Chapter 20
PAC-Bayes Bounds for Supervised
Classification

Olivier Catoni

Abstract We present in this contribution a synthesis of Seeger’s (PAC-Bayesian
generalization error bounds for Gaussian process classification, 2002) and our own
(Catoni, PAC-Bayesian Supervised Classification: The Thermodynamics of Statis-
tical Learning, 2007) approach of PAC-Bayes inequalities for 0-1 loss functions.
We apply it to supervised classification, and more specifically to the proof of new
margin bounds for support vector machines, in the spirit of the bounds established by
Langford and Shawe-Taylor (Advances in Neural Information Processing Systems,
2002) and McAllester (Learning Theory and Kernel Machines, COLT 2003).

20.1 PAC-Bayes Bounds for 0-1 Loss Functions

In this section, we are given some i.i.d. sample (W,‘)f’:1 € W", where W is a
measurable space, and some binary measurable loss function L : W x & — {0, 1},
where © is a measurable parameter space. Our aim is to minimize with respect to
0 € O the expected loss

/ L(w, 0)dP(w),

where PP is the marginal distribution of the observed sample (W;)!"_,. More precisely,
assuming that IP is unknown, we would like to find an estimator a(Wl .n) depending

def .
on the observed sample Wj., = (Wi)l’;1 such that the excess risk

/L(wﬁ)le(w) —ein(l;/L(w,H)dIP(w)
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is small. The previous quantity is random, since @\depends on the random sample
Wi.,. Therefore its size can be understood in different ways. Here we will focus on
the deviations of the excess risk. Accordingly, we will look for estimators providing
a small risk with a probability close to one.

A typical example of such a problem is provided by supervised classification. In
this setting W = X x ), where ) is a finite set, W; = (X;, Y;), where (X;, ;) are
input-output pairs, a family of measurable classification rules { fo: X —=>V;0¢€ @}
is considered, and the loss function L(w, 0) is defined as the classification error

L[(x,y),0] = 1] fox) # y].

Accordingly the aim is to minimize the expected classification error

Py y[fo(X) # Y]

given a sample (X;, ¥;)?_, of observations.
The point of view presented here is a synthesis of the approaches of [2, 8].

20.1.1 Deviation Bounds for Sums of Bernoulli Random
Variables

Given some parameter A € R, let us consider the (normalized) log-Laplace transform
of the Bernoulli distribution:

def 1
D\(p) = -3 log[1 — p+ p exp(—N)].

Let us also consider the Kullback—Leibler divergence of two Bernoulli distributions
def q l—g¢
K(q.p) = q log(—) + 1 - q)log(—)-
P I—p

In the sequel P will be the empirical measure

1
P:;;(SWI.

of an ii.d. sample (W;)!_, drawn from P®" e M L(W") (the set of probability
measures on YW"). We will use a short notation for integrals, putting for any p, w €
M!1.(©) and any integrable function f € Li(W x 02, P ® 7 ® p)
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FP.pom) = / F(w, 6,6 dP(w) dp(6) dr (9,

so that for instance L(P, p) = / L(w, 0)dIP(w)dp(8).

Let us first recall Chernoff’s bound.

Proposition 20.1 For any fixed value of the parameter 6 € ©, the identity
/ exp[—nAL(P, 6)] dP®" = exp{—nA@[L(]P, 9)]}
shows that with probability at least 1 — ¢,
L(P,0) < B4[L(P, 0),log(e¢™")/n],

where

B.i(q,8) = inf &' +é

HEO= TR Y \IT
=supfpel0.11: K@.p s}, qel0.1], seRy,

Moreover

—0q < B4(q,0) —q —v20q(1 —q) =26(1 —¢q).
In the same way, the identity
/exp[n/\L(F, 0)]aP®" = exp{m\(b_,\[L(]P, 9)]}
shows that with probability at least 1 — ¢
L(P,0) < B_[L(P, 0),log(c ")/n],
where
B_(q,9) inf @_)\(q) + 0
_ =i _ -
q, AR, Alg X
—sup{pel0.11: K(p.q) <6}, gel0.1.6€Ry,

and

—0q < B_(q,0) —q —+/20q(1 —q) <26(1 —q).

Before proving this proposition, let us mention some important identities.
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Proposition 20.2 For any probability measures 7 and p defined on the same mea-
surable space such that KC(p, m) < 00, and any bounded measurable function h, let
us define the transformed probability measure Texpny <K T by its density

ATexp(h) B exp(h)
dr =~ Z

where Z = f exp(h) dm. Moreover, let us introduce the notation
Var(hdr) = [(h — [hdr)® dr.

