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Abstract. Accurately measuring relatedness between ontology terms
becomes a building block for determining similarity of ontology-based
annotated entities, e.g., genes annotated with the Gene Ontology. How-
ever, existing measures that determine similarity between ontology terms
mainly rely on taxonomic hierarchies of classes, and may not fully exploit
the semantics encoded in the ontology, i.e., object properties and their
axioms. This limitation may conduct to ignore the stated or inferred facts
where an ontology term participate in the ontology, i.e., the term neigh-
borhood. Thus, high values of similarity can be erroneously assigned to
terms that are taxonomically similar, but whose neighborhoods are dif-
ferent. We present OnSim, a measure where semantics encoded in the
ontology is considered as a first-class citizen and exploited to determine
relatedness of ontology terms. OnSim considers the neighborhoods of two
terms, as well as the object properties that are present in the neigh-
borhood facts and the justifications that support the entailment of these
facts. We have extended an existing annotation-based similarity measure
with OnSim, and empirically studied the impact of producing accurate
values of ontology term relatedness. Experiments were run on bench-
marks published by the Collaborative Evaluation of Semantic Similar-
ity Measures (CESSM) tool. The observed results suggest that OnSim
increases the Pearson’s correlation coefficient of the annotation-based
similarity measure with respect to gold standard similarity measures,
as well as its effectiveness is improved with respect to state-of-the-art
semantic similarity measures.

1 Introduction

Semantic Web initiatives have fostered the development of large linked col-
lections from different domains [11], as well as the collaborative definition of
ontologies to semantically describe and annotate these data. Particularly, the
biological and biomedical domain has been greatly benefited from these research
movements, and a diversity of semantically annotated linked scientific datasets
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are publicly available, e.g., Chem2Bio2RDF1, Bio2RDF2, OpenPHACTS3, and
Linked Life Data4. Further, expressive ontologies have been defined, e.g., the
Gene Ontology (GO)5, and they have been extensively accepted by the scientific
community as standards to describe the concepts and relations, and to replace
textual descriptions by controlled vocabulary terms from the ontologies. For
example, GO terms are extensively used for capturing functional information
of proteins and genes as indicated in the Gene Ontology Annotation (UniProt-
GOA) database6, and there are international initiatives to collaboratively anno-
tate organisms, e.g., the Pseudomonas aeruginosa PAO1 genome7.

Ontology-based annotations provide the basis to uncover novel and interest-
ing patterns, e.g., to predict gene functions across organisms, drug-target inter-
actions, or to suggest families of drugs that interact in the effectiveness of other
drugs. Annotations are also used to determine relatedness between annotated
concepts that could not be observed only using structural properties of the enti-
ties. In this direction, several annotation-based similarity measures have been
defined [4,12] and results of empirical evaluation studies suggest that considering
ontology annotations can enhance the effectiveness of similarity measures [12,14].
Nevertheless, although the great effort conducted by the biomedical and Seman-
tic Web communities, state-of-the-art annotation-based similarity measures may
not fully explote all the semantics encoded in the annotations, and imprecisely
assign high values of similarity to dissimilar entities [3,12].

Next, we illustrate the potential impact of semantics on the computation
of relatedness. Figure 1 presents a taxonomy of relations (i.e., object proper-
ties) in the Gene Ontology (GO); negatively regulates (nr), positively regulates
(pr), regulates (rg), is-a (sc), and part of (pf). These relations can refine a
neighborhood-based similarity approach assuming that not only the neighbors
of a concept influence in the similarity measure, but also the justifications that
support the entailment of facts in the neighborhood. For example, even if the
concepts A, B, C, and D have the same taxonomic properties, they should not
be considered all equally identical, if they are related through the following rela-
tions or object properties: (i) A pf D; (ii) B nr D; and (iii) C pr D. Moreover,
because nr and pr are more similar according to the object property hierar-
chy (See Fig. 1), both B and C must be more similar than A and B, or A and
C. Additionally, existing annotation-based similarity measures do not take into
account inferred facts or the justifications that support their entailment. How-
ever, considering the justifications of inferred facts may provide also insights of
uncover properties required to accurately determine similarity of ontology-based
annotated entities.
1 http://chem2bio2rdf.org/.
2 http://bio2rdf.org/.
3 http://openphacts.org.
4 http://linkedlifedata.com.
5 http://geneontology.org/.
6 http://www.ebi.ac.uk/GOA.
7 http://www.pseudomonas.com/go annotation project 2014.jsp.

http://chem2bio2rdf.org/
http://bio2rdf.org/
http://openphacts.org
http://linkedlifedata.com
http://geneontology.org/
http://www.ebi.ac.uk/GOA
http://www.pseudomonas.com/go_annotation_project_2014.jsp
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Fig. 1. GO taxonomy of object properties

We propose OnSim, a novel seman-
tic similarity measure for ontology
terms that is able to: (i) distinguish
the object properties that relate ontol-
ogy terms with facts in their neigh-
borhoods; and (ii) consider inferred
facts and the justifications that sup-
port their entailment.

