
Chapter 6
VC Dimension, Fat-Shattering Dimension,
Rademacher Averages, and Their
Applications

Vladimir V. V’yugin

Abstract We consider several complexity measures which capture the difficulty
of learning under the i.i.d. assumption. Among these measures are growth function
and VC dimension, covering number and fat-shattering dimension, and Rademacher
complexity from statistical learning theory. Relationships among these complexity
measures, their connection to learning, and tools for bounding them are provided.
For each complexity measure, a uniform upper bound on the generalization error of
classification problems is presented.

6.1 Introduction

The goal of statistical learning theory is to study, in a statistical framework, the
properties of learning algorithms. The set of methods for assessing the quality of
classification and regression schemes is called generalization theory. In particular,
most results in this field take the form of error bounds. This survey chapter introduces
the techniques that are used to obtain such results.

In the statistical theory of machine learning, we refer to some underlying proba-
bility distribution generating data. We assume that each training or test example is
generated at random from a fixed but unknown to us probability distribution and that
the data is independently and identically distributed (i.i.d.).

A step aside from the classical theory is that the distribution generating the data
may be unknown, andwe cannot even estimate its parameters. In this case, the bounds
of classification (or regression) errors should be distribution independent. We refer
to such a bound as a generalization error.

In this theory, the estimates of classification error can be computed, provided
that the training was carried out on a large enough random training sample and its
resulting classification function agreed with the training set.
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Themost important parameter of such an assessment is the capacity or complexity
of a class of classification functions. Usually in assessing classification errors the
length of a training set and the capacity of a class of classification functions are
in competition—the longer the training set the greater the capacity of the class of
hypotheses which can be used.

We discuss threemeasures of capacity and the corresponding parameters—growth
function and VC dimension (Sect. 6.2), covering number and fat-shattering dimen-
sion (Sect. 6.3), and Rademacher averages (Sect. 6.4). Each section concludes with
a uniform upper bound on the generalization error in terms of the corresponding
complexity. The first of them—VC dimension (and growth function) was introduced
by Vapnik and Chervonenkis [11], Vapnik [12] and serves as a starting point for
further research in this area. A disadvantage of this characteristic is that for some
important classes of classifiers (for example, for separating hyperplanes) it depends
on the dimension of the objects’ space. Methods based on fat-shattering dimension
and Rademacher averages lead to dimension-free bounds. The first of them is tighter
but based on the assumption that objects are located in a restricted area. The second
one is free from assumptions about the data location area.

In this chapter we consider only the batch setting. For online versions of these
notions see Rakhlin et al. [6] and Chap.15 of this volume.

6.2 Vapnik–Chervonenkis Generalization Theory

A generalization theory presents upper bounds for classification error of a classifier
defined using a random training sample. Statistical learning theory uses a hypothe-
sis on the existence of a probabilistic mechanism generating the observed data. In
classification or regression problems, these data are pairs (xi , yi ) of objects and their
labels generated sequentially according to some probability distribution unknown
to us. We do not try to find parameters of this distribution. We suppose only that
pairs (xi , yi ) are i.i.d. (independently and identically distributed) with respect to this
distribution. Methods used in statistical learning theory are uniform with respect to
all probability distributions from this very broad class.

A classifier (or regression function) is constructed from a training sample using
methods of optimization. A class of classification functions can be very broad—from
the class of all separating hyperplanes in n-dimensional Euclidian space to a class of
arbitrary n-dimensional manifolds that are mapped using kernel methods to hyper-
planes in more general spaces. No probability distributions are used in algorithms
computing values of these classifiers.

In this section, letX be a set of objects equippedwith a σ-algebra of Borel sets and
a probability distribution P . Also, let D = {−1,+1} be a set of labels of elements
of X .

Let S = ((x1, y1), . . . , (xl , yl)) be a training sample, where xi ∈ X and yi ∈
{−1, 1} for 1 ≤ i ≤ l. In probabilistic analysis, we suppose that the training sample
S is a vector random variable consisting of random variables (xi , yi ), i = 1, . . . , l.

http://dx.doi.org/10.1007/978-3-319-21852-6_15
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Let a classifier h : X → {−1, 1} be given. Its classification error (risk functional)
is defined as

errP (h) = P{(x, y) : h(x) �= y},

that is as the probability of a wrong classification. The classifier h agrees with a
sample S = ((x1, y1), . . . , (xl , yl)) if h(xi ) = yi for all 1 ≤ i ≤ l.

A simple and natural approach to the classification problem is to consider a class
of classifiers h and use data-based estimates of the probabilities of error errP (h) to
select a classifier from the class. The most natural choice to estimate the probability
of error errP (h) is the error count

errS(h) = 1

l
|{i : h(xi ) �= yi , 1 ≤ i ≤ l}|,

which is called the empirical error of the classifier h on a sample S. Here |A| is the
cardinality of a finite set A.

