
Chapter 17
Algorithmic Statistics Revisited

Nikolay Vereshchagin and Alexander Shen

Abstract The mission of statistics is to provide adequate statistical hypotheses
(models) for observed data. But what is an “adequate” model? To answer this ques-
tion, one needs to use the notions of algorithmic information theory. It turns out
that for every data string x one can naturally define a “stochasticity profile,” a curve
that represents a trade-off between the complexity of a model and its adequacy.
This curve has four different equivalent definitions in terms of (1) randomness defi-
ciency, (2) minimal description length, (3) position in the lists of simple strings, and
(4) Kolmogorov complexity with decompression time bounded by the busy beaver
function. We present a survey of the corresponding definitions and results relating
them to each other.

17.1 What Is Algorithmic Statistics?

The laws of celestial mechanics allow astronomers to predict the observed motion
of planets in the sky with very high precision. This was a great achievement of
modern science—but could we expect to find equally precise models for all other
observations? Probably not. Thousands of gamblers spent all theirs lives and their
fortunes trying to discover the laws of roulette (coin tossing, other games of chance)
in the same sense—but failed. Modern science abandoned these attempts. It says
modestly that all we can say about the coin tossing is the statistical hypothesis
(model): all trials are independent and (for a fair coin) both head and tail have
probability 1/2. The task of mathematical statistics therefore is to find an appropriate
model for experimental data. But what is “appropriate” in this context?
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To simplify the discussion, let us assume that experimental data are presented as
a bit string (say, a sequence of zeros and ones corresponding to heads and tails in the
coin-tossing experiment). We also assume that a model is presented as a probability
distribution on some finite set of binary strings. For example, a fair coin hypothesis
for N coin tossings is a set of all strings of length N where all elements have the
same probability 2−N . Restricting ourselves to the simplest case when a hypothesis
is some set A of strings with uniform distribution on it, we repeat our question:

Assume that a bit string x (data) and a set A containing x (a model) are given; when do we
consider A a good “explanation” for x?

Some examples show that this question cannot be answered in the framework of
classical mathematical statistics. Consider a sequence x of 100 bits (the following
example is derived from random tables [18]):

01111 10001 11110 10010 00001 00011 00001 10010 00010 11101
10111 11110 10000 11100 00111 00000 01111 01100 11011 01011

Probably you would agree that the statistical hypothesis of a fair coin (the set
A = B

100 of all 100-bit sequences) looks like an adequate explanation for this
sequence. On the other hand, you probably will not accept the set A as a good
explanation for the sequence y:

00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

but will suggest a much better explanation B = {y} (the coin that always gives
heads). On the other hand, set C = {x} does not look like a reasonable explanation
for x . How can we justify this intuition?

One could say that A is not an acceptable statistical hypothesis for y since the
probability of y according to A is negligible (2−100). However, the probability of x
for this hypothesis is the same, sowhy is A acceptable for x then? And if B looks like
an acceptable explanation for y, why does C not look like an acceptable explanation
for x?

Classical statistics, where x and y are just two equiprobable elements of A, cannot
answer these questions. Informally, the difference is that x looks like a “random”
element of A while y is “very special.” To capture this difference, we need to use the
basic notion of algorithmic information theory, Kolmogorov complexity,1 and say
that x has high complexity (cannot be described by a program that is much shorter
than x itself) while y has low complexity (one can write a short program that prints
a long sequence of zeros). This answers our first question and explains why A could
be a good model for x but not for y.

1We assume that the reader is familiar with basic notions of algorithmic information theory and use
them freely. For a short introduction see Chap.7; more information can be found in [14].

http://dx.doi.org/10.1007/978-3-319-21852-6_7
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We asked another question: why is B an acceptable explanation for y while C
is not an acceptable explanation for x? Here we need to look at the complexity of
the model itself: C has high complexity (because x is complex) while B is simple
(because y is simple).

Now let us consider different approaches to measuring the “quality” of statistical
models; they include several parameters and a trade-off between them arises. In
this way for every data string x we get a curve that reflects this trade-off. There
are different ways to introduce this curve, but they are all equivalent with O(log n)

precision for n-bit strings. The goal of this chapter is to describe these approaches
and equivalence results.

17.2 (α, β)-Stochastic Objects

Let us start with the approach that most closely follows the scheme described above.
Let x be a string and let A be a finite set of strings that contains x . The “quality” of
A as a model (explanation) for x is measured by two parameters:

• the Kolmogorov complexity C(A) of A;
• the randomness deficiency d(x | A) of x in A.

The second parameter measures how “non-typical” x is in A (small values mean that
x looks like a typical element of A) and is defined as

d(x | A) = log #A − C(x | A).