We model OnSim as a 1-1 maxi-
mum weight bipartite matching of the
neighborhoods of two ontology terms, as well as of the justifications conducted to
infer facts in the neighborhoods. We extend the state-of-the-art annotation-based
similarity measure AnnSim [12] with OnSim to analyze the impact of consider-
ing the semantics of the annotations. AnnSim was selected as the baseline of our
evaluation because it has shown to effectively behave in a diversity of real-world
datasets of genes and their GO annotations, clinical trials, and human disease
benchmarks [12]. The Collaborative Evaluation of Semantic Similarity Measures
(CESSM)8 tool was used to evaluate the correlation of AnnSimOnSim with
respect to domain-specific similarities considered as gold standards by the bio-
medical community: the ECC similarity [6], Pfam similarity [15], and Sequence
Similarity SeqSim [20]. The evaluation was conducted on two collections of pairs
of proteins published by the two available versions of the CESSM tool: the 2008
collection contains 13,430 pairs of proteins from UniProt-GOA9, while the 2014
dataset comprises 22,302 pairs; annotations are from GO versions 2008 and 2014,
respectively. Reported plots are produced by the CESSM tool, and reveal that
AnnSimOnSim enhances the effectiveness of AnnSim by increasing the Pearson’s
correlation coefficients with respect to the gold standard measures. Additionally,
AnnSimOnSim is compared to eleven state-of-the-art semantic similarity mea-
sures, and it is able to outperform all these measures with respect to Pfam, while
is competitive with the other two gold standard measures. Further improve-
ments are observed in the CESSM 2014 collection, suggesting that high values
of AnnSimOnSim may provide evidences of high quality annotations.

AnnSimOnSim is also used to determining relatedness among patients anno-
tated with the Human Phenotype Ontology (HPO)10. Patient data is produced
and managed to remotely monitoring patients in the FI-STAR project11. FI-
STAR detects anomalies in patient measurements and vital signs by exploiting
semantics and Complex Event Processing (CEP) technologies. FI-STAR man-
ages static and sensed data, as well as real-time predictions. Static data pro-
vide contextual information that improves the predictions of the system, and
are represented as ontology-based annotations of the patients. Pair-wise val-
ues of AnnSimOnSim computed from static data are exploited by FI-STAR
8 http://xldb.di.fc.ul.pt/tools/cessm/about.php.
9 http://www.uniprot.org/.

10 http://www.human-phenotype-ontology.org/.
11 https://www.fi-star.eu.

http://xldb.di.fc.ul.pt/tools/cessm/about.php
http://www.uniprot.org/
http://www.human-phenotype-ontology.org/
https://www.fi-star.eu
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link prediction methods; the implemented hypothesis prediction establishes that
patients with similar symptoms also suffer of similar diseases.

This paper is organized as follows: Sect. 2 provides a motivating example in
the biomedical domain and Sect. 3 briefly describes preliminaries of our work.
Section 4 presents the OnSim approach, and experimental results are reported
in Sect. 5. Section 6 summarizes related research and Sect. 7 concludes.

2 Motivating Example

Figure 2 presents a portion of the neighborhoods of the GO terms adaptation
of rhodopsin mediated signaling (GO:0016062), and deactivation of rhodopsin
mediated signaling (GO:0016059). These terms are used to annotate entities
from different collections. For example, in the UniProt-GOA dataset12, they are
used to annotate the proteins P10676 and P13217. These GO terms participate
in different object properties; concretely, we observe in Fig. 2, that they occur
in the object properties rg and nr, which are sub-properties of rg (Fig. 1). GO
is described in OWL, which allows for representing logical axioms to describe
the semantics of the object properties, e.g., include logical axioms to express
transitivity or symmetry. Similarly to other biomedical ontologies, GO is con-
tinuously changing and therefore, these logical axioms may also change. In the
GO version of 2008, rg is not associated with any logical axiom, while the GO
2014 version states that rg is transitive over pf. We focus on the 2008 version
of GO in our motivating example, but we will see in our experimental results
that more detailed definitions of logical axioms positively impact on the behav-
ior of similarity measures. Figure 2 illustrates justifications of the inferred facts
(GO:0016062 rg GO:0008150) and (GO:0016059 rg GO:0008150):

1. The first justification relies on: the axiom of Instantiation of SubClassOf (sc)
over nr and the axiom of Instantiation of SubPropertyOf (sp) over rg. In
Fig. 2, we observe that (GO:0016062 sc GO:0022401) and (GO:0022401 nr
GO:0008150). Then, we can infer (GO:0016062 nr GO:0008150) by transitiv-
ity of the object property nr over sc. Finally, because nr is sub-property of
rg, we can infer the fact (GO:0016062 rg GO:0008150).

