, an instruction must be terminated.
An instruction is not exported if it holds a result useless for successors, i.e. if
(i) its destination is updated later in the section or (ii) it writes to a non volatile
register or (iii) it is a control flow instruction or (iv) it writes to stack or heap
in a location freed later in the section or (v) it has exported its computation
to a consumer. The successor discards exported instructions if their production
may not be consumed anymore. An exported instruction i is discarded by the
successor section s′ if i writes to a destination renamed or freed in s′.

In the sum function example, no instruction is exported. For example, the
instruction i consuming the final sum s to be displayed renames s and receives
the value v exported from instruction 5-1. Statement (v) says that instruction
5-1 retirement does not export v to the next section. Instruction i renaming
caches v which can be consumed by later instructions.

An exported instruction is sent to the successor section through the IERU. It
is received in the RRRU (register write) or in the ARRU (memory write). The
destination is tentatively renamed and in case of a hit the exported instruction
is discarded (already renamed destination). It is also discarded if it writes to

8 The oldest section, i.e. the only one with no predecessor, dumps its renamings to the
data memory hierarchy (DMH). When it receives a renaming request which misses,
it loads from DMH and exports the loaded line.

402 B. Goossens et al.

stack or heap in a location later freed by the section. Otherwise, the instruction
gets a new local renaming and is saved in its new section ROB.

What is New in the Proposed Core Design? The core shown on Fig. 9
is much simpler than actual speculative cores. The core is as small as possible
to maximize the number of cores on the die. As the core is not speculative,
there is no predictor nor renaming repair unit (checkpoints). The LSQ is simpler
than the usual Load-Store Queue as loads are not speculative and store-to-load
forwarding is not necessary. The data memory hierarchy is kept coherent as only
the oldest section can write to and read from it. There is no memory coherency
hardware (e.g. MESI protocol handler). There is no vector computing unit (e.g.
XMM-like) as vectorization is better obtained through parallelism. Each core
implements a single-issue pipeline (no superscalar or VLIW).

Fig. 10. Execution timing of the sum(t,5) run.

5 Analytical Performance Evaluation of the Parallel
Execution Model on the sum Example and Conclusion

Figure 10 shows 5 tables (one per core) giving the execution timing of the
sum(t,5) run. The instructions numbers are given on the left of each table. The
columns of a table match the 6 pipeline stages. A value in a column represents
the cycle at which the instruction is treated by the corresponding pipeline stage.
For example, instruction 1-8 (load) is fetched at cycle 8, register renamed at cycle
9, load address is computed at cycle 10 and renamed at cycle 11, renamed mem-
ory is accessed at cycle 14 (counting 3 cycles to reach the producer and return
the t[0] value) and retired at cycle 15. We assume the sections can be hosted
in different cores. We also assume a single-issue pipeline. Instruction cache L1
is assumed to always hit. From this example we see that the code is fetched in
30 cycles (last fetched instruction is 3-12), i.e. 1.5 instructions per cycle. If the
data size is doubled, the fetch time is 42 cycles (104 instructions fetched, i.e. 2.5

Toward a Core Design to Distribute an Execution on a Manycore Processor 403

instructions per cycle). Fetch latency (i.e. IL1 miss rate) can impact the fetch
time which impacts the total run time. The more the code is parallel, the more
the total run time is independent of renaming and execution latencies.

The number of instructions is 45 ∗ 2n + 14 ∗ (2n − 1) for the sum of a 5 ∗ 2n

elements array (i.e. 45 for sum(t,5), 104 for sum(t,10)). The fetch time is 30+12∗
n (i.e. 30 for sum(t,5), 42 for sum(t,10)). For 1280 elements, 15090 instructions
are fetched in 126 cycles, i.e. 120 instructions per cycle. This shows that even
though one instruction is fetched per cycle per core and the control is computed
rather than predicted, fetching in parallel is efficient. Even for modest data sizes,
it outperforms any speculative fetching hardware.

Renaming is not penalized by the code distribution. Most of the sources
are provided by register value copy at fork. Function results and stack local
variables are obtained from the predecessor section. Global variables are reached
quickly from the first section (which starts at the main function entrance) and
then fastly propagated to other sections, thanks to full memory line caching.
Eventually, instruction retirement frees the resources at the same rate they are
allocated, avoiding cores saturations. The retirement time is9 43 + 15 ∗ n. For
1280 elements, the 15090 instructions are retired in 163 cycles, i.e. 92 instructions
per cycle.

Devil is in the details. The estimation of the sum run timing is not precise
enough to prove that the model is successful. However, it shows that distant
ILP is captured: the run is parallelized in a divide-and-conquer way. To fix the
Instruction Per Cycle (IPC) of a manycore processor based on our core design,
an elaborate simulation is necessary. Two such simulators are on-going projects:
a VHDL implementation of the core pipeline to prove hardware feasability and
a qemu and simplescalar based simulator to quantify IPC.

The model presented focuses on functions. In the same way, loops can be par-
allelized. For loops can be vectorized, each iteration forming a separate section
with no control. It heritates its iteration counter that can be saved in a register
and used in the iteration body. While loops can be parallelized, launching each
iteration in sequence (no speculation) but parallelizing their bodies.

With the introduction of manycore chips as general purpose processors, the
time has come to produce parallel programs automatically. This paper suggests
that we are not so far from the goal and the hardware can greatly help.

References

1. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V.,
Tangwongsan, K.: Brief announcement: the problem based benchmark suite. In:
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2012, pp. 68–70 (2012)

9 15 cycles is the fetch time of instructions (Fig. 5) 2, 3, 8-10 (5 cycles), the creation
time of the forked section (2 cycles), the fetch time of instructions 11-16 (5 cycles)
and the retirement of instructions 17-19 (3 cycles).

404 B. Goossens et al.

2. Wall, D.W.: Limits of instruction-level parallelism. In: WRL Technical Note TN-15
(1990)

3. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11, 25–33 (1967)

4. Tjaden, G.S., Flynn, M.J.: Detection and parallel execution of independent instruc-
tions. IEEE Trans. Comput. 19, 889–895 (1970)

5. Nicolau, A., Fisher, J.: Measuring the parallelism available for very long instruction
word architectures. IEEE Trans. Comput. C–33, 968–976 (1984)

6. Austin, T.M., Sohi, G.S.: Dynamic dependency analysis of ordinary programs. In:
Proceedings of the 19th Annual International Symposium on Computer Architec-
ture, ISCA 1992, pp. 342–351 (1992)

7. Lam, M.S., Wilson, R.P.: Limits of control flow on parallelism. In: Proceedings of
the 19th Annual International Symposium on Computer Architecture, ISCA 1992,
pp. 46–57 (1992)

8. Moshovos, A., Breach, S.E., Vijaykumar, T.N., Sohi, G.S.: Dynamic speculation
and synchronization of data dependences. In: Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture, ISCA 1997, pp. 181–193 (1997)

9. Postiff, M.A., Greene, D.A., Tyson, G.S., Mudge, T.N.: The limits of instruction
level parallelism in SPEC95 applications. In: CAN, vol. 27, pp. 31–34 (1999)

10. Cristal, A., Santana, O.J., Valero, M., Mart́ınez, J.F.: Toward kilo-instruction
processors. ACM Trans. Archit. Code Optim. 1, 389–417 (2004)

11. Sharafeddine, M., Jothi, K., Akkary, H.: Disjoint out-of-order execution processor.
ACM Trans. Archit. Code Optim. (TACO) 9, 19:1–19:32 (2012)

12. Goossens, B., Parello, D.: Limits of instruction-level parallelism capture. Procedia
Comput. Sci. 18, 1664–1673 (2013). 2013 International Conference on Computa-
tional Science

Heuristic Algorithms for Optimizing Array
Operations in Parallel PGAS-programs

Ivan Kulagin1(B), Alexey Paznikov1,2, and Mikhail Kurnosov1,3

1 Siberian State University of Telecommunications and Information Sciences,
86 Kirova street, Novosibirsk, Russia 630102

ikulagin@sibsutis.ru
2 Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the RAS,

13 Lavrentev avenue, Novosibirsk, Russia 630090
apaznikov@isp.nsc.ru

3 Saint Petersburg Electrotechnical University “LETI”, 5 Professor Popov street,
Saint-Petersburg, Russia 197376

mkurnosov@gmail.com

Abstract. The algorithms for optimizing array operations in PGAS-
programs are represented. They minimize execution time by taking into
account hierarchical structure of computer systems in reduction and
by preloading of remote elements to nodes while accessing distributed
arrays. Algorithms are implemented for Cray Chapel and IBM X10.

Keywords: PGAS · Compiler optimization · Reduction · Scalar
replacement

1 Introduction

The main approach to the parallel programs development in modern distrib-
uted computer systems (CS) is message-passing interface (MPICH2, Open MPI,
Intel MPI). The major challenge for modern CS is their lack of programmability.
To exploit all the resources of modern systems, we need to use diverse technolo-
gies (OpenMP/Intel TBB/Intel Cilk Plus, NVIDIA CUDA/OpenCL, SSE/AVX)
in conjunction with the MPI. While this model provides a great deal of flexibil-
ity and performance potential, it burdens programmers with the complexity of
utilizing multiple programming systems in the same applications.

Need of simplification parallel programming has lead the development of
high-level tools, e.g. the languages that implement the model of a partitioned
global address space (PGAS), including Cray Chapel, IBM X10, UPC. PGAS-
programs does not explicitly call communication functions unlike MPI; instead
they operate with distributed structures and instructions for parallel tasks man-
agement (threads, activities) and synchronization. All the communications are

The reported study was partially supported by RFBR, research projects 15-37-20113,
15-07-02693 and by Ministry of Education and Science of the Russian Federation
(02.G25.31.0058 from 12.02.2013).

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 405–409, 2015.
DOI: 10.1007/978-3-319-21909-7 39

406 I. Kulagin et al.

scheduled by the compiler and performed by the runtime-system which provides
the transparent access to remote nodes’ memory. High abstraction level of PGAS
allows to reduce the complexity of parallel programs development, but requires
the development of effective methods for optimizing compilation.

One can emphasize the two most common patterns in parallel PGAS-
programs: (i) iteration by distributed arrays, (ii) specified reduction operation
for distributed arrays’ elements (reduce, reduction). The existing algorithms of
operations on distributed arrays [3,4] does not take into account the features of
PGAS, such as high intensity of one-side communications, memory consistency,
multithreading, etc. The compiler optimization algorithms implemented in IBM
X10 [1], UPC [2] do not minimize overheads in PGAS-programs that perform
cyclic access to the array’s elements, located on the remote nodes.

In this paper, we propose the algorithms for optimizing the communications
in operations on distributed arrays. The algorithms are implemented for Cray
Chapel and IBM X10.

2 Communications Optimization

2.1 PGAS Model

Let P = {1, 2, . . . , N} is the set of SMP/NUMA-nodes of a distributed CS. Each
node i ∈ P consists of n CPU cores and the local memory.

PGAS model realizes the abstraction of a multicore node – locale (region,
place). Each locale manages its own local memory segment. Dynamically
spawned tasks (activities, threads) run within the locale. A task can access the
global address space comprised nodes’ local memory segments. The local segment
access performs much faster, because the access to the remote ones demands the
communications. The design units required for developing of PGAS-programs:
begin S – performs the instructions S asynchronously on the separate thread, on i
S – performs the instructions S on the node i, on x S – performs the instructions
S on the node which owns the object x, coforall S – performs each iteration of the
loop body S in the independent thread, sync T – the synchronization variable.

2.2 Parallel Reduction Algorithm

Reduction is the collective operation, which performs some associative operation⊗
with the distributed array V [1 : D]. The result r of the operation is placed in

the memory of the thread initialized reduction: r = V [1]
⊗

V [2]
⊗

. . .
⊗

V [D].
This paper offers the algorithm BlockReduce of reduction in PGAS-programs

(Fig. 1). In Fig. 2 you can see the algorithm for Cray Chapel.
Each node i ∈ P is aware of the set Vi of array’s V elements storing in its local

memory. In the first stage (Fig. 2, lines 3–17) of the sub-arrays Vi are splitted
into n parts (by number of cores) (Fig. 2, line 6). Then these parts are processed
in parallel. The threads t = 1, 2, . . . , n of each node i perform reduction with
their sub-array Vit (Fig. 2, lines 7–11).

Heuristic Algorithms for Optimizing Array Operations 407

Fig. 1. Distribution of array elements in the algorithm BlockReduce

Fig. 2. Algorithm BlockReduce

On the second stage the nodes organize the binary tree with the root is first
locale. Each operation

⊗
for the pair of values r[first], r[second] is performed in

the separate thread on that node, wherein the value r[first] is located. After the
reduction of all the values the barrier is performed.

Barrier may be implemented e.g. by Dissemination barrier algorithm
(O(logN)). Then BlockReduce complexity equals O(T = O(|V |/N + logN). In
the current implementation we used the Centralized barrier with the time O(N).

2.3 Arrays Access Optimization

Another common pattern in PGAS-programs is the looping through the ele-
ments, wherein the threads access the elements in the memory of other nodes
(Fig. 3a). In this case, the runtime-system provides required elements.

In current days PGAS-compilers use relatively straightforward heuristics.
Accessing to a remote array’s element causes the copying entire array to the

408 I. Kulagin et al.

local memory. Though copying the whole array is redundant and incurs commu-
nication overheads. Scalar replacement algorithm [1,2] reduces these overheads.
While the looping through remote array’s elements, runtime-system copies to
local memory the entire array at each iteration (Fig. 3a). That scheme is highly
inefficient. Scalar replacement also may cause the redundant copying in loops
because the total number of sent elements exceeds the entire array.

We propose the ArrayPreload algorithm optimizing the looping access to
remote arrays for minimizing communication time. ArrayPreload prevents mul-
tiple copying of remote arrays by preemptive copying the array once before loop
iterations (Fig. 3b). Figure 3 shows the example of optimization of array A access
for IBM X10 language. Unoptimized version (Fig. 3a) incurs passing the array A
to the id node on each iteration. The optimization (Fig. 3b) involves the copying
array A in advance to every node to the local array localA. The statement at
used in IBM X10 corresponds the statement on.

Fig. 3. Example of optimization by passing the array A in a IBM X10 program

The ArrayPreload algorithm is based on static analyze by Abstract Syntax
Tree (AST) traversal. The first stage realizes the search of the loops with access-
ing remote array elements. The second checks if array is not changed during the
loop iterations so as to avoid violation the original program during optimization.
The way this examination depends on compiler implementation, e.g. this check
may be implemented on base of previously built loop context.

The third stage makes AST transformation which includes loop prologues for
each found arrays. The prologue performs coping a remote array to local memory
once before iterations. The remote array access is replaced by access to the
local one copied by prologue loop. Computational complexity of the algorithm
ArrayPreload is determined of the AST height.

3 Experiments and Results

Experiments are carried out on the cluster A (16 nodes: 2 x Quad-Core Intel
Xeon E5420, Gigabit Ethernet) and cluster B (6 nodes: 2 x Quad-Core Intel Xeon
E5420, Infiniband QDR). The algorithms are implemented for the languages
Cray Chapel (BlockReduce) and IBM X10 (ArrayPreload).

Heuristic Algorithms for Optimizing Array Operations 409

Fig. 4. Speedup of test program (cluster A)

The evaluation of reduction algorithms was done on the basis of microbench-
marks (reduction of distributed array of length D = 4000, . . . , 20000) and Chapel
programs PTRANS (transposition of distributed matrices) and miniMD (mole-
cular dynamics). Node number N was varying from 1 to 16.

BlockReduce efficiency depends on the N and D. Algorithm outperforms by
10–30 % the default algorithm DefaultReduce. Slight benefit on the real programs
is due to the reduce computation time is much less than the total execution time.

For the efficiency evaluation of ArrayPreload and Scalar replacement the
microbenchmark was used. The benchmark performs the looping through the
array’s elements placed in the memory of remote nodes.

Both ArrayPreload and Scalar replacement perform the speed-up from 5 to 82
times (Fig. 4). Generally the efficiency depends on the interconnect performance,
the number of nodes, the size of array, the number of iterations.

4 Conclusion

The proposed algorithms reduces the execution time of PGAS programs by
means of minimizing the communication overheads. It has been achieved by pre-
emptive copying of remote arrays and taking into account the computer system
structure. The algorithms may be used for the wide range of PGAS languages.

References

1. Barik, R., Zhao, J., Grove, D., Peshansky, I., Budimlic, Z., Sarkar, V.: Communi-
cation optimizations for distirbuted-memory X10 programs. In: IEEE International
Parallel and Distributed Processing Symposium, pp. 1–13 (2011)

2. Chen, W., Iancu, C., Yelick, K.: Communication optimizations for fine-grained UPC
applications. In: 14th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pp. 267–278 (2005)

3. Kurnosov, M.: All-to-all broadcast algorithms in hierarchical distributed com-
puter systems. Vestnik of computer and information technologies 5, 27–34 (2011).
[in Russian]

4. Rabenseifner, R.: Optimization of collective reduction operations. In: Bubak, M.,
van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036,
pp. 1–9. Springer, Heidelberg (2004)

Progressive Transactional Memory
in Time and Space

Petr Kuznetsov1 and Srivatsan Ravi2(B)

1 Télécom ParisTech, Paris, France
petr.kuznetsov@telecom-paristech.fr

2 TU Berlin, Berlin, Germany
srivatsan.ravi@inet.tu-berlin.de

Abstract. Transactional memory (TM) allows concurrent processes to
organize sequences of operations on shared data items into atomic trans-
actions. A transaction may commit, in which case it appears to have
executed sequentially or it may abort, in which case no data item is
updated.

The TM programming paradigm emerged as an alternative to conven-
tional fine-grained locking techniques, offering ease of programming and
compositionality. Though typically themselves implemented using locks,
TMs hide the inherent issues of lock-based synchronization behind a nice
transactional programming interface.

In this paper, we explore inherent time and space complexity of lock-
based TMs, with a focus of the most popular class of progressive lock-
based TMs. We derive that a progressive TM might enforce a read-only
transaction to perform a quadratic (in the number of the data items
it reads) number of steps and access a linear number of distinct mem-
ory locations, closing the question of inherent cost of read validation in
TMs. We then show that the total number of remote memory references
(RMRs) that take place in an execution of a progressive TM in which n
concurrent processes perform transactions on a single data item might
reach Ω(n log n), which appears to be the first RMR complexity lower
bound for transactional memory.

Keywords: Transactional memory · Mutual exclusion · Step complexity

1 Introduction

Transactional memory (TM) allows concurrent processes to organize sequences
of operations on shared data items into atomic transactions. A transaction may
commit, in which case it appears to have executed sequentially or it may abort,
in which case no data item is updated. The user can therefore design software
having only sequential semantics in mind and let the TM take care of handling

Petr Kuznetsov—The author is supported by the Agence Nationale de la Recherche,
ANR-14-CE35-0010-01, project DISCMAT.

c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 410–425, 2015.
DOI: 10.1007/978-3-319-21909-7 40

Progressive Transactional Memory in Time and Space 411

conflicts (concurrent reading and writing to the same data item) resulting from
concurrent executions. Another benefit of transactional memory over conven-
tional lock-based concurrent programming is compositionality : it allows the pro-
grammer to easily compose multiple operations on multiple objects into atomic
units, which is very hard to achieve using locks directly. Therefore, while still
typically implemented using locks, TMs hide the inherent issues of lock-based
programming behind an easy-to-use and compositional transactional interface.

At a high level, a TM implementation must ensure that transactions are con-
sistent with some sequential execution. A natural consistency criterion is strict
serializability [19]: all committed transactions appear to execute sequentially
in some total order respecting the timing of non-overlapping transactions. The
stronger criterion of opacity [13], guarantees that every transaction (including
aborted and incomplete ones) observes a view that is consistent with the same
sequential execution, which implies that no transaction would expose a patholog-
ical behavior, not predicted by the sequential program, such as division-by-zero
or infinite loop.

Notice that a TM implementation in which every transaction is aborted is
trivially opaque, but not very useful. Hence, the TM must satisfy some progress
guarantee specifying the conditions under which a transaction is allowed to abort.
It is typically expected that a transaction aborts only because of data conflicts
with a concurrent one, e.g., when they are both trying to access the same data
item and at least one of the transactions is trying to update it. This progress
guarantee, captured formally by the criterion of progressiveness [12], is satisfied
by most TM implementations today [6,7,14].

There are two design principles which state-of-the-art TM [6–8,11,14,21]
implementations adhere to: read invisibility [4,9] and disjoint-access paral-
lelism [5,16]. Both are assumed to decrease the chances of a transaction to
encounter a data conflict and, thus, improve performance of progressive TMs.
Intuitively, reads performed by a TM are invisible if they do not modify the
shared memory used by the TM implementation and, thus, do not affect other
transactions. A disjoint-access parallel (DAP) TM ensures that transaction
accessing disjoint data sets do not contend on the shared memory and, thus,
may proceed independently. As was earlier observed [13], the combination of
these principles incurs some inherent costs, and the main motivation of this
paper is to explore these costs.

Intuitively, the overhead invisible read may incur comes from the need of vali-
dation, i.e., ensuring that read data items have not been updated when the trans-
action completes. Our first result (Sect. 4) is that a read-only transaction in an
opaque TM featured with weak DAP and weak invisible reads must incremen-
tally validate every next read operation. This results in a quadratic (in the size of
the transaction’s read set) step-complexity lower bound. Informally, weak DAP
means that two transactions encounter a memory race only if their data sets are
connected in the conflict graph, capturing data-set overlaps among all concurrent
transactions. Weak read invisibility allows read operations of a transaction T to
be “visible” only if T is concurrent with another transaction. The lower bound is
derived for minimal progressiveness, where transactions are guaranteed to commit

412 P. Kuznetsov and S. Ravi

only if they run sequentially. Our result improves the lower bound [12,13] derived
for strict-data partitioning (a very strong version of DAP) and (strong) invisible
reads.

Our second result is that, under weak DAP and weak read invisibility, a
strictly serializable TM must have a read-only transaction that accesses a linear
(in the size of the transaction’s read set) number of distinct memory locations
in the course of performing its last read operation. Naturally, this space lower
bound also applies to opaque TMs.

We then turn our focus to strongly progressive TMs [13] that, in addition
to progressiveness, ensures that not all concurrent transactions conflicting over
a single data item abort. In Sect. 5, we prove that in any strongly progres-
sive strictly serializable TM implementation that accesses the shared memory
with read, write and conditional primitives, such as compare-and-swap and load-
linked/store-conditional, the total number of remote memory references (RMRs)
that take place in an execution of a progressive TM in which n concurrent
processes perform transactions on a single data item might reach Ω(n log n).
The result is obtained via a reduction to an analogous lower bound for mutual
exclusion [3]. In the reduction, we show that any TM with the above prop-
erties can be used to implement a deadlock-free mutual exclusion, employing
transactional operations on only one data item and incurring a constant RMR
overhead. The lower bound applies to RMRs in both the cache-coherent (CC)
and distributed shared memory (DSM) models, and it appears to be the first
RMR complexity lower bound for transactional memory.

2 Model

TM Interface. A transactional memory (in short, TM) supports transactions
for reading and writing on a finite set of data items, referred to as t-objects.
Every transaction Tk has a unique identifier k. We assume no bound on the
size of a t-object, i.e., the cardinality on the set V of possible different values
a t-object can have. A transaction Tk may contain the following t-operations,
each being a matching pair of an invocation and a response: readk(X) returns
a value in some domain V (denoted readk(X) → v) or a special value Ak /∈ V
(abort); writek(X, v), for a value v ∈ V , returns ok or Ak; tryCk returns Ck /∈ V
(commit) or Ak.

Implementations. We assume an asynchronous shared-memory system in
which a set of n > 1 processes p1, . . . , pn communicate by applying operations on
shared objects. An object is an instance of an abstract data type which specifies
a set of operations that provide the only means to manipulate the object. An
implementation of an object type τ provides a specific data-representation of τ
by applying primitives on shared base objects, each of which is assigned an initial
value and a set of algorithms I1(τ), . . . , In(τ), one for each process. We assume
that these primitives are deterministic. Specifically, a TM implementation pro-
vides processes with algorithms for implementing readk, writek and tryCk()
of a transaction Tk by applying primitives from a set of shared base objects.

Progressive Transactional Memory in Time and Space 413

We assume that processes issue transactions sequentially, i.e., a process starts
a new transaction only after the previous transaction is committed or aborted.
A primitive is a generic read-modify-write (RMW) procedure applied to a base
object [10]. It is characterized by a pair of functions 〈g, h〉: given the current state
of the base object, g is an update function that computes its state after the prim-
itive is applied, while h is a response function that specifies the outcome of the
primitive returned to the process. A RMW primitive is trivial if it never changes
the value of the base object to which it is applied. Otherwise, it is nontrivial. An
RMW primitive 〈g, h〉 is conditional if there exists v, w such that g(v, w) = v and
there exists v, w such that g(v, w) �= v. For e.g, compare-and-swap (CAS) and
load-linked/store-conditional (LL/SC) are nontrivial conditional RMW primi-
tives while fetch-and-add is an example of a nontrivial RMW primitive that is
not conditional.

Executions and Configurations. An event of a process pi (sometimes we say
step of pi) is an invocation or response of an operation performed by pi or a
rmw primitive 〈g, h〉 applied by pi to a base object b along with its response r
(we call it a rmw event and write (b, 〈g, h〉, r, i)). A configuration specifies the
value of each base object and the state of each process. The initial configuration
is the configuration in which all base objects have their initial values and all
processes are in their initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution
of an implementation I is an execution fragment where, starting from the initial
configuration, each event is issued according to I and each response of a rmw
event (b, 〈g, h〉, r, i) matches the state of b resulting from all preceding events.
An execution E · E′, denoting the concatenation of E and E′, is an extension of
E and we say that E′ extends E.

Let E be an execution fragment. For every transaction identifier k, E|k
denotes the subsequence of E restricted to events of transaction Tk. If E|k is non-
empty, we say that Tk participates in E, else we say E is Tk-free. Two executions
E and E′ are indistinguishable to a set T of transactions, if for each transaction
Tk ∈ T , E|k = E′|k. A TM history is the subsequence of an execution consisting
of the invocation and response events of t-operations.

The read set (resp., the write set) of a transaction Tk in an execution E,
denoted Rset(Tk) (and resp. Wset(Tk)), is the set of t-objects on which Tk

invokes reads (and resp. writes) in E. The data set of Tk is Dset(Tk) =
Rset(Tk) ∪ Wset(Tk). A transaction is called read-only if Wset(Tk) = ∅; write-
only if Rset(Tk) = ∅ and updating if Wset(Tk) �= ∅. Note that, in our TM model,
the data set of a transaction is not known apriori and it is identifiable only by
the set of data items the transaction has invoked a read or write on in the given
execution.

Transaction Orders. Let txns(E) denote the set of transactions that partic-
ipate in E. An execution E is sequential if every invocation of a t-operation
is either the last event in the history H exported by E or is immediately fol-
lowed by a matching response. We assume that executions are well-formed : no

414 P. Kuznetsov and S. Ravi

process invokes a new operation before the previous operation returns. Specifi-
cally, we assume that for all Tk, E|k begins with the invocation of a t-operation,
is sequential and has no events after Ak or Ck. A transaction Tk ∈ txns(E) is
complete in E if E|k ends with a response event. The execution E is complete
if all transactions in txns(E) are complete in E. A transaction Tk ∈ txns(E)
is t-complete if E|k ends with Ak or Ck; otherwise, Tk is t-incomplete. Tk is
committed (resp., aborted) in E if the last event of Tk is Ck (resp., Ak). The
execution E is t-complete if all transactions in txns(E) are t-complete.

For transactions {Tk, Tm} ∈ txns(E), we say that Tk precedes Tm in the real-
time order of E, denoted Tk ≺RT

E Tm, if Tk is t-complete in E and the last event
of Tk precedes the first event of Tm in E. If neither Tk ≺RT

E Tm nor Tm ≺RT
E Tk,

then Tk and Tm are concurrent in E. An execution E is t-sequential if there are
no concurrent transactions in E.

Contention. We say that a configuration C after an execution E is quiescent
(and resp. t-quiescent) if every transaction Tk ∈ txns(E) is complete (and resp.
t-complete) in C. If a transaction T is incomplete in an execution E, it has
exactly one enabled event, which is the next event the transaction will perform
according to the TM implementation. Events e and e′ of an execution E contend
on a base object b if they are both events on b in E and at least one of them is
nontrivial (the event is trivial (and resp. nontrivial) if it is the application of a
trivial (and resp. nontrivial) primitive). We say that a transaction T is poised to
apply an event e after E if e is the next enabled event for T in E. We say that
transactions T and T ′ concurrently contend on b in E if they are each poised to
apply contending events on b after E.

We say that an execution fragment E is step contention-free for t-operation
opk if the events of E|opk are contiguous in E. We say that an execution fragment
E is step contention-free for Tk if the events of E|k are contiguous in E. We
say that E is step contention-free if E is step contention-free for all transactions
that participate in E.

3 TM Classes

TM-correctness. We say that readk(X) is legal in a t-sequential execution E
if it returns the latest written value of X, and E is legal if every readk(X) in H
that does not return Ak is legal in E.

A finite history H is opaque if there is a legal t-complete t-sequential history
S, such that (1) for any two transactions Tk, Tm ∈ txns(H), if Tk ≺RT

H Tm, then
Tk precedes Tm in S, and (2) S is equivalent to a completion of H.

A finite history H is strictly serializable if there is a legal t-complete
t-sequential history S, such that (1) for any two transactions Tk, Tm ∈ txns(H),
if Tk ≺RT

H Tm, then Tk precedes Tm in S, and (2) S is equivalent to cseq(H̄),
where H̄ is some completion of H and cseq(H̄) is the subsequence of H̄ reduced
to committed transactions in H̄.

We refer to S as an opaque (and resp. strictly serializable) serialization of H.

Progressive Transactional Memory in Time and Space 415

TM-liveness. We say that a TM implementation M provides interval-
contention free (ICF) TM-liveness if for every finite execution E of M such that
the configuration after E is quiescent, and every transaction Tk that applies the
invocation of a t-operation opk immediately after E, the finite step contention-
free extension for opk contains a matching response.

A TM implementation M provides wait-free TM-liveness if in every execution
of M , every t-operation returns a matching response in a finite number of its steps.

TM-progress. We say that a TM implementation provides sequential TM-
progress (also called minimal progressiveness [13]) if every transaction running
step contention-free from a t-quiescent configuration commits within a finite
number of steps.

We say that transactions Ti, Tj conflict in an execution E on a t-object X if
X ∈ Dset(Ti) ∩ Dset(Tj), and X ∈ Wset(Ti) ∪ Wset(Tj).

A TM implementation M provides progressive TM-progress (or progressive-
ness) if for every execution E of M and every transaction Ti ∈ txns(E) that
returns Ai in E, there exists a transaction Tk ∈ txns(E) such that Tk and Ti are
concurrent and conflict in E [13].

Let CObjH(Ti) denote the set of t-objects over which transaction Ti ∈
txns(H) conflicts with any other transaction in history H, i.e., X ∈ CObjH(Ti),
iff there exist transactions Ti and Tk that conflict on X in H. Let Q ⊆ txns(H)
and CObjH(Q) =

⋃
Ti∈Q

CObjH(Ti).

Let CTrans(H) denote the set of non-empty subsets of txns(H) such that a set
Q is in CTrans(H) if no transaction in Q conflicts with a transaction not in Q.

Definition 1. A TM implementation M is strongly progressive if M is weakly
progressive and for every history H of M and for every set Q ∈ CTrans(H) such
that |CObjH(Q)| ≤ 1, some transaction in Q is not aborted in H.

Invisible Reads. A TM implementation M uses invisible reads if for every
execution E of M and for every read-only transaction Tk ∈ txns(E), E|k does
not contain any nontrivial events.

In this paper, we introduce a definition of weak invisible reads. For any
execution E and any t-operation πk invoked by some transaction Tk ∈ txns(E),
let E|πk denote the subsequence of E restricted to events of πk in E.

We say that a TM implementation M satisfies weak invisible reads if for any
execution E of M and every transaction Tk ∈ txns(E); Rset(Tk) �= ∅ that is
not concurrent with any transaction Tm ∈ txns(E), E|πk does not contain any
nontrivial events, where πk is any t-read operation invoked by Tk in E.

Disjoint-Access Parallelism (DAP). Let τE(Ti, Tj) be the set of transactions
(Ti and Tj included) that are concurrent to at least one of Ti and Tj in E. Let
G(Ti, Tj , E) be an undirected graph whose vertex set is

⋃
T∈τE(Ti,Tj)

Dset(T) and

there is an edge between t-objects X and Y iff there exists T ∈ τE(Ti, Tj) such
that {X,Y } ∈ Dset(T). We say that Ti and Tj are disjoint-access in E if there is
no path between a t-object in Dset(Ti) and a t-object in Dset(Tj) in G(Ti, Tj , E).

416 P. Kuznetsov and S. Ravi

A TM implementation M is weak disjoint-access parallel (weak DAP) if, for all
executions E of M , transactions Ti and Tj concurrently contend on the same
base object in E only if Ti and Tj are not disjoint-access in E or there exists a
t-object X ∈ Dset(Ti) ∩ Dset(Tj) [5,20].

Lemma 1. ([5,18]) Let M be any weak DAP TM implementation. Let α · ρ1 ·
ρ2 be any execution of M where ρ1 (and resp. ρ2) is the step contention-free
execution fragment of transaction T1 �∈ txns(α) (and resp. T2 �∈ txns(α)) and
transactions T1, T2 are disjoint-access in α · ρ1 · ρ2. Then, T1 and T2 do not
contend on any base object in α · ρ1 · ρ2.

Fig. 1. Executions in the proof of Lemma 2; By weak DAP, Tφ cannot distinguish this
from the execution in Fig. 1(a)

4 Time and Space Complexity of Sequential TMs

In this section, we prove that (1) that a read-only transaction in an opaque TM
featured with weak DAP and weak invisible reads must incrementally validate
every next read operation, and (2) a strictly serializable TM (under weak DAP
and weak read invisibility), must have a read-only transaction that accesses a
linear (in the size of the transaction’s read set) number of distinct base objects
in the course of performing its last t-read and tryCommit operations.

We first prove the following lemma concerning strictly serializable weak DAP
TM implementations.

Lemma 2. Let M be any strictly serializable, weak DAP TM implementation
that provides sequential TM-progress. Then, for all i ∈ N, M has an execution
of the form πi−1 · ρi · αi where,

– πi−1 is the complete step contention-free execution of read-only transaction Tφ

that performs (i − 1) t-reads: readφ(X1) · · · readφ(Xi−1),
– ρi is the t-complete step contention-free execution of a transaction Ti that

writes nvi �= vi to Xi and commits,
– αi is the complete step contention-free execution fragment of Tφ that performs

its ith t-read: readφ(Xi) → nvi.

Progressive Transactional Memory in Time and Space 417

Proof. By sequential TM-progress, M has an execution of the form ρi · πi−1.
Since Dset(Tk) ∩ Dset(Ti) = ∅ in ρi · πi−1, by Lemma 1, transactions Tφ and Ti

do not contend on any base object in execution ρi · πi−1. Thus, ρi · πi−1 is also
an execution of M .

By assumption of strict serializability, ρi · πi−1 · αi is an execution of M in
which the t-read of Xi performed by Tφ must return nvi. But ρi · πi−1 · αi is
indistinguishable to Tφ from πi−1 · ρi ·αi. Thus, M has an execution of the form
πi−1 · ρi · αi.

Theorem 1. For every weak DAP TM implementation M that provides ICF
TM-liveness, sequential TM-progress and uses weak invisible reads,

(1) If M is opaque, for every m ∈ N, there exists an execution E of M such that
some transaction T ∈ txns(E) performs Ω(m2) steps, where m = |Rset(Tk)|.

(2) if M is strictly serializable, for every m ∈ N, there exists an execution E of
M such that some transaction Tk ∈ txns(E) accesses at least m − 1 distinct
base objects during the executions of the mth t-read operation and tryCk(),
where m = |Rset(Tk)|.

Proof. For all i ∈ {1, . . . , m}, let v be the initial value of t-object Xi.

(1) Suppose that M is opaque. Let πm denote the complete step
contention-free execution of a transaction Tφ that performs m t-reads:
readφ(X1) · · · readφ(Xm) such that for all i ∈ {1, . . . , m}, readφ(Xi) → v.

By Lemma 2, for all i ∈ {2, . . . , m}, M has an execution of the form Ei =
πi−1 · ρi · αi.

For each i ∈ {2, . . . , m}, j ∈ {1, 2} and � ≤ (i−1), we now define an execution
of the form E

i
j� = πi−1 · β� · ρi · αi

j as follows:

– β� is the t-complete step contention-free execution fragment of a transaction
T� that writes nv� �= v to X� and commits

– αi
1 (and resp. αi

2) is the complete step contention-free execution fragment of
readφ(Xi) → v (and resp. readφ(Xi) → Aφ).

Claim 1. For all i ∈ {2, . . . , m} and � ≤ (i − 1), M has an execution of the
form E

i
1� or E

i
2�.

Proof. For all i ∈ {2, . . . , m}, πi−1 is an execution of M . By assumption of weak
invisible reads and sequential TM-progress, T� must be committed in πi−1 · ρ�

and M has an execution of the form πi−1 · β�. By the same reasoning, since Ti

and T� have disjoint data sets, M has an execution of the form πi−1 · β� · ρi.
Since the configuration after πi−1 · β� · ρi is quiescent, by ICF TM-liveness,

πi−1 · β� · ρi extended with readφ(Xi) must return a matching response.
If readφ(Xi) → vi, then clearly E

i
1 is an execution of M with Tφ, Ti−1, Ti being

a valid serialization of transactions. If readφ(Xi) → Aφ, the same serialization
justifies an opaque execution.

Suppose by contradiction that there exists an execution of M such that πi−1 ·
β� · ρi is extended with the complete execution of readφ(Xi) → r; r �∈ {Aφ, v}.

418 P. Kuznetsov and S. Ravi

The only plausible case to analyse is when r = nv. Since readφ(Xi) returns the
value of Xi updated by Ti, the only possible serialization for transactions is T�,
Ti, Tφ; but readφ(X�) performed by Tk that returns the initial value v is not
legal in this serialization—contradiction.

We now prove that, for all i ∈ {2, . . . , m}, j ∈ {1, 2} and � ≤ (i− 1), transaction
Tφ must access (i − 1) different base objects during the execution of readφ(Xi)
in the execution πi−1 · β� · ρi · αi

j .
By the assumption of weak invisible reads, the execution πi−1 · β� · ρi · αi

j is
indistinguishable to transactions T� and Ti from the execution π̃i−1 · β� · ρi · αi

j ,
where Rset(Tφ) = ∅ in π̃i−1. But transactions T� and Ti are disjoint-access in
π̃i−1 · β� · ρi and by Lemma 1, they cannot contend on the same base object in
this execution.

Consider the (i− 1) different executions: πi−1 ·β1 ·ρi, . . ., πi−1 ·βi−1 ·ρi. For
all �, �′ ≤ (i−1);�′ �= �, M has an execution of the form πi−1 ·β� ·ρi ·β�′

in which
transactions T� and T�′ access mutually disjoint data sets. By weak invisible
reads and Lemma 1, the pairs of transactions T�′ , Ti and T�′ , T� do not contend
on any base object in this execution. This implies that πi−1 · β� · β�′ · ρi is an
execution of M in which transactions T� and T�′ each apply nontrivial primitives
to mutually disjoint sets of base objects in the execution fragments β� and β�′

respectively (by Lemma 1).
This implies that for any j ∈ {1, 2}, � ≤ (i − 1), the configuration Ci after

Ei differs from the configurations after Ei
j� only in the states of the base objects

that are accessed in the fragment β�. Consequently, transaction Tφ must access
at least i − 1 different base objects in the execution fragment πi

j to distinguish
configuration Ci from the configurations that result after the (i − 1) different
executions πi−1 · β1 · ρi, . . ., πi−1 · βi−1 · ρi respectively.

