
Chapter 22
Strongly Consistent Detection
for Nonparametric Hypotheses

László Györfi and Harro Walk

Abstract Consider two robust detection problems formulated by nonparametric
hypotheses such that both hypotheses are composite and indistinguishable. Strongly
consistent testing rules are shown.

22.1 Composite Hypotheses Defined by Half Spaces
of Distributions

Let ν0, ν1 be fixed distributions onRd which are the nominal distributions under two
hypotheses. Let

V (ν,μ) = sup
A⊆Rd

|ν(A) − μ(A)|

denote the total variation distance between two distributions ν and μ, where the
supremum is taken over all Borel sets of Rd .

Let X, X1, X2, . . . be i.i.d. random vectors according to a common distribution
μ. We observe X1, . . . , Xn . Under the hypothesis Hj ( j = 0, 1) the distribution μ is
a distorted version of ν j . Formally define the two hypotheses by

H0 = {μ : V (μ, ν0) < V (μ, ν1)} ,
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and
H1 = {μ : V (μ, ν1) < V (μ, ν0)} .

Our aim is to construct a distribution-free strongly consistent test, whichmakes an
error only finitely many times almost surely (a.s.). The concept of strongly consistent
test is quite unusual: it means that both on H0 and on H1 the test makes a.s. no error
after a random sample size. In other words, denoting by P0 and P1 the probability
under the hypotheses H0 and H1, we have

P0{rejecting H0 for only finitely many n} = 1

and
P1{rejecting H1 for only finitely many n} = 1.

In a real-life problem, for example, when we get the data sequentially, one gets data
just once, and should make good inferences from these data. Strong consistency
means that the single sequence of inference is a.s. perfect if the sample size is large
enough. This concept is close to the definition of discernability introduced byDembo
and Peres [5]. For a discussion and references, we refer the reader to Biau and Györfi
[3], Devroye and Lugosi [7], Gretton and Györfi [10], and Györfi and Walk [15].

Motivated by a related goodness of fit test statistic of Györfi and van der Meulen
[14], we put

Ln,0 =
mn∑

j=1

|μn(An, j ) − ν0(An, j )|,

and

Ln,1 =
mn∑

j=1

|μn(An, j ) − ν1(An, j )|,

where μn denotes the empirical measures associated with the sample X1, . . . , Xn ,
so that

μn(A) = #{i : Xi ∈ A, i = 1, . . . , n}
n

for any Borel subset A, and Pn = {An,1, . . . , An,mn } is a finite partition of Rd .
We introduce a test such that the hypothesis H0 is accepted if

Ln,0 < Ln,1, (22.1)

and rejected otherwise.
The sequence of partitions P1,P2, . . . is called asymptotically fine if for any

sphere S centered at the origin

lim
n→∞ max

A∈Pn ,A∩S �=∅
diam(A) = 0.
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Theorem 22.1 Assume that the sequence of partitions P1,P2, . . . is asymptotically
fine and

lim
n→∞

mn

n
= 0. (22.2)

Then the test (22.1) is strongly consistent.

Proof Assume H0 without loss of generality. Then the error event means that

Ln,0 ≥ Ln,1.

Thus,

0 ≤
mn∑

j=1

|μn(An, j ) − ν0(An, j )| −
mn∑

j=1

|μn(An, j ) − ν1(An, j )|

≤ 2Ln +
mn∑

j=1

|μ(An, j ) − ν0(An, j )| −
mn∑

j=1

|μ(An, j ) − ν1(An, j )|,

where

Ln =
mn∑

j=1

|μn(An, j ) − μ(An, j )|.

Introduce the notation

ε = −(V (μ, ν0) − V (μ, ν1)) > 0.

The sequence of partitions P1,P2, . . . is asymptotically fine, which implies that

lim
n→∞

⎛

⎝
mn∑

j=1

|μ(An, j ) − ν0(An, j )| −
mn∑

j=1

|μ(An, j ) − ν1(An, j )|
⎞

⎠

= 2 (V (μ, ν0) − V (μ, ν1))

= −2ε,

(cf. Biau and Györfi [3]). Thus, for all n large enough,

Pe,n = P{error} ≤ P{0 ≤ 2Ln − ε}.

Beirlant et al. [2] and Biau and Györfi [3] proved that, for any δ > 0,

P{Ln > δ} ≤ 2mn e−nδ2/2.
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Therefore
Pe,n ≤ 2mn e−nε2/8.

Because of (22.2),
∞∑

n=1

Pe,n < ∞,

and so the Borel-Cantelli lemma implies that a.s.