2. This inference is justified by the axiom of Instantiation of SubClassOf (sc)
over rg. In other way, every GO term inherits all the properties of its
ancestors. The GO term GO:0050789 is an ancestor of GO:0016059, i.e.,
(GO:0016059 sc GO:0050789) and (GO:0050789 rg GO:0008150) hold; there-
fore, we infer the fact (GO:0016059 rg GO:0008150).

Existing ontology-based similarities mainly rely on taxonomic hierarchies
of classes, and are not aware of these differences. For example, Dtax [1] and
Dps [13] are two taxonomic similarity measures that define similarity of two
nodes in terms of the depth of the nodes to the root of class hierarchy, and
the distance to their lowest common ancestor (LCA). Dtax and Dps will assign
relatively high values of similarities to GO:0016062 and GO:0016059, 0.625 and
12 http://www.ebi.ac.uk/GOA.

http://www.ebi.ac.uk/GOA
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Fig. 2. Portion of the neighborhood from GO:0016062 and GO:0016059. Solid arrows
represent stated object properties: negatively regulates (ng), regulates (rg), and is-a
(sc). Dashed arrows represent inferred object properties.

0.55, respectively. Nevertheless, Dtax and Dps ignore that both the neighbor-
hoods of GO:0016062 and GO:0016059, and the justifications of their inferred
facts are different. Therefore, Dtax and Dps values may overestimate the real
value of relatedness of these GO terms.

3 Preliminaries

AnnSim [12] and Dtax [1] have exhibited effective behavior on different domains,
e.g., real-world datasets of genes and their GO annotations, clinical trials, and
human disease benchmarks. Thus, we rely on these measures to evaluate the
effectiveness of OnSim.

Consider two entities e1 and e2 annotated with the set of ontology terms
A1 and A2. Let BG = (A1 ∪ A2,WE) be a weighted bipartite graph for set
of terms A1 and A2, and MWBG = (A1 ∪ A2,WEr) be 1-1 maximum weight
bipartite matching for BG. Intersection of sets A1 and A2 is assumed empty,
i.e., in case the same ontology term t occurs in A1 and A2, both occurrences of
t are seen as different terms during the construction of BG and MWBG. The
annotation-based similarity AnnSim is defined as follows:

AnnSim(e1, e2) =
2 ∗ ∑

(a1,a2)∈WEr
Sim(a1, a2)

|A1| + |A2|
A 1-1 maximum weight bipartite matching [17], MWBG = (A1 ∪ A2, WEr)

for a weighted bipartite graph BG = ( A1∪A2, WE), where edges are annotated
with similarity Sim is as follows:

– WEr ⊆ WE, i.e., MWBG is a sub-graph of BG.
– The sum of the weights of the edges in WEr is maximized, i.e.,

max
∑

(a1,a2)∈WEr

Sim(a1, a2)

– for each node in A1 ∪ A2 there is only one incident edge in WEr, i.e.,
• ∑|A1|

i=1 (ai, aj) = 1,∀j = 1 · · · | A2 |
• ∑|A2|

j=1 (ai, aj) = 1,∀i = 1 · · · | A1 |
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Sim(a1, a2) is a generic similarity measure for ontology terms, but Palma
et al. [12] reports on the benefits of using the taxonomic similarity Dtax [1]. Dtax

computes taxonomic similarity values in terms of Lowest Common Ancestor.
Given a directed graph G, the lowest common ancestor of two nodes x and y, is
the node of greatest depth in G that is an ancestor of both x and y. Let d(x, y)
be the number of edges on the longest path between nodes x and y in a given
ontology. Also let lca(x, y) be the lowest common ancestor of nodes x and y, and
root is the root of the class hierarchy.

Dtax(x, y) = 1 − d(x, lca(x, y)) + d(y, lca(x, y))
d(root, x) + d(root, y)

4 OnSim: An Ontology Similarity Measure

OnSim is an ontology similarity measure that computes relatedness between
ontology terms. OnSim not only relies on taxonomic hierarchies of the classes to
decide relatedness, but also considers the neighborhoods of two terms, as well as
the object properties that relate these terms with the facts in the neighborhoods
and the justifications that support the entailment of these facts.

To illustrate the impact that considering additional knowledge may have on
the computation of the similarity, consider the GO terms adaptation of rhodopsin
mediated signaling (GO:0016062) and deactivation of rhodopsin mediated signal-
ing (GO:0016059). As observed in Fig. 3(a) and 3(b), the neighborhoods of these
terms are different, as well as the justifications that support the inference of
these facts. Nevertheless, taxonomic similarity measures ignore this information
and may assign relatively high values of similarity to these two terms. Contrary,
OnSim detects that these two annotations are dissimilar in terms of the facts in
the neighborhoods and their justifications, and assigns a lower similarity value,
i.e., OnSim(GO:0016062,GO:0016059) is equal to 0.31.