Here log stands for binary logarithm, #A is the cardinality of A and C(u |v) is the
conditional complexity of u given v. Using A as the condition, we assume that A is
presented as a finite list of strings (say, in lexicographical order). The motivation for
this definition: for all x ∈ A we have C(x | A) ≤ log #A + O(1), since every x ∈ A
is determined by its ordinal number in A; for most x ∈ A the complexity C(x | A)

is close to log #A since the number of strings whose complexity is much less than
log #A is negligible compared to #A. So the deficiency is large for strings that are
much simpler than most elements of A.2

According to this approach, a good explanation A for x should make both para-
meters small: A should be simple and x should be typical in A. It may happen that

2There is an alternative definition of d(x | A). Consider a function t of two arguments x and A,
defined when x ∈ A, and having integer values. We say that t is lower semicomputable if there is an
algorithm that (given x and A) generates lower bounds for t (x, A) that converge to the true value
of t (x, A) in the limit. We say that t is a probability-bounded test if for every A and every positive
integer k the fraction of x ∈ A such that t (x, A) > k is at most 1/k. Now d(x | A) can be defined
as the logarithm of the maximal (up to an O(1)-factor) lower semicomputable probability-bounded
test.
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these two goals cannot be achieved simultaneously, and a trade-off arises. Following
Kolmogorov, we say that x is (α, β)-stochastic if there exists A containing x such
that C(A) ≤ α and d(x | A) ≤ β. In this way we get an upward closed set

S(x) = {〈α, β〉 | x is (α, β)−stochastic}.

If x is a string of length n, the set A of all n-bit strings can be used as a description; it
gives us the pair (O(log n), n − C(x) + O(log n)) in S(x). Indeed, we can describe
A using O(log n) bits and the deficiency is n −C(x | A) = n −C(x |n) = n −C(x)+
O(log n). On the other hand, there is a set A � x of complexity C(x) + O(1) and
deficiency O(1) (namely, A = {x}). So the boundary of the set S(x) starts below the
point (0, n − C(x)) and decreases to (C(x), 0) for an arbitrary n-bit string x , if we
consider S(x) with O(log n) precision.3

The boundary line of S(x) can be called a stochasticity profile of x . As we will
see, the same curve appears in several other situations.

17.3 Minimum Description Length Principle

Another way to measure the “quality” of a model starts from the following observa-
tion: if x is an element of a finite set A, then x can be described by providing two
pieces of information:

• the description of A;
• the ordinal number of x in A (with respect to some ordering fixed in advance).

This gives us the inequality

C(x) ≤ C(A) + log #A,

which is true with precision O(log n) for strings x of length at most n.4

The quality of the hypothesis A is then measured by the difference

δ(x, A) = C(A) + log #A − C(x)

between the sides of this inequality. We may call it the “optimality deficiency” of A,
since it shows how much we lose in the length of the description if we consider a

3As is usual in algorithmic information theory,we consider the complexities up to O(log n)precision
ifwe dealwith strings of length atmost n. Two subsets S, T ⊆ Z

2 are the same for us if S is contained
in the O(log n)-neighborhood of T and vice versa.
4The additional term O(logC(A)) should appear on the right hand side, since we need to specify
where the description of A ends and the ordinal number of x starts, so the length of the description
(C(A)) should be specified in advance using some self-delimiting encoding. One may assume that
C(A) ≤ n, otherwise the inequality is trivial, so this additional term is O(log n).
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two-part description based on A instead of the best possible one. For a given string
x we can then consider the set O(x) of pairs 〈α, β〉 such that x has a model of
complexity at most α and optimality deficiency at most β.

Theorem 17.1 For every string x of length at most n the sets S(x) and O(x) coincide
with O(log n)-precision: each of them is contained in the O(log n)-neighborhood of
the other one.

Speaking about neighborhoods, we assume some standard distance on R
2 (the

exact choice does not matter, since we measure the distance up to a constant factor).
Let us note now that in one direction the inclusion is straightforward. A simple

computation shows that the randomness deficiency is always less than the optimality
deficiency of the same model (and the difference between themequalsC(A |x), where
A is this model).

The opposite direction is more complicated: a model with small randomness
deficiency may have large optimality deficiency. This may happens when C(A |x) is
large.5 However, in this case we can find another model and decrease the optimality
deficiency as needed: for every string x and every model A for x (a finite set A that
contains x) there exists another model A′ for x such that log #(A′) = log #A and
C(A′) ≤ C(A) − C(A |x) + O(log n), where n is the length of x . This result looks
surprising at first, but note that if C(A |x) is large, then there are many sets A′ that are
models of the same quality (otherwise A can be reconstructed from x by exhaustive
search). These sets can be used to find A′ with the required properties.

The definition of the set O(x) goes back to Kolmogorov [10], also refer [4, 6];
however, he used a slightly different definition: instead of O(x) he considered the
function

hx (α) = min
A

{log #A : x ∈ A, C(A) ≤ α},

now called the Kolmogorov structure function. Both O(x) and hx are determined by
the set of all pairs (C(A), log #A) for finite sets A containing x , though in a slightly
different way (since the inequality δ(x, A) ≤ β in the definition of O(x) combines
C(A) and log #A). One can show, however, that the following statement is true with
O(log n)-precision for each n-bit string x : the pair (α, β) is in O(x) if and only if
hx (α) ≤ β + C(x) − α. So the graph of hx is just the boundary of O(x) in different
coordinates (Fig. 17.1).

