
Chapter 24
Lower Bounds for Sparse Coding

Andreas Maurer, Massimiliano Pontil and Luca Baldassarre

Abstract We give lower bounds on the reconstruction error for PCA, k-means clus-
tering, and various sparse coding methods. It is shown that the two objectives of
good data approximation and sparsity of the solution are incompatible if the data
distribution is evasive in the sense that most of its mass lies away from any low
dimensional subspace. We give closure properties and examples of evasive distribu-
tions and quantify the extent to which distributions of bounded support and bounded
density are evasive.

24.1 Introduction

Much recent work in machine learning and signal processing has concentrated on
the problem of approximating high dimensional data x ∈ R

N by sparse linear com-
binations of the columns of a dictionary matrix1 D = [d1, ..., dK ] ∈ R

N×K—see,
for example, [3, 4, 6–12] and references therein. For a fixed dictionary D every such
linear combination has the form

Dy =
K∑

i=1

yi di ,

1 Throughout the chapter, with some abuse of notation we use D to denote both the dictionary
matrix and the dictionary D = {d1, . . . , dK } ⊆ R

N .
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where the vector of coefficients y is chosen to be a solution of the optimisation
problem

min
y∈Λ

‖x − Dy‖2 . (24.1)

Here Λ ⊆ R
K is a fixed regularizing set, which implements constraints on the

complexity of the chosen representations. We denote by y(x) such a solution, and it
is one inherent objective that the vectors y (x) obtained should be sparse, in that the
number of their nonzero coefficients is much smaller than the ambient dimension N .
If y (x) is not sparse itself, it should at least have a close sparse approximation.

We assume that the data x are distributed at random according to a distribution μ
onRN corresponding to a randomvariable X taking values inRN . The reconstruction
error ‖X − Dy (X)‖2 is then a random variable and its expectation

R (D) = E ‖X − Dy (X)‖2

measures the failure of D to match the distribution μ. Thus, given Λ, one wishes to
choose D so as to minimize R (D).

In this chapter we show that these methods are likely to produce poor results
for a large class of seemingly well-behaved distributions on R

N , because the two
objectives are incompatible: With high probability the representing vector y (X)

is either not very sparse (or does not have a good sparse approximation), or the
reconstruction error is large. Our negative results are independent of any problem
of sample-based estimation and still hold if we have complete knowledge of the
distribution μ.

The “bad” distributions μ have the following property of evasiveness: For any low
dimensional subspace M , the overwhelming majority of the mass of μ is bounded
away from M . Below we use the notation d (x, M) = inf z∈M ‖x − z‖.
Definition 24.1 Suppose αk is a nonincreasing sequence of positive real numbers,
β, C > 0. A random variable X with values in RN is said to be (α,β, C)-evasive if
for every k < N , every k-dimensional subspace M of RN and every t ∈ (0,αk)

Pr
{

d (X, M)2 ≤ αk − t
}

≤ Ce−Nβt2 .

A probability measure μ on R
N is called (α,β, C)-evasive if the corresponding

random variable is.

We give two examples:

Example 24.1 (Noisy generative model) If Y is any random variable in R
N and Z

is a centered isotropic Gaussian with variance σ2 and independent of Y , then the
random variable X = Y + Z is evasive with

αk = σ2 N − k − π2 − 1

N
, β = 1

2σ4π2 , C = 2,



24 Lower Bounds for Sparse Coding 361

as will be shown in Sect. 24.3.2. With Y taking values in a union of low dimensional
subspaces generated by some potentially unknown dictionary, the random variable
X can be viewed as a generative model contaminated by noise. Here we will prove
lower bounds in the order of σ2.

Example 24.2 (Bounded support and bounded density) While the previous example
is of a special form, this example is more generic. If a distribution μ has support in
the unit ball BN of RN and a bounded density dμ/dρ with respect to the uniform
measure ρ on BN , then μ is evasive with

αk =
∥∥∥∥

dμ

dρ

∥∥∥∥

−2
N−k

∞
N − k

e3/2N
, β = 1, C = 1,

where ‖.‖∞ is the essential supremum norm w.r.t. ρ. This will be shown in Theorem
24.3 below.

We come to the announced negative results. Suppose first that in (24.1) a hard
sparsity constraint is implemented by the regularizing set

Λs =
{

y ∈ R
K : ‖y‖0 ≤ s

}
, (24.2)

where ‖y‖0 is the number of nonzero components of y and s is any integer s ≤ K .
An easy union bound then gives the following result:

Theorem 24.1 Let D = [d1, ..., dK ] ∈ R
N×K be any dictionary and suppose that

X is (α,β, C)-evasive. Then for any integer s ≤ K and t ∈ (0,αs)

Pr
X∼μ

{
min
y∈Λs

‖X − Dy‖2 ≤ αs − t

}
≤ C exp

(
−Nβt2 + s ln K

)
. (24.3)

If s ln K � N the reconstruction error is bounded away from zero with high
probability.