To represent neighborhoods and justifications, we define for each ontology
term ai, a set Rai

that represent the neighborhood of ai. Facts in the neigh-
borhood are modeled as quadruples t = (ai, aj , rij , Eij), where rij is an object
property such that there is an out-going link from ai to aj in the ontology,
and Eij is a set of the instantiations of the antecedents of the axioms used to
infer the fact (ai rij aj)13. Thus, t1 = (GO:0016062,GO:0007165,rg, {(nr sp rg),
(GO:0016062 nr GO:0007165), Ax.4}) is the quadruple that represents that the
GO terms GO:0016062 and GO:0007165 are related through the object property
rg (Fig. 3(b)). Further, t1 states the justification of this inferred fact; in this
case axiom Ax.4 is applied, and the instantiation of the antecedent of Ax.4 is
(GO:0016062 nr GO:0007165). We define a quadruple t, based on the OWL2
axioms applied in a given justification.

Definition 1. Given two ontology terms ai and aj, and an object property rij.
A fact in the neighborhood of ai establishing that ai and aj are related through

13 According to OWL2 semantics the inferred fact is ai subClassOf rij some aj .
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(a) Neighborhood of GO:0016059 (b) Neighborhood of GO:0016062

Fig. 3. Neighborhoods of GO terms. Object properties in inferred facts are represented
with Dashed Arrows. Object properties are represented in arrows of different colors

rij, i.e., (ai rij aj), is represented as a quadruple t = (ai, aj , rij , Eij), where Eij

is a set of the instantiations of the antecedents of the axioms used to infer the
fact (ai rij aj). Depending of the axioms used to inferred the fact (ai rij aj),
the quadruple t is inductively defined as follows:

1. (Ax.1) Axiom of Symmetry Relation rij:

(ai rij aj)
(aj rij ai)

=⇒ t = (ai , aj , rij , {(aj rij ai),Ax .1})

2. (Ax.2) Axiom of Instantiation of SubClassOf (sc) over rij:

(ai sc az) ∧ (az rij aj)
(ai rij aj)

=⇒ t = (ai , aj , rij , {(ai sc az ), (az rij aj ),Ax .2})

3. (Ax.3) Axiom of Transitivity of SubClassOf (sc):

(ai sc az) ∧ (az sc aj)
(ai sc aj)

=⇒ t = (ai , aj , sc, {(ai sc az ), (az sc aj ),Ax .3})

4. (Ax.4) Axiom of Instantiation of SubPropertyOf (sp) over rij:

(rz sp rij) ∧ (ai rz aj)
(ai rij aj)

=⇒ t = (ai , aj , rij , {(rz sp rij ), (ai rz aj ),Ax .4})

5. (Ax.5) Axiom of Transitivity of SubPropertyOf (sp):

(ai sp az) ∧ (az sp aj)
(ai sp aj)

=⇒ t = (ai , aj , sp, {(ai sp az ), (az sp aj ),Ax .5})
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6. (Ax.6) Axiom of Transitivity Relation rij:

(ai rij az) ∧ (az rij aj)
(ai rij aj)

=⇒ t = (ai , aj , rij , {(ai rij az ), (az rij aj ),Ax .6})

7. (Ax.7) Axiom of Transitivity of rz over rij:

(ai rz az) ∧ (az rij aj)
(ai rij aj)

=⇒ t = (ai aj , rij , {(ai rz az ), (az rij aj ),Ax .7})

Inductive Case: If tz = (az, ak, rzk, Ezk) is part of the neighborhood of az, ti =
(ai, aj , rij , Eij) is in the neighborhood of ai, and (az rzk ak) ∈ Eij, then eliminate
ti from the neighborhood of ai and add the quadruple t = (ai, aj , rij , Eij) to the
neighborhood of ai, where Eij = (Eij − {(az rzk ak)}) ∪ Ezk.

Let us consider the GO terms GO:0016062 and GO:0016059 in Fig. 4. The
neighborhood of GO:0016062 represented by RGO:0016062, comprises 12 quadru-
ples associated with GO:0016062; the quadruples t1.1 and t1.2 describe the facts
(GO:0016062 rg GO:0007165) and (GO:0016062 rg GO:0008150), respectively.

– t1.1 = (GO:0016062,GO:0007165,rg, {(nr sp rg), (GO:0016062 nr GO:
0007165), Ax.4}).

– t1.2 = (GO:0016062, GO:0008150,rg, {(nr sp rg), (GO:0016062 sc GO:
0022401), (GO:0022401 nr GO:0008150), Ax.2, Ax.4}.

