Chapter 9
Making Vapnik—Chervonenkis Bounds
Accurate

Léon Bottou

Abstract This chapter shows how returning to the combinatorial nature of the
Vapnik—Chervonenkis bounds provides simple ways to increase their accuracy, take
into account properties of the data and of the learning algorithm, and provide empir-
ically accurate estimates of the deviation between training error and test error.

9.1 Introduction

Although the Vapnik—Chervonenkis (VC) learning theory [15, 16, 18-20] has been
justly acclaimed as a major conceptual breakthrough, applying its essential theorems
to practical problems often yields very loose bounds. In the case of the pattern recog-
nition problem, the theorems provide distribution-independent uniform bounds on
the deviation between the expected classification error and the empirical classifica-
tion error. Their derivation reveals many possible causes for their poor quantitative
performance:

(i) Practical data distributions may lead to smaller deviations than the worst possible
data distribution.

(@) Uniform bounds hold for all possible classification functions. Better bounds may
hold when one restricts the analysis to functions that perform well on plausible
training sets.

(iii) A symmetrization lemma translates the main combinatorial result into a bound
on the deviation between expected and empirical errors. This lemma is a con-
servative inequality.

(iv) The combinatorial characterization of the Vapnik—Chervonenkis capacity is a
conservative upper bound.

(v) The union bound P(U;A;) < >, P(A;) constitutes a critical step of the proof.
This bound could be reasonably accurate if the events were independent events
with low probability. Nothing guarantee that this is the case.
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An apparently different class of bounds, sometimes called sample compression
bounds, often provides much more realistic estimates of the generalization error.
Such bounds predate the VC theory: for instance, it was mentioned in Paphos that
Chervonenkis knew that the expected error of the generalized portrait algorithm is
roughly bounded by the fraction of support vectors found in the training set [17,
21]. This bound depends on the number of support vectors, an empirical quantity
measured a posteriori.

The purpose of this contribution is to explore the gap between these two styles
of bounds using only simple mathematics and a simple empirical case study. This
simplicity results from an apparently bold step: instead of assuming that the examples
are independently drawn from an unknown distribution, we will reason on random
partitions of an arbitrary dataset into equally sized training and test sets. Deviation
estimates then result from the combinatorial argument that forms the central part of
the traditional Vapnik—Chervonenkis proofs. Avoiding the symmetrization lemma
(see point (iii) above) also provides a simple way to obtain data- and algorithm-
dependent bounds (points (i) and (ii)) and to define empirical data- and algorithm-
dependent capacities (point (iv)) [3, 4, 23]. The union bound (point (v) above) then
remains the main source of quantitative problems.

Although refined bounding techniques have been proposed to address all these
issues [5-8, 12, 13], their sophistication often obscures their connection to practical
reality. We believe that the simple framework described in this contribution provides
useful intuitions.

The following discussion is organized as follows. After presenting the random
split paradigm, we explain how to easily derive bounds in the style of Vapnik—
Chervonenkis and make them take into account the specificities of the data distri-
bution and of the learning algorithm. We then estimate the performance of these
bounds on a simple case study and show that more refinements are necessary to
obtain a bound with a reasonable amount of computation.

9.2 Setup

Let Q(z, w) be a loss function that measures the correctness on example z of the
answer produced by a learning machine parameterized by w € F. In this paper we
only consider the case of binary loss functions that take the value one if the answer
is wrong and zero if it is correct. For instance, in the case of a pattern recognition
system, each example z is a pair (x, y) composed of a pattern x and a class label y.
Given a classifier f,,(x) parametrized by w, the loss function Q(z, w) is zero when
fw(x) = y and is one otherwise.

Let S be a set of 2¢ labeled examples z1, - - - , z2¢. There are Cée ways to split this
set into equally sized training and test sets, S; and S», each containing £ examples.
For each choice of a training set S; and a test set S, and for each value of the
parameter w, we define the training error v1, the test error v, and the total error v as:
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Consider a deterministic learning algorithm A that processes the training set S;
and produces a parameter wS!. This parameter value usually performs well on the
training set S; and we hope that it will also perform well on the test set S. For
instance, the empirical risk minimization principle suggests designing an algorithm
that minimizes 1 (w) in the hope of ensuring that 15 (wS") is small.

All results presented here concern the distribution of the deviation between the
training error v1(w3') and the test error v (wS!) when one considers all possible
splits S} U S, of the dataset S and obtains w>! by running the learning algorithm A,

Pr{ ‘Vz(wsl) — o wh)

> € } ©9.1)

The notation Pr(H) denotes the ratio of the number of splits for which condition H
is true over the total number Cge of possible splits S; U S of the dataset S. We use
this notation instead of the traditional probability notation to emphazise the purely
combinatorial nature of this problem.