We might hope to improve this situation by requiring the encoding vectors y to be
sparse only in some approximate sense. The next result holds for all vectors y ∈ R

K ,
sparse or not, and exhibits a tradeoff between the quality of two approximations:
the approximation of the data by Dy and the �1-approximation of y by its nearest
vector of prescribed sparsity. For y = (y1, . . . , yK ) ∈ R

K and s < K let ys denote
the s-sparse approximation of y, obtained by setting all components yi equal to zero
except for the s indices where |yi | is largest.
Theorem 24.2 Let D be any dictionary with ‖di‖ = ‖Dei‖ ≤ B and suppose that
X is (α,β, C)-evasive. Then for every δ ∈ (0, 1) we have with probability at least
1 − δ for every y ∈ R

K and every s ∈ {1, ..., K } that

‖X − Dy‖2 ≥ αs

2
− 1

2

√
(1 + s) ln K + ln C

δ

Nβ
− B2

∥∥y − ys
∥∥2
1 .
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In many applications we can assume B = 1. So if s ln K � N and ‖y − ys‖1 is
small (so that y has a close s-sparse approximation) then the reconstruction error is
of order αs .

Below we use these results on PCA, K-means clustering and sparse coding and
delimit the class of distributions to which these methods of unsupervised learning
can be successfully applied.

24.2 Applications and Examples

The framework described in the introduction is general enough to capture many
approaches to unsupervised learning.

24.2.1 PCA

In problem (24.1), if Λ is all of RK with K = s � N , then an optimal D is found to
be an isometry from R

K to a maximal K -dimensional subspace of the covariance of
X . The resulting method is PCA, and trivially every representing vector is s-sparse,
namely y(x) has at most s = K nonzero components.

We could apply Theorem 24.1, but this would incur a superfluous term K ln K in
the exponent of the bound. Instead, by directly appealing to the definition, we find
that for (α,β, C)-evasive X and any dictionary D

Pr

{
min

y∈RK
‖X − Dy‖2 < αK − t

}
≤ Ce−βNt2 .

An illustration of the evasiveness of bounded densities (Example 24.2 above) is the
following: Suppose we do PCA in one thousand dimensions, and we know that the
data distribution is contained in the unit ball. If we find a 100-dimensional subspace
which achieves an expected reconstruction error of ≈0.1, then the supremum of the
distribution density (if such exists, and relative to the uniform measure on the ball)
must be at least in the order of 1045. The supremum relative to the Lebesgue measure
must be at least 1045/V1000 ≈ 101800, where VN is the volume of the unit ball in
R

N . To derive this we use (αK − t)
(
1 − C exp

(−βNt2
))

as a simple lower bound
on the expected reconstruction error with t = 0.05, N = 1000, K = 100, β = 1,
C = 1, equate the bound to 0.1, and solve for the bound on the density.
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24.2.2 K-means Clustering

At the other extreme fromPCA, ifΛ = {e1, ..., eK } is a basis forRK , then themethod
becomes K -means clusteringor vector quantization, and the optimal dictionary atoms
d1, ..., dK are just the optimal centers. In this case the complexity constraint can be
seen as a maximal sparsity requirement, as every member y of Λ satisfies ‖y‖0 = 1,
but we may now allow K > N .

With Λs defined as in (24.2) we find {e1, ..., eK } ⊆ Λ1, so appealing to Theorem
24.1 we find for (α,β, C)-evasive X and any dictionary D

Pr

{
min

y∈{e1,...,eK } ‖X − Dy‖2 < α1 − t

}
≤ Pr

{
min
y∈Λ1

‖X − Dy‖2 < α1 − t

}

≤ C exp
(
−Nβt2 + ln K

)
.

Of course there is a slight giveaway here, because Λ1 is somewhat more expressive
than {e1, ..., eK }.

24.2.3 Sparse Coding Methods

To make Λ more expressive we can relax the extreme sparsity constraint, setting
Λ = Λs with 1 ≤ s � N . This is the situation directly addressed by Theorem 24.1,
which immediately gives a lower error bound. The corresponding method is not very
practical, however, because of the unwieldy nature of the �0-function.