Note that the quadruple t1.2 represents the information of the justification of
the fact (GO:0016062 rg GO:0008150), where more than one axiom support the
inference, and the inductive definition of a quadruple (Definition 1) is applied
to generate the quadruple, i.e., the justification is as follows:

(GO:0016062 scGO:0022401) ∧ (GO:0022401 nrGO:0008150)
⇒ <Ax.2, (A sc B) ∧ (B r C) ⇒ (A r C) >

(nr sp rg) ∧ (GO:0016062 nr GO:0008150)
⇒ <Ax.4, (ri sp rj) ∧ (B ri C) ⇒ (B rj C) >

(GO:0016062 rg GO:0008150)

Similarly, RGO:0016059 describes the neighborhood of GO:0016059 and com-
prises 14 quadruples. The quadruple t2.1 represents the fact (GO:0016059 rg
GO:0008150):

– t2.1 = (GO:0016059,GO:0008150,rg, {(GO:0016059 sc GO:0050789), (GO:
0050789 rg GO:0008150), Ax.2}).

Given two quadruples, t1i = (a1, ai, r1i, E1i) and t2j = (a2, aj , r2j , E2j),
the similarity of two quadruples Sim(t1i, t2j) is defined as the product trian-
gular norm, TN, that combines the taxonomic similarity of t1i and t2j with the
similarity of the sets E1i and E2j of justifications, Simjustifications(E1i, E2j).
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Fig. 4. Comparison of the justifications of quadruples t1.1 and t2.1; axiom identifiers
are omitted for legibility: (a) Bi-partite graph from the pair-wise comparison of the
justifications; (b) 1-1 maximum weight bipartite matching produced by the BlossomIV
solver [2]

An item iti in a justification can be an axiom identifier, or an RDF triple (bi

pi ci) that denotes the instantiation of one of the antecedents of the axiom. For
example, the justification of the quadruple t1.1 = (GO:0016062,GO:0007165,rg,
{(nr sp rg), (GO:0016062 nr GO:0007165), Ax.4}) is a set that comprises three
items; two items are RDF triples (nr sp rg) and (GO:0016062 nr GO:0007165),
and the other item is the identifier of the applied axiom, i.e., Ax.4. The sim-
ilarity of two justification items iti = (bi pi ci) and itj = (bj pj cj), named
Simjustification(iti, itj), is defined as a product triangular norm that combines
three taxonomic similarities: Dtax(bi, bj), Dtax(pi, pj), and Dtax(ci, cj). Further,
the similarity of the same axiom identifier is 1.0, while two different axioms are
dissimilar, i.e., their similarity value is 0.0.

In our running example, if the taxonomic similarity is Dtax [1], the
similarity of the justification items it1 = (GO:0016062 nr GO:0007165) and
it2 = (GO:0050789 rg GO:0008150) is 0.12, where

– Dtax(GO:0016062,GO:0050789) is 0.55;
– Dtax(nr,rg) is 0.67;
– Dtax(GO:0007165,GO:0008150) is 0.33;
– Simjustification(e1, e2) = 0.55 × 0.67 × 0.33.

Two justifications E1i and E2j are compared based on a similarity
value. Formally, the similarity of two justifications is computed from a bi-
partite graph that corresponds to the 1-1 maximum weight bipartite match-
ing of the edges in the Cartesian product of E1i × E2j . Figure 4 presents
the 1-1 maximum weight bipartite matching of the justification sets of
t1.1 = (GO:0016062,GO:0007165,rg, {(nr sp rg), (GO:0016062 nr GO:0007165),
Ax.4}) and t2.1 = (GO:0016059,GO:0008150,rg, {(GO:0050789 rg GO:0008150),
(GO:0016059 sc GO:0050789), Ax.2}); axiom identifiers are omitted for legibil-
ity. We apply an exact solution to the problem of computing the 1-1 maximum
weight bipartite matching from a bipartite graph using the BlossomIV solver [2].
Values of justification similarity are used to compute the 1-1 maximum weight
bipartite matching, and the sum of this similarity is maximized in the best
matching. The time complexity of computing the 1-1 maximum weight bipartite
matching is O(m4), where m is sum of the cardinalities of sets of justifications.
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Once the 1-1 maximum weight bipartite matching MWBM of E1i × E2j is com-
puted, the similarity of these justifications is calculated as follows.

Simjustifications(E1i, E2j) =

∑

(ei,ej)∈MWBM(E1i,E2j)

Simjustifications(ei, ej)

Max(|E1i|, |E2j |)
Particularly, the Simjustifications values for the 1-1 maximum weight bipartite
matching of quadruples t1.1 and t2.1 in Fig. 4 is 0.06. Finally, we compute similar-
ity OnSim(a1, a2) based on the knowledge represented in quadruples t1i and t2j
in the sets R1 and R2 associated with the ontology terms a1 and a2, respectively.
First, a graph GOS = (R1 ∪R2, EOS) is a labelled bi-partite graph comprised of
the nodes in the sets R1 and R2, EOS ⊆ R1 ×R2, and edges are annotated with
the similarity of the quadruples. EOS corresponds to the 1-1 maximum weight
bipartite matching of the edges in the Cartesian product of R1 × R2.