The expectations with respect to p and 7 of h and the log-Laplace transform of h are
linked by the identities

Shdp—K(p, m) + K(p, Texpn)) = log[ [ exp(h) dr] (20.1)

= [hdr + [3(1 — ) Var[h dmexpan | dav. (20.2)

Proof The first identity is a straightforward consequence of the definitions of mexpn)
and of the Kullback-Leibler divergence function. The second one is the Taylor expan-
sion of order one with integral remainder of the function

f(@) = log[ [ exp(ah) dr],

which says that £(1) = £(0) + f'(0) + [¢(1 — @) f"(a) da. 0

Exercise 20.1 Prove that f € C°°. Hint: write
[0}
h* exp(ah) = h* + / W exp(vh) dy,
0

use Fubini’s theorem to show that o > [ h* exp(ah) dm belongs to C! and compute
its derivative. U

Let us come now to the proof of Proposition 20.1. Chernoff’s inequality reads

1 -1 _
og’) _ 1B, 9),
ni

D\[L(P,0)] -

where the inequality holds with probability at least 1 — e. Since the left-hand side is
non-random, it can be optimized in A, giving

L(P,0) < BL[L(P, 0),log(e¢™")/n].
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Exercise 20.2 Prove this statement in more detail. For any integer k > 1, consider

the event o
A = { sup FOO) — k! > L(]P,e)},
)\ERJr

1 —1
where F(\) = ®,[L(P, 6)] — &A)' Show that P®" (A;) < e by choosing some
n
suitable value of A\. Remark that A; C Ay and conclude that P®” (Uk Ak) <e O

Since
1 —exp(—Ag — 9) _

5
lim @' )= 1 1,
Amrpoo A ("+A) Ambse T—exp(—n) =

Bi(gq,0) < 1.
Applying Eq. (20.1) to Bernoulli distributions gives

APy\(p) = Aq + K(q, p) — K(q, p»)

where
p

T p+ - pexpN)

DA
This shows that

Bi(q,9) = sup{p €[0,1] : x(p) =g+ % A€ IR+}
=sup{p g, 11: K(g. p) <3+ K(g. pr), A € Ry}
=sup{p e lg. 11: K(q. p) = 3]
=supp e l0.11: Kig, p) <},

-1

because when g < p < 1 then A = log(ql—l) € R4, g = p) and therefore
pl—
K(gq, py) =0. )

0
Let us remark now that ﬁK(x, p) = xil(l — x)fl. Thusif p > g > 1/2,
X

then 5
(p—q)

K N = T 1 >
(g.p) = 200 —q)

so that if K(gq, p) <, then
p=q++/26q(1—q).

Now if ¢ < 1/2 and p > ¢ then
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(P_Q)z 2
—_—, <1/2 (p—q)
K(q,p) = 12p(1—p) P / Z%,
20— p=1/2 Pi—a
so that if K (g, p) < d, then
(p—q)* <25p(1 —q),

implying that

p—qg=06(1—¢q)+ \/2561(1 —q) + 021 = ¢)? = 20q(1 — q) +25(1 — q).
On the other hand,

(p —q)? _(r—9?
2min{g(1 —¢), p(1 — p)} ~ 2q(1 — p)’

K(q, p) <

thus if K (g, p) = 6 with p > ¢, then

(p —q)* = 25q(1 — p),

implying that

p—a>—bg+20q(1 —q) + 6% > J25q(1 —q) — q.

Exercise 20.3 The second part of Proposition20.1 is proved in the same way and
left as an exercise. ]

20.1.2 PAC-Bayes Bounds

We are now going to make Proposition20.1 uniform with respect to 6. The PAC-
Bayes approach to this [3, 5-7] is to randomize 0, so we will now consider joint
distributions on (Wj.,, ), where the distribution of Wj., is still P®" and the con-
ditional distribution of # given the sample is given by some transition probability
kernel p : W' — ML(G)), called in this context a posterior distribution.! This pos-
terior distribution p will be compared with a prior (meaning non-random) probability
measure m € Mfr(@).

'We will assume that p is a regular conditional probability kernel, meaning that for any measurable
set A the map (wy, ..., wy) = plwy, ..., w,)(A) is assumed to be measurable. We will also
assume that the o-algebra we consider on ® is generated by a countable family of subsets. See [1]
(p- 50) for more details.
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Proposition 20.3 Let us introduce the notation

. _ 1)

For any prior probability measure 7 € ML(@) and any A € Ry,

/exp|: sup n/\{éA[L(]P,p)] —L(P, p)} — K(p, 7r):| dP®" < 1, (20.3)
pe ML (©)

and therefore for any finite set A C R, with probability at least 1 — e, for any
pe Mi(©),

K(p, m) + log(|A|/€))

L(P,p) < Ba (L(P P, -

Proof The exponential moment inequality (20.3) is a consequence of Eq.(20.1),
showing that

exp{ sup nA/{@[L(]P,G)] — L(P, 6‘)}dp(9) — K, w)]
peMl(©)

< /exp|:n/\{®>\[L(IP, 0)] - L(P, 9)}}@(9),

and of the fact that @) is convex, showing that

A[LE. )] = [ AL 0)]dp0).