5Let x and y be independent random strings of length n, so the pair (x, y) has complexity close
to 2n. Assume that x starts with 0 and y starts with 1. Let A be the set of strings that start with 0,
plus the string y. Then A, considered as a model for x , has large optimality deficiency but small
randomness deficiency. To decrease the optimality deficiency, we may remove y from A.
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Fig. 17.1 The pair (α, β) lies on the boundary of O(x) since the point (α, C(x) − α + β) lies on
the graph of hx

17.4 Lists of Simple Strings

Wehave seen twoapproaches that describe the same trade-off between the complexity
of a model and its quality: for every x there is some curve (defined up to O(log n)-
precision) that shows how good a model with bounded complexity can be. Both
approaches gave the same curve with logarithmic precision; in this section we give
one more description of the same curve.

Let m be some integer. Consider the list of strings of complexity at most m. It can
be generated by a simple algorithm: just try in parallel all programs of length at most
m and enumerate all their outputs (without repetitions). This algorithm is simple (of
complexity O(logm)) since we only need to know m.

Theremay be several simple algorithms that enumerate all strings of complexity at
most m, and they can generate them in different orders. For example, two algorithms
may start by listing all the strings of lengthm−O(1) (they all have complexity atmost
m), but one does this in alphabetical order and the other uses reverse alphabetical
order. So the string 00 . . . 00 is the first in one list and has number 2m−O(1) in the
other. But the distance from the end of the list is much more invariant:

Theorem 17.2 Consider two programs of complexity O(logm) that both enumerate
all strings of complexity at most m. Let x be one of these strings. If there are at least
2k strings after x in the first list, then there are at least 2k−O(logm) strings after x in
the second list.

In this theorem we consider two algorithms that enumerate the same strings in
different orderings. However, the Kolmogorov complexity function depends on the
choice of the optimal decompressor (though atmost by an O(1) additive term), so one
could ask what happens if we enumerate the strings of bounded complexity for two
different versions of the complexity function. A similar result (with similar proof)
says that changing the optimal decompressor used to define Kolmogorov complexity
can be compensated by an O(logm)-change in the threshold m.
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Fig. 17.2 To find how many strings appear after x in the list of all strings of complexity at most m,
we draw a line starting at (0, m) with slope −1 and intersect it with the graph of hx ; if the second
coordinate of the intersection point is k, there are about 2k strings after x in this list

Now for everym fix an algorithm of complexity at most O(logm) that enumerates
all strings of complexity at most m. Consider a binary string x ; it appears in these
lists for all m ≥ C(x). Consider the logarithm of the number of strings that follow
x in the mth list. We get a function that is defined for all m ≥ C(x) with O(logm)

precision. The following result shows that this function describes the stochasticity
profile of x in different coordinates.

Theorem 17.3 Let x be a string of length at most n.

(a) Assume that x appears in the list of strings of complexity at most m and there are
at least 2k strings after x in the list. Then the pair ((m −k)+ O(log n), m −C(x))

belongs to the set O(x).
(b) Assume that the pair (m − k, m − C(x)) belongs to O(x). Then x appears in the

list of strings of complexity at most m + O(log n) and there are at least 2k−O(log n)

strings after it.

By Theorem17.1 the same statement holds for the set S(x) in place of O(x).
Ignoring the logarithmic correction and taking into account the relation between

O(x) and hx , one can illustrate the statement of Theorem17.3 by Fig. 17.2.

17.5 Time-Bounded Complexity and Busy Beavers

There is one more way to get the stochasticity profile curve. Let us bound the com-
putation time (number of steps) in the definition of Kolmogorov complexity and
define Ct (x) as the minimal length of a program that produces x in at most t steps.
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Evidently, Ct (x) decreases as t increases, and ultimately reaches C(x).6 However,
the convergence speed may be quite different for different x of the same complexity.
It is possible that for some x the programs of minimal length produce x rather fast,
while other x can be compressible only if we allow very long computations. Infor-
mally, the strings of the first type have some simple internal structure that allows us
to encode them efficiently with a fast decoding algorithm, while the strings of the
second type have “deep” internal structure that is visible only if the observer has a
lot of computational power.

We use the so-called “busy beaver numbers” as landmarks for measuring the
computation time. LetBB(n) be themaximal running time of all programs of length at
most n (we use the programming language that defines Kolmogorov complexity, and
some fixed interpreter for it).7 One can show that numbers BB(n) have an equivalent
definition in terms of Kolmogorov complexity: BB(n) is the maximal integer that
has complexity at most n. (More precisely, if B(n) is the maximal integer that has
complexity at most n, then B(n − c) ≤ BB(n) ≤ B(n + c) for some c and all n, and
we ignore O(1)-changes in the argument of the busy beaver function.)