Thus, for all i ∈ {2, . . . , m}, transaction Tφ must perform at least i − 1 steps

while executing the ith t-read in πi
j and Tφ itself must perform

m−1∑
i=1

i = m(m−1)
2

steps.

(2) Suppose that M is strictly serializable, but not opaque. Since M is strictly
serializable, by Lemma 2, it has an execution of the form E = πm−1 · ρm · αm.

For each � ≤ (i − 1), we prove that M has an execution of the form E� =
πm−1 · β� · ρm · ᾱm where ᾱm is the complete step contention-free execution
fragment of readφ(Xm) followed by the complete execution of tryCφ. Indeed,
by weak invisible reads, πm−1 does not contain any nontrivial events and the
execution πm−1 · β� · ρm is indistinguishable to transactions T� and Tm from
the executions π̃m−1 · β� and π̃m−1 · β� · ρm respectively, where Rset(Tφ) = ∅
in π̃m−1. Thus, applying Lemma 1, transactions β� · ρm do not contend on any
base object in the execution πm−1 · β� · ρm. By ICF TM-liveness, readφ(Xm)
and tryCφ must return matching responses in the execution fragment ᾱm that
extends πm−1 · β� · ρm. Consequently, for each � ≤ (i − 1), M has an execution
of the form E� = πm−1 · β� · ρm · ᾱm such that transactions T� and Tm do not
contend on any base object.

Progressive Transactional Memory in Time and Space 419

Strict serializability of M means that if readφ(Xm) → nv in the execution
fragment ᾱm, then tryCφ must return Aφ. Otherwise if readφ(Xm) → v (i.e. the
initial value of Xm), then tryCφ may return Aφ or Cφ.

Thus, as with (1), in the worst case, Tφ must access at least m − 1 distinct
base objects during the executions of readφ(Xm) and tryCφ to distinguish the
configuration Ci from the configurations after the m − 1 different executions
πm−1 · β1 · ρm, . . ., πm−1 · βm−1 · ρm respectively.

5 RMR Complexity of Strongly Progressive TMs

In this section, we prove every strongly progressive strictly serializable TM pro-
viding wait-free TM-liveness that uses only read, write and conditional RMW
primitives has an execution in which in which n concurrent processes perform
transactions on a single data item and incur Ω(log n) remote memory refer-
ences [2].

Remote Memory References(RMR) [3]. In the cache-coherent (CC) shared
memory, each process maintains local copies of shared objects inside its cache,
whose consistency is ensured by a coherence protocol. Informally, we say that an
access to a base object b is remote to a process p and causes a remote memory
reference (RMR) if p’s cache contains a cached copy of the object that is out of
date or invalidated ; otherwise the access is local.

.

420 P. Kuznetsov and S. Ravi

In the write-through (CC) protocol, to read a base object b, process p must
have a cached copy of b that has not been invalidated since its previous read.
Otherwise, p incurs a RMR. To write to b, p causes a RMR that invalidates all
cached copies of b and writes to the main memory.

In the write-back (CC) protocol, p reads a base object b without causing a
RMR if it holds a cached copy of b in shared or exclusive mode; otherwise the
access of b causes a RMR that (1) invalidates all copies of b held in exclusive
mode, and writing b back to the main memory, (2) creates a cached copy of b in
shared mode. Process p can write to b without causing a RMR if it holds a copy
of b in exclusive mode; otherwise p causes a RMR that invalidates all cached
copies of b and creates a cached copy of b in exclusive mode.

In the distributed shared memory (DSM), each register is forever assigned
to a single process and it remote to the others. Any access of a remote register
causes a RMR.

Mutual Exclusion. The mutex object supports two operations: Enter and Exit,
both of which return the response ok. We say that a process pi is in the critical
section after an execution π if π contains the invocation of Enter by pi that
returns ok, but does not contain a subsequent invocation of Exit by pi in π.

A mutual exclusion implementation satisfies the following properties:
(Mutual-exclusion) After any execution π, there exists at most one process

that is in the critical section.
(Deadlock-freedom) Let π be any execution that contains the invocation of

Enter by process pi. Then, in every extension of π in which every process takes
infinitely many steps, some process is in the critical section.

(Finite-exit) Every process completes the Exit operation within a finite num-
ber of steps.

5.1 Mutual Exclusion from a Strongly Progressive TM

We describe an implementation of a mutex object L(M) from a strictly serializ-
able, strongly progressive TM implementation M providing wait-free TM-liveness
(Algorithm 1). The algorithm is based on the mutex implementation in [15].

Given a sequential implementation, we use a TM to execute the sequential code
in a concurrent environment by encapsulating each sequential operation within an
atomic transaction that replaces each read and write of a t-object with the trans-
actional read and write implementations, respectively. If the transaction commits,
then the result of the operation is returned; otherwise if one of the transactional
operations aborts. For instance, in Algorithm 1, we wish to atomically read a
t-object X, write a new value to it and return the old value of X prior to this
write. To achieve this, we employ a strictly serializable TM implementation M .
Moreover, we assume that M is strongly progressive, i.e., in every execution, at
least one transaction successfully commits and the value of X is returned.

Shared Objects. We associate each process pi with two alternating identities
[pi, facei]; facei ∈ {0, 1}. The strongly progressive TM implementation M is used
to enqueue processes that attempt to enter the critical section within a single

Progressive Transactional Memory in Time and Space 421

t-object X (initially ⊥). For each [pi, facei], L(M) uses a register bit
Done[pi, facei] that indicates if this face of the process has left the critical
section or is executing the Entry operation. Additionally, we use a register
Succ[pi, facei] that stores the process expected to succeed pi in the critical
section. If Succ[pi, facei] = pj , we say that pj is the successor of pi (and pi

is the predecessor of pj). Intuitively, this means that pj is expected to enter
the critical section immediately after pi. Finally, L(M) uses a 2-dimensional bit
array Lock: for each process pi, there are n−1 registers associated with the other
processes. For all j ∈ {0, . . . , n− 1} \ {i}, the registers Lock[pi][pj] are local to pi

and registers Lock[pj][pi] are remote to pi. Process pi can only access registers
in the Lock array that are local or remote to it.

Entry Operation. A process pi adopts a new identity facei and writes false
to Done(pi, facei) to indicate that pi has started the Entry operation. Process
pi now initializes the successor of [pi, facei] by writing ⊥ to Succ[pi, facei]. Now,
pi uses a strongly progressive TM implementation M to atomically store its
pid and identity i.e., facei to t-object X and returns the pid and identity of its
predecessor, say [pj , facej]. Intuitively, this suggests that [pi, facei] is scheduled
to enter the critical section immediately after [pj , facej] exits the critical section.
Note that if pi reads the initial value of t-object X, then it immediately enters
the critical section. Otherwise it writes locked to the register Lock[pi, pj] and sets
itself to be the successor of [pj , facej] by writing pi to Succ[pj , facej]. Process pi

now checks if pj has started the Exit operation by checking if Done[pj , facej]
is set. If it is, pi enters the critical section; otherwise pi spins on the register
Lock[pi][pj] until it is unlocked.

Exit Operation. Process pi first indicates that it has exited the criti-
cal section by setting Done[pi, facei], following which it unlocks the register
Lock[Succ[pi, facei]][pi] to allow pi’s successor to enter the critical section.

5.2 Proof of Correctness

Lemma 3. The implementation L(M) (Algorithm 1) satisfies mutual exclusion.

Proof. Let E be any execution of L(M). We say that [pi, facei] is the successor
of [pj , facej] if pi reads the value of prev in Line 25 to be [pj , facej] (and [pj , facej]
is the predecessor of [pi, facei]); otherwise if pi reads the value to be ⊥, we say
that pi has no predecessor.

Suppose by contradiction that there exist processes pi and pj that are both
inside the critical section after E. Since pi is inside the critical section, either
(1) pi read prev = ⊥ in Line 23, or (2) pi read that Done[prev] is true (Line 29)
or pi reads that Done[prev] is false and Lock[pi][prev.pid] is unlocked (Line 30).

(Case 1) Suppose that pi read prev = ⊥ and entered the critical section. Since
in this case, pi does not have any predecessor, some other process that returns
successfully from the while loop in Line 25 must be successor of pi in E. Since
there exists [pj , facej] also inside the critical section after E, pj reads that either
[pi, facei] or some other process to be its predecessor. Observe that there must

422 P. Kuznetsov and S. Ravi

exist some such process [pk, facek] whose predecessor is [pi, facei]. Hence, without
loss of generality, we can assume that [pj , facej] is the successor of [pi, facei]. By
our assumption, [pj , facej] is also inside the critical section. Thus, pj locked the
register Lock[pj , pi] in Line 27 and set itself to be pi’s successor in Line 28.
Then, pj read that Done[pi, facei] is true or read that Done[pi, facei] is false and
waited until Lock[pj , pi] is unlocked and then entered the critical section. But
this is possible only if pi has left the critical section and updated the registers
Done[pi, facei] and Lock[pj , pi] in Lines 36 and 37 respectively—contradiction to
the assumption that [pi, facei] is also inside the critical section after E.

(Case 2) Suppose that pi did not read prev = ⊥ and entered the critical
section. Thus, pi read that Done[prev] is false in Line 29 and Lock[pi][prev.pid]
is unlocked in Line 30, where prev is the predecessor of [pi, facei]. As with case
1, without loss of generality, we can assume that [pj , facej] is the successor of
[pi, facei] or [pj , facej] is the predecessor of [pi, facei].

Suppose that [pj , facej] is the predecessor of [pi, facei], i.e., pi writes the value
[pi, facei] to the register Succ[pj , facej] in Line 28. Since [pj , facej] is also inside
the critical section after E, process pi must read that Done[pj , facej] is true in
Line 29 and Lock[pi, pj] is locked in Line 30. But then pi could not have entered
the critical section after E—contradiction.

Suppose that [pj , facej] is the successor of [pi, facei], i.e., pj writes the value
[pj , facej] to the register Succ[pi, facei]. Since both pi and pj are inside the
critical section after E, process pj must read that Done[pi, facei] is true in
Line 29 and Lock[pj , pi] is locked in Line 30. Thus, pj must spin on the reg-
ister Lock[pj , pi], waiting for it to be unlocked by pi before entering the critical
section—contradiction to the assumption that both pi and pj are inside the
critical section.

Thus, L(M) satisfies mutual-exclusion.

Lemma 4. The implementation L(M) (Algorithm 1) provides deadlock-
freedom.

Proof. Let E be any execution of L(M). Observe that a process may be stuck
indefinitely only in Lines 23 and 30 as it performs the while loop.

Since M is strongly progressive and provides wait-free TM-liveness, in every
execution E that contains an invocation of Enter by process pi, some process
returns true from the invocation of func() in Line 23.

Now consider a process pi that returns successfuly from the while loop in
Line 23. Suppose that pi is stuck indefinitely as it performs the while loop in
Line 30. Thus, no process has unlocked the register Lock[pi][prev.pid] by writing
to it in the Exit section. Recall that since [pi, facei] has reached the while loop in
Line 30, [pi, facei] necessarily has a predecessor, say [pj , facej], and has set itself
to be pj ’s successor by writing pi to register Succ[pj , facej] in Line 28. Consider
the possible two cases: the predecessor of [pj , facej is some process pk;k �= i or
the predecessor of [pj , facej is the process pi itself.

(Case 1) Since by assumption, process pj takes infinitely many steps in E,
the only reason that pj is stuck without entering the critical section is that

Progressive Transactional Memory in Time and Space 423

[pk, facek] is also stuck in the while loop in Line 30. Note that it is possible for
us to iteratively extend this execution in which pk’s predecessor is a process that
is not pi or pj that is also stuck in the while loop in Line 30. But then the last
such process must eventually read the corresponding Lock to be unlocked and
enter the critical section. Thus, in every extension of E in which every process
takes infinitely many steps, some process will enter the critical section.

(Case 2) Suppose that the predecessor of [pj , facej is the process pi itself.
Thus, as [pi, face] is stuck in the while loop waiting for Lock[pi, pj] to be unlocked
by process pj , pj leaves the critical section, unlocks Lock[pi, pj] in Line 37 and
prior to the read of Lock[pi, pj], pj re-starts the Entry operation, writes false to
Done[pj , 1 − facej] and sets itself to be the successor of [pi, facei] and spins on
the register Lock[pj , pi]. However, observe that process pi, which takes infinitely
many steps by our assumption must eventually read that Lock[pi, pj] is unlocked
and enter the critical section, thus establishing deadlock-freedom.

We say that a TM implementation M accesses a single t-object if in every exe-
cution E of M and every transaction T ∈ txns(E), |Dset(T)| ≤ 1. We can now
prove the following theorem:

Theorem 2. Any strictly serializable, strongly progressive TM implementation
M providing wait-free TM-liveness that accesses a single t-object implies a
deadlock-free, finite exit mutual exclusion implementation L(M) such that the
RMR complexity of M is within a constant factor of the RMR complexity of L(M).

Proof. (Mutual-exclusion) Follows from Lemma 3.
(Finite-exit) The proof is immediate since the Exit operation contains no

unbounded loops or waiting statements.
(Deadlock-freedom) Follows from Lemma 4.
(RMR complexity) First, let us consider the CC model. Observe that every

event not on M performed by a process pi as it performs the Entry or Exit oper-
ations incurs O(1) RMR cost clearly, possibly barring the while loop executed in
Line 30. During the execution of this while loop, process pi spins on the register
Lock[pi][pj], where pj is the predecessor of pi. Observe that pi’s cached copy
of Lock[pi][pj] may be invalidated only by process pj as it unlocks the register
in Line 37. Since no other process may write to this register and pi terminates
the while loop immediately after the write to Lock[pi][pj] by pj , pi incurs O(1)
RMR’s. Thus, the overall RMR cost incurred by M is within a constant factor
of the RMR cost of L(M).

Now we consider the DSM model. As with the reasoning for the CC model,
every event not on M performed by a process pi as it performs the Entry or
Exit operations incurs O(1) RMR cost clearly, possibly barring the while loop
executed in Line 30. During the execution of this while loop, process pi spins on
the register Lock[pi][pj], where pj is the predecessor of pi. Recall that Lock[pi][pj]
is a register that is local to pi and thus, pi does not incur any RMR cost on
account of executing this loop. It follows that pi incurs O(1) RMR cost in the
DSM model. Thus, the overall RMR cost of M is within a constant factor of the
RMR cost of L(M) in the DSM model.

424 P. Kuznetsov and S. Ravi

Theorem 3. ([3]) Any deadlock-free, finite-exit mutual exclusion implementa-
tion from read, write and conditional primitives has an execution whose RMR
complexity is Ω(n log n).

Theorems 2 and 3 imply:

Theorem 4. Any strictly serializable, strongly progressive TM implementation
providing wait-free TM-liveness from read, write and conditional primitives that
accesses a single t-object has an execution whose RMR complexity is Ω(n log n).

6 Related Work and Concluding Remarks

Theorem 1 improves the read-validation step-complexity lower bound [12,13]
derived for strict-data partitioning (a very strong version of DAP) and (strong)
invisible reads. In a strict data partitioned TM, the set of base objects used
by the TM is split into disjoint sets, each storing information only about a
single data item. Indeed, every TM implementation that is strict data-partitioned
satisfies weak DAP, but not vice-versa. The definition of invisible reads assumed
in [12,13] requires that a t-read operation does not apply nontrivial events in
any execution. Theorem 1 however, assumes weak invisible reads, stipulating
that t-read operations of a transaction T do not apply nontrivial events only
when T is not concurrent with any other transaction.

The notion of weak DAP used in this paper was introduced by Attiya
et al. [5].

Proving a lower bound for a concurrent object by reduction to a form of
mutual exclusion has previously been used in [1,13]. Guerraoui and Kapalka [13]
proved that it is impossible to implement strictly serializable strongly progressive
TMs that provide wait-free TM-liveness (every t-operation returns a matching
response within a finite number of steps) using only read and write primitives.
Alistarh et al. proved a lower bound on RMR complexity of renaming prob-
lem [1]. Our reduction algorithm (Sect. 5) is inspired by the O(1) RMR mutual
exclusion algorithm by Hyonho [15].

To the best of our knowledge, the TM properties assumed for Theorem 1
cover all of the TM implementations that are subject to the validation step-
complexity [6,7,14]. It is easy to see that the lower bound of Theorem 1 is tight
for both strict serializability and opacity. We refer to the TM implementation
in [17] or DSTM [14] for the matching upper bound.

Finally, we conjecture that the lower bound of Theorem 4 is tight. Proving
this remains an interesting open question.

References

1. Alistarh, D., Aspnes, J., Gilbert, S., Guerraoui, R.: The complexity of renaming.
In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, 22–25 October, 2011, pp. 718–727, Palm Springs, CA, USA (2011)

Progressive Transactional Memory in Time and Space 425

2. Anderson, T.E.: The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

3. Attiya, H., Hendler, D., Woelfel, P.: Tight RMR lower bounds for mutual exclusion
and other problems. In: Proceedings of the Twenty-seventh ACM Symposium on
Principles of Distributed Computing, PODC 2008, pp. 447–447, New York, NY,
USA. ACM (2008)

4. Attiya, H., Hillel, E.: The cost of privatization in software transactional memory.
IEEE Trans. Comput. 62(12), 2531–2543 (2013)

5. Attiya, H., Hillel, E., Milani, A.: Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory Comput. Syst. 49(4), 698–719
(2011)

6. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining STM by abolishing
ownership records. SIGPLAN Not. 45(5), 67–78 (2010)

7. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

8. Dice, D., Shavit, N.: What really makes transactions fast? In: Transact (2006)
9. Dice, D., Shavit, N.: TLRW: return of the read-write lock. In: SPAA, pp. 284–293

(2010)
10. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of concurrent

objects. SIAM J. Comput. 41(3), 519–536 (2012)
11. Fraser, K.: Practical lock-freedom. Technical report, Cambridge University Com-

puter Laborotory (2003)
12. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional

memory. SIGPLAN Not. 44(1), 404–415 (2009)
13. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-

tures on Distributed Computing Theory. Morgan and Claypool, San Rafael (2010)
14. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional

memory for dynamic-sized data structures. In: Proceedings of the Twenty-Second
Annual Symposium on Principles of Distributed Computing, PODC 2003, pp. 92–
101, New York, NY, USA. ACM (2003)

15. Hyonho, L.: Local-spin mutual exclusion algorithms on the DSM model using fetch-
and-store objects (2003). http://www.cs.toronto.edu/pub/hlee/thesis.ps

16. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementations of strong
shared memory primitives. In: PODC, pp. 151–160 (1994)

17. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 112–127. Springer, Heidelberg (2011)

18. Kuznetsov, P., Ravi, S.: On partial wait-freedom in transactional memory. In:
Proceedings of the 2015 International Conference on Distributed Computing and
Networking, ICDCN 2015, Goa, India, p. 10, 4–7 Jan 2015

19. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26, 631–653 (1979)

20. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In:
PODC, pp. 16–25 (2010)

21. Tabba, F., Moir, M., Goodman, J.R., Hay, A.W., Wang, C.: Nztm: nonblocking
zero-indirection transactional memory. In: Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA 2009, pp. 204–
213, New York, NY, USA. ACM (2009)

http://www.cs.toronto.edu/pub/hlee/thesis.ps

Wavelet-Based Local Mesh Adaptation
with Application to Gas Dynamics

Kirill Merkulov(&)

ROSATOM Corp., Dukhov All-Russia Research Institute of Automatics,
Moscow, Russia

parovoz1991@yandex.ru

Abstract. The paper addresses a simple numerical method for calculating
two-dimensional gas dynamics problems on Cartesian meshes with dynamic
local refinement. For multilevel local adaptation, several mesh-related algo-
rithms are proposed based on quadric trees and recursive functions. A global
analyzer of the computed solution is developed on the wavelet-based decom-
positions. To project the numerical solution between different mesh levels a
procedure is proposed for cell function reconstruction based on the
WENO-approach. Different ways of the parallel realization for such dynamic
mesh structures are discussed.

Keywords: Mesh refinement � Gas dynamics � Wavelet analysis � Multiscale
calculations

1 Introduction

Numerical simulation in gas dynamics faces a problem when the flow of interest is
spatially non-uniform and contains structures of very different scales that require dif-
ferent grid resolution. In this context, small scales might be so small that use of a
uniform grid in the whole computational domain makes the problem to be computed
impractical because of enormous computational resources required. One way to treat
such problems is to employ dynamic locally adaptive grids that automatically increase
space resolution (by dividing computational cells in smaller parts) in subdomains of
small scale structures, and oppositely coarser grid resolution in regions of smooth
distributions. Our research aims to develop and code a novel numerical technology that
solves problems with different scales on simple Cartesian grids with local dynamic
adaptation of the grid size to the solution computed. This technology is based on the
combination of the idea of multiscaling in the description of flows realized by means of
the wavelet analysis with the Method of Free Boundary (MFB) [1] that makes it possible
to effectively model inner boundary conditions on an body unfitted Cartesian grid.

In the MFB, the compensating mass, momentum, and energy flux is introduced in
the right-hand side of the governing equations so that the solution of the modified
system of equations in the region off the body would exactly match the solution of the
original boundary-value problem. In doing so, the problem is solved on a regular
Cartesian grid, which ideally fits the procedure of local grid adaptation by means of
tensor products of proper one-dimensional wavelets or multiwavelets.

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 426–435, 2015.
DOI: 10.1007/978-3-319-21909-7_41

The idea of multiscaling and adaptivity is not new and goes back to the ideas of A.
Harten [2]. However, the appearance of new classes of multiwavelets orthogonal to
polynomials and also having small compact supports in combination with the simple
structure of computational cells in the method MFB offers fundamentally new possi-
bilities for developing new wavelet adaptive algorithms on Cartesian grids for solution
of hydro- and gas dynamic problems with the parallel computer systems of hybrid
CPU/GPU architecture.

When solving hydro- and gas dynamic problems with the use of graphic acceler-
ators, in most cases simple explicit time marching schemes are employed because of
the specific architecture of the GPU. Program realizations, as a rule, simultaneously can
operate several GPU of only one unit. In our work, we intend to develop a new local
dynamic grid adaptive parallel algorithm that is based on the implicit time marching
scheme, the realization of which is supposed to will have scalability near to the ideal
one., we plan to create the new effective parallel computational technology.

2 Mathematical Model

In this paper, the method of mesh adaptation is considered for a simple two-
dimensional gas dynamic model that is based on the system of inviscid Euler equations.
The mathematical statement of the problem is reduced to solving the following system
of equations:

@q
@t þ div qUð Þ ¼ 0;

@ qUð Þ
@t þ div qUUð Þ þ grad pð Þ ¼ 0;

@ qEð Þ
@t þ div qUHð Þ ¼ 0;

8
><

>:
ð1Þ

in a region VðCÞ � R2 bounded by a given closed curve C ¼ Cðx; yÞ. Here we introduce
the standard notation: U - velocity vector, ρ - density, p – pressure, H = E+p/ρ - the total
specific enthalpy, E = e+0.5U2- the total specific energy, e - specific internal energy.

These equations correspond to the laws of conservation of mass, momentum, and
energy. To close these equations, the equation of state is used that functionally relates
thermodynamical parameters. The gas is assumed to be ideal and calorifically perfect,
i.e. p ¼ ðc� 1Þqe. The problem is completed with initial and boundary conditions
imposed on the boundary Г.

3 Numerical Method

The problem is solved in a rectangular computational domain with a Cartesian grid that
embraces the flow field to be computed and also the boundary Г. To model inner
boundary conditions on Г, we utilize the MFB. Following this method [2], the Eqs. (1)
are modified by adding in the right-hand side properly defined compensating fluxes Fw:

Wavelet-Based Local Mesh Adaptation 427

@Q
@t

þ @Fx

@x
þ @Fy

@y

� �
¼ �Fw ð2Þ

Here we introduce vector notations: Q ¼ q; qUx; qUy; qE
� �T

- the vector of conser-

vative variables, Fk ¼ ðqUk; qUkUx þ pdk;qUkUy þ pdk; qUkHÞT ; k ¼ x; y- the flux
vectors in the x- and y-directions. The compensating fluxFw is applied only to those cells
that cut by the boundaryГ. Thisflux depends on local gas dynamic parameters and also on
the subcell geometry structure determined by three parameters – volume fraction of gas
in the cut cell, the length of boundary Г inside the cut cell, and the unit outward normal.
Note that the geometry inside the cut cell is approximated by the linear reconstruction.

The integration of the system (2) over one time step is carried out at each com-
putational cell of the Cartesian grid with the explicit finite-volume method. The
numerical flux at the cell interface is calculated with the Godunov scheme on the base
of the exact [3] or an approximate Riemann problem solution. We use a simple
approximate Riemann solver with two-waves configuration proposed by Rusanov [4].
Because of the gas volume fraction that might be small rather small, the integration of
the compensating flux in cut cells is accomplished with the implicit method. The latter
is solved with local Newtonian iterations.

4 2D Adaptive Cartesian Mesh

When using grids with dynamic local adaptation, one of the most time-consuming and
difficult tasks is the search for most appropriate and convenient format of data. To
adapt the originally structured Cartesian grids where the cell partition is fulfilled with a
pre-selected law, it is convenient to use different tree-type data structures. There are fast
recursive algorithms that allows to fulfill effectively procedures of crawling and grid
refinement or coarsening.

We use quadric trees for 2D adaptive grids similar to those used in [5]. An aex-
ample of data performance you can see on Fig. 1. When refining the grid, each cell is
divided into only four equal parts by halving each direction.

Fig. 1. Quadric tree as a format for adaptive mesh storage.

428 K. Merkulov

Each grid cell is described by the value of its level of adaptation (the base grid
corresponds a level equal to 0), and the virtual position at this level - a couple of
parameters: the integer coordinates of the cell in the virtual Cartesian grid corre-
sponding the cell level. In addition, the cell possesses a dividing flag indicating whether
this cell is the final settlement (the corresponding leaf of the tree) or it has 4 children
cells of the next level. For divided cells we save pointers to all its children, for a leaf
cell (we will call it physical) – the pointer to corresponding gas dynamic parameters.

This format is very useful for mesh storage because the creation, changing and
traversal of quadric tree are describes by simple algorithms based on dichotomy. If you
divide the row on current level of the instant cell evenly by two, you receive the row
number of parent’s cell on its current level.

Figure 2 just illustrates the importance of the grid adaptation. Here we show
numerical results for the point explosion problem obtained on a two-level grid.

The base grid consists of 100 × 100 equally distributed cells. One level adaptation
is then done only for the cells located above the main diagonal of the computational
domain. One can see clear difference between solutions above and below the diagonal.

5 Wavelet-Based Analyzer of Numerical Solutions

It is very important to use simple unified procedure when analyzing big data on parallel
system. We develop our method for computing problems of gas dynamics on the
Cartesian grids of high resolution. So we need the simple operation, that can say us
where we need fine grid and where we can stay it coarse. This operation should be
homogeneously applicable to the each cell of non-structured mesh. So we decided to
use global procedure based on wavelets that help us find subareas with singularities
inside big arrays. Let us consider a discrete function (say the numerical density or
pressure distribution) on a Cartesian grid, gi;j

� �
; 0� i� 2N; 0� j� 2N. Introduce a

Fig. 2. Point explosion problem: pressure (left) and density (right) on the two-level grid. Black
areas relates to low values and white to high values.

Wavelet-Based Local Mesh Adaptation 429

threshold d that is defined by the cell size and the order of approximation of the
numerical method to be used. Then we can calculate the wavelet decomposition of a
two-dimensional array of the data and define a set of flags:

Fig. 3. Gas dynamic fields (left half of the picture, top down: density for Sedov problem
numerical solution, pressure for the problem about the instability of isolated vortex and problem
of interaction of three point explosures) and adaptation flags, corresponding to them. Black areas
relates to low values and white to high values. For flags black area corresponds to the mesh part
with refinement.

430 K. Merkulov

flagi;j ¼ lh i
2½ � j

2½ �[d
� 	

_ hl i
2½ � j

2½ �[d
� 	

_ hh i
2½ � j

2½ �[d
� 	

;

0� i� 2N; 0� j� 2N

In this way, the flag points that area where the numerical solution dictates saving
the fine grid; cells in other areas are assumed to coarsen [6]. Opportunities of this
analyzer are illustrated in the Fig. 3, where we performance different gas dynamic fields
and corresponding adaptation given by our analyzer.

This procedure can be easily adapted to multilevel case using sliding window
approach or by recursive application of existing procedure, where analyzer says that the
grid should be refined.

6 WENO-Reconstructions for Adaptive Cartesian Meshes

The calculation of the above problem on a dynamic locally adaptive grid requires a
function to project the solution of the base grid onto the cells of the lower level grid.
We propose a simple extension of the WENO interpolator [7] to adaptive 2D grids.
Also we used the theoretical findings from [8] and [9]. Assuming that the difference in
levels between two neighboring cells is not greater than 1, we use the regular
eight-point pattern for each local mesh configuration. This allows us to construct
efficient interpolation function that provides projected data in children cells on the base
of the given data in the parent cell and its neighbors. In order to use WENO-technology
for function reconstruction on non-regular mesh we should choose a group of linearly
independent templates. Let’s consider that all neighbors of the instant cell of the level
l are of the level l + 1, i.e. instant cell has eight little neighbors. If in real situation
configuration is not so, we use the data from the real cells that are physical and parent
for the potential neighbors of the instant one. Let’s give the indexes to each of these
eight imaginary cells (see Fig. 4).

Fig. 4. Numeration and configuration of the imaginary neighbors of instant cell, used for the
WENO-reconstruction of conservative data inside the instant cell.

Wavelet-Based Local Mesh Adaptation 431

Now we have nine values of conservative parameter: eight averaged for each of
imaginary neighbor cells and one for the instant cell. We have chosen linearly eight
independent 3-point templates: four triangular: 1-0-2, 3-0-4, 5-0-6, 7-0-8 and four right:
2-0-4,4-0-6,6-0-8,8-0-2 (we call it right, because they form right triangles). We can
calculate the gradient of conservative parameter using each of eight templates. After
that we need to weight influence of each template into final function reconstruction.
Influence of each template of the group (triangular or right) will be proportional to the
value S

d, where S is the square swept by the template and d is the distance between the
centers of the instant cell and the template. All triangular templates has relative weight
of 1

2
ffiffi
2

p , and the right one – the weight of 3
4
ffiffi
5

p . For each pattern we calculate the gradient,

the resulting gradient we have as a weighted sum of gradients, received by the tem-
plates with weights wtriangular rightð Þ

ðeþbÞ2 , where β is the smoothness (absolute value of the

gradient), ε is small number that introduced to get rid of division by zero.

Fig. 5. Density field at the base (top left), shallow (top right) and adaptive (bottom left) grids,
adaptation flags (bottom right) after calculation on dynamically adaptive grid for the problem of
interaction of point explosions. Black areas relates to low values and white to high values. For
flags black area corresponds to the mesh part with refinement.

432 K. Merkulov

7 Results of Numerical Tests

Figure 5 shows results of calculating two-points explosion problem with three grids: a
base grid of 200 × 200 cells, a fine grid 400 × 400 cells, and a dynamic two-level
adaptive grid. No difference can be seen between the fine and adaptive grid solutions.
Adaptation flags are given for this problem in the bottom-right of Fig. 5. Black
indicates cell of the fine grid, while white does the coarse grid. Figure 6 illustrates the
numerical solution of Sedov problem [10], received by three modes of two-level grid
(base, fine and dynamic adaptive) and adaptation flags for last variant of calculation.

Fig. 6. Density field at the base (top left), shallow (top right) and adaptive (bottom left) grids,
adaptation flags (bottom right) after calculation on dynamically adaptive grid for the Sedov
problem. Black areas relates to low values and white to high values. For flags black area
corresponds to the mesh part with refinement.

Wavelet-Based Local Mesh Adaptation 433

8 Specifics of Parallel Realization

The method above can be easily transferred on the parallel computer systems with
shared memory. It can be implemented on the basis of dynamic parallelism (recursive
functions in CUDA) or algorithms for the chains of different lengths. A challenging
task is partitioning of dynamically changing adaptive grid and its optimal distribution
in the computer to minimize calculation time and computing resources. Even devel-
oping the method for a system with common memory (for example, GPU), you need to
optimize the memory access. For our problem localization of the each quadric tree
(element of basic mesh) seems to be useful and accelerates calculation up to two times.

9 Conclusions

A simple numerical method has been proposed for calculating two-dimensional gas
dynamics problems on Cartesian meshes with dynamic local refinement. All the mesh
algorithms are based on quadric trees and recursive functions. We suggest the global
analyzer for the different numerical solutions and the procedure of cell function
reconstruction based on the WENO-approach. Also different ideas of the parallel
realizations for such structures have been described.

This research was supported by the grant 14-11-00872 from Russian Scientific Fund.
In the part of parallel implementation it is supported by the grant 14-01-31480 from the
Russian Foundation for Basic Research.

References

1. Menshov, I., Kornev, M.: Free-boundary method for the numerical solution of gas-dynamic
equations in domains with varying geometry. Math. Models Comput. Simul. 6(6), 612–621
(2014)

2. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation
laws. Comm. Pure Appl. Math. 48(12), 1305–1342 (1995)

3. Godunov, S.K., et al.: Numerical Solution of Multidimensional Problems of Gas Dynamic.
Nauka, Moscow (1976)

4. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves and
obstacles. USSR Comput. Math. Math. Phys. 1(2), 304–320 (1962)

5. Sukhinov, A.A.: Construction of cartesian meshes with dynamic adaptation to the solution.
Matematicheskoe Modelirovanie 22(1), 86–98 (2010)

6. Afendikov, A. L., Merkulov, K. D., Plenkin, A. V.: Local mesh adaptation in gas dynamic
problems with the use of wavelet analysis (2014)

7. Semplice, M., Coco, A., Russo, G.: Adaptive Mesh Refinement for Hyperbolic Systems
based on Third-Order Compact WENO Reconstruction (2014). arXiv:1407.4296

8. Kudryavtsev, A. N., Khotyanovsky, D. V.: Application of WENO schemes for numerical
simulations of high-speed flows. In: the Abstract of International Conference on
Computational Fluid Dynamics, Vol. 4 (2006)

434 K. Merkulov

http://arXiv:1407.4296

9. Shu, C.W.: High order ENO and WENO schemes for computational fluid dynamics. In:
Barth, T.J., Deconinck, H. (eds.) High-order methods for Computational Physics, pp. 439–
582. Springer, Heidelberg (1999)

10. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. CRC Press, Boca Raton
(1993)

Wavelet-Based Local Mesh Adaptation 435

On Implementation High-Scalable CFD Solvers
for Hybrid Clusters with Massively-Parallel

Architectures

Pavel Pavlukhin1,2(B) and Igor Menshov1

1 Keldysh Institute of Applied Mathematics, Moscow 125047, Russia
{pavelpavlukhin,menshov}@kiam.ru

2 Research and Development Institute “Kvant”, Moscow 125438, Russia

Abstract. New approach for solving of compressible fluid dynamic
problems with complex geometry on Cartesian grids is proposed. It
leads to algorithmic uniformity for whole domain and structured memory
accesses which are essential for effective implementations on massively-
parallel architectures – GPUs. Methods used are based on implicit
scheme and LU-SGS method. Novel parallel algorithm for last one is
proposed. In-depth analysis of CUDA+MPI implementation (interoper-
ability issues, libraries tuning) scalable up to hundreds GPUs is per-
formed.

Keywords: CFD · CUDA · LU-SGS · Implicit schemes · Parallel
algorithms

1 Introduction

Solving of compressible fluid dynamic problems with state-of-art computational
systems is very challenging and face many difficulties. The first difficulty is due
to discretization of the computational domain. The mesh is commonly unstruc-
tured if the domain is geometrically complex. Meshing procedure demands a
huge amount of computations and can involve manual correction which also
takes time. Unstructured mesh leads to irregular memory access which results
in performance degradation due to rather memory-bound solver then compute-
bound one. This concerns classical computational architecture and massive par-
allel processors in greater degree whose performance primarily depends on regu-
larity of memory accesses. Consequently the favorite choice is to use structured
meshes resulting in regular memory access patterns. But generation of grids
fitted to domain boundaries is an exigeant or even unresolvable problem.

Another difficulty rises from relationship between evolutions of numercal
methods and processors architecture. To solve a problem on low performance
computational systems one used a coarse mesh and therefore numerical meth-
ods were supposed to be sophisticated in order to obtain more accurate solution.
From the other side processor cores became “heavier” at the same time: out-
of-order execution, data prefetch, branch prediction, vector instructions allowed
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 436–444, 2015.
DOI: 10.1007/978-3-319-21909-7 42

On Implementation High-Scalable CFD Solvers for Hybrid Clusters 437

effectively implement complex methods. But scalability of computational sys-
tems on such “heavy” cores was very limited and their development was operose
thus led to emerging of new massive-parallel systems with high number of sim-
ple cores. A problem has appeared: accumulated amount of numerical methods
weren’t suited to new machines since their high performance was achieved by
high number (about 1000) of cores simultaneously processing “light” threads not
by low number (about 10) of “heavy” ones. In other words, from the one hand
simple core structure of massive parallel units requires trivial numerical meth-
ods, from the other hand demands scalability and parallelizability much stronger
than for “classical” computational systems. Explicit schemes can be well fitted
to new processor architectures but they suffer from stability restrictions: in prob-
lems involving complex geometry with irregular grid the global time step will
be defined by the smallest cell resulting in unreasonable computational costs.
Implicit methods allow to overcome this restriction but they are more compli-
cated from the abovementioned difficulties especially from parallelisation point
of view.

Thus it’s desirable to have a numerical method free of time step restricition,
with capability of complex geometry usage by means of simple (Cartesian) grids
for effective memory utilization and appropriate for massive-parallel compute
systems.

Implicit schemes have no time step restrictions but their implementations on
GPU are very complex since data dependency which is a common feature for
scheme of such type especially in case of lack of GPU global synchronization. For
example, the LU-SGS method [1] which is used in [2] for solving a linear system
generated by implicit schemes can be regarded as robust for GPU but because
of data dependency which complicates parallelisation another modification of
LU-SGS method, DP-LUR [3], is chosen, this method is free of data dependence
but suffers from higher computational cost. In our paper an original parallel
algorithm for LU-SGS method is proposed. It exactly copies work of successive
prototype and scales up to hundreds GPU.

As stated above, the type of spatial discretization also plays major role since
GPU works with regular data structures which represent structured grid much
more effectively in comparison with irregular ones typical for unstructured grids.
But usage most common – body-fitted – grid type applies considerable restric-
tions on domain geometry complexity. The method of free boundaries [4] permits
to solve problems in complex domains on plane non body-fitted Cartesian grids.
This property makes it well suited candidate for GPU. This method is based
on an alternative formulation of the problem in terms of which inner boundary
conditions are modeled by a compensating flux a special right-hand side addi-
tive in governing equations thus permitting perform computations over all grid
cells in a uniform way. In other words, the method of free boundaries possesses
algorithmic uniformity quite important for massive-parallel architectures.

438 P. Pavlukhin and I. Menshov

2 Numerical Method

Let us briefly describe methods used. Detailed description can be found in [1,4–6].
Consider the Euler equations for compressible flow in conservation laws form:

∂q

∂t
+

∂f i

∂xi
= −Fw . (1)

Non-penetrating boundary conditions are modeled by a properly defined
right-hand additive – the compensating flux. After spacial discretization by the
finite volume method implicit time integration scheme is applied which leads to
the system of discrete equations. This one is solved by pseudo time relaxation
method based on implicit discretization and Newtonian iterations. In this way,
the linear system is consequently solved for finding iteration increment:

(D + L + U)δsqi = −Rn+1,s
i . (2)

The LU-SGS method leads to approximate factorization of the left-hand
side (1) and the equations are consequently splitted in two subsystems:

{
(D + L)δsq∗

i = −Rn+1,s
i

(D + U)δsqi = Dδsq∗
i .

