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Preface

The 2015 Data Integration in the Life Sciences (DILS 2015) conference was the 11th
conference in this international conference series on biomedical data integration. The
focus of interest this year included topics such as data integration technologies,
knowledge engineering and ontologies, data standards and coding, and novel appli-
cations in biomedical research. This year we also added new topics such as virtual
appliances for data analysis.

The call for papers attracted many submissions on the workshop topics. After a
careful reviewing process the international Program Committee accepted 21 research
papers and four graduate student consortium abstracts. DILS 2015 also featured two
keynote presentations by Dr. Arthur W. Toga of the USC Stevens Neuroimaging and
Informatics Institute and Dr. Dan M. Cooper of the University of California Irvine.

As the program chairs and editors of this volume, we would like to thank all authors
who submitted papers, as well as the Program Committee members and additional
reviewers for their excellent work in evaluating the submissions. Special thanks to the
Information Sciences Institute of the University of Southern California for providing
the facilities to host the conference. Finally, we would like to thank Alfred Hofmann
and his team at Springer for their cooperation and help in putting this volume together.

June 2015 Naveen Ashish
Jose-Luis Ambite
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Combining Multiple Knowledge Sources: A Case
Study of Drug Induced Liver Injury

Casey L. Overby2, Alejandro Flores1, Guillermo Palma1, Maria-Esther Vidal1,
Elena Zotkina2, and Louiqa Raschid2(B)

1 Universidad Simón Boĺıvar, Caracas, Venezuela
{aflores,gpalma,mvidal}@ldc.usb.ve

2 University of Maryland, College Park, USA
coverby@medicine.umaryland.edu

{ezotkina,louiqa}@umiacs.umd.edu

Abstract. Many classes of drugs, their interaction pathways and gene
targets are known to play a role in drug induced liver injury (DILI). Phar-
macogenomics research to understand the impact of genetic variation on
how patients respond to drugs may help explain some of the variability
observed in the occurrence of adverse drug reactions (ADR) such as DILI.
The goal of this project is to combine rich genotype and phenotype data
to better understand these scenarios. We consider similarities between
drugs, similarities between drug targets, drug-pathway-gene interactions,
etc. Links to the patients will include patient drug usage, ADR, disease
outcomes, etc. We will develop appropriate protocols to create these rich
datasets and methods to identify patterns in graphs for explanation and
prediction.

1 Introduction

The proliferation of Linked Data has lead to many research efforts on learning
and prediction with drug and gene target datasets. One of the most success-
ful examples has been in drug re-purposing and involves drug to gene-target
interaction prediction [4–6]. Since much of this data is networked data, methods
have included clustering, ranking and learning based on shared neighbors [5].
The state-of-the-art is represented by examples that include a method based on
PSL [6] that performs relational learning using structured features. More recent
access to clinical Big Data has also lead to several successful research efforts.
e.g., to mine patient records to identify adverse drug reactions (ADRs) [9,11].

This paper presents an ongoing effort to build upon these past successes
and aims to benefit from combining datasets including knowledge of associations
between genotypes and phenotypes relevant to drug treatment. The motivating
example will be a case study around drugs known to lead to unpredictable (“idio-
syncratic”) adverse drug reactions (ADRs) in susceptible individuals. Identifying
genetic risk factors associated with idiosyncratic ADRs has the potential to facil-
itate detection of “at risk” patients prior to choosing a course of treatment, or to

c© Springer International Publishing Switzerland 2015
N. Ashish and J.-L. Ambite (Eds.): DILS 2015, LNBI 9162, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-21843-4 1



4 C.L. Overby et al.

determine contributing factors once an ADR occurs, and to determine the sub-
sequent choice of an appropriate course of treatment. Drug-induced liver injury
(DILI) is one ADR for which the associated genetic factors have been studied since
the 1980s. It is a rare, but potentially serious, ADR associated with treatment with
certain commonly used drugs. The drugs that lead to this toxicity are structurally
diverse and belong to a number of different therapeutic classes. A comprehensive
review of the genetic basis of DILI and its mechanisms can be found in [23,26].
For our initial study, we choose the following three medications that have been
implicated in patients experiencing DILI: simvastatin, atorvastatin, and zileuton.

This paper is organized as follows: Sect. 2 will discuss our proposed work
including potential datasets and ontologies that will be used to exploit semantic
knowledge and to create (layered) knowledge graphs. A simple representation
informed by the V-Model [21] will model temporal clinical events. We also discuss
protocols to apply text analytics to extract patient phenotype data from clinical
records. Section 3 will present our current methodology - semantics based edge
partitioning (semEP)-to identify patterns in layered graphs; semEP currently
can process bipartite graphs with 2 layers [1,20]. Section 4 will outline a case
study on DILI.

2 Knowledge Graphs and Datasets and Ontologies

Figure 1 is a representation of the complex and heterogeneous knowledge that
will be used to study DILI. The V-Model [21] represents temporal clinical events
and provides a framework for clinical problem-action relationships. Temporal
clinical events informed by the V-Model, coupled with information from the
PharmGKB [28] knowledge graph, is illustrated in Fig. 1. It will provide informa-
tion for temporal reasoning in order to propose possible drugs (actions) causing
an ADR (problems) (Fig. 1, questions 1–3). The questions are as follows:

– What problems indicate the ADR?
– What encounter occurred prior to the ADR?
– What actions could have caused the ADR?

Resources including DrugBank [17], PharmGKB [28], the Human Phenotype
Ontology [16,22], and the Disease Ontology [15,25] all capture semantic knowl-
edge around the concepts of drugs, biological pathways, gene-targets, diseases,
and phenotypes. They facilitate inferring potential causal relationships between
drugs and ADRs (Fig. 1, question 4), namely, Is the ADR due to a drug?

We briefly summarize the semantic knowledge that will be applied to our
case study as follows:

– We will consider similarities between pairs of drugs and between pairs of gene
targets.

– We will consider shared pathways and interactions between pairs of drugs;
this may also lead to adverse drug reactions (ADRs).

– We will consider more complex interactions in pathways of drug targets,
metabolizing enzymes, transporters, etc.
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Fig. 1. V-Model Representation of clinical events and the PharmGKB Knowledge
Graph for pharmacogenomic data.

– For a drug in use, we will consider interactions between (a) phenotypes or
diagnoses associated with an ADR exhibited by the patient and (b) gene
targets involved in drug mechanisms. This will provide evidence for or against
the drug in question being a causal factor of a given ADR.

Layered Graphs. As will be discussed in the next section, our methodology
to discover patterns will focus on typed graphs, i.e., where all nodes and edges
are associated with a type. We focus on labeled bipartite graphs, BG=(D ∪ T ,
WE), e.g., D represents a set of drugs, T represents gene-targets, and WE repre-
sents interactions between a drug and gene-target pair. We also use the notation
WE(D,T ) for a bipartite graph. We consider an extension to layered graphs,
i.e., a concatenation of two or more bipartite graphs through the concatenation
of a pair of edges that are incident on the same node in both graphs. Example
layered graphs include the following, where we use the symbol & to represent
the concatenation of the individual bipartite graphs:
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– Drug-Usage(Patient, Drug) & Interacts(Drug, Pathway) & Interacts(Pathway,
Gene-Target).

– Interacts(Drug, Pathway) & Interacts(Pathway, Phenotype-Disease).

We note that we can define the concatenation operator in the spirit of an outer
join operator so that edges in the individual bipartite graphs can be retained.

Datasets and Ontologies. We will make extensive use of existing Linked Data
resources and ontologies as follows:

– Associations between phenotypes or diseases, time anchoring points and inter-
ventions (drugs or treatments) will be extracted from the electronic clinical
records of patients taking medications implicated in DILI, including those
identified in the LiverTox database [10]:

http://livertox.nih.gov.
– Drug-target interactions from the following sources: [4,5].
– Drug-drug interactions and ADRs from the ADEpedia portal [12,13]:

http://informatics.mayo.edu/adepedia/index.php/Main Page.
– We will use PharmGKB and DrugBank to annotate biological datasets and

Unified Medical Language System (UMLS), Human Phenotype Ontology
(HPO), and Disease Ontology (DO) to annotate biomedical datasets.

– For drugs, PubChem provides chemical similarity:
http://pubchem.ncbi.nlm.nih.gov/.

We will also use similarity values computed from the SMILES chemical rep-
resentation using SIMCOMP [8].

Protocols to Extract Phenotype from Clinical Records. We will map clin-
ical data into our representation of temporal clinical events (Fig. 1, solid lines).
Relevant clinical data will be extracted for known DILI patients using previous
approaches [19]. We will consider datasets from environments in which there is
an electronic health record systems (EHR) with computerized provider order
entry (CPOE) in order to facilitate running queries of temporal data including
patient encounters, e.g., visits, and medication orders. Some phenotypes and
diagnoses can also be identified using billing codes, e.g., ICD-9 code for “Acute
Liver Injury”. Many phenotypes relevant to liver injury, however, are captured
primarily in clinical notes and will require Natural Language Processing (NLP)
and Information Extraction (IE) techniques to find and extract those terms. We
will explore the use of existing programs to map biomedical text to concepts
in a range of knowledge bases containing disease and phenotype information,
including MetaMap [2], Apache cTAKES [24], and the NCBO annotator [14].

3 semEP Methodology to Identify Patterns
in Layered Graphs

Our methodology to find patterns in graphs relies on a semantics based edge par-
titioning (semEP) solution; semEP is a variant of community detection. Details of
semEP are in [20]. For ease of understanding, we skip the technical details and use

http://livertox.nih.gov
http://informatics.mayo.edu/adepedia/index.php/Main_Page
http://pubchem.ncbi.nlm.nih.gov/
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Fig. 2 to illustrate applying semEP to a bipartite graph between a set of drugs, a
set of gene targets, and with drug-to-target interaction edges.

In this example, the semantics are represented by similarity scores between a
pair of drugs, as well as between a pair of gene targets. The hypothesis underlying
most drug re-purposing solutions is that similar drugs interact with the same
targets, and similar targets interact with the same drugs. Thus the similarity
scores will be used by semEP for community detection and groups of similar
drugs that interact with groups of similar targets will be placed within a cluster.

Further, a drug may be complex in its behavior. Hence, a drug dj may be
similar to another drug di based on shared pathways, but it may be more similar
to dk based on chemical structure. To support this, semEP performs an edge
partitioning that allows a drug to participate in multiple clusters of communities.
In the above case, drug dj may participate with di in one community but may
also participate in dk in another community that does not include di.

We summarize the objectives of semEP as follows:

– An edge partitioning that allows the overlap of nodes in multiple clusters; this
matches the semantics of complex functions associated with drugs.

– Create clusters with high cluster quality. We have studied a number of metrics
including the use of similarity scores and cluster density.

– Exploit semantic knowledge such as edge constraints during edge partitioning.
– Balance these competing objectives by creating a minimal number of clusters,

each of which has maximal cluster density (or other metric for cluster quality).

The quality of a cluster is specific to the semantic knowledge encoded in the
graph; in this example the quality would be specific to drug-target interactions.
A high quality cluster could thus lead to more accurate predictions of previously
unknown drug to gene-target interactions. In Fig. 2, known positive interaction
edges are black solid edges while predicted edges are red broken edges.

We illustrate the impact of these competing objectives on cluster quality
and drug-target interaction prediction accuracy using the two edge partitions
A and B in Fig. 2. Consider the following drug-drug and target-target similarity
scores: sd(d1, d3) = sd(d2, d3) = st(t1, t3) = st(t2, t3) = 0.1, and sd(d1, d2) =
st(t1, t2) = 0.4. Both partitions have the same cluster density of 0.47; see [20] for
details. However, partition A includes four prediction edges while B only includes
one prediction edge. Assuming that these are all true positive predictions, then
partition A, which satisfies the two semEP objectives of maximum aggregate
cluster density and minimal number of clusters, has the same precision and
greater recall, compared to partition B. However, there may be a much higher
probability that some of the predicted interaction edges are false positives; in
this case, partition B may have higher precision and higher accuracy with lower
recall.

In the example of Fig. 2, we used drug-drug and target-target similarity to
capture semantic knowledge. For DILI, we plan to include additional knowledge,
e.g., the type of pathway or the class of drugs.

There are several possible options to extend semEP to layered graphs.
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Fig. 2. Two partitions with the same cluster density [20]; solid edges are known positive
interactions and red broken edges are predicted interactions

– For the layered graph Drug-Usage(Patient, Drug) & Interacts(Drug, Path-
way), we can apply semEP to the two independent bipartite graphs. We can
then merge the clusters of Drug-Usage(Patient, Drug) and Interacts(Drug,
Pathway) based on the overlap of drugs in these clusters.

– As an alternative, we can choose an order, e.g., Drug-Usage followed by
Interactions. Then we first apply semEP to the bipartite graph Drug-
Usage(Patient, Drug). The grouping of drugs in these clusters will provide
additional constraints that will be used as we next apply semEP to the bipar-
tite graph Interacts(Drug, Pathway).

– A final alternative would be to first apply the concatenation operator to pairs
of edges to create a new bipartite graph Drug-UsageANDInteracts(Patient,
Pathway). semEP can then be applied to this bipartite graph. The disadvan-
tage is that we may not be able to apply the semantics associated with the
two independent bipartite graphs. An additional disadvantage is that this will
exclude edges in the original bipartite graphs that do not participate in paths.

4 A Case Study of Drug Induced Liver Injury (DILI)

We report on preliminary results of applying semEP to a bipartite graph of drug
to gene-target interactions. We note that our current dataset [4,5] was created
with a focus on interactions where a drug binds to a specific target. It may not
include interaction pathways that reveal how a drug is metabolized or broken
down and processed. It is these latter interactions that are most relevant to DILI.

Clusters 1, 3, and 4 in Fig. 3 are associated with simvastatin and/or atorvas-
tatin. Statins inhibit endogenous cholesterol production by inhibiting HMG-CoA
reductase (HMGCR). They can be associated with severe outcomes such as liver
failure, transplantation and death. One large study analyzing data reported to
the Swedish Adverse Drug Reactions Advisory Committee during 1988–2010
found that of 73 suspected DILI cases, 41 % and 38 % were atorvastatin-induced
and simvastatin-induced DILI cases, respectively. Two patients died of acute liver
failure, one underwent liver transplantation, and three patients were rechallenged
with the same statin which produced a similar pattern of liver injury [3]. While
the cause of hepatic injury from simvastatin1 and atovastatin2 is unknown, they
1 http://livertox.nlm.nih.gov/Simvastatin.htm.
2 http://livertox.nlm.nih.gov/Atorvastatin.htm.

http://livertox.nlm.nih.gov/Simvastatin.htm
http://livertox.nlm.nih.gov/Atorvastatin.htm
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(a) Simvastatin Cluster 1

(b) Zileuton Cluster 2

(c) Statin Cluster 3

(d) Statin Cluster 4

Fig. 3. Four clusters (matching simvastatin, atorvastatin, and zileuton) retrieved from
a drug to gene-target interaction dataset [4,5].
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are both metabolized in part in the liver by CYP3A4 and are excreted in bile.
Statin-induced muscle toxicity such as myalgia, myopathy, myositis and rhab-
domyolysis [18] are also relevant ADRs. Candidate gene polymorphisms have
been associated with CK elevation (as a marker for muscle toxicity) for simvas-
tatin and atrovastin (ABCB1 [7] and CYP3A5 [29], respectively).

Cluster 1 indicates a direct connection between simvastatin and CYP3A4
which supports existing knowledge of CYP3A4 metabolizing simvastatin in the
liver. Another drug that appears in Cluster 1, tacrolimus, is also known to have
hepatic metabolism mediated by CYP3A4. Three other drugs, calcitriol, ergo-
calciferol, and cholecalciferol are used to treat vitamin D deficiency, refractory
rickets, familial hypophospatemia and hypoparathyroidism, and hypocalcemia
and renal osteodystrophy.

Clusters 3 and 4 support that HMGCR is a relevant enzyme for simvastatin
and atorvastatin, respectively. Clusters 3 and 4 together include other statins
including cerivastatin, pitavastatin, fluvastatin, rosuvastin, lovastatin, pravasta-
tin, and tenivastatin preparations. Given HMGCR is a drug target for statins
broadly, these results are expected and provided confirmatory evidence of the
semEP methodology.

Cluster 2 was generated with zileuton as the input medication. zileuton is
an anti-inflammatory leukotriene pathway inhibitor that acts by inhibiting the
5-lipoxygenase enzyme (LOX-5). It has been linked to several cases of DILI. In
one study with more than 2,000 patients treated with zileuton, it was estimated
that less than 0.1 % of patients experienced liver injury [27]. While the mech-
anism of liver injury due to zileuton is unclear, it most likely occurs through
reactive intermediates of metabolism3.

Cluster 2 indicates that ALOX5 is relevant. This is appropriate given
mutations in the promotor region of ALOX5 lead to diminished response to
anitleukotriene drugs such as zileuton. Several non-steroidal anti-inflammatory
(NSAID) drugs including ibuprofen, naproxen and ketoprofen were also included
in Cluster 2. All three medications rarely cause serious acute liver injury. While
the mechanisms for liver injury is not well known, heptotoxicity is likely due to
an idiosyncratic reaction in a metabolic process for ibuprofen4, naproxen5, and
ketoprofen6, and ibuprofen specifically may involve an immuno-allergic reaction.

5 Summary

The paper provides an outline of an ongoing study of drug induced liver injury
(DILI) associated with three drugs, simvastatin, atorvastatin, and zileuton. The
study will combine genotype, phenotype and pharmacogenomic knowledge and
datasets. A simple representation of temporal clinical events informed by the

3 http://livertox.nlm.nih.gov/Zileuton.htm.
4 http://livertox.nlm.nih.gov/Ibuprofen.htm.
5 http://livertox.nlm.nih.gov/Naproxen.htm.
6 http://livertox.nlm.nih.gov/Ketoprofen.htm.

http://livertox.nlm.nih.gov/Zileuton.htm
http://livertox.nlm.nih.gov/Ibuprofen.htm
http://livertox.nlm.nih.gov/Naproxen.htm
http://livertox.nlm.nih.gov/Ketoprofen.htm
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V-Model [21] models temporal clinical events and provides a framework to con-
nect clinical problem-action relationships. A methodology based on semEP -
semantics based edge partitioning to create communities - will be extended to
find patterns in layered graphs. The results of a preliminary analysis of drug to
gene-target binding interactions was presented.
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Abstract. We present a software system solution that significantly simplifies
data sharing of medical data. This system, called GEM (for the GAAIN Entity
Mapper), harmonizes medical data. Harmonization is the process of unifying
information across multiple disparate datasets needed to share and aggregate
medical data. Specifically, our system automates the task of finding corresponding
elements across different independently created (medical) datasets of related data.
We present our overall approach, detailed technical architecture, and experi‐
mental evaluations demonstrating the effectiveness of our approach.

1 Introduction

This paper describes a software solution for medical data harmonization. Our work is
in the context of the “GAAIN” project in the domain of Alzheimer’s disease data.
However, this solution is applicable to any medical and clinical data harmonization in
general. GAAIN stands for the Global Alzheimer’s Association Interactive Network1,
a data sharing federated network of Alzheimer’s disease datasets from around the globe.
The aim of GAAIN is to create a network of Alzheimer’s disease data, researchers,
analytical tools and computational resources to better our understanding of this disease.
A key capability of this network is also to provide investigators with access to harmon‐
ized data across multiple, independently created Alzheimer’s datasets.

Our primary interest is in medical data sharing and specifically data that is harmon‐
ized in the process of sharing. Harmonized data from multiple data providers has been
curated to a unified representation after reconciling the different formats, representation,
and terminology from which it was derived [7, 16]. The process of data harmonization
can be resource intensive and time consuming and our work is a software solution to
significantly automate that process. Data harmonization is fundamentally about data
alignment - which is to establish correspondence of related or identical data elements
across different datasets. Consider the very simple example of a data element capturing
the gender of a subject that is defined as ‘SEX’ in one dataset, ‘GENDER’ in another

1 http://www.gaain.org.
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and ‘M/F’ in yet another. When harmonizing data, a unified element is needed to capture
this gender concept and to link (align) the individual elements in different datasets with
this unified element.

The data mapping problem can be solved in two ways. We could map elements across
two datasets, for instance match the element ‘GENDER’ from one data source (DATA
SOURCE 1) to the element ‘SEX’ in a second source (DATA SOURCE 2). We could
also map elements from one dataset to elements from a common data model. A common
data model [7] is a uniform representation which all data sources or providers in a data
sharing network agree to adopt. The fundamental mapping task is the same in both. Also,
the task of data alignment is inevitable regardless of the data sharing model one employs.
In a centralized data sharing model [15], where we create a single unified store of data
from multiple data sources, the data from any data source must be mapped and trans‐
formed to the unified representation of the central repository. In federated or mediated
approaches to data sharing [7] individual data sources (such as databases) have to be
mapped to a “global” unified model through mapping rules [1]. The common data model
approach, which is also the GAAIN approach, also requires us to map and transform
every dataset to the (GAAIN) common data model. This kind of data alignment or
mapping can be a multi-month effort per dataset in medical and clinical data integration
case studies [1]. A single dataset typically has thousands of distinct data elements of
which a large subset needs to be accurately mapped. On the other hand it is well
acknowledged that data sharing and integration processes need to be simplified and made
less resource intensive for data sharing in the medical and clinical domains [1, 7] ) as
well as the more general enterprise information integration domain [10]. The GEM
system is built to achieve this by providing automated assistance to developers for such
data alignment or mapping.

The GEM data mapping approach is centered on exploiting the information in the
data documentation, typically in the form of data dictionaries associated with the data.
The importance of data dictionary documentation, and for Alzheimer’s data in particular,
has been articulated in (Morris et al., 2006). These data dictionaries contain detailed
descriptive information and metadata about each data element in the dataset. The rest
of this paper is organized as follows. In the next section (Sect. 2) we review the work
and available industrial or open-source software tools that are related to data mapping.
This is followed by a detailed description of the GEM system. In Sect. 4 we present
experimental results evaluating the efficacy of the GEM system and also a detailed
comparison with related data mapping systems. Finally we propose further work and
provide a conclusion.

2 Related Technologies

Data mapping is often done manually based on data dictionaries, on any other informa‐
tion such as database design diagrams [9], and in consultation with the original dataset
creators and/or administrators. Data mapping is well understood (Halevy et al., 2005)
and there are a number of software tools that have been developed in the past years that
relate to it. We first examine existing software tools to (1) determine their applicability
to our domain, (2) understand what functions are still needed in the GEM system.
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Existing tools can be categorized as metadata visualization tools, Extract-Transform-
Load (ETL), and schema-mapping tools. Metadata visualization tools are those that
create a visual representation of the design of a database by examining the database
itself. For instance SchemaSpy2 provides functionality of “reverse engineering” to create
a graphical representation of metadata, such as an “ER” (Entity-Relationship) diagram
[9] from the database metadata. Altova3 is a tool for analyzing and managing relation‐
ships among data in data files in XML. These tools are relevant to our task as they can
be employed to examine the data and/or metadata of a new dataset that we have to map.
Extract-Transform-Load (ETL) tools provide support for data schema mapping.
However the mappings are not automated and have to be created by hand using a graph‐
ical user interface (GUI). Tools in this category include Talend4, Informatica5 and Clio
(Haas et al., 2000). The category most relevant to our data mapping problem is Schema-
Mapping which provides automated mapping of data elements from two different data‐
base or ontology schemas. These tools take as input the data definition language or
“DDL” [9] associated with a dataset (database) and are able to match elements across
two database schemas based on the DDL information. Prominent examples in this cate‐
gory include the Harmony schema-mapping tool6 from the Open Information Integration
or OpenII initiative and Coma++ (Rahm et al., 2012). There are also schema-mapping
tools that are based on “learning-from-examples” i.e., the system is trained to recognize
data element mappings from a tagged corpus of element matches (from the domain of
interest). LSD [8] is an example in this category. Another tool is KARMA7 which
actually has more of an ontology alignment focus as opposed to data (element) mapping.
Finally, PhenoExplorer [8], is an online tool that allows researchers to identify research
studies of interest. Specifically, a researcher can search for studies along a set of dimen‐
sions, including race/ethnicity, sex, study design, type of genetic data, genotype plat‐
form, and diseases studied and the system determines the relevance of a study by
mapping data elements in a study to dimensions specified by a researcher.

Our work was motivated by the observation that the rich metadata available in data
dictionaries of medical datasets can be leveraged towards a significantly more automated
approach to schema-mapping than could be done with existing tools. The next section
describes the details of our approach.

3 Methods

This section describes our approach and the technical details of the GEM system. We
begin with enumerating the particular data characteristics of Alzheimer’s disease and

2 http://schemaspy.sourceforge.net.
3 http://www.altova.com.
4 http://www.talend.com.
5 http://www.informatica.com.
6 http://openii.sourceforge.net.
7 http://www.isi.edu/integration/karma/.
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medical data schemas as they bear upon the data mapping approach. We also describe
the metadata detail that is typically present in medical data dictionaries that can be
accommodated. We then present the GEM architecture and description of the algo‐
rithms.

3.1 Medical Data Characteristics

Medical data and associated data schemas have the following characteristics that are
relevant to the schema mapping problem:

(i) Availability of Metadata but not Data. Overall, data providers may be more
willing to make metadata (dictionaries) available during harmonization but the not
the actual data. Alzheimer’s and other medical research data are highly sensitive
and data providers are typically willing to share their metadata (such as data
dictionaries) but actual access to data may be restricted. In fact many data sharing
and exploration networks help users to locate relevant data and cohorts but actual
data must be obtained directly from data providers (Mandel et al., 2012). The data
harmonization and thus the data mapping process must work with the metadata
(only), and not assume the availability of actual data. This is an important distinc‐
tion as some schema mapping tools, such as Coma ++, expect the availability of
actual data (as well) to generate mappings.

(ii) Element Names and Element Descriptions. Data elements often have cryptic
names in medical datasets. An example is ‘TR1S1’ which is ill defined and difficult
to infer. The element names can also be composite. Essentially, a data element may
be one of an entire family of elements. For instance an element named
‘MOMDEMYR1’ has 3 sub-elements in the name which are MOM (for mother),
DEM (for dementia) and YR1 for year 1. Element names thus are of limited utility
in determining element mappings in this domain. On the other hand the element
descriptions are often rather clear and detailed for each data element and we
leverage that for mapping.

(iii) Presence of Special “Ubiquitous” Data Elements. There are elements such as
the subject identifier, date and timestamp fields, or subject visit number fields that
are present in every database table in a database. Such elements must be pre-iden‐
tified and filtered before matching, as they are not candidate matches for other
“regular” data elements we seek to match.

3.2 Element Metadata

Relative to other domains such as enterprise data, medical metadata is richer in terms
of element descriptions and also accompanying information about the element data type
and constraints on values. The detailed metadata that can be extracted or derived from
the dictionary information is as follows:

(i) Element Description. We usually have a text description of what the element
fundamentally is. In the example in Fig. 1 this is the text under the ‘Short
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Descriptor’ and ‘UDS Question sections’ (UDS refers to the Uniform Data Set of
clinical and cognitive variables in Alzheimer’s disease data). The description is
usually comprehensive and verbose to the extent required, as opposed to data
schemas in other domains where the element (database column) descriptive infor‐
mation (the ‘COMMENT’ in a DDL) is simply absent or is typically terse.

• Data value constraints. For a majority of data elements, the metadata also
contains constraints on the actual values they can take. This information is of
two types:

• Coding legend information. The coding legend provided under ‘Allowable
Codes’ tells us the interpretation of various codes, which is the set of possible
values that element can take. We can also derive the number of distinct possible
values for that element, which is 5 values (0,1,2,3,8) in this example.

Fig. 1. Element metadata from data dictionary

(ii) The Range of Values. For many numerical elements, the metadata provides the
explicit range of allowable values, for instance the range 0–30 for ‘MMSE’ scores,
etc. MMSE stands for the Mini-Mental State Examination and is commonly used
to measure cognitive impairment (Escobar et al., 1986).

(iii) The Element Category. Elements can be divided into a few distinct categories
based on the kind of values they can take. For instance the element may take one
of small set of prefixed codes as values (as in Fig. 1), or take a numerical value
such as the (actual) heart rate, etc., This category can be derived from the metadata
and is described in more detail below.

All of the above element information is utilized during data mappings, as we
describe.

3.3 System

Before describing the system we clarify some terminology and definitions. A dataset is
a source of data. For instance a dataset provided by ADNI would be a source. A data
dictionary is the document associated with a dataset, which defines the terms used in
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the dataset. A data element is an individual ‘atomic’ unit of information in a dataset, for
instance a field or a column in a table in a database or in a spreadsheet. The documen‐
tation for each data element in a data dictionary is called element metadata or element
information. A mapping or element mapping is a one-to-one relationship across two data
elements, coming from different sources. Mappings are created across two distinct
sources. The element that we seek to match is called the query element. The source we
must find matches from is called the target source and the source of the query element
is called the query source. Note that a common data model may also be treated as a target
source.

The key task of the GEM system is to find element mappings with a “match” oper‐
ation. “match” is an operation which takes as input (i) a query element, (ii) a target
source, and (ii) a matching threshold. It returns a set of elements, from the target source,
that match the source element and with a match confidence score associated with each
matched element.

Figure 2 illustrates the high level steps of the system. The first step is the metadata
ingestion step where we start from data dictionaries, extract and synthesize detailed
metadata from the data dictionaries for each data element, and store the synthesized
metadata in a database. This database is called the metadata database. The second step
is the element matching step where matching algorithms find matches for data elements
based on the information in the metadata database.

Fig. 2. System phases

Fig. 3. System architecture

Figure 3 illustrates the architecture and key modules in more detail.
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3.3.1 Metadata Ingestion
This part of the pipeline is comprised of two modules. One is for basic individual element
metadata extraction from the data dictionary. The other synthesizes detailed metadata
per data element.

Basic Element Extractor. The element extractor identifies the description and metadata
per data element. In many cases the data dictionary is available in a structured format,
such as a spreadsheet, with various components such as the data element name, any
(text) descriptions(s) of the field, and other information such the allowable values for
the data element etc., clearly delineated. If structured metadata is available this step is
not required, however there are instances when data dictionaries are available only as
Word or PDF documents. We have developed element extractors for Word and PDF
formats to work with these semi-structured documents and extract the per element
metadata.

Detailed Metadata Synthesizer. The detailed metadata synthesizer has three compo‐
nents. (1) The first segregates the various important portions of the element overall
metadata. (2) The second classifies the data element into a distinct category. (3) The
final component extracts specific data constraints that may have been specified for the
data element. We describe these.

Segregator: As illustrated in Fig. 1, we model the element information comprised of 4
segments, namely:

(i) The element or field name.
(ii) The text description of the element, which is the “Short Descriptor” as well as

“UDS Question” in the above example data dictionary.
(iii) The value coding legend, for applicable elements.
(iv) The value numerical range (if any) for a numerical element.

For many data dictionaries segmentation is already complete if the data dictionary
itself is structured with various segments in segregated fields. For other formats, such
as the example in Fig. 1 (which is a PDF document) we use simple semi-structured data
extraction techniques exploiting the labels for the various segments.

Category classifier: The type information of an element (Data Type’) illustrated in
Fig. 2 is usually provided. We categorize a data element based on the kinds of values it
can take. Data elements fall into one of the below categories:

(i) Coded elements i.e., where the data values are specific codes for a small finite set
of values. Coded elements can be:
a. Binary coded elements i.e., elements that take a Yes/No value
b. Other coded elements

(ii) Numerical elements that take a non-coded, actual numerical value. Examples are
elements such blood pressure or heart rate.

(iii) Text elements that take an actual text value.

We developed an element category classifier that is driven by heuristics as follows:
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• Coded elements can be identified by the presence of a coding legend in the element
metadata.

• Coded elements can further be classified as Binary Coded elements if they contain
legend values such as Yes/No, Present/Absent, 0/1, Normal/Abnormal etc.,

• Numerical elements have a (data) type for numbers (such as integer, float etc.). Also
a range is usually specified for numerical elements.

• Text elements have a data type for text strings.
• Special elements
• Elements for date or timestamps are identified by appropriate regular expression

patterns
• (Subject) identifier elements are identified by the element name, usually having indi‐

cators such as ‘ID’ in the name.

Metadata Detail Extractor: Here we extract and synthesize the metadata details,
specifically, (i) The element cardinality (number of distinct possible data values) from
the coding legend, and (ii) The range (minimum and maximum permissible values) for
numerical values. This extraction and derivation (for cardinality) is performed using
simple regular expression based extraction patterns, and label information.

3.3.2 Metadata Database
The metadata database is a uniform, detailed repository of the extracted metadata. This
metadata database powers the various matching algorithms in the matching phase.

3.3.3 Matching
The matching step has two sub-steps as follows:

(1) A candidate elimination or blocking sub-step, where for a given data element we
eliminate incompatible candidate elements from consideration. The incompatibility
is determined using some metadata details. This step is analogous to blocking in
record linkage where incompatible or improbable candidates are eliminated in a
filtering step (Minton et al., 2005).

(2) A similarity matching sub-step, where we determine similarity among compatible
candidate elements (to the original element we are seeking a match for) based on
the element description.