Now for every x we may consider the decreasing function i 
→ CBB(i)(x)− C(x)

(it decreases fast for “shallow” x and slowly for “deep” x ; note that it becomes close
to 0 when i = C(x), since then every program of length at most C(x) terminates
in BB(C(x)) steps). The graph of this function is (with logarithmic precision) just a
stochasticity profile, i.e., the set of points above the graph coincides with O(x) up to
an O(log n) error term:

Theorem 17.4 Let x be a string of length n.

(a) If a pair (α, β) is in O(x), then

CBB(α+O(log n))(x) ≤ C(x) + β + O(log n).

(b) If CBB(α)(x) ≤ C(x)+β, then the pair (α + O(log n), β + O(log n)) is in O(x).

By Theorem17.1 the same statement holds for the set S(x) in place of O(x).

6One may ask which computational model is used to measure the computation time, and complain
that the notion of time-bounded complexity may depend on the choice of an optimal program-
ming language (decompressor) and its interpreter. Indeed this is the case, but we will use a very
rough measure of computation time based on the busy beaver function, and the difference between
computational models does not matter. The reader may assume that we fix some optimal program-
ming language, and some interpreter (say, a Turing machine) for this language, and count the steps
performed by this interpreter.
7Usually n-th busy beaver number is defined as the maximal running time or the maximal number
of non-empty cells that can appear after a Turing machine with at most n states terminates starting
on the empty tape. This gives a different number; we modify the definition so it does not depend
on the peculiarities of encoding information by transition tables of Turing machines.
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17.6 What Can the Stochasticity Profile Look Like?

We have seen four different definitions that lead to the same (with logarithmic pre-
cision) notion of stochasticity profile. We see now that not only can finite objects
(strings) have different complexities, but also the strings with the same complexity
can be classified according to their stochasticity profiles.

However, we do not know yet that this classification is non-trivial: what if all
strings of given complexity have the same stochasticity profile? The following result
answers this question by showing that every simple decreasing function appears as
the complexity profile of some string.

Theorem 17.5 Assume that some integers n and k ≤ n are given, and h is a non-
increasing function mapping {0, 1, . . . , k} to {0, 1, . . . , n − k}. Then there exists a
string x of length n + O(log n)+ O(C(h)) and complexity k + O(log n)+ O(C(h))

for which the set O(x) (and hence the set S(x)) coincides with the upper-graph of h
(the set {〈i, j〉 | j ≥ h(i) or i ≥ k}) with O(log n + C(h)) accuracy.

Note that the error term depends on the complexity of h. If we consider simple
functions h, this term is absorbed by our standard error term O(log n). In particular,
this happens in two extreme cases: for the function h ≡ 0 and the function h that is
equal to n − k everywhere. In the first case it is easy to find such a “shallow” x : just
take an incompressible string of length k and add n − k trailing zeros to get an n-bit
string. For the second case we do not know a better example than the one obtained
from the proof of Theorem17.5.

Let us say informally that a string x of length n is “stochastic” if its stochasticity
profile S(x) is close to the maximal possible set (achieved by the first example)
with logarithmic precision, i.e., x is (O(log n), O(log n))-stochastic. We know now
that non-stochastic objects exist in the mathematical sense; a philosopher could ask
whether they appear in “real life.” Is it possible that someexperiment gives us data that
do not have any adequate statistical model? This question is quite philosophical since
given an object and a model we cannot say for sure whether the model is adequate
in terms of algorithmic statistics. For example, the current belief is that coin tossing
data are described adequately by a fair coin model. Still it is possible that future
scientists will discover some regularities in the very same data, thus making this
model unsuitable.

We discuss the properties of stochastic objects in the next section. For now let
us note only that this notion remains essentially the same if we consider probability
distributions (and not finite sets) as models. Let us explain what this means.

Consider a probability distribution P on a finite set of strings with rational values.
This is a constructive object, so we can define the complexity of P using some
computable encoding. The conditional complexity C(· | P) can be defined in the
same way. Let us modify the definition of stochasticity and say that a string x is
“(α, β)-p-stochastic” if there exists a distribution P of the described type such that

• C(P) is at most α;
• d(x | P), defined as − log P(x) − C(x | P), does not exceed β.
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This is indeed a generalization: if P is a uniform distribution, then the complexity of
P is (up to O(1)) the complexity of its support A, the value of − log P(x) is log #A,
and using P and A as conditions gives the same complexity up to O(1). On the other
hand, this generalization leads to only a logarithmic change in the parameters:

Theorem 17.6 If some string x of length n is (α, β)-p-stochastic, then the string x
is also (α + O(log n), β + O(log n))-stochastic.

Since all our statements are made with O(log n)-precision, we may identify sto-
chasticity with p-stochasticity (as we do in the sequel).