We start with the simplest special case. Assume that a classifier h agrees with a
sample S, i.e., errS(h) = 0. For any ε > 0 we have

P{S : errS(h) = 0& errP (h) > ε} =
l∏

i=1

P{h(xi ) = yi }

=
l∏

i=1

(1 − P{h(xi ) �= yi }) = (1 − errP (h))
l ≤ e−lε. (6.1)

Let H be a class of classification hypotheses. For a finite class H , by (6.1), we have
the bound:

Pl{S : (∃h ∈ H)(errS(h) = 0& errP (h) > ε)} ≤ |H | e−lε. (6.2)

For an infinite class H of classifiers a similar bound can be obtained using Vapnik–
Chervonenkis generalization theory. In this case the cardinality of a finite class is
replaced by the growth function of the infinite class H :

BH (l) = max
(x1,x2,...,xl )

|{(h(x1), h(x2), . . . , h(xl)) : h ∈ H}| .

The set {x1, . . . , xl} is shattered by the class H if {(h(x1), . . . , h(xl)) : h ∈ H} =
{−1, 1}l . As follows from the definition, BH (l) ≤ 2l for all l, and if there exists a
sample of length l that is shattered by H , then BH (l) = 2l .

The following theorem (Vapnik–Chervonenkis, Sauer, Shelah) is the main result
of the theory of VC dimension.

Theorem 6.1 For any class H of indicator functions, one of the following two
conditions holds:
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• BH (l) = 2l for all l, i.e., for each l an ordered sample of length l shattered by H
exists.

• There exists a sample of maximal length d that is shattered by H. In this case

BH (l) = 2l for l ≤ d and BH (l) ≤
d∑

i=0

(l
i

) ≤ ( el
d

)d
for l > d.

In other words, the function G H (l) = ln BH (l) is linear for all l or becomes loga-
rithmic: O(d ln l) for all l > d. For example, it cannot be O(lr ) for 0 < r < 1.

The number d is called the VC dimension (Vapnik–Chervonenkis dimension) of
H; VC dimension is infinite in the first case.

The main result of Vapnik–Chervonenkis generalization theory is an analogue of the
inequality (6.2) for infinite class H :

Theorem 6.2 For l > 2/ε, the following upper bound is valid:

Pl{S : (∃ h ∈ H)(errS(h) = 0& errP (h) > ε)} ≤ 2BH (2l)e−εl/4. (6.3)

The PAC-learning form of this result is as follows.

Corollary 6.1 Assume that a class H of classifiers has a finite VC dimension d and a
critical probability 0 < δ < 1 of accepting a wrong classification hypothesis h ∈ H
agreeing with a training sample S is given.

Then with probability ≥ 1−δ any classifier hS ∈ H defined by a training sample
S and agreeing with it has the classification error

errP (hS) ≤ 4

l

(
d ln

2el

d
+ ln

2

δ

)

for l ≥ d.

These results can be generalized for the case of learning with mistakes.

Theorem 6.3 For l > 2/ε, the following upper bound is valid:

Pl{S : (∃ h ∈ H)(errP (h) − errS(h) > ε)} ≤ 4BH (2l)e−ε2l/2.

The PAC-learning form is as follows.

Corollary 6.2 Assume that a class H of classifiers has a finite VC dimension d.
Then for any 0 < δ < 1, with probability ≥ 1 − δ, for any h ∈ H the following
inequality holds:

errP (h) ≤ errS(h) +
√
2

l

(
d ln

2el

d
+ ln

4

δ

)
,

where l ≥ d.

For the proof, we refer the reader to Vapnik and Chervonenkis [11], Vapnik [12],
Bousquet et al. [4], and so on.
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6.3 Margin-Based Performance Bounds for Classification

Let F be a class of real valued functions with domain X , and let S = ((x1, y1), . . . ,
(xl , yl)) be a sample of length l. A function f ∈ F defines the classifier:

h f (x) =
{
1 if f (x) ≥ 0,

−1 otherwise.

It can be shown that the VC dimension of the class of all classifiers defined by the
separating linear hyperplanes in the Euclidian spaceRn is equal to n +1. In practice,
the length of a sample can be less than n, and bounds on the classification error
like (6.3) are useless in this case. By this reasoning, Theorem 6.2 and Corollary 6.1
can have only a theoretical meaning. This drawback is connected with a too poor
method used for separation of the data. Separating training sample with arbitrarily
small thresholds, we lose the predictive performance of our classification algorithms.
Also, we do not restrict the space where our training sample is located.

In what follows we will consider methods of separation with a given positive
threshold γ andwill suppose that the points generated by the probability distributions
are located in some ball in the Euclidian spaceRn of a given radius R. Using γ and
R as the new parameters, we will define a new dimension-free notion of the capacity
of the functional class F . We present new upper bounds for the classification error
which can have some practical meaning.