We argue that the real-life behavior of learning algorithms is well characterized
by the tail of this distribution. Thousands of machine learning papers are in fact
supported by experimental studies that follow the same protocol: randomly separating
out test data, applying the learning algorithm to the remaining data, and assessing
its performance on the test data. A good test set performance is widely accepted as
convincing evidence supporting the use of a specific learning algorithm for a specific
learning problem. Bounding the tail of the distribution (9.1) provides equally strong
evidence.

In contrast, traditional statistical approaches to the learning problem assume that
the training examples are drawn independently from an unknown distribution. The
expected error E(Q(z, w3!)) then represents the future performance of the system on
new examples drawn from this same distribution. Bounding the difference between
the training error and the expected error provides a stronger guarantee because the
assumed existence of the ground truth distribution provides a means to reason about
the algorithm’s performance on arbitrarily large training sets. Consider for instance
a binary classification algorithm that relies on a polynomial discriminant function
whose degree grows linearly with the number of training examples. Running such
an algorithm on a training set S; of sufficiently small size £ could conceivably give
acceptable performance on the test set S> of the same size. However this accept-
able performance does not guarantee that running the algorithm on all 2¢ available
examples would not overfit.
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Avoiding the ground truth assumption is attractive for philosophical reasons.
Although epistemology frequently relies on the idea that the world is ruled by sim-
ple universal truths waiting to be uncovered, it can be argued that the only thing that
is available to us for sure is a finite set of examples. From this point of view, the
ground truth distribution is a metaphysical concept because there is no statistical test
to determine whether or not our dataset is composed of independent and identically
distributed examples and no hope to identify their distribution.

Avoiding the ground truth assumption is also attractive for technical reasons.
Working with the combinatorial distribution (9.1) affords simple ways to derive tail
bounds that leverage specific properties of the data or of the learning algorithm.

9.3 Misclassification Vectors

For each value of the parameter w, the loss function Q(z, w) maps the full set of
examples S onto a binary vector g(w) = (Q(z1, w), ..., Q(zn, w)) of length 2¢
that we shall call the misclassification vector. The ordering of its coefficients does
not depend on the dataset split: the ith component of g(w) indicates whether the
learning system parametrized by w processes the example z; incorrectly, regardless
of whether z; belongs to the training set or the test set.

The misclassification vector g(w) encapsulates all that we need to know about
the performance of the system parametrized by vector w. Parameter values that lead
to the same misclassification vector will also lead to the same total error, training
error, and test error. Therefore we often write them as v(q), v1(¢), and 12 (g) instead
of v(w), v (w), and v (w).

The function (g, €) = Pr {|v2(q) — v1(q¢)| > €} does not depend on the ordering
of the coefficients in the misclassification vector g because all possible splits are
considered and because the quantities v (¢) and v2(q) do not depend on the ordering
of the coefficients within each subset. We therefore write 1(q, €) = n(£, v(q), €).

Consider an urn containing 2v¢ red marbles and 2(1 — )¢ white marbles.
Out of the sz possible ways to draw ¢ marbles without replacement, there are
exactly Cé‘u ¢ Cg(_lk_y) ¢, Ways to draw exactly k red marbles. The analytic expression of
n(¢, v, €) is obtained by summing this quantity for all values of k that ensure that the
difference between the number k of red marbles drawn from the urn and the number
2v¢ — k of red marbles left in the urn exceeds Ze:

1 ko 0k
n,v,e) = —~ Z Cove Coti—iye-
26 2Jul—k|>te

There are efficient numerical methods for computing this hypergeometric tail [14].
Since the function n(£, v, €) is monotonically decreasing with ¢, we define the
inverse function €(¢, v, 1) and write
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Vg Pri{ (g —vi(@)| > e, v(q),m} = sn. 9.2)

Although there is no known analytic form for the inverse function e(¢, v, 1), its
exact values can be directly read from a table of its inverse (¢, v, €). This function is
also well described by relatively accurate bounds and approximations such as those
derived by Vapnik and Chervonenkis [15, inequality AS, p. 176]:

1 1\ log(2/m)
6((,V,77)§\/4(V+ﬁ) (I_V—i_ﬁ) H—l (9.3)
%\/4u(1 —1/2 log(Z/n). 0.4)