17.7 Canonical Models

Let Ωm denote the number of strings of complexity at most m. Consider its binary
representation, i.e., the sum

Ωm = 2s1 + 2s2 + . . . + 2st , where s1 > s2 > . . . > st .

According to this decomposition, we may split the list itself into groups: first 2s1

elements, next 2s2 elements, etc.8 If x is a string of complexity at most m, it belongs
to some group, and this group can be considered to be a model for x .

We may consider different values of m (starting from C(x)). In this way we get
different models of this type for the same x . Let us denote by Bm,s the group of size
2s that appears in the mth list. Note that Bm,s is defined only for s that correspond
to ones in the binary representation of Ωm . The models Bm,s are called canonical
models in the sequel. The parameters of Bm,s are easy to compute: the size is 2s by
definition, and the complexity is m − s + O(logm).

Theorem 17.7 (a) Every canonical model for a string x lies on the boundary of
O(x) (i.e., its parameters cannot be improved by more than O(log n) where n is
the length of x).

(b) For every point in O(x) there exists a canonical model that has the same or better
parameters (with O(log n) precision).

The second part of this theorem says that for every model A for x we can find
a canonical model Bm,s that has the same (or smaller) optimality deficiency, and
C(Bm,s) ≤ C(A)with logarithmic precision. In fact, the second part of this statement
can be strengthened: not only C(Bm,s) ≤ C(A), but also C(Bm,s | A) = O(log n).

This result shows that (in a sense) we may restrict ourselves to canonical models.
This raises the question: what are these models? What information do they contain?
The answer is a bit confusing: the information in models Bm,s depends on m −s only

8We assume that an algorithm is fixed that, given m, enumerates all strings of complexity at most m
in some order.
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and is the same as the information in Ωm−s , the number of strings of complexity at
most m − s:

Theorem 17.8 For all models Bm,s both conditional complexities C(Bm,s |Ωm−s)

and C(Ωm−s | Bm,s) are O(logm).

One could note also that the information in Ωk is a part of the information in Ωl

for l ≥ k (i.e., C(Ωk |Ωl) = O(log l)).9

Now it seems that finding a good model for x does not provide any specific
information about x : all we get (if we succeed) is information about the number of
terminating programs of bounded length, which has nothing to do with x and is the
same for all x .

It is not clear how this philosophical collision between our goals and our achieve-
ments can be resolved. One approach is to consider total conditional complexity. This
approach still leaves many questions open, but let us briefly describe it nevertheless.

We have said that “strings a and b contain essentially the same information” if both
C(a |b) and C(b |a) are small. This, however, does not guarantee that the properties
of a and b are the same. For example, if x∗ is the shortest program for some highly
non-stochastic string x , the string x∗ itself is perfectly stochastic.

To avoid this problem, we can consider the total conditional complexity CT(a |b),
defined as theminimal length of a total program p such that p(b) = a.Here p is called
total if p(b′) halts for all b′, not only for b.10 This total conditional complexity can be
much bigger than the standard conditional complexity C(a |b). It has the following
property: if both CT(a |b) and CT(b |a) are negligible, there exists a computable
permutation of low complexity that maps b to a, and therefore the sets O(a) and
O(b) are close to each other. (See [15] for more details.)

Using this notion, we may consider a set A to be a “strong” model if it is close to
the boundary of O(x) and at the same time the total complexity CT(A |x) is small.
The second condition is far from trivial: one can prove that for some strings x such
strong models do not exist at all (except for the trivial model {x} and models of very
small complexity) [22]. But if strong models exist, they have some nice properties:
for example, the stochasticity profile of every strong sufficient statistic for x is close
to the profile of the string x itself [23]. (A model is called a sufficient statistic for x if
the optimality deficiency is small, i.e., the sum of its complexity and log-cardinality
is close to C(x).) The class of all sufficient statistics for x does not have this property
(for some x).

Returning to the stochasticity profile, let us mention one more non-existence
result. Imagine that we want to find a place when the set O(x) touches the horizontal
coordinate line. To formulate a specific task, consider for a given string of lengthn two
numbers. The first, α1, is the maximal value of α such that (α, 0.1n) does not belong

9In fact,Ωk contains the same information (up to O(log k) conditional complexity in both directions)
as the first k bits of Chaitin’sΩ-number (a lower semicomputable random real), so we use the same
letter Ω to denote it.
10As usual, we assume that the programming language is optimal, i.e., gives an O(1)-minimal value
of the complexity compared to other languages.
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to O(x); the second, α2, is the minimal value of α such that (α, 10 log n) belongs to
O(x). (Of course, the constant 10 is chosen just to avoid additional quantifiers, any
sufficiently large constant would work.) Imagine that we want, given x and C(x), to
find some point in the interval (α1, α2), or even in a slightly bigger one (say, adding
a margin of size 0.1n in both directions). One can prove that there is no algorithm
that fulfills this task [24].