OnSim(a1, a2) = TN
(
Dtax(a1, a2),

∑

(t1i,t2j)∈EOS

Sim(t1i, t2j)

Max(|R1|, |R2|)
)

– TN is a product triangular norm;
– R1 and R2 are the sets associated with a1 and a2, respectively;
– EOS corresponds to the 1-1 maximum weight bipartite matching of the

quadruples in the Cartesian product of R1 and R2 annotated with the simi-
larity Sim(t1i, t2j);

– quadruples t1i = (a1, ai, r1i, E1i) and t2j = (a2, aj , r2j , E2j) belong to
EOS; and

Fig. 5. Comparison of RGO:0016062 and RGO:0016059: 1-1 maximum weight bipartite
matching produced by the BlossomIV solver [2]; Dummy Quadruples are added by the
solver to find a matching that maximizes the sum of the similarity values
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– Sim(t1i, t2j) is defined as a triangular norm TN14 that combines similar-
ity values of the justifications of r1i, r2j with the taxonomic similarity of t1i
and t2j .

Figure 5 presents the 1-1 maximum weight bipartite matching found by the
BlossomIV solver [2] for the GO terms GO:0016062 and GO:0016059. We can
observe that two dummy nodes are added to ensure that the sum of the sim-
ilarity values is maximized. OnSim is computed on top of this 1-1 maximum
weight bipartite matching and combined with the taxonomic similarity value of
Dtax(GO:0016062,GO:0016059); thus, OnSim(GO:0016062,GO:0016059) corre-
sponds to 0.488 × 0.625 = 0.31, which is lower than the values of Dtax and Dps

reported in Sect. 2.

5 Experimental Results

The goal of the study is to evaluate the impact of OnSim on existing annotation-
based similarity measures. Our research hypothesis states that because OnSim
considers the neighborhood of two ontology terms, the annotation-based sim-
ilarity values of entities annotated with these terms are more accurate. We
conducted an empirical study on the collections of proteins published at the
Collaborative Evaluation of Semantic Similarity Measures (CESSM) portals of
200815 and 201416 using Hermit 1.3.8 as the OWL reasoner. The CESSM 2008
collection contains 13,430 pairs of proteins from UniProt with 1,039 distinct
proteins, while the CESSM 2014 collection comprises 22,302 pairs with 1,559
distinct proteins. Both collections are annotated with 1,908 distinct terms from
the August 2008 version of GO and 3,909 distinct terms from the December
2014 version, respectively. The class hierarchy of the 2008 GO version has a
maximum depth of 15 levels, while the depth of the version of 2014 increases
until 17 levels. Similarly, the number of axioms grows; the 2008 version has four
object properties, and one of them is transitive (Ax.6); and the 2014 version
has ten object properties, three are transitive (Ax.6), and five meet the Object-
PropertyChain (Ax.7). Annotations are from UniProt-GOA, and are separated
into the GO hierarchies of biological process (BP), molecular function (MF),
and cellular component (CC). CESSM computes the Pearson’s correlation coef-
ficients with respect to three similarity gold standards: ECC similarity [6], Pfam
similarity [15], and Sequence Similarity SeqSim [20]. The ECC similarity assigns
values between 0 and 4 that measure the number of Enzyme Comparison (ECC)
digits that are shared by two genes; high values of ECC indicate that both genes
share several digits and are similar. The Pfam similarity (Pfam) of two genes
corresponds to the Jaccard similarity as the ratio between the number of shared
Pfam families and the total number of Pfam families of the two genes. Pfam
similarity values are between 0.0 and 1.0. Finally, SeqSim produces normalized
14 For this ontology we used the Product TN for Sim and SimD.
15 http://xldb.di.fc.ul.pt/tools/cessm/.
16 http://xldb.di.fc.ul.pt/biotools/cessm2014/.
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values of the Sequence Similarity measure of BLAST that measures the sequence
alignment of two genes or proteins; SeqSim is one of the gold standard measures
for gene sequence alignment.

Eleven semantic similarity measures are compared; these similarity measures
extend Resnik’s(R) [16], Lin’s(L) [9], and Jiang and Conrath’s(J) [10] measures
to consider GO annotations of the compared proteins, the information content
(IC) of these annotations, and pairwise combinations of common ancestors. The
average combination which is labeled A, considers the average of the ICs of
pairs of common ancestors. Sevilla et al. [18] apply the corresponding measure,
i.e., the Resnik’s [16], Lin’s [9], and Jiang and Conrath’s [10] measures, to the
maximum value of IC of pairs of common ancestors; these combined measures
are distinguished with the labeled M. Measures labelled with B are combined
with the best-match average of the ICs of pairs of disjunctive common ancestors
(DCA) proposed by Couto et al. [4]. Finally, the set-based measures simUI (UI)
and simGIC (GI) [14] apply the Jaccard index to sets of annotations together
with domain-specific information. We evaluate two versions of AnnSim on the
two CESSM collections: AnnSimDtax relies on Dtax to decide the relatedness of
two annotations, while AnnSimOnSim uses OnSim.