(3)

Solving (3) is reduced to forward and backward sweeps over all grid cells
without full matrix inverses.

3 Parallel LU-SGS Algorithm

The compensating flux addition (1) does not change structure of the linear equa-
tions (2) since that flux is local component relative to each grid cell. This prop-
erty permits to construct parallel algorithm for LU-SGS method in the same way
as for Cartesian grids without any inner boundaries. Solving (3) may be repre-
sented as forward and backward sweeps over all grid cells hence arising data
dependency has local nature and is only defined by sweep order over all geomet-
rical neighbors relative to current cell. In other words, depending on neighbor
position (“before” or “after”) in sweep order in relation to current cell vari-
ous computing operations are performed. Sweep order may be chosen in dif-
ferent ways based not only on cell geometry neighborhood. This property will
be exploited for parallel algorithm construction. There are two levels for this
challenge – internode and intra-GPU parallelization.

First, let us consider the problem in internode level assuming each node
equipped sequential computing unit only. Computational domain is divided into
blocks with uniform cell distribution. The topology of blocks equals to grid cells
one: “toe-to-toe” rectangles. Next, blocks are grouped in two sets in “chessboard”
order: two neighbor blocks belong different (“black” and “white”) sets. Inner and
border cells are separated in each block. Global sweep is chosed in following way:
first, inner cells in all “black” blocks are swept then half inner cells and whole

On Implementation High-Scalable CFD Solvers for Hybrid Clusters 439

border part in all “white” blocks, border cells in all “black” blocks and, finally,
left half inner cells are swept (Fig. 1). This sweep permits to overlap parallel
computing over inner cells and border cells exchanging between neighbor blocks
preserving full method correctness.

Fig. 1. Global sweep for internode parallel algorithm.

Consider now intra-GPU parallelization. Simultaneous computing over grid
cells is possible only when they are not geometrical neighbors. Sweep chosing
for GPU brings to graph coloring problem: any two neighbor vertex (cells) must
be different colors. In case of structured, namely Cartesian grids in the method
of free boundaries, only two colors are needed what leads to “chessboard” cells
sweep similar to blocks one, i.e. computing on GPU is performed over all “black”
cells (simultaneously) and then over all “white” cells (simultaneously).

Combining two levels of parallelism results in multinode multi-GPU algo-
rithm: inner and border cells in blocks are splitted into “black” and “white”
ones; in each part of block same color cells are computed simultaniously on
GPU (Fig. 2). More details can be found in [7].

Fig. 2. Multinode multi-GPU parallel algorithm for LU-SGS method.

4 Numerical Experiment

Correctness of the proposed method of free boundaries was studied in flow over a
NACA0012 airfoil problem. Angle of attack α = 1.25 ◦, Mach number M = 0.8.
Two types of grid are used:

1. Body fitted C -grid with 400 nodes around aerofoil and total 400 × 200 res-
olution. Standard boundary conditions are applied.

440 P. Pavlukhin and I. Menshov

2. Body non-fitted Cartesian grid with circumscribing around aerofoil 200 × 24
rectangle and total 650 × 324 resolution. Aerofoil body conditions were mod-
eled by the compensating flux (1).

The problem was solved by using the hybrid explicit-implicit scheme [6] and
parallel LU-SGS method described above with a Courant number of C = 10
on Tesla K20 GPU. Cp distribution for steady-state solution is presented on
Fig. 3. One can observe that solutions for the two types of grid are very close.
Discontinuity at trailing edge of aerofoil is caused by linear aproximation errors
in this sharp part of NACA0012 on Cartesian grid. There is also characteristic
local minimum in weak shock wave on lower aerofoil border for solution getting
by the method of free boundaries; there is no one on C -grid, it can be only
observed in higher resolution grids. That is explained by orthogonal property
naturally inherenting for Cartesian grids and leading to more accurate solution
is not valid for C -grid used in test problem.

Fig. 3. Cp distribution, NACA0012, M = 0.8, α = 1.25 ◦, solution on C -grid is marked
by solid line and on Cartesian grid – by rhombs.

5 Implementation

The key parallel solvers property for scalability is overlapping computing and
data transfers between parts executing in parallel. In case of computer clusters
equipped GPU accelerators interoperability of two API – CUDA and MPI –
is exploited since interprocess data exchange consists of several stages: GPU
RAM ↔ CPU RAM transfers via pci-express bus, intranode CPU RAM trans-
fers and internode communications via high speed low latency network (Infini-
band). Nonblocking MPI calls and streams in CUDA API are used for efficient
implementation of that exchanges. Kepler family specific features like Hyper-
Q, GPUDirect RDMA are not utilized since modern supercomputers equipped
Fermi generation accelerators are still prevalent.

First solver parallel implementation for 2D problems shows promising outlook
of proposed methods and approaches. For example, strong scaling efficiency in
3.9 M cells problems is more 80 % on 64 Tesla C2050 GPUs (relative to 2 GPU),
Fig. 4.

On Implementation High-Scalable CFD Solvers for Hybrid Clusters 441

Fig. 4. Strong scaling in 2D problems, SC “K-100” [8].

One can pay attention at results for 1 and 2 GPU – performance increase
only in 1.56 times although next values are with almost linear scalability. Analy-
sis of stream tricks in CUDA [9] shows importance of order kernels and memory
copies issued in streams. Scheme implemented by events and cudaEventSynchro-
nize calls led to serializing these activities (and poor result on 2 GPU mentioned
above) and therefore it was modified in 3D solver to work with cudaStreamSyn-
chronize and without events. But another problem appears: amount of local
per-thread memory is increased (up to around 2 KB for some kernels) due to
increased code complexity (compared to 2D solver) and local memory resizes on
every kernel launching what leads to serializing kernel execution with consider-
able launch overhead and blocking concurent overlapped MPI activity (Fig. 5,
up part, MPI calls marked by green color in “Markers and Ranges” line, kernels
in “Compute” line).

Fig. 5. Nvprof trace for default (up) and with cudaDeviceLmemResizeToMax flag
(down) run, GPU X2070.

442 P. Pavlukhin and I. Menshov

By setting cudaDeviceLmemResizeToMax [10] CUDA GPU flag one able to
eliminate local memory resizing on kernel launching what allows concurrent ker-
nel execution without any overhead and overlapping MPI activity (Fig. 5, down
part).

Still one interoperability feature of CUDA with MPI is discovered. There
are two protocols in MPI library called eager and rendezvous for send/receive
operations. Eager protocol requires more buffer memory but runs asynchron-
uosly as opposed to rendezvous not consuming extra memory and performing
synchronization of sender and reciever. Switch from eager to rendezvous pro-
tocol happens when message size exceeds some predefined value depending on
specific MPI library implementation (order around 10–100 KB). As it turned
out, using rendezvous protocol has a negative performance impact (Cuda toolkit
5.*, 6.*, Intel MPI 4.*, 5.* is used for research). Grid size for test problem is
600000 cells; 2 Tesla X2070 is used (one GPU per process); message sizes is about
1 MB, therefore rendezvous protocol is used (by default, it is enabled in Intel
MPI when message size exceeds 256 KB). Execution time for two MPI processes
with default rendezvous protocol takes on 1 node 2.57 sec, on 2 nodes (1 process
per node) 2.41 sec (Table 1). Forced switch-on eager protocol (via environment
variables) reduces execution time to 2.17 sec for both cases.

Nvprof trace (Fig. 6) shows in detail that MPI wait calls (green color, “mark-
ers and ranges” line) block kernel launching (“Compute” line) when rendezvous
protocol is used whereas eager protocol does not limit overlapping kernels and
MPI calls.

Table 1. CUDA + MPI: rendezvous vs eager protocol (times in sec)

2 GPU,
intra-node,
rendezvous

2 GPU,
inter-node,
rendezvous

2 GPU,
intra-node,
eager

2 GPU,
inter-node,
eager

1 GPU

2.57 2.41 2.17 2.17 4.13

Fig. 6. Nvprof trace: rendezvous (up) vs eager (down) (Color figure online).

On Implementation High-Scalable CFD Solvers for Hybrid Clusters 443

Fig. 7. Strong scaling on 150 M cells 3D problem, “Lomonosov” Supercomputer.

Consequently only by MPI library tuning one can reduce execution time up to
15 % for MPI+CUDA application. Performance on 2 GPUs increases almost 2
times compared to 1 GPU (Table 1). That demonstrates more effective scheme for
CUDA streams compared to one in 2D solver (Fig. 4). Finally, 75 % strong scaling
efficiency (Fig. 7) is achieved on 768 GPU (relative to 32 GPU) on “Lomonosov”
Supercomputer [11] (150 M cells problem size). That result is obtained due to
optimization approaches described above as well.

Acknowledgments. This work was supported by grant 14–01–31480 from the
Russian Foundation for Basic Research.

References

1. Jameson, A., Turkel, E.: Implicit schemes and LU decomposition. Math.of Comp
37, 385–397 (1981)

2. Lin, F., Zhenghong, G., Kan, H., Fang, X.: A multi-block viscous flow solver based
on GPU parallel methodology. Comput. Fluids 95, 19–39 (2014)

3. Wright, M.J., Candler, G.V.: A data-parallel LU rexation method for reacting vis-
cous flows. In: Ecer, A., Satofuka, N., Periaux, J., Taylor, S. (eds.) Parallel Com-
putational Fluid Dynamics 1995, pp. 67–74. North-Holland, Amsterdam (1996)

4. Menshov, I., Pavlukhin, P.: Numerical Solution of Gas Dynamics Problems on
Cartesian Grids with the Use of Hybrid Computing Systems. Preprint of KIAM
RAS. vol. 92 (2014)

5. Menshov, I., Nakamura, Y.: On implicit godunov’s method with exactly linearized
numerical flux. Comput. Fluids 29(6), 595–616 (2000)

6. Menshov, I., Nakamura, Y.: Hybrid explicit-implicit, unconditionally stable scheme
for unsteady compressible flows. AIAA J. 42(3), 551–559 (2004)

7. Pavlukhin, P.: Parallel LU-SGS numerical method implementation for gas dynam-
ics problems on GPU-accelerated computer systems. Vestn. of Lobachevsky State
Univ. Nizhni novgorod 1, 213–218 (2013)

444 P. Pavlukhin and I. Menshov

8. “K-100” Supercomputer. http://www.kiam.ru/MVS/resourses/k100.html
9. CUDA C/C++ Streams and Concurrency. http://on-demand.gputechconf.com/

gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
10. CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/cuda-runtime-api/

group CUDART DEVICE.html
11. Lomonosov Supercomputer. http://hpc.msu.ru/?q=node/59

http://www.kiam.ru/MVS/resourses/k100.html
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html
http://hpc.msu.ru/?q=node/59

Parallelization of 3D MPDATA Algorithm
Using Many Graphics Processors

Krzysztof Rojek and Roman Wyrzykowski(B)

Czestochowa University of Technology, Dabrowskiego 69,
42-201 Czestochowa, Poland
{krojek,roman}@icis.pcz.pl

Abstract. EULAG (Eulerian/semi-Lagrangian fluid solver) is an estab-
lished numerical model for simulating thermo-fluid flows across a wide
range of scales and physical scenarios. The multidimensional positive def-
inite advection transport algorithm (MPDATA) is among the most time-
consuming components of EULAG. In this study, we focus on adapting
the 3D MPDATA computations to clusters with graphics processors. Our
approach is based on a hierarchical decomposition including the level of
cluster, as well as an optimized distribution of computations between
GPU resources within each node. To implement the resulting computing
scheme, the MPI standard is used across nodes, while CUDA is applied
inside nodes. We present performance results for the 3D MPDATA code
running on the NVIDIA GeForce GTX TITAN graphics card, as well
as on the Piz Daint cluster equipped with NVIDIA Tesla K20x GPUs.
In particular, the sustained performance of 138 Gflop/s is achieved for a
single GPU, which scales up to more than 11 Tflop/s for 256 GPUs.

Keywords: Stencil computations · MPDATA algorithm · GPU · Clus-
ter · Parallel programming · Algorithm adaptation · CUDA · MPI

1 Introduction

In recent years, there has been a rapid increase in using modern supercomputing
architectures for modeling complex engineering systems. An important example
is Numerical Weather Prediction (NWP) [8]. In NWP, the physical processes gov-
erning atmospheric flows are simulated by solving partial differential equations
in three-dimensional space and time. Due to the high computational complexity
of modeling mesoscale weather systems [19,20], it is necessary to employ efficient
numerical algorithms and powerful computational resources. The new architec-
tures based on modern multicore CPUs [1] and accelerators such as GPUs [12,13]
and Intel Xeon Phi coprocessors [15,20] offer unique opportunities for modeling
atmospheric processes significantly faster and with accuracy greater than ever
before. The important goal is also the possibility to decrease the energy consump-
tion when performing NWP. However, the traditional codes are bottlenecked by
memory/communication bandwidth and cache performance. Therefore, to be
able to effectively exploit the potential of new computing platforms, the struc-
ture of the traditional codes must be significantly redesigned.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 445–457, 2015.
DOI: 10.1007/978-3-319-21909-7 43

446 K. Rojek and R. Wyrzykowski

EULAG (Eulerian/semi-Lagrangian fluid solver) is an established numeri-
cal model for simulating thermo-fluid flows across a wide range of scales and
physical scenarios [9,16,19]. This model is an innovative solver in the field of
numerical modeling of multiscale atmospheric flows. The multidimensional pos-
itive definite advection transport algorithm (MPDATA) [14] is among the most
time-consuming components of EULAG. This algorithm represents a sequence
of stencils [2], where each stencil depends on one or more others. The complex
structure of data dependencies between stencils makes the efficient paralleliza-
tion of MPDATA on modern computing platform a challenging problem.

Rewriting the EULAG code and replacing conventional HPC systems with
heterogeneous clusters using accelerators such as GPUs was proposed in [6,11,17]
to reduce the hardware cost and energy consumption. In particular, work [17]
is focused on investigating aspects of an optimal parallel version of the 2D
MPDATA algorithm on shared-memory hybrid architectures with GPU accel-
erators, where computations are distributed across both GPU and CPU com-
ponents. At the same time, the parallelization of the 3D version of MPDATA
requires a different approach. For modern GPU architectures, such an approach
was proposed in paper [13], which provides the analysis of resource usage in GPU
platforms and its influence on the overall system performance. The proposed app-
roach to kernel processing with queues of data chunks placed in registers and
shared memory increases the data locality significantly.

In this study, we focus on adapting the 3D MPDATA computations to clusters
with GPU accelerators [4]. Our approach is based on a hierarchical decomposi-
tion including the level of cluster, as well as distribution of computations between
GPU resources within each node. To implement the resulting computing scheme,
the MPI standard is used across nodes, while CUDA is applied inside each node.

2 Overview of MPDATA

MPDATA solves continuity equation describing the advection of a nondiffusive
quantity φ in a flow field, namely

δψ

δt
+ div(Vψ) = 0, (1)

where V is the velocity vector. The spatial discretization of MPDATA is based on
finite difference approximation. The algorithm is iterative and fast convergent.
In the first substep, advection of a prognostic field ψ is computed with the
standard donor-cell approximation [14]. This ensures the first order of accuracy
only. In the subsequent substep, corrections are applied to make the scheme
more accurate, i.e. second order in space and time. In the corrective substep, the
donor-cell approximation is used again, but with new anti-diffusive velocities
computed based on the advected fields.

The MPDATA scheme belongs to the group of nonoscilatory forward-in-time
algorithms, and offers several options to model a wide range of complex geophys-
ical flows. The number of required time steps depends on a type of simulated
physical phenomenon, and can exceed few millions, especially when considering
MPDATA as a part of the EULAG model.

Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors 447

Each MPDATA time step is determined by a set of 17 computational stages,
where each stage is responsible for calculating elements of a certain array. These
stages represent stencil codes which update grid elements according to different
patterns. Figure 1 shows a part of the 3D MPDATA implementation, consisting
of four stencils.

pp(y)= amax1(0.,y)

pn(y)=-amin1(0.,y)

donor(y1,y2,a)=pp(a)*y1-pn(a)*y2

do 111 k=1,n3m

do 111 j=1,mp

do 111 i=ilft,np

111 f1(i,j,k)=donor(c1*x(i-1,j,k)+c2,c1*x(i,j,k)+c2,v1(i,j,k))

do 222 k=1,n3m

do 222 j=jbot,mp

do 222 i=1,np

222 f2(i,j,k)=donor(c1*x(i,j-1,k)+c2,c1*x(i,j,k)+c2,v2(i,j,k))

do 333 k=2,n3m

do 333 j=1,mp

do 333 i=1,np

333 f3(i,j,k)=donor(c1*x(i,j,k-1)+c2,c1*x(i,j,k)+c2,v3(i,j,k))

do 444 k=1,n3m

do 444 j=1,mp

do 444 i=1,np

555 x(i,j,k)=x(i,j,k)-(f1(i+1,j,k)-f1(i,j,k)

. +f2(i,j+1,k)-f2(i,j,k) + f3(i,j,k+1)-f3(i,j,k))/h(i,j,k)

Fig. 1. Part of 3D MPDATA stencil-based implementation

The stages are dependent on each other: outcomes of prior stages are usually
input data for the subsequent computations. Every stage reads a required set of
arrays from the memory, and writes results to the memory after computation.
In consequence, a significant memory traffic is generated, which mostly limits
the performance of novel architectures [3]. A single MPDATA time step requires
5 input arrays, and returns one output array that is necessary for the next step.
We assume that the size of the 3D MPDATA grid determined by coordinates i,
j, and k is n × m × l.

3 Adaptation of MPDATA to a Single GPU Node

3.1 GPU Architecture and Software Environment

All the experiments performed in this work are performed using NVIDIA GPUs
based on the Kepler architecture. The example is the NVIDIA GeForce GTX
TITAN GPU [22]. It includes 14 streaming multiprocessors (SMX), each con-
sisting of 64 double precision (DP) units with configurable size of 16/32/48 KB

448 K. Rojek and R. Wyrzykowski

of shared memory and 48/32/16 KB of L1 cache. It gives the total number of
14 ∗ 64 = 896 DP units with the clock rate of 837 MHz, providing the peak
DP performance of 1.5 TFlop/s. This graphics accelerator card includes 6 GB of
global memory with the bandwidth of 288 GB/s. All the accesses to the global
memory go through the L2 cache of size 1.5 MB. The number of load/store unit
per SMX is 32, so it gives the possibility to load/store 256 bits at once per SMX.

To manage CPU and GPU components, we take advantage of using the
CUDA programming standard [5]. CUDA is a scalable parallel programming
model and a software environment for parallel computing. It allows for the uti-
lization of a GPU as an application accelerator, when a part of an application
is executed on a standard CPU processor, while another part is assigned to the
GPU, as the so-called kernel. CUDA enables for the efficient management of
GPU computing resources, beginning with GPU CUDA cores that are grouped
into SMX. In the CUDA data parallel model, the same program (or kernel)
runs concurrently on different pieces of data, and each invocation is called a
thread. The set of threads is called a block. Each block is executed on a single
SMX. Threads can be synchronized within a single block. However, there is no
synchronization mechanism between blocks; they are executed independently.

Another key feature of modern GPUs is their hierarchical memory organi-
zation. In the CUDA memory model, all the GPU threads have access to the
global memory, relatively large but rather slow. Within a particular block, all
the threads share the fast shared memory. It is used for communication and syn-
chronization among threads across the block. In addition, each thread has access
to its register file. Furthermore, the L1 and L2 caches are applied to improve the
data locality for memory accesses. In particular, all the accesses to the global
memory go through L2, including copies to/from the CPU host.

3.2 Processing GPU Kernels

To increase the data locality within CUDA blocks, we employ a widely used
method of 2.5D blocking [7,10,13], in which 2D blocks are responsible for com-
puting g1 × g2 data chunks, which correspond to sub-planes of a array, called
here tiles. Between neighboring blocks, some extra computations take place on
the borders. As a consequence, blocks have to be extended by adequate halo
areas, both in vertical and horizontal directions. The loop inside a GPU kernel
is used to traverse the grid in the dimension k. Because the MPDATA algorithm
requires to store at most 3 × (g1 × g2) data chunks at the same time, we use a
queue of data chunks placed in registers and shared memory. In this approach,
we first copy data from the GPU global memory to registers, and then, for each
iteration across the dimension k, we move data between registers and shared
memory. This method is illustrated in Fig. 2.

The main advantage of this technique in relation to 3D blocking is the reduc-
tion of memory requirements. We need to store only three tiles of each array
instead of the entire column of size l, to keep the same intensity of memory
traffic between the global memory and shared memory or register file. It is par-

Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors 449

Fig. 2. GPU kernel processing

ticularly useful for GPUs, where the size of shared memory is too small to store
3D blocks of arrays.

3.3 Analysis of Stencils

The starting point of our considerations is when all the 17 stencils are distributed
across 6 GPU kernels marked as: A, B, C, D, E, and F (this distribution takes
into account synchronization points of MPDATA). Such a number of kernels is
selected for the following reasons: (i) the stencils are distributed in such a way
that for each kernel, the halo area from any side of a CUDA block does not exceed
1; (ii) the most memory- and register-consuming stencils are implemented in
kernels B and C in order to increase the GPU occupancy, defined as the number
of active threads per SMX divided by the maximum number of threads supported
by SMX. This version of our implementation is called a naive one. In this version,
we applied the most common techniques of optimization, including the usage of
the shared memory, coalesced memory access, and 2.5D blocking. The kernels A
and F are responsible for computing the donor-cell part of MPDATA, the kernels
B and C compute anti-diffusive velocities, while the kernels D and E implement
the non-oscillatory option for the MPDATA algorithm [17].

Our idea of efficient adaptation of MPDATA to GPU architectures is based
on the detection of bottlenecks, and enables for reducing the most notable of
them. We examine the following potential bottlenecks:

450 K. Rojek and R. Wyrzykowski

– data transfers between GPU global memory and host memory;
– instructions latency (stall analysis);
– arithmetic, logic, and shared memory operations;
– configuration of the algorithm taking into account the size of CUDA blocks,

and GPU occupancy.

To overlap computation and data transfers between GPU global memory
and CPU host memory, we employ the stream processing technique [11], where
each stream is responsible for performing a sequence of three activities including:
(i) data transfer from host to GPU that occurs only once (before computations);
(ii) execution a sequence of six GPU kernels; (iii) data transfer from GPU to
host memory (occurs after every time step). All the activities are processed
synchronously within a single stream. However, all the streams are processed
asynchronously. Thanks to that the activities from one stream are overlapped
by the activities from another one. In consequence, the data transfer takes a rel-
atively short time (about 18 %t of the total execution time). So we can conclude
that data transfers between host and GPU are not a bottleneck for MPDATA.

The next step is devoted to the stall reasons analysis. It shows that the
main reasons of stalls for kernels B and C includes: execution dependency, data
requests, texture memory operations, synchronization, and instruction fetch.
Among them the most important is the execution dependency caused by the
complex structure of the MPDATA algorithm. The execution dependencies can
be hidden in part by increasing the GPU occupancy. However, each of the ker-
nels B and C uses about 47KB of shared memory for an active CUDA blocks,
executing only 768 active threads per SMX (maximum is 2048 threads). It means
that the GPU occupancy is only 37.5% for both kernels. So the final conclusion
is that the GPU utilization is limited by the shared memory usage. The main
challenge is to find a solution where data transfers from the global to shared
memory or register file are minimized.

3.4 Transformations of Stencils

Our idea of adaptation is based on an appropriate distribution of stencils across
GPU kernels in order to minimize the number of memory transactions between
shared and global memories. For this aim, we propose a method where a different
number of kernels is considered. In each configuration, a single kernel processes
a different number of stencils. We estimate a number of memory transactions for
each configuration, and then select a configuration where the number of memory
transactions is minimized.

The starting point for the optimization is a comprehensive analysis of data
flows when executing MPDATA. The distribution of computational tasks is pre-
ceded by the estimation of the shared memory utilization, sizes of halo areas, as
well as data dependencies between and within stencils. Based on such an exten-
sive analysis, we are able to specify the most favorable number of kernels, as well
as set an optimal distribution of stencils across kernels, and the sizes of CUDA

Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors 451

blocks for each kernel. As a consequence, an efficient load balancing is preserved,
and data communication is minimized and well structured [13].

The compression of stencils increases hardware requirements for CUDA blocks,
and decreases the GPU occupancy. However, it allows for the reduction of the
number of temporary arrays, and thereby it decreases the memory traffic. In con-
sequence, the best configuration of the MPDATA algorithm is the compression of
its 17 stencils into 4 GPU kernels [13]. Figure 3 presents a single GPU kernel which
is obtained after compression of the four MPDATA stencils shown in Fig. 1. In this
approach, the 2.5D blocking technique is used that allows us to reduce the global
memory traffic and provide some subexpression elimination.

for(k=1; k<l-1; ++k) {

q1 = fmax(NO(0.0),v3M(i,j,k+1))*xM(i,j,k)

+fmin(NO(0.0),v3M(i,j,k+1))*xM(i,j,k+1);

xP[ijk]=x[ijk] - (fmax(NO(0.0),v1M(i+1,j,k))*xM(i,j,k)

+fmin(NO(0.0),v1M(i+1,j,k))*xM(i+1,j,k)

-fmax(NO(0.0),v1M(i,j,k))*xM(i-1,j,k)

-fmin(NO(0.0),v1M(i,j,k))*xM(i,j,k)

+fmax(NO(0.0),v2M(i,j+1,k))*xM(i,j,k)

+fmin(NO(0.0),v2M(i,j+1,k))*xM(i,j+1,k)

-fmax(NO(0.0),v2M(i,j,k))*xM(i,j-1,k)

-fmin(NO(0.0),v2M(i,j,k))*xM(i,j,k)

+q1

-q0

)/h[ijk];

q0=q1;

ijk+=M;

}

Fig. 3. Four MPDATA stencils compressed into a single GPU kernel

3.5 Performance Results

The performance results are achieved using a single node equipped with the
Intel Core i7-3770 CPU clocked 3.40 GHz, NVIDIA GeForce GTX TITAN GPU
(see Sect. 3.1), and 48 GB of host memory. The CUDA version used in these tests
is V7.0. When testing the CPU version, we uses the original, parallel Fortran
code [16] with -O2 flag (gfortran compiler version 4.8.2), which gives the better
performance than -O3. This code was developed by the Institute of Meteorology
and Water Management, Warsaw. It is parallelized using the MPI standard,
without any manual vectorization.

In Tables 1 and 2, we can see two analysis of performance results achieved
on the CPU and GPU. The first analysis corresponds to the naive GPU version,
where the MPDATA stencils are distributed across 6 GPU kernels. This version
uses the GPU shared memory, but it is not optimized for reducing GPU global

452 K. Rojek and R. Wyrzykowski

memory transactions. In the improved version, we apply a set of optimizations.
First of all, they include the compression of GPU kernels to 4 ones, which allow
us for the reduction of GPU global memory transfers, and extensive elimination
of common subexpressions.

Table 1. Execution time [s] and speedup for the naive version of the MPDATA algo-
rithm

Grid size CPU 1 core CPU 4 cores GPU CPU 1 / GPU CPU 4 / GPU

16× 16× 16 0.044 0.016 0.087 0.51 0.18

32× 32× 16 0.164 0.048 0.1 1.64 0.48

64× 64× 16 0.636 0.192 0.112 5.68 1.71

64× 64× 64 2.617 0.776 0.366 7.15 2.12

128× 128× 64 10.486 3.316 0.792 13.24 4.19

128× 128× 128 20.816 6.624 1.583 13.15 4.18

256× 256× 64 40.371 12.868 2.56 15.77 5.03

Table 2. Execution time [s] and speedup for the improved version of the MPDATA
algorithm

Grid size CPU 1 core CPU 4 cores GPU CPU 1 / GPU CPU 4 / GPU

16× 16× 16 0.044 0.016 0.044 1.00 0.36

32× 32× 16 0.164 0.048 0.046 3.57 1.04

64× 64× 16 0.636 0.192 0.055 11.56 3.49

64× 64× 64 2.617 0.776 0.164 15.96 4.73

128× 128× 64 10.486 3.316 0.344 30.48 9.64

128× 128× 128 20.816 6.624 0.678 30.70 9.77

256× 256× 64 40.371 12.868 1.268 31.84 10.15

Based on these results we can conclude that only for very small grids, the
CPU implementation is faster than the GPU version. For grid sizes greater or
equal 64×64×16, that are interesting in practice, the GPU version outperforms
the CPU one. Moreover, the performance gain is increasing with increasing the
grid size. The important conclusion is a clear advantage of the improved GPU
version against the naive one. The former outperforms the latter by a factor
whose value is in the range from 2.02 to 2.34 (for grids greater or equal 64×64×
16). In consequence, the GPU allows us to speedup computations more than 10
times in comparison with the CPU code, for the largest grid of size 256×256×64.

4 Adaptation of MPDATA to GPU-accelerated Clusters

4.1 MPDATA Decomposition

The performance results obtained in the previous subsection show that the GPU
version of the 3D MPDATA code is profitable for mesh sizes greater or equal

Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors 453

64 × 64 × 16. To keep many GPUs busy we need to process even greater grids
(256 × 256 × 64 or greater). When using the EULAG model for NWP purposes,
typical simulations contain grids from 500 × 250 × 60 to 2000 × 2000 × 120.
Moreover, the grid size l in the third dimension is much smaller than the first two
grid sizes m and n, where usually l ≤ 128. Therefore, to provide parallelization
of 3D MPDATA on a cluster with GPU-accelerated nodes, it is sufficient to map
the 3D MPDATA grid on a 2D mesh of size r × c (Fig. 4).

Fig. 4. 2D domain decomposition of MPDATA and communication model

In consequence, the MPDATA grid is partitioned into subdomains of size np×
mp × l, where each node is responsible for computing within a single subdomain,
and:

np =
n

r
; mp =

m

c
. (2)

In EULAG computations, the MPDATA algorithm is interleaved with other
algorithms in each time step, and particularly with the elliptic solver. So after
every MPDATA call (one time step), we need to update halo regions between
neighboring subdomains. The analysis shows that the halo regions are of size 3
on each side. The requirement to perform these updates generates a 2D model
of communications between neighboring nodes, including the data exchange cor-
responding to corners of subdomains.

To implement the resulting computing scheme, the MPI standard is used across
nodes, while CUDA is applied inside each node. In our current MPI implemen-
tation, only blocking communication routines are applied. In order to improve
the performance and scalability of the resulting code, first of all we will use non-
blocking MPI communication routines, and the double-buffering technique which
permits programmers to overlap communication with computations [4]. An addi-
tional method is to adapt the GPUDirect RDMA technology [21], which allows

454 K. Rojek and R. Wyrzykowski

for eliminating unnecessary memory copies, radically lowering CPU overhead, and
reducing the communication latency. However, this method is not always applica-
ble in practice, since this technology quite often is not supported by the software/
hardware stack on a particular parallel platform.

4.2 Performance Results

The performance results are obtained for the Piz Daint supercomputer [23]. This
machine is located in the Swiss National Supercomputing Centre. Currently it
is ranked 6-th in the top500 list (November 2014 edition) [24]. Piz Daint is the
largest Cray XC30 system that has been delivered and assembled so far. Each
node is equipped with one 8-core 64-bit Intel SandyBridge CPU clocked 2.6 GHz
(Intel Xeon E5-2670), and one NVIDIA Tesla K20X GPU with 6 GB of GDDR5
memory, and 32 GB of host memory. The nodes of this cluster are connected
by the “Aries” proprietary interconnect from Cray, with a dragonfly network
topology. The software environment includes the MPICH V6.2.2 implementation
of the MPI standard, and CUDA V5.5. It should be emphasized that the current
setup does not allow MPI applications to use the GPUDirect RDMA technology
to speedup communications between nodes.

Table 3 presents results of weak scalability analysis, when the number of grid
elements and number of GPUs increases twice in successive experiments. Here
the Rp parameter corresponds to a ratio between the sustained performance for n
nodes and sustained performance achieved in the previous experiment, using n/2
nodes. The last column shows the sustained performance that could be achieved
if the MPDATA algorithm would be perfectly scalable.

Table 3. Weak scalability results of MPDATA on Piz Daint cluster

nodes # grid elements time sustained performance Rp perfect performance

Gflop/s Gflop/s

1 224 4.165 138 - 138

2 225 4.211 273 1.98 276

4 226 4.288 537 1.97 552

8 227 4.430 1040 1.94 1104

16 228 4.719 1953 1.88 2208

32 229 5.244 3516 1.8 4416

64 230 6.361 5798 1.65 8832

128 231 8.935 8256 1.42 17664

256 232 13.057 11299 1.37 35328

Based on these results we can conclude that the current MPDATA imple-
mentation scales well up to 64 nodes, when the sustained performance is almost
5.8 Tflop/s, for the perfect performance of approximately 8.8 Tflop/s. Above
this number of nodes, the scalability parameter Rp becomes smaller then 1.5.

Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors 455

However, this scalability drop is not very sharp, so even for 256 nodes we still
have Rp = 1.37, with about 11.3 Tflop/s of the sustained performance. There-
fore, it is reasonable to expect that the methods mentioned at the end of the
previous subsection could provides good scalability results up to 256 nodes.

5 Conclusions and Further Work

Our approach to adapting the 3D MPDATA stencil-based algorithm to clusters
with graphics processor is based on a hierarchical decomposition including the
level of cluster, as well as an optimized distribution of computations between
GPU resources within each node. In particular, our idea of adaptation to a
single GPU node relies on an appropriate compression of GPU kernels, which
first of all allows for minimizing the number of memory transactions between
GPU shared and global memories. It should be noted here that the technique of
stencil compression can be applied for the CPU code as well.

We present performance results for the 3D MPDATA code running on the
NVIDIA GeForce GTX TITAN graphics card, as well as on the Piz Daint cluster
installed in the Swiss Supercomputing Center, which is equipped with NVIDIA
Tesla K20x GPUs. The sustained performance of 138 Gflop/s is achieved for a
single GPU, which scales up to more than 11 Tflop/s for 256 GPUs.

In order to improve the performance and scalability of the resulting code, first
of all we plan to use the non-blocking MPI communication routines, and double-
buffering technique which permits programmers to overlap communication with
computations. An additional method is to adapt the GPUDirect RDMA tech-
nology, which allows for eliminating unnecessary memory copies, lowering CPU
overhead, and finally reducing the communication latency.

An important direction of our further work is also an efficient utilization of
both components of a hybrid CPU-GPU cluster node, where computations are
distributed across both GPU and CPU. Our previous experience shows that the
main issue here is providing the numerical accuracy of the whole code when per-
forming arithmetic operations on two components with quite different numerical
properties. This research is directly related to a more general area of research
which becomes more and more important – the management and optimization
of energy costs required to perform complex numerical simulations.

Acknowledgments. This work was supported by the Polish National Science Centre
under grant no. UMO-2011/03/B/ST6/03500, and National Centre for Research and
Development under grant no. POIG.02.03.00-24-093/13-00, as well as by the grant from
the Swiss National Supercomputing Centre (CSCS) under project ID d25.

References

1. Ciznicki, M., Kopta, P., Kulczewski, M., Kurowski, K., Gepner, P.: Elliptic solver
performance evaluation on modern hardware architectures. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS,
vol. 8384, pp. 155–165. Springer, Heidelberg (2014)

456 K. Rojek and R. Wyrzykowski

2. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009)

3. Hager, G., Wellein, G.: Introduction to High Performance Computing for Science
and Engineers. CRC Press, Boca Raton (2011)

4. Khajeh-Saeed, A., et al.: Computational fluid dynamics simulations using many
graphics processors. Comput. Sci. Eng. 14(3), 10–19 (2012)

5. Krotkiewicz, M., Dabrowski, M.: Efficient 3D stencil computations using CUDA.
Parallel Comput. 39, 533–548 (2013)

6. Kurowski, K., Kulczewski, M., Dobski, M.: Parallel and GPU based strategies for
selected CFD and climate modeling models. Environ. Sci. Eng. 3, 735–747 (2011)

7. Nguyen, A., Satish, N., Chhugani, J., Changkyu, K., Dubey, P.: 3.5-D blocking
optimization for stencil computations on modern CPUs and GPUs. In: Proceedings
of 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–13 (2010)

8. Piotrowski, Z., Wyszogrodzki, A., Smolarkiewicz, P.: Towards petascale simulation
of atmospheric circulations with soundproof equations. Acta Geophys. 59, 1294–
1311 (2011)

9. Prusa, J., Smolarkiewicz, P., Wyszogrodzki, A.: EULAG, a computational model
for multiscale flows. Comput. Fluids 37, 1193–1207 (2008)

10. Rivera, G., Tseng, Ch.-W.: Tiling optimizations for 3D scientific computations. In:
SC 2000 Proceedings of ACM/IEEE Conference on Supercomputing (2000)

11. Rojek, K., Szustak, L.: Parallelization of EULAG model on multicore architec-
tures with GPU accelerators. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 391–400. Springer,
Heidelberg (2012)

12. Rojek, K., Szustak, L., Wyrzykowski, R.: Performance analysis for stencil-based
3D MPDATA algorithm on GPU architecture. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp.
145–154. Springer, Heidelberg (2014)

13. Rojek, K., Ciznicki, M., Rosa, B., Kopta, P., Kulczewski, M., Kurowski, K.,
Piotrowski, Z., Szustak, L., Wojcik, D., Wyrzykowski, R.: Adaptation of fluid
model EULAG to graphics processing unit architecture. Concurrency Comput.
Pract. Experience 27(4), 937–957 (2015)

14. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Meth. Fluids 50, 1123–1144 (2006)

15. Szustak, L., Rojek, K., Gepner, P.: Using intel xeon phi coprocessor to accel-
erate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp.
582–592. Springer, Heidelberg (2014)

16. Wójcik, D.K., Kurowski, M.J., Rosa, B., Ziemiański, M.Z.: A study on parallel
performance of the EULAG F90/95 code. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp.
419–428. Springer, Heidelberg (2012)

17. Wyrzykowski, R., Szustak, L., Rojek, K.: Parallelization of 2D MPDATA EULAG
algorithm on hybrid architectures with GPU accelerators. Parallel Comput. 40(8),
425–447 (2014)

18. Wyrzykowski, R., Szustak, L., Rojek, K., Tomas, A.: Towards efficient decompo-
sition and parallelization of MPDATA on hybrid CPU-GPU cluster. In: Lirkov,
I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 457–464.
Springer, Heidelberg (2014)

Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors 457

19. Wyszogrodzki, A.A., Piotrowski, Z.P., Grabowski, W.W.: Parallel implementation
and scalability of cloud resolving EULAG model. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204,
pp. 252–261. Springer, Heidelberg (2012)

20. Xue, W., Yang, C., Fu, H., Xu, Y., Liao, J., Gan, L., Lu, Y., Ranjan, R., Wang,
L.: Ultra-scalable CPU-MIC acceleration of mesoscale atmospheric modeling on
Tianhe-2. IEEE Trans. Comput. (2014). doi:10.1109/TC.2014.2366754 (to appear)

21. GPUDirect RDMA. http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
22. NVIDIA GeForce GTX TITAN Specification. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-titan/specifications
23. PizDaint & PizDora. http://www.cscs.ch/computers/piz daint/index.html
24. Top 500 Supercomputing Sites. http://www.top500.org

http://dx.doi.org/10.1109/TC.2014.2366754
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://www.geforce.com/hardware/
http://www.cscs.ch/computers/piz_daint/index.html
http://www.top500.org

Performance Evaluation of a Human Immune
System Simulator on a GPU Cluster

Thiago M. Soares, Micael P. Xavier, Alexandre B. Pigozzo,
Ricardo Silva Campos, Rodrigo W. dos Santos, and Marcelo Lobosco(B)

Graduate Program in Computational Modelling, UFJF, Juiz de Fora, Brazil
{thiagomarquesmg,micaelpx,alexbprr}@gmail.com,

{ricardo.campos,rodrigo.weber,marcelo.lobosco}@ufjf.edu.br

Abstract. The Human Immune System (HIS) is a complex system that
protects the body against several diseases. Some aspects of such complex
system can be better understand with the use of mathematical and com-
putational tools. Huge computational resources are required to execute
simulations of the HIS, so the use of parallel environments is mandatory.
This work presents a parallel implementation of a 3D HIS simulator on a
GPU cluster that uses CUDA, OpenMP and MPI to speedup the execu-
tion of the application. A performance evaluation is then carried out, and
the impact of the use of InfiniBand, a low latency network, and GPU’s
Error-Correcting Code (ECC) are measured. Speedups up to 956 were
obtained by the parallel version that uses Infiniband and turns off ECC.