17.8 Stochastic Objects

The philosophical questions about non-stochastic objects in the “real world” moti-
vate several mathematical questions. Where do they come from? can we obtain a
non-stochastic object by applying some (simple) algorithmic transformation to a
stochastic one? Can non-stochastic objects appear (with non-negligible probability)
in a (simple) random process? What are the special properties of non-stochastic
objects?

Here are several results answering these questions.

Theorem 17.9 Let f be a computable total function. If string x of length n is (α, β)-
stochastic, then f (x) is (α + C( f ) + O(log n), β + C( f ) + O(log n))-stochastic.

Here C( f ) is the complexity of the program that computes f .
An important example: let f be the projection function that maps every pair 〈x, y〉

(its encoding) to x . Thenwe haveC( f ) = O(1), sowe conclude that each component
of an (α, β)-stochastic pair is (α + O(log n), β + O(log n))-stochastic.

A philosopher would interpret Theorem17.9 as follows: a non-stochastic object
cannot appear in a simple total algorithmic process (unless the inputwas alreadynon-
stochastic). Note that the condition of totality is crucial here: for every x , stochastic
or not, we may consider its shortest program p. It is incompressible (and therefore
stochastic), and x is obtained from p by a simple program (decompressor).

If a non-stochastic object cannot be obtained by a (simple total) algorithmic trans-
formation from a stochastic one, can it be obtained (with non-negligible probability)
in a (simple computable) random process? If P is a simple distribution on a finite
set of strings with rational values, then P can be used as a statistical model, so only
objects x with high randomness deficiency d(x | P) can be non-stochastic, and the
set of all x that have d(x | P) greater than some d has negligible P-probability (an
almost direct consequence of the deficiency definition).

So for computable probabilistic distributions the answer is negative for trivial
reasons. In fact, a much stronger (and surprising) statement is true. Consider a prob-
abilistic machine M without input that, being started, produces some string and
terminates, or does not terminate at all (and produces nothing). Such a machine
determines a semimeasure on the set of strings (we do not call it a measure since
the sum of probabilities of all strings may be less than 1 if the machine hangs with
positive probability). The following theorem says that a (simple) machine of this
type produces non-stochastic objects with negligible probability.
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Theorem 17.10 There exists some constant c such that the probability of the event

“M produces a string of length at most n that is not
(d + C(M) + c log n, c log n)-stochastic”

is bounded by 2−d for every machine M of the described type and for arbitrary
integers n and d.

The following results partially explain why this happens. Recall that algorithmic
information theory definesmutual information in two strings x and y asC(x)+C(y)−
C(x, y); with O(log n) precision (for strings of length at most n) this expression
coincides with C(x)− C(x | y) and C(y)− C(y |x). Recall that by Ωn we denote the
number of strings of complexity at most n.

Theorem 17.11 There exists a constant c such that for every n, for every string x of
length at most n and for every threshold d the following holds: if a string x of length
n is not (d + c log n, c log n)-stochastic, then

I (x : Ωn) ≥ d − c log n.

This theorem says that all non-stochastic objects have a lot of information about
a specific object, the string Ωn . This explains why they have small probability of
appearing in a (simple) randomized process, as the following result shows. It guar-
antees that for every fixed string w the probability of getting (in a simple random
process) some object that contains significant information about w is negligible.

Theorem 17.12 There exists a constant c such that for every n, for every proba-
bilistic machine M, for every string w of length at most n and for every threshold d
the probability of the event

“M outputs a string x of length at most n such that
I (x : w) > C(M) + d + c log n”

is at most 2−d .

The last result of this section shows that stochastic objects are “representative” if
we are interested only in the complexity of strings and their combinations: for every
tuple of strings one can find a stochastic tuple that is indistinguishable from the first
one by the complexities of its components.

Theorem 17.13 For every k there exists a constant c such that for every n and for
every k-tuple 〈x1, . . . , xk〉 of strings of length at most n, there exists another k-tuple
〈y1, . . . , yk〉 that is (c log n, c log n)-stochastic and for every I ⊆ {1, 2, . . . , n} the
difference between C(xI ) and C(yI ) is at most c log n.

Here xI is a tuple made of strings xi with i ∈ I ; the same for yI .
This result implies, for example, that every linear inequality for complexities that

is true for stochastic tuples is true for arbitrary ones.
However, there are some results that are known for stochastic tuples but still are

not proven for arbitrary ones. See [16] for details.
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17.9 Restricted Classes: Hamming Distance and Balls
as Descriptions

Up to now we considered arbitrary sets as statistical models. However, sometimes
we have some external information that suggests a specific class of models (and it
remains to choose the parameters that define some model in this class). For example,
if the data string is a message sent through a noisy channel that can change some
bits, we consider Hamming balls as models, and the parameters are the center of this
ball (the original message) and its radius (the maximal number of changed bits).

So let us consider some family B of finite sets. To get a reasonable theory, we
need to assume some properties of this family:

• The familyB is computably enumerable: there exists an algorithm that enumerates
all elements of B (finite sets are here considered as finite objects, encoded as lists
of their elements).