Figure 6(a)–(d) report on the comparison of SeqSim with AnnSimDtax,
AnnSimOnSim, and the GO based extensions of the Resnik’s [16], Lin’s [9],
and Jiang and Conrath’s [10] measures. Annotations are restricted to GO Bio-
logical Process (BP) terms, the richer branch of GO in terms of axioms. Plots in
Fig. 6(a) and 6(b) were generated on CESSM 2008, while Fig. 6(c) and 6(d) were
returned by CESSM 2014. In almost all the cases, the studied similarity mea-
sures assign high similarity values to pairs of proteins that SeqSim also consider
similar. Nevertheless, the problem is to precisely distinguish when two proteins
are dissimilar. In the collections 2008 and 2014, simGIC (GI) [14] has the highest
correlation with respect to SeqSim, 0.773 and 0.799, respectively. In addition to
GO annotations of the proteins, GI additionally exploits information content
of the GO annotations in conjunction with the most informative ancestors of
these annotations. Thus, a more precise estimate of the relatedness of two pro-
teins is computed, i.e., both GI and SeqSim assign low similarity values to a
large number of pairs of proteins. AnnSimDtax does not precisely distinguish
dissimilar proteins in none of the collections, and the correlation with respect
to SeqSim is 0.650 and 0.682. Contrary, AnnSimOnSim considerably enhances
AnnSim, and exhibits a performance more similar to GI in dissimilar pairs of
proteins, i.e., pairs of proteins with low SeqSim values; thus, the correlation with
respect to SeqSim is 0.732 and 0.772. This improvement is the result of analyzing
the neighborhoods of the GO terms that are compared during the computation
of AnnSimOnSim, and corroborates our hypothesis that OnSim can positively
impact on the effectiveness of annotation-based similarity measures. Another
interesting issue to highlight is the impact that newer versions of GO and anno-
tations may have on the behavior of semantic similarity measures. Although the
CESSM 2014 tool only reports on eight similarities, clearly all of them behave
better in the CESSM 2014 collection than in the CESSM 2008. This observation
suggests an improvement in the quality of the GO taxonomy and axioms, as
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Fig. 6. Results are produced by the CESSM tool for GO BP terms (versions 2008
and 2014). Average values for AnnSimDtax and AnnSimOnSim. The similarity mea-
sures are: simUI (UI), simGIC (GI), Resnik’s Average (RA), Resnik’s Maximum (RM),
Resnik’s Best-Match Average (RB), Lin’s Average (LA), Lin’s Maximum (LM), Lin’s
Best-Match Average (LB), Jiang&Conrath’s Average (JA), Jiang&Conrath’s Maxi-
mum (JM), Jiang&Conrath’s Best-Match Average (JB)

well as on the annotations of the proteins provided by UniProt-GOA. Providing
thus, this type of studies, not only the possibility of evaluating the effectiveness
of existing measures, but also of analyzing the quality of existing ontologies and
annotations.

Further, Table 1(a) and (b) report on the comparison of all the similarity
measures with the gold standards: ECC, Pfam, and SeqSim on CESSM 2008
and 2014. Both tables report on Pearson’s correlation coefficients, where the
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Table 1. The Pearson’s correlation coefficient between three gold standards and eleven
similarity measures of CESSM. The top 5 correlations are highlighted in gray, and the
highest correlation with respect to each gold standard is highlighted in bold.

top-5 values are highlighted in gray, and the highest correlation with respect to
each of the baseline similarity measure is highlighted in bold. We can observe
that both AnnSimDtax and AnnSimOnSim are among the top-5 more correlated
measures to SeqSim and Pfam in CESSM 2008. However, in the version of 2014,
only AnnSimOnSim is kept among the top-5 measures. While AnnSimDtax main-
tains its improvement in the correlation with SeqSim in the 2014 collection, it
drops to the last position in terms of correlation. Similar to the results reported
in Fig. 6(d), the enhanced effectiveness of AnnSimOnSim in this dataset sug-
gests an improvement in the quality of the annotations and in the knowledge
represented in GO. We hypothesize that most of changes in GO are related to
axioms and object properties and not so much with the taxonomy. These charac-
teristics of GO 2014 would explain the behavior of AnnSimDtax in this dataset.
AnnSimOnSim is competitive because, unlike other top-5 similarity measures, it
is a generic similarity measure and is not tuned for GO.