The deviation inequality follows as usual. (]

We cannot take the infimum on A € R4 as in Proposition 20.1, because we can
no longer cast our deviation inequality in such a way that \ appears on some non-
random side of the inequality. Nevertheless, we can get a more explicit bound from
some specific choice of the set A.

Proposition 20.4 Let us define the least increasing upper bound of the variance of
a Bernoulli distribution of parameter p € [0, 1] as

. _Jpd=p), p=<1/2,
u(p) = .
1/4, otherwise.
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Let us choose some positive integer parameter m and let us put

1
=1 1og(+).
4 8log[(m + 1) /€]
With probability at least 1 — €, for any p € Mi_(@),
L(P, p) < L(P, p) + Bu[L(P, p), K(p, 7). €],

where

B, (q, e, 6) = max{\/zi(Q){e + log[(m + 1)/6]} cosh(t/m)

n
N 21 —g){e+ 1:g[(m + 1)/€]} cosh(t /m)2,
2{e + log[(m + 1)/¢]} ]
n

_ \/25(q){e + log[(m + 1)/c]} cosh(t/m)

n

N 2{e + log[(m + 1)/¢]}
n

cosh(t/m)z.

Moreover, as soon as n > 5,

BUog(n)zj,l(q, e, €) < B(q,e,e€) def
\/25(q){e + log[log(n)?/e]}

n

cosh[log(n) "]

n Z{e + log[log(n)z/e

. I cosh[log(m) '], (20.4)

so that with probability at least 1 — ¢, for any p € Mﬂr(@)),

L(P, p) < L(P, p)

-1
. cosh[log(n) ]

J 29[ L(P, p)]{lC(p, ) + log[log(n)? /e]}
+

2{/C(p, )+ log[log(n)z/e]}

n

+

cosh [log(n)_l]z.
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Proof Let us put

q=L(P,p),
5 K(p, m) + log[(m + 1) /€]
= - ,
N 8log[(m + 1)/€]

n
A= {Al‘."/’”,kzo,...,m},

min
= Bu(q,8) = inf @' +é
p= oAl " dea r 4 A)

~ [
(p)

According to Eq. (20.2) applied to Bernoulli distributions, for any A € A,

IR 5
%(p):p—x/ A= a)pa(l = pa)da =g + .
0

Moreover, as p, < p,

. Au(p) 8 - h)
- f 2 —inf 2 h|1og( 2 ) |.
poa s ot S+ 5 = o VAo ()

Asv(p) < 1/4and d > M,

. 810g (m+ 1)/6
Vv(p B —

Therefore either Apin < <\ <1,or N > 1. Let us consider these two cases separately.
If Apin = min A < ) < max A = 1, then log® is at distance at most ¢ /m from
some log (/\) where A € A, because log(A) is a grid with constant steps of size 2¢ /m.

Thus
pP—q= \/mcosh(t/m).

If moreover g < 1/2,thenv(p) < p(1 —q), so that we obtain a quadratic inequality
in p, whose solution is bounded by

p < q+/25q(1 — q) cosh(t/m) +25(1 — q) cosh(t/m)".
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If on the contrary ¢ > 1/2, then v(p) = v(q) = 1/4 and
p<qg+ mcosh(t/m),
so that in both cases
p —q < \/265(q) cosh(t/m) +25(1 — g) cosh(t/m)’.
Let us now consider the case when A > 1. In this case v(p) < 24, so that

v(p)

6 < 26.
> +0 <

P—q=

In conclusion, applying Proposition 20.3 we see that with probability at least 1 —e,
for any posterior distribution p,

LP,p)<p<q+ max{25, V/265(q) cosh(t/m) + 25(1 — q) cosh(t/m)z},

which is precisely the statement to be proved.
In the special case when m = Llog(n)zj — 1> log(n)* —2,

1 n
4[log(n)? — 2] 10g(8 log[log(n)> — 1]

=<

) < log(n)™"

t
m

as soon as the last inequality holds, that is as soon as n > exp(v/2) ~~ 4.11 to make
log(n)? — 2 positive and

3log(n)? — 8 + log(n) log{Slog[log(n)2 — 1]} >0,

which holds true for any n > 5, as can be checked numerically. ]

20.2 Linear Classification and Support Vector Machines

In this section we are going to consider more specifically the case of linear binary
classification. In this setting W = & x Y = RY x {—=1,+1}, w = (x, y), where
xeRYandy € {—1,+1},® =R?, and

L(w,0) =1[(0, x)y <0].
We will follow the approach presented in [4, 5].