The alternative is to replace (24.1) with the following optimization problem

min
y∈RK

‖x − Dy‖2 + γ ‖y‖1 , (24.4)

where γ is some positive constant, thus encouraging sparsity through the use of the
�1-norm regularizer. A large body of work has been dedicated to the study of this
and related methods, the success of which depends on different coherence properties
of D, see [1–3] and references therein. The search for an optimal D in this case
corresponds to the sparse coding method proposed by Olshausen and Field [10],
which was originally motivated by neurophysiological studies of the mammalian
visual system.

A similar approach uses the initial formulation (24.1) and takesΛ to be a multiple
of the �1-unit ball. It relates to (24.4) as Ivanov regularization relates to Tychonov
regularization.

Another example in this suite of methods is nonnegative matrix factorization, as
proposed by Lee and Seung [6], where the di are required to be in the positive orthant
of RN .
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Theorem 24.2 immediately applies to all these cases and shows that for evasive
distributions the requirements of good data approximation and approximate sparsity
are incompatible.

24.3 Proofs

We review our notation and then prove the announced results.
For every vector y ∈ R

K , we let ‖y‖0 denote the number of nonzero components
of y. We say that y is s-sparse if ‖y‖0 = s. We denote by ys an s-sparse vector which
is nearest to y according to the �1 norm. For every linear subspace M of RN , we let
PM be the corresponding projection matrix and define d(x, M) = inf z∈M ‖x − z‖,
namely the distance of x to the linear subspace M . Note that d(x, M) = ‖PM⊥ x‖,
where M⊥ is the orthogonal complement of M . We denote by ‖ · ‖ the �2 norm of a
vector and by ||| · ||| the operator norm of a matrix. For every n ∈ N, we let Bn be
the unit ball in R

n and let Vn be its volume.
If ν and ρ are measures on the same space and ν (A) = 0 for every A satisfying

ρ (A) = 0, then ν is called absolutely continuousw.r.t.ρ and there exists ameasurable
density function dμ/dρ, called the Radon-Nykodym derivative, such that dν =
(dν/dρ) dρ.

24.3.1 Limitations of Sparse Coding

We prove Theorems 24.1 and 24.2.

Proof (Proof of Theorem 24.1) For S ⊆ {1, ..., K } let MS denote the subspace
spanned by the di with i ∈ S. In the event on the left-hand side of (24.3) there is
some subset S ⊆ {1, ..., K } with cardinality |S| ≤ s such that d (X, MS)2 ≤ αs − t .
The dimension of MS is at most s, so we get from a union bound that

Pr

{
min

y:‖y‖0≤s
‖X − Dy‖2 ≤ αs − t

}

≤ Pr
{
∃S ⊆ {1, ..., K } , |S| ≤ s, d (X, MS)2 ≤ αs − t

}

≤
(

K

s

)
Ce−Nβt2 ≤ C exp

(
−Nβt2 + s ln K

)
.

�

Proof (Proof of Theorem 24.2) Denote

ts (s) = min
{
αs,

√
((1 + s) ln K + ln (C/δ)) / (Nβ)

}
.
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For any s ∈ {1, ..., K }, x ∈ R
N and y ∈ R

K we have the following sequence of
implications:

‖x − Dy‖2 <
αs − t (s)

2
− B2

∥∥y − ys
∥∥2
1 (24.5)

implies ‖x − Dy‖ + B
∥∥y − ys

∥∥
1 <

√
αs − t (s) (24.6)

implies ‖x − Dy‖ + ∥∥D
(
y − ys)∥∥

1 <
√

αs − t (s) (24.7)

implies
∥∥x − Dys

∥∥2 < αs − t (s) . (24.8)

(24.5) =⇒ (24.6) follows from (a + b)2 ≤ 2a2 + 2b2, (24.6) =⇒ (24.7) from
‖Dy‖ ≤ B ‖y‖1, because of the bound on ‖di‖, and (24.7) =⇒ (24.8) from the
triangle inequality. Thus

Pr

{
∃s ∈ N, ∃y ∈ R

n, ‖X − Dy‖2 ≤ αs − t (s)

2
− B2

∥∥y − ys
∥∥2
1

}

≤ Pr
{
∃s ∈ N, ∃y ∈ R

n, ‖y‖0 ≤ s, ‖X − Dy‖2 ≤ αs − t (s)
}

≤
K∑

s=1

Pr
{
∃y ∈ R

n, ‖y‖0 ≤ s, ‖X − Dy‖2 ≤ αs − t (s)
}

≤
K∑

s=1

C exp
(
−Nβt2s + s ln K

)
by Theorem 24.1

≤ δ by definition of t (s) .