1 Introduction

The immune system is of fundamental importance for several species of organ-
isms. Its main function is to act in the recognition and elimination of any exter-
nal pathogens that try to invade the body. In doing so, these pathogens can
cause diseases that can take to death. The immune system also plays an impor-
tant role in the maintenance of the body, removing dead and abnormal cells.
To achieve these objectives, a complex network of cells, organs and substances
work constantly to promote the proper functioning of the body [17]. Thus, due
to the different relationships between their various components at varying lev-
els of interaction, it is an extremely complex task to grasp how the immune
system works. However, understanding it is of fundamental importance in the
development of vaccines and drugs against many diseases. Mathematical and
computational models can help in this task: in recent years, they have achieved
some success in elucidating the mechanisms behind the immune response, being
important, for example, in the definition of therapeutic strategies [3,4,10,16].

The high computational costs involved in the resolution of these mathemat-
ical and computational models impose the use of High Performance Comput-
ing (HPC) platforms. The massively parallel architecture of modern Graphics
Processing units (GPUs) as well as their attractive performance-cost ratio make
a GPU cluster a platform of choice for this kind of application [2]. This work
presents a parallel implementation on a GPU cluster of a 3D version of a Human
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 458–468, 2015.
DOI: 10.1007/978-3-319-21909-7 44

Performance Evaluation of a Human Immune System Simulator 459

Immune System (HIS) simulator. The simulator is based on previous works
[13–15] and extends our previous implementation [18] in order to use a GPU clus-
ter. Compared to the sequential version of the code, speedups up to 956 were
achieved. The paper also presents the impacts of both InfiniBand and GPU’s
Error-Correcting Code (ECC) in performance.

This work is organized as follows. Section 2 presents an overview of the math-
ematical and computational model used in this work. Section 3 describes the
implementation of the HIS simulator on a GPU cluster. The computational
results obtained are presented in Sect. 4. Conclusions and future works are pre-
sented in the last section.

2 Mathematical and Computational Model

The mathematical model used in this work is based on previous models of the
innate immune response that reproduces the spatial and temporal aspects of
a bacterial infection [14,15] and the abscess formation [13]. The model simu-
lates the spatial and temporal behavior of the bacteria (B), dead bacteria (BD),
resting macrophages (MR), hyperactivated macrophages (AM), neutrophils (N),
apoptotic neutrophils (ND), proinflammatory cytokine (CH), anti-inflammatory
cytokine (CA), healthy tissue cells (HT) and dead tissue cells (TD). The relation-
ship between the components are the following: neutrophils, resting macrophages,
and active macrophages phagocyte bacteria. After that, neutrophils undergo
apoptosis, which may or may not be induced by the phagocytosis. In this state,
apoptotic neutrophils can not perform phagocytosis or produce proinflamma-
tory cytokine. Consequently apoptotic neutrophils are eliminated from the body
by activated macrophages. The apoptotic neutrophils will eventually die after
a period of time, releasing cytotoxic granules and degrading enzymes in the
body, causing damage in tissue by destroying healthy cells. Resting and active
macrophages do the phagocytosis of dead tissue cells. Healthy tissue cells in con-
tact with bacteria, neutrophils, and active macrophages produce proinflamma-
tory cytokines that increase the permeability of the blood vessels. As a conse-
quence, more cells, such as neutrophils and monocytes, leave the blood stream
and enter the infected tissue. In addition, the proinflammatory cytokines act as a
chemoattractant substance to the resting macrophages, active macrophages, and
neutrophils [13,14].

A set of 10 partial differential equations are derived from the model [13] and
implemented in 3D using the Finite Difference Method [9] for the spatial dis-
cretization and the explicit Euler method for the time evolution. The discretiza-
tion of the chemotaxis term uses the First-Order Upwind scheme [6]. Therefore,
the precision of our numerical implementation is first-order in time (explicit
Euler) and first-order in space (upwind scheme). The upwind scheme discretizes
the hyperbolic PDEs through the use of differences with bias in the direction
given by the signal of the characteristics’ speeds. The upwind scheme uses an
adaptive or solution-sensitive stencil to numerically simulate more precisely the
direction of information propagation. The details about the implementation of
the upwind scheme in 3D can be found in [15].

460 T.M. Soares et al.

3 GPU Cluster Programming

This work extends a previous version of our simulator [18], implemented in a
shared-memory, multi-GPU platform, to a GPU cluster platform. The code was
developed in C using CUDA [8]. To manage multiple GPUs, OpenMP [1] and
MPI [11] are used. OpenMP is used to manage multiple GPUs in the same
machine, so each host (or CPU) thread is responsible for invoking a CUDA kernel
in a particular CUDA device. The use of multiple host threads is necessary to
reduce the imbalance caused when a single thread launches all kernels in distinct
GPUs located in the same machine. If a large number of GPUs are available on
a machine, when the single host thread finishes to launch the last kernel in the
last GPU, probably the first kernel launched in the first GPU has advanced a
lot in its work, or even finished it. MPI is used to manage data movement and
communication across processes located in distinct nodes.

To solve the system of Partial Differential Equations (PDEs) in a GPU clus-
ter, the discretized space is divided among devices, so each one will operate on
a specific slice of the original space such that the whole tissue is processed by
the group of GPUs. Splitting was done by dividing the x dimension of a (Nx,
Ny, Nz) mesh that describes the tissue by the number of GPUs available in the
cluster, Ng, remaining a ((Nx+Ng−1)

Ng
, Ny, Nz) mesh to be calculated by each

device. The functions cudaGetDeviceCount and MPI Bcast were used in order
to get the total number of GPUs available in the cluster.

To better explore GPU’s memory bandwidth, the mesh is organized contigu-
ously in the device memory using an unidimensional vector. Using this organi-
zation, access to the points in the tissue was done linearly. To correctly compute
each point, each CUDA thread has to access its neighbor data, some of which
can be located at distinct GPUs. Due to data splitting among GPUs, the data
needed can be located in a distinct machine, as illustrated by Fig. 1. These parts
of data, called boundaries, are necessary to execute the computation in two
distinct GPUs.

Due to the division scheme used in this work, all data related to the neighbors
of points in the y and z dimensions will always reside on the same GPU; only
data related to the x dimension have to receive a distinct treatment. For this
purpose, consider a thread that is responsible for computing data related to a
point in the 3D space given by the coordinates (α, β, γ). In order to compute,
this thread can need data from the following neighbors threads: (α− 1, β, γ) or
(α + 1, β, γ). This data can be located in three distinct locations, as depicted by
Fig. 2: (a) in the same GPU in which the thread is located; (b) in a distinct GPU
located on the same computer; or (c) in a GPU located in another machine.

A global identifier is used to locate the appropriated neighbor and where data
reside. If the neighbor is located in the same GPU (case a), data can be accessed
through the GPU’s global memory. If the neighbor is located on a distinct GPU
(cases b and c), they are accessed through auxiliary vectors also located on GPU’s
global memory. These auxiliary vectors must be updated at each time-step to
guarantee the correctness of the algorithm. This is done using a function called

Performance Evaluation of a Human Immune System Simulator 461

Fig. 1. Split example of a 3D mesh among 5 GPUs.

Fig. 2. Possible locations of a neighbor. Cases (b) and (c) illustrate the boundaries.

by the CPU at the end of each time-step. Unified Virtual Address (UVA) is used
to copy data if the neighbor GPU is located in the same machine and MPI is
used in the case the neighbor GPU is located in a distinct machine.

UVA implements the concept of unified address space among GPUs. To allow
the access of a distinct GPU to its local memory space, it is necessary to call
first the function cudaEnablePeerAccess. A previous work [18] has investigated
two possible implementations using UVA. In this work, cudaEnablePeerAccess
is called only once, during the initialization of the code, and then data is copied
explicitly among GPUs, using cudaMemcpy.

462 T.M. Soares et al.

Fig. 3. Operations concurrence between two Independent CUDA Streams.

In order to reduce the communication cost due to data copy, specially when
the network is used to complete data transfers, the kernel implementation was
modified in order to overlap the boundary transfers with computation. To achieve
this goal, computation of both the chemotaxis and the Laplacian operator for
each point in the PDE were divided in two steps, the computation of interior
points and boundary points, using for this purpose two CUDA kernels. Since
the amount of boundaries points is smaller than interior points, its computation
finishes first, so data copy can start early, while interior points computation is
taking place. The computation and communication are executed concurrently
with the use of CUDA streams, as illustrated by Fig. 3. A non-blocking call,
cudaMemcpyAsync, is used in order to copy the boundary points while interior
points are computed.

Since kernels are executed concurrently in each GPU, it is necessary to
synchronize at each time-step all processes (located in distinct machines) and
threads (located in the same machine) involved in computation. The #pragma
omp barrier directive is used in order to synchronize threads running on the
same machine, while MPI communication primitives implement an implicit syn-
chronization by their blocking nature.

Also, a buffer was implemented to avoid race condition among CUDA
threads. Its role is quite simple: two values at times t − 1 and t are stored for
each point (α, β, γ) of a given population of cells. The value at time t is accessed
only by the thread that is producing it, while the other one, t − 1, is accessed
by threads in neighborhood that needs to read it. Thus, a thread at time t only
gets access to data produced by its neighbors at time t − 1. These two buffer
entries change their meaning at each time step to avoid data copy.

In CUDA, the execution configuration hugely impacts the performance of the
application. In this work we choose a fixed block size, 128 threads, based on the
memory demands of each thread. Then, a function was created to automatically

Performance Evaluation of a Human Immune System Simulator 463

generate the grid size. This function calculates the grid size taking into account
that a thread computes a single point, and that the grid is unidimensional.

Algorithm 1 gives an overview of our GPU cluster implementation of the HIS
simulator.

Algorithm 1. GPU cluster implementation of the HIS simulator
main

2:
. . . initialize MPI . . .

4:
. . . verify the number of GPUs available in the cluster for computation . . .

6:
. . . create one OpenMP thread for each GPU available in this machine . . .

8:
. . . define the mesh slice to be computed by each GPU . . .

10:
. . . initialize submesh according to their initial conditions . . .

12:
. . . create two streams to deal with interior/boundary points computation

and communication . . .
14:

for t from t0 to tf do
16:

. . . write the output files for each population . . .
18:

. . . call the kernel that computes boundary points . . .
20:

. . . call the kernel that computes interior points . . .
22:

. . . call sendRecievedBorders to swap boundaries between GPUs as well
as for synchronize them . . .

24:
. . . synchronize all threads in this machine . . .

26:
end-for

28:
end-main

4 Numerical Results

This section presents the results obtained by the GPU cluster version of the
code. The experiments were executed on a small cluster with 4 machines. Each
machine has two AMD 6272 processors, with 32 GB of main memory, two Tesla
M2075 GPUs, each one with 448 CUDA cores and 6 GB of global memory. Linux
2.6.32, CUDA driver version 6.0, OpenMPI version 1.6.2, nvcc release 6.0 and
gcc version 4.4.7 were used to run and compile all versions of the code (sequential
and parallel) with the usual optimizations flags(-O3 -march=bdver1, the last one
to generate code optimized to the AMD 6272 processors). In order to evaluate
the scalability of the solution, two distinct hardware configurations were used:
two machines and four GPU’s and four machines and eight GPUs.

There are two main communication bottlenecks in GPU cluster platforms [7]:
accessing remote GPU memory and the communication between GPU and the
host CPU. In order to evaluate the impacts of the first communication bottleneck

464 T.M. Soares et al.

for the HIS simulator, two distinct types of networks were used in the exper-
iments: Gigabit Ethernet and InfiniBand [12]. Infiniband is a more expensive
technology that provide low latency, high bandwidth, end-to-end communication
between nodes in a cluster. InfiniBand is in average about 20 times faster then
Ethernet. The latency to send a 0 byte message in Infiniband is 1.96μs, while
in Ethernet it takes 35.5μs. The bandwidth to send 32, 768 bytes is 115.8 MB/s
on Gigabit Ethernet and 2, 827.1 MB/s on InfiniBand.

Another aspect in the GPU cluster that impacts performance is the use of
the error-correcting code (ECC) support available in the GPU card. ECC uses
Hamming code to check is memory contents are unaltered since random bit flips
events can occur in memory during the execution of an application. When ECC
is enabled, the effective maximum bandwidth is reduced due to the additional
traffic for the memory checksums [5]. In this section we also evaluate the impacts
of ECC on the simulator code.

In order to evaluate the performance gains obtained by the GPU cluster
version of the code, experiments were performed using five distinct mesh sizes:
50×50×50, 100×100×100, 150×150×150, 200×200×200 and 250×250×250
points. Since the execution time of each interaction is extremely regular, and the
objective of this paper is to evaluate the techniques, nor the biological results,
in this work we report the result for 10, 000 time steps. The execution times
obtained by all versions of the code were measured 5 times and the standard
deviation was lower than 1.52 %. At each execution, Linux time application was
used to measure the time spent in program execution.

The speedup factor (Sp), used to obtain the relative performance improve-
ment due to the use the GPU cluster platform, is given by Eq. 1.

Sp =
ts
tp

, (1)

where ts is the sequential execution time and tp is parallel execution time.
In order to analyze the impact of ECC and InfiniBand on application’ per-

formance, the HIS simulator has been evaluated using four distinct scenarios:
(1) InfiniBand with ECC off (Inf - Ecc Off); (2) InfiniBand with ECC on(Inf -
Ecc On); (3) Gigabit Ethernet with ECC off (Eth - Ecc Off) and (4) Gigabit
Ethernet with ECC on (Inf - Ecc On). Table 1 presents the results for the two
configurations: with two machines and four GPU’s and with four machines and
eight GPUs.

As could be expected, the results confirm that the best scenario, for all mesh
sizes and configurations, is the one that uses InfiniBand for communication and
that turns off ECC. The best speedups are obtained by the second configuration,
using 4 machines and 8 GPUs: in this configuration, speedups increases when
larger meshes are used. Larger meshes implies more data to be computed, which
can reduce the idle time of the GPU multiprocessor during memory access.
Also, the second configuration has more GPU cores available to handle this
computation.

It also can be observed that InfiniBand has more impact in performance for
smaller mesh sizes, compared with larger ones; and in the second configuration,

Performance Evaluation of a Human Immune System Simulator 465

Table 1. Speedups obtained by running the code on 2 machines and 4 GPUs and
on 4 machines and 8 GPUs. The versions are the following: (1) InfiniBand with ECC
off; (2) InfiniBand with ECC on; (3) Gigabit Ethernet with ECC off and (4) Gigabit
Ethernet with ECC on. The best speedups for each mesh size are marked in bold.

Mesh Version Average time(s)/ Average time(s)/

Speedups (4 GPUs) Speedups (8 GPUs)

Sequential 5,259.14

1 10.45 / 503.1 8.82 / 596.7

50 x 50 x 50 2 10.62 / 495.3 9.91 / 530.8

3 22.35 / 235.3 32.62 / 161.2

4 22.40 / 234.7 33.47 / 157.1

Sequential 42,096.63

1 84.72 / 496.8 52.44 / 802.6

100 x 100 x 100 2 86.34 / 487.5 56.50 / 745.0

3 129.37 / 325.3 142.73 / 294.9

4 131.61 / 319.8 145.37 / 289.5

Sequential 142,848.56

1 290.58 / 491.5 167.78 / 851.4

150 x 150 x 150 2 299.48 / 476.9 171.50 / 832.9

3 389.42 / 366.8 364.70 / 391.6

4 398.85 / 358.1 365.51 / 390.8

Sequential 334,907.98

1 670.86 / 499.2 361.79 / 925.6

200 x 200 x 200 2 687.80 / 486.9 371.92 / 900.4

3 842.68 / 397.4 716.43 / 467.4

4 865.96 / 386.7 724.36 / 462.3

Sequential 694,455.57

1 1,351.20 / 513.9 725.95 / 956.6

250 x 250 x 250 2 1,385.88 / 501.0 763.53 / 909.9

3 1,606.45 / 432.2 1,261.49 / 550.5

4 1,650.89 / 420.6 1,293.77 / 536.7

compared with the first one. For example, in the first hardware configuration,
InfiniBand is responsible for improving the performance for computing mesh
50 × 50 × 50 by a factor of 2.1, while improves the performance for computing
mesh 250 × 250 × 250 by a factor of 1.19. Also, in the second configuration the
impact in performance for computing mesh 50×50×50 is 3.7. This is explained by
the computation/communication ratio. The weight of communication is bigger
for smaller mesh sizes. The same rule applies to the second configuration: in
this case, more GPUs are available, so less computation per GPU is performed,
reducing the computation/communication ratio.

466 T.M. Soares et al.

The computation/communication ratio also helps to explain why in the first
configuration a larger mesh size does not improve performance, till the largest
mesh size, 250×250×250. This is because in the first configuration more data has
to be transfered per GPU compared with the second configuration, so their com-
munication costs are higher. The largest mesh size also increases the computation
cost, but now in a ratio higher than the increase imposed by the communication,
so the speedup is a little better than the one obtained with the mesh 50×50×50.

Compared to the gains obtained with the use of InfiniBand, the gains
obtained by turning off ECC were modest. The results reveals gains ranging
from 0 % to 12 %. Larger gains would be expected by turning off ECC if the
GPU memory bandwidth is a bottleneck for the application performance. In the
case of this specific application, the bottleneck is the network communication
and synchronization, so reducing the network costs, as InfiniBand does, improves
performance much more than ECC does.

Finally, figures in Table 1 show that the application nearly scales with the
number of GPUs. That is, as the number of GPUs increases by a factor of 2, the
speedup would be expected to increase by the same factor. The relative speedups
computed for the best configurations of each mesh size are the following: 1.18,
1.61, 1.73, 1.85, and 1.86. As can be observed, the relative speedup increases
as the mesh size increases, and for the largest mesh size an efficiency of 93% is
obtained.

5 Conclusion

This work extends a previous version of our simulator [18], implemented in a
shared-memory, multi-GPU platform, to a GPU cluster platform. The impact of
using a low latency network, InfiniBand, and turning off ECC was also evaluated.

The programming model proposed in this work was very effective in its pur-
pose of speeding up the HIS simulator on a GPU cluster platform: speedups up to
957 were obtained in a cluster with 8× 448 GPU cores, an efficiency of 27%. It
was observed that InfiniBand was responsible for improving performance from
1.19 to 3.7 times, compared to the same version that uses Gigabit Ethernet for
communicating. Larger gains were observed in the cases where communication
costs are higher, so it helps to improve the computation/communication ratio.
The gains obtained by turning off ECC were more modest, ranging from 0 % to
12 %, but they could be bigger if the GPU memory bandwidth is a bottleneck
for the application performance.

As future works, we plan to use all CPUs available in the cluster to perform
part of the PDE computation. In the current implementation, the OpenMP
threads that execute on the CPU call kernel functions that perform the compu-
tation on GPU. All CPU cores are idle while GPU solves the PDEs and they
could be used to help in this task. A load balancing strategy will be implemented
to distribute data with the objective of equalizing the load at each computational

Performance Evaluation of a Human Immune System Simulator 467

device, since GPU and CPU are heterogeneous. Finally, we would like to inves-
tigate better the scalability of our implementation using larger GPU clusters.

Acknowledgements. The financial supports provided by FAPEMIG, CAPES, UFJF
and CNPq are greatly acknowledged.

References

1. Chandra, R., Dagum, L., Kohr, D., Maydan, D., MacDonald, J., Menon, R.:
Parallel Programming in OpenMP, 1st edn. Morgan Kaufmann Publishers,
San Francisco (2001)

2. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high perfor-
mance computing. In: Proceedings of the 2004 ACM/IEEE Conference on Super-
computing, SC 2004, pp. 47. IEEE Computer Society, Washington (2004)

3. Graw, F., Balagopal, A., Kandathil, A.J., Ray, S.C., Thomas, D.L., Ribeiro,
R.M., Perelson, A.S.: Inferring viral dynamics in chronically hcv infected patients
from the spatial distribution of infected hepatocytes. PLoS Comput. Biol. 10(11),
e1003934 (2014)

4. Guedj, J., Yu, J., Levi, M., Li, B., Kern, S., Naoumov, N.V., Perelson, A.S.: Mod-
eling viral kinetics and treatment outcome during alisporivir interferon-free treat-
ment in hepatitis c virus genotype 2 and 3 patients. Hepatology 59(5), 1706–1714
(2014)

5. Habich, J., Feichtinger, C., Kastler, H., Hager, G., Wellein, G.: Performance engi-
neering for the lattice boltzmann method on gpgpus: architectural requirements
and performance results. Comput. Fluids 80, 276–282 (2013)

6. Hafez, M.M., Chattot, J.J.: Innovative Methods for Numerical Solution of Partial
Differential Equations. World Scientific Publishing Company, New Jersey (2002)

7. Kim, G., Lee, M., Jeong, J., Kim, J.: Multi-gpu system design with memory net-
works. In: 47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 484–495, December 2014

8. Kirk, D., Hwu, W.: Massively Parallel Processors: A Hands-on Approach. Morgan
Kaufmann, San Francisco (2010)

9. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential
Equations. Society for Industrial and Applied Mathematics, Philadelphia (2007)

10. Owen, M.R., Byrne, H.M., Lewis, C.E.: Mathematical modelling of the use of
macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theo. Biol.
226, 377–391 (2004)

11. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco (1996)

12. Pfister, G.: Aspects of the infiniband architecture. In: Proceedings of IEEE Inter-
national Conference on Cluster Computing, pp. 369–371, October 2001

13. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: Computational modeling
of microabscess formation. Comput. Math. Meth. Med. 2012, 1–16 (2012)

14. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational
modeling of the innate immune system. BMC Bioinf. 14, S7 (2013). Suppl. 6

15. Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., de M. Quintela, B., Macedo, G.C.,
dos Santos, R.W., Lobosco, M.: A three-dimensional computational model of the
innate immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333,
pp. 691–706. Springer, Heidelberg (2012)

468 T.M. Soares et al.

16. Rong, L., Guedj, J., Dahari, H., Perelson, A.S.: Treatment of hepatitis c with an
interferon-based lead-in phase: a perspective from mathematical modeling. Antivir.
Ther. 19(5), 469–477 (2014)

17. Sompayrac, L.: How the Immune System Works. Wiley, New York (2011)
18. Xavier, M.P., do Nascimento, T.M., dos Santos, R.W., Lobosco, M.: Use of multiple

gpus to speedup the execution of a three-dimensional computational model of the
innate immune system. J. Phys. Conf. Ser. 490(1), 012075 (2014)

HPC Hardware Efficiency for Quantum
and Classical Molecular Dynamics

Vladimir V. Stegailov1,2,3(B), Nikita D. Orekhov1,2, and Grigory S. Smirnov1,2

1 Joint Institute for High Temperatures of RAS, Moscow, Russia
stegailov@gmail.com

2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
3 National Research University Higher School of Economics, Moscow, Russia

Abstract. Development of new HPC architectures proceeds faster than
the corresponding adjustment of the algorithms for such fundamental
mathematical models as quantum and classical molecular dynamics.
There is the need for clear guiding criteria for the computational effi-
ciency of a particular model on a particular hardware. LINPACK bench-
mark alone can no longer serve this role. In this work we consider a
practical metric of the time-to-solution versus the computational peak
performance of a given hardware system. In this metric we compare dif-
ferent hardware for the CP2K and LAMMPS software packages widely
used for atomistic modeling. The metric considered can serve as a uni-
versal unambiguous scale that ranges different types of supercomputers.

1 Introduction

The continuing rapid development of theoretical and computational methods of
atomistic simulations during past decades provides a basis of analysis and predic-
tion tools for chemistry, material science, condensed matter physics, molecular
biology and nanotechnology. Nowadays molecular dynamics (MD) method that
describes motion of individual atoms by the Newton’s equations is a research
tool of highest importance. The computational speed and the efficiency of par-
allelization are the main factors that pose limitations on the length and time
scales accessible for MD models (the achievable extremes for classical MD are
trillions of atoms [4] and milliseconds [12], a typical MD step being 1 fs).

A researcher working in the field of atomistic simulation is an end user of
the complex and high performance software and hardware. The main technical
question is to find a solution as fast as possible, that is to select appropriate
HPC resources and to use them in a most efficient way [14].

In this work we consider a wide-spread type of supercomputer systems com-
prised of identical nodes and interconnected by a high speed network. Due to
the rapid development of hardware, at the moment there is a wide spectrum of
node types that can combine several CPUs and accelerators (e.g. GPU, MIC or
FPGA). The interconnect architecture spectrum dominated previously by the
fat tree and torus topologies has been enriched by the dragonfly and flattened
butterfly topologies, the PERCS topology etc.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 469–473, 2015.
DOI: 10.1007/978-3-319-21909-7 45

470 V.V. Stegailov et al.

We can distinguish critical avenues in the development of high performance
MD models. Quantum MD (QMD) models demonstrate much higher require-
ments to the data communication speed and hence to the interconnect proper-
ties [5,7]. The deployment of hybrid architectures for electronic structure calcu-
lations and quantum MD is not mature enough. Classical MD (CMD) models
are less demanding with respect to data communication. The main limitation in
CMD is the computational complexity of interatomic potentials (e.g. [10,11,13])
that is determined by the performance of supercomputer nodes. Therefore hybrid
architectures of nodes are considered as a major perspective.

2 Problem Statement and Benchmarking Metric

Fundamental mathematical models (QMD and CMD) are well developed and
practically not subjected to changes. HPC hardware architectures change quite
quickly. Algorithms and software couple fundamental mathematical models with
HPC hardware, however they can be adapted to new hardware quite slowly and
therefore the role of legacy software is huge. Having in mind the criterion of the
“time-to-solution” minimization for particular mathematical models we would
like to answer the following questions: What hardware is more efficient if we
use currently available software? What is the efficiency of emerging software
designed for new hardware? And how complicated is this software development?

The LINPACK test can not serve as a tool for benchmarking atomistic
models. More specialized tests have emerged [1,6,9]. Here we use CP2K and
LAMMPS codes as representatives of the best HPC atomistic simulation soft-
ware. Existing benchmarks suites (e.g. [9] and references therein) test the cou-
pling of selected software with hardware and here we follow this route for QMD.
But for CMD we would like to present a wider view: how efficiently mathematical
models are coupled with hardware if we allow software to be tuned.

The “time-to-solution” criterion leads us to the evident choice of a time for
one MD integration step as one parameter for the metric. The second parameter
should characterize the hardware. Usually the number of some abstract process-
ing elements (e.g. cores) is considered. However although this metric serves well
in the weak and strong scaling benchmarks for the given system, it does not allow
to compare essentially different hardware. In order to overcome this problem we
consider the total peak performance Rpeak as a second parameter for the metric
that put on equal footing all HPC hardware under consideration. It is in favor
of this metric that Rpeak is a usual marketing aspect for novel hardware.

3 Comparison

Figure 1 shows the comparison for the standard H2O benchmark for QMD
(CP2K): IBM Regatta 690+ [8], Cray XT3 and XT5 [15], IBM BlueGene/P [2]
and K-100 cluster of Keldysh Institute of Applied Mathematics in Moscow (64
nodes connected by Infiniband QDR, each node with 2 six-core Intel Xeon X5670
and 3 NVidia Fermi C2050).

HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics 471

Fig. 1. Water model benchmarks with CP2K for various supercomputers (32-2048
water molecules). Numbers show how many nodes are used to run the benchmark.
Dashed lines show ideal speed-up t ∼ R−1

peak.

For benchmarks with several nodes different supercomputers demonstrate
close performance (in seconds per MD step). For large models this agreement
is better. In the case of 512 molecules we see that the combination of hardware
with compilers provides the same level of efficiency.

The role of the interconnect becomes evident in the multi-node cases where
the speed-up worsens. Fat-tree systems show better performance for small model
sizes. Torus interconnects of Cray XT3, XT5 and IBM BlueGene/P provides
superior strong scaling for large system sizes (in accordance with the detailed
analysis for another QMD code SIESTA [3]).

IBM systems show inferior performance in this metric because the fused
multiply-add (FMA) operations supported by IBM PowerPC CPUs play no
essential role for QMD algorithms.

Figure 2 shows the comparison for the standard Lennard-Jones benchmark
for CMD (LAMMPS): pure CPU systems and hybrid systems with NVidia Fermi
X5670, NVidia Kepler K40 and Intel Xeon Phi SE10X.

All the data (old benchmarks1 including) for CPUs without vectorization
follow the same trend (with the exception of IBM PowerPC 440 CPU due to
the FMA issue mentioned above). Manual vectorization with the USER-INTEL
package gives ∼ 2x speed-up. This is the most efficient way among all imple-
mented in LAMMPS to deploy the total peak performance of hardware.

Hybrid nodes with GPUs show inferior timings with respect to CPU-only
nodes when compared by the similar Rpeak. There are three GPU-oriented ver-
sions of MD algorithms in LAMMPS implemented with NVidia CUDA technology
(introduced in June 2007). The GPU package is the oldest one introduced in the
1st quarter 2010 and developed up to the 3rd quarter of 2013. The USER-CUDA

1 http://lammps.sandia.gov/bench.html.

http://lammps.sandia.gov/bench.html

472 V.V. Stegailov et al.

0.001 0.01 0.1 1 10

Total peak performance, TFlops

10-9

10-8

10-7

10-6

10-5

Time per atom for 1 MD step, sec

1 1 1

10-9

10-8

10-7

10-6

10-5CPUs
NVidia
Fermi

NVidia
Kepler

Intel
Xeon Phi

1

2

3

4

5

x0.25

x0.5

Fig. 2. Lennard-Jones liquid benchmarks with LAMMPS. Circles show CPU bench-
marks without vectorization: open circles and crossed circles show Intel Xeon bench-
marks on the “Lomonosov” cluster of Moscow State University and K-100 cluster (their
discrepancy illustrate the precision of the metric deployed), black circles are the legacy
data: 1 – Pentium II 333 MHz, 2 – DEC Alpha 500 MHz, 3 – PowerPC 440 700 MHz,
4 – Power4 1.3 GHz and 5 – Intel Xeon 3.47 GHz. Boxes correspond to Intel Xeon bench-
marks with USER-INTEL. Triangles show the timings from the “Lomonosov” cluster
using nodes with NVidia GPUs and different algorithms implemented in LAMMPS:
� – GPU, ∇ – USER-CUDA, � – KOKKOS. Filled triangles are the benchmarks pub-
lished on the LAMMPS web-site. The diamonds are the data for Intel Xeon Phi in the
native mode (the lower diamond corresponds to the KOKKOS package).

package is a newer one introduced in the 3rd quarter 2011. The KOKKOS package
is the most recent introduced in the 2nd quarter 2014 (and it performs essentially
better on the novel NVidia Kepler K40).

Nodes with Intel Xeon Phi (an accelerator that became available in 2012–
2013) in the native mode show more than ∼ 2x speed-up if LAMMPS is used
with the KOKKOS package. However Intel Xeon Phi also shows inferior timings
with respect to CPU-only nodes when compared by the similar Rpeak.

4 Conclusions

We introduced a novel metric “time-to-solution (in seconds) vs Rpeak (in Flops)”
and applied it to representative examples of QMD and CMD. This metric allows
us to compare existing HPC hardware, hybrid systems including.

CP2K shows better strong scaling on supercomputers with torus intercon-
nects and especially on IBM BlueGene/P. LAMMPS performs with the best effi-
ciency on Intel Xeon CPUs with manual vectorization of crucial routines. Since
MD applications do not use FMA operations IBM PowerPC CPUs perform for
these tasks at a fraction of Rpeak.

The example of NVidia GPU shows that porting of an existing package on the
new hardware takes several years (only after ∼ 7 years of development CUDA-
based algorithms have approached CPU algorithms efficiency). After ∼ 3 years
of development classical MD algorithms for Intel Xeon Phi are still not efficient.

HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics 473

Acknowledgment. The work is partially supported by the grant No. 14-50-00124 of
the Russian Science Foundation.

References

1. Coral benchmark codes. https://asc.llnl.gov/CORAL-benchmarks/
2. Bethune, I., Carter, A., Guo, X., Korosoglou, P.: Million atom KS-DFT with CP2K.

http://www.prace-project.eu/IMG/pdf/cp2k.pdf
3. Corsetti, F.: Performance analysis of electronic structure codes on HPC systems:

a case study of SIESTA. PLoS ONE 9(4), e95390 (2014)
4. Eckhardt, W., Heinecke, A., Bader, R., Brehm, M., Hammer, N., Huber, H.,

Kleinhenz, H.-G., Vrabec, J., Hasse, H., Horsch, M., Bernreuther, M., Glass, C.W.,
Niethammer, C., Bode, A., Bungartz, H.-J.: 591 TFLOPS multi-trillion particles
simulation on SuperMUC. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 1–12. Springer, Heidelberg (2013)

5. Gygi, F.: Large-scale first-principles molecular dynamics: moving from terascale to
petascale computing. J. Phys. Conf. Ser. 46(1), 268 (2006)

6. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Technical report, Sandia Nat. Laboratories
(2009)

7. Hutter, J., Curioni, A.: Dual-level parallelism for ab initio molecular dynamics:
reaching teraflop performance with the CPMD code. Parallel Comput. 31(1), 1–17
(2005)

8. Krack, M., Parrinello, M.: Quickstep: make the atoms dance. High Perform. Com-
put. Chem. 25, 29–51 (2004)

9. Muller, M.S., van Waveren, M., Lieberman, R., Whitney, B., Saito, H., Kumaran, K.,
Baron, J., Brantley, W.C., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC
MPI2007 – an application benchmark suite for parallel systems using MPI. Concur-
rency Comput. Pract. Experience 22(2), 191–205 (2010)

10. Orekhov, N.D., Stegailov, V.V.: Graphite melting: atomistic kinetics bridges theory
and experiment. Carbon 87, 358–364 (2015)

11. Orekhov, N.D., Stegailov, V.V.: Molecular-dynamics based insights into the prob-
lem of graphite melting. J. Phys.: Conf. Ser. (2015)

12. Piana, S., Klepeis, J.L., Shaw, D.E.: Assessing the accuracy of physical models used
in protein-folding simulations: quantitative evidence from long molecular dynamics
simulations. Curr. Opin. Struct. Biol. 24, 98–105 (2014)

13. Smirnov, G.S., Stegailov, V.V.: Toward determination of the new hydrogen hydrate
clathrate structures. J. Phys. Chem. Lett. 4(21), 3560–3564 (2013)

14. Stegailov, V.V., Norman, G.E.: Challenges to the supercomputer development in
Russia: a HPC user perspective. Program Systems: Theory and Applications 5(1),
111–152 (2014). http://psta.psiras.ru/read/psta2014 1 111-152.pdf

15. VandeVondele, J.: CP2K: parallel algorithms. www.training.prace-ri.eu/uploads/
tx pracetmo/cpw09 cp2k parallel.pdf

https://asc.llnl.gov/CORAL-benchmarks/
http://www.prace-project.eu/IMG/pdf/cp2k.pdf
http://psta.psiras.ru/read/psta2014_1_111-152.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/cpw09_cp2k_parallel.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/cpw09_cp2k_parallel.pdf

Automatic High-Level Programs Mapping
onto Programmable Architectures

Boris Ya. Steinberg, Denis V. Dubrov(B), Yury Mikhailuts,
Alexander S. Roshal, and Roman B. Steinberg

Southern Federal University, Rostov-on-Don, Russia
borsteinb@mail.ru, dubrov@sfedu.ru, aracks@yandex.ru,

teacplusplus@gmail.com, romanofficial@yandex.ru

Abstract. A technique for automatic high-level C program mapping onto
compute systems with programmable pipeline architecture is presented in
this article. An example of such a system could be a CPU with an FPGA
accelerator or the corresponding system on a chip. The mapping is imple-
mented on the base of Optimizing Parallelizing System (www.ops.rsu.ru)
and C2HDL converter from C to the hardware description language
(VHDL). HDL code generating from OPS internal representation would
allow to utilize the user dialog to generate a family of equivalent chips,
from which the user could select the most suitable one for various char-
acteristics. The development of the current work would allow to create
for the first time the C language compiler for the programmable pipeline
architecture.

Keywords: Reconfigurable computing · Pipeline computing · High-
level synthesis · Parallelizing compiler · High level internal represen-
tation · HDL · FPGA

1 Introduction

The use of programmable pipeline computing devices increases each year, while
the development of high-level programming design tools for them still remains
way behind. In this article a project of a compiler from C language to the com-
puter with programmable architecture is considered as well as the current work
on its implementation. The “target platform” here stands either for a system on
a chip, which contains both the central processing core and the configurable logic
block (CLB) matrix, or for a common CPU with an FPGA accelerator. Design-
ing a C language compiler for programmable architectures could accelerate their
application and development.

The pipeline computational systems stay apart from the well-known Flynn
parallel computer classification: MIMD or SIMD. Pipeline computers are some-
times separated into MISD class (Multiple Instructions, Single Data flow). These
computers are efficient for many those problems for which computers of MIMD
or SIMD architectures are inefficient or poorly efficient.
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 474–485, 2015.
DOI: 10.1007/978-3-319-21909-7 46

www.ops.rsu.ru

Automatic High-Level Programs Mapping onto Programmable Architectures 475

The pipeline computers are used in many hardware-software systems and, for
some problems, they show considerably higher performance (up to 2–3 orders)
than the multi-purpose processors. The substantial progress in pipeline comput-
ing development is brought by the technologies of field-programmable gate arrays
(FPGA). Conventionally, pipeline computers are used in hardware-software sys-
tems. The bottleneck of such computers is long time needed for an FPGA to be
reprogrammed. The works of K. Bondalapati are dedicated to this problem [3].
To speed up FPGA reprogramming, a special buffer holding the next configura-
tion, is used. In the Research Institute for Multiprocessor Computing Systems
of the Southern Federal University the reconfigurable pipeline computers are
designed with only the connections between the computing elements being able
for reprogramming to achieve fast reconfiguration speed. Another architecture,
which is being developed under V. Corneyev’s direction, is also positioned as
pipeline-based. In this architecture, it is possible to select pipeline configurations
in the grid consisting of compute cores. The cluster with nodes equipped with
programmable FPGA accelerators has been assembled under A. Lacis’ direction.
The language named Autocode-FPGA is suggested for software development for
this cluster and is more high-level than VHDL but still is at the level close to
Assembler.

The computing units with programmable and reprogrammable architectures
are being developed for the wide range of applications and show high efficiency
[9]. Particularly, multi-pipeline (or parallel pipeline) systems, which could be
considered as a generalization of both the pipeline and the multi-core systems,
are of great interest [13]. The algorithms for automatic mapping of a high-level
language onto multi-pipeline systems are studied in [11]. In this work automatic
generation of multi-pipeline circuits and mapping high-level programs onto them
are discussed.

The compiler under development is based on Optimizing Parallelizing System
(http://www.ops.rsu.ru/). It includes the converter from OPS program internal
representation to the language of electronic circuits description (VHDL) [6]. This
converter is able to accept input data ranges in addition to the source code as its
input. It would be much more difficult to implement a pipeline system’s VHDL
code automatic generation using a low-level register-based internal representa-
tion, such as LLVM of Clang compiler or RTL and Gimple of GCC compiler
family. Apart from OPS, a high-level internal representation (in which opti-
mization analysis and transformations are performed) is used in ROSE compiler
infrastructure [10] and SUIF parallelizing system [1].