Although we will stick in this presentation to the case when X is a vector space
of finite dimension, the results also apply to support vector machines [9-11], where
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the pattern space is some arbitrary space mapped to a Hilbert space H by some
implicit mapping ¥ : X — H, ® = H and L(w,0) = ]l((@, ¥(x))y < 0).
It turns out that classification algorithms do not need to manipulate H itself, but
only to compute scalar products of the form k(x1, x2) = (¥ (x1), ¥ (x2)), defining
a symmetric positive kernel k£ on the original pattern space X'. The converse is also
true: any positive symmetric kernel k can be represented as a scalar product in some
mapped Hilbert space (this is the Moore—Aronszajn theorem). Often-used kernels
on R? are

k(x1,x2) = (1 + (x1,x2))", for which dimH < oo,
k(x1, x2) = exp(—|lx; — x2/|?), for which dimH = +oo.

In the following, we will work in R, which covers only the case when dim 'H <
0o, but extensions are possible.

After [4, 5], let us consider as prior probability measure 7 the centered Gaussian
measure with covariance /3 ~11d, so that

dr (B \"? BlgI?
@(9)_(%) exp(— > )

Let us also consider the function

+o00
o(x) = \/Lz_ﬂ/x exp(—1%/2)dt, xeR

o { 1 1} ( xz) R
min] ——, —texp{ ——1), «x .
=M 2P T *

Let my be the measure 7 shifted by 6, defined by the identity

/ h(@)dmg(0) = / h(O+0")dr(0).

In this case

B

mMm=5Wﬁ

and

L(w, ) = [/ ByllxlI~10, x)].

Thus the randomized loss function has an explicit expression: randomization replaces
the indicator function of the negative real line by a smooth approximation. As we are
ultimately interested in L(w, #), we will shift things a little bit, considering along
with the classification error function L some error with margin
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Mw,0) = 1[ylx| =6, x) < 1].

Unlike L(w, #) which is independent of the norm of #, the margin error M (w, )

depends on ||0]|, counting a classification error each time x is at distance less than

llx11/11€] from the boundary {x" : (#, x’) = 0}, so that the error with margin region

is the complement of the open cone {x € R?; y(6,x) > [x|}.
Let us compute the randomized margin error

M, o) = o[ VB[ IxI 0.0 ~ 1]}.
It satisfies the inequality

M(w, 79) = p(—V/B)L(w, 0) = [1 — p(\/B)]L(w, 0). (20.5)

Applying previous results we obtain

Proposition 20.5 With probability at least 1 — €, for any 6 € R,

L(P,§) < [1 — o(/B)] ' MP, m9) < C1(6).

where

_ _ 0112
1) =[1 - o(v3)] IB(M(IP, ), 5”2” ,e),

the bound B being defined by Eq.(20.4).

We can now minimize this empirical upper bound to define an estimator. Let us
consider some estimator 6 such that

C1(0) < inf C1(0) +C.
#cR4

Then for any fixed parameter 6,, C1(0) < C{(0,) 4+ (. On the other hand, with
probability at least 1 — €

M. m,) < B- (M(lP, 70.). log(;_l)).
Indeed
/exp{nA[M(F, 75,) — @ _\[M(P, m,*)]]] dpen
< /exp[n)\/{M(F, 0) — QB_A[M(IP,O)]}dﬁg*(G)]dIP@” <1,

because p > —®_)(p) is convex. As a consequence
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Proposition 20.6 With probability at least 1 — 2,

L(P,9) <
. - log(e™")\ Bl6.II°
el*léf@[l—go(\/ﬁ)] IB(B_(M(IP,F.Q*), . ) 5 ,e)+<.

It is also possible to state a result in terms of empirical margins. Indeed
M(w, m9) < M(w,0/2) + (V).
Thus with probability at least 1 — ¢, for any 6 € R9,
L(P,0) < C2(0),

where

Cr(0) =[1- w(\/ﬁ)]_lB(M(F, 0/2) +¢(\/5), 5”3”2 , e).

However, C1 and C; are non-convex criterions, and faster minimization algorithms
are available for the usual SVM loss function, for which we are going to derive some
generalization bounds now. Indeed, let us choose some positive radius R and let us
put ||lx|lg = max{R, [|x||}, so that in the case when ||x|| < R, |Ix||z = R.