Ln,0 − Ln,1 < 0

for all n large enough, i.e., the error

Ln,0 − Ln,1 ≥ 0

occurs a.s. for only finitely many n. Thus, strong consistency is proved. �

In a straightforward way, the proof of Theorem22.1 can be extended to infinite
partitions if we assume that for each sphere S centered at the origin

lim
n→∞

|{ j : An, j ∩ S �= ∅}|
n

= 0.

Next, a variant of the test (22.1) with much smaller computational complexity
will be defined. The test statistic is based on a recursive histogram. In this section
we assume that the partitions are infinite and all cells of the partitions have finite and
positive Lebesgue measure λ. Let An(x) denote the cell of Pn to which x belongs.
The density estimate

fn(x) := 1

n

n∑

i=1

I{Xi ∈Ai (x)}
λ(Ai (x))

is called a recursive histogram.
For A ∈ Pn , introduce the estimate

μ∗
n(A) :=

∫

A
fn(x)dx .

Notice that μ∗
n(A) can be calculated in a recursive way, which is important in on-line

applications. These definitions imply that
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μ∗
n(A) = 1

n

n∑

i=1

∫

A

I{Xi ∈Ai (x)}
λ(Ai (x))

dx = 1

n

n∑

i=1

∫

A

I{x∈Ai (Xi )}
λ(Ai (Xi ))

dx

= 1

n

n∑

i=1

λ(A ∩ Ai (Xi ))

λ(Ai (Xi ))
.

If the sequence of partitions P1,P2, . . . is nested, i.e., the sequence of σ-algebras
σ(Pn) is non-decreasing, then for A ∈ Pn let the ancestor B(i)

A ∈ Pi be such that

A ⊆ B(i)
A (i ≤ n). One can check that for nested partitions the estimate has the

following form:

μ∗
n(A) = 1

n

n∑

i=1

I{Xi ∈B(i)
A }

λ(A)

λ(B(i)
A )

.

Put
L∗

n, j :=
∑

A∈Pn

|μ∗
n(A) − ν j (A)|

( j = 0, 1). We introduce a test such that the hypothesis H0 is accepted if

L∗
n,0 < L∗

n,1, (22.3)

and rejected otherwise.

Theorem 22.2 Assume that the sequence of partitions P1,P2, . . . is asymptotically
fine such that

∞∑

n=1

1

n2 inf j λ(An, j )
< ∞.

Further suppose that μ has a density. Then the test (22.3) is strongly consistent.

Proof Assume H0 without loss of generality. One notices

L∗
n,0 − L∗

n,1 ≤ 2L∗
n + Q∗

n,

where
L∗

n =
∑

A∈Pn

|μ∗
n(A) − μ(A)|,

and
Q∗

n =
∑

A∈Pn

|μ(A) − ν0(A)| −
∑

A∈Pn

|μ(A) − ν1(A)| .

By Biau and Györfi [3],

Q∗
n → 2(V (μ, ν0) − V (μ, ν1)) < 0,
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the latter because of H0. Next L∗
n → 0 a.s. will be shown. Denote the density of μ

by f . Thus

L∗
n =

∑

A∈Pn

∣∣∣∣
∫

A
fn(x)dx −

∫

A
f (x)dx

∣∣∣∣ ≤
∫

| fn(x) − f (x)|dx .

Therefore we have to prove the strong L1-consistency of the recursive histogram.
Consider the bias part. Introduce the ordinary histogram:

f̃n(x) := 1

n

n∑

i=1

I{Xi ∈An(x)}
λ(An(x))

,

and put

f̄n(x) := E{ f̃n(x)} = μ(An(x))

λ(An(x))
.

According to the Abou-Jaoude theorem, if the sequence of partitions P1,P2, . . . is
asymptotically fine, then ∫

| f̄n − f | → 0

(cf. Devroye and Györfi [6]). Thus, for the bias term of the recursive histogram, we
get

∫
|E{ fn} − f | =

∫ ∣∣∣∣∣
1

n

n∑

i=1

f̄i − f

∣∣∣∣∣ ≤ 1

n

n∑

i=1

∫
| f̄i − f | → 0. (22.4)

For the variation term of the recursive histogram, we apply the generalized theorem
of Kolmogorov. Let Un , n = 1, 2, . . . be an L2-valued sequence of independent,
zero-mean random variables such that

∞∑

n=1

E{‖Un‖22}
n2 < ∞

where ‖ · ‖2 denotes the L2 norm. Then

lim
n→∞

∥∥∥∥∥
1

n

n∑

i=1

Ui

∥∥∥∥∥
2

= 0

a.s. (cf. Györfi et al. [11]). For

Un := I{Xn∈An(·)}
λ(An(·)) − E

{
I{Xn∈An(·)}
λ(An(·))