2 Related Works Overview

High-level synthesis tools gain more interest in our days. The major electronic
design automation (EDA) tool vendors incorporate converters from high-level
language to electronic design into their products. These tools are targeted either
to standalone FPGAs/ASICs, or to hybrid systems with FPGAs [5].

Two main approaches of the high level synthesis tools could be distinguished.
The first one involves using traditional programming languages like C and C++

http://www.ops.rsu.ru/

476 B.Ya. Steinberg et al.

to express hardware algorithm implementation. Catapult C, Vivado Design
Suite, Impulse CoDeveloper, Altium Designer, and HDL Coder for MATLAB
are the examples of commercial products using such an approach. Academic
research projects include PandA (http://panda.dei.polimi.it/), C-to-Verilog [2],
TCE [7], and Parallel Intellectual Compiler. Sometimes the means of high-level
languages used in these systems are not sufficient for expressing the reconfig-
urable schematics. For example, Trident Compiler [12] requires from the user to
manually partition the code into software and hardware parts.

Other systems, namely Mitrion-C, Handel-C, and HaSCoL [4] use specially
designed language constructs to express the hardware abstractions missing in
traditional programming languages: manipulating with separate bits, parallel
processes with data communications, synchronizations, etc. This makes the user
to rewrite old programs and also makes these languages more low-level. However
these languages still have advantages over HDL: many time-consuming routine
tasks could be done automatically (for example, pipeline generating). On the
other hand, tools that use traditional input languages try to incorporate more
elaborate program analysis to extract the missing information. For example, a
generalization of data-flow graph, called bit-flow graph, may help to generate
efficient hardware implementations of the algorithms expressed with C bitwise
operators (bit shfting, reversing, extraction, etc.) [14].

3 The Implementation

3.1 Structure of the Compiler from C to the Programmable
Computational System

The task of compiling the C language source code into the program for the
system with a programmable architecture consists of four subtasks, with the
separate compilation module is dedicated to each of them (Fig. 1).

– The converter from C to VHDL (C2HDL). Loop pipelining and transformation
of the initial program fragments into computational core descriptions in VHDL
language takes place here.

– The configurable driver consisting of modules written in C and VHDL which
provide:
• Data and control commands transfer between a CPU and computational

cores on FPGAs using the selected protocol;
• Data exchange synchronization and the data transfer channel optimal

bandwidth distribution;
• Synchronization of FPGA computational threads with the CPU main con-

trol thread.
– The build manager. Using all the generated files, it assembles two projects in

C and VHDL respectively, with compilation settings for each of them. It also
manages the source code compilation process into the executable files for the
target platforms.

http://panda.dei.polimi.it/

Automatic High-Level Programs Mapping onto Programmable Architectures 477

Fig. 1. The structure of the compiler from C to the programmable computational
system.

The compiler takes a source code and the compilation settings as its input.
The output is the transformed program in C language and the computational
core description in VHDL.

3.2 Mapping Programs onto a Programmable Computer

Parallel computing, including the pipeline one, should be applied to the program
fragments with long computational time. In this work we consider acceleration
of code fragments which contain loop nests. Let us consider a nest of n nested
loops:

for (I1 = L1; I1 <= R1; ++ I1)
for (I2 = L2; I2 <= R2; ++ I2)

...
for (In = Ln; In <= Rn; ++ In)
{

LOOPBODY(I1, I2, ..., In);
}

The innermost nested loop is subject to be pipelined. The counters of the
outer loops could be considered as parameters defining a cluster node with an

478 B.Ya. Steinberg et al.

accelerator that should execute the innermost loop (the same loop for different
values of outer loops’ counters should be executed on different nodes).

The main idea for the current project involves the system under development,
which takes a C program with a loop nest as input. The loop nest is transformed
into the form convenient for mapping it onto a pipeline architecture using the
parallelizing system. The innermost loop of the nest is transformed into a VHDL
description of a pipeline with C to VHDL converter (C2HDL). The program-
mable part of the compute node is then flashed with the obtained description.
The original loop nest is transformed with the innermost loop being replaced
with the call for the pipeline accelerator which will compute the given loop. The
following techniques are used:

– The methods of loop nests mapping onto the multi-pipeline architecture
described in [11] and partially implemented in OPS.

– C2HDL converter which adjusts the programmable part of the target platform
according to the given code.

3.3 C2HDL Converter and a Multi-pipeline System Generating

Currently the converter supports the subset of input C programs with the fol-
lowing constraints:

– Integer arithmetics on int types.
– One-dimensional pipelineable loops with assignment expression statements.
– Variable occurrences containing regular linear index expressions.

As the result, the converter generates VHDL code for the synchronous
pipeline computational circuit, which supports buffers at operations’ inputs and
initial pipeline loading stage, if needed. The circuit’s input data may be sent to
its input connectors from an external source, with the flow synchronized with the
circuit operation. Likewise, the computation output flow may be read from the
device’s output connectors and sent to an external receiver (a memory storage,
a control unit, etc.) Signed values of given bit widths (VHDL “signed (N - 1
downto 0)” type) are used as operands, standard VHDL operations (“+”, “-”,
etc.) redefined for the given types in standard packages, are used as expression
operations.

As an intermediate structure between the parallelizing system internal rep-
resentation and a pipeline HDL description, the computational graph is used.

Future project development involves implementing the ability to generate
several pipelines (for a loop nest) with synchronizing their functioning, if needed,
with special delays between pipeline starts. Computing such delays involves infor-
mation dependencies analysis between iteration space points. Such information
dependencies are described with lattice graphs which are represented in memory
as functions [8].

Example 1. Let us consider the following piece of code consisting of two nested
loops:

Automatic High-Level Programs Mapping onto Programmable Architectures 479

for (I1 = L1; I1 <= R1; ++ I1)
for (I2 = L2; I2 <= R2; ++ I2)
{

X[I1][I2] = X[I1 - 1][I2] + X[I1][I2 - 1];
}

The data dependency graph between the iteration space points (lattice graph or
algorithm graph) is presented on Fig. 2.

0 i

j

1

1

2

2

3

3

4

4

5

5

Fig. 2. The lattice graph of the program which represents dependencies between dif-
ferent points of the iteration space. Such information dependencies arise in some grid
methods solving mathematical physics problems and in nucleotide sequences aligning.

It is possible to split the iteration space of this loop nest into stripes which have
widths of two points. The iterations of each such a stripe could be computed
with two pipelines with one being left behind by another (Fig. 3). The algorithms
for delay computation in case of such a lag in time are presented in [11].

Fig. 3. Managing computations with information exchange between distinct pipelines.

480 B.Ya. Steinberg et al.

3.4 Optimizing Parallelizing System (OPS)

OPS parallelizing system has the following advantages over the other program-
ming systems:

– Dialogue-based optimization mode;
– Automatic data range analysis;
– Automatic delay computation for the multi-pipeline compute system.
– Optimized code generation not only for compute systems with shared memory,

but also for the systems with distributed memory.
– Advanced methods of analysis and transformations of high-level programs

which excel the analogs in the field of optimizing compilers and parallelizing
systems:
• lattice graphs;
• SSA forms of arrays;
• symbolic analysis;
• recurrent loops parallelizing methods;
• several new finer methods of loop parallelizing;
• methods of program transformation testing.

The higher quality of HDL descriptions generating with C2HDL converter
will be achieved with OPS utilization. Namely, it is beneficial to generate a whole
family of equivalent HDL descriptions (instead of just one) for the given input C
program. Then it would be possible to choose the one which will be optimal for
each particular case (depending on restrictions of performance, chip area, etc).

For the currently existing systems of automatic program optimizing and par-
allelizing the user must set the optimization parameters before compiling a pro-
gram (using compiler directives and options). This approach cannot give the
satisfactory results in many cases, since the user does not know beforehand what
can the system do automatically and for what aspects the system needs special
indications. It is planned to use analysis (including symbolic one) to formulate
questions for the user about those few particular variables, the value ranges of
which would allow to apply required transformations or take certain engineering
decisions. This approach is already partially implemented in OPS system and
is considered to be fruitful for semi-automatic VHDL description construction
for the given high-level program and semi-automatic program parallelization as
well. No similar approaches are used worldwide yet.

Other advanced methods offered by OPS could be utilized by the program-
ming systems. For example, lattice graphs is a useful tool for generating designs
for multi-pipeline compute systems.

3.5 Chip Area Optimizing

When designing schematic implementation of the given functionality, the devel-
oper has always to take the hardware restrictions into account. In our work we
use the following methods to achieve this:

Automatic High-Level Programs Mapping onto Programmable Architectures 481

– It is possible to set the ranges for input data. The user may also define the
ranges for the output and intermediate data, the system uses this information
to compute the bit widths of the generated arithmetic operations and commu-
nication lines. Optionally the system could profile the user code to compute
the ranges for the intermediate and output data knowing initially only the
input data ranges, using interval analysis. This technique is described in [6].
Knowing data ranges is essential for saving the FPGA resources. It gives
an opportunity to get full advantage of this technology over general-purpose
CPUs, where data registers and ALUs always have the fixed bit widths regard-
less the problem requirements.

– The system uses special arithmetic libraries where different schematic imple-
mentations of elementary operations (adders, multipliers, etc.) are stored. The
user may have an option to select one for each arithmetic unit in the config-
uration to meet the particular requirements. For example, certain addition
schemes may have better performance over the others at the cost of hardware
resources use. The user may prefer the slower implementation to fit the par-
ticular computational algorithm into the given FPGA model. All arithmetic
schemes are parametrized with the operands’ bit widths.

– The system uses the heuristic procedure to estimate the required chip area
for the given HDL description. The procedure traverses the HDL code inter-
nal representation tree to accumulate the user-defined weights for different
language constructs (expression operators, variables, etc.) The language con-
struct type is taken into consideration: for example, the effect of VHDL
“generate” statement which duplicates its contents for the given number
of times. We are planning to implement automatic selection of the alternative
arithmetic implementations from the libraries according to their characteris-
tics. It is possible to estimate the chip area for different implementations of
the same operation using the above mentioned procedure.

3.6 Efficiency of Parallel Computing Use

It is well known that for modern processors main memory access takes tens of
times longer than executing standard arithmetic operations. As to the distrib-
uted memory, these accesses take longer time than arithmetic operations almost
more than two orders. Therefore, optimizing for program performance should be
targeted, in the first place, to memory use.

Using programmable pipeline and parallel-pipeline architectures is considered
to be rational only in case if the data for computations are able to be supplied
in time. Therefore, in case of programmable computers, as well as of any other
modern processors, data locality should be guaranteed first of all, afterwards it
would be possible to process the data in parallel. For efficient data localization
loop nest splitting into blocks is used. Additional acceleration could be achieved
using array block placement in RAM.

482 B.Ya. Steinberg et al.

4 A Running Example

Example 2. To keep the generated code size reasonable let us consider the fol-
lowing trivial program which implements summation of two arrays:

int main()
{

int a[1000], b[1000], c[1000], i;
for (i = 0; i < 1000; i ++)
{

c[i] = a[i] + b[i];
}
return 0;

}

To run this program we used the following hardware:

– Xilinx Virtex-4 family FPGA, model: XC4VLX25-FF668-10;
– Xilinx ML401 evaluation platform (used to communicate the FPGA with the

PC via the Ethernet cable);
– A regular Intel Core2-based system running Windows 7 operating system.

We also used the following Xilinx development software and design components:

– ISE 14.7;
– A FIFO queue component generated with LogiCORE FIFO Generator;
– 1-Gigabit Ethernet MAC v8.5.

We used our components presented on Fig. 1. Some of the steps we still need to
implement manually at the current stage of the compiler development: generating
the control program code for the PC, adjusting communication of ports in the
driver code (VHDL part) and executing the different external tools instead of
using the build manager. The main steps for setting up the computational system
are the following:

1. Running C2HDL converter for the above code, fixing possible errors. As the
result the pipeline computational component code is generated (see below).

2. Adding the generated component to the Xilinx ISE project. The project
already contains the reusable description of other components implementing
Ethernet, IPv4, UDP protocols, and other primitives. The port communica-
tions are needed to be adjusted. Also the shift register component is adjusted
according to the input/output data bit widths. We plan to automate this
work in the future with a driver generator component.

3. Generating an FPGA firmware using ISE tools (iMPACT) with the project
adjusted at the previous step.

Automatic High-Level Programs Mapping onto Programmable Architectures 483

4. Creating a C project for the PC control program which uses the PC part of the
driver implemented in a library. The program basically copies the structure
of the original program with the following differences:
– Additional initialization of the used sockets and input/output buffers;
– The computational loop is replaced with the library call which implements

communications with an FPGA.
5. Flashing the FPGA with the firmware obtained at step 3.
6. Running the PC program created at step 4.

A fragment of the VHDL code generated at step 1 is presented below. The code
is slightly reformatted to save space and improve readability.

architecture Sub1_synth of Sub1 is
signal c_int: signed(15 downto 0);
-- ...
component adderN

generic(n: integer := 16);
port(a: in std_logic_vector((n - 1) downto 0);

b: in std_logic_vector((n - 1) downto 0);
sum: out std_logic_vector((n - 1) downto 0));

end component;
-- ...

begin
uni0map: adderN port map(Rg2_conv, Rg1_conv, Rg3_conv);
Rg1_conv <= Conv_std_logic_vector(Rg1, 16);
Rg2_conv <= Conv_std_logic_vector(Rg2, 16);
c_Out_Ready <= c_Out_Ready_int;
c <= c_int;
process (CLK) is
begin

if Rising_edge(CLK) then
if (RST =’1’ or Start =’1’) then

Rg1 <= x"0000";
else
if b_In_Ready = ’1’ then

Rg1 <= b;
end if;
Rg1_Ready <= b_In_Ready;
end if;

end if;
end process;
process (CLK) is
begin

if Rising_edge(CLK) then
if (RST = ’1’ or Start = ’1’) then

Rg2 <= x"0000";

484 B.Ya. Steinberg et al.

else
if a_In_Ready = ’1’ then

Rg2 <= a;
end if;
Rg2_Ready <= a_In_Ready;
end if;

end if;
end process;
process (CLK) is
begin

if Rising_edge(CLK) then
if (RST = ’1’ or Start = ’1’) then

c_int <= x"0000";
else
if Rg3_Ready = ’1’ then

c_int <= signed(Rg3_conv);
end if;
c_Out_Ready_int <= Rg3_Ready;
Rg3_Ready <= Rg1_Ready and Rg2_Ready;
end if;

end if;
end process;

end Sub1_synth;

5 Conclusion

A method of mapping high-level programs onto compute systems with program-
mable architecture is presented in this work. A distinctive feature of this method
is that the compute system is adjusted to the program automatically at compile
time. Due to this feature, an optimizing parallelizing compiler from a high-
level language to the compute system with programmable architecture could be
developed. Not only such a compiler could optimize high-level program map-
ping onto the hardware, it could also optimize the hardware to run the given
program. Developing such a compiler is possible on the base of a parallelizing
system with high-level internal representation and HDL code generator from this
representation.

The presented project aims the substantial simplification of the parallel-
pipeline systems access. As the result of this the range of applied problems
for this computational field should be expanded; the time needed for parallel-
pipeline program developing should be decreased; the development of systems
on a chip with programmable architecture should be encouraged.

Automatic High-Level Programs Mapping onto Programmable Architectures 485

References

1. Affine transformations for optimizing parallelism and locality. http://suif.stanford.
edu/research/affine.html. Accessed: 13 February 2015

2. Ben-Asher, Y., Rotem, N., Shochat, E.: Finding the best compromise in com-
piling compound loops to Verilog. J. Syst. Archit. 56(9), 474–486 (2010).
http://dx.doi.org/10.1016/j.sysarc.2010.07.001

3. Bondalapati, K.: Modeling and mapping for dynamically reconfigurable hybrid
architecture. Ph.D. thesis, University of Southern California, August 2001

4. Boulytchev, D., Medvedev, O.: Hardware description language based on message
passing and implicit pipelining. In: Design Test Symposium (EWDTS), 2010 East-
West, pp. 438–441, September 2010. http://dx.doi.org/10.1109/EWDTS.2010.
5742095

5. Cardoso, J.M.P., Diniz, P.C.: Compilation Techniques for Reconfigurable Archi-
tectures. Springer, US (2009). http://dx.doi.org/10.1007/978-0-387-09671-1

6. Dubrov, D., Roshal, A.: Generating Pipeline integrated circuits using C2HDL
converter. In: East-West Design and Test Symposium, pp. 1–4, September 2013.
http://dx.doi.org/10.1109/EWDTS.2013.6673108

7. Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C.S., Takala, J., Martinez,
J.I.: Customized exposed datapath soft-core design flow with compiler support. In:
Proceedings of the 2010 International Conference on Field Programmable Logic
and Applications, FPL 2010, pp. 217–222. IEEE Computer Society, Washington,
DC (2010). http://dx.doi.org/10.1109/FPL.2010.51

8. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22, 243–268 (1988)

9. Gokhale, M., Graham, P.S.: Reconfigurable Computing. Accelerating Computation
with Field-Programmable Gate Arrays. Springer US (2005). http://dx.doi.org/10.
1007/b136834

10. Liao, C., Quinlan, D.J., Willcock, J.J., Panas, T.: Semantic-aware automatic par-
allelization of modern applications using high-level abstractions. Int. J. Parallel
Program. 38(5–6), 361–378 (2010). http://dx.doi.org/10.1007/s10766-010-0139-0

11. Steinberg, R.B.: Mapping loop nests to multipipelined architecture. Program. Com-
put. Softw. 36(3), 177–185 (2010). http://dx.doi.org/10.1134/S0361768810030060

12. Tripp, J.L., Gokhale, M.B., Peterson, K.D.: Trident: from high-level language
to hardware circuitry. Computer 40(3), 28–37 (2007). http://dx.doi.org/10.1109/
MC.2007.107

13. Yadzhak, M.S., Tyutyunnyk, M.I.: An optimal algorithm to solve digital filtering
problem with the use of adaptive smoothing. Cybern. Syst. Anal. 49(3), 449–456
(2013). http://dx.doi.org/10.1007/s10559-013-9528-x

14. Zhang, J., Zhang, Z., Zhou, S., Tan, M., Liu, X., Cheng, X., Cong, J.: Bit-level opti-
mization for high-level synthesis and FPGA-based acceleration. In: Proceedings of
the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA 2010, pp. 59–68. ACM, New York (2010). http://doi.acm.org/
10.1145/1723112.1723124

http://suif.stanford.edu/research/affine.html
http://suif.stanford.edu/research/affine.html
http://dx.doi.org/10.1016/j.sysarc.2010.07.001
http://dx.doi.org/10.1109/EWDTS.2010.5742095
http://dx.doi.org/10.1109/EWDTS.2010.5742095
http://dx.doi.org/10.1007/978-0-387-09671-1
http://dx.doi.org/10.1109/EWDTS.2013.6673108
http://dx.doi.org/10.1109/FPL.2010.51
http://dx.doi.org/10.1007/b136834
http://dx.doi.org/10.1007/b136834
http://dx.doi.org/10.1007/s10766-010-0139-0
http://dx.doi.org/10.1134/S0361768810030060
http://dx.doi.org/10.1109/MC.2007.107
http://dx.doi.org/10.1109/MC.2007.107
http://dx.doi.org/10.1007/s10559-013-9528-x
http://doi.acm.org/10.1145/1723112.1723124
http://doi.acm.org/10.1145/1723112.1723124

Applications

Implementation of a Three-Phase Fluid
Flow (“Oil-Water-Gas”) Numerical
Model in the LuNA Fragmented

Programming System

Darkhan Akhmed-Zaki1, Danil Lebedev1(&),
and Vladislav A. Perepelkin2

1 Al-Farabi Kazakh National University, Almaty
Republic of Kazakhstan

Darhan.Ahmed-Zaki@kaznu.kz,

danil.lebedev.0881@gmail.com
2 Institute of Computational Mathematics and Mathematical Geophysics

SB RAS, Novosibirsk, Russia
perepelkin@ssd.sscc.ru

Abstract. The fragmented programming technology and the language imple-
menting it are briefly introduced as well as LuNA fragmented programming
system, on the example of two-dimensional boundary value problem solution,
for liquid filtration “oil-water-gas” system. For parallel implementation of the
boundary value problem, the parallel longitudinal-transverse sweep algorithm
was applied. Using this method, the fragmented program in the LuNA system
has also been implemented. The calculations are made for different number of
points in the spatial variables. To compare the quality of implementation the
applied numerical algorithm has been implemented in several variations: the
sequential program, the parallel program using MPI and the fragmented parallel
program in LuNA language using LuNA programming system.

Keywords: Fragmented programming � LuNA � Numerical solution � MPI �
Parallel program � Sweep method

1 Introduction

Implementation of large-scale numerical models on supercomputers is often
challenging, especially for scientists, who are not experienced in system parallel pro-
gramming. Consequently, of great importance are systems and tools of parallel pro-
gramming. Such tools are aimed at reducing the complexity of parallel programming
through its automation. In appropriate circumstances they reduce the complexity of
parallel programs development, lower system parallel programming skill requirements,
improve quality of resulting parallel programs, and so on.

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 489–497, 2015.
DOI: 10.1007/978-3-319-21909-7_47

Parallel programming automation is a subject for numerous research efforts, and its
importance tends to increase. Worth mentioning are the following systems of parallel
programming, which closely relate to scientific numerical modeling: PaRSEC [8],
libgeodecomp [9], Charm++ [10], KeLP [11].

The LuNA programming system [6, 7, 12] is also a system of parallel program-
ming, aimed at elimination of manual parallel programming from the process of par-
allel implementation of large-scale numerical models on supercomputers. In this paper
we discuss the parallel implementation of two-dimensional boundary value problem
solution for liquid filtration “oil-water-gas” system in LuNA programming system.

The paper is organized as follows. The next two sections describe the application
problem and its mathematical formulation, Sect. 4 studies the parallel algorithm of the
problem’s solution. Sections 5 and 6 contain a brief description of LuNA system and
how it executes fragmented algorithms. Section 7 represents the results of the per-
formance tests.

2 The Problem of Filtration

This paper considers the two-dimensional problem of three-phase fluid filtration in the
“oil-water-gas” system. The problem is a simulation of oil recovery process for
secondary methods. Practical significance of the calculations for this class of problems
is quite large. This is due to the fact that a very large part of oil production is associated
with the use of secondary recovery techniques, such as displacement of oil by water or
solvents, thermal impact on the field, etc. Considered model describes the secondary
method of oil by water displacement. It has a number of specific features that make it
difficult, and in some cases impossible to use standard numerical methods, proven to be
efficient for other classes of problems. General formulation of the problem can be
reduced to the following form: there is an oil reservoir, in which the water is pumped
under pressure through the injection well, and it is necessary to calculate how much oil
will be obtained from the production well. More information can be found in [1–4].

3 Definition of the Problem

Let us consider a two-dimensional boundary value problem for liquid filtration of
“oil-water-gas” system. The problem is described by the following equations [1, 2] in
dimensionless variables.

Given Eqs. (1−3) describe the change in pressure (Pl) and saturation (Sl) for each
phase, on space-time coordinates. Influence of wells is accounted by the corresponding
coefficients (ql). The complexity of the solution is caused by presence of coefficients –
functions of saturation inside of differential operator.

490 D. Akhmed-Zaki et al.

@

@x
Kw

@Pw

@x
� cw

L
PH

@z
@x

� �� �
þ @

@y
Kw

@Pw

@y
� cw

L
PH

@z
@y

� �� �
¼ lw

lo

@Sw
@s

þ lwL
2

KqwPH
qw

@

@x
Ko 1þ Cf PH Po � 1ð Þ� � @Po

@x
� co

L
PH

@z
@x

� �� �
þ @

@y
Ko 1þ Cf PH Po � 1ð Þ� � @Po

@y
� co

L
PH

@z
@y

� �� �
¼

¼ @

@s
So 1þ Cf PH Po � 1ð Þ� �� 	þ loL

2

KqHPH
qo

þ @

@x
RsKo 1þ Cf PH Po � 1ð Þ� � @Pg

@x
� @Pcog

@x
� co

L
PH

@z
@x

� �� �
þ

@

@y
RsKo 1þ Cf PH Po � 1ð Þ� � @Pg

@y
� @Pcog

@y
� co

L
PH

@z
@y

� �� �
þ

loPH

lgqHRTZ
@

@x
KgPg

@Pg

@x
� cg

L
PH

@z
@x

� �� �
þ loPH

lgqHRTZ
@

@y
KgPg

@Pg

@y
� cg

L
PH

@z
@y

� �� �
¼

¼ 1� Cf PH
� � @

@s
RsSoð Þ þ Cf PH

@

@s
Soð Þ þ PH

qHRTZ
@

@s
PgSg
� �þ loL

2

KqHPH
Rsqo þ qg
� �

Po � Pw ¼ Pcow

Pg � Po ¼ Pcog

Sw þ So þ Sg ¼ 1

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Initial and boundary conditions

P0 x; y; 0ð Þ ¼ PH
o x; yð Þ;Pw x; y; 0ð Þ ¼ PH

w x; yð Þ;Pg x; y; 0ð Þ ¼ PH
g x; yð Þ

S0 x; y; 0ð Þ ¼ SHo x; yð Þ; Sw x; y; 0ð Þ ¼ SHw x; yð Þ; Sg x; y; 0ð Þ ¼ SHg x; yð Þ ð2Þ

@Po

@n

C

¼ 0;
@Pw

@n

C

¼ 0;
@Pg

@n

C

¼ 0 ð3Þ

4 Algorithm of the Solution

To solve the system (1) an iterative method with implicit pressure and explicit satu-
ration is used. In order to do this, first three equations of the system are summarized
and using fourth and fifth ratios of the system (1). Obtained equation is solved relative
to the gas pressure. Resulting equation is reduced to the implicit difference scheme,
then solved by the longitudinal-transverse sweep method [5] at each iteration layer
using saturation values from the previous iteration layer. The idea of the method is to
calculate values for next time step through intermediary time step, where at interme-
diary time step the function value is calculated as derivative relative to one spatial
variable, and in the second spatial variable takes the value from previous time step
(longitudinal direction). In the transverse direction, the value of the function at next
time step is calculated as derivative by second spatial variable and first spatial variable
takes the value calculated at intermediary time step. Calculated values of gas pressure
are used to find other pressure values. Then, we find saturation of oil and water, using
the first and second equation of the system (1), and gas saturation value – using the last
ratio of the system. Iterative process stops when the convergence condition is satisfied.

Implementation of a Three-Phase Fluid Flow (“Oil-Water-Gas”) Numerical Model 491

max Srg;i;j � Sr�1
g;i;j

� e1 ð4Þ

Convergence of the process is affected by number of wells, because gradients of
pressure and saturation phases are rapidly changing around the wells and the rest of the
area is changing smoothly and therefore the convergence condition is reached faster.

We suggest the following parallel algorithm. We make decomposition of the spatial
area into rectangles, as shown in the following figure.

Figure 1 shows that direction j has fragment size M/fgcnt, where fgcnt is the
number of fragments. Direction i has fragment size N/fgcnt. Therefore, we have fgcnt2

data fragments of size N/fgcnt × M/fgcnt. Then, the original algorithm can be repre-
sented as sequence of following steps:

Step 1. Generate variable matrices Po;Pw;Pg; Sw; So; Sg of size Nx(M/fgcnt + 1) for
first and last data fragment and Nx(M/fgcnt + 2) for others. The values of
these matrices are determined from the initial conditions (2).

Step 2. Solve the equation for the gas pressure obtained from addition of the
system (1) at intermediate time step for j ¼ 1;M=fgcnt, i ¼ 1;N � 1 and all
k ¼ 1; fgcnt

Step 3. Calculate values for pressure of oil and water, using ratios 4 and 5 of the
system (1) for all k ¼ 1; fgcnt1.

Step 4. Calculate values for saturation of oil and water using Eqs. 1 and 2 of the
system (1), gas saturation can be found from ratio 6 of the system (1) for all
k ¼ 1; fgcnt.

Step 5. Check convergence condition (4), if it is satisfied for all k ¼ 1; fgcnt then
go to step 6, otherwise override values of variables matrix
Po;Pw;Pg; Sw; So; Sg with values calculated in steps 2−4.

Fig. 1. Decomposition area.

492 D. Akhmed-Zaki et al.

Step 6. Generate variables matrix Po;Pw;Pg; Sw; So; Sg of size (N/fgcnt + 1) ×M for
first and last data fragment and (N/fgcnt + 2) × M for others.

Step 7. We define the values of these matrices according to the following scheme:
fragments k send all l fragments submatrices of their variables Po;Pw;
Pg; Sw; So; Sg, of size (N/fgcnt + 2) × (M/fgcnt + 2) for l 6¼ 1 or l 6¼ fgcnt

where i ¼ l� 1ð Þ � N=fgcnt � 1; l � N=fgcnt þ 1 and size of (N/fgcnt + 1)
x (M/fgcnt + 1) otherwise, where i ¼ l� 1ð Þ � N=fgcnt; l� N=fgcnt þ
1 by l ¼ 0 and i ¼ l� 1ð Þ � N=fgcnt; l � N=fgcnt by l ¼ fgcnt.

Step 8. Solve the equation for gas pressure obtained from addition of the system (1)
at intermediary time step for i ¼ 1;N=fgcnt, j ¼ 1;M � 1 and all
l ¼ 1; fgcnt.

Step 9. Similar to steps 3 and 4, find the pressure of oil and water and saturation of
oil, water and gas for all l ¼ 1; fgcnt.

Step 10. Check convergence condition (4), if it is satisfied for all l ¼ 1; fgcnt then go
to step 11, otherwise override values of variable matrices
Po;Pw;Pg; Sw; So; Sg to values calculated in step 9.

Step 11. Fill variable matrices Po;Pw;Pg; Sw; So; Sg, for longitudinal direction by
the following scheme: l fragment sends all k fragments submatrix of their
variables Po;Pw;Pg; Sw; So; Sg of size (N/fgcnt + 2) x (M/fgcnt + 2) for

k 6¼ 1or k 6¼ fgcnt where i ¼ k � 1ð Þ � N=fgcnt � 1; k � N=fgcnt þ 1 and of
size (N/fgcnt + 1)x(M/fgcnt + 1), otherwise, where i ¼ k � 1ð Þ�
N=fgcnt; k � N=fgcnt þ 1 by k ¼ 0 and i ¼ k � 1ð Þ � N=fgcnt; k � N=fgcnt
by k ¼ fgcntand go to step 2.

The process stops when it reaches specified time.
A feature of this parallel algorithm is the absence of data exchange within the

computations by directions. Only when the iterative process converged in one direc-
tion, the calculated values will be transferred to other processes. This reduces amount
of communications, while checking convergence conditions of the iterative method, but
leads to sending the entire array, obtained by each process as a result of calculation, to
all other processes, in order to start computation in other direction.

To compare implementation quality the applied numerical algorithm has been
implemented in several forms: sequential Java program, parallel C++ program using
the MPI standard, parallel fragmented program in LuNA language [6, 7] using LuNA
programming system.

5 LuNA Language and System of Fragmented Programming

LuNA (Language for Numerical Algorithms) – is a language and a system of parallel
programming, aimed at automation of parallel programming of large-scale numerical
models on supercomputers. LuNA language and system are being developed in the
Supercomputer software department of the Institute of computational mathematics and
mathematical geophysics of the Siberian branch of Russian academy of sciences.

Implementation of a Three-Phase Fluid Flow (“Oil-Water-Gas”) Numerical Model 493

The theoretical basis of LuNA is the theory of structured synthesis of parallel
programs on the basis of computational models [13]. The main approach of LuNA can
be described as follows. A user reformulates the application algorithm into an explicitly
parallel form, called fragmented algorithm (FA). The FA is automatically transformed
by LuNA compiler into a parallel program, executable by LuNA run-time system on a
multicomputer. LuNA compiler and run-time system take care of such problems as
performing communications, data access synchronization, distributed memory alloca-
tion, dynamic load balancing, and so on.

An important peculiarity of the approach is the possibility to improve the quality of
FA execution by specifying “recommendations” – partial decisions on such problems
as: how to distribute data and operations of the FA among computing nodes, what kind
of workload scheduling to choose, and so on. The recommendations allow manual
tuning the FA execution in order to achieve better performance without the user having
to drive into complex system parallel programming.

Main advantages, offered by LuNA system, are reduction of programmer qualifi-
cation requirements, reduction of parallel program development laboriousness, auto-
mation of provision of such properties of parallel program execution as dynamic load
balancing, performing communications in parallel with computations, and so on. The
programmer does not do parallel programming as such, his role is limited to algorithm
decomposition, sequential programming and declaration of recommendations in a
domain specific language (DSL). So, the parallel programming as such is eliminated
form the process of implementation of numerical models for multicomputers.

Currently, LuNA system is implemented as a prototype. FA, described in LuNA
language, is interpreted by the run-time system, which invokes user sequential pro-
cedures, encapsulated in a traditional dynamic load library, according to the FA. In
such way, implementation of coarse-grained parallel algorithm mainly consists of
native code execution and minor system overhead. On the contrary, fine-grained FA is
likely to have poor performance due to run-time system overhead. The LuNA run-time
system is designed to be scalable to supercomputers of any size, therefore it only
employs scalable distributed system algorithms with localized communications.

6 Fragmented Algorithm Execution

In this section we consider the fragmented algorithm (FA) representation and its
execution by LuNA run-time system. In particular, we consider, how it provides a
number of important properties of FA execution, such as resources distribution, exe-
cution scheduling, dynamic load balancing, data access synchronization, garbage
collection, etc.

FA is basically a bipartite directed graph. One part is a set of computational
fragments, the other part is a set of data fragments. Data fragment (DF) is a single
assignment variable, which value is an aggregate of values. A submatrix is an example
of a DF. Computational Fragment (CF) is a pure-functional (with no side effects)
operation on DFs. Each CF has a number if input DFs and a number of output DFs.

494 D. Akhmed-Zaki et al.

If at given moment of FA execution all input DFs for a CF are computed, then the CF
may be executed. Execution of the CF produces values for its output DFs. Execution of
FA is execution of all of its CFs. In such a way, it is a dataflow model with single
assignment aggregated values.

In general, the graph of the FA is potentially infinite (due to potentially infinite
iteration processes and single assignment). Thus the FA is represented as an enumerating
algorithm, capable of enumerating all entities (CFs and DFs) of the FA. The enumeration
is performed in run-time. As a result of the enumeration CFs and DFs are initiated.

A peculiarity of such representation is, that each CF may be implemented as a
sequential (“native”) procedure call, provided all input DFs are present on current Pro-
cessing Element (PE, e.g., computing node). Being serializable, DFs can bemoved by the
run-time system automatically from one PE to another (through network message
passing). Thus the run-time system is able to provide DFsmigration and CFs execution in
order to execute FA. The PEs to store DFs or execute CFs can be assigned automatically
and dynamically. The FA is, therefore, highly portable, because various CFs and DFs
distributions among PEs can be chosen, according to the multicomputer configuration.

If a load imbalance occurs, the overloaded PEs may have some of their CFs
migrated to underloaded PEs automatically, resulting in load balancing.

The run-time system may employ different scheduling, distribution and load bal-
ancing strategies in order to improve efficiency of FA execution.

To make this possible, each DF must be small enough to fit into memory of any PE,
and each CF must be small enough (in terms of execution time) to provide granularity
for load balancing.

Efficient FA execution is a hard problem, because such problems as CFs sched-
uling, CFs and DFs distribution and dynamic redistribution are computationally hard,
so heuristics must be used (see [6] for details).

FA execution comprises the following activities.

1. CFs and DFs are generated by enumerating algorithm
2. Ready for execution CFs are found through data dependencies tracking
3. Ready CFs are executed, producing new DFs
4. No longer needed DFs are disposed through garbage collection
5. PEs workload is monitored to detect load imbalances
6. CFs and DFs are transferred to other PEs to balance PEs workload
7. CFs execution is monitored to detect system full stop.

Current implementation of LuNA system has moderate overhead, since it is only a
prototype, but system algorithms can be improved. The system is designed to be
scalable, therefore all the system algorithms are distributed and with localized com-
munications (only allowed communications are between neighbor PEs).

7 Performance Tests

Experiments were conducted for different number of mesh points in the spatial coor-
dinates and different number of processors for parallel implementations with fixed
number of iterations. Parallel version and LuNA version were run on a cluster of

Implementation of a Three-Phase Fluid Flow (“Oil-Water-Gas”) Numerical Model 495

Siberian Supercomputer Center. Time step and number of wells were not changed. The
purpose of the test was to determine the efficiency of various implementations of the
numerical algorithm. Test results are shown in Fig. 2.

Figure 2 shows that at a small number of mesh points the minimum execution time
belongs to the sequential implementation of the algorithm.

With increase of the number of points, parallel implementation is at first catching
up with and then overtakes the sequential implementation. This is due to the fact that,
with the growth of computation load benefit from parallelism begins to outweigh the
overheads arising from communications. Execution time of the LuNA program exceeds
the other execution times at about half order. The reason for that is relatively small size
of the problem and big number of iterations, which results in fine granularity of the
fragmented algorithm. Such fine-grained fragmented algorithms cause large run-time
system execution overhead.

Despite lower quality of the implementation, the LuNA program is easier to
develop, because the LuNA program only contains application computations and
algorithm scheme description. No communications, synchronization or resources
allocation code is present.

8 Conclusion

An implementation of a three-phase fluid flow (“oil-water-gas”) numerical model is
considered, parallel algorithm is suggested and its implementation with LuNA frag-
mented programming system is presented. Peculiarities of fragmented algorithms
execution by LuNA run-time system are shown. Comparative performance tests were

Fig. 2. The computation time (sec.) depending on the number of mesh points.

496 D. Akhmed-Zaki et al.

presented. The study has shown that LuNA system simplifies algorithm’s implemen-
tation, but the efficiency is poor due to small problem size.

Acknowledgements. This work was supported by grant funding of scientific and technical
programs and projects by the Committee of Science, Ministry of Education and Science RK,
grant No. 528/GF2; and Russian Foundation for Basic Research (grants No. 14-07-00381-a and
14-01-31328-mol_a).

References

1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation, p. 407. Applied Science Publishers
Ltd, London (1979)

2. Crichlow, H.B.: Modern Reservoir Engineering – A Simualation Approach, p. 303.
Prentice-Hall, Inc., Englewood Cliffs (1977)

3. Konovalov, A.N.: The Problem of Filtration Multiphase Incompressible Fluid. Novosibirsk:
science. 166p (1988)

4. Akhmed-Zaki, D.Z., Danaev, N.T., Mukhambetzhanov, S.T., Imankulov, T.: Analysis and
evaluation of heat and mass transfer processes in porous media based on darcy - stefan’s
model. In: ECMOR XIII (2012). http://dx.doi.org/10.3997/2214-4609.20143274

5. Janenko, N.N.: The method of fractional steps for solving multidimensional problems of
mathematical physics. 197 p. (1967)

6. Malyshkin, V., Perepelkin, V.: Optimization methods of parallel execution of numerical
programs in the LuNA fragmented programming system. J. Supercomput. 61(1), 235–248
(2012). doi:10.1007/s11227-011-0649-6

7. Kireev, S., Malyshkin, V., Fujita, H.: The LuNA library of parallel numerical fragmented
subroutines. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 290–301. Springer,
Heidelberg (2011)

8. PaRSEC: Parallel Runtime Scheduling and Execution Controller. http://icl.cs.utk.edu/parsec/
index.html accessed on 15 January 2015

9. Schäfer, A., Fey, D.: LibGeoDecomp: a grid-enabled library for geometric decomposition
codes. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS,
vol. 5205, pp. 285–294. Springer, Heidelberg (2008)

10. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented system based on
C++. In: OOPSLA 1993 Proceedings of the Eighth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, ACM, New York, NY, USA. pp 91–
108 (1993). doi:10.1145/165854.165874

11. Gershon, E., Shaked, U.: Applications. In: Gershon, E., Shaked, U. (eds.) Advanced Topics in
Control and Estimation of State-multiplicative Noisy Systems. LNCIS, vol. 439, pp. 201–216.
Springer, Heidelberg (2013)

12. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions
and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol.
6873, pp. 53–61. Springer, Heidelberg (2011)

13. Valkovsky, V.A., Malyshkin, V.E.: Synthesis if parallel programs and system on the basis if
computational models. Nauka, Novosibirsk, 1988, 128 p (1988). (In Russian)

Implementation of a Three-Phase Fluid Flow (“Oil-Water-Gas”) Numerical Model 497

http://dx.doi.org/10.3997/2214-4609.20143274
http://dx.doi.org/10.1007/s11227-011-0649-6
http://icl.cs.utk.edu/parsec/index.html
http://icl.cs.utk.edu/parsec/index.html
http://dx.doi.org/10.1145/165854.165874

Development of a Distributed Parallel
Algorithm of 3D Hydrodynamic Calculation
of Oil Production on the Basis of MapReduce

Hadoop and MPI Technologies

Darkhan Akhmed-Zaki, Madina Mansurova(&), Timur Imankulov,
Bazargul Matkerim, and Ekaterina Dadykina

al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
darhan.ahmed-zaki@kaznu.kz,

{mansurova01,imankulov_ts}@mail.ru,

bazargulmm@gmail.com

Abstract. The developed hybrid model of high performance computing and the
realized applications on the basis of MapReduce Hadoop and MPI technologies
allow to solve effectively the different classes of oil production problems.
Investigations of high performance computing to solve the problem of 3D

hydrodynamic calculation of oil production resulted in proposition of a con-
structive approach to organization of distributed parallel computing using Ma-
pReduce Hadoop and MPI technologies for which a general scheme of the
iteration infrastructure of MapReduce model is designed; the structure for ful-
fillment of map and reduce methods and organization of decomposition of the
computational area at different Map/Reduce stages are presented; a computa-
tional experiment on specific infrastructure is carried out. As the result of this
work the architecture of the system realized on the advantages of MapReduce
Hadoop and MPI technologies is constructed.