6 Related Work

A diversity of similarity measures have been proposed in the literature to com-
pute relatedness between a pair of entities. Each measure exploits some knowl-
edge including paths of relations with other entities, taxonomic hierarchies of
the classes, and semantic knowledge. Path- or structure-based similarity mea-
sures compute the relatedness of two entities according to the properties of the
paths that connect them (e.g., PathSim [21] or HeteSim [19]), or the structure
of the graph that includes the two entities (e.g., SimRank [7]). High values of
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path- and structure-based similarity indicate that the entities are connected
with a large number of paths that meet certain conditions, or the neighborhoods
of these entities are highly connected. Taxonomic-based similarity measures, as
Dps [13] and Dtax [1], are a subset of structure-based similarity measures. They
decide relatedness in terms of the class hierarchy of the ontology and usually
consider only the is-a relation. High values of taxonomic similarities indicate
that the entities share deep common ancestors in the ontology. In the context of
Biomedicine, domain-specific similarity measures have been defined to measure
relatedness between scientific entities. Smith and Waterman [20], BLAST17 and
FASTA18 identify sequence alignment in sequences of nucleotides or amino-acids.
Furthermore, domain-specific similarity measures rely on knowledge encoded in
specific taxonomies to compute the similarity of two entities. For example, the
GO semantic similarity measures assign values between GO terms according
to the similarity measures proposed by Resnik et al. [16], Lin et al. [9], and
Jiang&Conrath [8]. Finally, Couto et al. [3] propose a classification of similar-
ity measures according to the semantics they exploit: Terminological measures
compute relatedness between two entities by considering similarity between the
names of the classes to which these entities belong; structural approaches decide
similarity depending on the relations and attributes of the classes; extensional
measures assign similarity values based on the cardinality of the intersection of
the instantiations of the classes; and the semantic-based approaches take into
account axioms that formalize properties of ontology classes to decide related-
ness of two entities [5]. OnSim considers both, the ontology structure and logic
axioms. Therefore, according to Couto et al., OnSim is classified as a structural
and semantic-based similarity measure.

7 Conclusions and Future Work

We have defined OnSim, a similarity measure that exploits the semantics of
ontology terms, i.e., object properties and axioms, to accurately determining
relatedness. We extended the annotation-based similarity AnnSim with OnSim
and conducted an extensive empirical study on collections available at the
CESSM websites. Experimental results reveal that AnnSimOnSim is able to
enhance AnnSim effectiveness with respect to biomedical gold standard simi-
larity measures: SeqSim, Pfam, and ECC. Observed results also suggest that
AnnSimOnSim and the other similarity measures are positively impacted by
the evolution of the Gene Ontology and protein annotations; providing thus, a
potential new application of these measures for suggesting quality issues.

In the future, we plan to study the impact of OnSim on other similarity
measures, e.g., Cosine or GI. Further, we will formally analyze the effects of
ontology and annotation evolution on the effectiveness of similarity measures;
we hypothesize that these results will provide insights to define higher quality
ontologies and annotations.
17 http://blast.ncbi.nlm.nih.gov/.
18 http://www.ebi.ac.uk/Tools/sss/fasta/.
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Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble,
C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg
(2014)

12. Palma, G., Vidal, M.-E., Haag, E., Raschid, L., Thor, A.: Measuring relatedness
between scientific entities in annotation datasets. In: ACM-BCB 2013. ACM (2013)

13. Pekar, V., Staab, S.: Taxonomy learning: factoring the structure of a taxonomy
into a semantic classification decision. In: Proceedings of the 19th ICCL, vol. 1,
pp. 1–7. Association for Computational Linguistics (2002)

14. Pesquita, C., Faria, D., Bastos, H., Falcao, A., Couto, F.: Evaluating go-based
semantic similarity measures. In: SMB/ECCB 2007 Bio-ontologies SIG (2007)

15. Pesquita, C., Pessoa, D., Faria, D., Couto, F.: Cessm: collaborative evaluation of
semantic similarity measures. Challenges Bioinf. (JB2009) 157, 190 (2009)

16. Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and
its application to problems of ambiguity in natural language. J. Artif. Intell. Res.
11, 95–130 (1999)

17. Schwartz, J., Steger, A., Weißl, A.: Fast algorithms for weighted bipartite matching.
In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 476–487. Springer,
Heidelberg (2005)

http://www2.isye.gatech.edu/wcook/software.html
http://arxiv.org/abs/cmp-lg/9709008


86 I. Traverso-Ribón et al.

18. Sevilla, J.L., Segura, V., Podhorski, A., Guruceaga, E., Mato, J.M., Mart́ınez-
Cruz, L.A., Corrales, F.J., Rubio, A.: Correlation between gene expression and go
semantic similarity. IEEE/ACM Trans. Comput. Biol. Bioinf. 2(4), 330–338 (2005)

19. Shi, C., Kong, X., Huang, Y., Yu, P.S., Wu, B.: Hetesim: a general framework
for relevance measure in heterogeneous networks. arXiv preprint arXiv:1309.7393
(2013)

20. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147(1), 195–197 (1981)

21. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k
similarity search in heterogeneous information networks. In: VLDB 2011 (2011)

http://arxiv.org/abs/1309.7393

	OnSim: A Similarity Measure for Determining Relatedness Between Ontology Terms
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 OnSim: An Ontology Similarity Measure
	5 Experimental Results
	6 Related Work
	7 Conclusions and Future Work
	References