}
,
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one has to verify the condition of the generalized Kolmogorov theorem:

∞∑

n=1

E

{∥∥∥ I{Xn∈An (·)}
λ(An(·)) − E

{
I{Xn∈An (·)}
λ(An(·))

}∥∥∥
2

2

}

n2 ≤
∞∑

n=1

E

{∥∥∥ I{Xn∈An (·)}
λ(An(·))

∥∥∥
2

2

}

n2

=
∞∑

n=1

E

{∫ I{Xn∈An (x)}
λ(An(x))2

dx
}

n2

=
∞∑

n=1

E

{∫ I{x∈An (Xn )}
λ(An(Xn))2

dx
}

n2

=
∞∑

n=1

E

{
1

λ(An(Xn))

}

n2

≤
∞∑

n=1

1

n2 inf j λ(An, j )
< ∞,

by the condition of the theorem, and so

∫
| fn − E{ fn}|2 → 0 (22.5)

a.s. From Lemma3.1 in Györfi and Masry [13] we get that the limit relations (22.4)
and (22.5) imply ∫

| fn − f | → 0

a.s. Therefore a.s.
L∗

n,0 − L∗
n,1 < 0

for all n large enough, and so strong consistency is proved. �

22.2 Composite Hypotheses Defined by Half Spheres
of Distributions

Again, under the hypothesis H ′
j ( j = 0, 1) the distribution μ is a distorted version

of ν j . In this section we assume that the true distribution lies within a certain total
variation distance of the underlying nominal distribution.

We formally define the two hypotheses by

H ′
j = {

μ : V (μ, ν j ) < Δ
}
, j = 0, 1, (22.6)

http://dx.doi.org/10.1007/978-3-319-21852-6_3
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where
Δ := (1/2)V (ν0, ν1).

Because of
H ′

j ⊆ Hj , j = 0, 1 ,

the test (22.1) in the previous section is strongly consistent. In this section we intro-
duce a simpler test. For the notations

f = dν

d(ν + μ)
and g = dμ

d(ν + μ)
,

the general version of Scheffé’s theorem implies that

V (ν,μ) = ν(A∗) − μ(A∗),

where
A∗ = {x : f (x) > g(x)} .

Introduce the notation

A0,1 = {x : f0(x) > f1(x)} = {x : f0(x) > 1/2} ,

where

f0 = dν0

d(ν0 + ν1)
and f1 = dν1

d(ν0 + ν1)
.

The proposed test is the following: accept hypothesis H ′
0 if

μn(A0,1) ≥ ν0(A0,1) + ν1(A0,1)

2
, (22.7)

and reject otherwise.
Then, we get that

Theorem 22.3 The test (22.7) is strongly consistent.

Proof Assume H0 without loss of generality. Put

ε = Δ − V (μ, ν0) > 0.

Observe that by the Scheffé theorem [22],

ν0(A0,1) − μ(A0,1) ≤ V (ν0,μ)

= Δ − ε

= 1

2
V (ν0, ν1) − ε
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= 1

2

(
ν0(A0,1) − ν1(A0,1)

) − ε.

Rearranging the obtained inequality, we get that

μ(A0,1) ≥ ν0(A0,1) + ν1(A0,1)

2
+ ε . (22.8)

Therefore, (22.8) and Hoeffding’s inequality [16] imply that

P{error} = P

{
μn(A0,1) <

ν0(A0,1) + ν1(A0,1)

2

}

≤ P
{
μ(A0,1) − μn(A0,1) > ε

}

≤ e−2nε2 .

Therefore the Borel-Cantelli lemma implies strong consistency. �

22.3 Discussion

22.3.1 Indistinguishability

For the hypotheses H0 and H1 there is no positive margin, because the gap between
H0 and H1 is just the hyperplane

{μ : V (μ, ν0) = V (μ, ν1)} .

Moreover, the margin is zero:

inf
μ∈H0,ν∈H1

V (μ, ν) = 0.

Without any positive margin condition it is impossible to derive a uniform bound on
the error probabilities. The pair (H0, H1) of hypotheses is called distinguishable if
there is a sequence of uniformly consistent tests, which means that the errors of the
first and second kind tend to zero uniformly. For a test Tn with sample size n, let
αn,μ(Tn) and βn,μ(Tn) denote the errors of the first and second kind, resp. Put

αn(Tn, H0) = sup
μ∈H0

αn,μ(Tn), βn(Tn, H1) = sup
μ∈H1

βn,μ(Tn).