For a function f ∈ F we define its margin on an example (xi , yi ) to be γi =
yi f (xi ). The functionalmargin of a training set S = ((x1, y1), . . . , (xl , yl)) is defined
to be: mS( f ) = min

i=1,...,l
γi . If γi > 0 then the classification by means of f is right.

It holds mS( f ) > 0 if and only if the function f classifies all examples from the
sample S right and with a positive threshold.

Let ε > 0. A finite set B of functions is called an ε-cover of a functional class
F on a set X = {x1, . . . , xl} if for any f ∈ F a function g ∈ B exists such that
| f (xi ) − g(xi )| < ε for all i = 1, . . . , l. Define the covering number of a class F on
a set X :

N (ε,F , X) = min{|B| : B is an ε-cover of F}.

Define the covering number N (ε,F , l) of a class F as the maximum of all covering
numbers of the class F on sets X such that |X | = l:

N (ε,F , l) = max|X |=l
N (ε,F , X).

Let errS( f ) be the empirical error of a classifier h f on the training set S =
((x1, y1), . . . , (xl , yl)). This number is equal to the fraction in S of all examples
(xi , yi ) such that h f (xi ) �= yi .

Let P be a probability distribution on X × {−1, 1} generating elements of the
sample S. Then the classification error of the classifier h f can be written as
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errP ( f ) = P{h f (x) �= y}.

The following theorem is an analogue of Theorem6.2.

Theorem 6.4 For any ε > 0, γ > 0, and l > 2/ε,

Pl{S : (∃ f ∈ F)(mS( f ) ≥ γ &errP ( f ) > ε)} ≤ 2N (γ/2,F , 2l)e−εl/4.

The PAC-learning form of this result is as follows.

Corollary 6.3 Let a class F of real functions and numbers γ > 0, δ > 0 be given.
Then for any probability distribution P on X × {−1, 1}, with probability 1 − δ,
any function f ∈ F with margin bound mS( f ) > γ on a random sample S has
classification error

errP ( f ) ≤ 4

l

(
logN (γ/2,F , 2l) + log

2

δ

)

for all l.1

We define the fat-shattering dimension of a class F of functions. Let γ > 0. A
set X = {x1, . . . , xl} of objects is called γ-shattered if numbers r1, . . . , rl exist such
that for any subset E ⊆ X a function fE ∈ F exists such that fE (xi ) ≥ ri + γ if
xi ∈ E and fE (xi ) < ri − γ if xi /∈ E for all i .

The fat-shattering dimension fatγ(F) of a class F is equal to the cardinality of
the maximal γ-shattered set X . The fat-shattering dimension of the class F depends
on the parameter γ > 0. A class F has infinite fat-shattering dimension if there are
γ-shattered sets of arbitrarily large size.

Covering and Packing numbers. Consider these notions from a more general
position. Let (D, d) be ametric spacewith ametric d(x, y)which defines the distance
between any two elements x, y ∈ X .

Let A ⊆ D, B ⊆ A, and α be a positive number. The set B is called an α-cover of
the set A if for any a ∈ A a b ∈ B exists such that d(a, b) < α. A covering number
of the set A is a function:

Nd(α, A) = min{|B| : B is an α-covering of A}. (6.4)

We say that the set B ⊆ D is α-separated if d(a, b) > α for any a, b ∈ B such that
a �= b. A packing number of the set A is a function

Md(α, A) = max{|B| : B ⊆ A is α-separated}. (6.5)

The covering number and the packing number are closely related.

1By log r we mean logarithm to base 2.
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Lemma 6.1 For any A ⊆ D and α > 0,

Md(2α, A) ≤ Nd(α, A) ≤ Md(α, A).

The main purpose of this section is to present an outline of the proof of Theorem6.5.
To carry this out, we need to further develop our dimension theory for functions with
a finite number of values.

Let X be a set and B = {0, 1, . . . , b} be a finite set. Also, let F ⊆ BX be a class
of functions with domain X and range in the finite set B. Consider a metric on F :

l( f, g) = sup
x∈X

| f (x) − g(x)| .

Any two functions f, g ∈ F are said to be separated (2-separated) if l( f, g) > 2. In
other words, an x ∈ X exists such that | f (x) − g(x)| > 2. A class F is said to be
pairwise separated if any two different functions f, g ∈ F are separated.

Let X = {x1, . . . , xn} ⊆ X be a linearly ordered set—a sample—and F ⊆ BX .
We say that the class F strongly shatters the set X if there exists a collection s =
{s1, . . . , sn} of elements of B such that for all E ⊆ X a function fE ∈ F exists such
that fE (xi ) ≥ si + 1 if xi ∈ E and fE (xi ) ≤ si − 1 if xi /∈ E , for all i . In this case
we also say that F strongly shatters the set X according to s. The strong dimension
of F , denoted Sdim(F), is the size of the largest set strongly shattered by F .