Keywords: MapReduce Hadoop � MPI � Oil production problems � Parallel
computing � Distributed computing

1 Physical and Mathematical Models of 3D Problem
of Hydrodynamic Calculation of Oil Production

In this section, physical and mathematical models of the isothermal process of oil
displacement based on Buckley-Leverett model are considered.

Water of the pre-determined temperature is pumped through the injection well of
the oil-gas deposit. In the injection and production wells, either pressures Pn

ijk and

Pprod Pn
ijk [Pprod

� �
or volumes of the water being pumped or discharges of wells are

specified. The pumped water displaces the oil left in the pool which goes to the
production well.

A mathematical model of a two-phase filtration consists of equations of oil and
water balance in the flow and the generalized Darcy’s law with the following

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 498–504, 2015.
DOI: 10.1007/978-3-319-21909-7_48

assumptions: fluids are incompressible; the capillary effects can be neglected; gravi-
tational forces are not taken into account; the flow obeys the Darcy’s law.

The set of equations for region X with the boundary @X can be written in the
following way (1)–(3) [1]:

m
@s
@t

þ div ~v1ð Þ ¼ q1 ð1Þ

�m
@s
@t

þ div ~v2ð Þ ¼ q2 ð2Þ

~ti ¼ �K0
fi sð Þ
li

rP ð3Þ

where m; li; fi; K0; qi are porosity of the medium, viscosity of fluids, relative phase
permeabilities, absolute permeability of the medium, operational characteristics of the
wells, respectively.

It is necessary to find functions {P, s, V} – pressure, saturation of water, the flow
rate, respectively, satisfying ratios (1)–(3) with initial and boundary conditions (4)–(5):

S t¼0 ¼j S0 xð Þ ð4Þ

@P
@n

����
@X

¼ 0;
@s
@n

����
@X

¼ 0 ð5Þ

2 Numerical Model of 3D Problem of Hydrodynamic
Calculation of Oil Production

For a numerical solution of the problem, the algorithm of separate determination of
pressure and saturation fields is used. By the pre-determined distribution of saturation
on the n-th time layer, pressure on this layer Pn

ijk is obtained, the use of which allows

finding snþ1
ijk . Then computations are repeated in the same sequence. To check up the

accuracy of the results, coincidence of discharges of the production and injection wells
is controlled. The results of numerical solution of oil displacement problem are pre-
sented in [2, 3]. Adding (1) and (2), we will have the equation for pressure and after
reducing it to difference form, the equation is solved by the Jacobi method [4]. Using
several arithmetical operations, it is easy to obtain the Pnþ1

ijk . To solve the equation of
saturation, the value of pressure in this layer is substituted into (1). The difference
analogs for the equation of saturation are written according to [4] in the form which can
be reduced to the difference form.

Development of a Distributed Parallel Algorithm 499

3 The Distributed Parallel Algorithm on the Basis
of MapReduce Hadoop and MPI Technologies

The analysis of hybrid solutions of MapReduce Hadoop and MPI technologies showed
that the use of MPI technology for development of MapReduce applications increases
performance of the applications [5–10]. Hybrid solutions are created with the aim of
using the advantages of separate technologies. As is known, in MapReduce Hadoop,
the tasks important for distributed systems such as fault tolerance, load balancing,
distributed storage and processing of large data volumes are solved at the level of
MapReduce technology itself. A flexible organization of communications and
exchange of data between parallel processes can be referred to the advantages of MPI
technology. It is to unification of advantages of the technologies of parallel, distributed
and cloud computing that the majority of works [11, 12] are devoted owing to their
special practical importance. But the questions of effective organization of computa-
tions, scalability of algorithms and their adaptation to a wide range of scientific
problems remain open.

Thus, the problem of development of applications for high performance computing
where the tasks of storage and distribution of data are supported by MapReduce
Hadoop technology and the computational part performed by MPI technology is actual.

Usually when there is a huge computational task one has to choose between per-
formance (provided by MPI) and fault tolerance (main feature of Hadoop). In our case,
when solving this specific task, we use MPI and Hadoop technologies in combination.
Practical unification of the two considered technologies requires solution of the fol-
lowing tasks:

• Development of the interaction mechanism of MapReduce Hadoop and MPI
environments (Fig. 1);

• Development of a hybrid algorithm using MapReduce and MPI technologies.

The mechanism of MapReduce Hadoop and MPI interaction via files and calling up
MPI processes in the MapReduce Hadoop environment proposed by the authors was
successfully used for solution of a number of problems [13], in particular, Dirichlet
problem for Poisson equation [14], 3D problem of fluid dynamics in anisotropic elastic
porous medium [15, 16]. This section presents the results of further investigations in
this direction, namely, the use of a constructive approach of a hybrid unification of
MapReduce Hadoop and MPI for the problem of 3D hydrodynamic calculation of oil
production.

To solve the problem (1)–(3), a scheme of iteration infrastructure shown in Fig. 1 is
used. Implementation of distributed parallel algorithms begins with starting of the
initialization stage presented by MapReduce task Initial at the main node of the cluster.
Then, a cycle of iterations on time is started in which, firstly, a MapReduce task MR0 is
fulfilled which computes auxiliary coefficients for calculation of pressure; secondly, an
MPI is compiled and called up in which pressure is calculated; thirdly, a MapReduce
task MR1 is fulfilled for calculation of saturation.

500 D. Akhmed-Zaki et al.

Thus, the algorithm consists of two main stages: the initialization stage and the
iteration stage which, in its turn, contains internal iteration cycles. A more detailed
description of the algorithm stages is presented below.

Initialization stage is presented by the MapReduce task Initial in which the
parameters of the oil reservoir necessary for calculations are given. The function map
reads the task numbers and writes them down in the output file. In the function reduce
there takes place assignment of initial values to the problem characteristics such as
permeability perm, porosity of the medium m, coordinates of the wells location lq.
Then, initial values of pressure P1, initial values of saturation s0, s1 are calculated. All
the new values obtained at the stage Initial are written down into the distributed file
system of Hadoop HDFS. Thus, at the stage Initial there proceeds preparation of the
data necessary for the main computational part of the algorithm.

Iteration stage begins with starting of the MapReduce task MR0 in which the
function map reads the numbers of tasks in the form of a key and writes them down the
output file. The function reduce reads the data from the distributed file system HDFS,

Fig. 1. Scheme of implementation of MapReduce MPI algorithm for oil production problem

Development of a Distributed Parallel Algorithm 501

calculates the values of auxiliary arrays – K[0][1][i][j][k] of the size 5, M [1][i][j][k] of
the size 4 – and writes them down in the form of output data into HDFS. Output files in
MR0 task are read as input files by MPI processes. Auxiliary arrays K and M from
HDFS are used for calculation of pressure.

In the MPI part of the algorithm, 1D decomposition of the data is used. The
exchange between nodes is implemented with the help of primitives MPI.COMM_-
WORLD.Sendrecv().

The calculated values of pressure at the current iteration of the external cycle are
stored in the array P1 and written down into HDFS as shown in Fig. 1. Here, the work
of the MPI task is completed. Then, the next MapReduce task MR1 is started. The
following data – the current values of saturation s1, permeability perm, pressure P1,
porosity m, coordinates of wells location lq and the elements of the auxiliary array
K are read from the file system HDFS. A cycle of computations of the saturation value
begins. The computations being completed, the new values of saturation are written
down into the file system HDFS. Here, the work of MR1 is completed.

4 Implementation of the Distributed Parallel Algorithm
and Analysis of the Results

We have configured Apache Hadoop 2.6.0 cluster which consists of one master node
and 8 slaves (Figs. 2, 3). All slave nodes have Ubuntu 14.04 on board; the master node
has Ubuntu Server 14.04.

All slave nodes are configured to work with MPICH-3.1.4. To share the data
between MPICH nodes, we use NFS and NFS server is configured on the master node.
For experimental design the hybrid of Hadoop 2.6.0 MapReduce (Yarn) and MPICH

Fig. 2. Speedup of the distributed parallel program

502 D. Akhmed-Zaki et al.

3.1.4 technologies is used. YARN schedules the MPI tasks and delivers input output
files to MPI nodes via HDFS. This provides the reliability and maximum computing
performance.

5 Conclusion

Investigations on high performance computing for solution of the problem of 3D
hydrodynamic computation of oil production (1)–(3) resulted in proposition of a
constructive approach to organization of distributed parallel computations using Ma-
pReduce Hadoop and MPI technologies for which: a general scheme of the iteration
infrastructure of MapReduce model of problem (1)–(3) computation was designed; the
structure for fulfillment of map and reduce methods and organization of decomposition
of the computation area at different Map/Reduce stages were presented; a computa-
tional experiments were carried out on specific infrastructure. The practical result of
investigations is adaptation of high performance technologies to solve of actual oil and
gas industry problems of Kazakhstan.

References

1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation, p. 407. Applied Science Publishers
Ltd., London (1979)

2. Imankulov, T.S., Mukhambetzhanov, S.T., Akhmed-Zaki, D.Z.: Simulation of generalized
plane fluid filtration in a deformable environment. In: Computational Technologies, part 1,
vol. 1, pp. 183–191 (2013). Bulletin of the East-Kazakhstan State Technical University
Named by D. Serikbaev

Fig. 3. Efficiency of the distributed parallel program

Development of a Distributed Parallel Algorithm 503

3. Zhumagulov, B.T., Mukhambetzhanov, S.T., Akhmed-Zaki, D., Imankulov, T.S.: Computer
modeling of nonisothermal oil displacement at gelepolimer flooding. Bull. NEA RK. 4(50),
14–22 (2013)

4. Samarskiy, A.A., Gulin, A.V.: Numerical Methods. Nauka, Moscow (1989). (in Russian)
5. Jin, H., He, X.: Sun performance comparison under failures of MPI and MapReduce. An

analytical approach. J. Future Gener. Comput. Syst. 7(29), 1808–1815 (2013)
6. Lu, X., Wang, B., Zha, L., Xu, Z.: Can MPI benefit Hadoop and MapReduce applications?

In: Proceedings of the 2011 40th International Conference on Parallel Processing
Workshops, ICPPW 2011, pp. 371–379 (2011)

7. Mohamed, H., Marchand-Maillet, S.: Enhancing MapReduce using MPI and an optimized
data exchange policy. In: Proceedings of the 2012 41st International Conference on Parallel
Processing Workshops, ICPPW 2012, pp. 11–18 (2012)

8. Steven, J., Plimpton, K.D.: Devine MapReduce in MPI for large-scale graph algorithms.
J. Parallel Comput. 9(37), 610–632 (2011)

9. Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: combining MapReduce and
virtualization on distributed resources for bioinformatics applications. In: IEEE 4th
International Conference on eScience 2008. IEEE (2008)

10. Sul, S., Tovchigrechko, A.: Parallelizing BLAST and SOM algorithms with MapReduce-MPI
library. In: Proceedings of the 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, IPDPSW 2011, pp. 481–489 (2011)

11. Hoefler, T., Lumsdaine, A., Dongarra, J.: Towards efficient MapReduce using MPI. In:
Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 240–249.
Springer, Heidelberg (2009)

12. Slawinski, V.S.: Adapting MPI to MapReduce PaaS clouds: an experiment in
cross-paradigm execution. In: 2012 IEEE/ACM Fifth International Conference on Utility
and Cloud Computing, pp. 199–203 (2012)

13. Akhmed-Zaki, D., Danaev, N., Matkerim, B., Bektemessov, A.: Design of distributed
parallel computing using by MapReduce/MPI technology. In: Malyshkin, V. (ed.) PaCT
2013. LNCS, vol. 7979, pp. 139–148. Springer, Heidelberg (2013)

14. Kumalakov, B., Shomanov, A., Dadykina, Y., Ikhsanov, S., Tulepbergenov, B.: Solving
Dirichlet problem for Poisson’s equation using MapReduce Hadoop. In: Theoretical and
Applied Aspects of Cybernetics, Proceedings of the III International Scientific Conference of
Students and Young Scientists, pp. 224–227. Kyiv (2013)

15. Akhmed-Zaki, D., Mansurova, M., Matkerim, B., Kumalakov, B., Shomanov, A.: Iterative
MapReduce oil reservoir simulator. Applying MDA and Hadoop to solve hydrodynamics
problems. In: Extended Abstracts of the International Conference Electronics,
Telecommunications and Computers, Lisbon, Portugal (2013)

16. Mansurova, M., Akhmed-Zaki, D., Kumalakov, B., Matkerim, B.: Distributed parallel
algorithm for numerical solving of 3D problem of fluid dynamics in anisotropic elastic
porous medium using MapReduce and MPI technologies. In: Proceedings of 9th
International Joint Conference on Software Technologies ICSOFT 2014, Vienna, Austria,
pp. 525–528 (2014)

504 D. Akhmed-Zaki et al.

A Two-Level Parallel Global Search Algorithm
for Solution of Computationally Intensive
Multiextremal Optimization Problems

Victor Gergel(&) and Sergey Sidorov

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
gergel@unn.ru

Abstract. The work considers a new parallel global search algorithm devel-
oped within the framework of the information-statistical approach to multiex-
tremal optimization. The proposed algorithm is intended for maximum possible
use of the potential of state-of-the-art high-performance computing systems, in
particular, for solving the most computationally intensive problems of mul-
tiextremal optimization. The key feature of the algorithm is organization of
parallel calculations through the use of multiple mappings based on Peano
curves for dimensionality reduction. This approach enables effective use of
supercomputers with shared and distributed memory and a large number of
processors for solving global search problems.

Keywords: Global optimization � Information-statistical theory � Parallel
computations � High-performance computing systems � Supercomputer
technologies

1 Introduction

Problems of global or multiextremal optimization currently belong to one of the key
research areas in the theory and practice of decision-making. In problems of such kind,
it is assumed that the optimized criterion has several local extrema with different values
in the search domain. The existence of several local extrema significantly complicates
the search for the global optimum as it requires complete analysis of the whole search
domain.

Such problems involve a large number of variables, multiextremality of optimized
functions, existence of nonlinear constraints, multicriteriality, and, most importantly, a
high computational complexity of the functions that form the basis of the optimized
criteria and constraints. Thus, it is only possible to solve such problems with realistic
resource costs when using high computing capacities of state-of-the-art supercomputers
with the use of parallel global optimization algorithms.

The present state of the art of global optimization is adequately presented in a
number of key monographs [1–5] et al. With regard to parallel computation, com-
paratively obvious parallel extensions of the exhaustive search method, Monte Carlo
[6] and local multistart schemes [7] can be distinguished. There are considerable efforts
to develop parallel genetic algorithms [8] and parallel algorithms in interval global

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 505–515, 2015.
DOI: 10.1007/978-3-319-21909-7_49

optimization [9]. An interesting approach to parallel algorithms based on the
non-uniform space-covering technique is given in [10]. The well-known algorithm of
global optimization DIRECT and its modification LBDIRECT (locally-biased
DIRECT) is presented in [11, 12].

This work continues to further develop effective parallel global search algorithms
within the framework of information-statistical theory of multiextremal optimization [5].

The key feature of the proposed algorithm is that the parallel computations is
organized through the use of multiple mappings based on Peano curves for dimen-
sionality reduction. As a result, multidimensional optimization problems are reduced to
problems of one-dimensional global search, thus enabling the construction of effective
computation schemes for multiprocessor computation systems with both distributed
and shared memory. This approach allows the maximum possible use of the potential
of modern supercomputers for solving the most computationally intensive problems of
multiextremal optimization.

The structure of the paper is as follows. The problem statement is presented in
Sect. 2, the scheme of dimensionality reduction on the basis of multiple mappings
based on Peano curves used further for organization of parallel computation is con-
sidered. The computation scheme of the constructed two-level global search algorithm
is provided in Sect. 3. The results of the performed computation experiments are
considered in Sect. 4. At the end of the paper, general conclusions are given and
prospects for continued research are discussed.

2 Problem Statement

Let us consider a problem of global optimization of the form

u� ¼ u y�ð Þ ¼ min u yð Þ : y 2 Df g; ð1Þ

D ¼ y 2 RN : ai � yi � bi; 1� i�N
� �

;

where the objective function u yð Þ meets the Lipschitz condition

u y0ð Þ � u y00ð Þj j � L y0 � y00k k; y0; y00 2 D ð2Þ

where L[0 is the Lipschitz constant, and �k k denotes the Euclidean norm in the space
RN .

Let us further assume that the value of a minimized function u yð Þ can be calculated
for any vector value y 2 D by some computational procedure (hereinafter, obtaining the
value of a minimized function is called a trial). As a rule, this procedure is compu-
tationally intensive, i.e. computation costs of the optimization problem solution (1) are
determined first of all by the number of executed trials of function values.

By using Peano curves or evolvents y(x), which are single-valued mappings of the
interval [0,1], on the N-dimensional hypercube D, the initial problem (1) can be
reduced to the following one-dimensional problem [5, 16]:

506 V. Gergel and S. Sidorov

u y x�ð Þð Þ ¼ min u y xð Þð Þ : x 2 0; 1½ �f g: ð3Þ

The considered scheme of dimensionality reduction allows a multidimensional
problem with a Lipschitz minimized function to be transformed to a one-dimensional
problem, where corresponding functions meet the uniform Hölder condition, i.e.

f y x0ð Þð Þ � f y x00ð Þð Þj j � L
_

x0 � x00j j1=N ; x0; x00 2 0; 1½ � ð4Þ

where the constant L
_

is determined by the formula L
_ ¼ 4L

ffiffiffiffi
N

p
, L is the Lipschitz

constant from (2), and N is the dimensionality of the optimization problem (1).
Algorithms for numerical construction of Peano curve approximations are given

in [5]. For the purpose of illustration, Fig. 1 shows a Peano curve approximation for the
third level of density. The curve in Fig. 1 shows the procedure for bypassing a
two-dimensional domain; the accuracy of the Peano curve approximation is determined
by the implemented construction density level.

By reducing multidimensional problems (1) to optimization of one-dimensional
functions (3) using mappings based on Peano curves it is possible to preserve uniform
boundedness of differences between function values in the case of limited argument
variation, i.e. the feasibility of (4). However, in this case a partial loss of information on
closeness of points in multidimensional space occurs, as point x2[0,1] has only
neighbors on the left and on the right, and its corresponding point y(x)2RN has
neighbors in 2N directions. Thus, when using Peano-type mappings quite distant
preimages xʹ, xʺ on the interval [0,1] can correspond to images yʹ, yʺ in RN, which are
close in N-dimensional space. As a result, several (up to 2N) local extrema in a
one-dimensional problem can correspond to the only global minimum point in a

Fig. 1. Peano curve approximation for the third level of density

A Two-Level Parallel Global Search Algorithm 507

multidimensional problem. This fact significantly complicates the solution of the
one-dimensional problem (3) since global search algorithms, as a rule, provide con-
vergence to all global minimum points.

To reduce this effect it was proposed in [5] to use a set of mappings

YsðxÞ ¼ fy1ðxÞ; . . .; ysðxÞg: ð5Þ

instead of using one Peano curve y(x).
To construct the set Ys(x), several different approaches can be used. For example, in

the work [5] a scheme was implemented, according to which each transformation
yi(x) from Ys(x) is constructed as a result of shifting along the main diagonal of the
hyperinterval D. The set of Peano curves thus constructed allows one to obtain yʹ, yʺ
from D for any close multidimensional images, which differ only in one coordinate,
close preimages xʹ, xʺ from the interval [0,1] for a transformation yk(x), 1 ≤ k ≤ s.

The set of transformations Ys(x) from (5) generates (for the multidimensional
problem (1)) s auxiliary information-linked one-dimensional problems (3) of the form:

u yk x�ð Þ� � ¼ min u yk xð Þ� �
: x 2 0; 1½ �� �

; 1� k� s: ð6Þ

It must be noted that the family of one-dimensional problems φ(yk(x)), 1 ≤ k ≤ s,
obtained as a result of dimensionality reduction is information-linked: a function value
calculated for any problem φ(yk(x)) of the family (6) can be used for all other problems
of this family without any complicated computations (see Sect. 3.2 of this paper).

Information compatibility of problems of the family (6) provides a natural way to
organize parallel computations. Each separate problem can be solved on a separate
processor of a computing system. In the course of computations, it is necessary to
provide exchange of obtained search information between the processors. In more
detail, organization of parallel computations based on simultaneous solution of
one-dimensional reduced problems of the family (6) is considered in Sect. 3.

3 Parallel Two-Level Global Optimization Algorithm

It should be noted that it is not easy to parallelize solving global optimization problems.
In this case the “classical” approach of domain decomposition can not be applied
because only one subdomain can contain global optimum point. Also it is not rea-
sonable to parallelize global algorithm itself because the most time consuming com-
putations are executed for evaluating minimized function values. So to parallelize
solving global optimization problems a new perspective way can be proposed – this is
computing function values at several points simultaneously. The question is how to
select these several points to provide high efficiency of parallel computations? The
parallel two-level global optimization algorithm described in the paper applies for that
the original approach for reducing multidimensional optimization problems to
one-dimensional ones by using Peano curves.

508 V. Gergel and S. Sidorov

The information-statistical theory of global search formulated in [5] has provided
the basis for developing a large number of effective methods of multiextremal opti-
mization – see, for example, [13–15, 17] and some other works.

The key feature of the algorithm proposed in this paper is the use of a unified
approach to organize parallel computations for multiprocessor systems with both dis-
tributed and shared memory. With this integrated approach, one can achieve the
maximum possible use of the potential of modern-day supercomputers for solving the
most computationally intensive multiextremal optimization problems. According with
the proposed scheme there is no any leading processor and all processors are equiv-
alent. At any time some processors can be added (or excluded) for calculations. Data
that should be sent between distributed nodes have a relatively small size and message
passing can not decelerate parallel calculations. Moreover there are no any data
exchange between computational cores with shared memory.

The description of the proposed parallel algorithm is divided into two parts. The
first part contains the rules of the algorithm with regard to computing nodes of su-
percomputers with shared memory; the scheme of organization of parallel computation
for multiprocessor systems with distributed memory is given in the second part of the
description.

3.1 Parallel Computations for Nodes with Shared Memory

State-of-the-art supercomputers consist of a large number of computing nodes
including several multicore processors. The random access memory of computing
nodes is shared: the value of any element of the memory can be read (written) by any of
the available computing cores at any random moment. In most cases, shared memory is
uniform, i.e. the memory access time characteristics are identical for all computing
cores and for all elements of the memory.

For the sake of simplicity of the description of the proposed approach, let us assume
that each computing node of a supercomputer is used for solving one of the
one-dimensional reduced problems of the family (6). Let us denote the problem being
solved on a computing node in a simpler way:

f xð Þ ¼ u y xð Þð Þ : x 2 0; 1½ �: ð7Þ

The parallel global search algorithm on multiprocessor multicore computing nodes
is based on the results presented in [5] and can be described as follows [18].

The initial iteration is carried out in some point x12(0,1). Then assume that
s; s[1, iterations of global search are carried out. Selection of trial points sþ 1 of the
next iteration is regulated by the following rules.
Rule 1. Renumber points of the set of trial points using subscripts in the increasing
order of coordinate values

0 ¼ x0\x1\. . .\xi\. . .\xk\xkþ1 ¼ 1; ð8Þ

A Two-Level Parallel Global Search Algorithm 509

where points x0; xkþ1 are used additionally in order to simplify the description below,
the values of the minimized function z0; zkþ1 at these points are not defined.
Rule 2. Calculate the current estimate of the Hölder constant from (4)

m ¼ rM; M[0;
1; M ¼ 0;

�
M ¼ max

1\i� k

jzi � zi�1j
qi

; ð9Þ

as relative differences of the minimized functions f(x) from (7) on the set of executed

trial points xi; 1� i� k from (8). Hereinafter, qi ¼ xi � xi�1ð Þ1=N ; 1� i� k þ 1 .
Constant r; r[1, is a parameter of the algorithm.
Rule 3. For each interval xi�1; xið Þ; 1� i� k þ 1, calculate the characteristic RðiÞ,
where

R ið Þ ¼ qi þ
zi � zi�1ð Þ2
m2qi

� 2
zi þ zi�1ð Þ

m
; 1\i� k;

R ið Þ ¼ 2qi � 4
zi
m
; i ¼ 1;

R ið Þ ¼ 2qi � 4
zi�1

m
; i ¼ k þ 1:

ð10Þ

Rule 4. Locate the interval characteristics obtained in (10) in the decreasing order

R t1ð Þ�R t2ð Þ� . . .�R tk�1ð Þ�R tkþ1ð Þ ð11Þ

and select p intervals with numbers tj; 1� j� p, with maximum values of character-
istics (p is the number of processors (cores) used for parallel computations).
Rule 5. Execute new trials (computation of values of the minimized function f(x)) at
points xkþj; 1� j� p, located in the intervals with maximum characteristics from (11)

xkþj ¼ xtj þ xtj�1

2
� sign ztj � ztj�1

� � 1
2r

jztj � ztj�1j
m

� 	N
; 1\tj\k þ 1;

xkþj ¼ xtj þ xtj�1

2
; tj ¼ 1; tj ¼ k þ 1:

ð12Þ

The stop condition, according to which calculations are terminated, is defined by
the condition

qt � e;

that should be fulfilled at least for one of the numbers tj; 1� j� p, from (11) and e[0
is the specified coordinate-wise accuracy of the problem solution.

If the stop condition is not fulfilled, then the number of iteration τ increases by one
and a new iteration of global search is executed.

To provide some explanations of the given algorithm let us note the following.

510 V. Gergel and S. Sidorov

Remark 1. Because of the high computational complexity of trials (calculation of
values of the minimized function), the parallel algorithm is based on the approach
whereby parallel computing is achieved by running multiple trials simultaneously at
different points of the search domain.

Remark 2. Characteristics R ið Þ; 1� i� k þ 1, calculated in (10) can be interpreted as
some measures of the importance of intervals in terms of the point of the global
minimum they may contain. Then the scheme of interval selection for parallel com-
putations used in (11) becomes evident: the points of subsequent trials are selected in
the intervals with maximum values of characteristics.

Remark 3. It is assumed that parallel computations are carried out simultaneously.
First, p points for carrying out trials are defined, which are then distributed between
processors (cores). Each processor (core) executes a trial at one of the trial points
calculated in (12). The global search algorithm continues calculations only after all the
trials of the current search iteration have been completed.

Remark 4. The number s of used evolvents in (6) may be arbitrary. If s[1 the set of
points of executed search trials for different evolvents may be either integrated in (8) or
the rules of the considered algorithm may be applied separately to each of the available
evolvents.

Remark 5. At the very beginning of the global search, the number of available points
of executed trials may be less than the number of processors (cores) used, i.e. k\p. In
this case, some computing elements will be idle due to the insufficient number of trial
points.

The conditions of convergence of the proposed algorithm and nonredundancy of
the parallel computations are considered in [5]. Thus, in the case of an appropriate
estimation of the Hölder constant (m[22�1=NL̂, m from (9)) the algorithm converges
to all global minimum points. Besides, the conditions are defined under which parallel
computations are nonredundant in comparison with the serial method when using less
than 2N processors (cores).

3.2 Parallel Computations for Systems with Distributed Memory

The following level of organization of parallel computations in high-performance
systems consists in the use of several computing nodes. Thus, each computing node has
its individual memory and, in this case, interaction between different nodes can be
provided only by means of data transmission via the communication network of the
computing system.

The unified approach to organization of parallel computations for multiprocessor
computers with distributed and shared common memory is as follows.

1. The family of one-dimensional reduced information-linked problems (6) is dis-
tributed between computing nodes of the multiprocessor system. One or several
problems of the family can be allocated for each computing node.

A Two-Level Parallel Global Search Algorithm 511

2. For solving allocated problems of the family (6) on each computing node, the
parallel global search algorithm considered in Sect. 3.1 is used. The algorithm is
supplemented with the rules of information exchange given below.

(a) Prior to a new trial for any problem u yk xð Þ� �
; 1� k� s; at any point x0 2 0; 1½ �

the following must be performed:

(i) Calculate the image y0 2 D for the point x0 2 0; 1½ � according to mapping
yk xð Þ,

(ii) Calculate preimages x0i; 1� i� s; for every problem of the family (6),
(iii) Transmit the obtained images x0i; 1� i� s; to all used computing nodes to

exclude repeated selection of intervals that contain received preimages.
To organize data transmission, a queue of received messages is formed at each com-
puting node. This queue keeps the transmitted data on trial points and values of the
minimized function at these points.
(b) After completion of any trial for any problem u yk xð Þ� �

; 1� k� s; the following
must be executed at a point x0 2 0; 1½ �:

(i) As in item 2.a, calculate all preimages for the point of the executed trial
x0i; 1� i� s; for each problem of the family (6),

(ii) Transmit the preimages x0i; 1� i� s; with the trial result z0 ¼ u yk x0ð Þð Þ to all
used computing nodes for including the obtained data into the search
information in the rules of the global search algorithm.

(c) Prior to the start of the next iteration of global search the algorithm has to check
the queue of received messages; if data is present in the queue, the received data
have to be included into the search information.

The key feature of this scheme of parallel computations is the possibility of
asynchronous data transmission (computing nodes process the received data as they
become available). Besides, there is no single control node in this scheme. The number
of computing nodes can change in the process of global search, but the exclusion (loss)
of any node does not lead to the loss of the sought global minimum of the minimized
multiextremal function.

4 Results of Computational Experiments

Computational experiments were executed on a high-performance cluster of the Uni-
versity of Nizhni Novgorod. Each computing node of this cluster contains two
dual-core Intel Xeon 2.13 MHz processors with 24 Gb memory. Nodes are connected
with the Gigabit Ethernet network. The cluster is operated under Microsoft Win-
dows HPC Server 2008. The development environment was Microsoft Visual Studio
2008 with Microsoft 32-bit C/C++ Optimizing Compiler. The MPI library was MPICH
1.2.5.

In the first series of experiments, we used the problems of multiextremal optimi-
zation generated by a GKLS test functions generator [19] with a priori known

512 V. Gergel and S. Sidorov

properties (the point and the value of the global minimum, the number of local minima,
etc.).

Computational experiments were executed for three-dimensional functions of the
classes Simple and Hard. A stop rule

y� y�k k�D

was used to terminate computations, i.e. it was assumed that estimation of the global
minimum was evaluated with the specified accuracy, if any point of the executed trial
yk got into the neighborhood Δ of point y�.

In our experiments, the evolvent density was c ¼ 10, the reliability parameter
r took on the values r ¼ 2:5 and 2.7, the number of evolvents was s ¼ 5, the accuracy
in the stopping conditions was defined as D ¼ 0:01

ffiffiffiffi
N

p
.

In each computation experiment, a total of 100 problems generated by the GKLS
generator had to be solved. For the cases when not all 100 problems were solved, the
number of unresolved problems is given in brackets.

First of all the three serial algorithms – DIRECT [11], LBDIRECT [12] and global
search algorithm (GSA) from Sect. 3 (a serial version) – are compared. The results of
numerical experiments are provided in Table 1 (number of the executed trials is pre-
sented, results of the first two algorithms are given in paper [19]). Numerical com-
parison was carried out on the function classes Simple and Hard of dimension 3.

As it can be noted Table 1 shows that GSA outperforms the DIRECT and
LBDIRECT methods on all problems in terms of average number of iterations.

Then a computing node with two dual-core processors was used for experiments.
The number of trials executed by the parallel method was taken to be equal to the
maximum value among all used computing cores.

The average number of trials by the serial (SA) and parallel (PA) methods to
achieve global optimum with the specified accuracy is given in Table 2.

In the second series the GKLS problems with increased dimension (6 and 8) have
been solved. In this experiments, the evolvent density was c ¼ 10, the reliability
parameter was r ¼ 4, the number of evolvents was equal to the number of cores, the
accuracy in the stopping conditions was defined as D ¼ 0:000001.

To provide the GKLS problems be more comparable with real applied
time-consuming optimization problems some additional delays have been added for
calculations of minimized function values (the delay value is presented in the column
“Delay” in Table 3).

Table 1. Numerical results of the three serial algorithms

Problem class DIRECT LBDIRECT GSA
r = 2.5 r = 2.7

Simple 1117 1785 397 487(1)
Hard 42322(4) 4858 1567(5) 1980(2)

A Two-Level Parallel Global Search Algorithm 513

The numerical results of this series are given in Table 3.

As it appears from the results, the speedup demonstrated by the developed parallel
two-level global search algorithm can provide some opportunities for solving serious
multidimensional global optimization problems.

5 Conclusion

This work considers a parallel global search algorithm developed within the framework
of the information-statistical approach to multiextremal optimization. The developed
algorithm offers a uniform integrated scheme for organizing parallel computations
using multiprocessor systems with distributed and shared memory. With this approach,
it is possible to achieve maximum use of the potential of state-of-the-art
high-performance computing systems for solving the most computationally intensive
multiextremal optimization problems. Computational experiments confirm the effec-
tiveness of the proposed approach.

More research is envisaged in this promising area. Some additional experiments
using larger numbers of computing elements (up to several tens of thousands proces-
sors) are necessary. Another important direction for future research is to extend the
approach for solving multiextremal optimization problems with additional nonlinear
constraints.

Acknowledgements. The research is supported by the grant of the Ministry of education and
science of the Russian Federation (the agreement of August 27, 2013, № 02.B.49.21.0003).

Table 2. Average number of trials for solving 100 test problems

Problem class Reliability parameter
r = 2.5

Reliability parameter
r = 2.7

SA PA Speedup SA PA Speedup

Simple 397 312 1,27 487(1) 204 2,38
Hard 1567(5) 911 1,72 1980(2) 809 2,44

Table 3. Numerical results for the second series of experiments

N Delay
(ms)

Cores SA PA
Iters Time,

sec.
Iters Time,

sec.
Speedup
(time)

Speedup
(iters)

6 100 40 500000 54500 16620 2370 23 30.1
8 200 60 1000000 203000 17008 5049 40.4 58.8

514 V. Gergel and S. Sidorov

References

1. Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350.
Springer, Heidelberg (1989)

2. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Heidelberg
(1990)

3. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers,
Dordrecht (1991)

4. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization:
Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht
(1996)

5. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

6. Byrd, R.H., Dert, C.L., Rinnoy Kan, H.G., Schnabel, R.B.: Concurrent stochastic methods
for global optimization. Math. Program. 46, 1–29 (1990)

7. Lootsma, F.A., Ragsdell, K.M.: State of the art in parallel nonlinear optimization. Parallel
Comput. 6, 133–155 (1988)

8. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applications.
Springer, Heidelberg (2011)

9. Eriksson, J., Lindström, P.: A parallel interval method implementation for global
optimization using dynamic load balancing. Reliable Comput. 1(1), 77–91 (1995)

10. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained
optimization. Optim. Lett. 7(4), 819–829 (2013)

11. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

12. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Global
Optim. 21(1), 27–37 (2001)

13. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum
functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)

14. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In:
Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003)

15. Sergeyev, Y.D.: An information global optimization algorithm with local tuning.
SIAM J. Optim. 5(4), 858–870 (1995)

16. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting
Space-Filling Curves. Springer, New York (2013)

17. Barkalov K.A., Gergel V.P.: Multilevel scheme of dimensionality reduction for parallel
global search algorithms. In: Proceedings of the 1st International Conference on Engineering
and Applied Sciences Optimization, pp. 2111–2124 (2014)

18. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical global
optimization algorithms. J. Global Optim. 10(2), 185–206 (1997)

19. Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, Y.D.: Software for generation of classes of
test functions with known local and global minima for global optimization. ACM Trans.
Math. Softw. 29, 469–480 (2003)

A Two-Level Parallel Global Search Algorithm 515

Efficient Parallel Implementation of Coherent
Stacking Algorithms in Seismic Data Processing

Maxim Gorodnichev1,2,3(B), Anton Duchkov2,4, and Alexander Kupchishin3,4

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia
maxim@ssd.sscc.ru

2 Novosibirsk State University, Novosibirsk, Russia
DuchkovAA@ipgg.sbras.ru

3 Novosibirsk State Technical University, Novosibirsk, Russia
vsegdatrezv@mail.ru

4 Chinakal Institute of Mining SB RAS, Novosibirsk, Russia

Abstract. We discuss efficient parallel implementation of coherent
stacking algorithms which form basis for a class of seismic processing
procedures. In detail we address the problem of processing data of micro-
seismic monitoring for localizing seismic events in space and time. Con-
tinuous data recording by seismic array quickly generates terabytes of
data to be processed in a timely manner, including real-time analysis
in some cases. Thus processing requires efficient parallel implementa-
tion with a special attention to data partitioning between nodes, and
using computations to mask data reading from disk. Efforts were taken
to minimize cache misses and vectorize loops. Sequential version of the
code demonstrates 8x speed up compared to a naive implementation of
the algorithm; parallel code scales almost linearly.

Keywords: Coherent stacking · Microseismic monitoring · Parallel
computing · Xeon Phi

1 Introduction

Seismic studies is the main source of our knowledge about the Earth structure
including mineral resources exploration, and seismic risk assessment. Seismic
data processing requires high performance computing due to extremely large
volumes of acquired data [1]. In particular, coherent stacking (summation) oper-
ation is used in a number of processing procedures [2]. These include velocity
analysis, stacking, Kirchhoff-type migration in time and depth, location of micro-
seismic events, and many others.

Keeping in mind this broad list of perspective applications here we will
consider coherent summation algorithm with application to microseismic data
processing. Microseismic monitoring is widely used to monitor hydraulic fractur-
ing, subsidence related to depletion, cap rock integrity, mapping fluid migration,
detection of casing failure [3]. Such monitoring requires continuous recording of
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 516–521, 2015.
DOI: 10.1007/978-3-319-21909-7 50

Efficient Parallel Implementation of Coherent Stacking Algorithms 517

seismicity by a network of stations. This results in large data volumes which
preferably need to be processes in a real time manner.

Microseismic data processing results in localisation of seismic events in space
and time. For surface arrays the coherent stacking (Kirchhoff-type stacking) is
the most popular processing method producing coherency images [4]. Maximums
in these images indicate hypocenters and origin time of microseismic events which
characterize associated with subsurface geomechanical processes.