A sequence of tests Tn , n = 1, 2, . . . is called uniformly consistent if

lim
n→∞(αn(Tn, H0) + βn(Tn, H1)) = 0.
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It is known that a necessary condition of the distinguishable property is that for any
distribution μ

max

{
inf

ν∈H0
V (μ, ν), inf

ν∈H1
V (μ, ν)

}
> 0.

(See Barron [1], Ermakov [9], Hoeffding and Wolfowitz [17], Kraft [18], LeCam
[19], LeCam and Schwartz [20], Schwartz [23].) Obviously, this necessary condition
is not satisfied when μ∗ = (ν1 + ν2)/2. Because of

max

{
inf

ν∈H ′
0

V (μ∗, ν), inf
ν∈H ′

1

V (μ∗, ν)

}
= 0,

the pair (H ′
0, H ′

1) of hypotheses is indistinguishable, too.

22.3.2 Computation

The hypothesis testing method (22.7) proposed above is computationally quite sim-
ple. The set A0,1 and the nominal probabilities ν0(A0,1) and ν1(A0,1) may be com-
puted and stored before seeing the data. Then onemerely needs to calculateμn(A0,1).

22.3.3 Hypotheses Formulated by Densities

Devroye et al. [8] formulated a special case of hypotheses (H ′
0, H ′

1), when μ, ν0,
and ν1 have densities f , f0, and f1. Under some mild margin condition they proved
uniformexponential bounds for the probability of failure for k ≥ 2 hypotheses.More-
over, they illustrated robustness of these bounds under additive noise, and showed
examples where the test (22.7) is consistent and the maximum likelihood test does
not work. Formally, the maximum likelihood test Tn is defined by

Tn =
{
0 if

∑n
i=1(log f0(Xi ) − log f1(Xi )) > 0

1 otherwise.

For f ∈ H ′
0, the strong law of large numbers implies the strong consistency of the

maximum likelihood test if both integrals
∫

f log f0 and
∫

f log f1 are well defined,
and ∫

f log f0 >

∫
f log f1.
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22.3.4 Robustness

Note that Theorem22.3 does not require any assumptions about the nominal distri-
butions. The test is robust in a very strong sense: we obtain consistency under the
sole assumption that the distorted distribution remains within a certain total variation
distance of the nominal distribution. For example, if μ is either (1 − δ)ν0 + δτ , or
(1 − δ)ν1 + δτ with arbitrary “strange” distribution τ such that δ < Δ, then we
have (22.6):

V (μ, ν0) = V ((1 − δ)ν0 + δτ , ν0)

= V (δτ , δν0)

≤ δ

< Δ.

The outliers’ distribution τ is really arbitrary. For example, it may not have expec-
tations, or may even be a discrete distribution. The probability of outlier δ can be
at most equal to Δ. The outliers can be formulated such that we are given three
independent i.i.d. sequences {Ui }, {Vi }, {Ii }, where {Ui }, {Vi } are R

d -valued, and
{Ii } are binary. Put

Xn = (1 − In)Un + In Vn .

If Un is ν0 distributed, Vn is τ distributed, P{In = 1} = δ, then we get the previous
scheme. Other application include the case of censored observations, when Vn is
a distortion of Un such that some components of the vector Un are censored. In
this scheme δ is the probability of censoring. Notice that in order to estimate the
distribution from censored observations one needs samples {(Xi , Ii )}n

i=1 (cf. Györfi
et al. [12]), while for detection it is enough to have {Xi }n

i=1.

22.3.5 Open Problems

1. Characterize the distributionsμ ∈ H0\H ′
0 where the simple test (22.7) is strongly

consistent. As in the proof of Theorem 22.3, strong consistency can be verified if

μ(A0,1) >
ν0(A0,1) + ν1(A0,1)

2
.

We are interested in non-consistent examples, too.
2. Maybe one can improve the test (22.1), since in the construction of the partitions

we don’t take into account the properties of ν0 and ν1. For example, we can
include somehow the set A0,1.
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22.3.6 Sequential Tests

We dealt with sequences of nonparametric tests with increasing sample size n, where
almost surely type I and II errors occur only for finitelymany n. One has to distinguish
them from nonparametric sequential tests with power one (cf. Darling and Robbins
[4], Sect. 6 in Robbins [21], Sect. 9.2 in Sen [24]). Such tests almost surely terminate
at a random sample size with rejection of a null hypothesis H0 after finitely many
observations, if the alternative hypothesis is valid, and with positive probability do
not terminate if H0 is valid (open-ended procedures). In the latter case an upper bound
of the complementary probabilities is an upper bound for the type I error probability.
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