9.4 Data- and Algorithm-Independent Bounds

Let Ax(S) = {g(w) : w € F} be the set of misclassification vectors associated
with all potential values of the parameter w. Bounds on the deviation (9.1) are then
derived from the following chain of inequalities:

Pr [ra@™) = )| > et v, m |

Pr{ |2 1@

> et v(g™),m) |

< Pr{3g € Ax(S) : In(g) — @] > e, v(@), ]}
< > Pr{lng) —n@l> et vig),n}
qeAF(S)
= nCard A£(S). 9.5)

The first inequality above majorizes (9.1) by a uniform bound. The second inequality
is an application of the union bound Pr(A U B) < Pr(A) 4 Pr(B), and the final result
is obtained by applying Eq. (9.2).

Traditional data- and algorithm-independent deviation bounds control (¢, v, 1)
using the more convenient expression (9.3) and then invoke the landmark com-
binatorial lemma of Vapnik and Chervonenkis [18, theorem 1], which states that
Card A £(S) is either equal to 22t or smaller than (2¢e / )" for some positive inte-
ger h that does not depend on the data S and is now called the VC dimension of the
family of indicator functions {z — Q(w,z) : w € F }. Simple algebraic manipu-
lations then yield data- and algorithm-independent bounds for both the absolute and
the relative deviation:



148 L. Bottou

h(l +log ) — log %
t—1

Pr ‘uz(wsl) — Vl(wsl)’ > \/

=,

Pr

|I/2(w51) — Vl(wsl)| . 2\/11(1 + log %) — logg

JrwS) + 5 ¢

9.5 Data- and Algorithm-Dependent Bounds

There are several obvious ways to make these bounds tighter. Instead of using the
bound (9.3), we can tabulate the exact values of €(¢, v, n) as suggested in Sect.9.3.
Instead of bounding Card A £(S), we can design empirical procedures to measure its
value [3, 22]. The only remaining causes of inaccuracy are then the two inequalities
appearing in the derivation (9.5), namely the uniform bound and the union bound.

The first source of concern is the majorization of the error deviation by a uniform
bound. Many elements of Ax(S) are misclassification vectors that no reasonable
learning algorithm would produce. Realistic learning algorithms tend to produce
solutions that perform well on the training examples and also contain critical capacity
control aspects. For instance one can argue that multilayer network training often
achieves good performance because its poor optimization algorithm is unable to find
solutions far away from the initial point. All these aspects severely restrict the set of
misclassification vectors.

Therefore, instead of considering the set A x(S) of the misclassification vectors
associated with all potential parameters w € F, we can consider the set A 4(S) of
the misclassification vectors associated with the parameters produced by applying
algorithm A to all training sets S| extracted from dataset S:

A4S ={q(ASD) | S CS A Card(S) =¢ }.

Replicating the derivation (9.5) leads to a data- and algorithm-dependent deviation
bound,

Pr{ ’Vz(wsl) — (wsl)( > e(t, v(wS), ) } <pCard A (S).  (9.6)

The second source of concern is the union bound which, in (9.5), majorizes the
probability of the union of K events Aq, ..., Ag of probability n by the sum Kn
of their probabilities. Let us tentatively assume that the events A; can be considered
pairwise independent. We can then write

K
Kn—Pr(UAr) < D Pr(A;NAj) ~ 7772 9.7)

i<j
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and show that the majorization error is much smaller than K7. The deviation
bound (9.6) is likely to be quite accurate if this assumption holds. Whether this
is true will be clarified in Sect.9.7.

9.6 Empirical Study

In order to illustrate the performance of bound (9.6), we report on a simple experi-
mental study using 1,000 examples from the MNIST handwritten digit recognition
dataset [2]. The classifier is the convolutional network Lenet5 described in [10] and
containing 60,000 adjustable parameters. Training is performed using mean square
error back-propagation with learning rates periodically adjusted by estimating the
diagonal of the Hessian matrix [11]. This case study should be viewed as a typical
example of multilayer neural network training technology using a proven implemen-
tation. In particular, this learning algorithm should not be seen as a simple empirical
risk minimization algorithm because the cost function is nonconvex and because the
first-order nature of the algorithm favors solutions that are relatively close to the
initial conditions.

We train this classifier on 1,000 random splits of the examples into equally sized
training and test sets containing £ = 500 examples each. We always use the same
weight initialization. The observed median training error, median test error, and
median relative deviation are, respectively,

Median [v1(ws)] &~ 0.075,  Median [tr(ws)] &~ 0.14,

Sty — N
Median['VZ(w ) —niw ”] ~ 021.