Incompatible Candidate Blocking. Incompatible candidates can be identified in different
ways. The first, applicable to all data elements, is if the original element and the candidate
match element have incongruent (different) categories. So essentially all candidates with
element category other than that of the original element are incompatible. Candidates
can then further be eliminated based on the other metadata constraints, specifically
cardinality or range. The cardinality of an element applies to elements where the data
values take one of a fixed and finite set of values, typically the set of values is small.
The cardinality of the element is then the number of possible such data values it can
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take. The cardinalities of two matching elements need to be “close” but not necessarily
exactly equal. For instance one data source may have a GENDER element with cardin‐
ality of 3 (taking values ‘M’, ‘F’, or ‘U’ for unknown) whereas another source may have
a corresponding (gender) element with cardinality of 4 (say 1 each for male and female,
1 for unknown, and 1 for error). For a given element with cardinality O we assume that
the cardinalities of any corresponding elements are distributed normally with O as the
mean and a standard deviation of 1. For a candidate element, with cardinality O’, we
compute the probability that O’ belongs to the normal distribution with μ = O and σ = 1.
Candidates with this probability below a certain threshold are eliminated.

Candidates in the numerical category can be eliminated based on a range of values.
Certain elements have a strict fixed range, by definition, in any dataset. For instance the
MMSE score element by definition takes values 0–30 (only). On the other hand an
element for heart rate may have a range specified as 35–140 in one dataset and 30–150
in another, both being “reasonable” range bounds for the values. We employ a range
match score (RMS) that is defined as follows:

This RMS score is measure of the overlap of the range of values across two elements.
Candidates with an RMS score below a certain threshold are eliminated.

Similarity Matching. After candidate elimination based on metadata constraints we
compute an element similarity match based on the similarity of the element text descrip‐
tions. We mentioned that the element (text) description is relatively more comprehensive
and verbose in medical data dictionaries and this is the reason we have explored and
utilized more sophisticated approaches to determine element description similarity
across two elements. Our approach employs topic modeling on the element descriptions.
Topic modeling (Blei 2012) is an unsupervised machine learning approach, which is
used for discovering the abstract “topics” that occur in a collection of documents (data
dictionaries). The underlying hypothesis is that a document is a mixture of various topics
and that each word in the document is attributable to one of the document’s topics. We
formally define a topic to be a probability distribution over the unique words in the
collection. Topic modeling is a generative statistical modeling technique which defines
a joint probability over both observed and hidden random variables. This joint proba‐
bility is used to calculate the conditional distribution of the hidden variables given the
observed variables. In our case, the documents in the collection are the observed vari‐
ables whereas the topic structure which includes both the topic distribution per document
and the word distribution per topic is latent or hidden.

In our approach, each column from the source is considered as a document, with the
column name as the document name and the column description as the content of the
document. After formatting our input in this way and generating a topic model, we
receive a document distribution probability matrix where each row represents a docu‐
ment, each column represents a topic, and each particular document topic cell contains
the probability that the particular document belongs to that particular topic. Thus we
have for each document i.e., element description, a probability distribution over the set
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of topics. The similarity between two element descriptions is the cosine similarity or dot
product [18] of the topic probability distribution vectors associated with the two element
descriptions. The description similarity (DS) is defined as:

where TPV = Topic Probability Vector (associated with an element description).

4 Results

We conducted a series of experimental evaluations with the GEM system which are
centered on evaluating the mapping accuracy of GEM with various data schema pairs.
Specifically, we determined (i) The optimal configuration for the GEM system that
results in high mapping accuracy, (ii) The actual data mapping accuracy that can be
achieved by GEM for various GAAIN dataset pairs, and (iii) Comparison of mapping
accuracy of GEM with that of other schema-mapping systems.

Experimental Setup. We used six of the data sources of Alzheimer’s disease data that
we have in GAAIN namely (1) the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [17], (2) the National Alzheimer’s Coordinating Center database (NACC) [3],
(3) the Dominantly Inherited Alzheimer Network database (DIAN) [13], (4) the Inte‐
grated Neurogenerative Disease Database (INDD) [21], (5) the Layton Aging and
Alzheimer’s Disease Center database [20] and (6) the Canadian Longitudinal Study of
Aging (CLSA)8. The original data provider provided the data dictionaries for each
source. We conducted multiple data mappings using GEM, for various pairs of the six
datasets as well from the datasets (one at a time) to the GAAIN common model. We
also conducted data mappings for some of these dataset pairs using the Harmony system,
for comparison. We manually created truth sets of data mappings across these dataset
pairs, which are used as the gold standard against which GEM generated mappings are
evaluated.

Mapping Accuracy Evaluations. The GEM system provides multiple alternatives as
suggested matches for a given data element. The (maximum) number of alternatives
provided is configurable. We present results showing data mapping accuracy as a func‐
tion of the number of alternatives for a set of evaluations below.

Topic modeling vs TFIDF. The first set of evaluations is to determine the effectiveness
of topic modeling based text description by evaluating the impact of the text description
match algorithm on the mapping accuracy. In addition to topic modeling based text
match we also employed a TF-IDF Cosine similarity (Tata and Patel, 2007) algorithm
for matching text descriptions. The mapping accuracies for various schema pairs are
shown in Fig. 4.

8 http://www.cihr-irsc.gc.ca.
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(a) LAADC to ADNI (b) NACC to ADNI

Fig. 4. Text description similarity algorithm impact

Our results with various pairs of schemas, of which the three pairs illustrated in
Fig. 4 are a subset, show that in most cases the mapping accuracy achieved with
topic modeling based text description matching is superior to that achieved with
TFIDF based text matching. This is however not the case universally as in the INDD
to ADNI mapping (not illustrated) TFIDF based mapping outperformed that based
on topic modeling. Our observation is that topic modeling based text matching works
better when the two sources (being matched) have comprehensive data dictionaries
with verbose text descriptions for data elements. On the other hand TFIDF appears
to work better when one or both data sources have dictionaries with brief or succinct
element text descriptions. While not obvious, this result is not surprising given that
the underlying topic model generation algorithm, Latent Dirichlet Allocation
(LDA), works by finding cohesive themes in large collections of unstructured data
(Blei 2012). More elaborate element text descriptions provide a better basis for this
algorithm to discover themes in the corpus of all descriptions. In Fig. 4 also show
results for an approach that combines TFIDF and topic modeling text match. We use
a voting algorithm that considers, for a specific matching instance, either one of
topic modeling or TFIDF for determining the text similarity based on which of the
two text matching approaches has a higher text match similarity score. The text
match similarity score is in the range 0–1 for both approaches. A more principled
way to address this however would be to assess the probabilistic confidence that a
pair of elements match, given the match similarity scores from both TFIDF and topic
modeling approaches. We propose to add this as part of the larger effort of incorpo‐
rating machine-learning techniques into the system that we discuss in the Conclu‐
sions section.

Impact of Blocking Based on Metadata Constraints. Figure 5 illustrates the impact of
employing metadata data constraint based filtering or blocking on mapping where we
evaluate mapping accuracy with and without the metadata based blocking step.

We see that using metadata constraint based blocking indeed provides an improve‐
ment in mapping accuracy. The improvement is about 5 % on average and as high as
10 % in some cases as evaluated by mapping across various schema pairs.
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Comparison with Other Systems. We also compared our system with related systems
to the extent we could, given limitations of other systems. Our aim was to compare the
mapping accuracy of various schema pairs provided to GEM as well as to systems with
identical functionality namely Harmony and Coma++. For Harmony, we could
complete this comparison for only one of the schema pairs as the system could not work
with other schema pairs, given its limitations in terms of the total number of database
tables and columns it can reason with. That comparison, NACC to ADNI, is provided
in Fig. 6(a) where GEM was significantly superior (around 12–15 % better) than
Harmony in mapping this dataset pair. With Coma++, the mapping accuracies for all
dataset pairs were less than an F-Measure of 0.3 and we do not report these results. Coma
++ is not designed to consider element text descriptions in schema mapping and the
focus is more on matching ontology and XML schemas based on structural information
(Bosch et al., 2011).

(a) Comparison with Harmony (b) Common Model Mapping

Fig. 6. Comparison, and mapping to GAAIN common model

(a) LAADC to ADNI (b) NACC to ADNI

Fig. 5. Impact of metadata Constraint Based Blocking
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Mapping to GAAIN Common Model. Finally, we evaluated the mapping accuracy of
GEM to the current GAAIN common data model. The GAAIN common data model
currently comprises of 24 data elements of key subject data elements that include demo‐
graphic elements such as age and gender and also select patient assessments and scores.
We represented the common model as (just) another data schema. The results of the
mapping from ADNI to GAAIN and NACC to GAAIN are shown in Fig. 6(b).

4.1 Conclusions from Results

The experimental results provide several important conclusions regarding the perform‐
ance and the configuration of GEM. The GEM system provides high mapping accuracy,
in the range of 85 % or above F-Measure for GAAIN datasets and the common model,
and for reasonable result window sizes of 6 to 8 result alternatives. The system performs
better than existing systems such as Harmony, in terms of both scalability in handling
large data schemas as well as mapping accuracy. From a system configuration perspec‐
tive we can conclude that it is indeed beneficial to determine element text description
similarity using a sophisticated topic modeling based approach. This generally results
in higher schema mapping accuracies, compared to using existing text similarity tech‐
niques. Further, it is advantageous to train the topic model used for text matching, on
element text descriptions from a large number of data sources. Finally, metadata
constraint based blocking is beneficial in achieving higher accuracy of mapping.

5 Conclusion

We described and evaluated the GEM system in this paper. Compared to existing schema
mapping approaches, the GEM system is better optimized for medical data mapping
such as in Alzheimer’s disease research. Our experimental evaluations demonstrate
significant mapping accuracy improvements that have been obtained with our approach,
particularly by leveraging the detailed information synthesized from data dictionaries.

Currently we are integrating the GEM system with the overall GAAIN data trans‐
formation platform so that developers can operationally use the mapping capabilities to
integrate new datasets. We are also enhancing the system with machine-learning based
classification for schema mapping. This will enable us to systematically combine various
match indicators such as text similarity using multiple approaches such as topic
modeling and TFIDF cosine similarity, and also features based on data element name
similarity. We are also developing an active learning capability (Rubens, Kaplan and
Sugiyama, 2011) where developers can vet or correct GEM system mappings and the
system is able to learn and improve from such feedback.
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Abstract. The Medical Informatics Platform of the Human Brain
Project has the challenging task of organizing and presenting to its users
a variety of data originating from different hospitals and hospital sys-
tems in a unified way, while protecting patients privacy as imposed by
national legislation and institutional ethics. In this paper we view these
challenges under the scope of data integration and analyze preliminary
steps taken towards realizing the Medical Informatics Platform.
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1 Introduction

Understanding the brain is one of the greatest challenges facing 21st century
science. Gaining profound insights into what makes us human, developing new
treatments for brain diseases and building revolutionary new computation tech-
nologies is the main goal of the Human Brain Project (HBP), a 10-year EU
flagship project with 135 partner institutions in 26 countries. HBP will achieve
its objective through the development of six ICT platforms dedicated to Neuroin-
formatics, Brain Simulation, High Performance Computing, Medical Informatics,
Neuromorphic Computing and Neurorobotics, whose names are self-explanatory.

The goal of the Medical Informatics Platform (MIP) is to federate clinical
data, such as genetics, imaging, and other, currently locked in hospital and
research archives and make them available to relevant research communities,
while guaranteeing protection for sensitive patient information as imposed by
national legislation and institutional ethics. Subsequently, these data will be
used with the aid of sophisticated Data Mining algorithms and techniques in
order to identify biological signatures of diseases, mostly related to brain, as
well as predict features of the brain that are difficult or even impossible to
measure experimentally. The overall results will be used for diagnosis, more
accurate prognosis and new types of drug discovery for the development of new
medicines.

MIP similar projects are VPH-share,1 p-medical,2 and @neurIST.3 VPH-
Share system is an infrastructure which provides services for sharing and access
1 http://www.vph-share.eu/.
2 http://p-medicine.eu/.
3 http://www.aneurist.org/.
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to data and tools for biomedical research and modeling, that however, has no
control over the models, tools and data that are shared through its services. It
cannot provide any assurances as to the quality of the material that is made
available by external contributors, which constitutes a major difference com-
paring to MIP, where data quality is a significant consideration. In contrast,
p-medicine, is much more tightly controlled. It focuses on specific communities
in the cancer domain and on developing new tools, IT infrastructure and (Vir-
tual Physiological Human) VPH models to accelerate personalized medicine. It
has strong focus on data quality, curation and integration as well as data secu-
rity. Finally, @neurIST is an initiative that integrates biomedical informatics in
the management of cerebral aneurysms and has created a secure system that
shares privacy preserving data from hospitals across Europe, in a same manner
as planned for MIP.

Fig. 1. The medical informatics platform

MIP is composed of three
different layers, as shown in
Fig. 1. The first one, called
the Web Portal, is the user
interface of the platform,
where users depending on
their access rights will be
able to perform epidemio-
logical exploration queries,
interactive analysis queries
as well as complex data
mining tasks, on the avail-
able data. The second layer,
called the Federation Layer
is responsible for translating
queries posed over the Web Portal to proper queries that can be answered from
each individual hospital. Additionally, it is responsible for collecting responses
from individual hospitals and merging their results. Finally, the Local Layer is
responsible for collecting disparate (raw) hospital data and making them avail-
able in a unified manner. Such data are images (MRIs), CSV files or even raw
text, output of proprietary medical systems, as well as relational databases;
either commercial or open source.

It is obvious that the challenges MIP is confronted with are mainly data inte-
gration challenges. Data Integration has gained a lot of attention in life sciences
as the explosion of data in the biomedical research and in the healthecare systems
demands urgent solutions for data management [3,9,10,16]. Data integration is
the key to interoperable access, hence a key objective of the MIP.

In this paper, we show how data integration theory binds with the needs
of each layer of the architecture of MIP. We present a preliminary approach to
the proposed solutions that involves the exchange of data, the use of ontologies/
terminologies for standardization, as well as (distributed) query answering, while
protecting sensitive patient information.
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2 Data Integration

The goal of Data Integration [5,8,11,14,18,20] is to provide users with uniform
access over a set of disparate data sources that have been created and stored
autonomously. A variety of possible architectures exist, however they all fall
somewhere in the spectrum between warehousing and virtual integration.

In warehousing, data from individual data sources are subject to complex
transformation processes, which may include cleaning, value transformations
and aggregation, and then are loaded into a target database, accessible to users.
When those complex transformations are defined by declarative (schema) map-
pings and performed through a chase procedure [1] the process is called data
exchange [6]. On the other hand, in virtual integration no physical database is
created. Instead, users interact with the data integration system through a single
target logical schema, called global, that provides the unified view of the whole
system and does not contain stored data. In this setting the data reside in the
data sources, where they were originally stored, and are accessed, with the aid
of declarative (schema) mappings, at query time.

The formalism used to express schema mappings, in both data exchange and
virtual integration, is Tuple Generating Dependencies (TGDs) [1], that can also
be used to express constraints in a database schema. In our setting we consider
s-t TGDs, a subset of TGDs whose body (head) contains only source (target)
predicates to express schema mappings, and weakly acyclic TGDS, to express
target constraints, that offer PTIME data and EXPTIME combined complexity
[6]. For example, the following formula is a (s-t) TGD (that also contains user
defined functions) that joins tuples of tables hbp diags and hbp patients on the
hid attribute/variable and populates the diagnostic table with values of the pid,
code, type, and date variables. Moreover “CHUV ” is a constant, while newID is
a function that produces a unique identification number for each tuple.

hbp diags(hid,date, code, descr, type), hbp patients(hid,pid, . . .)→
diagnostic(newID(),pid, code, type,date, “CHUV ”) (1)

3 MIP Architecture and Data Integration

In this section we present a detailed bottom up analysis of the MIP architecture
(Fig. 1) while at the same time we highlight the data integration challenges that
each MIP layer faces, as well as the approaches towards addressing them.

3.1 Local Layer

Initially, the Local Layer is responsible for collecting hospital data and creating
a Local Data Store Mirror (LDSM), for every participating hospital. This Mirror
will be the access point of the MIP to the hospital data, through the RAW query
engine [12], an in situ query processor that eliminates data loading by accessing
data in its original format and location.

The original hospital data provided for the creation of the LDSM, include raw
data, such as images (MRIs), CSV files that correspond to genetics and clinical
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data. They use divergent schemata and possibly different references to the same
objects, hence we need to deal with syntactic, value and semantic heterogeneities
and inconsistencies. All these challenges imply that the Local Layer addresses a
data warehousing integration problem. To the time being the only hospital that
participates in the MIP is the University Hospital of Lausanne (CHUV).

The first challenge addressed towards the creation of the LDSM for CHUV is
the creation of its schema. At its current state, it consists of thirteen tables, that
describe information regarding patients, diagnostics, diseases, laboratory exam-
inations, genetic information as well as brain information. Additionally, these
tables describe meta-data, such as annotations and provenance information.
Schema creation is tightly connected with variable extraction, a collaborative
effort between computer scientists and medical experts identifying variables that
play a prominent role in the supported MIP services. Moreover, an effort is under-
taken for the schemata of the local hospitals to be similar to each other and to
that of the Web Portal. An efficient way to achieve this is by using standardized
schema variables. So, another challenge is the standardization of the extracted
variables and their values. These challenges are also addressed at the Web Portal.

Our approach, regarding (data and query) standardization, concerns using
variables (query terms) from the Logical Observation Identifier Names and Codes
(LOINC) [7] ontology. LOINC provides a universal code system for reporting lab-
oratory and other clinical observations and contains more than 30,000 different
observations. For each observation the LOINC database includes a code, a long
formal name, a “short” name as well as synonyms. For example, the diagnosis
variable is represented by code 52797-8, with a long (and short) name “Diagnosis
ICD code”, and synonyms “International Classification of Diseases”, “DX ICD
code” and other.

Additionally, in order to capture the MRI image processing pipelines we have
followed the Cortical Labelling Protocol [13] atlas that identifies brain regions.
Region examples are “Right Cerebellum Exterior”, “Left Hippocampus” and
others and corresponding values are estimated volumes in cc produced by a
feature extraction process [2]. Moreover, regarding genetic data, we focus on
Single Nucleotide Polymorphisms (SNPs) that represent the difference in a pair
of nucleotides from the general population. SNPs are probably the most impor-
tant category of genetic changes influencing common diseases, since they have
been shown to influence disease risk, drug efficacy and side-effects, provide infor-
mation about ancestry, and predict aspects of how humans look and even act.
We follow rs names provided by dbSNP [19]. For example, rs2075650 is an exam-
ple of an SNP found on gene TOMM40 of chromosome 19 associated with high
risk of Alzheimer disease. Each SNP is represented by a value from the range of
{0, 1, 2}, where 0 means that the two nucleotides are the same as the reference
(healthy nucleotides), 1 means that one of them is different, while 2 that both
are different.

While the above standards capture variables used when issuing a query,
standardization is also needed to provide query constant values as well as to
capture answers of queries. Therefore, our approach incorporates International



32 T. Venetis and V. Vassalos

Classification of Diseases ICD-10 codes [17] that refer to classification of
mental and behavioural disorders. For example, Alzheimer disease with early
onset, represented by code G30.1, is a subcategory of Alzheimer disease, repre-
sented by code G30.

In order to populate the LDSM with metadata provided by standards TGDs
are used. For example TGD

hbp SNP (pid, rsName, rsValue), dbSNP (rsName,gene, chrom, pos) →
gene snp(pid, rsName, rsValue,gene, chrom, date()) (2)

joins tables hbp SNP and dbSNP on the rsName variable and creates tuples
that are enriched with gene and chromosome information, beside the specific rs
and its value. The same applies, in a similar manner, for every used standard.

Besides standardization TGDs are used in order to address another major chal-
lenge; the creation of schema mappings that ensure necessary transformations
will be applied on the original CHUV data to translate them to a uniform coher-
ent representation, i.e., the LDSM schema. These transformations will be per-
formed to all but imaging data and include cleaning, normalizing and integrating/
merging the input data. Use of declarative mappings is heavily based on the fact
that mappings are formal, easily reusable, even by non computer experts and
that chase engines can be highly efficient.

For the creation and execution of all these TGDs we have developed a visual
mapping tool, called MIPMap (Fig. 2) that extends the open source mapping
tool ++Spicy [15] in order to meet the needs of HBP. MIPMap, also includes
an improved mapping execution engine to deal with the complexity and size of
HBP data transformations. MIPMap supports the execution of s-t TGDs while
allowing the target schema to contain weakly acyclic constraints.

Fig. 2. MIPMap mapping tool.

The first batch of data
available to populate the CH
UV LDSM involves patient
information as well as diag-
nostics for patients over eigh-
teen years old that have
undergone imaging examina-
tions. More precisely, tables
hbp diags and hbp patient
have been made available.
The first one includes infor-
mation about diagnostic exa-
minations, while the second
general information about
these patients. Taking into
account the schema created
for the CHUV Local Data
Store Mirror, shown in the
right of Fig. 2, we have created
a set of TGDs that are able
to translate the input data to
the schema of the Local Data Store Mirror. These TGDs are rules (1) and (3).
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Note that hospitalid and patient ipp (presented as hid and pid, respectively,
in the rules) values used are not the original hospital and patient identification
numbers, but pseudo-identification numbers produced at the first stage of the
anonymization process. Additionally, note that table diagnostic codes (Fig. 2)
is populated by ICD-10 codes and descriptions.

hbp patients(hid,pid,gender,dob, entrD, extD, . . .) →
patient(pid, yOB(dob), sel(gender), “Lausanne”, “Switzerland”, date()) (3)

Rule (3) uses the pid, dob (date of birth) and gender variables of table
hbp patients in order to populate table patient. pid values are copied, while
dob and gender values undergo a pre-processing step. More precisely, function
yOB is applied on the dob values to extract the year of birth. Subsequently,
since the original CHUV data is in French, function sel reads the input gender
(homme or femme) and selects its English equivalent. Finally, function date out-
puts the current date (date of translation), while also constant values Lausanne
and Switzerland are used to populate the patient table. Hence, except for the
direct translation of variable values, MIPMap also allows the use of functions
that are performed on tuple’s values and produce outputs that populate the
target schema. Note, that MIPMap also supports the use of existential variables
in the head of the TGDs.

Anonymization. Guaranteeing protection for sensitive patient information as
imposed by national legislation and institutional ethics, is a key constraint for the
development of MIP. This will be achieved through an anonymization process,
that is separated in two stages.4

The first stage, concerns the anonymization of the original hospital data,
that are going to be stored on the LDSM. More precisely, data exported by
hospital systems will follow a anonymization process according to the Health
Insurance Portability and Accountability Act (HIPAA) [4]. HIPAA provides 18
identifiers that should be removed from any dataset in order for the dataset to
be safe and cannot be used to identify an individual. For the MIP the identi-
fiers to be removed are names, social security numbers, medical record numbers
and biometric identifiers. Regarding imaging data other approaches will also be
employed such as performing data normalization, that will ensure that patients
cannot be identified by MRIs. Hence, the LDSM will not contain information
that can be used to identify individuals.

At the second stage, all the query results leaving the LDSM will be filtered
for any personal identifiers left, such as headers of imaging data. Additionally,
certain fields that could compromise the privacy of patients will be excluded by
the queries of the Web Portal. Moreover, the LDSM shall respond to queries by
only returning aggregated results and never individual patient details. Especially
for cases where less than k values exist the MIP shall provide k-anonymity [21].

4 CHUV anonymization will be performed by gnúbila, an external subcontractor.
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3.2 Federation Layer

The Federation Layer hides from the users of the platform the distributed archi-
tecture, i.e., the fact that hospital data remain stored at each hospital.

Initially, it is responsible for forwarding analysis and data mining queries to
the hospitals and collecting/merging their results. However, the sensitive patient
information protection constraints of MIP imply a no move/no copy policy of
individual patient data while allowing only aggregate information to leave each
hospital (see also Sect. 3.1). This combined with the distributed storage of the
data produce limitations in the way that the analyses and data mining algorithms
can be performed. For example, analysis and data mining algorithms need to
compute complex measures, such as entropy (for the ID3 algorithm), that are
statistical measures performed on the overall dataset (all the hospitals). Since the
information retrieved from each hospital cannot contain individual records but
only aggregates (counts, sums, etc.) each algorithm will have to be implemented
in a distributed manner taking into consideration these constraints. Hence, the
Federation Layer will play a key role in pushing down to hospitals computations
needed for each task, possibly in an iterative manner, following the privacy
preserving limitations.

Additionally, even though an effort is undertaken for all hospital schemata to
be identical, and hence for the Web Portal schema to also be identical to them,
achieving this is highly unlikely. Therefore, the Federation Layer will be respon-
sible, except for forwarding queries to the hospitals, to also reformulate them,
i.e., translate them into terms and nomenclature that is used by each hospital.
To achieve this declarative schema mappings need to be provided between the
Web Portal and each hospital. To this end we have been developing a web based
version of MIPMap, that will be responsible for semi-automatically creating
mappings, through the implementation of various schema matching techniques
and algorithms [5], as well as for applying query reformulation on issued queries
and merging gathered hospital results.

4 Conclusion

In this paper we have presented the architecture of the Human Brain Project
Medical Informatics Platform and have highlighted the significance of data
integration challenges it faces. Additionally, we have presented the integration
approaches we are undertaking towards realizing the goal of the MIP.
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Abstract. In many scientific domains, including neuroimaging studies, there is
a need to obtain increasingly larger cohorts to achieve the desired statistical
power for discovery. However, the economics of imaging studies make it
unlikely that any single study or consortia can achieve the desired sample sizes.
What is needed is an architecture that can easily incorporate additional studies as
they become available. We present such architecture based on a virtual data
integration approach, where data remains at the original sources, and is retrieved
and harmonized in response to user queries. This is in contrast to approaches
that move the data to a central warehouse. We implemented our approach in the
SchizConnect system that integrates data from three neuroimaging consortia on
Schizophrenia: FBIRN’s Human Imaging Database (HID), MRN’s Collabora-
tive Imaging and Neuroinformatics System (COINS), and the NUSDAST pro-
ject at XNAT Central. A portal providing harmonized access to these sources is
publicly deployed at schizconnect.org.

Keywords: Data integration � Neuroimaging � Mediation � Schema mappings

1 Introduction

The study of complex diseases, such as Schizophrenia, requires the integration of data
from multiple cohorts [1]. As a result, over the past decade we have witnessed the
creation of many multi-site consortia, such as the Functional Biomedical Informatics
Research Network (FBIRN) [2], the Mind Clinical Imaging Consortium (MCIC) [3], or
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the ENIGMA Network [4]. Within a consortium, researchers strive to harmonize the
data. For example, FBIRN’s Human Imaging Database (HID) [5] is a multi-site fed-
erated database where each site follows the same standard schema. However, across
consortia harmonizing the data remains a challenge.

One approach to data integration, commonly called the warehouse approach, is to
create a centralized repository with a uniform schema and data values. Data providers
transform their data to the warehouse schema and formats, and move the data to the
repository. An example of this approach within neuroscience is the National Database
for Autism Research (NDAR) [6]. The warehouse approach is common in industry and
in government and provides several advantages. The main ones are performance and
stability. Since the data has been moved to a single repository, often a relational
database, or other systems that allow for efficient query access, the performance of the
system can be optimized by the addition of indices and restructuring of the data. Also,
since the repository holds a copy of the original data, the life of the data can persist
beyond the life of the original data generator. However, these strengths turn into
disadvantages in more dynamic situations. First, the data in the warehouse is only as
recent as the last update, so this approach may not be appropriate for data that is
updated frequently. A more insidious problem is that once the schema of the warehouse
has been defined and the data from the sources transformed and loaded under such
schema, it becomes quite costly to evolve the warehouse if additional sources require
changes to the schema.

An alternative approach to data integration, commonly called the virtual data
integration or mediation approach, is to leave the data at the original sources, but map
the source data to a harmonized virtual schema. These schema mappings are described
declaratively by logical formulas. When the user specifies a query (expressed over the
harmonized schema), the data integration system (also called a mediator) consults the
schema mappings to identify the relevant data sources and to translate the query into
the schemas used by each of the data sources. In addition, the system generates and
optimizes a distributed query evaluation plan that accesses the sources and composes
the answers to the user query. This approach has opposite advantages and disadvan-
tages to the warehouse approach. The main advantages are data recency, ease of
incorporation of new sources, and ease of restructuring the virtual schema. The user
always gets the most recent data available since the answers to the user query are
obtained live from the original data sources. Adding a new data source or changing the
harmonized schema is accomplished by defining a set of declarative schema mappings.
This process is often much simpler than reloading and/or restructuring a large ware-
house. The fact that the schema mappings are a set of compact logical rules signifi-
cantly lowers the cost of developing, maintaining and evolving the system. Conversely,
a disadvantage of this system is that query performance generally cannot match that of
a warehouse, since optimization options available in the centralized setting of a
warehouse cannot be used in a distributed system. Nonetheless, as we will show in this
paper, the virtual mediation approach can provide adequate performance.
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Finally, the warehouse and the virtual data integration approaches are not mutually
exclusive. The system can materialize the most stable data, but query in real time the
data that changes more frequently.

For SchizConnect virtual data integration was preferable to data warehousing. First,
it requires significantly less resources; essentially, just developing the web portal/query
interface and hosting the mediator engine. There is no need for us to store and take care
of large datasets locally. Second, it demands a minimum effort to integrate new data
sources. In order to encourage data providers to participate in SchizConnect we
required an approach that imposed minimum overhead to them. Finally, it does not
require data providers to relinquish control of their data. Different data providers have
different policies regarding data sharing and the virtual integration approach allows
them to keep full control of who can access their data. Our mediator architecture allows
for data sources to grant authorization to individual data requests based on the user’s
security credentials.

In this the paper we present how the virtual data integration approach has been
applied to create the SchizConnect system, which is publicly available at www.
schizconnect.org. First, we describe the data sources that have currently been inte-
grated. Second, we present the behavior of the system from a user perspective, as an
investigator interacting with the SchizConnect web portal. Third, we provide a tech-
nical description of the SchizConnect mediator process, including the definition of the
harmonized schema, the schema mappings, the data value mappings, the query
rewriting process, and the distributed query evaluation. Fourth, we provide some
experimental results. Finally, we discuss related work, future work and conclusions.

2 Participating Data Sources

Currently, the SchizConnect system provides integrated access to the following sources
of schizophrenia data, including demographics, cognitive and clinical assessments, and
imaging data and metadata. These sources are also publicly available and have been
extensively curated, documented, and subjected to quality assurance.

FBIRN Phase II @ UCI, http://fbirnbdr.nbirn.net:8080/BDR/ [2]. This study
contains cross-sectional multisite data from 251 subjects, each with two visits. Data
include structural and functional magnetic resonance imaging (sMRI, fMRI) scans
collected on a variety of 1.5T and 3T scanners, including Sternberg Item Recognition
Paradigm (SIRP) and Auditory Oddball paradigms, breath-hold and sensorimotor tasks.
The data is stored in the HID system [5], which is powered by a PostgresSQL relational
database located at the Univesity of California, Irvine. The SchizConnect mediator
accesses HID using standard JDBC.

NUSDAST @ XNAT Central, central.xnat.org/REST/projects/NUDataSharing
[7]. The Northwestern University Schizophrenia Data and Software Tool (NUSDAST)
contains data from 368 subjects, the majority with longitudinal data (*2 years apart),
include sMRI scans collected on a single Siemens 1.5T Vision scanner. The data is
stored in XNAT central, a public repository of neuroimaging and clinical data, hosted
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at Washington University at Saint Louis. The site is built over the eXtensible Neuro-
imaging Archiving Toolkit (XNAT), a popular framework for neuroimaging data [8].
XNAT provides a REST web service interface. The mediator uses the search API,
which accepts queries in an XNAT-specific XML format and returns results as a XML
document.

COBRE & MCICShare @ COINS Data Exchange, coins.mrn.org [9]. The
Collaborative Imaging and Neuroinformatics System (COINS), contains data from 198
and 212 subjects from the COBRE and MCICShare projects, respectively. Data for
COBRE include sMRI and rest-state fMRI scans collected on a single 3T scanner. Data
for the multisite MCICShare include sMRI, rest-state fMRI and dMRI scans, collected
on 1.5T and 3T scanners. COINS required special handling in SchizConnect because
the native COINS architecture involves dynamic data packaging following the query,
which does not allow for data to be immediately returned to the query engine. With
permission from the COINS executive committee, we duplicated the COINS data
relevant to SchizConnect in a relational MySQL database at USC/ISI.

SchizConnect is positioned to become the largest neuroimaging resource for
Schizophrenia, currently providing access to over 21 K images for over 1 K subjects,
and expected to significantly grow as new sources are federated into the system.

3 The SchizConnect Web Portal

To understand the SchizConnect approach, it is best to start with the user experience at
its web portal, schizconnect.org. The portal provides an intuitive graphical interface for
investigators to query schizophrenia data across sources.

Consider a query for “male subjects with schizophrenia with DTI scans and
measures of executive function”. An investigator constructs such query graphically by
drag-and-drop of the main harmonized concepts into a canvas (Fig. 1(a)). Currently the
supported concepts include Subject, MRI, Neuropsychiatric Assessments, and Clinical
Assessments. Each concept has a number of attributes on which the user can make
selections. Figure 1(b) shows the attributes of Subject, which include age, sex, and
diagnosis, and a selection on the diagnosis attribute for subjects with schizophrenia in a
broad sense. The values for diagnosis have a hierarchical structure and have been
harmonized across the sources. In Sect. 4.3 we describe how the SchizConnect
mediator classifies the subjects into these categories. Figure 1(c) shows the cognitive
assessment concept (Neuropsych) and a selection on measures of executive function.