We will shift our attention from real-valued functions f : X → [0, 1] to ones
taking values in a finite set by a simple discretization. For any real α > 0 define

f α(x) =
[

f (x)
α

]
for all x , where [r ] is the closest integer to r such that |r −[r ]| ≤ 1

2 .

If the number r is located in the middle of the interval between two integer numbers
we define [r ] using some tie-breaking rule. Define Fα = { f α : f ∈ F}.

Clearly, the range of any function f α is a subset of the set {0, 1, . . . , 	1/α
}.
The covering numberNd(α, A) and the packing numberMd(α, A)were defined

by (6.4) and (6.5).
Let us define a specific metric on the class F connected with the set X =

{x1, . . . , xn}: lX ( f, g) = max
1≤i≤n

| f (xi ) − g(xi )|. Consider the corresponding cov-

ering and packing numbers:

N (α,F , X) = NlX (α,F),

M(α,F , X) = MlX (α,F).

The following lemma relates the combinatorial dimensions and packing numbers
of the classes F and Fα.

Lemma 6.2 Let F ⊆ BX and α > 0. Then

Sdim(Fα) ≤ fatα/2(F), (6.6)

M(α,F , X) ≤ M(2,Fα/2, X). (6.7)
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We can now state the main result of the theory of combinatorial dimension—the
Alon, Ben-David, Cesa-Bianchi, and Haussler theorem [1].

Theorem 6.5 Let F ⊆ [0, 1]X and α ∈ [0, 1]. Denote d = fatα/4(F). Then

N (α,F , n) ≤ 2

(
n

(
2

α
+ 1

)2
)�d log( 2en

dα )�
.

The following lemma is the main technical part of the proof of Theorem6.5.

Lemma 6.3 Let |X | = n and B = {0, 1, . . . , b}. Also, let F ⊆ BX and d =
Sdim(F). Then Ml(2,F) ≤ 2(n(b + 1)2)�log y�, where y =

d∑
i=1

(n
i

)
bi .

Using the fact that the covering number does not exceed the packing number, inequal-
ity (6.7) of Lemmas6.2 and 6.3, we obtain the following chain of inequalities:
N (α,F , n) = sup

|X |=n
N (α,F , X) ≤ sup

|X |=n
M(α,F , X) ≤ sup

|X |=n
M(2,Fα/2, X) =

Ml(2,Fα/2) ≤ 2(n(b + 1)2)�log y�, where b = � 2
α�.

Note that the class Fα/2 satisfies the assumption of Lemma6.3 for b = � 2
α�.

From inequality (6.6) of Lemma6.2, the inequality d ′ ≤ fatα/4(F) = d follows.

Hence, y ≤
d∑

i=1

(n
i

)
bi ≤ bd

d∑
i=1

(n
i

) ≤ bd
( en

d

)d . In particular, log y ≤ d log
(

ben
d

)
.

The following corollary is a reformulation of this theorem with a little attenuation
of estimates.

Corollary 6.4 Let F be a class of functions X → [a, b], where a < b. For 0 <

γ < 1 denote d = fatγ/4(F). Then

logN (γ,F , l) ≤ 1 + d log
2el(b − a)

dγ
log

4l(b − a)2

γ2 .

Corollaries6.3 and 6.4 imply the following

Corollary 6.5 Let F be a class of real functions with the range [−1, 1], γ > 0,
δ > 0, and P be a probability distribution generating a sample S. Then, with
probability 1 − δ, any hypothesis f ∈ F with the margin bound mS( f ) ≥ γ has
classification error

errP ( f ) ≤ 4

l

(
d log

16el

dγ
log

128l

γ2 + log
2

δ

)
,

where d = fatγ/8(F).

A dimension-free upper bound on the fat-shattering dimension can be obtained for
the class of all (homogeneous) linear functions onRn with restricted domain.
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Theorem 6.6 Let X = {x̄ : |x̄ | ≤ R} be a ball of radius R in n-dimensional
Euclidian space and F be the class of all homogeneous linear functions f (x̄) =
(w̄ · x̄), where ‖w̄‖ ≤ 1 and x̄ ∈ X. Then

fatγ(F) ≤
(

R

γ

)2

.

Substituting the bound of Theorem6.6 into the bound of Corollary6.5, we obtain
the final theorem:

Theorem 6.7 Consider the classification problem by use of linear homogeneous
functions f (x̄) = (w̄ · x̄), where x̄ ∈ Rn and ‖w̄‖ ≤ 1.

Let a number γ > 0 and a probability distribution P concentrated in the
ball of radius R and centered at the origin be given. Also, let a sample S =
((x̄1, y1), . . . , (x̄l , yl)) be generated by the probability distribution P. Then, with
probability 1 − δ, any classification hypothesis f with margin bound mS( f ) ≥ γ
has classification error

errP ( f ) ≤ 4

l

(
64R2

γ2 log
elγ

4R
log

128Rl

γ2 + log
2

δ

)
. (6.8)

The bounds of Theorems6.6 and 6.7 form the basis of the theory of dimension-free
bounds of classification errors.