VS (1 — v(wsh)

The median deviation can also be estimated by setting the right-hand side of (9.6)
to 0.5 and using the approximation (9.4),

S1y S1 0
Median[ 2 — @ \/10g(4cafdAA(S))] 2o o8

VS — v(wSh)) !

Figure 9.1 (top plot) shows how the bound on the relative deviation (9.8) depends
on the value Card A 4(S). Figure9.1 (bottom) plots a corresponding bound on the
median test error 12, obtained by setting the training error 1 = 0.075 and numerically
solving (9.8) for 1, with v = (v] + 1) /2. Both plots show that Card A 4(S) must
be as low as 62 for the bounds to match empirical observations. However these plots
also show that values as large as 108 still provide reasonable estimates.

In contrast, since it is clear that the VC dimension of such a large multilayer neural
network exceeds the total number of examples, Card A £(S) = 22t ~ 10391, leading
to a vacuous bound on the median test error, v, < 1.25.



150 L. Bottou

Fig. 9.1 Bounds on the
median relative deviation
(top) and median test error
v, (bottom) as a function of
Card A 4(S). The dotted line
indicates the observed values

1070 1075 10M0 10M5 10720

0
1070 1075 10M0 10nM5 1020

We can attempt to directly measure Card A 4(S) by counting the number N(z) of
distinct misclassification vectors seen after training the classifier on ¢ random splits.
Such an attempt was unsuccessful because we lacked the computing resources to
process a large enough number of splits. We stopped after processing 18,000 ran-
dom splits and producing 18,000 distinct misclassification vectors. Birthday problem
considerations [1] show that Card A 4(S) > 108 with confidence greater than 80 %.
As illustrated in Fig.9.1, even such large values of Card A 4(S) can still lead to
reasonable estimates, within a factor of two of the observed deviations.

Since directly counting Card A 4(S) is computationally too expensive, we must
design simpler empirical procedures to characterize the properties of the set A 4(S)
of misclassification vectors.

9.7 Coverings

The solid curve in Fig.9.2 shows the histogram of the Hamming distances measured
between the misclassification vectors associated with pairs of random splits. This
histogram shows a very peaky distribution. We can accurately determine the location
of this peak by processing a moderate number of pairs. All our misclassification
vectors appear to be located at or around Hamming distance 75 from each other.

It is well known that the distribution of the Hamming distance separating two
d-dimensional binary vectors follows a very peaky distribution centered on 2dp (1 —
p) where p is the probability of nonzero coefficients [9]. The dotted curve in Fig.9.2
represents the histogram obtained by randomly shuffling the coefficient of each mis-
classification vector before computing the Hamming distances. This curve verifies
the theoretical prediction with a peak centered at 4 £ (1 — v) = 180. The actual
misclassification vectors ¢(w’') therefore appear considerably less dispersed than
random binary vectors. This observation invalidates the independence assumption
that could have given us confidence in the accuracy of the union bound (9.7).
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Fig.9.2 Histogram of Hamming distances between misclassification vectors. The solid curve shows
the histogram of the Hamming distances separating random pairs of misclassification vectors. The
dashed curve shows what this histogram would have been if the coefficient of the misclassification

vectors were independently sampled from a Bernoulli distribution

This peaky Hamming distance distribution suggests we should characterize the set
A 4(S) of misclassification vectors using covering numbers. Let B.(q) represent a
Hamming ball of radius ¢ centered on g. The covering number N, (A) is the smallest

number of Hamming balls of radius ¢ necessary to cover the set A:
N.(A) = min Card(C) suchthat A C U B.(q).
cca qeC

Let us consider an arbitrary split of the dataset into training and test sets and assume
that there exists ¢’ € B.(q) such that |v,(g’) —v1(q’)| > €. A simple derivation then

establishes that |12(q) — v1(g)| > € — c/L.
Combining this observation with (9.2) gives

Vo Pr{30' €Bu@) ¢ |n@) —n@)| > S+ tv@.n ] =

and a chain of inequalities similar to (9.5) gives

. %+e(1z, v(w), m) } < NN(AAS)).

Pr { ‘I/z(wsl) — v (W)

We construct coverings with the following greedy algorithm. Let g1, g2, . .. be the
misclassification vectors associated with successive random splits of our dataset. We
construct a covering C; of the first ¢ vectors using the following recursive procedure:
if g; belongs to one of the Hamming balls centered on an element of C;_1, we set
C; = Ci_1, otherwise we set C; = C;_1 U {q;}.