�

24.3.2 Evasive Distributions

The parameters (α,β, C) of an evasive distribution transform under the operations
of scaling, translation and convolution.

Proposition 24.1 Let X be (α,β, C)-evasive with values in R
N . Then

(i) AX is
(|||A−1|||−2α, |||A−1|||4β, C

)
-evasive for every nonsingular N × N

matrix A;
(ii) cX is

(
c2α, c−4β, C

)
-evasive for every c ∈ R;

(iii) X + z is
(
α′,β, C

)
-evasive with α′

k = αk+1, for every z ∈ R
N ;

(iv) X + Z is
(
α′,β, C

)
-evasive with α′

k = αk+1, for every random variable Z
independent of X.
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Proof If A is nonsingular and M is any k-dimensional subspace of RN then for
z ∈ M ∥∥∥X − A−1z

∥∥∥ =
∥∥∥A−1 (AX − z)

∥∥∥ ≤ |||A−1||| ‖AX − z‖ ,

which shows that d (AX, M) ≥ |||A−1|||−1d
(
X, A−1M

)
. We therefore have for

t ∈ (
0, |||A−1|||−2α

)
that

Pr
{

d (AX, M)2 < |||A−1|||−2αk − t
}

≤ Pr

{
d

(
X, A−1M

)2
< αk − |||A−1|||2t

}

≤ exp
(
−Nβ|||A−1|||4t2

)
,

since A−1M is also k-dimensional. (ii) is just (i) applied to A = cI . (iii) follows
from

d (X + z, M) = d (X, M − z) ≥ d (X,Span (M, z))

and the observation that the dimension of Span(M, z) is at most dim M + 1. Finally
(iv) follows from (iii) by first conditioning on Z :

Pr
{

d (X + Z , M)2 < αk+1 − t
}

= E
[

E
[
1{

X :d(X+Z ,M)2<αk+1−t
}|Z

]]

≤ E
[
Ce−Nβt2

]
.

�

Next we show that the normalized isotropic Gaussian in R
N is evasive.

Proposition 24.2 Let X be an isotropic Gaussian random variable with values in
R

N and E ‖X‖2 = 1. Then for any k-dimensional subspace M we have

Pr

{
d (X, M)2 <

N − k − π2

N
− t

}
≤ 2e−Nt2/

(
2π2

)
.

Proof For any k-dimensional subspace M we consider the Gaussian random variable
PM X and find

E
[
‖PM X‖2

]
= k/N . (24.9)

We also note the Gaussian concentration property for the norm [5]

Pr {|E ‖PM X‖ − ‖PM X‖| > t} ≤ 2 exp
(
−2Nt2/π2

)
, (24.10)
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which we will use repeatedly. For a bound on the variance of the norm we first use
it together with integration by parts to get

E
[
(‖PM X‖ − E ‖PM X‖)2

]
≤ 4

∫ ∞

0
t exp

(
−2Nt2/π2

)
dt = π2

N
.

This implies that E
[‖PM X‖2] ≤ (E ‖PM X‖)2 + π2/N , and hence

Pr
{

E
[
‖PM X‖2

]
− ‖PM X‖2 > t + π2/N

}

≤ Pr
{
(E ‖PM X‖)2 − ‖PM X‖2 > t

}

= Pr {(E ‖PM X‖ − ‖PM X‖) (E ‖PM X‖ + ‖PM X‖) > t} .

Observe that the latter probability is nonzero only if ‖PM X‖ ≤ E ‖PM X‖, and that
by Jensen’s inequality and (24.9) E ‖PM X‖ ≤ √

k/N ≤ 1. Using (24.10) again we
therefore obtain

Pr
{

E
[
‖PM X‖2

]
− ‖PM X‖2 > t

}
≤ Pr

{
E ‖PM X‖ − ‖PM X‖ >

t

2

}
.

From (24.9) and (24.10)

Pr

{
‖PM X‖2 <

k − π2

N
− t

}
≤ 2e−Nt2/

(
2π2

)
,

and applying this inequality to the orthogonal complement M⊥ instead of M gives
the conclusion. �

The isotropic Gaussian is thus evasive with αk = N−k−π2

N ,β = 1/2π2, C = 2.
Using Proposition 24.1 (ii) and (iv) with c = σ and addition of an appropriate
independent random variable Y proves the claim about noisy generative models
made in the introduction.

We now show that evasiveness is a generic behavior in high dimensions, if the
distribution in question has a bounded support and a bounded density.