Inseparable training sample. Now we extend the upper bound (6.8) to the case
where a training sample is not completely separated by a classification function.
This estimate serves as a basis for setting the corresponding optimization problem
of constructing an optimal classifier.

Let a class F of functions of type X → R be given. Their domain X is a subset
of Rn . Any such function f ∈ F defines a classifier:

h(x) =
{
1 if f (x) ≥ 0,

−1 otherwise.

Let a sample S = ((x1, y1), . . . , (xl , yl)) be given and γi = yi f (xi ) be the margin
of an example (xi , yi ) ∈ X × {−1, 1} with respect to a function f ∈ F .

We define the margin slack variable of an example (xi , yi ) ∈ X × {−1, 1} with
respect to a function f ∈ F and target margin γ > 0 to be the quantity

ξi = max{0, γ − yi f (x̄i )}.

This is the amount by which the function f fails to achieve margin γ for the example
(xi , yi ).

A vector ξ̄ = (ξ1, . . . , ξl) is called the margin slack vector of a training set
S = ((x1, y1), . . . , (xl , yl)). By definition yi f (xi ) + ξi ≥ γ for all i .
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If the normof vector ξ̄ is positive the training sample is inseparable by the classifier
f (x̄) with a threshold of γ > 0. Theorem6.7 is not directly applicable in this case.
However, in the case of a linear classifier in Euclidian space Rn we can replace

this problem by an equivalent one in a space of higher dimension, where a modified
training set is separable. The corresponding result of Shawe-Taylor and Cristianini
[5, 8] is presented in the following theorem.

Theorem 6.8 Let γ > 0 and L be a class of all linear homogeneous functions
f (x̄) = (w̄ · x̄), where ‖w̄‖ ≤ 1. Also, let P be a probability distribution on
X × {−1, 1} with support a ball of radius R centered at the origin and there is no
discrete probability on misclassified training points.

Then for any δ > 0, with probability 1 − δ, any classifier f ∈ L has a general-
ization error

errP ( f ) ≤ c

l

(
R2 + ‖ξ̄‖2

γ2 log2 l + log
1

δ

)
,

where ξ̄ is the margin slack vector with respect to f and a target margin γ > 0 and
c is a constant.

6.4 Rademacher Averages

In this section, we consider another definition of the capacity of a class of functions,
Rademacher averages. Let zl = (z1, . . . , zl) be a sample of unlabeled examples
whose elements belong to some set X structured as a probability space, and P be
a probability distribution on X . Assume that the elements of zl are generated in the
i.i.d. manner according to the probability distribution P . Also let F be a class of
real-valued functions defined on X .

Let σ1, . . . ,σl be i.i.d. Bernoulli variables taking values +1 and −1 with equal
probability: B1/2(σi = 1) = B1/2(σi = −1) = 1/2 for all 1 ≤ i ≤ l. Such variables
are called Rademacher variables.

Define the empirical Rademacher average of the class F as the random variable
(that is a function of random variables z1, . . . , zl )

R̃l(F) = Eσ

(
sup
f ∈F

1

l

l∑

i=1

σi f (zi )

)
.

The Rademacher average of the class F is defined as

Rl(F) = EPl (R̃l(F)) = EPl Eσ

(
sup
f ∈F

1

l

l∑

i=1

σi f (zi )

)
.

By definition the Rademacher average is the mathematical expectation of the
empirical Rademacher average with respect to probability distribution P .
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Rademacher averages give us a powerful tool to obtain uniform convergence
bounds. We present some properties of Rademacher averages, which will be used
for obtaining the uniform upper bounds of the generalization error.

Assume that the elements of a sample zl = (z1, . . . , zl) are generated i.i.d. by
some probability distribution P . By definition the empirical mean of a function f
on the sample zl equals

Êzl ( f ) = 1

l

l∑

i=1

f (zi ).

The truemathematical expectationof the function f is equal to EP ( f )=∫
f (z)P(dz).

Theorem 6.9 The following uniform bounds over class F are valid:

• Bound on the difference between the empirical and true expectations

Ezl∼Pl

(
sup
f ∈F

(
EP ( f ) − Êzl ( f )

))
≤ 2Rl(F). (6.9)

• Bounds on the difference between the expectation of the function and the sample
mean of this function: for any δ > 0, with probability 1 − δ, for all f ∈ F ,

EP ( f ) ≤ Êzl ( f ) + 2Rl(F) +
√
ln 2

δ

2l
,

EP ( f ) ≤ Êzl ( f ) + 2R̃l(F) + 3

√
ln 2

δ

2l
.