The results to this query appear in Figs. 2 and 3. The SchizConnect Portal shows
the number of subjects, scans, and assessments that satisfy the query constraints, as
well as a breakdown of the provenance of the data (Fig. 2). In this case, 117 images
from 58 subjects come from the COBRE data source and 169 images from 82 subjects
from MCICShare data source, for a total of 286 images and 6 distinct cognitive
assessments of executive function for 140 subjects. Any investigator can obtain these
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 (a) Query is built by drag and drop of the main concepts (“Data Tables”: Subject, MRI, Neuro-
psychiatric assessments, etc) into a canvas (“Query Workspace”). The query asks for: “male 
subjects with schizophrenia, with DTI scans and measures of executive function”. 

(b) Selecting Subjects with a diagnosis of      (c) Selecting subjects with cognitive
Schizophrenia in a broad sense.       assessments of executive function 

Fig. 1. Schizconnect portal: sample query using the harmonized schema and terminology. Each
concept presents different attributes, some of which take hierarchical values, according to the
SchizConnect harmonized terminologies.
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summary counts by visiting the schizconnect.org portal. After an investigator registers,
logs into the system, and signs the data sharing agreements of the data providers, she
can also retrieve the individual-level data, which include summary tables (Fig. 3), as
well as links to download the images and full cognitive assessments for the selected
subjects. The system remembers previously signed agreements and asks the investi-
gator to sign additional ones when her query requires data from additional sources.

4 The SchizConnect Mediator

The SchizConnect Web Portal presents a unified view of the data at the different
sources, as if it was coming from in a single database. However, the data is not stored at
the portal, but it remains at the original sources, structured under their original schemas.
The SchizConnect mediator provides a virtual harmonized schema, over which the
portal issues queries. Given a user query, over the harmonized schema, the mediator
determines which sources have relevant data, translates the user query to the schemas
of the sources, and constructs, optimizes, and executes a distributed query evaluation
plan that computes the answers to the user query by accessing the data sources in real
time. The SchizConnect mediator builds upon the BIRN Mediator [10]. In this section,
we describe each of the components of the mediator that make this data harmonization
and query processing possible.

Fig. 2. The results of the query from Fig. 1. The user can then proceed to request the data from
the different repositories.

Fig. 3. An excerpt individual-level results of the query from Fig. 1. To obtain individual level
results the user needs to sign the appropriate data sharing agreements.
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4.1 SchizConnect Domain Schema

Inorder to integrate data fromdisparate sources,weneed tounderstand the semanticsof the
data, and howdifferent schema elements at different sources related to other elements. The
common approach to specific such semantics is to map the schema of each source to a
common harmonized schema (also called the target, or domain, or global schema) [11].
This common schema is a degree of freedom for the designer of the integration system.

It doesnotneed to includeevery schemaelementpresent in the sources; just those elements
useful for the purposes of the integration problem at hand. The design of the common
schema is a balance between minimalism, that is, only include elements that exist in the
sources and that are needed to answer the current query load, and generality, that is, a
schema design that can easily be extended to model additional sources and query types.
Our philosophy leans towards minimalism. Instead of attempting to model the neuroim-
aging domain wholesale, we build the common schema incrementally as we find sources
that provide data for the desired concepts in the domain.

The current domain schema in SchizConnect follows the relational model and is
composed of the following predicates (Fig. 4):

Project contains the name and description of the studies in the data sources.
Subject contains demographic and diagnostic information for individual partici-

pants, including “subject id”, “age”, “sex” and “diagnosis”.
Imaging Protocol (MRI) contains information on MRIs a subject has, including

the type of the scan and metadata about the scanner. The values of the protocol attribute
are organized hierarchically (cf. Sect. 4.3).

Cognitive Assessment contains information on which subjects have which neu-
ropsychological assessments. The values of the “assessment” attribute are also orga-
nized hierarchically (cf. Sect. 4.3).

Cognitive Assessment Data contains full information on the assessments including
the values for each measure in each assessment for each subject.

Clinical Assessment and Clinical Assessment Data contain assessments for dif-
ferent symptoms in the subjects.

project(provenance, name, projectid, description)
subject(provenance, subjectid, age, sex, dx)
in_project(provenance, subjectid, projectid)
imaging_protocol( provenance, subjectid, szc_protocol, img_date, notes,

datauri, maker, model, field_strength)
cognitive_assessment(provenance, study, subjectid, szc_assessment, description)
cognitive_assessment_data( provenance, study, subjectid, szc_assessment, 

question_id, question_value)
clinical_assessment(provenance, study, subjectid, szc_assessment, description )
clinical_assessment_data( provenance, study, subjectid, szc_assessment,

question_id, question_value)

Fig. 4. SchizConnect current domain model.
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The first attribute in each of the domain predicates is “provenance”, which records
which source provided the data elements (see Fig. 3).

4.2 SchizConnect Schema Mappings

The SchizConnect domain predicates, shown in Fig. 4, provide a consistent view of the
data available from the sources. However, the mediator does not pre-compute such data
as in a warehouse, but obtains these data on-the-fly from the sources at query time. For
this process, the mediator uses a set of declarative schema mappings, which define how
predicates from the source schema relate to predicates in the domain schema. These
mappings are usually logical implications of the form:

8~X;~Y ;USð~X;~YÞ ! 9~Z;WGð~X;~ZÞ

with a conjunctive antecedent (ΦS) over predicates from the source schemas (S), and a
conjunctive consequent (ΨG) over predicates from the domain schema (G). These
mappings are also known as source-to-target tuple-generating dependencies (st-tgds) in
the database theory literature [12]. The SchizConnect mediator supports full con-
junctive st-tgds (aka GLAV rules) [13], but so far the domain and schema mappings we
have developed only needed to be Global-as-View (GAV) rules [11], which are st-tgds
with a single predicate in the consequent.

Some sample schema mappings appear in Fig. 5. We use a logical syntax for the
rules. We show domain predicates in bold (e.g., subject) and source predicates in
italics (e.g., HIDPSQLResource_nc_subjexperiment). The first rule states that the
source XNAT provides data for subjects. More precisely, that invoking the source
predicate XnatSubjectResource_xnat__subjectData, and then joining the results with
the MappingsMySQLResource_dx_mappings source predicate (which are located at
different sources, XNAT and a MySQL db), yields the domain predicate subject.
A shared variable in the antecedent of a rule (e.g., SRC_DX) denotes an equi-join
condition. Other type of conditions can be included in antecedents by adding relational
predicates (e.g., the selection ‘nc_experiment_uniqueid = 9610’ in the fourth rule).
Variables in the consequent denote projections over data sources.

Rules with the same consequent denote union. For example, in Fig. 5 the domain
predicate subject is obtained as the union of three rule, one for each data source
(XNAT, COINS, and HID). Note how each of the rules includes a constant in the
consequent to denote the provenance of the data (i.e., “XNAT”).

Our mediator language allows for non-recursive logic programs. For example, the
third rule in Fig. 5 states that the subject domain predicate for HID is constructed by
the join of 3 domain predicates: subject_age, subject_sex, and subject_dx. The next
two rules show how the diagnoses for the subjects (subject_dx) in the HID source are
calculated based on specific values for the assessments as stored in the original HID
tables. For example, a subject with values of 3 and 1 in questions P47 and P53 of the
SCID assessment, resp., is assigned a diagnosis of schizophrenia in the strict sense.

Finally, the last two rules show how to obtain the imaging_protocol domain
predicate for the HID and XNAT sources. Normalization of the imaging protocol and
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subject("XNAT", SUBJECT_ID, AGE, SEX, DX) <- 
XnatSubjectResource_xnat__subjectData(project, SUBJECT_ID, AGE, SEX, SRC_DX, QS) ^ 
MappingsMySQLResource_dx_mappings(DX, "NUSDAST", 777, SRC_DX, id) 

subject("COINS", SUBJECT_ID, AGE, SEX, DX) <- 
COINSMySQLResource_subjects_v( SUBJECT_ID, SEX, yob, SRC_DX, STUDY_ID, AGE) ^ 
MappingsMySQLResource_dx_mappings(DX, "COINS", STUDY_ID, SRC_DX, id) 

subject("HID", SUBJECTID, AGE, SEX, DX) <- 
subject_age("HID", SUBJECTID, AGE) ^ subject_sex("HID", SUBJECTID, SEX) ^  
subject_dx("HID", SUBJECTID, DX) 

…
subject_dx("HID",SUBJECTID, 'No_Known_Disorder') <-  

HIDPSQLResource_nc_subjexperiment( uniqueid, tableid, owner, modtime, moduser, 
 nc_experiment_uniqueid, SUBJECTID, nc_researchgroup_uniqueid) ^  
    (nc_researchgroup_uniqueid IN [9612,4292] ) ^ (nc_experiment_uniqueid = 9610) 
…
subject_dx("HID",SUBJECTID, 
'Mental_Disorder>Psychotic_Disorder>Schizophrenia_Broad>Schizophrenia_Strict') <-  

HIDPSQLResource_nc_subjexperiment( uniqueid, tableid, owner, modtime, moduser, 
nc_experiment_uniqueid, SUBJECTID, nc_researchgroup_uniqueid) ^  

    (nc_researchgroup_uniqueid = 9611 ) ^ (nc_experiment_uniqueid = 9610) ^ 
HIDPSQLResource_nc_assessmentinteger( tableid1, nc_assessmentdata_uniqueid1,  

scoreorder1, owner1, modtime1, moduser1, textvalue1, textnormvalue1,  
comments1, DATAVALUE1, datanormvalue1, storedassessmentid1,  
ASSESSMENTID1, SCORENAME1, scoretype1, ISVALIDATED1, isranked1,  
SUBJECTID, entryid1, keyerid1, raterid1, classification1, uniqueid1) ^  

(ASSESSMENTID1 = 16415) ^ (SCORENAME1 = "SCID_P47") ^ (DATAVALUE1 = 3) ^ 
HIDPSQLResource_nc_assessmentinteger( tableid2, nc_assessmentdata_uniqueid2,  

scoreorder2, owner2, modtime2, moduser2, textvalue2, textnormvalue2,  
comments2, DATAVALUE2, datanormvalue2, storedassessmentid2,  
ASSESSMENTID2, SCORENAME2, scoretype2, ISVALIDATED2, isranked2,  
SUBJECTID, entryid2, keyerid2, raterid2, classification2, uniqueid2) ^  

(ASSESSMENTID2 = 16415) ^ (SCORENAME2 = "SCID_P53") ^ (DATAVALUE2 = 1) ^ 
    (ISVALIDATED1 = "TRUE") ^ (ISVALIDATED2 = "TRUE") 

imaging_protocol("HID", SUBJECTID, SZC_PROTOCOL_HIER, DATE, NOTES, DATAURI,  
MAKER, MODEL, FIELD_STRENGTH) <- 

    HIDPSQLResource_nc_scannersbyscan ( SUBJECTID, componentid, segmentid,  
SOURCE_PROTOCOL, DATE, nc_colequipment_uniqueid, SOURCE_MAKE, 
SOURCE_MODEL, DATAURI, NOTES) ^

MappingsMySQLResource_protocol_mappings( SZC_PROTOCOL_HIER, "HID",  
SOURCE_PROTOCOL, ID1) ^ 

MappingsMySQLResource_scanner_mappings( MAKER, MODEL, FIELD_STRENGTH, "HID", 
SOURCE_MAKE, SOURCE_MODEL, ID2) 

imaging_protocol("XNAT", SUBJECTID, SZC_PROTOCOL_HIER, DATE, SCAN_ID,  
DATA_URI, "SIEMENS", "VISION 1.5T", 1.5) <- 

XnatMRSessionResource_xnat__mrSessionData( SUBJECTID, IMAGE_ID, SESSION_ID,  
DATE, SCANNER, SCAN_ID, SCAN_TYPE, quarantine_status) ^ 

MappingsMySQLResource_protocol_mappings( SZC_PROTOCOL_HIER, "NUSDAST",  
SCAN_TYPE, ID1) ^ 

Concat(IMAGE_ID, "/scans/", SCAN_ID, DATA_URI) 

Fig. 5. SchizConnect schema mappings.
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scanners values is achieved by joining with additional mapping tables (e.g., Map-
pingsMySQLResource_protocol_mappings). The mediator also supports functional
sources, such as concatenation (Concat in the last rule in Fig. 5). In general, the
designer can define arbitrary Java functions and use them in the schema mappings to
perform complex value transformations.

4.3 SchizConnect Value
Mappings

In addition to mapping the schemas of the
sources into the SchizConnect domain
schema, we also harmonized the values for
the attributes. This was achieved by devel-
oping mapping tables that relate values used
in the sources with harmonized values in
SchizConnect. These tables are stored in a
separate relational database, which is treated
as a regular data source for the mediator. For
example, the source predicate Map-
pingsMySQLResource_protocol_mappings
stores the mappings for imaging protocols.
Some sample mappings for this predicate
appear in Fig. 6. Note that even within the
same source, there are often several different
values/codes for the same concept. For
example, HID has several different codes for
the Sternberg Item Recognition Paradigm
protocol (since HID contains multiple sub-
studies performed at different times, and no
attempt at enforcing common values across
substudies was made).

SchizConnect Harmonized Value Source Source Value
Imaging_Protocol>Functional> 

Task_Paradigm>Mismatch_Negativity
HID cognitive task scan: MMN

Imaging_Protocol>Functional>Task_Paradigm> 

Sternberg_Item_Recognition_Paradigm
HID cognitive task scan: SIRP

Imaging_Protocol>Functional>Task_Paradigm> 

Sternberg_Item_Recognition_Paradigm
HID SIRP (ver121504)

Imaging_Protocol>Functional>Task_Paradigm> 

Sternberg_Item_Recognition_Paradigm
HID sternberg_item_recognition

Imaging_Protocol>Functional>Task_Paradigm> 

Sternberg_Item_Recognition_Paradigm
COINS

Functional - Sternberg Item 

Recognition

Fig. 6. SchizConnect value mappings.

Imaging_Protocol 

Structural 

Diffusion 

T1

FLASH

MPRAGE

T2

Functional 

Resting_State 

Task_Paradigm 

Auditory_Oddball 

Breath_Hold 

Finger_Tapping 

Go_NoGo 

Mismatch_Negativity 

Sensory_Gating 

Sensory_Motor 

Sternberg_Item_ 

    Recognition_Paradigm 

Working_Memory 

Field_Mapping 

Perfusion 

Fig. 7. Imaging protocol taxonomy
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Many of the harmonized values in SchizConnect have a hierarchical structure. For
example the current hierarchy for the imaging protocol appears in Fig. 7. Similar
hierarchies for the diagnosis and cognitive assessments appear (partially) in Figs. 1(b)
and 1(c). These hierarchies are easily extensible by updating the mapping tables.

The design of the harmonized values takes into account existing ontologies.
A companion paper [16] describes in detail this design and the mapping of the
SchizConnect value taxonomies to concepts in NeuroLex and other well-known
ontologies.

4.4 Query Rewriting

Given a user query, the mediator uses the schema mappings defined for the application
domain, to translate the query from the virtual domain schema into an executable query
over the source schemas, a process called query rewriting. For GAV schema mappings,
such as those in Fig. 5, query rewriting amounts to rule unfolding and simplification.
We have also developed algorithms for query rewriting under LAV schema mappings
[13] and GLAV rules, but they are not used in the current modeling of the Schiz-
Connect domain.

We will describe the rewriting process by example. Consider a user query for all the
available T1 scans: select * from imaging_protocol where szc_protocol like ‘%T1 %’,
and the schema mappings for imaging_protocol in Fig. 5. The rewritten query,
expressed in SQL, appears in Fig. 8. This query is built by unfolding the definitions of
imaging_protocol according to the schema mapping rules. In general, for GAV
rewriting the system unifies each domain predicate with the corresponding consequent
of the GAV rule (i.e., with the same predicate) and replaces it with the antecedent of the
rule. After this unfolding process, the source-level queries are logically minimized to
avoid probably redundant predicates (i.e., source invocations). For this simple example,
the rewritten query is a union of conjunctive queries over the sources providing the
data, including joins with the mapping sources to produce harmonized values, as we
described in Sect. 4.3. The schema mapping for COINS and the corresponding portion
of the rewriting is not shown for brevity.

4.5 Distributed Query Engine

Once the mediator has translated the user domain query into a source-level query (i.e.,
involving only source predicates), it must generate, optimize and execute a distributed
query evaluation plan. Our current query engine is based on the Open Grid Services
Architecture (OGSA) Distributed Access and Integration (DAI), and Distributed Query
Processing (DQP) projects [14]. OGSA-DAI is a streaming dataflow workflow eval-
uation engine that includes a library of connectors to many types of common data
sources such as databases and web services. Each data source is wrapped and presents a
uniform interface as a Globus [15] grid web service. OGSA-DQP is a distributed query
evaluation engine implemented on top of OGSA-DAI. In response to a SQL query,
OGSA-DQP constructs a query evaluation plan to answer such query. The evaluation
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plan is implemented as an OGSA-DAI workflow, where the workflow activities cor-
respond to relational algebra operations. The OGSA-DQP query optimizer partitions
the workflow across multiple sources attempting to push as much of the evaluation of
subqueries to remote sources. OGSA-DQP currently supports distributed SQL queries
over tables in multiple sources. The OGSA-DAI/DQP architecture is modular and
allows for the incorporation of new optimization algorithms, as well as mediator (query
rewriting) modules, as plug-ins for new source types into the system.

We improved the OGSA-DAI/DQP query engine by adding a module to gather cost
statistics from the sources, including table sizes and selectivity parameters, and by
developing a cost-based query optimizer based on these statistics, as well as several
other enhancements to specific optimization steps. The query plan optimizer proceeds
in two phases. First, it applies a sequence of classical query plan transformations, such
as pushing selection operations closer to their data sources, grouping operations on the
same source and pushing subqueries to sources with query evaluation capabilities.
Second, it searches how join operations can be ordered to minimize the cost of the
overall plan. For complex queries, such as those described in Sect. 5 that involve
conjunctive queries with 10–20 predicates, the enhanced cost-based optimizer pro-
duced plans that improved execution time by orders of magnitude.

4.6 Source Wrappers

The mediator can access sources of different types, including relational databases, such
as HID, and web service APIs, such as XNAT. The actual data sources are wrapped as

(SELECT  'HID' as provenance, T6.subjectid as subjectid, T4.szc_protocol_hier as  

   szc_protocol_hier, T6.date as img_date, T6.description as notes, T6.datauri as datauri,  

   T2.maker as maker, T2.model as model, T2.field_strength as field_strength   

FROM MappingsMySQLResource_scanner_mappings T2,  

          MappingsMySQLResource_protocol_mappings T4,  

          HIDPSQLResource_nc_scannersbyscan_mview T6   

WHERE T2.source_make=T6.source_make AND T2.source_model=T6.source_model AND     

   T2.source = 'HID' AND T4.source_protocol=T6.source_protocol AND T4.source = 'HID' AND

   T4.szc_protocol_hier LIKE '%T1%')  

UNION  

(SELECT 'XNAT' as provenance, T10.SUBJECT_ID as subjectid,  

   T8.szc_protocol_hier as szc_protocol_hier, T10.SCAN_DATE as img_date,  

   T10.SCAN_ID as notes, Concat(T10.IMAGE_ID,'/scans/',T10.SCAN_ID) as datauri,  

'SIEMENS' as maker, 'VISION 1.5T' as model, 1.5 as field_strength  

FROM MappingsMySQLResource_protocol_mappings T8,  

          XnatMRSessionResource_xnat__mrSessionData T10  

WHERE T8.source_protocol=T10.SCAN_TYPE AND T8.source = 'NUSDAST' AND  

              T8.szc_protocol_hier LIKE '%T1%')  

Fig. 8. Executable query over the source schemas.
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OGSA-DAI resources. OGSA-DAI provides a common extensible framework to add
new types of data sources.

For each non-relational source, we develop a wrapper that takes as input a SQL
query (over predicates that encapsulate the data from the source), and translates this
SQL query into the native query language of the source. Symmetrically, the wrapper
takes data results from the source in their original format and converts them into
relational tuples that can flow through the query engine.

For SchizConnect, we developed such a wrapper for XNAT. Consider the query:

select * from XnatMRSessionResource_xnat__mrSessionData where scan_type =
‘T1’

This query invokes the wrapper for XNAT (see also the rewritten query in Fig. 8).
This SQL query is translated to the native query language of the XNAT search service
API, which is expressed as an XML document. The XNAT web service returns the
results also as an XML document. The wrapper parses this document and translates it
into relational tuples, following the schema of XnatMRSessionResource_xnat_
_mrSessionData. Now a uniform relational result, it is processed by the query engine as
the data from any other source.

5 Experimental Results

The system is publicly deployed at SchizConnect.org. The web front-end is hosted at
Northwestern University, the mediator is hosted at USC/ISI, and the sources are at UCI
(the HID PostgreSQL DB), Washington University at Saint Louis (XNAT Central), and
at USC/ISI (the MySQL database that hosts the replica COINS data).

Despite its nationwide distribution, the system performs well. We show some
performance results for a representative set of queries in Fig. 9. The table of results is
structured as follows. The first column is just the query id. The next two columns show
the size of the tested domain query, and the specific predicates involved. All the tested
domain queries are conjunctive. The following two columns show the structure and
size of the resulting rewritten source-level query, which is generally much larger than
the domain (user) query. The last two columns show the number of tuples in the answer
to the user query and the total time in seconds to compute the answers (i.e., from
sending the query to the mediator to returning the results to the user). For example, the
fourth row shows the results for a domain query that asks for subjects with two
assessments (of verbal episodic memory: HVLT-Delay and HVLT-Immediate), with
two imaging protocols (T1, and sensory motor scans). The query involves the join of 7
domain predicates; namely, subject (s), in_project (ip), project (p), two instances of
imaging_protocol (i), and two instances of cognitive_assessement (ca). The resulting
rewritten query is a union of 5 conjunctive queries, each involving 16, 18, 17, 10, and
10 source predicates, respectively, for a total of 71 source predicates. The query returns
722 tuples and takes 12.1 s to complete.

The queries shown identify the subjects, imaging protocol, cognitive assessments,
etc., satisfying the desired constraints, and return the desired data. However, the per-
formance results in Fig. 9 do not include the transfer of the actual image files. For

SchizConnect: Virtual Data Integration in Neuroimaging 49



example, the seventh query asks for all the metadata about the 21447 imaging protocols
currently accessible through SchizConnect from all the sources, which the mediator
does return. However, the size of corresponding images is several hundred GBs
(*173 GB compressed). So, when the user query identifies the subjects and scans of
interest, SchizConnect schedules separate grid-ftp, ftp, and http connections to the
original sources to obtain and package the images for the query subjects. In contrast,
the cognitive and clinical assessment data are retrieved directly through the mediator,
since these are smaller datasets. For example, the third query in Fig. 9, shows that
asking for all the data on 13 cognitive assessments for all subjects produces a result set
of 9318 tuples, which are returned in 8.9 s.

The computation cost is a combination of the number final and intermediate results
needed to compute the query, the number of sources involved, and the complexity of
the rewritten queries, with large and more complex queries often taking more time, but
not in a simple relationship.

6 Discussion

We have presented SchizConnect, a virtual data integration approach that provides
semantically-consistent, harmonized access to several leading neuroimaging data
sources. The mediation architecture is driven by declarative schema mappings that
make the system easier to develop, maintain and extend. Our virtual approach allows
the creation of large data resources at a fraction of the cost of competing approaches.

The system is publicly available at SchizConnect.org. Since its initial deployment
in September 2014, the number of users, queries and image downloads has grown
steadily (with over 50 registered users as of May 2015).

We are currently extending the coverage of different types data, specifically clinical
assessments. We also plan to incorporate additional schizophrenia studies to Schiz-
Connect. Finally, we plan to improve the underlying data integration architecture,

 Domain Query Source-level Query Result Size 
(#tuples) 

Time 
(s) Size 

(#p) 
Preds Structure Size 

(#p) 

1 6 ip, p, 4ca U3CQ (10, 10,10) 30 189 7.8 
2 1 s U5CQ (4, 6, 2, 2) 14 1091 8.2 
3 1 cad (13) U2CQ (2, 3) 5 9318 8.9 
4 7 s,ip,p,2i,2ca U5CQ (16,18,17,10,10) 71 722 12.1 
5 5 p,ca,i,s,ip U5CQ (11, 13, 12,7,7) 50 1094 15.9 
6 4 s,ip,p,i U5CQ (9, 11, 10, 5, 5) 40 1462 17.3 
7 1 i U3CQ (3, 2, 1) 6 21447 18.7 
8 4 s,ip,p,i U5CQ (9,11,10,5,5) 40 19112 24.5 

Fig. 9. Experimental results
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specifically the performance of the query optimizer and adding a more expressive
representational language for the domain schema, such as OWL2 QL.
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Abstract. Medical forms are frequently used to document patient data
or to collect relevant data for clinical trials. It is crucial to harmonize
medical forms in order to improve interoperability and data integration
between medical applications. Here we propose a (semi-) automatic anno-
tation of medical forms with concepts of the Unified Medical Language
System (UMLS). Our annotation workflow encompasses a novel seman-
tic blocking, sophisticated match techniques and post-processing steps to
select reasonable annotations. We evaluate our methods based on refer-
ence mappings between medical forms and UMLS, and further manually
validate the recommended annotations.

Keywords: Semantic annotation · Medical forms · Clinical trials ·
UMLS

1 Introduction

Medical forms are frequently used to document patient data within electronic
health records (EHRs) or to collect relevant data for clinical trials. For instance,
case report forms (CRFs) ask for different eligibility criteria to include or exclude
probands of a study or to document the medical history of patients. Currently,
there are more than 180,000 studies registered on http://clinicaltrials.gov and
every clinical trial requires numerous CRFs for data collection. Often these forms
are created from scratch without considering existing CRFs from previous trials.
Thus, there is a huge amount and diversity of existing medical forms until now,
and this number will increase further. As a consequence, different forms can be
highly heterogeneous impeding the interoperability and data exchange between
different clinical trials and research applications.

To overcome such issues, it is important to annotate medical forms with
concepts of standardized vocabularies such as ontologies [6]. In the biomed-
ical domain, annotations are frequently used to semantically enrich real-world
objects. For instance, the well-known Gene Ontology (GO) is used to describe
molecular functions of genes and proteins [10], scientific publications in PubMed
are annotated with concepts of the Medical Subject Headings (MeSH) [13],
and concepts of SNOMED CT [5] are assigned to EHRs supporting clinical
c© Springer International Publishing Switzerland 2015
N. Ashish and J.-L. Ambite (Eds.): DILS 2015, LNBI 9162, pp. 55–69, 2015.
DOI: 10.1007/978-3-319-21843-4 5
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applications like diagnosis or treatment. These diverse use cases for annota-
tions show that they can represent a variety of relationships between real-world
objects improving semantic search and integration for comprehensive analysis
tasks. In particular, ontology-based annotations of medical forms facilitate the
identification of similar questions (items) and commonly used medical concepts.
Well-annotated items can be re-used to design new forms avoiding an expensive
re-definition in every clinical trial. Moreover, the integration of results from dif-
ferent trials will be improved due to better compatibility of annotated forms.
Beside clinical trials, also other medical applications like routine documenta-
tion in hospitals can profit from form annotation. For instance, the fusion of
two or more hospitals requires the integration of hospital data which will be
less complex if data semantics are well-defined due to the use of ontology-based
annotations.

The open-access platform Medical Data Models (MDM)1 already aims at
creating, analyzing, sharing and reusing medical forms in a central metadata
repository [4]. Currently, MDM provides more than 9,000 medical form versions
and over 300,000 items. Beside overcoming technical heterogeneities (e.g. dif-
ferent formats), MDM intends to semantically enrich the medical forms with
concepts of the widely used Metathesaurus of the Unified Medical Language
System (UMLS) [2], a huge integrated data source covering more than 100 dif-
ferent biomedical vocabularies. So far, medical experts could assign UMLS con-
cepts to items of some medical forms in MDM, but many forms have no or only
preliminary annotations. However, such a manual annotation process is a very
time-consuming task considering the high number of available forms within and
beyond MDM as well as the huge size of UMLS (> 2.8 Mio. concepts). Thus,
it is a crucial aim to develop automatic annotation methods supporting human
annotators with recommendations.

The automatic annotation of medical forms is challenging since questions
are written in free text, use different synonyms for the same semantics and
can cover several different medical concepts. Moreover, the huge size of UMLS
makes it difficult to identify correct medical concepts. So far, there has been
some research on processing and annotation of different kinds of medical texts
(e.g. [9,12,19]). However, (semi-) automatic annotation of medical forms has only
rarely been studied (see Related Work in Sect. 5). We propose an initial solution
to semi-automatically annotate medical forms with UMLS concepts and make
the following contributions:

– We first discuss the challenges to be addressed for automatically annotating
items in medical forms (Sect. 2).

– We propose an annotation workflow to automatically assign UMLS concepts
to items of medical forms. The workflow encompasses three phases: a novel
semantic blocking to reduce the search space, a matching phase and a post-
processing phase employing a novel grouping method to finally select the
correct annotations (Sect. 3).

– We evaluate our approaches based on reference mappings between MDM forms
and UMLS. Results reveal that we are able to annotate medical forms in a

1 www.medical-data-models.org/?locale=en.
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largely automatic way. We further manually verify recommended annotations
and present results for this semi-automatic annotation (Sect. 4).

Finally, we discuss related work in Sect. 5 and conclude in Sect. 6.

Fig. 1. Example medical form items and associated annotations to UMLS concepts.
(CRF = ‘Chronic Renal Failure’ = ‘Chronic Kidney Failure’).

2 Challenges

The automatic annotation of medical forms requires first of all the correct iden-
tification of medical concepts in form items. Figure 1 illustrates three annotated
items: (a) and (b) ask for eligibility criteria for a study w.r.t. anemia, and item
(c) asks for the abnormality ‘ulcerating plaque’ in the context of a quality assur-
ance form. An item consists of the actual question and a response field or list
of answer options. In our example, question (c) has one annotation, whereas
(a) and (b) are annotated with three UMLS concepts. Thus, one form item can
address several different aspects like diseases (e.g. CRF, anemia), treatments or a
patient’s response to a treatment. In the following we discuss general challenges
that need to be addressed during the annotation process.

Natural Language Items: Typically, a form consists of a set of items. Ques-
tions can be short phrases like in item (c) or longer sentences written in free text
(Fig. 1(a), (b)). It is a difficult task to correctly identify medical concepts in these
natural language sentences. Moreover, the use of different synonyms complicate
a correct annotation, e.g. in Fig. 1(a) ‘CRF ’ (= Chronic Renal Failure) needs
to be assigned to C0022661 (‘Kidney Failure, Chronic’). Simple string matching
methods are not sufficient to generate annotations of high quality for medical
form items. We will thus apply NLP (natural language processing) techniques
such as named entity recognition and document-based similarity measures like
TF/IDF to identify meaningful medical concepts that can be mapped to UMLS.

Complex Mappings: Every question can contain several medical concepts and
one UMLS concept might be mapped to more than one question. In our example
in Fig. 1 three UMLS concepts need to be assigned to questions (a) and (b) and
the concept ‘anemia’ occurs in both questions. By contrast, question (c) is only
annotated with one concept. Thus, we might need to identify complex N:M
mappings and do not know a priori how many medical concepts need to be tagged
to one item. Conventional match techniques often focus on the identification of
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1:1 mappings, but solely assigning one source concept to one target concept is a
much simpler task. We thus need to develop sophisticated match techniques to
correctly annotate items with several UMLS concepts.

Number and Size of Data Sources: There is high number of forms (e.g.
9000 only in MDM) that need be to annotated and every form can contain tens
to hundreds of items. Moreover, UMLS Metathesaurus is a very large biomed-
ical data source covering more than 2.8 million concepts. Matching 100 forms
each comprising only 10 items to the whole UMLS would already require 2.8
billion comparisons. On the one hand this leads to serious issues w.r.t. mem-
ory consumption and execution time. On the other hand it is extremely hard
to identify correct annotations in such a huge search space. It is thus essen-
tial to apply suitable blocking schemes to reduce the search space and restrict
automatic annotation to the most relevant subset of UMLS.

Instances: Form items are not only characterized by medical concepts in the
actual question but also by its possible instances or response options. Item
answers have a data type (e.g. Boolean ‘yes/no’ in Fig. 1) and might be associ-
ated with value scales (e.g. between 1 and 5) or specific units (e.g. mg, ml). Often
possible answers are restricted to a list of values (e.g. a list of symptoms). To
improve the comparability of different forms, such instance information should
be semantically annotated with concepts of standardized terminologies. In this
paper, we focus on the annotation of item questions but see a correct annotation
of answer options as an important future challenge.

In summary, the automatic identification of high-quality annotations for med-
ical forms is a difficult task. However, studying automatic annotation is very
useful to support human experts with recommendations. For a semi-automatic
annotation process it is especially important to identify a high number of cor-
rect annotations without generating too many false positives. Thus, achieving
high recall values is a major goal while precision should not be too low, since the
number of presented recommendations should be manageable for human experts.
Moreover, a fast computation of annotation candidates is desirable to support
an interactive annotation process. To address these challenges, we present a
workflow for semi-automatic annotation of medical forms in the following.