In this paper we develop parallel implementation of the coherent stacking
method for the analysis of large microseismic data volumes (terabytes) optimised
for modern high performance computational platforms.

2 Coherent Summation Method

The method takes microseismic monitoring data and the parameters of the vol-
ume being studied as an input and solves the inverse problem discovering spatio-
temporal location of a series of seismic events. Microseismic monitoring data are
represented as a set of traces, were a trace G(t,Dk), t = 0, .., T − 1 — is a
signal sampled by seismometer Dk, k = 0..(Q−1). A surface location of the seis-
mometer Dk is given as (xk, yk). The studied volume is described by its spatial
dimentions.

The method starts with building a regular mesh over the volume. Let us
denote the set of mesh nodes as U. Each node u ∈ U is then tested as a possible
event location.

In order to do so, for each k = 0..(Q−1) and u ∈ U , we compute the time tuk
required for a wave front to reach the seismometer Dk from the location u. Let us
denote Tminu = min

k
tuk, Tmaxu = max

k
tuk, and Tdu = Tmaxu − Tminu. The

length of the signal will be denoted as L. The coherent summation algorithm
can be then defined as follows:

1: for u ∈ U do

2: for t ∈ 0..(T − Tdu − L) do Su,t =
L−1∑
l=0

Q−1∑
k=0

G(tuk − Tminu + t + l,Dk)

3: end for
4: end for
5: find umax and tmax such that Sumax,tmax

= max
u,t

Su,t

If there is such a mesh node ue that corresponds to the location of the seismic
event, this ue is expected to be found as ue=umax, and tmax will be the time of
the event. If we are interested to find a series of events, we will choose several
Sut that exceed a certain treshold value.

In practice, there can be variations to this method, but the general scheme
remains and it is this simple. However, straightforward implementation of
this scheme results in poor computational performance. The following sections
describe the steps to efficient implementation of this method Fig. 1.

518 M. Gorodnichev et al.

Fig. 1. Coherent summation. Seismic sensors are shown as triangles. The grid repre-
sents the set of probe points U. Summation of seismic data is done along the dotted
line for the given point.

3 Mesh Refinement

The process starts [5] with a coarse mesh U0 covering the whole volume V 0 being
studied. The coherent summation method is then applied to this mesh and, in
this way, we find a mesh node u0

max that is close to the seismic event. Then we
define a volume V 1 ∈ V 0 with a center in u0

max and build a successive finer mesh
U1 in V 1. These steps are repeated until the volume V j is small enough thus
determing an event location with appropriate accuracy.

4 Hiding Disk Access Operations Behind Computation

Typical volumes of seismic data can be measured in hundreds of gigabytes or
terabytes. Thus, it is necessary for the program to access low performance exter-
nal memory (local disks, networked filesystems). In order to confront this issue,
the double buffering approach is taken. The new portion of data is loaded from
external memory asynchronously by a special thread while the previously loaded
portion is being processed.

5 Elimination of Recomputing

One can notice that Su,t+1 = Su,t −
Q−1∑
k=0

G(tku − Tminu + t,Dk) +
Q−1∑
k=0

G(tku −
Tminu + t + L,Dk). Thus, naive implementations of the method will require
multiple computation of the same values.

Elimination of recomputing made computing time independent of the signal
length L (Fig. 2).

Efficient Parallel Implementation of Coherent Stacking Algorithms 519

Fig. 2. Computation time, s, dependence on signal length. U: a grid of 151515 points,
Q = 100, T = 2000.

6 Loop Vectorization and Avoiding Cache Misses

Processor caches and hardware prefetching work efficiently when an application
traverse data in memory in consequitive way [6]. In our case, the data is stored
in memory in such a way that G(t+ 1,Dk) follows G(t,Dk) immediately. So, in
order to force consequitive memory traversal, the loops should be organized in
the following order:

1: for k = 0..(Q − 1) do
2: for t = 0..(Tend − Tdu − L) do

3: Su,t = Su,t +
L−1∑
l=0

G(tk,u − Tminu + t + l,Dk)

4: end for
5: end for

It is important to vectorize the inner loop manually or write it in a form that
would permit a compiler to do this job.

Changing the loop order to the correct one reduces the time of computation
by 3.8 times on Intel R© Xeon R© E5-2690 and by 9.8 times on Intel R© Xeon PhiTM

7110X. Vectorization of this loop speeded-up the sequential program by a factor
of 2 for E5-2690 and by a factor of 2.8 for 7110X. The Intel R© C++ Compiler
ver. 14.0.1 20131008 with -O3 was used for all the tests.

7 Parallel Implementation

The method can be easily paralleled. Within a computing node and the shared
memory processing paradigm, the computation can be divided among computing
cores by partitioning the nodes of a mesh U. The nodes also can be processed
independently of each other, thus the only problem with parallel implementation
can be a memory bottleneck. This problem can be addressed by improving data
access locality (see Sect. 6). The performance results of a shared memory parallel
program obtained on Intel R©Xeon PhiTM7110 are presented in the Table 1.

520 M. Gorodnichev et al.

Table 1. Computation time, s, of shared memory parallel program execution for differ-
ent number of threads on Intel R© Xeon R© E5-2690 and on Intel R© Xeon PhiTM 7110X.

Number of OMP threads 1 4 8 16 30 61 244

Xeon E5-2690 28 7 4 3

Xeon Phi 7110X 779 193 27 21 12

Fig. 3. Computation time, s, and efficiency of the program execution on the
Intel R©Xeon PhiTM 7110 co-processors depending on the number of co-processors used.
Only one co-processor per computing node was used and 244 OMP threads were run-
ning on each co-processor.

Fig. 4. Computation time, s, and efficiency of the program execution on the computing
nodes with 2 Intel R© Xeon R© E5-2690 each depending on the number of computing
nodes. Each node was running 16 OMP threads.

In order to distribute the work between the nodes of a supercomputer we
partition seismic data in chunks by time. Most of the processing can be done
independently and the nodes will have to compare their maximal sums only
in the end of computation. The program was implemented with Intel R© MPI
Library. The performance results are presented in Figs. 3 and 4.

The problem characteristics for all the tests in this Sections are: U is a grid
of 404010 points, Q = 2000, and T = 1200.

Efficient Parallel Implementation of Coherent Stacking Algorithms 521

8 Conclusion

A number of optimization steps to naive implementation of coherent summation
algorithm were taken in order to obtain efficient parallel program. The overal
speed-up of the sequential computations is over 7x on Intel R© Xeon R© E5-2690
and over 26x on Intel R© Xeon PhiTM 7110X. The efficiency characteristics mea-
sured on Intel(R) Core(TM) i5-3550 processor are as following: CPI (clocks per
instruction) = 0.55, LLC (last-level cache) miss = 0.026 (a ratio of cycles with
outstanding LLC misses to all cycles). A parallel program was implemented with
OpenMP and MPI. The program is capable of processing large data sets on com-
putational clusters and scales well over distributed memory computing nodes.
Memory subsystem seems to be a bottleneck for a shared-memory program scal-
ability and more efforts on memory access optimization are required.

The algorithm is to be included into different procedures for seismic data
processing. It should be enhanced by introduction of workload balancing for
heterogenous computing systems so that it could evenly distribute workload
among all the available processing units, including CPU cores and co-processors.
We also plan to integrate it into a popular open-source seismic processing package
Madagascar [7].

Acknowledgements. Work was supported by the Russian Ministry of Education and
Science (project # RFMEFI60414X0047).

References

1. Camp, W., Thierry, P.: Trends for high-performance scientific computing. Lead.
Edge 29(1), 44–47 (2010)

2. Rückemann, C.: Comparison of stacking methods regarding processing and
computing of geoscientific depth data. GEOProcessing 7(27), 35–40 (2012).
http://dx.doi.org/10.12988/ces.2014.410187

3. Warpinski, N.: Microseismic monitoring: inside and out. J. Pet. Technol. 61(11),
80–85 (2009)

4. Chambers, K., Kendall, J., Brandsberg-Dahl, S., Rueda, J.: Testing the ability of
surface arrays to monitor microseismic activity. J. Pet. Technol. 58(5), 821–830
(2010)

5. Lemeshko, B.: Optimization Methods. NSTU Publishing, Novosibirsk (2009). (in
Russian)

6. Cherkasov, A., Gorodnichev, M., Kireev, S., Markova, V., Artyom, M.: On optimiza-
tion of numerical simulation programs. In: Proceedings of the 9th Russian-Korean
International Symposium on Science and Technology, KORUS 2005, pp. 584–589.
IEEE (2005)

7. Fomel, S., Sava, P., Vlad, I., Liu, Y., Bashkardin, V.: Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments. J. Open Res. Softw. 1(1), e8 (2013)

http://dx.doi.org/10.12988/ces.2014.410187

Accurate Parallel Algorithm for Tracking
Inertial Particles in Large-Scale Direct
Numerical Simulations of Turbulence

Takashi Ishihara1(B), Kei Enohata2, Koji Morishita3, Mitsuo Yokokawa3,
and Katsuya Ishii4

1 JST CREST, Center for Computational Science, Graduate School of Engineering,
Nagoya University, Nagoya 464-8603, Japan

ishihara@cse.nagoya-u.ac.jp
2 Computational Science and Engineering, Graduate School of Engineering,

Nagoya University, Nagoya 464-8603, Japan
enohata@fluid.cse.nagoya-u.ac.jp

3 Education Center on Computational Science and Engineering, Kobe University,
Kobe 650-0047, Japan

{morishita,yokokawa}@port.kobe-u.ac.jp
4 Information Technology Center, Nagoya University, Nagoya 464-8601, Japan

ishii@cc.nagoya-u.ac.jp

Abstract. Statistics on the motion of small heavy (inertial) particles in
turbulent flows with a high Reynolds number are physically fundamental
to understanding realistic turbulent diffusion phenomena. An accurate
parallel algorithm for tracking particles in large-scale direct numerical
simulations (DNSs) of turbulence in a periodic box has been developed
to extract accurate statistics on the motion of inertial particles. The
tracking accuracy of the particle motion is known to primarily depend
on the spatial resolution of the DNS for the turbulence and the accuracy
of the interpolation scheme used to calculate the fluid velocity at the par-
ticle position. In this study, a DNS code based on the Fourier spectral
method and two-dimensional domain decomposition method was devel-
oped and optimised for the K computer. An interpolation scheme based
on cubic splines is implemented by solving tridiagonal matrix problems
in parallel.

Keywords: Large-scale DNS of turbulence · Particle tracking · Cubic
spline interpolation · Parallel computation

1 Introduction

The turbulent diffusion phenomena of small heavy (inertial) particles such as
PM2.5, yellow sand, dust, and pollen in the air relate to our daily life and are of
public concern. To predict such turbulent diffusion phenomena, the fundamen-
tal physics and statistics of the motion of particles in highly nonlinear turbulent
flows need to be understand. Direct numerical simulations (DNSs) of turbulence
c© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 522–527, 2015.
DOI: 10.1007/978-3-319-21909-7 51

Accurate Parallel Algorithm for Tracking Inertial Particles 523

provide detailed data free from uncertainties and are one of the most effective
tools for studying the physics and statistics of particle motion (e.g. [1]). Recently,
there have been extensive studies on the statistics of the motion of inertial par-
ticles based on turbulence DNSs. In these simulations, particles are tracked in
a simulated velocity field by using linear interpolation (e.g. [2,3]) or a piece-
wise cubic Lagrangian interpolation (e.g. [4]). Such interpolations are attractive
because they have a simple implementation and require no global communication
for data transfer.

The tracking accuracy of the particle motion is known to primarily depend on
the spatial resolution of the turbulence DNS and the accuracy of the interpola-
tion scheme used to calculate the fluid velocity at the particle position (e.g. [5,6]).
Yeung and Pope [5] showed that cubic splines give higher interpolation accuracy.
However, cubic spline interpolation requires the solving of tridiagonal matrix
problems. Usually, the implementation of cubic splines in parallel codes requires
global communication for data transposition. However, the method developed
by Mattor et al. [7] minimises the amount of data transfer.

In this study, we developed an accurate and effective parallel algorithm for
tracking inertial particles in a large-scale DNS to obtain accurate statistics on the
motion of inertial particles in turbulent flows with a high Reynolds number. The
DNS code is based on a Fourier spectral method and two-dimensional domain
decomposition method and was developed and optimised for the K computer,
which has a peak performance of 10.6 PFlops by 82,944 nodes (663,552 cores).
The interpolation scheme is based on cubic splines and is implemented by solving
tridiagonal matrix problems in parallel with the method developed by Mattor
et al. [7].

2 Equations and Numerical Methods

Consider an incompressible fluid of unit density under periodic boundary con-
ditions which obeys the following Navier–Stokes equations:

∂u/∂t + (u · ∇)u = −∇p + (1/Re)∇2u + f , ∇ · u = 0, (1)

where u, p, and f are the velocity, pressure, and external force, respectively,
and Re = UL/ν is the Reynolds number, which measures the nonlinearity of
turbulence. Here, U and L are the characteristic velocity and length scale in
turbulence, and ν is the kinematic viscosity. The external force is used to obtain
a statistically steady state of turbulence.

According to the classical turbulence theory [8], the degree of freedom in
turbulence is proportional to Re9/4. Therefore to obtain high Re turbulence in a
DNS, large-scale simulations are necessary. In the DNS, Eq. (1) is solved by using
a Fourier spectral method for spatial discretisation and a fourth-order Runge–
Kutta method for time marching. The numerical methods are the same as those
used for the Earth simulator [9].

Consider the inertial particles which obey the following equations:

dX/dt = V, dV/dt = (1/St)(u(X, t) − V), (2)

524 T. Ishihara et al.

where X and V are the position and velocity of the particles and St is the
Stokes number, which is the ratio of the characteristic time of a particle to
the characteristic time of the turbulent flow. When St = 0, Eq. (2) becomes
dX/dt = u(X, t), i.e. the equation for fluid particles. Equation (2) is solved with
the fourth-order Runge–Kutta method, where the time interval is set to twice as
large as that used for solving Eq. (1). The velocity u at the particle position is
evaluated by using an interpolation method. To obtain highly accurate statistics,
we used cubic spline interpolation (see [5]).

3 Implementation

The DNS code based on the spectral method was optimised for the K computer
by using parallel processing with Message Passing Interface (MPI) and OpenMP
and utilising the FFTW library to implement the 3D-FFT. We used a two-
dimensional domain decomposition method (see Fig. 1) for the data distribution
in MPI, which is suited to massively parallel computers like the K computer. High
peak performance efficiencies of 3.835 %, 3.143 %, and 2.242 % were obtained in
double-precision DNSs with N3 = 61443, 81923, and 122883 grid points using
96 × 64, 128 × 64, and 192 × 128 nodes, respectively, of the K computer. The
details of the DNS code are described in [10].

Particles are tracked by solving Eqs. (1) and (2), where the velocity u at the
particle positions in the real space of the turbulence field must be evaluated. The
DNS code uses the velocity components in the wavenumber space as dependent
variables. For each time step of the spectral method, the velocity components
in the real space are calculated to evaluate the nonlinear terms. Therefore, no
additional 3D-FFTs are needed. However, to use cubic spline interpolation, the
tridiagonal matrix problems need to be solved to obtain the second derivatives
u′′

i (i = 0, ..., N − 1):

1
6
u′′

i−1 +
2
3
u′′

i +
1
6
u′′

i+1 =
1

Δ2
(ui+1 − 2ui + ui−1), i = 0, 1, ..., N − 1, (3)

Fig. 1. Two-dimensional domain decomposition used in spectral DNS of turbulence

Accurate Parallel Algorithm for Tracking Inertial Particles 525

where ui = u(αi) is the value of the velocity component u at an equal-interval
grid αi, Δ(= αi+1 − αi) is the grid interval, and u′′

−1 = u′′
n−1 and u−1 = un−1

from the periodicity. Once the second derivatives (i.e. spline coefficients) are
obtained, the value of u(α) for α ∈ [αi, αi+1) is calculated as

u(α) = Aαui + Bαui+1 + Cαu′′
i + Dαu′′

i+1, (4)

where

Aα =
αi+1 − α

Δ
, Bα = 1 − Aα, Cα =

Δ2

6
(A3

α − Aα), Dα =
Δ2

6
(B3

α − Bα).

The cubic spline interpolation of u at the point x = (x, y, z) in the three-
dimensional space can be expressed as follows:

u = Az{Ay(Axui,j,k + Bxui+1,j,k + Cxu
(2,0,0)
i,j,k + Dxu

(2,0,0)
i+1,j,k)

+ By(Axui,j+1,k + Bxui+1,j+1,k + Cxu
(2,0,0)
i,j+1,k + Dxu

(2,0,0)
i+1,j+1,k)

+ Cy(Axu
(0,2,0)
i,j,k + Bxu

(0,2,0)
i+1,j,k)

+ Dy(Axu
(0,2,0)
i,j+1,k + Bxu

(0,2,0)
i+1,j+1,k)}

+ Bz{Ay(Axui,j,k+1 + Bxui+1,j,k+1 + Cxu
(2,0,0)
i,j,k+1 + Dxu

(2,0,0)
i+1,j,k+1)

+ By(Axui,j+1,k+1 + Bxui+1,j+1,k+1 + Cxu
(2,0,0)
i,j+1,k+1 + Dxu

(2,0,0)
i+1,j+1,k+1)

+ Cy(Axu
(0,2,0)
i,j,k+1 + Bxu

(0,2,0)
i+1,j,k+1)

+ Dy(Axu
(0,2,0)
i,j+1,k+1 + Bxu

(0,2,0)
i+1,j+1,k+1)}

+ Cz{Ay(Axu
(0,0,2)
i,j,k + Bxu

(0,0,2)
i+1,j,k)

+ By(Axu
(0,0,2)
i,j+1,k + Bxu

(0,0,2)
i+1,j+1,k)}

+ Dz{Ay(Axu
(0,0,2)
i,j,k+1 + Bxu

(0,0,2)
i+1,j,k+1)

+ By(Axu
(0,0,2)
i,j+1,k+1 + Bxu

(0,0,2)
i+1,j+1,k+1)}, (5)

where the point (x, y, z) is assumed to be in [xi, xi+1)× [yi, yi+1)× [zi, zi+1); the
coefficients Ax,y,z, Bx,y,z, Cx,y,z, and Dx,y,z are defined in the same manner as
Aα, Bα, Cα, and Dα, respectively, in the corresponding x, y, and z directions; and
the superscripts (2, 0, 0), (0, 2, 0), (0, 0, 2) denote the second partial derivative
with respect to x, y, and z, respectively. Note that expressions different from
Eq. (5) are possible (see [5]). Equation (5) uses four arrays, but Eq. (5) uses the
same number of stencils as the linear interpolation.

When the computational domain is decomposed in two dimensions as in
Fig. 1, Eq. (3) can be solved in the z direction without message passing. However,
the corresponding equations in the x and y directions cannot be solved without
message passing. Therefore, we use the method developed by Mattor et al. [7]
to solve the corresponding equations in the x and y directions in parallel. This
method minimizes the amount of data transfer, which is proportional to the
number of nodes used in the decomposed directions.

526 T. Ishihara et al.

Fig. 2. Particle distributions for different values of St in subdomain of size (1/8)3 for
turbulence DNS in periodic box (N3 = 2563): St = 0, 0.2, 1.0 and 5.0 from the left.

4 Results and Discussion

Figure 2 shows the St-dependence of the distribution of inertial particles under
the same initial conditions and in the same turbulent flow fields. The results for
St �= 0 were consistent with the previous studies, which showed a preferential
concentration of the inertial particles (see, e.g., [11]). The approximately homo-
geneous distribution of particles for St = 0 was consistent with the motion of
fluid particles, which tracked the motion of the fluid completely. Based on the
results (figure omitted) for the time dependence of the average vorticity at the
particle positions, we confirmed that the code developed in this study can be
used to accurately track the motion of particles.

At present, we have performed DNSs of turbulence in a periodic box with
up to 20483 grid points and tracked up to 8 × 1283 particles by using a parallel
implementation of cubic spline interpolation on 16 × 16(= 256) nodes of the K
computer. The computational time for tracking 8 × 1283 particles was less than
16% of the total computational time. This implies that we can obtain accurate
statistics on the inertial particles with eight different values of St by using less
than 20% additional computational time.

To obtain accurate statistics on the inertial particles for much higher values
of Re, we need to increase not only the size of the DNS but also the number of
particles. To do so, we need to optimise the memory access in the computations
of Eq. (5) for the particles and the data-transfer of particle position information
between the adjacent nodes as the next steps.

Acknowledgement. This research used computational resources of the K computer
provided by the RIKEN Advanced Institute for Computational Science through the
HPCI System Research Project (Project ID: hp150174) and the supercomputer system
at Nagoya University. The work is partially supported by “Joint Usage/Research Center
for Interdisciplinary Large-scale Information Infrastructures” in Japan. This research
was partly supported by KAKENHI, Grant Numbers: (B) 15H03603, and (C) 26390130.

References

1. Ishihara, T., Kaneda, Y.: Relative diffusion of a pair of fluid particles in the inertial
subrange of turbulence. Phys. Fluids 14, L69–L72 (2002)

Accurate Parallel Algorithm for Tracking Inertial Particles 527

2. Bec, J., Biferale, L., Cencini, M., Lanotte, A.S., Toschi, F.: Intermittency in the
velocity distribution of heavy particles in turbulence. J. Fluid Mech. 646, 527–536
(2010)

3. Onishi, R., Takahashi, K., Vassilicos, J.C.: An efficient parallel simulation of inter-
acting inertial particles in homogeneous isotropic turbulence. J. Comput. Phys.
242, 809–827 (2013)

4. Sundaram, S., Collins, L.R.: Numerical considerations in simulating a turbulent
suspension of finite-volume particles. J. Comput. Phys. 124, 337–350 (1996)

5. Yeung, P.K., Pope, S.B.: An algorithm for tracking fluid particles in numerical
simulations of homogeneous turbulence. J. Comput. Phys. 79, 373–416 (1988)

6. Balachandar, S., Maxey, M.R.: Methods for evaluating fluid velocities in spectral
simulations of turbulence. J. Comput. Phys. 83, 96–125 (1989)

7. Mattor, N., Williams, T.J., Hewett, D.W.: Algorithm for solving tridiagonal matrix
problems in parallel. Parallel Comput. 21, 1769–1782 (1995)

8. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid
for very large reynolds number. C. R. Acad. Sci. URSS 30, 299–303 (1941)

9. Yokokawa, M., Itakura, K., Uno, A., Ishihara, T., Kaneda, Y.: 16.4-tflops direct
numerical simulation of turbulence by a fourier spectral method on the earth sim-
ulator. In: Proceeding of the IEEE/ACM SC2002 Conference, p. 50 (2002)

10. Morishita, K., Yokokawa, M., Uno, A., Ishihara, T., Kaneda, Y.: Highly-efficient
direct numerical simulation of turbulence by a fourier spectral method on the K
computer. In: Parallel CFD 2015 (submitted)

11. Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu.
Rev. Fluid Mech. 41, 375–404 (2009)

Treating Complex Geometries with Cartesian
Grids in Problems for Fluid Dynamics

Igor Menshov(&)

Keldysh Institute for Applied Mathematics, Russian Academy of Sciences,
Moscow, Russia

menshov@kiam.ru

Abstract. The paper addresses an efficient and simple numerical approach to
simulating the 3D unsteady gas dynamics problems in geometrically complex
domains discretized with the use of plane Cartesian grids. The key point of our
consideration is to equivalently substitute the solution of the boundary value
problem for the homogeneous system of equations with the solution in the
whole space of non-homogeneous equations with a properly designed
right-hand side term. The geometry is represented by the set of cut cells where
additional (compensating) fluxes of mass, momentum, and energy are intro-
duced to model inner boundary conditions. This approach leads to algorithmi-
cally transparent codes, simple for computer realization on parallel
multiprocessor computing systems.

Keywords: Cartesian grid � Unsteady gas dynamics � Immersed boundary

1 Introduction

The development of supercomputers today and seemingly in perspective of the near
future follows the way of hybrid SIMD architectures with massive multithreading
systems (GPGPU, PHI). Effectiveness of using such kind of systems depends on the
algorithmical complexity of numerical methods employed to solve the problem.
Modern computing systems are based on very large number of so-called light compute
kernels that able to proceed lightweight threads of execution. This architecture requires
developing special solution numerical methods that respond the condition of compu-
tational primitivism.

Explicit Cartesian grid schemes best fit this condition. They result in algorithms
that work with simple local data and free from logical operators. Spatial discretization
is performed in a straightforward way. The main drawback of this approach is the
treatment of geometrically complex computational domains and corresponding
boundary conditions.

In the present paper we deal with this issue and show one technique for imple-
menting Cartesian grids in problems with complex geometries. We consider numerical
solution of the unsteady gas dynamics equations in the domain external to a solid object
that in general case may move in space.

The method we consider can be related to the class of so-called immersed boundary
(IB) approaches where the computational domain that includes both gas and solid

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 528–535, 2015.
DOI: 10.1007/978-3-319-21909-7_52

regions is discretized with a grid so that the solid surface intersects computational cells.
The main advantage of the IB method compared with the body fitted grid method is the
simplicity of grid generation, and the possibility to avoid regridding needed to adapt
changes in geometry due to solid motion. The penalty is the problem of cut cell
calculations – how to calculate flow parameters in cells that are cut by the solid
surfaces?

Since pioneering works by C. Peskin (1977) [1] there were many efforts to cope
with this problem, which can be classified into two groups. One is based on the finite
volume formulation applied to the fraction of the cut cell occupied by fluid. In this way
one may face many difficulties, such as the problem of “small cell”, arising new fluid
cells and collapsing cells because of solid motion, etc. (Pember et al. (1995) [2].

Other methods are based on the finite-difference discretization and employ rather
sophisticated interpolation schemes to treat the boundary conditions at solid surfaces.
These methods are mostly developed for incompressible flow problems. Their gener-
alization to compressible flows is in somewhat trickish problem.

We propose a novel approach to treat the boundary conditions in the framework of
the IB method. It uses the finite volume formulation. However, in contrast to the
conventional procedure we apply it to the whole computational cell and introduce
properly defined additional fluxes that model the effect of boundary conditions. We
name this approach as free boundary method. Its basics are given in [3].

2 Method of Free Boundaries

A key point of the method of free boundaries is an alternative mathematical formulation
of the problem. For example, the conventional mathematical statement of a fluid flow
problem is the following. Let X be a domain occupied by the solid, and C its boundary
surface. Then, one need to solve the system of Euler equations exterior to the solid,
R3nX, with the impermeability condition boundary conditions imposed at the solid
surface C:

@tqþ @kfk ¼ 0; x 2 R3nX; ðu� Us; nÞ ¼ 0; x 2 C ð1Þ

where q is the conservative vector, fk is the flux vectors, u is the fluid velocity vector,
Us is the solid velocity vector, n is the outward normal to the solid surface.

Giving an alternative formulation of the problem we aim to replace the solution of
the boundary value problem in a part of the space with the solution of an initial value
problem in the whole space. With this end, we modify the original system of partial
differential Eq. (1) by adding in the right-hand side a vector-function Fc that we refer in
what follows as the compensating flux:

@tqþ @kfk ¼ �Fw; x 2 R3 ð2Þ

We want to choose the compensating flux so that the reduction of the solution to the
problem (2) onto the domain R3nX exactly matches the solution to the original

Treating Complex Geometries with Cartesian Grids 529

boundary value problem (1). In our previous paper [3] we suggest an expression for the
compensating flux that warranties the above condition:

Fw ¼
quknk

qukumnk þ ðp� pwÞnm
quknkH

0

@

1

Adðx;CÞ ð3Þ

where dðx;CÞ denotes the generalized Dirac’s function of the surface C defined by the
following relation:

Z

V

dðx; SÞuðxÞdV ¼
Z

V\C
uðxÞdS; 8V 2 <3 ð4Þ

with uðxÞ being any integrable function. The value pw in (3) represents the instanta-
neous reaction (pressure) of the solid wall on forcing from the side of the fluid flow. It
is analytically calculated by local values of flow parameters [3]. The expression (3) has
a simple mechanical interpretation. The compensating flux is modeled by two parts.
The first accounts for convection of mass, momentum, and energy through the solid
surface C, while the second one represents the solid reaction and the corresponding
work.

As for programming and realization of calculations, the alternative formulation of
the problem seems to be much easier than its conventional counterpart. Calculations are
performed in a plain cube-like domain with a simple Cartesian grid. The computation
algorithm is homogeneous with minimal logical branching and simple for implemen-
tation on multiprocessor computer systems, in particular with the SIMD architecture.

The discrete model is developed by implementing the principle of splitting in
physics. Updating the solution from one time level to another is performed in two steps.
First we integrate the system of equations without compensating fluxes on the time step
Dt in the whole computational domain including the part occupied by solid and cut
cells. The solution obtained is then once more updated in cut cells, only by integrating
the compensating fluxes over the time step Dt.

The first step is executed with the finite-volume method discretization of the
governing equations, which results in the following discrete equations for calculating
predict-values:

~q ¼ qn � Dt
Vol

X

r

fk;rnk;rSr ð5Þ

where r denotes the cell interface, and the summation is fulfilled over all interfaces
surrounded the cell. Parameters Vol and Sr are the cell volume and the interface area,
respectively.

The vectors fk;r in (5) are numerical fluxes at the interface that can be approximated
with any of known gas dynamics numerical schemes. For example, in our calculations
we use the hybrid explicit-implicit second-order accurate MUSCL-type scheme

530 I. Menshov

presented in [4]. As the flux function the Godunov approach is employed, and the flux
at the interface is approximated on the basis of the exact Riemann problem solution.

The solution is calculated in the whole domain including solid cells. However, only
part of this solution, in fluid and cut cells is of interest. The solid cells solution is
complementary, which should have no relation to the actual one and therefore should
not affect the latter. In the case of steady geometry, there is even no need to calculate
this solution. At the same time the unsteady geometry results in the situation when the
status of the computational cell may change - the solid cell is becoming a cut and then a
fluid one. In this transition, emerging cut and fluid cells will inherit the non-actual solid
cells solution. In other words, non-physical solution inside the solid domain will affect
the solution of interest.

To avoid this phenomenon, the solutions in and outside the solid should have
smooth conjunction, i.e., the solution in the solid domain near the boundary surface
should be smooth continuation of the actual solution. This may be assured with the
following way.

We introduce doubled fluxes at interfaces that separate solid and cut (or fluid) cells.
The flux for the solid cell is computed in the standard manner, for example with the
Godunov method through the Riemann problem solution. In this way the solution
outside the solid plays the role of boundary conditions providing smooth extension of
the solution in the solid domain. In order to prevent the backward effect on the actual
solution, the flux for the real (cut or fluid) cell is merely calculated by the cell values of
flow parameters.

The predict-solution ~q is then modified in the cut cells by the compensating flux.
We use the linear approximation for the subcell geometry. Therefore, the geometry
inside the cut cell is represented by three parameters - the volume fraction of fluid xf ;

the area of the geometry cut off by the cell Sf , and the outward unit normal nf . Taking ~q
as initial data we integrate over the time step Dt the following system of equations:

xf Vol
dq
dt

¼ �
X

r2f
fknkSr þ FpSf ð6Þ

where the summation in the right-hand side is performed only over the interfaces that

are in the fluid, and Fp ¼ 0; pwnf ; pwðUs; nf Þ
� �T

. Because of the compensating flux
effect is taken into account at this step, one can simply approximate the interface flux
by the cell values,fk ¼ fkðqÞ. Then the Eq. (6) can be recast as

xf Vol
dq
dt

¼ �FcSf þ FpSf ¼ �FwSf ð7Þ

where Fc we denote the convective part of the flux.
The parameter xf is in generally changed between 0 and 1, and may take very small

values. Therefore the integration of (7) is carried out with the implicit scheme to
maintain stability. Combining with (5), finally we come to the following discrete
equations describing the solution update at one time step:

Treating Complex Geometries with Cartesian Grids 531

qnþ1 ¼ qn � Dt
Vol

X

r

fk;rnk;rSr � Dt
xf Vol

Fwðqnþ1ÞSf ð8Þ

This non-linear equation is solved with the Newton iterative method. At each
iteration, the matrix of the linear system is block-diagonal if the flux approximation
employs the explicit scheme. In this case, one time step computations are performed in
a single run over the cells for calculating residuals (total fluxes) followed by local
Newtonian iterations for compensating fluxes in cut cells. The computational work is
parallelized fairly straightforward.

For implicit flux approximation the system of Eq. (8) becomes more involved.
Newton iterations results in a linear system with a sparse block matrix, Adq ¼ R,
where dq is the iterative residual. The solution of this linear equations is executed with
the Lower-Upper Symmetric Gauss-Seidel approximate factorization method. Splitting
the matrix in the diagonal, low-, and upper-triangle parts, A ¼ Dþ Lþ U, we
implement an approximate factorization by replacing A with ðDþ LÞD�1ðDþ UÞ, and
consider solution of the factorized equations, ðDþ LÞD�1ðDþ UÞdq ¼ R, which can
be executed in forward and backward sweeps.

It should be noted that the order cells are swept in this method can be chosen
arbitrarily. This gives us in fact a set of algorithms. The sweep order can be decided in
a way that would best fit for parallel executions. One such a choice has been proposed
in [5]. It is based on the checkerboard order. The computational cells are sorted in
“black” and “white” in accordance with chess coloring. The computational loop is
performed over first the black and then white cells. This allows us to separate neigh-
boring cells in the loop ordering; the forward sweep over cell is then represented by the
black loop while the white loop serves to execute the backward sweep.

3 Numerical Results

In this section we show several test calculations that demonstrate accuracy and
effectiveness of the proposed methodology. The first problem has 1D formulation. Its
sketch is illustrated in Fig. 1. This is a piston problem. The piston initially is located in
the interval between X1 and X2 and moves with a velocity Us. A gas with constant flow
parameters is outside the piston. Depending of this initial data the piston movement
produces shock or rarefaction waves on the both sides of the piston.

Fig. 1. The sketch of the 1D piston problem.

532 I. Menshov

The problem has the analytical solution that is shown in Fig. 2. along with the
numerical solution obtained on a Cartesian grid with the method of free boundary
(BIC-solution). The numerical solution is calculated in the whole domain including the
solid piston. One can see that the solution outside the solid region well matches the
analytical solution.

The second problem is the calculation of supersonic flow around a wedge. The
problem serves to verify the method of free boundaries on 2D flows with shock and
rarefaction waves. The wedge angle is 10°. The inflow Mach number M = 3. The angle
of attack is 0° and 20° that corresponds the formation of a shock wave and a rarefaction
wave, respectively. Numerical solutions obtained with a Cartesian grid 1200x480 cells
are shown in Fig. 3.

Fig. 2. The piston problem: X1 ¼ 0:4 X2 ¼ 0:5 US ¼ 0:3 p0 ¼ 0:001q0 ¼ 0:016 grid = 1000
cells, Dt ¼ 0:0009, steps = 600.

(a) (b)

Fig. 3. Numerical simulation of supersonic flow around a wedge: shock wave (a) and rarefaction
wave (b).

Treating Complex Geometries with Cartesian Grids 533

The numerical data gives the shock angle of 17.4° and the rarefaction fan angle of
13.2° that well agree with analytical predictions - 17.383° and 13.24°, respectively.

Next example demonstrates the work of the method on computing complex
unsteady flows. This is diffraction of a plane shock wave on a set of cylinders.
A Cartesian grid of 1024x1024 cells is used in a rectangular computational domain.
Calculations are executed with 32 GPU. Numerical results are presented in Fig. 4. For
comparison we also show a reference numerical solution obtained with an alternative
numerical method - the penalty function method [5].

4 Conclusions

A simple numerical method has been proposed for calculating unsteady three-
dimensional gas dynamics problems with complex geometry. The method treats the
geometry on a plain Cartesian grid. The geometry is represented by a set of cut cells
separating actual (fluid) cells from non-actual (those out the flow domain). The inner
boundary conditions are realized by means of an additional (compensating) flux
introduced in only cut cells. This flux depends on local flow parameters and the
information about the geometry subcell structure – the volume fraction of fluid in the
cut cell, the outward unit normal, and the area of the geometry inside the cell. The
method works similarly for all the cells of the Cartesian grid, and results in algorith-
mically transparent and uniform codes, simple for computer realization on parallel
multiprocessor computing systems.

Acknowledgments. This research was supported by the grant No 14-11-00872 from Russian
Scientific Fund.

Fig. 4. Shock diffraction on a set of cylinders: the present method (left), the penalty function
method [5] (right).

534 I. Menshov

References

1. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252
(1977)

2. Pember, R.B., Bell, J.B., Colella, P., Crutchfield, W.Y., Welcome, M.L.: An adaptive
cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys.
120, 278–304 (1995)

3. Menshov, I., Kornev, M.: Free_boundary method for the numerical solution of gas_dynamic
equations in domains with varying geometry. Math. Models Comput. Simulations. 6(6), 612–
621 (2014)

4. Menshov, I., Nakamura, Y.: Hybrid explicit-implicit, unconditionally stable scheme for
unsteady compressible flows. AIAA J. 42(3), 551–559 (2004)

5. Boiron, O., Chiavassa, G., Donat, R.: A high-resolution penalization method for large mach
number flows in the presence of obstacles. Comput. Fluids 38, 703–714 (2009)

Treating Complex Geometries with Cartesian Grids 535

Architecture, Implementation
and Performance Optimization in
Organizing Parallel Computations

for Simulation Environment

Maria Nasyrova1(&), Yury Shornikov1,2, and Dmitry Dostovalov1,2

1 Novosibirsk State Technical University, Novosibirsk, Russia
maria_myssak@mail.ru, shornikov@inbox.ru,

d.dostovalov@corp.nstu.ru
2 Design Technological Institute of Digital Techniques SB RAS,

Novosibirsk, Russia

Abstract. This paper discusses architectural concepts, implementation details
and performance optimization techniques in the context of instrumental envi-
ronment ISMA2015 supporting parallel computations for hybrid models. The
paper considers the approach of organizing computations so that the user can
work with the environment in the terms of the application field omitting the
complex implementation details and to simply running models in a suitable
mode: sequential, parallel on a multi-core machine or a cluster. The technology
of the remote class loading is proposed. The framework for extending the library
by new numerical methods is considered. The results of performance optimi-
zation are given. The technology of optimizing communication between cluster
nodes is described. Simulation results are presented on the example of generated
reaction-diffusion problems.

Keywords: Simulation � Distributed memory � Performance optimization �
MPI � Parallel computations � Hybrid systems � Explicit methods � Accuracy
control � Stability control

1 Introduction

Hybrid system (HS) is a mathematical model for convenient description of systems that
can be both in continuous and discrete state simultaneously [1, 2]. Continuous behavior
of HS is usually described by a system of differential equations and discrete behavior is
determined by the instantaneous transition from one state to another.

Analytical research of HS is difficult and often impossible due to gaps in the system
behavior. Therefore the research of HS dynamics is performed in special instrumental
environments such as Charon, AnyLogic, Scicos, Rand Model Designer, Hybrid
Toolbox, HyVisual, Dymola, OpenMVLShell, ISMA, etc.

Recent trends in simulation show a shift towards modeling of high-dimensional
systems. Among the environments listed above the support of parallel computations is
provided only by commercial software (AnyLogic, Scicos, Dymola, etc.). Despite of a
rich set of tools and methods designed to simulate a variety of systems the specifics of

© Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 536–545, 2015.
DOI: 10.1007/978-3-319-21909-7_53

HS imposes the limitations to parallelization. Often the use of an environment assumes
that the user is familiar with the programming and parallel programming in particular.
Therefore, their use for research or educational purposes may not be available for a
wide range of users. The approach implemented in the ISMA2015 environment allows
applying the original methods and tools designed for hybrid model analysis and hides
the complexity of parallel programming.

This paper also discusses issues of performance optimization important for any
modern software and describes the technologies implemented in ISMA2015. These
techniques can be applied to systems using MPI as a technology for computing nodes
communication. In addition, the class caching approach is suitable for distributed
systems regardless of the interaction way.