• Rademacher complexity of composition: assume that φ be an L-Lipschitz contin-
uous function, i.e., |φ(x) − φ(y)| ≤ L|x − y| for all x and y. Then

R̃l(φ(F)) ≤ LR̃l(F), (6.10)

Rl(φ(F)) ≤ LRl(F). (6.11)

Proof (of inequality (6.9)). Given a random sample zl = (z1, . . . , zl), let z̃l =
(z̃1, . . . , z̃l)be a “ghost sample.”Thismeans that randomvariables z̃i are independent
of each other and of zi , i = 1, . . . , l, and have the same distribution as the latter.

The following chain of equalities and inequalities is valid:

Ezl∼Pl

(
sup
f ∈F

(
EP ( f ) − 1

l

l∑

i=1

f (zi )

))

= Ezl∼Pl

(
sup
f ∈F

(
1

l

l∑

i=1

Ez̃i ∼P ( f (z̃i ) − f (zi ))

))
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≤ Ezl∼Pl

(
Ez̃l∼Pl

(
sup
f ∈F

(
1

l

l∑

i=1

( f (z̃i ) − f (zi ))

)))

= Ezl z̃l∼P2l

(
sup
f ∈F

(
1

l

l∑

i=1

( f (z̃i ) − f (zi ))

))
(6.12)

= Ezl z̃l∼P2l Eσ∼B1/2

(
sup
f ∈F

(
1

l

l∑

i=1

σi ( f (z̃i ) − f (zi ))

))

≤ Ez̃l∼Pl Eσ∼B1/2

(
sup
f ∈F

(
1

l

l∑

i=1

σi f (z̃i )

))

+ Ezl∼Pl Eσ∼B1/2

(
sup
f ∈F

(
1

l

l∑

i=1

σi f (zi )

))
= 2Rl(F). (6.13)

We are allowed to insert σi in line (6.13) since the mathematical expectation of the
supremum in (6.12) is invariant under the transposition of any variables zi and z̃i ;
this is why we can insert the symbol of mathematical expectation Eσ∼B1/2 in (6.13).�
Proof (of inequalities (6.10) and (6.11)). Let zl = (z1, . . . , zl) be a random sample
distributed according to a probability distribution P , σ1, . . . ,σl be i.i.d. Bernoulli
random variables taking values in the set {−1,+1}, and let Pl be the probability
distribution on the set of all such sequences of length l induced by P .

The transformations given below are valid for mathematical expectations E =
Eσ and E = EPl Eσ . Thus we will prove both inequalities (6.10) and (6.11)
simultaneously.

By definition the (empirical) Rademacher average of the class φ(F) is equal to

Rl(φ(F)) = E

(
1

l

l∑

i=1

σiφ( f (zi ))

)
. (6.14)

For simplicity, we assume that L = 1.2 We need to prove that

Rl(φ(F)) ≤ Rl(F) = E

(
1

l

l∑

i=1

σi f (zi )

)
. (6.15)

We make the transition from (6.14) to (6.15) step by step. At each step, we consider
a sequence of auxiliary functions (φ1, . . . ,φl), where each function φi is φ or the
identity function I .

At the first step all the functions are φ: φi = φ for all i , at the last step all these
functions are identity functions φi = I for all i .

2One can replace the function φ by φ/L .
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We also assume that at each step, except the last one, φ1 = φ. In the transition
to the next step the next function φi = φ will be replaced by the identity function:
φ′

i = I . This will be achieved by the following chain of equalities and inequalities:

E

⎛

⎝ sup
f ∈F

1

l

l∑

i=1

σi φi ( f (zi ))

⎞

⎠

= 1

2l
E

⎛

⎝ sup
f ∈F

⎛

⎝φ( f (z1)) +
l∑

i=2

σi φi ( f (zi ))

⎞

⎠ + sup
f ∈F

⎛

⎝−φ( f (z1)) +
l∑

i=2

σi φi ( f (zi ))

⎞

⎠

⎞

⎠

= 1

2l
E

⎛

⎝ sup
f, f ′∈F

⎛

⎝φ( f (z1)) +
l∑

i=2

σi φi ( f (zi )) − φ( f ′(z1)) +
l∑

i=2

σi φi ( f ′(zi ))

⎞

⎠

⎞

⎠

≤ 1

2l
E

⎛

⎝ sup
f, f ′∈F

⎛

⎝∣∣ f (z1) − f ′(z1)
∣∣ +

l∑

i=2

σi φi ( f (zi )) +
l∑

i=2

σi φi ( f ′(zi ))

⎞

⎠

⎞

⎠

= 1

2l
E

⎛

⎝ sup
f, f ′∈F

⎛

⎝ f (z1) − f ′(z1) +
l∑

i=2

σi φi ( f (zi )) +
l∑

i=2

σi φi ( f ′(zi ))

⎞

⎠

⎞

⎠

≤ 1

2l
E

⎛

⎝ sup
f ∈F

⎛

⎝ f (z1) +
l∑

i=2

σi φi ( f (zi )) + sup
f ′∈F

⎛

⎝− f ′(z1) +
l∑

i=2

σi φi ( f ′(zi ))