3 Annotation Workflow

Our annotation workflow semantically enriches a set of medical forms by assign-
ing UMLS concepts to form questions. An annotation is an association between a
question and an UMLS concept. UMLS concepts are identified by their Concept
Unique Identifiers (CUI) and are further described by attributes like a preferred
name or synonyms. To identify annotations for a given medical form F , we deter-
mine a mapping M between the set of form questions F = {q1, q2, ..., qk} and
the set of UMLS concepts UMLS = {cui1, cui2, ..., cuim}. The mapping covers
a set of annotations and is defined as:

MF,UMLS = {(q, cui, sim)|q ∈ F, cui ∈ UMLS, sim ∈ [0, 1]}.
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Fig. 2. Overview of the annotation workflow.

A question q in a form F is annotated with a concept cui from UMLS. Our
automatic annotation method computes a similarity value sim indicating the
strength of a connection. Greater sim values denote a higher similarity between
the question and the annotated concept. Our annotation workflow (see Fig. 2)
consists of three main phases that address the challenges discussed in Sect. 2.
The input is a set of medical forms F1, . . . , Fn each comprising a set of item
questions as well as the UMLS Metathesaurus. During preprocessing we further
use the UMLS Semantic Network and a subset of annotated forms. The output
is a set of annotation mappings MF1,UMLS , . . . ,MFn,UMLS .

– In the Preprocessing phase we normalize input questions and UMLS concepts.
Since a medical form is usually only associated to some domains covered by
UMLS, we develop a novel semantic blocking technique to identify relevant
concepts for the annotation generation. The approach is training-based and
involves semantic types of UMLS concepts.

– In the Mapping Generation phase we identify annotations by matching the
questions to names and synonyms of relevant UMLS concepts. We use a com-
bination of a document retrieval method (TF/IDF) and classic match tech-
niques (Trigram, LCS (Longest Common Substring)). By doing so we are able
to identify complex annotation mappings for long natural language sentences
as well as annotations to single concepts for shorter questions.

– During Postprocessing we remove probably wrong annotations to obtain a
manageable set of relevant annotations for expert validation. Beside thresh-
old selection we apply a novel group-based filtering to address the fact that
questions might cover several medical concepts. For each question, we cluster
similar concepts and keep only the best matching one per group.

Our workflow generates annotation recommendations which should be verified
by domain experts since automatic approaches can not guarantee a correct anno-
tation for all items. In the following, we discuss the methods in more detail.

3.1 Preprocessing

During preprocessing, we normalize the questions of a medical form as well as
names and synonyms of UMLS concepts. In particular, we transform all string
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Fig. 3. Semantic blocking workflow. NER = Named Entity Recognition.

values to lower case and remove delimiters. We then remove potentially irrelevant
parts of item questions. For instance, prepositions or verbs are typically part of
natural language sentences, however they rarely cover information on medical
concepts. We therefore apply a part-of-speech (POS) tagger2 and keep only
nouns, adjectives, adverbs and numbers/cardinals. We tokenize all strings into
trigrams and word-tokens for the later annotation generation.

We further apply a semantic blocking to reduce the size of UMLS. UMLS
Metathesaurus is a huge data source covering a lot of different subdomains. How-
ever, medical forms are usually only associated to a part of UMLS such that a
comparison to the whole Metathesaurus should be avoided. We therefore aim
at reducing UMLS by removing concepts that are probably not relevant for the
annotation process. Our semantic blocking technique involves the UMLS Seman-
tic Network. It covers 133 different semantic types and every UMLS concept is
associated to at least one of the types. Our blocking technique follows a training-
based approach and uses Named Entity Recognition (NER) to identify relevant
semantic types for item questions. The general procedure is depicted in Fig. 3.

First, we build a training set T based on a subset of manually annotated
forms AF . For each question in AF , we identify annotated named entities.
Therefore, we compute the longest common part between a question and the
names/synonyms of its annotated UMLS concepts. We then tag the identified
question parts with the semantic types of the corresponding UMLS concept.
Figure 4 illustrates an example for the training set generation. The given question
is annotated with two UMLS concepts. The longest common part of the question
and the concept C0020517 is Hypersensitivity, while C0015506 corresponds to
the question part Factor VIII. Thus, Hypersensitivity is tagged with the seman-
tic type of C0020517 (‘Pathologic Function’ ) and Factor VIII is labeled with
‘Amino Acid, Peptide, or Protein’. Based on the tagged training set T of forms
AF we learn a NER-model M using the Open-NLP framework3. Our semantic
blocking (see Fig. 3) then performs a named entity recognition using the model
M to a non-annotated set of forms F . By doing so, we can recognize named enti-
ties for the questions in F and identify a set of relevant semantic types S. Finally,
we reduce the UMLS Metathesaurus to those concepts that are associated to a
semantic type in S and obtain the filtered UMLS′.

2 http://nlp.stanford.edu/software/tagger.shtml.
3 https://opennlp.apache.org/.

http://nlp.stanford.edu/software/tagger.shtml
https://opennlp.apache.org/
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Fig. 4. Training set generation: example for tagging a question with semantic types.

3.2 Matching Phase

We generate annotation mappings between a set of medical forms F1, . . . , Fn

and the reduced UMLS′ using a combination of a document retrieval method
(TF/IDF ) and classic match techniques (ExactMatch, Trigram, LCS ). These
methods can complement each other such that we are able to identify com-
plex annotation mappings for long natural language sentences as well as shorter
questions covering only one concept. To generate annotations for each considered
form, we compute similarities between all questions of a form and every concept
in UMLS′. Note that, we tokenized strings during preprocessing. To enable an
efficient matching, we encode every token (word or trigram), and compare inte-
ger instead of string values. Furthermore, we separate UMLS into smaller chunks
and distribute match computations among several threads.

We apply for each question the three match methods. Trigram compares
a question with concept names and synonyms, identifies overlapping trigram
tokens, and computes similarities based on the Dice Metric. This is useful for
shorter questions that slightly differ from the concept to be assigned. In our
example in Fig. 1 the annotation for item (c) ‘Ulcerating plaque’ needs to be
assigned to the concept C0751634 (‘Carotid Ulcer ’). This correspondence can be
identified by the synonym ‘Carotid Artery Ulcerating Plaque’ of C0751634. Since
there is only a partial overlap, it is feasible to identify the longest sequence of
successive common word-tokens (LCS ) between a question and a concept. LCS
is also useful for complex matches when a question contains several medical
concepts, e.g., ‘recombinant erythropoietin’ and ‘anemia’ in item (b) (Fig. 1).

Moreover, we use TF/IDF to especially reward common, but infrequent
tokens between questions and UMLS concepts. For instance, in medical forms
the token ‘patient’ occurs essentially more often then ‘erythropoietin’. Thus,
the computed similarity value should be higher for matches of rarely occurring,
meaningful tokens compared to frequent tokens that appear in many questions
and concepts. We compute tf-idf values for each token w.r.t. a question and an
UMLS concept. The term frequency (tf) denotes the frequency of a token within
the considered question or concept while the inverse document frequency (idf)
characterizes the general meaning of a token compared to the total set of tokens.
The tf-idf values are then used to compute the similarity between a token vec-
tor of the question and a token vector for names and synonyms of an UMLS
concept. We choose a hamming-distance based measure to compare two token
vectors. We compute distances between tf-idf values of two token vectors and
normalize it based on the vector length. The normalized distance is converted
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Fig. 5. Group-based filtering for two questions q1 and q2 and their annotations to
concepts c1−4. Uniformly colored concepts represent a group of similar concepts.

into a similarity value. We assign a smaller weight to the length of the longer
vector to address cases, when one string consists of considerably more tokens
than the other one, as this occurs for annotating long sentences. Thus, the mea-
sure does not penalize differences that are triggered by a differing vector length.
High similarities between a shorter and a longer token vector can be achieved
when a considerable number of meaningful tokens are contained in both vectors.

The generated annotation mappings are finally unified and similarities are
aggregated by selecting the maximum sim value of a correspondence identified
of several match methods to maximize the recall. Note that, we optimize the
precision by performing the postprocessing phase. The match methods can iden-
tify overlapping results, but complement each other since they address different
aspects of document and string similarity. We choose to adopt the three match
methods in order to achieve a good recall by finding simple 1:1 as well as complex
mappings for longer questions.

3.3 Postprocessing

Beside a simple threshold filtering, we apply a more sophisticated postprocessing
step to filter the generated annotation mapping. Our aim is to identify all anno-
tations to a question that are likely to be correct, i.e. to obtain high recall values.
However, the result should not contain too many false positives in order to obtain
a manageable set of recommendations to be presented to human experts. This
is a complicated task when questions cover more than one medical concept, i.e.
when we need to identify complex mappings. A simple approach would be to
select the top k similar concepts for each question. However, it is possible that
several annotations for the same medical concept in a question are among the
top k. A top k selection could eliminate all annotations of medical concepts with
lower sim values. We therefore apply a novel group-based filtering.

The group-based filtering first clusters concepts that are likely to belong to
the same medical concept and then selects the most similar concept within a
group. Figure 5 exemplarily describes the overall procedure for two questions q1
and q2 and their annotations to several concepts. Given a set of annotations for
a question, we compute similarities between all UMLS concepts that are anno-
tated to a question using trigram matching on concept names and synonyms.
We than cluster concepts in one group if their similarity exceeds the required
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simgroup threshold. In our example, we compare c1, c2 and c3 for q1, and identify
two groups ({c1, c2}, {c3}). c1 and c2 are very similar (simgroup ≥ 0.7), while
c3 builds an own group. Finally, the best annotation per group is selected to
be included in the final mapping based on the annotation similarities from the
previous phase. For instance, we remove (q1, c2) due to the lower annotation sim-
ilarity within its group. Applying a simple top 2 selection would have preserved
(q1, c2) but removed (q1, c3), although (q1, c3) is likely to be the best match for
a different medical concept covered by question q1. Using the group-based filter-
ing, we are able to keep one annotation for each medical concept in a question
and thus allow for complex annotation mappings. In the following, we evaluate
the proposed annotation methods for real-world medical forms.

4 Evaluation

To evaluate the proposed annotation workflow we consider three datasets cov-
ering medical forms from the MDM portal [4]. Figure 6 gives an overview on
the number of considered forms, the average number of items per form, the
average number of tokens per item question and the average number of anno-
tations per item. The first set of medical forms considers eligibility criteria
(EC) that are used for patient recruitment in clinical trials w.r.t. diseases
like Diabetes Mellitus or Epilepsy. The dataset covers 25 medical forms each

Fig. 6. Overview of the used datasets.

comprising about 20 items on average. To
recruit trial participants, a precise def-
inition of inclusion and exclusion crite-
ria is required, such that most questions
are long natural language sentences (∼8
tokens on average) possibly covering sev-
eral medical concepts. A correct identi-

fication of all annotations is very challenging for this dataset. Moreover, we
consider medical forms for standardized quality assurance (QA) w.r.t. cardio-
vascular procedures. Since 2000 all German health service providers are obliged
by law to apply these QA forms to prove the quality of their services [3]. The
23 QA forms contain about 49 items on average, but questions are shorter (∼3
tokens on average). We further consider a set of top items (TI) from the MDM
portal. In [20], these items have been manually reduced to the relevant semantic
question parts resulting in a low token number per question. We handle the 101
top items as one medical form. For UMLS, we only consider concepts that pos-
sess a preferred name or term, which is the case for ∼1 Mio. UMLS concepts.
We involve names and synonyms of these UMLS concepts.

To evaluate the quality of automatically generated annotation mappings we
use reference mappings between all considered MDM forms and UMLS. Our team
consists of computer scientists as well as medical experts (two physicians), such
that we could manually create the reference mappings based on expert knowledge.
We compute precision, recall and F-measure for the annotation mappings of every
medical form and show average values for the respective dataset (EC, QA or TI).
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Fig. 7. Semantic blocking: quality differences (left) and execution time (right) for QA
and EC, comparison of trigram without (Tri) and with semantic blocking (Tri+Blo).

Note, that the average of F-measures is not equal to a harmonic mean of aver-
age precision and average recall. Since a manual annotation is a difficult and
time-consuming task, the initial reference mappings might not be complete. We
therefore follow a semi-automatic annotation approach and manually validate
the automatically generated annotations for the QA dataset to find further cor-
rect annotations (see Sect. 4.4). We first show evaluation results for EC and QA
w.r.t. the methods of our annotation workflow (Sects. 4.1 and 4.2) and then give
an overview on results for all datasets (Sect. 4.3).

4.1 Semantic Blocking

To evaluate our semantic blocking approach we measure the quality of the gen-
erated annotation mappings as well as matching execution times. We run exper-
iments on an Intel i7–4770 3.4 GHz machine with 4 cores. Our aim is to reduce
execution times without affecting the recall. The generation of training data is
an important step for the semantic blocking. So far, we generated training data
by randomly selecting half of the manually annotated datasets. Note, that the
training sets have some bias since we consider a special type of medical forms,
namely eligibility criteria and quality assurance forms. However, it is feasible
to choose relevant semantic types in UMLS based on form annotations in the
considered domain. It is an interesting point for future work to study the train-
ing set generation for the semantic blocking in more detail. We evaluate the
impact of the semantic blocking using a basic trigram matching (Tri) without
group-based filtering (threshold t = 0.8). Figure 7 shows quality differences and
execution time results for QA and EC. The overall number of tokens was to small
to apply the named entity recognition for TI. Applying the semantic blocking
(Blo), UMLS could be reduced to ∼600.000 concepts. This results in good exe-
cution time reductions of 26–36 % for both datasets. However, we observe for
each dataset a reduction of the quality of −0.5% for EC and −4.73% for QA.
In both cases, the semantic blocking might be too restrictive by filtering some
relevant UMLS concepts. A reason might be that the selection of our training
set is not representative for the unannotated set of forms. We plan to further
study the NER model generation to improve the blocking of UMLS concepts.
Overall, our semantic blocking leads to good execution time reductions by fairly
preserving recall values.
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Fig. 8. Quality evaluation: comparison of trigram (Tri), combined matching (Comb)
and group-based filtering (Tri+Group and Comb+Group) for QA forms.

4.2 Matching and Group-Based Filtering

We now generate annotation mappings by using a simple trigram matching (Tri),
compare it to our combined match strategy based on TF/IDF, Trigram and LCS
(Comb), and evaluate the impact of the group-based filtering (Group) for the QA
dataset (see Fig. 8). We disable the blocking for this experiment and consider
different threshold settings to evaluate the annotation quality. The combined
match approach leads to higher recall values for all thresholds compared to tri-
gram, since Comb detects a higher number of correct annotations compared to
the single matcher. In particular, the combined matching achieves the best recall
of ∼66 % (t = 0.6) which is 17 % more than for trigram. Trigram is more restric-
tive and results in higher precision values, such that the overall F-measure is
better for low thresholds. In general, increasing the threshold improves the over-
all annotation quality due to a higher precision, e.g. for t = 0.8 the F-measure
is 15 % higher than for t = 0.6 (Comb). However, we want to find a high num-
ber of correct annotations (high recall) during the annotation generation phase.
Therefore, we then filter wrong correspondences using our group-based selection
strategy (Fig. 8 right). This leads to significantly improved precision values and
preserves the high recall. Since the combined match strategy results in higher
recall values than the trigram matching, the F-measure values of the combined
match strategy with the group-based selection (Comb+Group) are better than
the trigram matching with the group-based selection (Tri+Group). For t = 0.7,
we achieve the best average F-measure of 57 % for the QA dataset. Thus, the
group-based filtering is a valuable selection strategy to remove wrong but keep
correct annotations.

4.3 Result Summary

To give a result overview w.r.t. the annotation quality, we show average F-measure
values for all datasets (EC, QA, TI) in Fig. 9. Since the semantic blocking
decrease the quality, we compare the trigram matching (Tri), trigram matching
with group-based filtering (Tri+Group) and combined matching with group-
based filtering (Comb+Group) Due to a different amount of free text within the
datasets, a uniform threshold not results in the best quality for each dataset, e.g.,
the TI dataset consists of mostly two words per item compared to the QA and EC
dataset which have mostly more than three words per item. Therefore, we calcu-
late the average for the thresholds 0.6, 0.7 and 0.8. The vertical lines indicate the
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Fig. 9. Comparison of effectiveness of the combined matching strategy and group-based
filtering approach for each dataset.

minimum and the maximum F-measure values for the underlying thresholds. We
observe for each dataset an increasing of F-measure by applying group-based fil-
tering compared to trigram matching. The precision increases heavily while most
correct annotations are preserved. Since the combined matching strategy results
in higher recall values than the trigram matching, the combination with group
filtering leads to better F-measure values such that the difference of best F-
measure values is ∼3 %(EC), ∼7 %(QA) and ∼0.5 %(TI). We achieve the best
F-measure of ∼85 % for TI followed by ∼57 % for QA and ∼35 % for EC.

The automatic annotation of the EC dataset showed to be very difficult, since
EC contains items with specifically long natural language sentences covering an
unknown number of medical concepts. The annotation of QA forms leads to
better results, but still needs improvement. For the annotation of the top items
(TI) we achieve very good results. These items have been manually reduced to the
relevant medical terms having a positive impact on the automatic assignment of
UMLS concepts for this dataset. The semantic blocking was valuable to reduce
executions times, and the combined match strategy together with the group-
based filtering showed to produce very good results compared to a simple trigram
matching. Overall, the automatic annotation of medical forms is a challenging
task and requires future research, e.g. to further improve the recall.

4.4 Validation

We applied a semi-automatic annotation for the QA dataset by manually vali-
dating recommendations generated by our automatic annotation workflow. We
computed mappings for all 23 QA forms using semantic blocking, combined
matching and group-based filtering. For every form and question, we presented
the expected correct annotations as well as our recommendations, and high-
lighted false negatives, false positives and true positives.

Medical experts could identify 213 new correct annotations out of the set of
false positives. We further found 5 wrong annotations in the reference mappings
based on our automatically generated recommendations. According to these find-
ings we adapted the QA reference mappings leading to an average F-measure
improvement of 9 % (for t = 0.7). Note, that we used these adapted QA ref-
erence mappings in the previous sections. Some of the recommendations were
especially valuable. In particular, we found correct UMLS concepts for 38 so far
not annotated questions, e.g.:
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The manual annotation of medical forms is difficult for curators. UMLS
Metathesaurus is very huge, and even for medical experts it is hard to find a
complete set of annotations. Sometimes it is difficult to decide for the correct con-
cept, since UMLS contains similar concepts that might be suitable for the same
medical concept in a question of a medical form [20]. Applying our automatic
annotation workflow led to new correct annotations and could even indicate
some false annotations. Our results point out the importance of semi-automatic
annotation approaches. Combining manual and automatic annotation techniques
(1) reduces the manual annotation effort and (2) leads to more complete and
correct overall results. Semi-automatic annotation is especially relevant, since
many medical forms are sparsely or not annotated. For instance, in MDM most
items are only pre-annotated and need to be curated again. Part of the forms
could not be annotated so far, and MDM is continuously extended by new non-
annotated forms. Medical forms in MDM and can be semantically enriched by
applying our annotation workflow in combination with expert validation.

5 Related Work

Our work on automatic annotation of medical forms is related to the areas of
information retrieval [15] and ontology matching [8,17]. Both research fields
have been studied intensively and provide useful methods to process free-
text and match identified concepts to standardized vocabularies. Our system
GOMMA [11] already allows for efficient and effective matching of especially
large life science ontologies and can be a basis to align items with concepts of
large ontologies. However, GOMMA does not provide methods to match free-text
like form items.

In the medical domain, manual and automatic annotation methods have
been studied to semantically enrich different kinds of documents. For instance,
in [9] the authors clustered similar clinical trials by performing nearest neighbor
search based on similarly annotated eligibility criteria. In [12] the application
of a dictionary-based pre-annotation method could improve the speed of man-
ual annotation for clinical trial announcements. The work in [19] focuses on
the manual annotation process by presenting a semantic annotation schema and
guidelines for clinical documents like radiology reports. The tool MetaMap [1]
allows to retrieve UMLS concepts in medical texts based on information retrieval
methods like tokenization and lexical lookup. In own initial tests by medical
experts, MetaMap annotation results were not sufficient for our purposes. More-
over, there is evidence in the literature that MetaMap results are not fine-grained
enough [14], contain too many spurious annotations [16] and do not cover map-
pings to longer medical terms [18]. In own previous work we already used man-
ual annotations to compare and cluster different medical forms from the MDM
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platform [7]. We further identified most frequent eligibility criteria in clinical
trial forms and performed a manual annotation for these top terms [20].

Previous research showed the usefulness of semantic annotations for different
kinds of clinical documents. However, the problem remains that annotations, in
particular, for medical forms are only sparsely available. So far, there is no auto-
matic annotation tool to support the semantic annotation of large medical form
sets as provided by MDM. In contrast to previous work on document annotation
in the medical domain, we here focus on the development of automatic annota-
tion methods for medical forms. In particular, we use a novel blocking technique
to reduce the complexity of UMLS as well as a combined match approach to
cope with shorter as well as free-text questions. A novel group-based filtering
allows to select the most likely set of question annotations to be presented for
further manual validation.

6 Conclusions and Future Work

We proposed a workflow to (semi-)automatically annotate items in medical forms
with concepts of UMLS. The automatic annotation is challenging since form
questions are often formulated in long natural language sentences and can cover
several medical concepts. The huge size of UMLS further complicates the anno-
tation generation. We used a combined match strategy and presented a novel
semantic blocking as well as a group-based filtering of annotations. We applied
our methods to annotate real-world medical forms from the MDM portal and per-
formed a manual validation of the generated annotations. Our methods showed
to be effective and we could generate valuable recommendations. Medical experts
can benefit from automatic form annotation since it reduces the manual effort
and can prevent from missing or incorrect annotations.

We see several directions for future work. We will extend our annotation
workflow to enable an adaptive matching which automatically determines the
thresholds and select a set of appropriate match approaches by considering use-
ful dataset characteristics. We further plan to annotate the instance information
of items, e.g. their response options or data types. To test whether recommen-
dations computed by different annotation methods can complement each other,
we will integrate results of other tools like MetaMap. Furthermore, we plan to
develop a reuse repository to facilitate the annotation of existing and creation
of new medical forms based on well-annotated items.
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(grant RA 497/22-1, “ELISA - Evolution of Semantic Annotations”).

References

1. Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and
recent advances. J. Am. Med. Inform. Assoc. 17(3), 229–236 (2010)



Annotating Medical Forms Using UMLS 69

2. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating bio-
medical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)

3. Bramesfeld, A., Willms, G.: Cross-Sectoral Quality Assurance. Â§137a Social Code
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Abstract. Accurately measuring relatedness between ontology terms
becomes a building block for determining similarity of ontology-based
annotated entities, e.g., genes annotated with the Gene Ontology. How-
ever, existing measures that determine similarity between ontology terms
mainly rely on taxonomic hierarchies of classes, and may not fully exploit
the semantics encoded in the ontology, i.e., object properties and their
axioms. This limitation may conduct to ignore the stated or inferred facts
where an ontology term participate in the ontology, i.e., the term neigh-
borhood. Thus, high values of similarity can be erroneously assigned to
terms that are taxonomically similar, but whose neighborhoods are dif-
ferent. We present OnSim, a measure where semantics encoded in the
ontology is considered as a first-class citizen and exploited to determine
relatedness of ontology terms. OnSim considers the neighborhoods of two
terms, as well as the object properties that are present in the neigh-
borhood facts and the justifications that support the entailment of these
facts. We have extended an existing annotation-based similarity measure
with OnSim, and empirically studied the impact of producing accurate
values of ontology term relatedness. Experiments were run on bench-
marks published by the Collaborative Evaluation of Semantic Similar-
ity Measures (CESSM) tool. The observed results suggest that OnSim
increases the Pearson’s correlation coefficient of the annotation-based
similarity measure with respect to gold standard similarity measures,
as well as its effectiveness is improved with respect to state-of-the-art
semantic similarity measures.

1 Introduction

Semantic Web initiatives have fostered the development of large linked col-
lections from different domains [11], as well as the collaborative definition of
ontologies to semantically describe and annotate these data. Particularly, the
biological and biomedical domain has been greatly benefited from these research
movements, and a diversity of semantically annotated linked scientific datasets
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are publicly available, e.g., Chem2Bio2RDF1, Bio2RDF2, OpenPHACTS3, and
Linked Life Data4. Further, expressive ontologies have been defined, e.g., the
Gene Ontology (GO)5, and they have been extensively accepted by the scientific
community as standards to describe the concepts and relations, and to replace
textual descriptions by controlled vocabulary terms from the ontologies. For
example, GO terms are extensively used for capturing functional information
of proteins and genes as indicated in the Gene Ontology Annotation (UniProt-
GOA) database6, and there are international initiatives to collaboratively anno-
tate organisms, e.g., the Pseudomonas aeruginosa PAO1 genome7.

Ontology-based annotations provide the basis to uncover novel and interest-
ing patterns, e.g., to predict gene functions across organisms, drug-target inter-
actions, or to suggest families of drugs that interact in the effectiveness of other
drugs. Annotations are also used to determine relatedness between annotated
concepts that could not be observed only using structural properties of the enti-
ties. In this direction, several annotation-based similarity measures have been
defined [4,12] and results of empirical evaluation studies suggest that considering
ontology annotations can enhance the effectiveness of similarity measures [12,14].
Nevertheless, although the great effort conducted by the biomedical and Seman-
tic Web communities, state-of-the-art annotation-based similarity measures may
not fully explote all the semantics encoded in the annotations, and imprecisely
assign high values of similarity to dissimilar entities [3,12].

Next, we illustrate the potential impact of semantics on the computation
of relatedness. Figure 1 presents a taxonomy of relations (i.e., object proper-
ties) in the Gene Ontology (GO); negatively regulates (nr), positively regulates
(pr), regulates (rg), is-a (sc), and part of (pf). These relations can refine a
neighborhood-based similarity approach assuming that not only the neighbors
of a concept influence in the similarity measure, but also the justifications that
support the entailment of facts in the neighborhood. For example, even if the
concepts A, B, C, and D have the same taxonomic properties, they should not
be considered all equally identical, if they are related through the following rela-
tions or object properties: (i) A pf D; (ii) B nr D; and (iii) C pr D. Moreover,
because nr and pr are more similar according to the object property hierar-
chy (See Fig. 1), both B and C must be more similar than A and B, or A and
C. Additionally, existing annotation-based similarity measures do not take into
account inferred facts or the justifications that support their entailment. How-
ever, considering the justifications of inferred facts may provide also insights of
uncover properties required to accurately determine similarity of ontology-based
annotated entities.
1 http://chem2bio2rdf.org/.
2 http://bio2rdf.org/.
3 http://openphacts.org.
4 http://linkedlifedata.com.
5 http://geneontology.org/.
6 http://www.ebi.ac.uk/GOA.
7 http://www.pseudomonas.com/go annotation project 2014.jsp.

http://chem2bio2rdf.org/
http://bio2rdf.org/
http://openphacts.org
http://linkedlifedata.com
http://geneontology.org/
http://www.ebi.ac.uk/GOA
http://www.pseudomonas.com/go_annotation_project_2014.jsp
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Fig. 1. GO taxonomy of object properties

We propose OnSim, a novel seman-
tic similarity measure for ontology
terms that is able to: (i) distinguish
the object properties that relate ontol-
ogy terms with facts in their neigh-
borhoods; and (ii) consider inferred
facts and the justifications that sup-
port their entailment.

We model OnSim as a 1-1 maxi-
mum weight bipartite matching of the
neighborhoods of two ontology terms, as well as of the justifications conducted to
infer facts in the neighborhoods. We extend the state-of-the-art annotation-based
similarity measure AnnSim [12] with OnSim to analyze the impact of consider-
ing the semantics of the annotations. AnnSim was selected as the baseline of our
evaluation because it has shown to effectively behave in a diversity of real-world
datasets of genes and their GO annotations, clinical trials, and human disease
benchmarks [12]. The Collaborative Evaluation of Semantic Similarity Measures
(CESSM)8 tool was used to evaluate the correlation of AnnSimOnSim with
respect to domain-specific similarities considered as gold standards by the bio-
medical community: the ECC similarity [6], Pfam similarity [15], and Sequence
Similarity SeqSim [20]. The evaluation was conducted on two collections of pairs
of proteins published by the two available versions of the CESSM tool: the 2008
collection contains 13,430 pairs of proteins from UniProt-GOA9, while the 2014
dataset comprises 22,302 pairs; annotations are from GO versions 2008 and 2014,
respectively. Reported plots are produced by the CESSM tool, and reveal that
AnnSimOnSim enhances the effectiveness of AnnSim by increasing the Pearson’s
correlation coefficients with respect to the gold standard measures. Additionally,
AnnSimOnSim is compared to eleven state-of-the-art semantic similarity mea-
sures, and it is able to outperform all these measures with respect to Pfam, while
is competitive with the other two gold standard measures. Further improve-
ments are observed in the CESSM 2014 collection, suggesting that high values
of AnnSimOnSim may provide evidences of high quality annotations.

AnnSimOnSim is also used to determining relatedness among patients anno-
tated with the Human Phenotype Ontology (HPO)10. Patient data is produced
and managed to remotely monitoring patients in the FI-STAR project11. FI-
STAR detects anomalies in patient measurements and vital signs by exploiting
semantics and Complex Event Processing (CEP) technologies. FI-STAR man-
ages static and sensed data, as well as real-time predictions. Static data pro-
vide contextual information that improves the predictions of the system, and
are represented as ontology-based annotations of the patients. Pair-wise val-
ues of AnnSimOnSim computed from static data are exploited by FI-STAR
8 http://xldb.di.fc.ul.pt/tools/cessm/about.php.
9 http://www.uniprot.org/.

10 http://www.human-phenotype-ontology.org/.
11 https://www.fi-star.eu.

http://xldb.di.fc.ul.pt/tools/cessm/about.php
http://www.uniprot.org/
http://www.human-phenotype-ontology.org/
https://www.fi-star.eu
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link prediction methods; the implemented hypothesis prediction establishes that
patients with similar symptoms also suffer of similar diseases.

This paper is organized as follows: Sect. 2 provides a motivating example in
the biomedical domain and Sect. 3 briefly describes preliminaries of our work.
Section 4 presents the OnSim approach, and experimental results are reported
in Sect. 5. Section 6 summarizes related research and Sect. 7 concludes.

2 Motivating Example

Figure 2 presents a portion of the neighborhoods of the GO terms adaptation
of rhodopsin mediated signaling (GO:0016062), and deactivation of rhodopsin
mediated signaling (GO:0016059). These terms are used to annotate entities
from different collections. For example, in the UniProt-GOA dataset12, they are
used to annotate the proteins P10676 and P13217. These GO terms participate
in different object properties; concretely, we observe in Fig. 2, that they occur
in the object properties rg and nr, which are sub-properties of rg (Fig. 1). GO
is described in OWL, which allows for representing logical axioms to describe
the semantics of the object properties, e.g., include logical axioms to express
transitivity or symmetry. Similarly to other biomedical ontologies, GO is con-
tinuously changing and therefore, these logical axioms may also change. In the
GO version of 2008, rg is not associated with any logical axiom, while the GO
2014 version states that rg is transitive over pf. We focus on the 2008 version
of GO in our motivating example, but we will see in our experimental results
that more detailed definitions of logical axioms positively impact on the behav-
ior of similarity measures. Figure 2 illustrates justifications of the inferred facts
(GO:0016062 rg GO:0008150) and (GO:0016059 rg GO:0008150):

1. The first justification relies on: the axiom of Instantiation of SubClassOf (sc)
over nr and the axiom of Instantiation of SubPropertyOf (sp) over rg. In
Fig. 2, we observe that (GO:0016062 sc GO:0022401) and (GO:0022401 nr
GO:0008150). Then, we can infer (GO:0016062 nr GO:0008150) by transitiv-
ity of the object property nr over sc. Finally, because nr is sub-property of
rg, we can infer the fact (GO:0016062 rg GO:0008150).

2. This inference is justified by the axiom of Instantiation of SubClassOf (sc)
over rg. In other way, every GO term inherits all the properties of its
ancestors. The GO term GO:0050789 is an ancestor of GO:0016059, i.e.,
(GO:0016059 sc GO:0050789) and (GO:0050789 rg GO:0008150) hold; there-
fore, we infer the fact (GO:0016059 rg GO:0008150).

Existing ontology-based similarities mainly rely on taxonomic hierarchies
of classes, and are not aware of these differences. For example, Dtax [1] and
Dps [13] are two taxonomic similarity measures that define similarity of two
nodes in terms of the depth of the nodes to the root of class hierarchy, and
the distance to their lowest common ancestor (LCA). Dtax and Dps will assign
relatively high values of similarities to GO:0016062 and GO:0016059, 0.625 and
12 http://www.ebi.ac.uk/GOA.

http://www.ebi.ac.uk/GOA
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Fig. 2. Portion of the neighborhood from GO:0016062 and GO:0016059. Solid arrows
represent stated object properties: negatively regulates (ng), regulates (rg), and is-a
(sc). Dashed arrows represent inferred object properties.

0.55, respectively. Nevertheless, Dtax and Dps ignore that both the neighbor-
hoods of GO:0016062 and GO:0016059, and the justifications of their inferred
facts are different. Therefore, Dtax and Dps values may overestimate the real
value of relatedness of these GO terms.

3 Preliminaries

AnnSim [12] and Dtax [1] have exhibited effective behavior on different domains,
e.g., real-world datasets of genes and their GO annotations, clinical trials, and
human disease benchmarks. Thus, we rely on these measures to evaluate the
effectiveness of OnSim.