Mw, mp) = ¢[VBIxI (0, x)=1)] < 2=ylxlz (0. x)) , +0(/B). (20.6)

To check that this is true, consider the functions

F@=e[VB(IxI~"z = 1)],
9@) = 2 - Ixllz'z), +o(/B). zeR.

Let us remark that they are both non-increasing, that f is convex on the interval
z € (lIxll, oo( (because ¢ is convex on Ry), and that sup f = supy = 1. Since
lxllg = llx|l, for any z € ]— o0, |lx|]], g(z) = 1 = f(z). Moreover, g2 x[|r) =
e(/B) = o[VBRIxI xllx — 1)] = (). Since on the interval [|x|l, 2/lx]| ]
the function g is linear, the function f is convex, and g is not smaller than f at the
two ends, this proves that g is not smaller than f on the whole interval. Finally,
on the interval z € [2||x (13 +oo[, the function g is constant and the function f is
decreasing, so that on this interval also g is not smaller than f, and this ends the
proof of (20.6), since the three intervals on which g > f cover the whole real line.
Using the upper bounds (20.6) and (20.5), and Proposition20.3, we obtain
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Proposition 20.7 With probability at least 1 — ¢, for any 6 € R,

LGR@)s[1—quEﬂ‘ﬁm(/XZ—yww;Wax»+dFa,w+~ﬂ«@x
6H0H24—210gﬂzﬂ/e))

2n
- I A
= 1=t 05 [es0n 0+ o) + IR
where 2
cwxm—/@_NNAWX»dmx)+mw
T e Y 2n\

Let us assume now that the patterns x are in a ball, so that || x|| < R almost surely.
In this case || x||g = R almost surely. Let us remark that L(IP, §) = L(IP, 2R 0), and
let us make the previous result uniform in 3 € E. This leads to

Proposition 20.8 Let us assume that ||x|| < R almost surely. With probability at
least 1 — ¢, forall § € R4,

L(P.6) < inf [1-o/B)]" inf ¢;1[2C4(5, A\ 0)

1 El|A
o B9

n
where

BR*6117

1 —
Ca(B, A, 0) = 5 C3(A. 2R ) =/(1 —y(0,x)), dP(x, y) + P

and

1 — exp(—Aq) __4

1 —exp(=\) — 1 — A
2

o (g =

The loss function C4 (), 6) is the most-employed learning criterion for support vector
machines, and is called the box constraint. It is convex in 6. There are fast algorithms
to compute infy C4()\, 0) for any fixed values of A and 3. Here we get an empirical
criterion which could also be used to optimize the values of A and (3, that is to
R?|0)?

optimize the strength of the regularizing factor PRI .

Here ||0]| ! can be interpreted as the margin width, that is the minimal distance of
x from the separating hyperplane {x" : (6, x’) = 0} beyond which the error term (1 -
v{0, x)) n vanishes (for data x that are on the right side of the separating hyperplane).

The speed of convergence depends on R?||#||%/n. For this reason, R?||6]|?, the square
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of the ratio between the radius of the ball containing the data and the margin, plays the
role of the dimension. The bound does not depend on d, showing that with separating
hyperplanes and more generally support vector machines, we can get low error rates
while choosing to represent the data in a reproducing kernel Hilbert space with a
large, or even infinite, dimension.

‘We considered so far only linear hyperplanes and data centered around 0. Anyhow,
this also covers affine hyperplanes and data contained in a not necessarily centered
ball, through a change of coordinates. More precisely, the previous proposition has
the following corollary:

Corollary 20.1 Assume that almost surely ||x — c|| < R, for some ¢ € R¢ and
R € R.. With probability at least 1 — ¢, for any § € R?, any v € R such that

min (0, x;) <~y < max (0,x;),
i=l1,..., n i=l1,..., n

1 2| |A
inf o7 [2Cs<ﬂ, X607+ o(/B) + W}

where

2119112
Cs(B. 1. 0.7) = /[1 —y((6.x) = )], dP(x, ) + @.
Proof Let us apply the previous result to x’ = (x — ¢, R),and ¢’ = [9, R~! ((9, c)—
7)]- We get that [x|> < 2R? and [|6/|> = 2|6, because almost surely
—I0|R < essinf(f,x —c) < v — (0,¢) < esssup(f,x —c) < ||0||R, so that
almost surely, for the allowed values of ~, ((9, c) — 7)2 < R?||0||>. This proves
that C4(5, A\, 0") < Cs(83, A, 0, ), as required to deduce the corollary from the
previous proposition. (]
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