⎞

⎠

⎞

⎠

⎞

⎠

= E

⎛

⎝ sup
f ∈F

1

l

l∑

i=1

σi φ
′
i ( f (zi ))

⎞

⎠, (6.16)

where the collection of functionsφ′
1, . . . ,φ

′
l contains onemore identity function than

the previous collection φ1, . . . ,φl .
In transition from the first line to the second one, we take the mathematical expec-

tation over σ1; after that one can still consider E as the expectation over the whole set
σ, because now the variable σ1 is absent. In transition from the third line to the fourth
one, we have used the observation that the supremum is achieved by non-negative
values of the difference φ( f (z1)) − φ( f ′(z1)), so we can replace it by its absolute
value. After that, Lipschitz’s condition has used for L = 1. A similar reasoning was
used in the transition from the fourth line to the fifth one. The transition from the
fifth line to the sixth one was done by the same reasoning as the transition from the
first line to the second one.

Applying several times the chain of transformations (6.16) we obtain the
expression

E

(
sup
f ∈F

1

l

l∑

i=1

σiφ
′
i ( f (zi ))

)
, (6.17)

where all φ′
i are identity functions, and so the sum (6.17) is equal toRl(F).
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The first line of the chain (6.16) is equal to Rl(φ(F)) for E = EPl Eσ or to
R̃l(φ(F)) for E = Eσ . Thus, the inequalities (6.10) and (6.11) are satisfied. �

The connection of the Rademacher average with other known measures of capac-
ity of classes of functions—the growth function BF (l) and the covering number
N (α,F , l)—is presented in the following theorem.

Theorem 6.10 The following inequalities are valid:

• The Rademacher average and the growth function:
Let F be a class of indicator functions taking values in the set {−1,+1}. Then

Rl(F) ≤
√
2 ln BF (l)

m

for all l.
• The empirical Rademacher average and the covering number:

R̃l(F) ≤ inf
α

⎛

⎝
√
2 lnN (α,F , zl)

l
+ α

⎞

⎠.

• The Rademacher average and the covering number:

Rl(F) ≤ inf
α

(√
2 lnN (α,F , l)

l
+ α

)
.

For more information see Bartlett and Mendelson [2], Bartlett et al. [3], and Shawe-
Taylor and Cristianini [9].

Rademacher averages and generalization error. Now,we present upper bounds
on the generalization error for classification functions defined by threshold functions
from RKHS (reproducing kernel Hilbert space). On kernels in statistical learning
theory seeScholkopf andSmola [7], Steinwart [10], Shawe-Taylor andCristianini [9].

LetF be a Hilbert space of functions defined on some setX . We also assume that
this space isRKHS, i.e., it is generated by a reproducing kernel K (x, y). Any function
f ∈ F is represented as a scalar product f (x) = ( f · φ(x)), where φ(x) = K (x, ·).
An example of such an RKHS can be defined by a mapping φ : Rn → RN . Let

F be a space of functions f (x̄) = (w̄ · φ(x̄)), where x̄ ∈ Rn , w̄ ∈ RN and (w̄ · w̄′)
is the dot product in RN . The norm of f is defined as ‖ f ‖ = ‖w̄‖, and the scalar
product of functions f and g(x̄) = (w̄′ · φ(x̄)) is defined as ( f · g) = (w̄ · w̄′). The
function K (x̄, ȳ) = (φ(x̄) · φ(ȳ)) is the corresponding kernel.

Any function f ∈ F defines the classifier

h(x) =
{
1 if f (x) ≥ 0,

−1 otherwise.
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Let F1 = { f ∈ F : ‖ f ‖ ≤ 1}. In the example above, F1 is the class of functions
f (x̄) = (w̄ · φ(x̄)) such that ‖w̄‖ ≤ 1.
Assume that a training set S = ((x1, y1), . . . , (xl , yl)) is given, where xi ∈ X

and yi ∈ {−1, 1}.
Let K = (K (xi , x j ))

n
i, j=1 be the Gram matrix defined by the values of the kernel

on objects of the sample S; tr(K) = ∑l
i=1 K (xi , xi ) is the trace of the matrix K.

Now we estimate the empirical Rademacher average of the class F1 relative to
the training set S.

Theorem 6.11 The empirical Rademacher average of the class F1 relative to the
training set S = ((x1, y1), . . . , (xl , yl)) satisfies the inequality:

R̃l(F1) ≤ 1

l

√
tr(K). (6.18)

Proof The following chain of equalities and inequalities is valid:

R̃l(F1) = Eσ

(
sup
f ∈F1

1

l

l∑

i=1

σi f (xi )

)

= Eσ

(
sup

‖ f ‖≤1

(
f · 1

l

l∑

i=1

σiφ(xi )

))

≤ 1

l
Eσ

(∥∥∥∥∥

l∑

i=1

σiφ(x̄i )

∥∥∥∥∥

)

= 1

l
Eσ

⎛

⎝
(

l∑

i=1

σiφ(xi ) ·
l∑

i=1

σiφ(xi )

)1/2⎞

⎠

≤ 1

l

⎛

⎝Eσ

⎛

⎝
l∑

i, j=1

σiσ j K (xi , x j )

⎞

⎠

⎞

⎠
1/2

= 1

l

(
l∑

i=1

K (xi , xi )

)1/2

.