Consider two entities e1 and e2 annotated with the set of ontology terms
A1 and A2. Let BG = (A1 ∪ A2,WE) be a weighted bipartite graph for set
of terms A1 and A2, and MWBG = (A1 ∪ A2,WEr) be 1-1 maximum weight
bipartite matching for BG. Intersection of sets A1 and A2 is assumed empty,
i.e., in case the same ontology term t occurs in A1 and A2, both occurrences of
t are seen as different terms during the construction of BG and MWBG. The
annotation-based similarity AnnSim is defined as follows:

AnnSim(e1, e2) =
2 ∗ ∑

(a1,a2)∈WEr
Sim(a1, a2)

|A1| + |A2|
A 1-1 maximum weight bipartite matching [17], MWBG = (A1 ∪ A2, WEr)

for a weighted bipartite graph BG = ( A1∪A2, WE), where edges are annotated
with similarity Sim is as follows:

– WEr ⊆ WE, i.e., MWBG is a sub-graph of BG.
– The sum of the weights of the edges in WEr is maximized, i.e.,

max
∑

(a1,a2)∈WEr

Sim(a1, a2)

– for each node in A1 ∪ A2 there is only one incident edge in WEr, i.e.,
• ∑|A1|

i=1 (ai, aj) = 1,∀j = 1 · · · | A2 |
• ∑|A2|

j=1 (ai, aj) = 1,∀i = 1 · · · | A1 |
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Sim(a1, a2) is a generic similarity measure for ontology terms, but Palma
et al. [12] reports on the benefits of using the taxonomic similarity Dtax [1]. Dtax

computes taxonomic similarity values in terms of Lowest Common Ancestor.
Given a directed graph G, the lowest common ancestor of two nodes x and y, is
the node of greatest depth in G that is an ancestor of both x and y. Let d(x, y)
be the number of edges on the longest path between nodes x and y in a given
ontology. Also let lca(x, y) be the lowest common ancestor of nodes x and y, and
root is the root of the class hierarchy.

Dtax(x, y) = 1 − d(x, lca(x, y)) + d(y, lca(x, y))
d(root, x) + d(root, y)

4 OnSim: An Ontology Similarity Measure

OnSim is an ontology similarity measure that computes relatedness between
ontology terms. OnSim not only relies on taxonomic hierarchies of the classes to
decide relatedness, but also considers the neighborhoods of two terms, as well as
the object properties that relate these terms with the facts in the neighborhoods
and the justifications that support the entailment of these facts.

To illustrate the impact that considering additional knowledge may have on
the computation of the similarity, consider the GO terms adaptation of rhodopsin
mediated signaling (GO:0016062) and deactivation of rhodopsin mediated signal-
ing (GO:0016059). As observed in Fig. 3(a) and 3(b), the neighborhoods of these
terms are different, as well as the justifications that support the inference of
these facts. Nevertheless, taxonomic similarity measures ignore this information
and may assign relatively high values of similarity to these two terms. Contrary,
OnSim detects that these two annotations are dissimilar in terms of the facts in
the neighborhoods and their justifications, and assigns a lower similarity value,
i.e., OnSim(GO:0016062,GO:0016059) is equal to 0.31.

To represent neighborhoods and justifications, we define for each ontology
term ai, a set Rai

that represent the neighborhood of ai. Facts in the neigh-
borhood are modeled as quadruples t = (ai, aj , rij , Eij), where rij is an object
property such that there is an out-going link from ai to aj in the ontology,
and Eij is a set of the instantiations of the antecedents of the axioms used to
infer the fact (ai rij aj)13. Thus, t1 = (GO:0016062,GO:0007165,rg, {(nr sp rg),
(GO:0016062 nr GO:0007165), Ax.4}) is the quadruple that represents that the
GO terms GO:0016062 and GO:0007165 are related through the object property
rg (Fig. 3(b)). Further, t1 states the justification of this inferred fact; in this
case axiom Ax.4 is applied, and the instantiation of the antecedent of Ax.4 is
(GO:0016062 nr GO:0007165). We define a quadruple t, based on the OWL2
axioms applied in a given justification.

Definition 1. Given two ontology terms ai and aj, and an object property rij.
A fact in the neighborhood of ai establishing that ai and aj are related through

13 According to OWL2 semantics the inferred fact is ai subClassOf rij some aj .
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(a) Neighborhood of GO:0016059 (b) Neighborhood of GO:0016062

Fig. 3. Neighborhoods of GO terms. Object properties in inferred facts are represented
with Dashed Arrows. Object properties are represented in arrows of different colors

rij, i.e., (ai rij aj), is represented as a quadruple t = (ai, aj , rij , Eij), where Eij

is a set of the instantiations of the antecedents of the axioms used to infer the
fact (ai rij aj). Depending of the axioms used to inferred the fact (ai rij aj),
the quadruple t is inductively defined as follows:

1. (Ax.1) Axiom of Symmetry Relation rij:

(ai rij aj)
(aj rij ai)

=⇒ t = (ai , aj , rij , {(aj rij ai),Ax .1})

2. (Ax.2) Axiom of Instantiation of SubClassOf (sc) over rij:

(ai sc az) ∧ (az rij aj)
(ai rij aj)

=⇒ t = (ai , aj , rij , {(ai sc az ), (az rij aj ),Ax .2})

3. (Ax.3) Axiom of Transitivity of SubClassOf (sc):

(ai sc az) ∧ (az sc aj)
(ai sc aj)

=⇒ t = (ai , aj , sc, {(ai sc az ), (az sc aj ),Ax .3})

4. (Ax.4) Axiom of Instantiation of SubPropertyOf (sp) over rij:

(rz sp rij) ∧ (ai rz aj)
(ai rij aj)

=⇒ t = (ai , aj , rij , {(rz sp rij ), (ai rz aj ),Ax .4})

5. (Ax.5) Axiom of Transitivity of SubPropertyOf (sp):

(ai sp az) ∧ (az sp aj)
(ai sp aj)

=⇒ t = (ai , aj , sp, {(ai sp az ), (az sp aj ),Ax .5})
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6. (Ax.6) Axiom of Transitivity Relation rij:

(ai rij az) ∧ (az rij aj)
(ai rij aj)

=⇒ t = (ai , aj , rij , {(ai rij az ), (az rij aj ),Ax .6})

7. (Ax.7) Axiom of Transitivity of rz over rij:

(ai rz az) ∧ (az rij aj)
(ai rij aj)

=⇒ t = (ai aj , rij , {(ai rz az ), (az rij aj ),Ax .7})

Inductive Case: If tz = (az, ak, rzk, Ezk) is part of the neighborhood of az, ti =
(ai, aj , rij , Eij) is in the neighborhood of ai, and (az rzk ak) ∈ Eij, then eliminate
ti from the neighborhood of ai and add the quadruple t = (ai, aj , rij , Eij) to the
neighborhood of ai, where Eij = (Eij − {(az rzk ak)}) ∪ Ezk.

Let us consider the GO terms GO:0016062 and GO:0016059 in Fig. 4. The
neighborhood of GO:0016062 represented by RGO:0016062, comprises 12 quadru-
ples associated with GO:0016062; the quadruples t1.1 and t1.2 describe the facts
(GO:0016062 rg GO:0007165) and (GO:0016062 rg GO:0008150), respectively.

– t1.1 = (GO:0016062,GO:0007165,rg, {(nr sp rg), (GO:0016062 nr GO:
0007165), Ax.4}).

– t1.2 = (GO:0016062, GO:0008150,rg, {(nr sp rg), (GO:0016062 sc GO:
0022401), (GO:0022401 nr GO:0008150), Ax.2, Ax.4}.

Note that the quadruple t1.2 represents the information of the justification of
the fact (GO:0016062 rg GO:0008150), where more than one axiom support the
inference, and the inductive definition of a quadruple (Definition 1) is applied
to generate the quadruple, i.e., the justification is as follows:

(GO:0016062 scGO:0022401) ∧ (GO:0022401 nrGO:0008150)
⇒ <Ax.2, (A sc B) ∧ (B r C) ⇒ (A r C) >

(nr sp rg) ∧ (GO:0016062 nr GO:0008150)
⇒ <Ax.4, (ri sp rj) ∧ (B ri C) ⇒ (B rj C) >

(GO:0016062 rg GO:0008150)

Similarly, RGO:0016059 describes the neighborhood of GO:0016059 and com-
prises 14 quadruples. The quadruple t2.1 represents the fact (GO:0016059 rg
GO:0008150):

– t2.1 = (GO:0016059,GO:0008150,rg, {(GO:0016059 sc GO:0050789), (GO:
0050789 rg GO:0008150), Ax.2}).

Given two quadruples, t1i = (a1, ai, r1i, E1i) and t2j = (a2, aj , r2j , E2j),
the similarity of two quadruples Sim(t1i, t2j) is defined as the product trian-
gular norm, TN, that combines the taxonomic similarity of t1i and t2j with the
similarity of the sets E1i and E2j of justifications, Simjustifications(E1i, E2j).
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Fig. 4. Comparison of the justifications of quadruples t1.1 and t2.1; axiom identifiers
are omitted for legibility: (a) Bi-partite graph from the pair-wise comparison of the
justifications; (b) 1-1 maximum weight bipartite matching produced by the BlossomIV
solver [2]

An item iti in a justification can be an axiom identifier, or an RDF triple (bi

pi ci) that denotes the instantiation of one of the antecedents of the axiom. For
example, the justification of the quadruple t1.1 = (GO:0016062,GO:0007165,rg,
{(nr sp rg), (GO:0016062 nr GO:0007165), Ax.4}) is a set that comprises three
items; two items are RDF triples (nr sp rg) and (GO:0016062 nr GO:0007165),
and the other item is the identifier of the applied axiom, i.e., Ax.4. The sim-
ilarity of two justification items iti = (bi pi ci) and itj = (bj pj cj), named
Simjustification(iti, itj), is defined as a product triangular norm that combines
three taxonomic similarities: Dtax(bi, bj), Dtax(pi, pj), and Dtax(ci, cj). Further,
the similarity of the same axiom identifier is 1.0, while two different axioms are
dissimilar, i.e., their similarity value is 0.0.

In our running example, if the taxonomic similarity is Dtax [1], the
similarity of the justification items it1 = (GO:0016062 nr GO:0007165) and
it2 = (GO:0050789 rg GO:0008150) is 0.12, where

– Dtax(GO:0016062,GO:0050789) is 0.55;
– Dtax(nr,rg) is 0.67;
– Dtax(GO:0007165,GO:0008150) is 0.33;
– Simjustification(e1, e2) = 0.55 × 0.67 × 0.33.

Two justifications E1i and E2j are compared based on a similarity
value. Formally, the similarity of two justifications is computed from a bi-
partite graph that corresponds to the 1-1 maximum weight bipartite match-
ing of the edges in the Cartesian product of E1i × E2j . Figure 4 presents
the 1-1 maximum weight bipartite matching of the justification sets of
t1.1 = (GO:0016062,GO:0007165,rg, {(nr sp rg), (GO:0016062 nr GO:0007165),
Ax.4}) and t2.1 = (GO:0016059,GO:0008150,rg, {(GO:0050789 rg GO:0008150),
(GO:0016059 sc GO:0050789), Ax.2}); axiom identifiers are omitted for legibil-
ity. We apply an exact solution to the problem of computing the 1-1 maximum
weight bipartite matching from a bipartite graph using the BlossomIV solver [2].
Values of justification similarity are used to compute the 1-1 maximum weight
bipartite matching, and the sum of this similarity is maximized in the best
matching. The time complexity of computing the 1-1 maximum weight bipartite
matching is O(m4), where m is sum of the cardinalities of sets of justifications.
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Once the 1-1 maximum weight bipartite matching MWBM of E1i × E2j is com-
puted, the similarity of these justifications is calculated as follows.

Simjustifications(E1i, E2j) =

∑

(ei,ej)∈MWBM(E1i,E2j)

Simjustifications(ei, ej)

Max(|E1i|, |E2j |)
Particularly, the Simjustifications values for the 1-1 maximum weight bipartite
matching of quadruples t1.1 and t2.1 in Fig. 4 is 0.06. Finally, we compute similar-
ity OnSim(a1, a2) based on the knowledge represented in quadruples t1i and t2j
in the sets R1 and R2 associated with the ontology terms a1 and a2, respectively.
First, a graph GOS = (R1 ∪R2, EOS) is a labelled bi-partite graph comprised of
the nodes in the sets R1 and R2, EOS ⊆ R1 ×R2, and edges are annotated with
the similarity of the quadruples. EOS corresponds to the 1-1 maximum weight
bipartite matching of the edges in the Cartesian product of R1 × R2.

OnSim(a1, a2) = TN
(
Dtax(a1, a2),

∑

(t1i,t2j)∈EOS

Sim(t1i, t2j)

Max(|R1|, |R2|)
)

– TN is a product triangular norm;
– R1 and R2 are the sets associated with a1 and a2, respectively;
– EOS corresponds to the 1-1 maximum weight bipartite matching of the

quadruples in the Cartesian product of R1 and R2 annotated with the simi-
larity Sim(t1i, t2j);

– quadruples t1i = (a1, ai, r1i, E1i) and t2j = (a2, aj , r2j , E2j) belong to
EOS; and

Fig. 5. Comparison of RGO:0016062 and RGO:0016059: 1-1 maximum weight bipartite
matching produced by the BlossomIV solver [2]; Dummy Quadruples are added by the
solver to find a matching that maximizes the sum of the similarity values
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– Sim(t1i, t2j) is defined as a triangular norm TN14 that combines similar-
ity values of the justifications of r1i, r2j with the taxonomic similarity of t1i
and t2j .

Figure 5 presents the 1-1 maximum weight bipartite matching found by the
BlossomIV solver [2] for the GO terms GO:0016062 and GO:0016059. We can
observe that two dummy nodes are added to ensure that the sum of the sim-
ilarity values is maximized. OnSim is computed on top of this 1-1 maximum
weight bipartite matching and combined with the taxonomic similarity value of
Dtax(GO:0016062,GO:0016059); thus, OnSim(GO:0016062,GO:0016059) corre-
sponds to 0.488 × 0.625 = 0.31, which is lower than the values of Dtax and Dps

reported in Sect. 2.

5 Experimental Results

The goal of the study is to evaluate the impact of OnSim on existing annotation-
based similarity measures. Our research hypothesis states that because OnSim
considers the neighborhood of two ontology terms, the annotation-based sim-
ilarity values of entities annotated with these terms are more accurate. We
conducted an empirical study on the collections of proteins published at the
Collaborative Evaluation of Semantic Similarity Measures (CESSM) portals of
200815 and 201416 using Hermit 1.3.8 as the OWL reasoner. The CESSM 2008
collection contains 13,430 pairs of proteins from UniProt with 1,039 distinct
proteins, while the CESSM 2014 collection comprises 22,302 pairs with 1,559
distinct proteins. Both collections are annotated with 1,908 distinct terms from
the August 2008 version of GO and 3,909 distinct terms from the December
2014 version, respectively. The class hierarchy of the 2008 GO version has a
maximum depth of 15 levels, while the depth of the version of 2014 increases
until 17 levels. Similarly, the number of axioms grows; the 2008 version has four
object properties, and one of them is transitive (Ax.6); and the 2014 version
has ten object properties, three are transitive (Ax.6), and five meet the Object-
PropertyChain (Ax.7). Annotations are from UniProt-GOA, and are separated
into the GO hierarchies of biological process (BP), molecular function (MF),
and cellular component (CC). CESSM computes the Pearson’s correlation coef-
ficients with respect to three similarity gold standards: ECC similarity [6], Pfam
similarity [15], and Sequence Similarity SeqSim [20]. The ECC similarity assigns
values between 0 and 4 that measure the number of Enzyme Comparison (ECC)
digits that are shared by two genes; high values of ECC indicate that both genes
share several digits and are similar. The Pfam similarity (Pfam) of two genes
corresponds to the Jaccard similarity as the ratio between the number of shared
Pfam families and the total number of Pfam families of the two genes. Pfam
similarity values are between 0.0 and 1.0. Finally, SeqSim produces normalized
14 For this ontology we used the Product TN for Sim and SimD.
15 http://xldb.di.fc.ul.pt/tools/cessm/.
16 http://xldb.di.fc.ul.pt/biotools/cessm2014/.
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values of the Sequence Similarity measure of BLAST that measures the sequence
alignment of two genes or proteins; SeqSim is one of the gold standard measures
for gene sequence alignment.

Eleven semantic similarity measures are compared; these similarity measures
extend Resnik’s(R) [16], Lin’s(L) [9], and Jiang and Conrath’s(J) [10] measures
to consider GO annotations of the compared proteins, the information content
(IC) of these annotations, and pairwise combinations of common ancestors. The
average combination which is labeled A, considers the average of the ICs of
pairs of common ancestors. Sevilla et al. [18] apply the corresponding measure,
i.e., the Resnik’s [16], Lin’s [9], and Jiang and Conrath’s [10] measures, to the
maximum value of IC of pairs of common ancestors; these combined measures
are distinguished with the labeled M. Measures labelled with B are combined
with the best-match average of the ICs of pairs of disjunctive common ancestors
(DCA) proposed by Couto et al. [4]. Finally, the set-based measures simUI (UI)
and simGIC (GI) [14] apply the Jaccard index to sets of annotations together
with domain-specific information. We evaluate two versions of AnnSim on the
two CESSM collections: AnnSimDtax relies on Dtax to decide the relatedness of
two annotations, while AnnSimOnSim uses OnSim.

Figure 6(a)–(d) report on the comparison of SeqSim with AnnSimDtax,
AnnSimOnSim, and the GO based extensions of the Resnik’s [16], Lin’s [9],
and Jiang and Conrath’s [10] measures. Annotations are restricted to GO Bio-
logical Process (BP) terms, the richer branch of GO in terms of axioms. Plots in
Fig. 6(a) and 6(b) were generated on CESSM 2008, while Fig. 6(c) and 6(d) were
returned by CESSM 2014. In almost all the cases, the studied similarity mea-
sures assign high similarity values to pairs of proteins that SeqSim also consider
similar. Nevertheless, the problem is to precisely distinguish when two proteins
are dissimilar. In the collections 2008 and 2014, simGIC (GI) [14] has the highest
correlation with respect to SeqSim, 0.773 and 0.799, respectively. In addition to
GO annotations of the proteins, GI additionally exploits information content
of the GO annotations in conjunction with the most informative ancestors of
these annotations. Thus, a more precise estimate of the relatedness of two pro-
teins is computed, i.e., both GI and SeqSim assign low similarity values to a
large number of pairs of proteins. AnnSimDtax does not precisely distinguish
dissimilar proteins in none of the collections, and the correlation with respect
to SeqSim is 0.650 and 0.682. Contrary, AnnSimOnSim considerably enhances
AnnSim, and exhibits a performance more similar to GI in dissimilar pairs of
proteins, i.e., pairs of proteins with low SeqSim values; thus, the correlation with
respect to SeqSim is 0.732 and 0.772. This improvement is the result of analyzing
the neighborhoods of the GO terms that are compared during the computation
of AnnSimOnSim, and corroborates our hypothesis that OnSim can positively
impact on the effectiveness of annotation-based similarity measures. Another
interesting issue to highlight is the impact that newer versions of GO and anno-
tations may have on the behavior of semantic similarity measures. Although the
CESSM 2014 tool only reports on eight similarities, clearly all of them behave
better in the CESSM 2014 collection than in the CESSM 2008. This observation
suggests an improvement in the quality of the GO taxonomy and axioms, as
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Fig. 6. Results are produced by the CESSM tool for GO BP terms (versions 2008
and 2014). Average values for AnnSimDtax and AnnSimOnSim. The similarity mea-
sures are: simUI (UI), simGIC (GI), Resnik’s Average (RA), Resnik’s Maximum (RM),
Resnik’s Best-Match Average (RB), Lin’s Average (LA), Lin’s Maximum (LM), Lin’s
Best-Match Average (LB), Jiang&Conrath’s Average (JA), Jiang&Conrath’s Maxi-
mum (JM), Jiang&Conrath’s Best-Match Average (JB)

well as on the annotations of the proteins provided by UniProt-GOA. Providing
thus, this type of studies, not only the possibility of evaluating the effectiveness
of existing measures, but also of analyzing the quality of existing ontologies and
annotations.

Further, Table 1(a) and (b) report on the comparison of all the similarity
measures with the gold standards: ECC, Pfam, and SeqSim on CESSM 2008
and 2014. Both tables report on Pearson’s correlation coefficients, where the
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Table 1. The Pearson’s correlation coefficient between three gold standards and eleven
similarity measures of CESSM. The top 5 correlations are highlighted in gray, and the
highest correlation with respect to each gold standard is highlighted in bold.

top-5 values are highlighted in gray, and the highest correlation with respect to
each of the baseline similarity measure is highlighted in bold. We can observe
that both AnnSimDtax and AnnSimOnSim are among the top-5 more correlated
measures to SeqSim and Pfam in CESSM 2008. However, in the version of 2014,
only AnnSimOnSim is kept among the top-5 measures. While AnnSimDtax main-
tains its improvement in the correlation with SeqSim in the 2014 collection, it
drops to the last position in terms of correlation. Similar to the results reported
in Fig. 6(d), the enhanced effectiveness of AnnSimOnSim in this dataset sug-
gests an improvement in the quality of the annotations and in the knowledge
represented in GO. We hypothesize that most of changes in GO are related to
axioms and object properties and not so much with the taxonomy. These charac-
teristics of GO 2014 would explain the behavior of AnnSimDtax in this dataset.
AnnSimOnSim is competitive because, unlike other top-5 similarity measures, it
is a generic similarity measure and is not tuned for GO.

6 Related Work

A diversity of similarity measures have been proposed in the literature to com-
pute relatedness between a pair of entities. Each measure exploits some knowl-
edge including paths of relations with other entities, taxonomic hierarchies of
the classes, and semantic knowledge. Path- or structure-based similarity mea-
sures compute the relatedness of two entities according to the properties of the
paths that connect them (e.g., PathSim [21] or HeteSim [19]), or the structure
of the graph that includes the two entities (e.g., SimRank [7]). High values of
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path- and structure-based similarity indicate that the entities are connected
with a large number of paths that meet certain conditions, or the neighborhoods
of these entities are highly connected. Taxonomic-based similarity measures, as
Dps [13] and Dtax [1], are a subset of structure-based similarity measures. They
decide relatedness in terms of the class hierarchy of the ontology and usually
consider only the is-a relation. High values of taxonomic similarities indicate
that the entities share deep common ancestors in the ontology. In the context of
Biomedicine, domain-specific similarity measures have been defined to measure
relatedness between scientific entities. Smith and Waterman [20], BLAST17 and
FASTA18 identify sequence alignment in sequences of nucleotides or amino-acids.
Furthermore, domain-specific similarity measures rely on knowledge encoded in
specific taxonomies to compute the similarity of two entities. For example, the
GO semantic similarity measures assign values between GO terms according
to the similarity measures proposed by Resnik et al. [16], Lin et al. [9], and
Jiang&Conrath [8]. Finally, Couto et al. [3] propose a classification of similar-
ity measures according to the semantics they exploit: Terminological measures
compute relatedness between two entities by considering similarity between the
names of the classes to which these entities belong; structural approaches decide
similarity depending on the relations and attributes of the classes; extensional
measures assign similarity values based on the cardinality of the intersection of
the instantiations of the classes; and the semantic-based approaches take into
account axioms that formalize properties of ontology classes to decide related-
ness of two entities [5]. OnSim considers both, the ontology structure and logic
axioms. Therefore, according to Couto et al., OnSim is classified as a structural
and semantic-based similarity measure.

7 Conclusions and Future Work

We have defined OnSim, a similarity measure that exploits the semantics of
ontology terms, i.e., object properties and axioms, to accurately determining
relatedness. We extended the annotation-based similarity AnnSim with OnSim
and conducted an extensive empirical study on collections available at the
CESSM websites. Experimental results reveal that AnnSimOnSim is able to
enhance AnnSim effectiveness with respect to biomedical gold standard simi-
larity measures: SeqSim, Pfam, and ECC. Observed results also suggest that
AnnSimOnSim and the other similarity measures are positively impacted by
the evolution of the Gene Ontology and protein annotations; providing thus, a
potential new application of these measures for suggesting quality issues.

In the future, we plan to study the impact of OnSim on other similarity
measures, e.g., Cosine or GI. Further, we will formally analyze the effects of
ontology and annotation evolution on the effectiveness of similarity measures;
we hypothesize that these results will provide insights to define higher quality
ontologies and annotations.
17 http://blast.ncbi.nlm.nih.gov/.
18 http://www.ebi.ac.uk/Tools/sss/fasta/.
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Abstract. Existing biomedical ontologies encode scientific knowledge
that is exploited in ontology-based annotated entities, e.g., genes
described using Gene Ontology (GO) annotations. Ontology-based anno-
tations correspond to building blocks for computing relatedness between
annotated entities, as well as for data mining techniques that attempt to
discover domain patterns or suggest novel associations among annotated
entities. However, effectiveness of these annotation-based approaches can
be considerably impacted by the quality of the annotations, and mod-
els that allow for the description of the quality of the annotations are
required to validate and explain the behavior of these approaches. We
propose AnnEvol, a framework to describe datasets of ontology-based
annotated entities in terms of evolutionary properties of the annota-
tions of these entities over time. AnnEvol complements state-of-the-art
approaches that perform an annotation-wise description of the datasets,
and conducts an annotation set-wise description which characterizes the
evolution of annotations into semantically similar annotations. We empir-
ically evaluate the expressiveness power of AnnEvol in a set of proteins
annotated with GO using UniProt-GOA and Swiss-Prot. Our experi-
mental results suggest that AnnEvol captures evolutionary behavior of
the studied GO annotations, and clearly differentiates patterns of anno-
tations depending on both the annotation provider and on the model
organism of the studied proteins.

1 Introduction

Semantic Web initiatives have fostered the collaborative definition of ontologies
which have been used to semantically describe and annotate entities from dif-
ferent domains. Particularly, the biomedical science has greatly benefited from
these research movements, and expressive ontologies have been defined, e.g., the
Gene Ontology (GO)1 and the Human Phenotype Ontology (HPO)2. Ontolo-
gies in the biomedical domain have been extensively accepted by the scien-
tific community as standards to describe concepts and relations, and to replace
1 http://geneontology.org/.
2 http://www.human-phenotype-ontology.org/.
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textual descriptions by controlled vocabulary terms from the ontologies. For
example, GO terms are extensively used for capturing functional information
of proteins and genes as indicated in the Gene Ontology Annotation (UniProt-
GOA) database3, and there are international initiatives to collaboratively anno-
tate organisms, e.g., the Pseudomonas aeruginosa PAO1 genome4. Furthermore,
approaches have been defined for annotating clinical data with ontology terms
from HPO to support phenotype analysis and discovery of genotype-phenotype
relationships [4], as well as for predicting drug-target interactions [3,7] or deter-
mine relatedness of ontology-based annotated entities [6]. Accuracy and quality
of all these approaches strongly depend on the quality of the ontology-based
annotations, and several approaches have been defined to characterize GO anno-
tations [5,10].

Annotation quality can be impacted by the evolution of the ontology, changes
in the annotations and type of annotation. Ontology terms can be incorporated
or eliminated from the ontologies, as well as annotations that describe scientific
entities. Additionally, both ontology and annotation evolutions are not always
monotonic, not all the annotated entities are equally studied and stability of
their annotations is non-uniform. In order to describe the quality of the annota-
tions, Gross et al. [5] propose an evolution model able to represent different types
of changes in ontology-based annotated entities, quality of the changed annota-
tions, and the impact of the ontology changes. In this direction, Skunca et al. [10]
define three measures to compute the annotation quality of computationally
predicted GO annotations: (i) reliability: proportion of electronic annotations
confirmed by new experimental annotations; (ii) coverage: indicates the annota-
tion predictive capability of existing annotation computational methods, and is
computed as the power of electronic annotations to predict experimental anno-
tations; and (iii) specificity: measures informativeness of an annotation. Both
approaches are able to describe datasets of ontology-based annotated entities in
terms of the evolution of the annotations over time, i.e., both approaches provide
an annotation-wise description of ontology-based annotated entities. Conduct-
ing an annotation-wise description of the evolution of annotations allows for the
discovery of relevant patterns, e.g., stability of the GO annotations of Swiss-Prot
versus Ensembl annotations [5] or improvement of GO computationally inferred
annotations. Nevertheless, changes of groups of annotations into similar anno-
tations, elimination of groups of obsolete annotations, as well as the inclusion of
recently annotations cannot be expressed, i.e., an annotation set-wise description
of the ontology-based annotated entities is not performed.

We tackle this problem and propose AnnEvol, an evolutionary framework able
to perform an annotation set-wise description of the evolution of an ontologi-
cal annotated dataset. AnnEvol compares two versions of a dataset of entities
di and di+1 annotated with an ontology O in terms of the following parame-
ters: (i) group evolution captures how groups of annotations in di evolve into
groups of similar annotations in di+1, semantic similarity measures are used to
3 http://www.ebi.ac.uk/GOA.
4 http://www.pseudomonas.com/go annotation project 2014.jsp.
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compute similarity of annotations; (ii)unfit annotations measures the num-
ber of annotations that are used in di but do not survive in di+1;
(iii)new annotations measures the number of annotations that are used in di+1

but are not in di; (iv) obsolete annotations measures the number of annotations
that are used in di but did not survive in di+1 because they became obsolete in
O; and (v)novel annotations measures the number of annotations that are not
used in di but are used in di+1 after being included as part of O. We study the
expressiveness power of AnnEvol on the four versions of the set of proteins avail-
able at the online tool Collaborative Evaluation of Semantic Similarity Measures
(CESSM)5. GO Annotations of the studied set of proteins are from UniProt-
GOA and Swiss-Prot, which is a subset of UniProt-GOA that only contains
manually curated annotations. AnnEvol is able to capture different patterns in
the evolutionary behavior of Swiss-Prot and UniProt-GOA annotations and dif-
ferent organisms. The reported results suggest that annotations gradually evolve
into groups of similar annotations, as well as that evolution of the annotations
not only depends on the type of organism of the protein (e.g., Homo Sapiens),
but also to the type source of the annotation, i.e., Swiss-Prot and UniProt-GOA.
These results although preliminary, reveal the power of an annotation set-wise
description that relies on semantic similarity measures for computing the evolu-
tion of annotations.

AnnEvol is also used to evaluate the quality of annotations of patient data
in the FI-STAR project6. FI-STAR applies semantic and CEP (Complex Event
Processing) technologies for remote patient monitoring. One of the goals is to
support proactivity in detecting problems and alarm a patient ahead of time. To
detect this problem, static, and sensed data and real-time predictions are consid-
ered. Static data provide contextual information that improves the predictions
of the system; these data are represented as ontology-based annotations of the
patient, e.g., a certain patient is diabetic. Some predictions may cause the addi-
tion of new static data, e.g., after detecting an epileptic seizure, a patient may
be diagnosed with epilepsy; thus, the quality of the annotations (static data)
impacts on the quality of the real-time predictions and vice versa.

This paper is organized as follows: Sect. 2 provides a motivating example
in the UniProt-GOA dataset and Sect. 3 briefly describes preliminaries of our
work. Section 4 presents the AnnEvol evolutionary framework, and experimen-
tal results are reported in Sect. 5. Section 6 summarizes related approaches and
Sect. 7 concludes.

2 Motivating Example

To motivative our work, we analyze the values of the semantic similarity measure
AnnSimDtax [1] when is applied to dataset of 1,033 proteins from the online tool
CESSM 2008. Different versions of annotations of these proteins are obtained
5 http://xldb.di.fc.ul.pt/tools/cessm/about.php.
6 https://www.fi-star.eu.
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from the UniProt-GOA dataset7 for February 2008, December 2010, November
2012, and November 2014. AnnSimDtax relies on the ontology-based annota-
tions to assign values of similarity to two annotated entites. The hypothesis is
that evolution of annotations enhances the knowledge about these proteins and
increases the correlations of AnnSimDtax with domain gold standard similarity
measures as ECC [2], Pfam [9], and Sequence Similarity SeqSim [11]. Table in
Fig. 1 reports on the Pearson’s coefficient between AnnSimDtax, and ECC, Pfam
and SeqSim. Contrary to our hypothesis, the correlation values do not improve
over time.

2008 2010 2012 2014
SeqSim 0.65 0.61 0.56 0.56
ECC 0.39 0.38 0.38 0.38
Pfam 0.46 0.45 0.43 0.43

Fig. 1. Pearson’s coefficient between
AnnSimDtax, and ECC, Pfam and
SeqSim for four annotation versions
of UniProt-GOA proteins in CESSM
2008

AnnSimDtax performs a 1-1 maximum
weight bipartite match between the annota-
tions of the compared proteins [6]. This kind
of matching assigns low similarity values to
pairs of proteins with very different number
of annotations. We find a pair of proteins
P48734 and P06493 that clearly justify the
worsening of the AnnSimDtax values over
this time period. SeqSim returns a high sim-
ilarity value of 0.99 for P48734 and P06493.
However, AnnSimDtax returns 0.81, 0.24, 0.23, and 0.21 in the datasets of 2008,
2010, 2012, and 2014, respectively. It is due to the non-uniform evolution of the
annotation of these proteins. Annotations of P06493 increases from 7 annota-
tions in 2008 to 55 in 2010, 70 in 2012, and 76 in 2014. Further, protein P48734
changes from having 6 annotations in 2008 to 8 in 2010, 9 in 2012, and 10 in 2014.
We calculated the Gini’s coefficient of the edit distance between the annotations
of each protein in UniProt-GOA for generation changes 2008–2010, 2010–2012,
and 2012–2014. The Gini’s coefficient returns values between 0.0 and 1.0, where
values close to 0.0 indicate, in this case, perfect equality in the evolution of the
annotations, while values close to 1.0 indicate maximal inequality. The Gini’s
coefficient returns the values 0.65, 0.58, and 0.63 for the respective transitions.
The number of annotation per protein is also non-uniform. Gini’s coefficients
for the annotation distribution for each dataset version are 0.40, 0.44, 0.45, and
0.45, respectively. The increase of the inequality of the distribution of annota-
tions per protein and the inequality of the evolution of the proteins justify the
worsening of AnnSimDtax.