• For each n the set of all n-bit strings belongs to B.
• There exists a polynomial p such that the following property holds: for every

B ∈ B, for every positive integer n and for every c < #B the set of all n-bit strings
in B can be covered by p(n)#B/c sets from B and each of the covering sets has
cardinality at most c.

Here #B stands for the cardinality of B. A counting argument shows that in the last
condition we need at least #B/c covering sets; the condition says that a polynomial
overhead is enough here.

One can show (using simple probabilistic arguments) that the family of all Ham-
ming balls (for all string lengths, centers, and radii) has all three properties. This
family is a main motivating example for our considerations.

Now we can define the notion of a B-(α, β)-stochastic object: a string x is B-
(α, β)-stochastic if there exists a set B ∈ B containing x such that C(B) ≤ α and
d(x | B) ≤ β. (The original notion of (α, β)-stochasticity corresponds to the case
when B contains all finite sets.) For every x we get a set SB(x) of pairs (α, β) for
which x is B-(α, β)-stochastic. We can also define the set OB(x) using optimality
deficiency instead of randomness deficiency. The B-version of Theorem17.1 is still
true (though the proof needs a much more ingenious construction):

Theorem 17.14 LetB be the family of finite sets that has the properties listed above.
Then for every string x of length at most n the sets SB(x) and OB(x) coincide up to
an O(log n) error term.

The proof is more difficult (compared to the proof of Theorem17.1) since we now
need to consider sets in B instead of arbitrary finite sets. So we cannot construct the
required model for a given string x ourselves and have to select it among the given
sets that cover x . This can be done by a game-theoretic argument.

It is interesting to note that a similar argument can be used to obtain the following
result about stochastic finite sets (Epstein–Levin theorem):
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Theorem 17.15 If a finite set X is (α, β)-stochastic and the total probability

∑

x∈X

2−K(x)

of its elements exceeds 2−k , then X contains some element x such that

K(x) ≤ k + K(k) + logK(k) + α + O(logβ) + O(1).

Here K(u) stands for the prefix complexity of u (see, e.g., [14] for the definition).
To understand themeaning of this theorem, let us recall one of the fundamental results
of algorithmic information theory: the (prefix) complexity of a string x equals the
binary logarithm of its a priori probability. If we consider a set X of strings instead of
one string x , we can consider the a priori probability of X (expressing how difficult
it is to get some element of x in a random process) and the minimal complexity of
elements of X (saying how difficult it is to specify an individual element in X ). The
fundamental result mentioned above says that for singletons these two measures are
closely related; for arbitrary finite sets this is no longer the case, but Theorem17.15
guarantees this for the case of stochastic finite sets.

Returning to our main topic, let us note that for Hamming balls the boundary
curve of OB(x) has a natural interpretation. To cover x of length n with a ball B with
center y having cardinality 2β and complexity at most α means (with logarithmic
precision) finding a string y of complexity at most α in the r -neighborhood of x ,
where r is chosen in such a way that balls of radius r have about 2β elements. So this
boundary curve represents a trade-off between the complexity of y and its distance
to x .

Again one can ask what kind of boundary curves may appear. As in Theorem17.5,
we can get an essentially arbitrary non-increasing function. However, here the pre-
cision is worse: the O(log n) term is now replaced by O(

√
n log n).

Theorem 17.16 Assume that some integers n and k ≤ n are given, and h is a non-
increasing function mapping {0, 1, . . . , k} to {0, 1, . . . , n − k}. Then there exists a
string x of length n + O(

√
n log n) + O(C(h)) and complexity k + O(

√
n log n) +

O(C(h)) for which the set OB(x) coincides with the upper-graph of h (the set {〈i, j〉 |
j ≥ h(i) or i ≥ k}) with O(

√
n log n + C(h))-precision.

Unlike the general case where non-stochastic objects (for which the curve is far
from zero) exists but are difficult to describe, for the case of Hamming balls one
can give more explicit examples. Consider some explicit error correction code that
has distance d. Then every string that differs in at most d/2 positions from some
codeword x has almost the same complexity as x (since x can be reconstructed from
it by error correction). So balls of radius less than d/2 containing some codeword
have almost the same complexity as the codeword itself (and the ball of zero radius
containing it).
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Let x be a typical codeword of this binary code (its complexity is close to the
logarithm of the number of codewords). For values of α slightly less than C(x) we
need a large β (at least the logarithm of the cardinality of a ball of radius d/2) to
make such a codeword (α, β)-stochastic.

17.10 Historical Remarks

The notion of (α, β)-stochasticity was mentioned by Kolmogorov in his talks at the
seminar he initiated at the Moscow State University in the early 1980s (see [21]).
The equivalence between this notion and the optimality deficiency (Theorem17.1)
was discovered in [24].