Here in the transition from the second line to the third theCauchy–Schwarz inequality
was used, and in the transition from the third line to the fourth the definition of the
norm vector was used. In the transition from the fourth line to the fifth Jensen’s
inequality was used, in the transition from the fifth line to the sixth, we have used the
independence of the random variables σi and equalities E(σ2

i ) = 1 and E(σiσ j ) =
E(σi )E(σ j ) = 0 for i �= j . The theorem is proved. �
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Let S = ((x1, y1), . . . , (xl , yl)) be a sample and γi = yi f (xi ) be the margin of
an example (xi , yi ) ∈ X × {−1, 1} with respect to a function f ∈ F .

Given a number γ > 0, let ξi = max{0, γ − yi f (xi )} be the margin slack variable
for a function f and ξ̄ = (ξ1, . . . , ξl) be the corresponding margin slack vector.

Define an auxiliary function f (x, y) = −y f (x) and the corresponding class of
functions with domain X × {−1, 1}:

F2 = { f (x, y) : f (x, y) = −y f (x), f ∈ F1}.

Let

χ(x) =
{
1 if x ≥ 0,

0 otherwise.

Also, let sign(r) = 1 for r ≥ 0 and sign(r) = −1 otherwise.
Assume that examples (xi , yi ) of the training set S are generated i.i.d. by some

probability distribution P . It is easy to verify that P{(x, y) : y �= sign( f (x))} ≤
EP (χ(−y f (x))).LetK = (K (xi , x j ))

n
i, j=1 be theGrammatrix defined by the kernel

and the training set S.
The following theorem gives an upper bound for the generalization error of the

classifier defined by the kernel K .

Theorem 6.12 For any δ > 0 and l, with probability 1−δ, for any function f ∈ F1,

P{y �= sign( f (x))} ≤ 1

lγ

l∑

i=1

ξi + 2

lγ

√
tr(K) + 3

√
ln 2

δ

2l
. (6.19)

Note that the right side of (6.19) is a random variable.

Proof Define the auxiliary function

g(r) =

⎧
⎪⎨

⎪⎩

1 if r > 0,

1 + r/γ if − γ ≤ r ≤ 0,

0 otherwise.

Since g(r) ≥ χ(r) for all r , and by Theorem6.9, with probability 1 − δ,

EP (χ( f (x, y))) ≤ EP (g( f (x, y)))

≤ ẼS(g( f (x, y))) + 2R̃l(g ◦ F2) + 3

√
ln(2/δ)

2l
. (6.20)

By definition of the margin slack variable g(−yi f (xi )) ≤ ξi/γ for 1 ≤ i ≤ l.
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Let us bound the empirical Rademacher average of the class F2:

R̃l(F2) = Eσ

(
sup
f ∈F2

1

l

l∑

i=1

σi f (xi , yi )

)

= Eσ

(
sup
f ∈F1

1

l

l∑

i=1

σi yi f (xi )

)

= Eσ

(
sup
f ∈F1

1

l

l∑

i=1

σi f (xi )

)

= R̃l(F1) ≤ 1

l

√
tr(K ).

Since the function g is Lipschitz continuous with the constant L = 1/γ, we have, by
Theorem6.9, R̃l(g ◦ F2) ≤ R̃l(F2)/γ = R̃l(F1)/γ. By definition for any f ∈ F2

ẼS(g ◦ f ) = 1

l

l∑

i=1

g(−yi f (x̄i )) ≤ 1

lγ

l∑

i=1

ξi .

By the inequalities (6.20) and (6.18) of Theorem6.11, with probability 1 − δ,

EP (χ( f (x, y))) ≤ 1

lγ

l∑

i=1

ξi + 2

lγ

√
tr(K) + 3

√
ln(2/δ)

2l
.

The theorem is proved. �

Let us turn to the example of F given above. Unlike the bound (6.8) obtained in
the theory of fat-shattering dimension, the bound (6.19) has best constants and does
not require prior knowledge of the radius of a ball containing vectors of the training
sample.

The bound (6.19) is worse than a similar estimate obtained using the fat-shattering
dimension. Let ‖x̄i‖ ≤ R for all 1 ≤ i ≤ l. For small values, the order of the variable
2
lγ

√
tr(K) ≤ 2

lγ

√
l R2 = 2

√
R2

lγ2
is much greater than the order of the leading term of

the bound (6.8) of Theorem6.7, which is approximately O
(

R2

lγ2

)
.
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