3 Preliminaries

We describe the ontology-based similarity measure Dtax [1] and the annotation-
based semantic similarity measure AnnSig [8]. Dtax is used to compute values
of similarity of ontology terms based on the class hierarchy of O and the lowest
common ancestors, e.g., the taxonomy induced by the is-a relationship between
GO terms. Given a directed graph G, the lowest common ancestor of two ontol-
ogy terms x and y, lca(x, y), is the node of greatest depth in G that is an ancestor
7 http://www.uniprot.org/.
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of both x and y. Let d(x, y) be the number of edges on the longest path between
nodes x and y in an ontology O, and a root is a node root of the class hierarchy
of the ontology O, Dtax(x, y) is defined as follows:

Dtax(x, y) = 1 − d(x, lca(x, y)) + d(y, lca(x, y))
d(root, x) + d(root, y)

(1)

Furthermore, given two ontology-based annotated entities ei and ej anno-
tated with sets of ontology terms Ai and Aj , the semantic similarity measure
AnnSig(ei,ej) determines relatedness between ei and ej according to the min-
imal many-to-many matching between ontology terms of Ai and Aj ; matching
is computed in terms of Dtax(x, y). A value of AnnSig(ei,ej) close to 1.0 indi-
cates that the majority of the terms of Ai are similar to at least one term in
Aj and vice versa. Contrary, a value close to 0.0 indicates that there are a
large number of terms in Ai (resp., Aj) that do not have at least one similar
term in Aj (resp., Ai). AnnSig(ei,ej) is defined in terms of a bipartite graph
BG = (Ai ∪Aj ,WE) that represents the Dtax values of similarities of the terms
in Ai and Aj , i.e., edges (x, y) in WE are annotated with Dtax(x, y). Inter-
section of sets Ai and Aj is assumed empty, i.e., in case the same ontology
term t occurs in Ai and Aj , both occurrences of t are seen as different terms
during the construction of BG. The minimal many-to-many matching of terms
in Ai and Aj corresponds to a (minimal) partition PA of WE such that the

aggregate cluster density of PA is maximal, i.e.,
∑

p∈PA cDensity(p)

|P | is maximal,

where cDensity(p) =
∑

(x,y)∈p Dtax(x,y)

|p| . The aggregate cluster density of PA
corresponds to AnnSig(ei,ej). Figure 2 illustrates a partitioning of bipartite

Fig. 2. Clusters (yellow ellipses) formed by AnnSig between annotations of protein
P48734 in 2010 and 2012 (blue nodes). AnnSig similarity value is 0.95. BG is a bipar-
tite graph between the set of GO annotations of protein P48734 in 2010 and 2012.
Intersection between these two set of annotations is assumed empty, i.e., GO:0007067
in 2010 is considered different to GO:0007067 in 2012 in the bipartite graph BG (Color
figure online)
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graph of the sets of annotations of protein P48734 in 2010 and 2012 (blue nodes);
parts or clusters of the partition are drawn as yellow ellipses. Note that even the
same GO terms may appear in both set of annotations, they are considered as
different terms, e.g., GO:0007067 in 2010 is considered different to GO:0007067 in
2012 during the construction of the bipartite graph. We can observe that except
GO:0006916, GO:0016310, GO:0006915, and GO:00043066, the GO terms can be
matched based on high values of Dtax, i.e., all these matchings have values of
Dtax greater or equal to 0.5. AnnSig is computed for this partitioning; the value
is 0.95.

4 Our Approach

AnnEvol is a framework to measure the evolution of the annotations of ontology-
based annotated entities that comprise a given dataset. First, we will define the
measures that allow for the description of the evolution of the annotations of
a particular entity, and then, we will show the components of AnnEvol that
indicate the evolution of the annotations of a complete dataset of ontology-based
annotated entities.

4.1 Evolution of Ontology-Based Annotated Entities

Annotations associated with entities may change over time, e.g., protein P48734
in Fig. 2 suffers several changes from 2010 to 2012: (i) GO:0006916 is removed,
and (ii) GO:0016310, GO:0006915, and GO:00043066 are added. We define a
generation of an entity e at time i, as a pair g(e, i) = (A(e, i), Oi), where A(e, i)
is the annotation set of entity e at time i and Oi is the ontology version at time
i. Then, to measure the evolution between two generations of the annotations of
an ontology-based annotated entity e, we compare the set of annotations Ai and
Ai+1, e.g., we compare the annotations of the protein P48734 at 2010 and 2012.
We define the generation change of an ontology-based annotated entity between
the generations g(e, i) = (A(e, i), Oi) and g(e, i + 1) = (A(e, i + 1), Oi+1) as a
quintuple q(e|i, i + 1) = (s, n, w, o, v), where:

The group evolution of the annotations of e is represented by s in q(e|i, i+1),
and corresponds to the overall similarity of groups of annotations of e at time
points i and i + 1. The group evolution is computed as the similarity value
assigned by AnnSig for the bipartite graph BG = (A(e, i)∪A(e, i+1),WE) and
the ontology version Oi+1. Values close to 0.0 indicate that the annotations of e
completely change during the two generations; while values close to 1.0 suggest
that annotations either are maintained the same or are changed by similar terms.
For example, Fig. 2 illustrates the bipartite graph between the annotations of
protein P48734 at 2010 and 2012. To compute the similarity values of AnnSig,
edges of this bipartite graph are partitioned into six clusters. Five out of these
six clusters group the same GO term, e.g., GO:007067, and indicate that these
five terms do not change in these generations. Further, the cluster that groups
GO:0006468 and GO:00016310 indicates that the annotation GO:0006468 at 2010
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changes into two terms GO:0006468 and GO:00016310 in 2012. Additionally, the
GO term GO:0006916 is not similar to any other GO term in the 2012 generation
of P48734, and similarly, GO terms GO:0006915 and GO:0043066 are dissimilar
to the GO terms in the generation 2010. Therefore, there is no cluster that
enclosed these GO terms. During the computation of AnnSig, values of similarity
of GO the terms in the same cluster are considered, as well as the number of
terms that cannot be included in a cluster; thus, the group evolution of P48734
at 2010 and 2012 is 0.95 indicating stability of the annotations of P48734 during
these generations.

Unfit annotations are represented by n in q(e|i, i + 1) = (s, n, w, o, v), and
are modeled as the normalized number of annotations of the generation g(e, i)
which are not included in any cluster of the partition PA produced to compute
AnnSig. Formally, the number of unfit annotations is computed as n = |an|

|A(e,i)| ,
where:

an = {t|t ∈ A(e, i) ∧ t ∈ Oi ∧ t ∈ Oi+1 ∧ ∀p ∈ PA,∀x ∈ A(e, i+ 1) ⇒ �(t, x) ∈ p}
(2)

Values close to 1.0 indicate that A(e, i + 1) does not contain most of terms in
A(e, i) or terms similar with them. Values close to 0.0 indicate that A(e, i + 1)
contains either most of the terms in A(e, i) or similar ones. To illustrate, although
the GO term GO:0006916 is not part of any cluster in the partition PA presented
in Fig. 2, also GO:0006916 is not in the GO version of 2012. Thus, GO:0006916
does not meet condition in Expression (2) and is not an unfit annotation; the
value of n is 0.0.

New annotations are represented by w in q(e|i, i + 1) = (s, n, w, o, v), and
are modeled by the normalized number of terms contained in A(e, i + 1) that
are in both ontology versions Oi and Oi+1, but are not part of A(e, i) and
are not included in any cluster of AnnSig. The number of new annotations is
w = |aw|

|A(e,i+1)| , where:

aw = {t|t ∈ A(e, i+1)∧ t ∈ Oi ∧ t ∈ Oi+1 ∧∀p ∈ PA,∀x ∈ A(e, i) ⇒ �(x, t) ∈ p}
(3)

Values close to 1.0 indicate that most of the terms in A(e, i + 1) are not in
A(e, i) and are dissimilar to them. Values close to 0.0 indicate that most of
terms in A(e, i + 1) that are not in A(e, i) are present in clusters formed by
AnnSig and therefore their similarity is high. Although GO terms GO:0043066
and GO:0006915 are part of GO in 2010 and 2012, they are not annotations of
P48734 in the generation of 2010 and are not in any cluster of the partition PA
reported in Fig. 2. Thus, GO:0043066 and GO:0006915 meet Expression (3), and
both are new annotations ; w = 2

9 = 0.22.
Obsolete annotations are represented by o in q(e|i, i+1) = (s, n, w, o, v), and

are measured as the normalized number of ontology terms used in A(e, i) of the
annotation dataset that are not available in the version Oi+1 of the ontology.
Formally, the number of obsolete annotations is computed as o = |ao|

|A(e,i)| , where:

ao = {t|t ∈ A(e, i) ∧ t ∈ Oi ∧ t /∈ Oi+1} (4)
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Values close to 1.0 indicate that most of the terms in A(e, i) are obsolete in Oi+1.
For example, because GO:0006916 is not part of GO 2012, it is removed from
the annotations of P48734 in the generation 2012. Thus, GO:0006916 does meet
Expression (4) and is considered an obsolete term; o = 1

7 = 0.14.
Finally, Novel annotations are presented by v in q(e|i, i+ 1) = (s, n, w, o, v),

and are measured as the normalized number of ontology terms used in A(e, i+1)
and that are not part of Oi; v = |av|

|A(e,i+1)| , where:

av = {t|t ∈ A(e, i + 1) ∧ t /∈ Oi ∧ t ∈ Oi+1} (5)

Values close to 1.0 indicate that most of the terms in A(e, i+ 1) are novel. Note
that GO:0043066 and GO:0006915 cannot be considered novel because even they
do not belong to the annotations of P48734 in the generation of 2010, they are
part of GO 2010, i.e., they do not meet Expression (5). Thus, there are no novel
annotations, and v = 0.0.

Table 1 shows generation changes for proteins P48734 and P06493 between
generations 2008–2010, 2010–2012, and 2012–2014, i.e., three quintuples are
reported by both P48734 and P06493. Note that the group evolution is 1.0
for P48734 in the generations 2012–2014, and the rest of the components are
0.0. This indicates no changes of the annotations in these generations. On the
other hand, annotations of P06493 in the generations 2010 and 2012 consid-
erably change, i.e., two annotations in 2010 are removed in 2012 and two are
included in 2012; one of the removed annotations is obsolete while one of the
added annotations is novel.

We consider a sequence of generations of the same entity in a period
P = {1,. . . , n} denoted as g(e|P ) = [g(e, 1), g(e, 2), . . . , g(e, n)], e.g., to calculate

Table 1. AnnEvol descriptions for the proteins P48734 and P06493 between gen-
erations 2008–2010, 2010–2012, and 2012–2014. Rows describe the evolution of the
annotations of an entity between two generations in terms of: group evolution (s),
unfit annotations (n), new annotations (w), obsolete annotations (o), and novel anno-
tations (v). Values of P48734 in the generations 2012–2014 indicate no changes of the
annotations in these generations. Aggregated evolutionary behavior on the sequence of
generations in terms of arithmetic mean.

Protein Generations s n w o v

P48734 2008–2010 0.95 0.0 0.14 0.0 0

2010–2012 0.95 0.0 0.22 0.14 0.0

2012–2014 1 0.0 0.0 0.0 0.0

Aggregated 0.97 0.0 0.12 0.05 0.0

P06493 2008–2010 0.95 0.0 0.83 0.0 0.06

2010–2012 0.91 0.02 0.13 0.04 0.01

2012–2014 0.95 0.01 0.04 0.0 0.0

Aggregated 0.94 0.01 0.33 0.01 0.02
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aggregated values in Table 1 generations of the proteins P48734 and P06493 in
the time period P = {2008, 2010, 2012, 2014} are considered. In this case, we con-
sider two-year separated generations, but a finer granularity may be computed.
Generation granularity depends on the update frequency of the annotations of
the dataset. Generations in g(e|P ) are ordered by date, so the oldest generation
is the first in the list g(e, 1) and the most current is the last g(e, n). Sequences
of generation changes on a time period P = {1, . . . , n} are represented as a
quintuple list Q that contains one generation change for each pair of generations
Q(e|P ) = [q(e|1, 2), q(e|2, 3),. . . , q(e|n− 1, n)], where q(e|i, i+ 1) corresponds to
the generation change of e between the generations g(e, i) = (A(e, i), Oi) and
g(e, i+1) = (A(e, i+1), Oi+1), e.g., generation changes of protein P48734 on the
time period P = {2008, 2010, 2012, 2014} are represented as Q(P48734|P ) =
{q(P48734|2008, 2010), q(P48734|2010, 2012), q(P48734|2012, 2014)}.

Measuring Evolution of the Annotations of an Entity in a Time Period.
Given an ontology-based annotated entity e and a sequence of generation changes
of e in a time period P = {1,. . . ,n}, Q(e|P ) = [q(e|1, 2), q(e|2, 3), . . . , ...q(e|n −
1, n)], the evolution of e given P is represented as a quintuple Q̄(e|P ) that sum-
marizes the evolution of the annotations of e over the time period P :

Q̄(e|P ) =< S̄, N̄ , W̄ , Ō, V̄ >

– S̄ represents the aggregated value of group evolution of the annotations of
e in the period P , i.e., S̄ = F ({s|(s, n, w, o, v) ∈ Q(e|P )}). Values close to
1.0 indicate that exist a stable group of annotations that survived all the
generation changes. Values close to 0.0 indicate that does not exist such stable
group and each generation change produce a total change in the annotation
set. For example, consider the evolution of protein P06493 in the time period P
= {2008, 2010, 2012, 2014} (Table 1), and suppose F (.) is the arithmetic mean
function, then aggregated value of the group evolution is 0.94 and indicates
that a high number of annotations either are maintained during the time
period P , or are changed by similar GO terms.

– N̄ represents the aggregated value of unfit annotations of e in the period P ,
i.e., N̄ = F ({n|(s, n, w, o, v) ∈ Q(e|P )}). A value close to 1.0 means that most
of annotations do not survive more than one generation, while a value close
to 0.0 means that most of them survive or evolve into similar annotations.
For example, the evolution of protein P06493 in the time period P = {2008,
2010, 2012, 2014} only few annotations are removed; thus, the arithmetic
mean values of unfit annotations is low and corresponds to 0.01.

– W̄ represents the aggregated value of fit annotations of e in the period P , i.e.,
W̄ = F ({w|(s, n, w, o, v) ∈ Q(e|P )}). A value close to 1.0 means that most of
generations include a high proportion of new annotations that are not related
with annotations in previous generation. A value close to 0.0 represents that
most of generations contain a low proportion of new and different annotations.
In our running example, new annotations are added to protein P06493 in all
the generations (Table 1); thus, the aggregated value of fit annotations is 0.12.
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– Ō represents the aggregated value of obsolete annotations of e in the period
P , i.e., Ō = F ({o|(s, n, w, o, v) ∈ Q(e|P )}). Values close to 1.0 indicate an
inattention in the annotation of the entity since most of annotations remain
obsolete in most of generation changes. Values close to 0.0 mean that most of
generations have most of annotations up to date in relation to the ontology.

– V̄ represents the aggregated value of novel annotations of e in the period
P , i.e., V̄ = F ({v|(s, n, w, o, v) ∈ Q(e|P )}). Values close to 1.0 indicate that
most of annotations of most of generations are terms that were added in the
last ontology version. Values close to 0.0 indicate that few novel terms are
introduced in most of generation changes.

– F (.) is the average function but can be substituted by any other aggregation
function, for example, the median.

Based on the results presented in Table 1 and setting F (.) as the arithmetic
mean function, the aggregated evolution of P06493 in the time period P = {2008,
2010, 2012, 2014} is Q̄(P06493|P ) = < 0.94, 0.01, 0.33, 0.01, 0.02 >.

Interpretation of the Evolution of Annotations of an Entity: AnnEvol
allows for the description of the following evolutionary properties of an ontology-
based annotated entity e over a time period P .

Stable Evolution of Entity Annotations: Values of n and w of 0.0 suggest no sig-
nificant changes in the annotation sets over a time period. Modified annotations
are included in the clusters of AnnSig because they are similar to annotations
in the next generation, e.g., in Fig. 2 GO terms GO:0006915, GO:0043066, and
GO:0006915 are not part of any cluster because they are not similar enough to
the other GO terms. Therefore, values of n and w are not 0.0 and suggest that
the knowledge encoded in the annotations of protein P48734 is not completely
stable during the generations 2010 and 2012. A value of s in the interval (0.0, 1.0)
may mean that: (i) the annotation set A(ei+1) is extended with terms similar to
the already existing in A(ei); (ii) the annotation set A(ei) is reduced but there
are terms in A(ei+1) which are similar to the removed; or (iii) some terms in
A(ei) are substituted by similar terms in A(ei+1).

Retraction of Significant Knowledge: A value of n higher than 0.0 means that
some annotations are deleted, and there are no similar ontology terms in the
current generation that represent this knowledge.

Addition of Significant Knowledge: A value of w higher than 0.0 means that
new annotations are introduced in the annotation set, and that there are no
similar annotations in the previous generation. For example, knowledge encoded
in GO terms GO:0043066, and GO:0006915 is added in generation 2012 of protein
P48734.

Elimination of Obsolete Knowledge: The component o of the quintuple allows us
to identify how many ontology terms are obsolete in the more current version
of the ontology. For example, because GO:0006916 is not part of GO 2012, the
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elimination of this annotation in the generation 2012 of protein P48734 corre-
sponds to the elimination of obsolete annotations.

Improvements of Knowledge: Annotations can be improved in three ways:
(i)Evolution of the ontology and the definition of new ontology terms, to afford
a better description of the entity in terms of their annotations. The component
v indicates that novel ontology terms are used in the more current version of
the entity annotations. (ii) Annotations A(ei) can be extended in the version
A(ei+1) with new annotations related with those already present in A(ei). We
measure the relatedness between two ontology terms with the ontology-based
similarity measure Dtax. To discover this improvement, we consider the com-
ponents s, n and w of a quintuple q(e|i, i + 1). The component s measure the
similarity between the partitions formed by AnnSig in A(ei) and A(ei+1). A
value of s close to 1.0 and values of n and w of 0.0 indicate that all the terms
in A(ei) and A(ei+1) are included in clusters of AnnSig, i.e., these annotations
are similar to other annotations. (iii) Annotations A(ei) can be extended in the
version A(ei+1) with new annotations not related to the annotations in A(ei).
The component w indicates the number of annotations in A(ei+1) that are not
included in clusters of AnnSig, i.e., w indicates the terms in A(ei+1) that are
dissimilar to the terms in A(ei).

Annotation Stability: Given a sequence of generation changes of an entity
e on a time period P , Q(e|P ), we measure the stability of its annotations as
the proportion of quintuples in Q(e|P ) that indicates no change in the anno-
tation sets. A quintuple q(e|i, i + 1) reflects stability if its components follow
the expression q(e|i, i + 1) = (1.0, 0.0, 0.0, o, v). The value of the component s
indicates that the same partitions are found in the two annotation sets A(ei)
and A(ei+1), while the values of n and w suggest that no term is deleted and
no new term is added. The combination of these three values guarantee that
A(ei) = A(ei+1). This property ensures that both o and v are equal to 0.0. We
model the stability of the annotations of sequence of generation changes Q(e|P )
of an entity e on a time period P , as stab(Q(e|P )) = |U |

|Q(e|P )| , where:

U = {(s, n, w, o, v) ∈ Q(e|P )|s = 1.0 ∧ n = 0.0 ∧ w = 0.0} (6)

Knowledge Monotonicity: Lower values of retraction of significant knowledge
suggest higher evolution stability. We define the monotonicity of an annotated
entity as the proportion of quintuples in Q(e|P ) that only reflects addition of
knowledge. A quintuple q(e|i, i+1) exhibits monotonicity if it meets the following
condition:

q = (s, 0.0, w, o, v), where s > 0 (7)

Thus, entities do not lose meaningful annotations. Some annotations may be lost,
but they are similar to other annotations present in the most current generation,
and therefore, we do not consider this lost as a retraction of significant knowledge.
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4.2 Measuring Evolution of the Annotations of Entities in a Dataset

Given a set of ontology-based annotated entities E = {e1, e2, ..., em}, we define
the generation changes at time i of the entities in E as Dg(E|i) = {g(ei)|e ∈ E},
e.g., a set generation of UniProt-GOA in 2010 contains one generation g(p|2010)
for each protein p in the dataset. Given two set generations Dg(E|j) and
Dg(E|k) and a period P from j to k, e.g., UniProt-GOA 2010 and 2012,
the dataset generation changes is defined as DQ(E|P ) = {q(e|j, k)|g(e, j) ∈
Dg(E|j) ∧ g(e, k) ∈ Dg(E|k) ∧ j ∈ P ∧ k ∈ P} which contains generation
changes q(e|j, k) for each entity e in E in the time period P . Considering
a dataset of two proteins E = {P48734, P06493}, two set generations, e.g.,
Dg(E|2010) and Dg(E|2012), and a time period P from 2010 to 2012, DQ(E|P )
contains all quintuples in each sequence of generation changes Q(P48734|P ) =
[q(P06493|2010, 2012)] and Q(P06493|P ) = [q(P06493|2010, 2012)], the dataset
generation changes corresponds to DQ(E|P ) = {QP48734 ∪ QP06493} =
{q(P48734|2010, 2012), q(P06493|2010, 2012)}. Similar to when AnnEvol is
applied to evaluate the evolution at the level of entities, AnnEvol for a dataset E
allows for aggregating the evolutionary properties of the entities in E observed
over generations.

5 Related Work

Škunca et al. [10] define a methodology to measure the evolution of an anno-
tated dataset in terms of electronic annotations. The methodology focuses on
the Gene Ontology and the UniProt dataset. Two generations of UniProt are the
input of the methodology which relies on three measures of annotations quality
for a GO term: (i) Reliability measures the proportion of electronic annotations
that were confirmed in the most current generation by an experimental anno-
tation. (ii) Coverage measures the proportion of new experimental annotations
that were predicted by some electronic annotation in the previous generation.
(iii) Specificity measures how informative are the electronically predicted anno-
tations. GO also evolves and GO terms are deleted and added over time. Reli-
ability is the only measure that considers the removing of annotations but it
does not recognize if this removing is caused by a deletion of the term in GO
or the original term evolved into another more specific GO term. Coverage also
does not consider that some of the not predicted terms may not be available in
the corresponding ontology version and, therefore the prediction was impossible.
AnnEvol solves this issues with the components s, v, and o of the quintuple.
The component s shows the evolution of ontology terms into similar ones. Com-
ponents v and o show the evolution of the corresponding ontology, showing the
proportion of novel and obsolete terms, respectively.

Gross et al. [5] define a methodology to measure the quality of protein anno-
tations. This methodology considers the annotation generation methods (prove-
nance) and the evolution of the corresponding ontology. It is able to indicate
when the deletion of an annotation is due to a change in the ontology or not.
However it does not recognize if the addition of a new annotation is related to
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the addition of a term in the ontology. They use three indicators to measure
the quality of an annotation: (i) type provenance is represented by the Evidence
Codes in the case of Ensembl and SwissProt; (ii) stability can take the values sta-
ble and not stable; and (iii) age can be novel, middle, and old. To represent type
provenance and age, Gross et al. [5] also define numerical measures and thresh-
olds for the different categories of annotations. Unlike AnnEvol, the methodology
proposed by Gross et al. consider the provenance of a certain annotation, and
defines the quality in terms of it. Provenance and quality are domain specific con-
cepts; contrary, AnnEvol aims to be a generic methodology, and AnnEvol does
focus in more domain-independent values. AnnEvol quintuples are annotation-set
oriented, while the two presented methodologies are annotation-oriented. While
these methodologies have finer granularity and report on information about each
annotation of each resource, AnnEvol complements them providing information
from a more general perspective, which also includes the relatedness between
the annotations, measured in terms of Dtax.

6 Experimental Study

We conducted an empirical study on the collection of proteins published at
the Collaborative Evaluation of Semantic Similarity Measures (CESSM) portals
of 20088. The CESSM 2008 collection contains 13,430 pairs of proteins from
UniProt9 with 1,033 distinct proteins present in both, UniProt-GOA and Swis-
sProt. Annotations of these proteins are obtained from such datasets. We use
AnnEvol to measure the evolution of both datasets. We consider three dataset
generations with their corresponding ontology versions: 2010, 2012, and 2014.
For each protein we have two quintuples per dataset, one per generation change:
2010–2012, and 2012–2014. Table in Fig. 3 reports on the number of annota-
tions per protein for all the generations of each dataset. We observe that the
average number of annotations for UniProt-GOA almost doubles the average of
SwissProt. The explanation is that SwissProt contains only manually curated
annotations, while UniProt-GOA additionally includes electronically predicted
annotations.

Dataset 2010 2012 2014
UniProt-GOA 12.21 14.69 16.13
SwissProt 5.39 8.11 8.66

Fig. 3. Average of annotations per pro-
tein

Tendency of Changes in two Gener-
ations: The goal of this experiments is to
study the tendency of the changes of the
annotations in the datasets SwissProt and
UniProt-GOA in the generation change
2010–2012. Figure 4(a) and (b) reflect the
values of each generation change of each
protein in the datasets. Different behav-
iors can be distinguished in these datasets. X-axis contains one quintuple per
proteins. Quintuples are sorted on ascending values of the five components in
8 http://xldb.di.fc.ul.pt/tools/cessm/.
9 http://www.uniprot.org/.

http://xldb.di.fc.ul.pt/tools/cessm/
http://www.uniprot.org/
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order n, w, s, o, v. Y-axis represents the values of each component of the quin-
tuple, whose values are in [0.0, 1.0]. Tendency of group evolution is reported
with a blue line. We observe a larger amplitude of the blue line for values in
SwissProt than in UniProt-GOA and a greater number of proteins whose group
evolution value is 1.0. This indicates that fewer proteins change in SwissProt
2012. However, those proteins that change, undergoes major changes than in
UniProt-GOA. Therefore, changes in SwissProt are less equally distributed than
in UniProt-GOA. Tables 2 and 3 support this statement. Table 2 shows that the
average value of group evolution in SwissProt is lower than in UniProt-GOA.
Results on Table 3 suggest that SwissProt is more stable than for UniProt-GOA
in 2010–2012. Tendency of unfit annotations is described with an orange line.
As can be observed in Fig. 4(a) and (b), there are more proteins in SwissProt
that experience removing of annotations (356 proteins in SwissProt versus 189
in UniProt-GOA). Moreover, area under the orange line in SwissProt is larger
than in UniProt-GOA, i.e., the number of removed annotations is proportionally
greater in SwissProt. This is confirmed by Table 2 where the normalized number
of unfit annotations in SwissProt is almost the triple than in UniProt-GOA.
Tendency of new annotations is reported with a yellow line. Figure 4(a) and (b)
show that the number of proteins were annotations were added is slightly greater
in SwissProt (566 vs. 549 proteins in UniProt-GOA). Table 2 indicates that the
normalized number of new annotations for the generation change 2010–2012
is about the double in SwissProt, with a value of 0.249, while UniProt-GOA
has a new annotations value of 0.129. The amplitude of the yellow line is also
larger in SwissProt. This suggests that new annotations are more uniformly dis-
tributed in UniProt-GOA than in SwissProt. Tendency of obsolete annotations
is described with a green line. There are more proteins in UniProt-GOA than
in SwissProt 2010 that contain annotations that become obsolete in 2012 (171
versus 139 proteins). However, as the amplitude indicates, obsolete annotations
are more equally distributed in UniProt-GOA and the proportional number of
obsolete annotations per protein is lower in UniProt-GOA (0.026) than in Swis-
sProt (0.033) (Table 2). Tendency of novel annotations is reported with a claret
line. UniProt-GOA contains more proteins that include novel terms in their
annotations (102 versus 69 proteins in SwissProt). The average of novel anno-
tations per protein is also slightly higher in UniProt-GOA with a value of 0.009
versus 0.007 in SwissProt (Table 2). This suggests a tendency of using more
novel terms in UniProt-GOA than in SwissProt. The combination of the results
observed for obsolete annotations and novel annotations indicates that for the
generation change 2010–2012 UniProt-GOA reacts quicker to the inclusion of
new GO terms than SwissProt; however, UniProt-GOA seems to slower react
to the deletion of terms in the ontology. Finally, Fig. 5(a)-(d) illustrate the evo-
lutionary behavior of the annotations of the organisms Homo Sapiens and Mus
Musculus in UniProt-GOA and SwissProt for the generation change 2010–2012.
As observed, proteins of these two organisms follow a similar behavior to the
rest of the proteins of the studied datasets.



AnnEvol: Description Ontology-Based Annotations 101

(a) UniProt-GOA 2010-2012 (b) SwissProt 2010-2012

Fig. 4. Generation changes of 2010–2012

Evolutionary Behavior. We report on aggregated values of AnnEvol for each
dataset. We can generalize the behavior observed in the generation change 2010–
2012 for group evolution. Table 2 contains group evolution values of 0.956 and
0.949 for UniProt-GOA and SwissProt, respectively. Stability values presented in
Table 3 show an even higher stability of the SwissProt with respect to UniProt-
GOA than the observed in generation change 2010–2012. Therefore we can con-
clude that, though fewer proteins change their annotations in SwissProt than

(a) Homo Sapiens UniProt-GOA
2010-2012

(b) Homo Sapiens SwissProt 2010-2012

(c) Mus Musculus UniProt-GOA
2010-2012

(d) Mus Musculus SwissProt 2010-2012

Fig. 5. Generation change 2010–2012 Homo Sapiens and Mus Musculus
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Table 2. Aggregated behavior over generation changes 2010–2012 and 2012–2014 for
UniProt-GOA and SwissProt

Dataset Generations Group Unfit New Obsolete Novel

evolution annotations annotations annotations annotations

UniProt-GOA 2010–2012 0.946 0.044 0.129 0.026 0.009

2012–2014 0.966 0.027 0.064 0.006 0.006

Aggregated 0.956 0.036 0.097 0.016 0.008

SwissProt 2010–2012 0.930 0.127 0.248 0.033 0.007

2012–2014 0.968 0.050 0.077 0.014 0.003

Aggregated 0.949 0.089 0.163 0.024 0.005

in UniProt-GOA, changes in SwissProt are stronger than in UniProt-GOA.
Monotonicity aggregated values in Table 3 also confirms that even the aggre-
gated monotonicity value of SwissProt is higher than the observed in generation
change 2010–2012, the monotonicity in UniProt-GOA is demonstrably higher
than in SwissProt. Aggregated values contained in Table 2 confirm tendencies
described for the generation change 2010–2012 with no remarkable changes.

Table 3. Stability and monotonicity values for each generation transition

Dataset Generations Stability Monotonicity

UniProt-GOA 2010–2012 0.213 0.817

2012–2014 0.418 0.816

Aggregated 0.316 0.817

SwissProt 2010–2012 0.224 0.655

2012–2014 0.518 0.790

Aggregated 0.371 0.723

7 Conclusions and Future Work

We defined AnnEvol, a generic framework to measure the evolution of ontology-
based annotated datasets. AnnEvol complements other evolution measures look-
ing at the evolution from an annotation-set perspective. Experimental results
reveal that AnnEvol is able to detect different behaviors in the annotation of
the datasets and identify static and dynamic entities in terms of changes in their
annotations. Results explain also that worsening of AnnSim is due to the unequal
evolution of annotation proteins. In the future we plan to discover patterns in
the evolution of the annotations for supporting users in the annotation task, e.g.,
to discover annotations that frequently appear together and common annotation
substitutions.



AnnEvol: Description Ontology-Based Annotations 103

Acknowledgments. This work was supported by the German Ministry of Economy
and Energy within the TIGRESS project (Ref. KF2076928MS3) and the EU’s 7th
Framework Programme FI.ICT-2011.1.8 (FI-STAR, Grant 604691).