Theorem 24.3 Let the random variable X be distributed as μ in R
N , where μ is

absolutely continuous w.r.t. the uniform measure ρ on the unit ball BN of RN . For
every k let

αk =
∥∥∥∥

dμ

dρ

∥∥∥∥

−2
N−k

∞
N − k

e3/2N
.

Then for every k-dimensional subspace M we have, for t ∈ (0,αk),

Pr
{

d (X, M)2 ≤ αk − t
}

≤ e−Nt2 . (24.11)
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Fig. 24.1 The sequence αk for ‖dρ/dμ‖∞ = 1 (dashed line) and ‖dρ/dμ‖∞ = 1010 (solid line)
with N = 100

For applications of the properties of evasive distributions it is crucial that the
numbers αk be reasonably large and decrease slowly. Figure24.1 plots the decay of
theαk when N = 100 and‖dμ/dρ‖∞ = 1 (corresponding to the uniformdistribution
on the ball B100) or ‖dμ/dρ‖∞ = 1010 respectively.

To prove Theorem 24.3 we need the following technical lemma. Recall that we
use Vn to denote the volume of the unit ball in Rn .

Lemma 24.1 For every N , k ∈ N and 1 ≤ k < N we have

N − k

Ne
≤

(
VN

Vk VN−k

) 2
N−k

.

Proof For simplicity we only prove the case where k and N are even. The formula

Vn = πn/2

Γ (n/2 + 1)

shows that

Vk VN−k

VN
= Γ (N/2 + 1)

Γ (k/2 + 1) Γ (N/2 − k/2 + 1)

=
(

N/2

k/2

)
=

(
N/2

(N − k) /2

)

≤
(

Ne

N − k

) N−k
2

,

where the last inequality is a well-known bound on the binomial coefficients. The
result follows. �
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Proof (Proof of Theorem 24.3) First we work relative to Lebesgue measure λ. Let

a =
∥∥∥∥

dμ

dλ

∥∥∥∥∞
=

∥∥∥∥
dμ

dρ

∥∥∥∥∞
V −1

N .

Fix a k-dimensional subspace M . We prove the bound by considering the worst
possible density whichmaximizes the probability in (24.11), subject to the constraint
that ‖dμ/dλ‖∞ = a and that μ be supported in the unit ball. Relaxing the constraint
on the support ofμ from theunit ball to a larger set X will only increase the probability.
We can therefore compute a bound on the probability by considering a distribution
μ′ which maximizes it, subject to the constraint that

∥∥dμ′/dλ
∥∥∞ = a and that μ′ is

supported in the cylinder (M ∩ BN )× M⊥, which contains the unit ball BN . Clearly
a solution to this optimization problem is given by the density

dμ′

dλ
(x) =

{
a if d (x, M) ≤ rmax
0 if d (x, M) > rmax

, x ∈ (M ∩ BN ) × M⊥,

where rmax is determined from the normalization requirement on μ′. This density
dμ′/dλ has the maximal value a on a slab of thickness 2rmax, parallel and symmetric
to M ∩ BN and it is zero elsewhere. If Vn denotes the volume of the unit ball in R

n

the volume of this slab is Vk VN−kr N−k
max , from which we find

rmax = (aVk VN−k)
−1/(N−k) =

(∥∥∥∥
dμ

dλ

∥∥∥∥∞
Vk VN−k

)−1/(N−k)

.

A similar computation for the volume of an analogous slab of thickness 2
√

ak − t
gives

Pr
{

d (X, M)2 ≤ αk − t
}

= Pr
{
d (X, M) ≤ √

αk − t
} =

(√
αk − t

rmax

)N−k

,

(24.12)
where the probability is computed according to μ′. Now we have to show that this is
bounded by e−Nt2 for t ∈ (0,αk).

We get from the lemma that

αk =
∥∥∥∥

dμ

dρ

∥∥∥∥

−2
N−k

∞

(
N − k

e3/2N

)

≤ e−1/2
∥∥∥∥

dμ

dρ

∥∥∥∥

−2
N−k

∞

(
VN

Vk VN−k

) 2
N−k

= e−1/2
(∥∥∥∥

dμ

dλ

∥∥∥∥∞
Vk VN−k

) −2
N−k
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= r2maxe−1/2

≤ t + r2max exp

(
− 2N

N − k
t2

)
.

The last step follows from

0 ≤ t ≤ αk = (N − k) /
(

e3/2N
)

≤ √
(N − k) / (4N ).

Thus

0 ≤ αk − t ≤ r2max exp

(
− 2N

N − k
t2

)
,

and substitution in (24.12) gives the conclusion. �
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