2 Computing Core Architecture

ISMA is a simulation environment of complex dynamical and hybrid systems devel-
oped at the department of Automated control systems of Novosibirsk state technical
university (NSTU) (Russia) in 2007 [3]. ISMA mainly focuses on analysis of HS
characterized by stiff modes. Enhanced specification tools such as structural schemes,
dynamically typed language LISMA and electricity scheme editor are the system
content of the instrumental environment. Analytical content is presented by a library of
original numerical methods and event detection algorithms that allow accurately han-
dling the moments when the system has switched to another state.

Today HS theory is extensively studying and, as a result, the requirements of easy
adapting the environment to a new application fields become more and more urgent.
Due to the high coupling of ISMA components, the addition of new objects is
accompanied by considerable efforts and sometimes even impossible. Furthermore, the
existing architecture cannot be modified to provide calculations of distributed models.
Therefore, the new flexible architecture based on loosely coupled modules and sup-
ported parallel computations is proposed.

The architecture of the core is presented on the Fig. 1. Integration API consisting of
public classes and interfaces used by other components to interact with the imple-
mented solvers and to create a new ones. Integration core provides the implementation
of solvers and integration strategies for sequential and parallel modes. Method library is
an independent and easily extendable library of numerical methods. Integration server
modules include the server API declaring the protocol of the client-server communi-
cation, the implementation of the server itself supports a multi-core or a cluster con-
figuration and the server client respectively, which is responsible for sending models
from ISMA2015 to the integration server.

3 Organizing Computations

The specifics of simulation environment supposes that the model is obtained during the
runtime. If the environment is designed for execution on the shared memory archi-
tectures it does not impose any restrictions.

Architecture, Implementation and Performance Optimization 537

In Java-based applications the program is running on the Java virtual machine
(JVM). JVM is loading classes only on startup. When the model is generated in
ISMA2015 the integration server and its nodes do not know anything about the class of
the model and as a result cannot handle it. To solve the problem the technology of
loading classes to JVM in runtime based on RMI is proposed. The scheme of com-
ponents interaction is shown on the Fig. 2. The client built in ISMA2015 publishes the
implementation of the specific class provider to the registry of objects based on RMI.
The server uses the class provider to load classes of generated models from client. In
turn, the server publishes in the registry the implementation of the methods. The client
uses the implementation to invoke the remote server. After loading the classes to JVM
the server allocates simulation tasks between child nodes as shown on the Fig. 3.

Fig. 1. The architecture of ISMA computing core.

Fig. 2. The scheme of client-server communication.

Fig. 3. Dynamic class loading in runtime.

538 M. Nasyrova et al.

4 Performance Optimization

First performance evaluations for the given approach shows that the most of the time is
occupied by operations related to transferring and deserialization of objects participated
in calculations. In this paragraph we consider the techniques implemented in
ISMA2015 to improve the performance.

4.1 Caching

RMI technology based on the direct transfer of serialized classes. Deserialization and
serialization processes are well-known bottleneck of program performance. Serializa-
tion is used to persist the state of an object so that the object can be saved and then
regenerated by deserialization mechanism later. The default serialization behavior can
easily lead to unnecessary overheads.

According with the technology described in the previous paragraph we obtain a
significant performance degradation due to many deserialization processes caused by
intensive class loading on each integration step. However, for the most problems a
system of equations included in the model remains unchanged from step to step. Thus
the mechanism of class caching is proposed to decrease the deserialization time on the
server side. If the server knows the class then it is already in the cache and can be easily
retrieved. Otherwise, it should be loaded to the cache.

4.2 Optimizing MPI Data Transfer

Many scientific applications use objects for storing data or utilize multi-dimensional
arrays for these purposes. The comparative analysis of MPI data type performance
[4, 5] shows that it is preferable to use an array of primitives over an array of objects.

In ISMA2015 solver cluster nodes send to each other values calculated on the step
including approximate solution, function values or stage results for equations calcu-
lated on the node. These values has double type and each value corresponds to the
equation index. Thus, the transferring of objects can be replaced with the transferring of
one-dimensional array of specific format. Each value is represented by two parameters:
index of equation and the value itself. Figure 4 shows the algorithm implemented in
ISMA 2015 on the example of two nodes sending and receiving the array of five
elements. The first node calculates three elements and the second node calculates the
remaining. To collect the results we use MPI.COMM_WORLD.Allgather operation.
The initial buffer received by the node shown on the Fig. 5.

5 Method Library

Particular attention should be paid to the choice of the integration method. Fully
implicit methods cannot be used for HS because they require the calculation of the
function at a potentially dangerous area, where the model is not defined [6].

Architecture, Implementation and Performance Optimization 539

Therefore, ISMA2015 primarily uses the explicit methods with accuracy and sta-
bility control [7] to limit the size of the integration step. The mathematical description
of the used integration methods can be found in [8].

5.1 Integration Algorithms

Sequential Algorithm. Let the approximate solution yn is known at the moment tn
with the step hn. Then to obtain the approximate solution ynþ1 at moment tnþ1 we have
the following common algorithm:

1. Calculate the approximate solution ynþ1 at the moment tnþ1 with the step hn
according to the performing method.

2. Calculate approximate function value f ðynþ1Þ.
3. Obtain the accuracy characteristics of the integration step.
4. If the solution is accurate then go to 5, else set the integration step hn equals to the

step hac corrected by accuracy according to the performing method and go to 1.
5. Obtain the stability characteristics of the integration step.
6. If the solution is stable then go to 7, else set the integration step hn equals to the step

hst corrected by stability according to the performing method and go to 1.

Fig. 4. The algorithm of sending values each of which is represented by two parameters in
one-dimensional array.

Fig. 5. The buffer received by all ranks in MPI.COMM_WORLD.Allgather operation.

540 M. Nasyrova et al.

7. Get size of the next integration step using formula (5).
8. Perform the next integration step.

Parallel Algorithm. The developed parallel algorithm is based on the presented above
sequential algorithm with the following differences.

For definiteness, we assume that the computer system consists of p processors,
N[p and let k is a number of equations per rank. Then all of N equations should be
evenly allocated between computing nodes. Taking into consideration assumptions
about beginning of the sequential method base parallel algorithms can be defined in the
following way:

1. Allocate equations evenly between ranks using Round-Robin algorithm.
2. Calculate in each rank the approximate solution y jnþ1, 0� j� k at the moment tn

with the step hn according to the performing method.
3. Send the obtained y jnþ1 from each rank to others.
4. Calculate in each rank the approximate function value f j ynþ1ð Þ, 0� j� k.
5. Execute for each rank the sequential algorithm starting from the step 3 of the

previous section.

5.2 New Methods Implementation

One of the main advantages of ISMA2015 is that it hides all complex logic inside
allowing user to work with the environment in the terms of an application field. On the
other side, it requires to add new features as fast as possible for providing the
acceptable functionality that is enough to solve new problems. ISMA2015 supports the
library of original numerical methods that is constantly growing. This paragraph
considers the framework of ISMA2015 for developers that allows to timely extending
the library designed so that the developer can focus on the implementation of the
specific method avoiding unnecessary details of the common numerical algorithm.

The library of numerical methods is delivered as an independent module. It con-
tains the enumeration of available methods and speaking in terms of the object-oriented
patterns the factory of these methods. To add a new numerical method to the library the
following sequence of actions should be done:

1. Create a class for new integration method that implements the IntgMethod interface
for single-stage methods and the StagedIntgMethod for methods that have two or
more stages.

2. If the method is staged then implement the required stage calculators, otherwise got
to 3.

3. Register the method in the library:
(a) Add the new type to the IntgMethodType enumeration.
(b) Add the method of the new method creation to the IntgMethodFactory.

4. If the method is accurate then provide the implementation of the AcurateMethod
interface:
(a) Create the accuracy controller.
(b) Register the accuracy controller in the class of the method.

Architecture, Implementation and Performance Optimization 541

5. If the method is stable then provide the implementation of the StableMethod
interface:
(a) Create the stability controller.
(b) Register the stability controller in the class of the method.

It is worth noting that the created method can be run in sequential on in parallel
mode without any further implementation costs. It is the responsibility of the envi-
ronment computing core.

6 Reaction-Diffusion Problem

Let us consider the use of the proposed approaches on the simulation example of
reaction-diffusion problem in two-dimensional space, which is associated with com-
petition model of Lotka-Volterra [9].

Two kinds of variables c1 x; z; tð Þ and c2 x; z; tð Þ represent density of competing
species in the habitat area X ¼ x; zð Þ : 0� x� 1; 0� z� 1f g and in time 0� t� 3:

@ci

@t
¼ di

@2ci

@x2
þ @2ci

@z2

� �
þ f i c1; c2

� �
; i ¼ 1; 2 ð1Þ

where d1 ¼ 0:05, d2 ¼ 1:0, f 1 c1; c2ð Þ ¼ c1 b1 � a12c2ð Þ, b1 ¼ 1, a12 ¼ 0:1,
f 2 c1; c2ð Þ ¼ c2 �bþ b21c1ð Þ; a21 ¼ 100; b2 ¼ 1000. Boundary conditions are
@ci=@x ¼ 0 at x ¼ 0, x ¼ 1 and @ci=@z ¼ 0 at z ¼ 0, z ¼ 1 Initial conditions are
c1 x; z; 0ð Þ ¼ 10� 5 cos pxð Þ cos 10pzð Þ and c2 x; z; 0ð Þ ¼ 17þ 5 cos 10pxð Þ cos pzð Þ.

At t ! 1 solution becomes spatially homogeneous and tend to periodically solve
ODE system of Lotka-Volterra. This ODE system is alternately stiff and non-stiff
depending on the solution position in the phase space. Turning to the grid of size J � K
by x and z respectively we obtain Dx ¼ 1= J � 1ð Þ and Dz ¼ 1= K � 1ð Þ are grid steps
by x and z coordinates, cijk is approximation of ci xj; zk; t

� �
, where xj ¼ j� 1ð ÞDx,

zk ¼ k � 1ð ÞDz, 1� j� J, 1� k�K. Thus we obtain differential equations system of
N ¼ 2JK dimension:

_cijk ¼
di
Dx2

cijþ1;k � 2cijk þ cij�1;k

� �
þ di
Dz2

cij;kþ1 � 2cijk þ cij;k�1

� �
þ f ijk; ð2Þ

where 1� i� 2, 1� j� J, 1� k�K, f ijk ¼ f i c1jk; c
2
jk

� �
. Boundary conditions on the

grid are the following: ci0;k ¼ ci2;k, c
i
Jþ1;k ¼ ciJ�1;k for 1� k�K and cij;0 ¼ cij;2, c

i
j;Kþ1 ¼

cij;K�1 for 1� j� J.
Figure 6 shows that model created in ISMA2015 is maximally close to the original

mathematical description. Simulation settings are presented on the Fig. 7. Two staged
Runge-Kutta method with accuracy and stability control enabled is chosen for the
model solving. The host and the port of the remote simulation server are specified. The
number of computing processes is configured on the integration server.

542 M. Nasyrova et al.

Measurements are performed on the grid system of NSTU consisting of four
computing nodes with hyper-threading. Each node has Intel Xeon X5355 2.66 HGz
processor, 28 GByte of main memory and 8 MByte of L2 cache. The computing speed
of the grid equals to 0.7 TFlops. Figure 8 presents the results of the comparative
analysis of the performance changing according with the approaches described in the
paragraph 4. The presented calculations are performed on the Ethernet network. The
figure shows that the described approaches greatly improve performance, especially
replacing the transferring of objects by transferring of primitives. Further, it is planned
to configure the integration server to obtain result on InfiniBand and improve the MPI
collective communication performance.

Fig. 6. The model of the reaction-diffusion problem in ISMA2015.

Fig. 7. Simulation settings window in ISMA2015.

Architecture, Implementation and Performance Optimization 543

7 Conclusion

The architecture of the computing core is proposed. The technology of the dynamic
class loading is considered. The technologies of performance improvement for dis-
tributed memory systems are presented. With the use of the presented framework
ISMA2015 can be easy extended by new numerical methods, hybrid model types,
solvers and integration strategies. The process of extending the library by new
numerical methods is considered on the example of the two-staged stable Runge-Kutta
algorithm of the second accuracy order.

The presented approach allows user to concentrate on the problem solution and
eliminates the need to implement the numerical methods. Any method from the library
can be run in three modes: sequential or parallel on a multi-core machine and on the
cluster. The evaluations of the calculation costs confirmed the viability of the proposed
approaches. Simulation results are presented on the example of generated
reaction-diffusion problems based on Lotka-Volterra model.

Acknowledgements. This work was supported by grant 14-01-00047-a from the Russian
Foundation for Basic Research, RAS Presidium project № 15.4 “Mathematical modeling,
analysis and optimization of hybrid systems”.

References

1. Novikov, E.A., Shornikov, Y.V.: Computer Simulation of Stiff Hybrid Systems: Monograph.
Publishing House of NSTU, Novosibirsk (2012). (in Russian)

2. Esposito, J.M., Kumar, V., Pappas, G.J.: Accurate event detection for simulating hybrid
systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 204–217. Springer, Heidelberg (2001)

Fig. 8. The results of the performance improvements in ISMA 2015 for parallel computing
mode.

544 M. Nasyrova et al.

3. Shornikov, Y.V.: Instrumental tools of computerized analysis (ISMA). In: Shornikov, Y.V.,
Druzhinin, V.S., Makarov, N.A., Omelchenko, K.V., Tomilov, I.N. (eds.) Official Registra-
tion License for Computers No 2005610126. Rospatent, Moscow (2005)

4. Ross, R.J., Miller, N., Gropp, W.D.: Implementing fast and reusable datatype processing. In:
Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840,
pp. 404–413. Springer, Heidelberg (2003)

5. Carpenter, B., Fax, G., Ko, S.H., Lim, S.: Object serialization for marshalling data in a java
interface to MPI. In: Proceedings of the ACM 1999 Conference on Java Grande, pp. 66–71,
New York (1999)

6. Hairer, E., Vanner, G.: Solving Ordinary Differential Equations. Stiff and
differential-algebraic problems. Mir, Moscow (1999). (in Russian)

7. Novikov, E.A., Vashchenko, G.V.: Parallel Explicit Runge-Kutta Method 2nd Order:
Accuracy and Stability Control. Int. J. Appl. Fundam. Res. Phys. Math. Sci. 1, 101–102
(2011)

8. Shornikov, Y.V., Myssak, (Nasyrova) M.S., Dostovalov D.N.: Computer simulation of hybrid
systems by ISMA instrumental facilities. In: Proceedings of the 2014 International Conference
on Mathematical Models and Methods in Applied Sciences (MMMAS 2014), pp. 257–262,
Saint Petersburg, Russia (2014)

9. Brown, P.N., Hindmarsh, A.C.: Matrix free methods in the solution of stiff systems of ODEs,
p. 38. Lawrence Livermore National Laboratory, San Francisco (1983)

Architecture, Implementation and Performance Optimization 545

Author Index

Akhmed-Zaki, Darkhan 489, 498
Akhmedzhanov, Dmitry 68
Aleeva, Valentina N. 3

Baetens, Jan M. 123
Bandman, Olga 135
Barkalov, Konstantin 307
Barkovsky, Eugene 102
Bashinov, Alexei 107
Bastrakov, Sergey 107
Benderskaya, Elena 210
Besedin, Konstantin Y. 319
Besozzi, D. 363
Bessonov, Oleg 10
Borisenko, Andrey 324
Bychkov, Igor 253

Campos, Ricardo Silva 149, 458
Cazzaniga, P. 363
Chen, Ren 338
Chernov, Ilya 258

da Silva Barra, Luis Paulo 149
Dadykina, Ekaterina 498
De Baets, Bernard 123
Désérable, Dominique 164
Dordopulo, Alexey I. 349
Doronchenko, Yuri I. 349
dos Santos, Rodrigo Weber 149, 458
Dostovalov, Dmitry 536
Dubrov, Denis V. 474
Duchkov, Anton 516

Efimenko, Evgeny 107
Enohata, Kei 522

Ferrara, F. 363
Forsell, Martti 375

Gergel, Victor 307, 505
Golovin, Alexander 268
Gonoskov, Arkady 107
Goossens, Bernard 390

Gorlatch, Sergei 324
Gorodnichev, Maxim 516
Gurieva, Y.L. 35
Gwizdałła, Tomasz M. 179

Haidl, Michael 324
Hasanov, Khalid 21
Hoffmann, Rolf 164

Il’in, V.P. 35
Imankulov, Timur 498
Ishihara, Takashi 522
Ishii, Katsuya 522
Isupov, Konstantin 47
Ivashko, Evgeny E. 268, 273

Kholod, Ivan 62
Kireeva, A.E. 191
Knyazkov, Vladimir 47
Kostenetskiy, Pavel S. 319
Kostenko, V.A. 298
Kozinov, Evgeniy 68
Kulagin, Ivan 405
Kupchishin, Alexander 516
Kurnosov, Mikhail 405
Kuznetsov, Petr 410

Lastovetsky, Alexey 21, 91
Lebedev, Danil 489
Lebedev, Ilya 307
Lebedev, Sergey 68
Leppänen, Ville 375
Levin, Ilya I. 349
Lobosco, Marcelo 149, 458

Maeda, Masashi 231
Malyshkin, Victor E. 80, 86
Mansurova, Madina 498
Matkerim, Bazargul 498
Mauri, G. 363
Mazalov, Vladimir V. 273
Menshov, Igor 436, 528
Merkulov, Kirill 426

Meyerov, Iosif 68, 107
Mikhailuts, Yury 474
Morishita, Koji 522

Nasyrova, Maria 536
Nepomniaschaya, Anna 201
Nikitina, Natalia N. 258, 273
Nobile, M.S. 363
Novikov, Andrei 210
Novopashin, Alexei 253

O’Brien, Kenneth 91
Oparin, Gennady 253
Orekhov, Nikita D. 469

Parello, David 390
Pavlukhin, Pavel 436
Paznikov, Alexey 405
Penttonen, Martti 375
Perepelkin, Vladislav A. 80, 86, 489
Petukhov, Ilya 62
Pietri, Ilia 91
Pigozzo, Alexandre B. 458
Pirova, Anna 68
Plakunov, A.V. 298
Porada, Katarzyna 390
Potekhin, Petr 285
Prasanna, Viktor K. 338
Prikazchikov, Stepan O. 319

Rahmoune, Djallal 390
Raskladkin, Maxim K. 349
Ravi, Srivatsan 410
Rocha, Bernardo Martins 149
Rojek, Krzysztof 445
Roshal, Alexander S. 474
Rumyantsev, Alexander 279

Sabelfeld, K.K. 191
Sakellariou, Rizos 91

Schukin, Georgy A. 80
Semenov, Alexander 222
Sharabura, Ilya S. 3
Shornikov, Yury 536
Sidorov, Ivan 253
Sidorov, Sergey 505
Singapura, Shreyas G. 338
Smirnov, Grigory S. 469
Soares, Thiago M. 458
Sokolov, Andrew 102
Sousa, Akihiro 231
Stegailov, Vladimir V. 469
Steinberg, Boris Ya. 474
Steinberg, Roman B. 474
Suleymanov, Denis E. 3
Surmin, Igor 107
Sysoyev, Alexander 68

Taguchi, Kiyohisa 231
Tkacheva, A.A. 86
Toporkov, Victor 285
Toporkova, Anna 285
Tselishchev, Alexey 285

Umeo, Hiroshi 231

Vdovin, P.M. 298
Vitvitsky, Anton 246

Wyrzykowski, Roman 445

Xavier, Micael P. 458

Yemelyanov, Dmitry 285
Yokokawa, Mitsuo 522

Zaikin, Oleg 222
Zotov, I.A. 298

548 Author Index

	Preface
	Organization
	Contents
	Parallel Models, Algorithms and Programming Methods
	Software System for Maximal Parallelization of Algorithms on the Base of the Conception of Q-determinant
	1 Introduction
	2 The Conception of Q-determinant
	3 The Software System QStudio
	4 Preparation Q-determinant Algorithm
	5 The Detection of the Most Rapid Algorithm Realization and the Building of Plan of Its Execution
	6 Conclusion
	References

	Highly Parallel Multigrid Solvers for Multicore and Manycore Processors
	1 Introduction
	2 Iterative Methods and Their Parallelization Properties
	3 Throughput-Oriented Processors and Storage Schemes
	4 Description of the Algebraic Multigrid
	5 Multigrid as a Preconditioner
	6 Performance of the Multigrid Solvers
	7 Conclusion
	References

	Hierarchical Optimization of MPI Reduce Algorithms
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related Work
	2.1 MPI Reduce Algorithms

	3 Hierarchical Optimization of MPI Reduce Algorithms
	3.1 Hierarchical Transformation of Flat Tree Reduce Algorithm
	3.2 Hierarchical Transformation of Pipeline Reduce Algorithm
	3.3 Hierarchical Transformation of Binary Reduce Algorithm
	3.4 Hierarchical Transformation of Binomial Reduce Algorithm
	3.5 Hierarchical Transformation of Rabenseifner's Reduce Algorithm
	3.6 Possible Overheads in the Hierarchical Design

	4 Experiments
	4.1 Experiments: One Process per Core
	4.2 Experiments: One Process per Node

	5 Conclusion
	References

	On Parallel Computational Technologies of Augmented Domain Decomposition Methods
	1 Introduction
	2 Statement of the Problem and Algorithms
	3 Parallel Technologies of DDM
	4 Results of Numerical Experiments
	5 Conclusion
	References

	A Modular-Positional Computation Technique for Multiple-Precision Floating-Point Arithmetic
	1 Introduction
	2 Residue Number System
	3 Interval-Positional Characteristic Method for Non-modular Operations in RNS
	4 Format for Representation of Floating-Point Multiple-Precision Numbers
	5 High-Precision Arithmetic Library
	5.1 Structure and Features
	5.2 Efficiency Evaluations

	6 Conclusion
	References

	Creation of Data Mining Algorithms as Functional Expression for Parallel and Distributed Execution
	Abstract
	1 Introduction
	2 Related Work
	3 Data Mining Algorithm as Functional Expression
	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

	Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky Factorization
	Abstract
	1 Introduction
	2 Related Work
	2.1 Direct Methods for Sparse SLAE
	2.2 Multifrontal Method Overview
	2.3 Parallel BLAS Usage
	2.4 Parallelization in Terms of Elimination Tree
	2.5 Static Parallelization Strategies

	3 Dynamic Parallelization Strategies
	3.1 OpenMP Tasks
	3.2 Priority Queue

	4 Numerical Results and Discussion
	4.1 Dependency of alg_queue Algorithm Performance on the Parameters
	4.2 A Comparison with State-of-the-Art Solvers

	5 Conclusion and Future Work
	Acknowledgments
	References

	Distributed Algorithm of Data Allocation in the Fragmented Programming System LuNA
	1 Introduction
	2 Related Works
	3 Requirements for Data Allocation Algorithm
	4 Distributed Algorithms of Data Allocation
	4.1 Hash-and-Track Algorithm
	4.2 Rope-of-Beads Algorithm

	5 Experiments
	5.1 Experiment Results

	6 Conclusion
	References

	Control Flow Usage to Improve Performance of Fragmented Programs Execution
	Abstract
	1 Introduction
	2 Related Works
	3 LuNA Fragmented Programming System
	4 Suggested Approach
	5 Performance Tests
	6 Conclusion
	Acknowledgements
	References

	Towards Application Energy Measurement and Modelling Tool Support
	1 Introduction
	2 Libhclenergy
	2.1 Measurement Infrastructure
	2.2 Experimental Platform
	2.3 Measurement of Distributed Applications
	2.4 API Features

	3 Greenman
	4 Applying Our API
	5 Related Works
	5.1 Existing Tools

	6 Conclusion
	7 Future Works
	References

	The Mathematical Model and the Problem of Optimal Partitioning of Shared Memory for Work-Stealing Deques
	1 Introduction
	2 The Mathematical Model
	3 Conclusion
	References

	Dynamic Load Balancing Based on Rectilinear Partitioning in Particle-in-Cell Plasma Simulation
	1 Introduction
	2 PICADOR Particle-in-Cell Code
	3 Load Balancing Based on Rectilinear Partitioning
	3.1 Rectilinear Partitioning
	3.2 Implementation Overview

	4 Evaluation of Load Balancing Efficiency on a Test Plasma Heating Problem
	5 Load Balancing in Simulation of Plasma Target Irradiation by Two Laser Pulses
	5.1 Problem Statement
	5.2 Load Balancing Efficiency

	6 Summary
	References

	Unconventional Computing - Cellular Automata
	A Behavioral Analysis of Cellular Automata
	1 Introduction
	2 Cellular Automata and Their Behavior
	2.1 Cellular Automata
	2.2 Measures of Cellular Automaton Behavior
	2.3 Lempel-Ziv Complexity

	3 Behavioral Analysis
	3.1 Experimental Setup
	3.2 Complexity versus stability
	3.3 Interference Between CA Design and Behavior
	3.4 The Nature of Multi-state CAs

	References

	Contradiction Between Parallelization Efficiency and Stochasticity in Cellular Automata Models of Reaction-Diffusion Phenomena
	1 Introduction
	2 Formal Representation of CA-Models
	3 Modes of CA Operation in Multiprocessor Environment
	3.1 Parallelization Costs for Simple CA
	3.2 Parallelization of Reaction-Diffusion Complex CA

	4 Simulation Results
	4.1 Wave Front Propagation CA Models
	4.2 Diffusion Limited Aggregation

	5 Conclusion
	References

	A Parallel Genetic Algorithm to Adjust a Cardiac Model Based on Cellular Automaton and Mass-Spring Systems
	1 Introduction
	2 Methods Part I: Discrete Model
	2.1 Modeling Action Potential Propagation with Cellular Automaton
	2.2 Modeling Mechanical Contraction with Anisotropic Mass-Spring Systems

	3 Methods Part II: Continuum Model
	4 Methods Part III: Automatic Tuning Parameter with Genetic Algorithm
	4.1 Computing Fitness
	4.2 GA Operators
	4.3 Parallel Code

	5 Results
	5.1 Automatic Tuning Parameter
	5.2 GA Parallel Performance

	6 Conclusions
	References

	Hexagonal Bravais--Miller Routing by Cellular Automata Agents
	1 Introduction
	2 Minimal Routing in the T Cyclic Grid
	2.1 Distance and Bravais--Miller Indices
	2.2 Shortest Path Routing in the Diamond
	2.3 Bravais--Miller Routing in the Orthogonal Tn
	2.4 Computing the Minimal Route in Tn
	2.5 Deterministic, Adaptive and Randomized Routing

	3 Modeling the Multi-Agent System
	3.1 Dynamics of the Multi-Agent System
	3.2 The CA--w Copy--Delete Rule

	4 Simulating HBM Routing Protocols
	4.1 Deadlock Situations and Protocols
	4.2 Test Cases
	4.3 Router Efficiency

	5 Conclusion
	References

	The Influence of Cellular Automaton Topology on the Opinion Formation
	1 Introduction
	2 The Ising-Based CA Opinion Formation Model
	3 Results and Conclusions
	References

	Cellular Automata Model of Electrons and Holes Annihilation in an Inhomogeneous Semiconductor
	1 Introduction
	2 The Model of Annihilation of Electrons and Holes in a Semiconductor
	2.1 The Mechanism of Annihilation of Electrons and Holes in a Semiconductor
	2.2 The Cellular Automata Model of Annihilation of Electrons and Holes in a Semiconductor

	3 Parallel Implementation of the CA Model of Electrons and Holes Annihilation
	4 Simulation Results
	5 Conclusion
	References

	Constructions Used in Associative Parallel Algorithms for Directed Graphs
	1 Introduction
	2 Simultaneous Finding the Single-Source Shortest Paths and Distances
	3 Updating the Shortest-Paths Subgraph
	4 Updating the Transitive Closure of a Digraph
	5 Conclusions
	References

	Oscillatory Network Based on Kuramoto Model for Image Segmentation
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Oscillatory Network for Image Segmentation
	3.1 Oscillatory Network Architecture
	3.2 Enhancements for Real Image Segmentation
	3.3 Parallel Implementation of Oscillatory Network

	4 Image Segmentation Results
	5 Conclusions
	References

	Using Monte Carlo Method for Searching Partitionings of Hard Variants of Boolean Satisfiability Problem
	1 Introduction
	2 Monte Carlo Approach to Statistical Estimation of Effectiveness of SAT Partitioning
	3 Algorithm for Minimization of Predictive Function
	4 Computational Experiments
	4.1 Time Estimations for Logical Cryptanalysis of A5/1
	4.2 Time Estimations for Logical Cryptanalysis of Bivium

	References

	A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey
	1 Introduction
	2 A Class of 3n-Step Synchronization Algorithms
	2.1 Firing Squad Synchronization Problem
	2.2 A Class of 3n-Step Synchronization Algorithms
	2.3 Complexity Measures and Properties for Synchronization Algorithms
	2.4 A Brief History of the Developments of the 3n-Step FSSP Algorithms and Their Implementations

	3 Implementations of the 3n-Step FSSP Algorithms
	3.1 Fischer's Algorithm: A1
	3.2 Minsky-McCarthy Algorithm: A2
	3.3 Herman's 10-State Algorithm: A3
	3.4 Yunès Seven-State Algorithm: A4
	3.5 Umeo, Maeda, and Hongyo's 6-State Algorithm: A5
	3.6 Yunès 6-State Algorithm: A6
	3.7 A New 6-State Algorithm: A7
	3.8 A New 6-State Algorithm: A8
	3.9 Umeo-Yanagihara 5-State Algorithm: A9
	3.10 State-Change Complexity

	4 Discussions
	References

	CA - Model of Autowaves Formation in the Bacterial MinCDE System
	1 Introduction
	2 Oscillations in the Bacterial MinCDE System
	3 The Cellular-Automata Model of MinDE Autowaves Formation
	4 Computer Simulation Results
	5 Conclusion
	References

	Distributed Computing
	Agent-Based Approach to Monitoring and Control of Distributed Computing Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 Architecture
	5 Experimental Results
	6 Conclusions
	References

	Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum
	1 Introduction
	2 The Model
	3 Optimal Quorum
	3.1 Basic Replication
	3.2 Additional Replication
	3.3 Reliable Positive Answers

	4 Examples
	References

	Partition Algorithm for Association Rules Mining in BOINC--Based Enterprise Desktop Grid
	1 Introduction
	2 Implementation of Partition Algorithm with BOINC
	3 Results of the Experiments
	4 Conclusion and Discussion
	References

	Task Scheduling in a Desktop Grid to Minimize the Server Load
	1 Introduction
	2 The Model
	3 Performance of a Volunteer Computing System
	References

	An HPC Upgrade/Downgrade that Provides Workload Stability
	1 Introduction
	2 Stability of an HPC Workload Model
	3 An Upgrade/Downgrade Problem
	4 Numerical Experiments
	4.1 CTC SP2 Cluster
	4.2 OSC Cluster

	5 Conclusion
	References

	Job Ranking and Scheduling in Utility Grids VOs
	Abstract
	1 Introduction
	2 Related Works
	3 Job Framework Forming
	3.1 Job Batch Size Restrictions
	3.2 Job and Computing Environment Compatibility Indicator

	4 Simulation Studies
	5 Summary
	Acknowledgements
	References

	Congestion Elimination on Data Storages Network Interfaces in Datacenters
	Abstract
	1 Introduction
	2 Replication Procedure
	3 Experimental Investigation of Replication Procedure Efficiency
	4 Conclusion
	References

	Special Processors Programming Techniques
	Use of Xeon Phi Coprocessor for Solving Global Optimization Problems
	Abstract
	1 Introduction
	2 Global Search Algorithm with Parallel Trials
	3 Convergence and Speedup of the Parallel Algorithm
	4 Implementation on Xeon Phi
	5 Results of Numerical Experiments
	6 Conclusions
	Acknowledgements
	References

	Increasing Efficiency of Data Transfer Between Main Memory and Intel Xeon Phi Coprocessor or NVIDIA GPUS with Data Compression
	1 Introduction
	2 Compression Methods
	3 Experiments
	4 Conclusion
	References

	Parallelizing Branch-and-Bound on GPUs for Optimization of Multiproduct Batch Plants
	1 Motivation and Related Work
	2 Problem Formulation
	3 Parallelization for GPU
	4 Optimizations
	5 Experimental Results
	6 Conclusion
	References

	Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA
	1 Introduction
	2 Related Work
	3 3D Memory Integrated FPGA (3D MI-FPGA)
	3.1 Timing Parameters

	4 2D FFT Architecture
	4.1 1D FFT Kernel
	4.2 Baseline Architecture
	4.3 Optimized Architecture
	4.4 Optimal Dynamic Data Layouts
	4.5 Metrics of Evaluation

	5 Experimental Results
	6 Conclusion
	References

	High-Performance Reconfigurable Computer Systems Based on Virtex FPGAs
	Abstract
	1 Introduction
	2 RCS Based on Xilinx Virtex-7 FPGAs
	3 Next-Generation Reconfigurable Systems Based on Xilinx UltraScale FPGAs
	4 RCS Software
	5 Language COLAMO and Software Complex for Multichip RCS
	6 Conclusion
	References

	Parallelizing Biochemical Stochastic Simulations: A Comparison of GPUs and Intel Xeon Phi Processors
	1 Introduction
	2 Methodology
	2.1 Stochastic Simulation of Biochemical Reaction Networks
	2.2 Graphics Processing Units
	2.3 Many Integrated Core Architecture

	3 Results
	3.1 Experimental Setting
	3.2 Computational Results

	4 Conclusion
	References

	Cost of Bandwidth-Optimized Sparse Mesh Layouts
	1 Introduction
	2 Basics of Layout Structures
	2.1 Setting for Layouts
	2.2 On Cost Metrics

	3 Definitions and Layouts for Mesh-Based Networks
	3.1 Definition of Sparse Meshes
	3.2 Layouts
	3.3 Bandwidth-Optimized 2-Dimensional Meshes and Tori
	3.4 Summary of Properties for Comparison

	4 Comparison
	4.1 Preliminaries
	4.2 Results

	5 Conclusions
	References

	Toward a Core Design to Distribute an Execution on a Manycore Processor
	1 Introduction
	2 Running a C Program in Parallel
	3 ILP in Programs
	4 An Execution Model to Run Programs in Parallel and Its Core Implementation
	4.1 Parallelizing Fetch
	4.2 Core Pipeline Microarchitecture

	5 Analytical Performance Evaluation of the Parallel Execution Model on the sum Example and Conclusion
	References

	Heuristic Algorithms for Optimizing Array Operations in Parallel PGAS-programs
	1 Introduction
	2 Communications Optimization
	2.1 PGAS Model
	2.2 Parallel Reduction Algorithm
	2.3 Arrays Access Optimization

	3 Experiments and Results
	4 Conclusion
	References

	Progressive Transactional Memory in Time and Space
	1 Introduction
	2 Model
	3 TM Classes
	4 Time and Space Complexity of Sequential TMs
	5 RMR Complexity of Strongly Progressive TMs
	5.1 Mutual Exclusion from a Strongly Progressive TM
	5.2 Proof of Correctness

	6 Related Work and Concluding Remarks
	References

	Wavelet-Based Local Mesh Adaptation with Application to Gas Dynamics
	Abstract
	1 Introduction
	2 Mathematical Model
	3 Numerical Method
	4 2D Adaptive Cartesian Mesh
	5 Wavelet-Based Analyzer of Numerical Solutions
	6 WENO-Reconstructions for Adaptive Cartesian Meshes
	7 Results of Numerical Tests
	8 Specifics of Parallel Realization
	9 Conclusions
	References

	On Implementation High-Scalable CFD Solvers for Hybrid Clusters with Massively-Parallel Architectures
	1 Introduction
	2 Numerical Method
	3 Parallel LU-SGS Algorithm
	4 Numerical Experiment
	5 Implementation
	References

	Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors
	1 Introduction
	2 Overview of MPDATA
	3 Adaptation of MPDATA to a Single GPU Node
	3.1 GPU Architecture and Software Environment
	3.2 Processing GPU Kernels
	3.3 Analysis of Stencils
	3.4 Transformations of Stencils
	3.5 Performance Results

	4 Adaptation of MPDATA to GPU-accelerated Clusters
	4.1 MPDATA Decomposition
	4.2 Performance Results

	5 Conclusions and Further Work
	References

	Performance Evaluation of a Human Immune System Simulator on a GPU Cluster
	1 Introduction
	2 Mathematical and Computational Model
	3 GPU Cluster Programming
	4 Numerical Results
	5 Conclusion
	References

	HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics
	1 Introduction
	2 Problem Statement and Benchmarking Metric
	3 Comparison
	4 Conclusions
	References

	Automatic High-Level Programs Mapping onto Programmable Architectures
	1 Introduction
	2 Related Works Overview
	3 The Implementation
	3.1 Structure of the Compiler from C to the Programmable Computational System
	3.2 Mapping Programs onto a Programmable Computer
	3.3 C2HDL Converter and a Multi-pipeline System Generating
	3.4 Optimizing Parallelizing System (OPS)
	3.5 Chip Area Optimizing
	3.6 Efficiency of Parallel Computing Use

	4 A Running Example
	5 Conclusion
	References

	Applications
	Implementation of a Three-Phase Fluid Flow (``Oil-Water-Gas'') Numerical Model in the LuNA Fragmented Programming System
	Abstract
	1 Introduction
	2 The Problem of Filtration
	3 Definition of the Problem
	4 Algorithm of the Solution
	5 LuNA Language and System of Fragmented Programming
	6 Fragmented Algorithm Execution
	7 Performance Tests
	8 Conclusion
	Acknowledgements
	References

	Development of a Distributed Parallel Algorithm of 3D Hydrodynamic Calculation of Oil Production on the Basis of MapReduce Hadoop and MPI Technologies
	Abstract
	1 Physical and Mathematical Models of 3D Problem of Hydrodynamic Calculation of Oil Production
	2 Numerical Model of 3D Problem of Hydrodynamic Calculation of Oil Production
	3 The Distributed Parallel Algorithm on the Basis of MapReduce Hadoop and MPI Technologies
	4 Implementation of the Distributed Parallel Algorithm and Analysis of the Results
	5 Conclusion
	References

	A Two-Level Parallel Global Search Algorithm for Solution of Computationally Intensive Multiextremal Optimization Problems
	Abstract
	1 Introduction
	2 Problem Statement
	3 Parallel Two-Level Global Optimization Algorithm
	3.1 Parallel Computations for Nodes with Shared Memory
	3.2 Parallel Computations for Systems with Distributed Memory

	4 Results of Computational Experiments
	5 Conclusion
	Acknowledgements
	References

	Efficient Parallel Implementation of Coherent Stacking Algorithms in Seismic Data Processing
	1 Introduction
	2 Coherent Summation Method
	3 Mesh Refinement
	4 Hiding Disk Access Operations Behind Computation
	5 Elimination of Recomputing
	6 Loop Vectorization and Avoiding Cache Misses
	7 Parallel Implementation
	8 Conclusion
	References

	Accurate Parallel Algorithm for Tracking Inertial Particles in Large-Scale Direct Numerical Simulations of Turbulence
	1 Introduction
	2 Equations and Numerical Methods
	3 Implementation
	4 Results and Discussion
	References

	Treating Complex Geometries with Cartesian Grids in Problems for Fluid Dynamics
	Abstract
	1 Introduction
	2 Method of Free Boundaries
	3 Numerical Results
	4 Conclusions
	Acknowledgments
	References

	Architecture, Implementation and Performance Optimization in Organizing Parallel Computations for Simulation Environment
	Abstract
	1 Introduction
	2 Computing Core Architecture
	3 Organizing Computations
	4 Performance Optimization
	4.1 Caching
	4.2 Optimizing MPI Data Transfer

	5 Method Library
	5.1 Integration Algorithms
	5.2 New Methods Implementation

	6 Reaction-Diffusion Problem
	7 Conclusion
	Acknowledgements
	References

	Author Index