References

1. Benik, J., Chang, C., Raschid, L., Vidal, M.-E., Palma, G., Thor, A.: Finding cross
genome patterns in annotation graphs. In: Bodenreider, O., Rance, B. (eds.) DILS
2012. LNCS, vol. 7348, pp. 21–36. Springer, Heidelberg (2012)

2. Devos, D., Valencia, A.: Practical limits of function prediction. Proteins: Struct.
Funct. Bioinf. 41(1), 98–107 (2000)

3. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning
methods for predicting drug-target interactions: a brief review. Briefings Bioinform.
15(5), 734–747 (2013)
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10. Škunca, N., Altenhoff, A., Dessimoz, C.: Quality of computationally inferred gene
ontology annotations. PLoS Comput. Biol. 8(5), e1002533 (2012)

11. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147(1), 195–197 (1981)

http://dx.doi.org/10.1093/database/bau123


Terminology Development Towards
Harmonizing Multiple Clinical Neuroimaging

Research Repositories

Jessica A. Turner1,2(&), Danielle Pasquerello1, Matthew D. Turner1,
David B. Keator3, Kathryn Alpert4, Margaret King2, Drew Landis2,

Vince D. Calhoun2,5, Steven G. Potkin3, Marcelo Tallis6,
Jose Luis Ambite6, and Lei Wang4

1 Georgia State University, Atlanta, GA, USA
{jturner63,mturner46}@gsu.edu

2 Mind Research Network, Albuquerque, NM, USA
{mking,dlandis,vcalhoun}@mrn.org
3 University of California, Irvine, CA, USA
{dbkeator,sgpotkin}@uci.edu

4 Northwestern University, Chicago, IL, USA
{k-alpert,leiwang1}@northwestern.edu
5 University of New Mexico, Albuquerque, NM, USA

6 University of Southern California, Los Angeles, CA, USA
{tallis,ambite}@isi.edu

Abstract. Data sharing and mediation across disparate neuroimaging reposi-
tories requires extensive effort to ensure that the different domains of data types
are referred to by commonly agreed upon terms. Within the SchizConnect
project, which enables querying across decentralized databases of neuroimaging,
clinical, and cognitive data from various studies of schizophrenia, we developed
a model for each data domain, identified common usable terms that could be
agreed upon across the repositories, and linked them to standard ontological
terms where possible. We had the goal of facilitating both the current user
experience in querying and future automated computations and reasoning
regarding the data. We found that existing terminologies are incomplete for
these purposes, even with the history of neuroimaging data sharing in the field;
and we provide a model for efforts focused on querying multiple clinical neu-
roimaging repositories.

Keywords: Neuroimaging � Data sharing � Clinical scales � Assessments �
Mediation

1 Introduction

Using magnetic resonance imaging (MRI) in cognitive neuroscience and neuropsy-
chiatry has resulted in decades of study-specific datasets being stored at various
research institutions or in warehouses of archived data [1]. These data may or may not
have been used in a publication, or even analyzed; however, they can in many cases be
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combined in new analyses, or re-examined with new methods for new findings. They
form an investment in brain images and information that needs to be capitalized upon.

As a result of the neuroimaging community’s growing awareness that MRI datasets
can and should be shared for accelerating scientific discovery, a large number of
repositories have been developed and made available. Recent developments on data
harmonization have led to the creation of national databases such as the National
Database for Autism Research (NDAR) [2]. Within the imaging community studying
schizophrenia, it was recognized that large scale datasharing would encourage repro-
ducibility, generalizability, and special analyses of rare subjects [1, 3]. The data
repositories developed by the Functional Imaging Biomedical Informatics Research
Network (FBIRN; [3–5]), by the Mind Research Network (MRN) [6, 7], and the XNAT
Central project [8–10], all included schizophrenia research imaging datasets, with the
associated clinical and subject-specific information. These repositories were all devel-
oped with an eye toward solving the problem of data sharing: the FBIRN system, the
Human Imaging Database, HID, is a federated system that allows the same database to
be installed and queried across various collaborating institutions. It has a userbase of
about 25, with several thousand downloads (D.B. Keator, 2015, personal communica-
tion). The database was carefully designed to be extensible and generalizable to archive
clinical, imaging, and any other data type from any sort of study. The MRN system, the
Collaborative Imaging and Neuroinformatics System or COINS, also includes a complex
but extensible relational database to both archive data and manage ongoing projects, with
additional tools for importing images and linking to imaging pipelines, anonymizing data
on the fly for sharing, managing data sharing requests, etc. Including both data providers
and data users, it has a userbase of over 1300 unique users in 38 states and 34 countries
around the world (http://coins.mrn.org/index.php?page=userMap). The XNAT Central
system is a lightweight data management system primarily for archiving and sharing
imaging data from a variety of studies; it has a userbase in over 100 different institutions,
each with approximately 50 users (D. Marcus, 2015, personal communication).

The SchizConnect project (www.schizconnect.org) [11] was developed to connect
these and related imaging repositories so that a single query, e.g. for the data from all
male subjects with schizophrenia and a DTI scan who have some measure of executive
function, could return information from all the available schizophrenia imaging
repositories. In these three example repositories noted above are data from several
hundred patients and an equal number of control subjects from several different studies
(for a total of 1091 subjects as of the time of writing). The data types per subject
included the imaging data from structural and functional imaging, the subject specific
demographics such as age, gender, diagnosis, and other measures, the subject’s scores
on clinical scales regarding various symptom profiles, and the subject’s scores on
cognitive test batteries. Each study in the various repositories had its own design, with
its own choice of variables and scanning data for each subject. In some repositories, the
imaging and clinical data are kept in separate databases with linking IDs; in others there
are very stringent access rules to data, with complex layers of approval for any query
that may vary with the study being queried. The details of SchizConnect’s mediation
system to solve this problem are presented in a companion paper. In this paper we
describe the work we have done in harmonizing the terms used across the different
sources and studies.
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There are at least two usages of “harmonization” that come up in this project. The
first is harmonizing data from different studies so that a data point from one study
means the same thing as that data point in a different study from a different research
team. We know, for example, that different MRI machines do not create identical
pictures of the same brain [12–14]; different machines will provide unique regional
contrast values across tissue types, and different imaging protocols will introduce
specific distortions in the image. While cognitive neuropsychology tests are often
harmonized, so that for example, an IQ of 100 is roughly comparable regardless of the
specific standard IQ test, and clinical scales are standardized so that for a given scale
neuropsychiatrists know what a score of 0,1,2, etc. should mean for the severity of the
subject’s symptoms, it turns out that without careful calibration of the observer or
clinician, the same subject with the same clinical interaction may receive a different
value from different raters. “Harmonizing” the data in this case means taking into
account that both the people and the machinery used to collect the data introduce a bias
or effect which is different from study to study, and harmonization methods remove that
to make the data more directly comparable across sources. The best methods for taking
this variation into account are not always known, and are outside the scope of
SchizConnect.

The second meaning of “harmonization” is much simpler, on the one hand, but
much more basic to the aims of datasharing, on the other. In building data repositories,
many decisions are made that are specific to that particular repository or study, about
what they will call different datatypes. The mediation efforts include implementing
queries to each data source, so that the general user’s query can be translated into a
query that will retrieve the right data from each database regardless of differences in the
database’s structure. While the bulk of that work is in dealing with the structural
differences in the database models, there are terminology differences which also need to
be solved. In one study’s data a structural MRI scan may be listed informatively as
“T1-weighted scan”, or something as complex as “5MPRAGE-AVG” or just “scan1”,
which assumes someone knows that to get the T1-weighted structural images they
should look in “scan1”. Harmonizing the data in this case means mapping the terms to
standard terms that capture the semantics of what the data actually are, to help the user
and eventually automated systems find the right data.

Lists of standard terms with definitions and uniform resource identifiers (URI) are
often described as ontologies. Technically, a fully-developed ontology also includes
logical definitions and relationships among the terms, rather than just a terminology
list [15]. However, many ontologies or simpler lexicons have been published and
shared for general use either with or without the more rigorous logical definitions, with
the goal of providing standard terms that can be referred to by semantic web tech-
nologies. Ideally, within SchizConnect the terms being used for harmonization would
also be standardized, with clear definitions and permanent URIs, so that there is less
ambiguity both from the human user and from eventual automated systems when
performing queries across resources.

Thus our goals in this part of the project were to develop three terminologies for the
multiple data domains available across the resources: (1) imaging types, (2) cognitive
measures, and (3) clinical variables, focused on the schizophrenia datasets. We first
identified what the needed terms were, identified a basic data model for each domain,
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and examined the available ontologies and terminology resources for possible stan-
dardized terms. In many cases the existing terminologies were not adequate, which
entails development and dissemination of new terms. This project builds on many
previous efforts, and provides a research-oriented integration of several different facets
in service of a single endeavor, as an example that can be leveraged in turn for other
similar projects. We describe the needed steps and specific issues we faced; the specific
terms and definitions are available for download from SchizConnect.org.

2 Methods

2.1 Identifying the Needed Terms from Sources

We extracted the database-specific terms from the different source repositories, and
identified the different terms used for the same datatypes. Each data repository team
provided a list of the variable names that could be queried, broken up into whether they
referred to imaging data, or other variables. The terms were then compared, to identify
which terms were actually referring to the same thing, or different things. This required
extensive human interaction across teams, to identify when variable names were being
used consistently both within and across repositories. The expertise needed for this
effort included both the study-specific information from data collectors, database
designers, and the domain expertise from neuroimagers and neuropsychologists.

A key issue in determining terms and definitions is to consider the granularity of the
queries: Identifying that a subject has a particular standardized image type or clinical
variable is one level, and that is the level that SchizConnect is focused on facilitating in
this initial development. On the other hand, querying based on what the measure is
about or what it is supposed to measure is a very different level of granularity. Many
data points are actually composite, in that they are sums of measures on different
questions about a subject’s level of social function, for example; querying whether
there is a measure of anxiety included on any test available in the repository requires a
fine-grained semantic modeling which is not yet available through SchizConnect.
Similarly, the functional MRI studies include cognitive behavioral tasks collected
during the scan, measuring cognitive processes such as working memory or auditory
processing; querying whether the fMRI data includes experimental conditions that
entail specifically visual working memory, for example, requires an infrastructure that
we want to be able eventually to include in our modeling.

2.2 Mapping the Source Terms to a Domain Model

Once the variables were identified and roughly defined, we then identified the domain
model, or the hierarchy of terms for each of our three domains (imaging, clinical, or
cognitive neuropsychological measures). In order to determine the hierarchy we
compared our models with existing ontologies, and with the understanding of the
relationships among the terms and models that the userbase for SchizConnect had.

For each term that we included in the domain model, we then identified the defi-
nitions of each term, mapping to other source ontologies when possible. We chose to
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use several established sources, namely UMLS (http://www.nlm.nih.gov/research/
umls/), SNOMED (http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html),
NIFSTD/Neurolex [4, 16, 17], and Cognitive Atlas/Cognitive Paradigm Ontology
(CogPO; http://www.cognitiveatlas.org/ and http://cogpo.org/) [18, 19]. We also sear-
ched Bioportal.bioontologies.org [20] for potential matches, as that simultaneously
searches several hundred biomedically relevant ontologies. However, we prioritized the
ontologies listed previously as sources of terms, since not all ontologies that have been
published are either complete or being actively maintained.

2.3 Build the Terms into the Mediator and Query Portal

The primary use of these terms in the current instantiation is for human users, to
facilitate their understanding of how to query for what they might want. Thus these
terms form the basic vocabulary for querying SchizConnect. As the hierarchies are
developed, the querying interface develops to incorporate them, and the mediator
system uses them and mappings to the terms in the sources to build the executable
queries sent to the data sources. The details of how this is done are presented in a
companion paper by Ambite et al. on the SchizConnect mediator.

3 Results

The spreadsheets of the different terms, their hierarchical structures and definitions are
available for viewing and download at schizconnect.org. The terms are in the process of
being submitted to Neurolex (www.neurolex.org) when Neurolex URIs do not already
exist. The spreadsheets as current working drafts are available at http://schizconnect.
org/documentation#data_models.

3.1 Imaging Hierarchy

Collecting all the specific variable names for the imaging sessions across the different
repositories, we identified 632 idiosyncratic labels (e.g., “ep2d_words” for a particular
task-based fMRI scan, “MR-010” for a structural scan). In order to find all the
T1-weighted images that could be used to extract brain volumes from the COINS
repository, for example, one needed to know that across all the available studies there
were 29 different strings that labeled that kind of image. Our final, harmonized list
currently consists of 22 unique terms, described generally below.

We modeled the original imaging labels as referring to several basic types of
imaging data: Structural, Functional, Fieldmapping or Perfusion. Every imaging series
that is collected can be in only one of these categories. Structural scans measure the
anatomy of the brain, and under Structural scans we included T1, T2, and Diffusion.
(See Fig. 1.) These are shorthand for, respectively “3D T1-weighted scan”, or
nlx_inv_20090243 from NeuroLex; “T2 weighted MRI 3D image”, or nlx_156812;
and “Diffusion weighted MRI 3D image”, or nlx_156811. Functional scans are also
referred to as functional MRI or fMRI, and measure the Blood Oxygenation Level
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Dependent (BOLD) signal changes. This label is defined as “Functional MRI Assay” or
nlx_inv_090914 from NeuroLex. Perfusion scans include Arterial Spin Labeling
(ASL) scans, which measures the flow of blood through the brain, generally speaking.
Fieldmapping are scans collected specifically to measure distortion in the magnetic
field. Neither of these terms had matches in NeuroLex. The functional MRI scans
were separated by “resting state” or “task-based”, and if task-based, what the task was.
The task could often be linked back to a pre-defined term in CogPO or Cognitive Atlas.

This hierarchical structure specifically reflects the research community needs; it is
very different, for example, from the hierarchical structure for RadLex [21, 22]. We
decided on function or intent of the scanning protocol as the basis for categorization,
rather than the imaging parameters per se. Radiologists and MRI physicists would
organize the scanning types very differently, based on exactly what the scanning
sequence parameters and details were. In our case, not all T2-weighted scans are
structural; a T2-weighted scan that was used to measure some marker of brain function
would be classified under “Functional.” However, within the structural images, dis-
tinguishing a T1-weighted from a T2-weighted image is very important for analysis
purposes and thus is modeled explicitly.

The choice of labels of “Structural” or “Functional” is shorthand for the benefit of
the cognitive neuroscience or neuropsychiatric research community, who look for
images that they can use to identify brain measures reflecting anatomy or physiology.
This is very similar to the structure identified separately in the Quantitative Imaging
Biomarker Ontology (http://purl.bioontology.org/ontology/QIBO) [23], which also
explicitly breaks imaging measurements into “Anatomical” and “Functional” classes.

Fig. 1. Example of the imaging hierarchy being used in the query portal for SchizConnect.
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3.2 Neuropsychological Assessments Hierarchy

There were several standard cognitive batteries included with the various datasets,
which overlapped in what they measured (attention, memory, verbal fluency) etc., but
not in the particular test used. In consultation with neuropsychologists, we identified 11
subdomains, each of which had several specific tests or test modules which measured
it. Examples are shown in Fig. 2 below. Specifically, under measures of “Verbal
Episodic Memory”, the available datasets included scores from several standardized
tests of immediate or delayed recall and recognition. Overall, we began with 67 neu-
ropsychological tasks terms across the different datasets and reduced it to 49 common
tasks at the most granular level. Many of the general domains as well as specific tests
had terms with URIs from Cognitive Atlas, rather than SNOMED or other sources.

3.3 Clinical Hierarchy

Within the Clinical section we included the Subject Types and measures specific to
aspects of disease. We started with approximately 70 idiosyncratic terms and reduced
that to 55.

Fig. 2. Part of the neuropsychological assessment hierarchy for querying in SchizConnect. The
number of subjects with data from each assessment are included in parentheses to help users
identify the most common data types.
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Given the datasets we were harmonizing worked primarily with studies of people
with schizophrenia or healthy control subjects, the list of subject types was expected
originally to include two terms: schizophrenia or control. That however did not fit the
reality of the datasets. Some inclusion and exclusion criteria were different across
datasets: Some included only subjects who strictly fit the definition of schizophrenia
with no previous different diagnoses; other studies were more broad and allowed
subjects with schizoaffective disorder. The “control” samples were even more heter-
ogeneous, in that each had their own exclusion criteria and others were more lax,
requiring only no history of clinical psychosis. The one aspect that could be agreed
upon for the “control” subjects was that they had no known or listed diagnoses at the
time of inclusion at the study. There is no guarantee across all studies that they were
healthy from the point of view of their cardiovasculature, occasional illicit drug use,
exercise or sleep habits, for example, since screening and exclusion criteria were
study-specific.

Thus the hierarchy under “Diagnosis” included: either “Mental Disorder” or “No
Known Disorder”; under Mental Disorder was included “Psychotic Disorder” (allow-
ing for multiple diagnoses later perhaps including non-psychotic disorders); as sub-
classes of Psychotic Disorder, both “Bipolar Disorder”, and “Schizophrenia (Broadly
defined)”; then as subclasses of Schizophrenia (Broadly defined) were strict “Schizo-
phrenia”, and “Schizoaffective”. See Fig. 3 below. This terminology is in principle
expandable to include specific terminologies such as the ICD10 codes, or DSM-V
codes, but that is not the researchers’ data. Specific diagnostic codes were not available,
only whether a person fell into one of two groups: cases or controls.

Symptom severity measures and other clinical measures draw largely from stan-
dardized, published scales that fall into specific classes based on what they measure.
We identified 14 subdomains or aspects of disease measured in these studies, such as
“Extrapyramidal symptoms”, “Structured Interviews for Diagnosis”, or “Mood,” most
of which had several scales used across the different studies. These classes do not have
matches in any of the ontology sources we have examined to date; the standardized
assessments largely can be pulled from SNOMED.

However, there were also idiosyncratic questionnaires to be included, such as
specific post-imaging questionnaires assessing whether scanning exacerbated specific
symptoms. That particular questionnaire may never be used again by another imaging
study, but making it available through SchizConnect lets other researchers know it is
there, leading them possibly to collect the same data, and more assessments may fall
into that class in the future.

3.4 Evaluation

The SchizConnect portal has incorporated these terminologies in the querying capacity
as shown above. Examples are shown in Figs. 4, 5, and 6. An example final query is
below, showing a request for male subjects with broadly-defined schizophrenia and a
DTI scan who have some measure of executive function. The numbers of subjects
meeting each filter is given in the upper left of each square box. The interface is a
drag and drop one, based on the current Data Exchange interface from COINS [24].
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The result in Fig. 5 is the number of imaging datasets from how many unique subjects
available across the various repositories; in this case, 286 images from 140 subjects.
The users can then proceed to request the data or go back and modify their query. After
signing the appropriate data sharing agreements, the user can also obtain the
individual-level data, an excerpt of which appears in Fig. 6.

Given the hierarchy we have included in the terms, investigators can query for
subjects who have data at any level—requesting subjects who have any data on their
executive function, for example, will return currently 402 subjects who have data from
any of a number of cognitive tests. Or the query can drill down for only the subjects
with data from the TrailMaking Test-B (TMT-B), to maximize comparability in the
resulting dataset.

4 Discussion

Even with decades of work in the research community developing ontologies and
terminologies to facilitate common communication across data repositories, we have
identified several issues with the existing resources. It is simply not the case that we can
identify the needed term for any given variable in any given clinical neuroimaging
study from the work already done in UMLS or SNOMED or other sources. In this

Fig. 3. Diagnostic categories currently used in SchizConnect.
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work, out of almost 200 terms needed, fewer than 50 have already been defined and
given URIs, and the rest need new terms. This work of harmonizing terms across
repositories continues to be largely manual, although the goal eventually is to auto-
matically map new terms to known terms as new repositories are integrated.

Fig. 4. Example query in Schizconnect, using the standardized terms.

Fig. 5. The results of the query from Fig. 4. The user can then proceed to request the data from
the different repositories.

Fig. 6. An excerpt individual-level results of the query from Fig. 5. To obtain individual level
results the user needs to sign the appropriate data sharing agreements.
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Given the close collaborations between NIF and other ontology developers, both
Cognitive Atlas and CogPO terms have Neurolex IDs. We chose to use the Neurolex
IDs and include the original terms as synonyms. This was not an issue for UMLS and
SNOMed as the overlap between them and other sources was much less. This leads to
the different terms used in SchizConnect having different source ontologies, which may
lead to issues in the future for automated reasoners, given the lack of logical rigor in
many of the sources. This will be an ongoing part of the work, to have the Schiz-
Connect data models all in a computable form and the terminologies released as well
formed RDF/OWL files. Currently, the imaging model is under discussion with the
International Neuroinformatics Coordinating Facility Data Sharing Task Force (INCF),
as a basis for their OWL representations capturing terms and definition standards for
imaging scan types. The cognitive and clinical models can be coded as OWL files in
the future.

We did not use Common Data Elements (http://www.nlm.nih.gov/cde/) as a source
of terms. Common Data Elements address a problem common to data sharing, that
different studies use different data collection questionnaires, scales, and assessments.
The CDE effort for many biomedical research domains is attempting to identify a
minimum common core of measures to collect, and tools with which to collect them.
Thus CDEs are often just pdfs of questions, not compatible with semantic web needs.
Rather than define what an existing dataset’s assessments are, and represent the
semantics in some way, they are proscriptive for future datasets. They reduce semantic
uncertainty through providing a common set of measures, but not necessarily providing
the semantic information regarding those measures. With the exception of the NINDS
CDEs (http://www.commondataelements.ninds.nih.gov/CDE.aspx), there is a common
lack of definitions and an overreliance on common usage, in the terms; URIs for
individual terms are not always available; and they are often not available in an
OWL/RDF format or other format which would allow extensions into computable
representations of the terms, with automated reasoning available eventually. The NIH
Toolbox, a set of cognitive assessments being recommended for use in clinical studies,
was not used for any of the studies being modeled in the data repositories; if datasets
which used the NIH Toolbox are accessed in SchizConnect in the future, we will assess
the state of the relevant CDEs at that time. The CDEs are in ongoing development and
will be integrated into the terminology usage whenever possible.

Common repositories of terminologies for clinical neuroimaging research are
needed; UMLS is big, but not flexible enough for the day to day needs of modeling
novel neuroimaging experiments where new variants of old concepts arise regularly.
Bioportal [20] is useful as a repository of lexicons, for comparing across terminology
sets to identify whether a term is already defined somewhere, and provides many tools
for ontology-based data access; but in itself it doesn’t solve the problem of semantically
representing what a given dataset of values mean, and what conclusions they can be
used to support. The Ontology of Biomedical Investigation (OBI) is incredibly thor-
ough and logically rigorous for the domains that have worked on it (vaccines, for
example), but it requires expert effort to extend into new areas [25, 26]. It is in many
ways the standard to aspire to, for supporting logical reasoning. NeuroLex [17] as a
repository of terms is flexible, extensible by the community, and well-structured, which
is at least the first step in aggregating a common set of standardized terms.
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Finding the neuroimaging and associated clinical data is one aspect of mining and
re-using neuroimaging data; using it is another. SchizConnect has focused on identi-
fying datasets which fit certain high-level characteristics (gender, age, diagnostic
group, scan type etc.). Other collaborative groups include the INCF Neuroimaging
Data Model (NI-DM), which focuses on models of individual subject neuroimaging
data collection, processing methods, and individual or group statistical analysis
[27, 28]. The terms for these more detailed concepts also need to be shared in ways that
make their definitions clear, at the very least, for re-use in other projects like Schiz-
Connect. Currently SchizConnect cannot answer more nuanced queries such as “Find
cognitive and imaging datasets that show gray matter loss in the anterior cingulate in
adult patients with childhood-onset schizophrenia”, for example; one might be inter-
ested in the patterns of cognitive problems such patients have, and want to mine the
available data to find out. With further development and interaction with the NI-DM
development to represent gray matter loss analyses, and the Foundational Model of
Anatomy (FMA) [29–31] to identify brain regions such as anterior cingulate cortex,
such a query might be possible. This and other similar approaches being used in
clinical research [32] would form the foundation for a truly innovative approach to
large-scale, integrative biomedical science.

Acknowledgements. SchizConnect is supported by a grant from the National Institutes of
Health (NIH/NIMH), 5U01MH097435 to L. Wang, JL. Ambite, S.G. Potkin and J.A.Turner. The
work on COINS is also supported by 5P20GM103472 (NIGMS) to V.D. Calhoun. The authors
would like to thank Derin Cobia, PhD, for help on constructing the SchizConnect neuropsy-
chological assessment hierarchy.

References

1. Turner, J.A.: The rise of large-scale imaging studies in psychiatry. GigaScience 3, 29 (2014)
2. Hall, D., Huerta, M.F., McAuliffe, M.J., Farber, G.K.: Sharing heterogeneous data: the

national database for autism research. Neuroinformatics 10, 331–339 (2012)
3. Keator, D.B., Helmer, K., Steffener, J., Turner, J.A., Van Erp, T.G., Gadde, S., Ashish, N.,

Burns, G.A., Nichols, B.N.: Towards structured sharing of raw and derived neuroimaging
data across existing resources. NeuroImage 82, 647–661 (2013)

4. Bug, W., Astahkov, V., Boline, J., Fennema-Notestine, C., Grethe, J.S., Gupta, A.,
Kennedy, D.N., Rubin, D.L., Sanders, B., Turner, J.A., Martone, M.E.: Data federation in
the biomedical informatics research network: tools for semantic annotation and query of
distributed multiscale brain data. AMIA Annu. Symp. Proc. 1220 6 November 2008

5. Ozyurt, I.B., Keator, D.B., Wei, D., Fennema-Notestine, C., Pease, K.R., Bockholt, J.,
Grethe, J.S.: Federated Web-accessible clinical data management within an extensible
neuroimaging database. Neuroinformatics 8, 231–249 (2010)

6. Scott, A., Courtney, W., Wood, D., de la Garza, R., Lane, S., King, M., Wang, R., Roberts,
J., Turner, J.A., Calhoun, V.D.: COINS: an innovative informatics and neuroimaging tool
suite built for large heterogeneous datasets. Front. Neuroinform. 5, 33 (2011)

7. King, M.D., Wood, D., Miller, B., Kelly, R., Landis, D., Courtney, W., Wang, R., Turner, J.
A., Calhoun, V.D.: Automated collection of imaging and phenotypic data to centralized and
distributed data repositories. Front. Neuroinform. 8, 60 (2014)

Terminology Development Towards Harmonizing 115



8. Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F., Jenkinson, M.,
Laumann, T., Curtiss, S.W., Van Essen, D.C.: Informatics and data mining tools and
strategies for the human connectome project. Front. Neuroinform. 5, 4 (2011)

9. Marcus, D.S., Olsen, T.R., Ramaratnam, M., Buckner, R.L.: The extensible neuroimaging
archive toolkit: an informatics platform for managing, exploring, and sharing neuroimaging
data. Neuroinformatics 5, 11–34 (2007)

10. Wang, L., Kogan, A., Cobia, D., Alpert, K., Kolasny, A., Miller, M.I., Marcus, D.:
Northwestern university schizophrenia data and software tool (NUSDAST). Front.
Neuroinform. 7, 25 (2013)

11. Wang, L., Alpert, K., Calhoun, V.D., Keator, D.B., King, M.D., Kogan, A., Landis, D.,
Talllis, M., Potkin, S.G., Turner, J.A., Ambite, J.L.: SchizConnect: Mediating Schizophrenia
Neuroimaging Databases for Large-Scale Integration. NeuroImage (Manuscript under
review)

12. Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., Pacheco, J.,
Albert, M., Killiany, R., Blacker, D., Maguire, P., Rosas, D., Makris, N., Gollub, R., Dale,
A., Dickerson, B.C., Fischl, B.: MRI-derived measurements of human subcortical,
ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition
sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage
46, 177–192 (2009)

13. Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Kennedy, D.,
Schmitt, F., Brown, G., Macfall, J., Fischl, B., Dale, A.: Reliability in multi-site structural
MRI studies: effects of gradient non-linearity correction on phantom and human data.
NeuroImage 30, 436–443 (2006)

14. Glover, G.H., Mueller, B.A., Turner, J.A., van Erp, T.G., Liu, T.T., Greve, D.N., Voyvodic,
J.T., Rasmussen, J., Brown, G.G., Keator, D.B., Calhoun, V.D., Lee, H.J., Ford, J.M.,
Mathalon, D.H., Diaz, M., O’Leary, D.S., Gadde, S., Preda, A., Lim, K.O., Wible, C.G.,
Stern, H.S., Belger, A., McCarthy, G., Ozyurt, B., Potkin, S.G.: Function biomedical
informatics research network recommendations for prospective multicenter functional MRI
studies. J. Magn. Reson. Imag. JMRI 36, 39–54 (2012)

15. Larson, S.D., Martone, M.E.: Ontologies for neuroscience: what are they and what are they
good for? Front. Neurosci. 3, 60–67 (2009)

16. Bug, W.J., Ascoli, G.A., Grethe, J.S., Gupta, A., Fennema-Notestine, C., Laird, A.R.,
Larson, S.D., Rubin, D., Shepherd, G.M., Turner, J.A., Martone, M.E.: The NIFSTD and
BIRNLex vocabularies: building comprehensive ontologies for neuroscience.
Neuroinformatics 6, 175–194 (2008)

17. Larson, S.D., Martone, M.E.: NeuroLex.org: an online framework for neuroscience
knowledge. Front. Neuroinform. 7, 18 (2013)

18. Turner, J.A., Laird, A.R.: The cognitive paradigm ontology: design and application.
Neuroinformatics 10, 57–66 (2012)

19. Poldrack, R.A., Kittur, A., Kalar, D., Miller, E., Seppa, C., Gil, Y., Parker, D.S., Sabb, F.W.,
Bilder, R.M.: The cognitive atlas: toward a knowledge foundation for cognitive
neuroscience. Front. Neuroinform. 5, 17 (2011)

20. Whetzel, P.L., Team, N.: NCBO technology: powering semantically aware applications.
J. Biomed. Semant. 4(Suppl. 1), S8 (2013)

21. Mejino, J.L., Rubin, D.L., Brinkley, J.F.: FMA-RadLex: an application ontology of
radiological anatomy derived from the foundational model of anatomy reference ontology.
AMIA Annu. Symp. Proc. 2008, 465–469 (2008)

22. Rubin, D.L.: Creating and curating a terminology for radiology: ontology modeling and
analysis. J. Digit. Imag. 21, 355–362 (2008)

116 J.A. Turner et al.



23. Buckler, A.J., Liu, T.T., Savig, E., Suzek, B.E., Rubin, D.L., Paik, D.: Quantitative imaging
biomarker ontology (QIBO) for knowledge representation of biomedical imaging
biomarkers. J. Digit. Imag. 26, 630–641 (2013)

24. Wood, D., King, M., Landis, D., Courtney, W., Wang, R., Kelly, R., Turner, J.A., Calhoun,
V.D.: Harnessing modern Web application technology to create intuitive and efficient data
visualization and sharing tools. Front. Neuroinform. 8, 71 (2014)

25. Brinkman, R.R., Courtot, M., Derom, D., Fostel, J.M., He, Y., Lord, P., Malone, J.,
Parkinson, H., Peters, B., Rocca-Serra, P., Ruttenberg, A., Sansone, S.A., Soldatova, L.N.,
Stoeckert Jr., C.J., Turner, J.A., Zheng, J., Consortium, O.B.I.: Modeling biomedical
experimental processes with OBI. J. Biomed. Semant. 1(1), S7 (2010)

26. Kong, Y.M., Dahlke, C., Xiang, Q., Qian, Y., Karp, D., Scheuermann, R.H.: Toward an
ontology-based framework for clinical research databases. J. Biomed. Inform. 44, 48–58
(2011)

27. Poline, J.B., Breeze, J.L., Ghosh, S., Gorgolewski, K., Halchenko, Y.O., Hanke, M.,
Haselgrove, C., Helmer, K.G., Keator, D.B., Marcus, D.S., Poldrack, R.A., Schwartz, Y.,
Ashburner, J., Kennedy, D.N.: Data sharing in neuroimaging research. Front. Neuroinform.
6, 9 (2012)

28. Breeze, J.L., Poline, J.B., Kennedy, D.N.: Data sharing and publishing in the field of
neuroimaging. Gigascience 1, 9 (2012)

29. Mejino Jr., J.V., Agoncillo, A.V., Rickard, K.L., Rosse, C.: Representing complexity in
part-whole relationships within the foundational model of anatomy. AMIA Annu. Symp.
Proc. 2003, 450–454 (2003)

30. Golbreich, C., Grosjean, J., Darmoni, S.J.: The foundational model of anatomy in OWL 2
and its use. Artif. Intell. Med. 57, 119–132 (2013)

31. Nichols, B.N., Mejino, J.L., Detwiler, L.T., Nilsen, T.T., Martone, M.E., Turner, J.A.,
Rubin, D.L., Brinkley, J.F.: Neuroanatomical domain of the foundational model of anatomy
ontology. J. Biomed. Semant. 5, 1 (2014)

32. Sim, I., Carini, S., Tu, S.W., Detwiler, L.T., Brinkley, J., Mollah, S.A., Burke, K., Lehmann,
H.P., Chakraborty, S., Wittkowski, K.M., Pollock, B.H., Johnson, T.M., Huser, V., Human
Studies Database, Project: Ontology-based federated data access to human studies
information. AMIA Annu. Symp. Proc. 2012, 856–865 (2012)

Terminology Development Towards Harmonizing 117



Creating Biomedical Ontologies Using mOntage

Shima Dastgheib1(✉), Daniel Ian McSkimming2, Natarajan Kannan2, and Krys Kochut1

1 Department of Computer Science, University of Georgia, Athens, GA 30602, USA
shida@uga.edu, kochut@cs.uga.edu

2 Institute of Bioinformatics; Department of Biochemistry and Molecular Biology,
University of Georgia, Athens, GA 30602, USA
dim@uga.edu, kannan@bmb.uga.edu

Abstract. The growing volume of biomedical data available on the Web has
contributed to numerous scientific advancements. At the same time, the complex,
versatile and disparate nature of the data can overburden the knowledge discovery
and data-driven hypothesis generation by scientists. Ontologies have been
proposed to address the data integration challenge, however, creating useful
domain-specific ontologies and populating them with high quality instances is
tedious and time-consuming. In this paper, we present the mOntage framework
to rapidly create ontologies representing data in a specific area of interest. We
show how the mOntage framework can be used to create and populate biomedical
ontologies from existing data sources. The classes and properties of the ontology
being created are mapped to and instantiated from the existing data sources by
executing suitable SPARQL queries. We illustrate our framework by creating a
Phosphatase Ontology and show how it can serve as an important source of
knowledge in the area of phosphatases.