The connections between the existence of adequate models and the position in the
list of strings of bounded complexity was discovered by Gács, Tromp, and Vitányi
in [7], though this paper considered only the position of x in the list of strings of
complexity atmostC(x). Theorems17.2 and 17.3 appeared in [24]. The paper [7] also
considered canonicalmodels (called “nearly sufficient statistics” in this paper) for the
casem = C(x). In the general case canonicalmodelswere considered in [24] (Sect.V,
Realizing the structure function), where Theorems17.7 and 17.8 were proven.

The minimal description length principle goes back to Rissanen [19]; as he wrote
in that paper, “If weworkwith a fixed family ofmodels, . . . the cost of the complexity
of a model may be taken as the number of bits it takes to describe its parameters.
Clearly now, when adding new parameters to the model, we must balance their own
cost against the reduction they permit in the ideal code length, − log P(x |θ), and
we get the desired effect in a most natural manner. If we denote the total number of
bits required to encode the parameters θ by L(θ), then we can write the total code
length as L(x, θ) = − log P(x |θ) + L(θ), which we seek to minimize over θ .” The
set denoted by O(x) in our survey was considered in 1974 by Kolmogorov (see [10],
also refer [4, 6]); later it also appeared in the literature also under the names of
“sophistication” and “snooping curves.”

The notion of sophistication was introduced by Koppel in [11]. Let β be a natural
number; the β-sophistication of a string x is the minimal length of a total program p
such that there is a string y with p(y) = x and |p| + |y| ≤ C(x) + β. In our terms p
defines amodel that consists of all p(y) for all strings y of a given length. It is not hard
to see that with logarithmic precision we get the same notion: the β-sophistication
of x is at most α if and only if the pair (α, β) is in the set O(x).

The notion of a snooping curve Lx (α) of x was introduced by V’yugin in [27].
In that paper he considered strategies that read a bit sequence from left to right and
for each next bit provide a prediction (a rational-valued probability distribution on
the set {0, 1} of possible outcomes). After the next bit appears, the loss is computed
depending on the prediction and actual outcome. The goal of the predictor is to min-
imize the total loss, i.e., the sum of losses at all n stages (for an n-bit sequence).
V’yugin considered different loss functions, and for one of them, called the loga-
rithmic loss function, we get a notion equivalent to O(x). For the logarithmic loss
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function, we account for loss − log p if the predicted probability of the actual out-
come was p. It is easy to see that for a given x the following statement is true (with
logarithmic precision): there exists a strategy of complexity at most α with loss at
most l if and only if l ≥ hx (α). (Indeed, prediction strategies are just a bit-by-bit
representation of probability distributions on the set of n-bit strings in terms of con-
ditional probabilities.)

Theorem17.4 (Sect. 17.5) is due to Bauwens [2]. The idea to consider the differ-
ence between the time-bounded complexity of x and the unbounded one goes back
to Chaitin [3]. Later the subject was studied by Bennett who introduced the notion
of logical depth: the depth of x at significance level β is the minimal time t such that
Ct (x) ≤ C(x) + β. The string is called (β, t)-deep if its depth at significance level
β is larger than t . A closely related notion of computational depth was introduced
in [1]: the computational depth of x with time bound t is Ct (x) − C(x). Obviously,
the computational depth of x with time bound t is more than β if and only if x is
(β, t)-deep. Theorem17.4 relates both notions of depth to the stochasticity profile
(with logarithmic precision): a string is (β, B(α))-deep if and only if the pair (α, β)

is outside the set O(x).
Theorem17.5 was proved in [24]. Long before this paper (in 1987) V’yugin

established that the set S(x) can assume all possible shapes (within the obvious con-
straints) but only for α = o(|x |). Also, according to Levin [12]: “Kolmogorov told
me about hx (α) and asked how it could behave. I proved that hx (α)+α+ O(logα) is
monotone but otherwise arbitrary within±O(p logα) accuracy where p is the num-
ber of “jumps” of the arbitrary function imitated; it stabilizes onC(x)whenα exceeds
I (χ : x) [the information in the characteristic sequence χ of the “halting problem”
about x]. The expression for accuracy was reworded byKolmogorov to O(

√
α logα)

[square root accuracy]; I gave it in the above, less elegant, but equivalent, terms. He
gave a talk about these results at a meeting of Moscow Mathematical Society [9].”
This claim of Levin implies Theorem17.11, which was published in [24].

Theorem17.6 (mentioned in [21]) is easy and Theorem17.9 easily follows from
Theorem17.5.

The existence of non-(α, β)-stochastic strings (for small α, β) was mentioned
in [21]. Then V’yugin [26] and Muchnik [17] showed that their a priori measure is
about 2−α , a direct corollary of which is our Theorem17.10.

Theorems17.11 and 17.12 are essentially due to Levin (see [12, 13]).
Theorem17.13 is easy to prove using A. Romashchenko’s “typization” trick

(see [8, 20]).
Theorems17.14 and 17.16 appeared in [25]; Theorem17.15 appeared in [5].
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