This empirical covering size N.(t) = Card(C;) should converge to an upper
bound on NV (A 4(S)) when t increases. Figure 9.3 plots the empirical covering sizes
for several values of the Hamming ball radius c. When the radius is smaller than the
peak of the Hamming distance histogram, this convergence cannot be observed in

practice. When the radius is larger than the peak, N, () converges to a small value.
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Fig. 9.3 Empirical covering
sizes. Each curve plots how
many Hamming balls (of
radii ranging from 40 to 100)
are needed to cover the
misclassification vectors
obtained using the number of
splits specified on the X axis.
These curves should reach
the corresponding covering
number when the number of
splits increases to infinity
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In the intermediate regime, the empirical covering size appears to converge but
its limit is hard to determine. We can work around this difficulty by writing

Pr{ \m(w“) — | > %+e<z, u(wsl),m} < pN.(T) +Pr(Ry), (9.9)

where R; C A 4(S) denotes the set of misclassification vectors that are not covered
by any of the Hamming balls centered on the elements of C7. Let g;41, ..., @r+s
denote the longest sequence of misclassification vectors such that C;;; = C;. None
of these vectors belongs to R;. Since they are obtained by considering random splits
independent of the ¢ previous random splits, the probability that none of these vectors
belongs to R; is (1 — Pr(R;))*. We can therefore write with confidence 1 — ¢ that

Pr(R7) < Pr(R;) <1 — /e < —log(e)/s.

Empirical covering sizes N, (T) were collected for T = 10,000. They range from
N120(10,000) = 1 to N5p(10,000) = 3,317. We cannot ensure that Pr(R7) is small
enough when ¢ < 50.

Setting the right-hand side of (9.9) to 0.5, using approximation (9.4), and solving
for v5(wS") yields a bound on the median test error. Figure 9.4 plots this bound as

Fig. 9.4 Covering-based 0.5
bounds on the median test
error 15 (¢5") as a function of 0.4
the Hamming ball radius c.
The dotted line indicates the
. 0.3
observed median test error
0.2
0.1
0

40 60 80 100 120
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a function of the Hamming ball radius c¢. Although their empirical accuracy is far
from ideal, these covering-based bounds are within a factor of two of the observed
test error. This is clearly better than the vacuous bounds usually afforded by the data-
and algorithm-independent bounding technique.

9.8 Discussion

There is still a significant gap separating these empirical bounds from the observed
values. Certainly the most interesting effect revealed by our empirical study is the
low dispersion of the misclassification vectors (Fig.9.2) because it implies that the
union bound is very inaccurate. Although relying on empirical covering numbers
should in principle reduce the negative impact of this low dispersion, Dudley’s chain-
ing technique [6, 13] is a much more refined way to improve on the union bound.
Vorontsov’s recent work [24] is therefore very interesting because it leverages a more
refined characterization of the distribution of misclassification vectors in a manner
related to Dudley’s chaining.

It is also interesting to investigate the cause of the low dispersion of the mis-
classification vectors. The observed Hamming distance histogram (Fig.9.2) looks
strikingly like the Hamming distance histogram separating random binary vectors of
lower dimensionality. Could it be that only a subset of the examples are responsible
for the misclassification vector variations? This would mean that most of the exam-
ples are always correctly recognized (or misrecognized when their label is incorrect)
regardless of the dataset split. This hypothesis is confirmed by Fig.9.5 which plots
the observed variance of the loss Q(z;, wS!) for all examples z; ordered by decreas-
ing variance. This observation is interesting because it establishes a connection with
sample compression bounds: the only examples that matter are those that switch from
being correctly classified to being misclassified when one changes how the data is
split into training and test sets. The connection between capacity and compression
therefore appears to be a manifestation of the subtleties of the union bound.

Fig. 9.5 Empirical variance 0.25

of the loss function. Only a

fraction of the examples z; 0.2

have losses Q(z;, w!) that

vary from one split to the 0.15

next. The other examples are

either always correctly 0.1

classified or always

misclassified 0.05
0

0 200 400 600 800 1000
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Finally, one of the main criticisms of the approach outlined in this paper is its com-
putational requirement. Why spend time characterizing the set of misclassification
vectors to produce a mediocre bound on the test error while a fraction of this time is
sufficient to compute the test error itself? This is a valid criticism of this work as an
empirical measuring technique. However this work also has value because it helps
us understand the mathematical subtleties of learning. Measuring and understanding
are two equally important aspects of the scientific approach.
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