1 Introduction

A vast amount of data related to life sciences is available and shared on the Web for the
benefit of greater science [1]. However, because many of the data repositories have been
developed independently, they tend to use different data schemas, incompatible termi‐
nology, and dissimilar data formats, such as spreadsheets, relational databases, XML,
JSON, HTML, and many other, frequently non-standard formats [1]. In addition, Linked
Open Data (LOD) [2] has recently emerged as “a set of best practices for publishing and
connecting structured data on the Web” [2] in RDF format. Life sciences data providers
have been publishing extensively on LOD, which, due to links established between data
sources, could increase the potential of knowledge discovery and hypothesis generation.
However, many of the highly curated biomedical data sources are provided only in their
legacy formats, and even the LOD data sources are not highly integrated. Therefore,
despite the vast amount of data available, data integration routinely overwhelms
researchers who desire to find all data about an area of interest and to assemble it into a
“useful block of knowledge” [1].

An ontological approach to the data integration challenge allows for creating a
unified resource in a specific domain, which precisely represents the domain knowledge
and enables hypotheses generation based on integrative analyses of the existing data in
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one place. An ontology is an “explicit specification of a conceptualization” [3], which
represents concepts and concept taxonomies, as well as relationships existing among
them. Ontologies not only conceptualize the knowledge of a domain, but also are
designed to empower scientists to form and execute complex queries over data and
associated relationships.

Domain-specific ontologies are ontologies that focus on concepts and relationships
within a certain domain of knowledge. They serve an important purpose, not only as
integral components of different semantics-driven applications, but also as important
sources of knowledge in those domains. Numerous biomedical ontologies have been
created so far which have had great impact on biomedical research. Many of these
ontologies are included in well-known catalogues, such as the OBO Foundry [4] and
BioPortal [5]. Ontologies, such as the Gene Ontology (GO) [6] and Protein Ontology
(PO) [7], have been mainly developed for knowledge representation and organization,
vocabulary standardization and data annotation purposes. However, these general-
purpose ontologies do not capture information specific to a given domain. For example,
information on human diseases is not conceptualized in GO, requiring domain-specific
ontologies on human diseases such as Disease Ontology.1

In description logic, the TBox represents the schema (terminology) and the ABox
defines individual assertions. The value of a domain-specific ontology is greatly ampli‐
fied by the ABox, i.e. the actual data represented as instances of the concepts and rela‐
tionships (TBox) in the ontology. On the other hand, creating a domain ontology popu‐
lated with relevant and useful instances is a difficult and time-consuming task. Automatic
population of domain ontologies by extracting data from text documents is difficult and
error-prone. Similarly, writing specialized programs and scripts for extracting data from
structured and semi-structured sources is time consuming. Yet, more and more domain
ontologies will be required for a variety of specific applications. A high quality domain
ontology should accurately define the domain knowledge in terms of classes and rela‐
tionships, which are populated with instances obtained from well-curated data sources.
Although the data sources containing the relevant data to fill these concepts and rela‐
tionships are frequently available, the data of interest is often “buried” among large
amounts of other less-relevant data. Further, the complex and disparate nature of the
data sources overburdens the population process. Lastly, modifying the ontology to
incorporate additional data sources or in response to updates of existing sources requires
frequent changes to the underlying data models.

We believe that the massive biomedical data distributed among LOD and other data
sources offers a great opportunity for domain experts to create high quality, well-popu‐
lated domain ontologies. A new domain ontology can be created by defining its classes
and properties, and then specifying how to obtain instance data in terms of the concepts
and properties in the existing data sources [8, 9]. An ontology created in this way not
only promotes the reuse of already existing concepts and properties, but also increases
the interlinking of the new ontology to the existing data sources.

In [8, 9], we presented mOntage, a conceptual model and a framework for creating
and populating domain-specific ontologies built from the existing data sources in the

1 http://disease-ontology.org/.
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LOD cloud. Classes and properties in a domain ontology being constructed are mapped
onto parts of the available LOD data sets using our Protégé plugin and then automatically
populated. However, many available data sources that could contribute to building new
domain ontologies are not part of LOD and many of them have been developed using
many dissimilar formats, such as RDB, XML, spreadsheets, and many others. For
example, ProKinO [10–12], is a Protein Kinase Ontology created and populated from
versatile data sources, such as COSMIC [13] (a TSV file), Reactome [14] (Rest Web
Service), UniProt [15] (XML) and internally developed Sequence Alignment (a CSV
file). A specialized population software has been developed to create and populate
ProKinO from the underlying data sources. However, more and more domain ontologies
will be expected for a variety of specific applications in the biomedical domain. In addi‐
tion, existing domain ontologies, such as ProKinO, need to be expanded to cover more
knowledge of their respective domains (e.g., drug data in the case of ProKinO). In this
paper, we present an extended mOntage framework that can be used to create and popu‐
late domain ontologies not only from other already existing ontologies, but from struc‐
tured data sources, as well. mOntage integrates data from other data sources considering
both TBox and ABox. Hence, the resulting ontology not only represents the domain
knowledge but also contains the actual data, which can be queried in an integrative way.

The rest of this paper is organized as follows. We begin by presenting motivating
examples and discussing the related work. We then introduce a use-case driven concep‐
tual model for our approach, followed by a case study implementation and evaluation
of a phosphatase ontology. We end the paper with conclusions and future work.

1.1 Motivating Examples

The 518 proteins in the human kinome have been extensively studied for their role in
multiple diseases, including a variety of cancers [16]. In [10–12], we reported on a
special-purpose integrated framework for extracting data from heterogeneous sources
to create ProKinO, an ontology for large-scale integrative analysis of protein kinase data
used in cancer research. ProKinO is a valuable resource for mining and annotating the
cancer kinome, allowing effective mining of cancer variants while facilitating hypothesis
generation and testing. We have demonstrated the application of ProKinO in integrative
data mining and systems analysis of protein kinase data [11].

While protein kinases are desirable drug targets and over two dozen kinase inhib‐
itors have been developed thus far [16], protein phosphatases show promise as next-
generation drug targets [17]. Phosphatases are enzymes, which remove a phosphate
group from its substrate, in contrast to kinases, which modify substrates with the
addition of a phosphate (phosphorylation). PTP1B, SHP2, LYB are examples of
phosphatases with known associations with diseases, such as diabetes, obesity,
leukemia, breast cancer and autoimmune disorders [16]. However, a more thorough
exploration of phosphatase data could open new opportunities for innovative drug
discovery targeting phosphatases [16, 18].

PhosphaBase [19] was published in 2005 as the first public resource of phosphatases,
written in DAML+OIL [20], and populated with data from various biological sources
(such as UniProt, InterPro [21], OMIM [22] ) using Gene Ontology terms. The ontology
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is no longer available though. Moreover, since the supplying data sources such as
UniProt release new versions frequently, the ontology update is crucial, which has not
been done for PhosphaBase in the last ~6 years. Thus there is a need for automated
methods to build and maintain biomedical ontologies.

Few phosphatase databases, such as the human DEPhOsphorylation Database
(DEPOD) [23] cover some aspects of phosphates-related data, including the listing of
identified phosphatases, their EC-Numbers, protein and non-protein substrates, etc.
Large data sources, such as COSMIC, UniProt, and Reactome, encompass information
about the variants, protein features, structures, and pathways of phosphatases, which are
hidden among the other ~20,000 genes. As a consequence, in order to find phosphatase-
specific information on cancer types mutated pathways and numerous other properties,
one would have to query multiple datasets separately and then aggregate the results.
Hence, performing a systems biology, hypothesis-driven analysis would be very time
consuming and akin to looking for needles in a haystack.

This paper is focused on using mOntage to create biomedical ontologies such as
phosphatase ontology from curated versatile data sources. The framework approaches
the data integration challenge by montaging the subsets of relevant data from different
data sources and creating a unified ontology in one place. While inspired by the meth‐
odology used in ProKinO and its specialized population software, mOntage does not
require specialized programming for ontology creation, population and update.

Once the ontology is populated by mOntage, scientists would be able to create and
execute integrative and hypothesis-driven queries, like the ones we used in ProKinO.
For example, the mOntage-created Phosphatase Ontology will help identify phosphatase
specific mutational patterns and effected pathways in a variety of disease states. This
information, in turn, can be used to design treatment strategies based on the regulation
of phosphatase activity, much like inhibitor use in kinases today.

Figure 1 shows an outline of the schema for such a Phosphatase Ontology along with
the data sources supplying the required data.

Fig. 1. An outline of the Phosphatase Ontology and the underlying data sources

2 Related Work

TopBraid Composer [24] and OntoStudio [25] provide tools for dynamic integration of
other data sources, such as importing data from databases, XML files, spreadsheets, and
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others. Protégé [26] is an example of an open source ontology authoring software. It
provides a plugin framework to extend the standard ontology editing functionality.
However, not much work has been done towards using diverse and heterogeneous data
sources in order to extract data relevant to a domain of interest and to create a domain
ontology. LOGS2 uses NLP techniques to construct lightweight ontologies from text.
Cancer Biomedical Informatics Grid (caBIG) [27], which has been recently retired, was
developed by the National Cancer Institute (NCI) to establish a common infrastructure
to exchange cancer research data.

Karma [28] is an open source tool which models structured sources. It assigns the
semantic types of a given ontology to the data source columns and enables users to create
an integrative data model from other data sources including databases, spreadsheets,
XML, JSON, Web APIs, etc. The system, then, learns to recognize the mapping of data
to ontology classes and uses the ontology to propose a model that ties together these
classes. Each data source should be separately imported and the user interface allows
the domain expert to modify the mappings. Karma generates an integrative model of the
data sources based on a given ontology, while mOntage populates a domain ontology
using queries created by mapping the classes and properties of the ontology to the data
sources. Also, in Karma, it is not possible to define the assignments in terms of SPARQL
queries.

In [8, 9], we have reported on a framework to extract and integrate data from heter‐
ogeneous data sources to create ProKinO, an ontology for large-scale integrative anal‐
ysis of protein kinase data. Sahoo, et al. described a system for creating a mash-up of
gene and pathway resources and the creation of Entrez Knowledge Model which is then
populated from publicly available gene and pathway resources [29].

As mentioned earlier, many ontologies and other sources have been available within
the biomedical domain. Consequently, a significant part of the Linked Open Data is
devoted to this area. Linking Open Drug Data (LODD) [30] links RDF data from Linked
Clinical Trial (LinkedCT) [31] and various other sources of drug data in order to answer
interesting scientific and business questions. Similarly, Linked Life Data (LLD)3 is a
project aiming to integrate heterogeneous biomedical knowledge available as LOD data
sets into a common data model, extended with inference capabilities and semantic
annotations.

The mOntage framework presented in this paper can be used to create ontologies
from diverse data sources, spanning scores of domains. Subsets of the selected data
sources are retrieved as needed through SPARQL queries and mapped to a new domain
ontology being created. The constructed ontology can be thought of as a montage of
existing data sources’ fragments, integrated to form a cohesive domain ontology. An
important feature of mOntage is that it automatically populates the ABox of the new
ontology with instances obtained from the selected data sources.

2 http://people.cis.ksu.edu/~rpr/TR/.
3 http://linkedlifedata.com/.
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3 Use Case-Based Conceptual Model

In [8, 9], we presented the mOntage framework, which allows for creating and popu‐
lating domain ontologies from the data sources in the Linked Open Data cloud, which
are all in the form of RDF, often available via SPARQL endpoints. In order to extend
the framework to support structured data such as spreadsheets, XML, JSON and Rela‐
tional Databases, we employ an RDF-Modeler, which, as its name suggests, models a
variety of data formats as RDF. The RDF-Modeler has been implemented by taking
advantage of available open source tools such as TARQL4 and D2RQ.5 As a result, the
rest of the mOntage system did not have to be modified since the new data sources would
be treated as the usual RDF data sources. The architecture of the mOntage system is
shown in Fig. 2. Typically, the schema including the classes and relationships is defined
by a domain expert and serialized as an OWL file, with the use of an ontology editing
tool, such as Protégé. VoID+  [8, 9], our extension of VoID,6 is a meta-data ontology
describing the content of the available data sources, which is generated automatically
by sending specialized queries to the data sources. Both the schema of the ontology
being created and VoID+ are available to the Protégé plugin we have developed. They
enable the domain expert to view the classes and properties of the schema along with
the available classes and properties of each incorporated data source. Hence, the plugin
can be used to easily create a set of human-readable maps of classes and properties onto
the selected data sources. This effectively is a Global as View approach [32]. These maps
are then imported to the Population Engine to be converted to SPARQL CONSTRUCT
queries (e.g. Figure 3). The Population Engine also executes the queries included in the
maps against the specified data sources and the ontology under construction and finally
asserts the resulting triples in the new ontology. The details of the map formation are
described in [8, 9]. As already discussed, most of the available data sources are not
highly integrated and therefore we cannot treat them as well-aligned. As a consequence,
we have to rely on the knowledge of domain experts in discovering, understanding and
integrating fragments of domain-relevant data included in the existing resources. As
mentioned in [8, 9], utilizing VoID+ can facilitate the discovery of the data sources.

Phosphatase Ontology (PhosphO). As discussed in Sect. 1.1, a number of data sources
are available on the Web, which include information relevant to phosphatases. mOntage
framework takes advantage of the existing data sources to create an ontology on phos‐
phatases, which conceptually represents and integrates both the phosphatase domain
knowledge and data in terms of mutations, diseases, pathways and structures, all in one
place. Figure 1 shows an outline of the simplified schema of the Phosphatase Ontology
(PhosphO), including its main classes and relationships. The Gene class is the focal class
of this ontology, i.e. other classes and relationships are populated based upon and linked
to the instances of this class. This class is populated with the instances of phosphatase.
The Mutation class, on the other hand, is populated with the mutations found in phos‐

4 http://tarql.github.io/.
5 http://d2rq.org/.
6 http://void.rkbexplorer.com/.
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phatases. Moreover, in order to be able to further bridge the PhosphO with ProKinO
regarding the cancer data, the Disease class is only populated with cancer diseases.
However, we retain Disease as the name of this class to maintain its extendibility to
other disease types. Each phosphatase gene (an instance of Gene class) is related to its
mutations, pathways that the gene participates in, sequences of the gene, its structure,
and cancers associated with the gene. Note that a mutation of a gene may be implicated
in some cancer type, which implies that the gene is associated with that cancer.

Figure 1 also shows (with dashed lines) the data sources used in populating the
PhosPhO, based on the presented schema. DEPOD provides a database of phosphatases,
their properties and classifications, substrate information and some pathway data in the
form of CSV files. The sequence and structure data, as well as some supplementary
information about the phosphatases is available from UniProt, in both RDF and XML
formats. COSMIC provides a TSV file for mutation information of phosphatases. Path‐
ways that phosphatases participate in can be retrieved from Reactome via its RESTful
web service, which returns data in either XML or JSON format. DisGeNET [33],
published as part of the LOD cloud, supplies disease-gene associations, to further popu‐
late the Disease class with cancer instances not affected by mutations. We also plan to
include the phospahatse classifications using InterPro [21] in future.

The genes in DEPOD are identified by several identifier types, including UniProt
and Ensemble identifiers. We use the former to get the relevant pathways from Reactome
and the latter to get mutations from COSMIC, since the mentioned data sources use

Fig. 2. mOntage architecture

Fig. 3. Fragment of a mapping query
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UniProt and Ensemble identifiers, respectively, to identify the genes. Obviously, the
UniProt identifiers are used to get the relevant data from UniProt.

3.1 Data Source Descriptions

In order to reuse the existing data sources for the construction of a domain specific
ontology, one should have a clear understanding of the organization of information in these
data sources. For example, once the domain expert notices that (1) DEPOD provides the
Gene name, Ensemble id, UniProt id, etc. (2) COSMIC provides Gene id, Mutation id,
Mutation AA, Mutation Description, etc., and (3) Reactome provides UniProt id, Pathway
id and name, etc., she/he can decide to (a) populate Gene class in the new ontology with
both UniProt ids and Ensemble ids, and the gene name from DEPOD, (b) use the Ensemble
ids of the populated genes to get the relevant mutation data from COSMIC to populate
Mutation class and its properties, such as Mutation AA, and (c) use the UniProt id of the
populated genes to get the relevant pathway data from Reactome to populate Pathway class
and its properties, such as the pathway name. We have collected the VoID+ information for
the data sources chosen to populate the Phosphatase Ontology, including DEPOD,
COSMIC, Reactome and DisGeNET. The populated VoID+ meta-data has been made
available via a SPARQL endpoint and utilized in our mOntage framework.

It should be noted that the methodology used to populate our current VoID+ ontology
can be used unchanged for any other data sources with similar data types, i.e. spread‐
sheets and CSV/TSV files, relational databases, XML, JSON, and RDF.

3.2 Defining Classes and Properties

After identifying the relevant data sources, the system populates VoID+ with the meta-
data of the data sources in order to display the structure and available contents of the
data sources. Now, the domain expert can decide on (1) where to get the data to populate
a class in the ontology based on the information available in a data source, e.g. how to
obtain the gene instances from DEPOD to populate Gene class, (2) whether to retrieve
all instances or only a subset of them that satisfy some conditions, e.g. retrieve all the
genes available in DEPOD for the Gene class, but only cancer diseases from DisGeNET
to populate the Disease class, and (3) how to establish URIs for the retrieved data to
represent instances in the new ontology. For example, should the Gene class in the
Phosphatase ontology use newly created URIs for its instances or reuse existing URIs
from other sources? Similarly, the disease URIs can be newly created by concatenating
the primary histology (cancer type) and histology subtype (cancer subtypes), generating
a unique disease string.

The datatype and object properties are created based upon the expert knowledge.
Frequently, these relationships can be established using the existing data and object
properties, automatically retrieved from the relevant data sources and stored in VoID+.
For example, the COSMIC meta-data in VoID+ reveals that this data source has Muta‐
tion AA (a combination of wild type, position and mutant type) as a property of mutation,
which can be mapped to the same property in the Mutation class of the new ontology.
In some cases, the properties in the selected data sources, especially object properties,
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are more complicated and require domain expert’s knowledge. For example, in order to
define the implicatedIn object property in the new ontology, based on the data available
from COSMIC, the expert must decide how to map the domain and range of this property,
since there is not an equivalent property directly retrievable from COSMIC. Hence, the
Mutation class (domain) is mapped to Mutation id and the Disease class (range) is
mapped to the concatenation of the primary histology and histology subtype (unique
identifier for disease). In addition, the expert decides how the data from the two datasets
should be integrated, if a link or the connecting variable is not explicitly available. For
example, the genes in DEPOD are identified by several identifiers, including UniProt
and Ensemble ids. We use the former to get the relevant pathways from Reactome and
the latter to get mutations from COSMIC, since these data sources use UniProt id and
Ensemble id, respectively.

3.3 Mapping Classes and Properties

Maps, which define the classes and properties of the new ontology in terms of the data
available in the selected data sources, constitute the core of the mOntage system. The
new domain-specific ontology with a defined schema is then incrementally populated,
as each map is executed, based on an execution plan. Since the new ontology is stored
locally while it is populated, we refer to it as the local ontology hereafter, as opposed to
the underlying data sources, which we think of as remote. In [8, 9], we identified three
general patterns that should be considered for designing the maps. We explain each
pattern using the examples derived from the Phosphatase Ontology:

1. Instances for one or more mOntage classes and data properties are available from a
single data source. For example, the instances of the Gene class are retrieved from
DEPOD only. This pattern covers cases where a relationship (object property)
between two instances exists in the data source at the time of the map execution, and
can be executed without regard to the content of the local ontology.

2. A newly retrieved instance of a class must form a relationship with an already
existing instance in the local ontology. In such case, we need to query the local
ontology to retrieve the relevant instance. For example, only those instances of
Pathways are retrieved from Reactome in which at least one already existing gene
in the Gene class of the local ontology participates. Also, only those instances of the
Mutation class are retrieved from COSMIC, which are found in at least one of the
already existing genes in the Gene class of the local ontology.

3. Data type properties of a class exist when the instances of the class are being
retrieved. For example, the instances of Mutation class are retrieved from COSMIC
using the Mutation Id (e.g. Mutation-1000194); and at the same time, its Muta‐
tion_AA property (e.g. P642S) can be retrieved from the same data source.

Mappings are in the form of SPARQL CONSTRUCT queries designed to contain
the instructions to (1) query the specified data source and retrieve the desired data,
(2) check the local ontology for dependencies between the existing ontology instances
and properties and the data retrieved from the data source, and (3) use the query results
to populate the classes and properties of the ontology.
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4 Creating the Phosphatase Ontology (PhosphO)

4.1 mOntage Protégé Plugin

We have developed the mOntage Protégé plugin to facilitate the definition of mapping
between the classes and properties of a new ontology to the data in existing data sources.
The schema of the new ontology can either be loaded into Protégé using an existing OWL
file or be created in Protégé along with the mapping specification. The VoID+ ontology,
which contains the meta-data of the available data sources, is accessible to the plugin from
a SPARQL endpoint so that it can be queried to provide the data source organization to the
user. The plugin provides a user-friendly interface that helps the expert to view all the
information necessary for designing and creating the maps by selecting the suitable classes
and properties. The output of the plugin is a set of human-readable maps that are later
converted into CONSTRUCT queries in the format described in Sect. 3 and used to popu‐
late the new ontology.

A screenshot of the plugin is shown in Fig. 4. The domain ontology schema is created
or loaded in Protégé first. The Data Source tree is populated by a query, which is auto‐
matically sent to VoID+ to get the list of all available data sources. Whenever a data
source is selected, queries are submitted to VoID+ and the Class, Data Property and
Object Property trees are populated accordingly. The bottom view of mOntage is the
Protégé classic view of Class/Data and Object Property, which shows the new ontology
schema. Providing the schema of the new ontology and the schema of the existing data
sources makes the creation of the mapping definition more intuitive. For example, in
PhosphO, to populate the Gene class, the user can select this class from the new ontology
schema, select the DEPOD data source, view the list of its available classes and select
the Gene class and finally press the “Map Class” button. This creates a map between the
Gene class in PhosphO and genes in DEPOD, which are modeled as a class using the
RDF Modeler. If the class has subclasses (e.g. once we add gene classification to
PhosphO), user can map each subclass to the data in existing data sources. Using
mOntage, it is also possible to add constraint expressions to filter the instances from an
existing data source. For example, it is possible to populate the Mutation class in
PhosphO using the Mutation ids in COSMIC, but only for the genes already acquired
from DEPOD (i.e. phosphatases). Similarly, the user can map data and object properties.
For example, uniprotId, one of the data properties of the Gene class, can be mapped to
UniProtKB/Swiss-Prot AC available in DEPOD.

By default, when setting URIs for individuals in the new ontology, the plugin reuses
the URIs obtained from the existing data sources. However, the user may decide to create
new URIs to either make them meaningless to human (e.g. as required by OBO) or in
case the new individual resource is composed from parts of multiple classes/data sources
and hence does not directly correspond to an individual in any of the data sources used.
For example, COSMIC provides Primary Histology and Histology subtype, but the
domain expert may decide that neither of these alone can represent a disease in ontology.
Consequently, the expert can select the Disease class in PhosphO and customize URI.
In this case, the system uses an automatically incremented system variable to generate
new URIs for the instances of the Disease class. The expert can map both diseaseType
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and diseaseSubtype properties of the Disease class to Primary Histology and Histology
Subtype in COSMIC (e.g., pho:mOntage0100018 represents a disease with diseasetype
rhabdomyosarcoma and diseaseSubtype embryonal).

4.2 Ontology Population

Ontology population is the task of creating individuals (instances) in each class in the
new ontology, adding data properties between the instances and the literal values and
establishing object properties between instances in different classes. In mOntage, the
ontology population is performed automatically and is accomplished by executing the
class and property maps, as described in the previous section.

We based our population plan on the dependency between the population maps. The
first class to be instantiated is the ontology focus class. A class is considered as the focus
class depending on the theme of the domain ontology, i.e. the focus class is the concept
that the entire ontology is created for. Every class in the domain ontology, directly or
through other concepts, is related to the focus class. For example, in the Cancer Treat‐
ment ontology we created in [8, 9], Disease was used as the focus class and the drug
instances asserted into the ontology were based on the cancer individuals already present
in the ontology. In PhosphO, the Gene class is considered as the focus class and the
mutations, pathways, diseases, etc. are populated based on the gene instances (i.e.,
phosphatases) created in the Gene class.

The remaining classes and properties should be populated according to their inter-
dependency. For example, the Structure class in PhosphO should be populated after the
Gene class and its certain data properties (e.g. UniProt id) are instantiated.

Once all of the maps have been executed, the new ontology is fully populated. This
ontology represents a snapshot of the extracted data used to populate it. Due to the
evolving nature of the underlying data sources, the new ontology should be versioned

Fig. 4. A snapshot of mOntage Protégé plugin
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and periodically re-populated. We have explained the SPIN7 encoding of the generated
maps in [8] to enable the self-population of the ontology.

The prototype implementation of mOntage has been coded in Java and it uses Jena
API for query processing, ontology storage and population.

5 Evaluation

While mOntage can be used to create large ontologies, PhosphO is an example ontology
designed to show the utility of mOntage in biomedical domain, as required by a domain
expert, a biologist in this case. The simplified schema (TBox) for PhosphO contained 6
classes, 5 object properties and 10 data properties (not shown in Fig. 1).

5.1 mOntage Evaluation

TBox Mapping. As described in Sect. 2, Karma is a tool that models the structured
datasets and semi-automatically maps them to the schema of a user-selected ontology.
However, there are some limitations that we address in mOntage: (1) The data sources
should be explored a priori to see if the dataset really contains the data that the new
ontology requires. mOntage uses VoID+ which retrieves and stores data source meta-
data. (2) The ontology that the data source will be mapped to, should be created or if
needed modified outside of the system. mOntage, as a Protégé plugin, allows for creating
or modifying the domain ontology schema at the mapping time. (3) Each data source
should be imported to and expressed in Karma separately. mOntage provides an easier
access to the meta-data of the data sources and allows for alternating between the data
source mappings.

ABox Assertions. Karma uses a base ontology to model the data sources by mapping
the data sources to the ontology. On the other hand, mOntage creates the maps as
SPARQL CONSRUCT queries, which are capable of querying the data source endpoints
or local copies; and populates the designated classes/properties of the new ontology.
Thus, both the TBox and ABox parts are included in the SPARQL query and further
encoded in the ontology using SPIN, to create a self-populating ontology.

5.2 PhosphO Evaluation

The mOntage process of the selected data sources produced PhosphO with 8315 individ‐
uals, 38229 instantiated object properties and 136259 instantiated data properties. Using
the established maps, new versions of PhosphO can be created whenever any of the data
sources change. Creating new ontology versions is particularly needed for the biomed‐
ical ontologies, as new data is constantly released. Once a version of the ontology is
populated, it can be queried using SPARQL to answer various scientific hypothesis-type

7 http://spinrdf.org/.
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questions (e.g. Fig. 5). For example, the Phosphatase ontology could provide answers to
the following type of questions: (1) Which biochemical pathways house mutated phos‐
phatases in lymphomas? (2) Which phosphatases have modified residues that are mutated
in with renal cell carcinoma? (3) Which phosphatases have mutations that occur in
multiple disease types?

Fig. 5. SPARQL query for “pathways house mutated phosphatases in lymphomas” on PhosphO

The above queries would be difficult to answer without having this unified ontology.
For example, the first query, formulated as shown in Fig. 5, requires mapping DEPOD,
COSMIC and Reactome, while the second query requires mapping DEPOD, COSMIC
and UniProt. The mappings would also be difficult since the data sources use different
gene identifiers.

Comparing our automatically populated PhosphO with PhosphaBase was not
possible since PhosphaBase is not publically available. Furthermore, search for specific
genes in PhosphaBase resulted in an internal server error.

As a next step, we believe that linking the Gene classes of ProKinO and PhosphO
will open new avenues for cancer and drug discovery research. Kinases and phospha‐
tases regulate cellular activity through the respective addition or removal of a phosphate
group from a target substrate. So, kinases in ProKinO can be linked to phosphatases in
PhosphO through their shared molecular targets, offering a second set of proteins whose
regulation can help stabilize intracellular signaling events [34, 35].

6 Conclusion and Future Work

mOntage, takes an ontology engineering approach towards data integration. Our protégé
plugin allows a domain expert to map the ontology schema onto the available data in
relevant data sources. The ontology will be populated as a montage of fragments of the
data sources, by converting the maps to a set of SPARQL CONSTRUCT queries, which
specify how the new ontology classes and properties will be automatically populated
from the selected data sources. In this paper, we used mOntage to create and populate
the first version of a Phosphatase Ontology, which integrates the data of phosphatases.
mOntage allows for flexibly expanding the ontology schema and adding more data
sources. For example, by incorporating sequence alignment ontology, which we are
developing, we can relate mutations by their aligned position to increase the statistical
power. Note that the created Phosphatase Ontology is our initial effort in creation and
population of a more comprehensive ontology on phosphatases, akin to ProKinO for
protein kinases. We would like to enhance this ontology and enrich it with more useful
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instances from a variety of well-curated data sources. We should note that mOntage
accounts for verification, querying and update as well, which are beyond the scope of
this paper. Once the mOntage system has been finished and fully tested, it will be avail‐
able for download.
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Abstract. The creation of the definitions it is an important stage of the activity
of ontologies construction, insofar as the definitions provides the understanding
of the meaning of classes. However, creating definitions is a complex and tiresome
task. This study is part of an ongoing research that analyses some fundamental
principles with the aim of formulating textual and formal definitions to be used
in ontologies. The context of such analysis is a project of knowledge organization
within the biomedical domain. The goal is to establish methodological guidelines
for formulating the definitions in biomedical ontologies. In general, people
building ontologies do not make use of consistent rules for the correct formulation
of definitions, which, we believe, make our study a relevant initiative. As partial
results, we present a list of topics that corresponds to the aforementioned meth‐
odological guidelines.

Keywords: Definitions · Biomedical ontologies · Leukemia

1 Introduction

In the context of the development of new information technologies, there are great
potential for the use of ontologies for organizing medical information. Ontologies have
been largely applied in the biomedical field, which demands semantic tools to better
represent the large amount of medical entities and terms [1, 2]. Indeed, the use of ontol‐
ogies is an alternative that has been receiving an increased amount of attention [3]. One
step in building ontologies is the formulation of well-formulated definitions. Under‐
standing how to create definitions is very important in order to organize concepts and
terms for purposes of information representation and retrieval. This study aims to
systematize the process of the creating definitions in the biomedical ontologies. In order
to do this, we present a study case in the leukemia domain. Leukemia has having a strong
impact in modern society due to the low rates of patients’ survival. In addition, leukemia
is a complex disease due of the phenotypic heterogeneity. The class called Acute Myeloid
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Leukemia (AML) corresponds to a set of heterogeneous diseases related to the clonality
and chromosomal alterations [4].

Ontologies should provide clear and coherent definitions of the structures that are
found in reality [5]. In order to make definitions understandable for computers, one has
to create textual definitions and then translate them to some form of logic. An ontological
hierarchy depends on the specification of properties that defines the essence of entities.
This essence provides the basis on which such entities can be grouped together and
distinguished one from another. The main role of definitions in ontologies is to empha‐
size those properties, as well as satisfying the need of transitive inheritance in hierar‐
chies. The position of a class in a hierarchy can contribute to the understanding of its
meaning [5].

In this paper, we discuss some ontological principles in the scope of construction of
a large biomedical ontology (Blood Ontology – BLO [6]). We seek to formulate defi‐
nitions for Leukemia within the cancer domain. One might claim that this effort does
not present any research contribution or novelty. However, we believe in the relevance
of our initiative, insofar as biomedical vocabularies and medical texts in general exhibit
several sorts of mistakes in formulating definitions [14].

2 Methods

The terminological sample for our case study was taken from BLO. We aim to define a
range of classes bellow AML, which contains 24 subclasses (Fig. 1). We also intend to
define other hematological neoplasms, namely: (a) Myelodysplastic syndrome (containing
5 subclasses); (b) Myeloproliferative neoplasm (containing 11 subclasses).

Fig. 1. - 24 classes of AML. Source: BLO in Protegé, Almeida et al. [6]

We have systematized criteria for the natural language and formal logic language
definitions based on the best practices proposed in the literature [5, 7–12]. The steps of
formulating textual definitions are part of our preliminaries results. In order to reach our
preliminary findings we made use of a list of topics (from a to g):

(a) to understand the meaning of the term using more than one sources
(b) to establish the higher genus in the context of use of the term
(c) to establish the essential characteristic of the entity
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(d) to formulate the definition in the form S = Def. G which Ds, where “G” stands for
genus (the parent of S); and “S” stands for species

(e) to verify whether the definition is a statement of necessary and sufficient conditions
(f) to verify whether the definition is non-circular
(g) to verify the existence of multiple-inheritance and try to eliminate it.

The first class of our hierarchy, as well as its definition, came directly from BLO:
“An hematopoietic neoplasm is a hematologic malignancy which occurs in blood-
forming tissues”. The second class was defined as acute myeloid leukemia (AML). Those
definitions are the starting point of searching the essential feature of AML and its inher‐
itance. Our next step in the context of the project is to formulate formal definitions using
a logical language.

3 Preliminary Results

As we have mentioned before, some features of a class can be obtained by checking its
inheritance. So, an AML received characteristics from the correspondent upper class,
namely, hematopoietic neoplasm, which has characteristics in common with other
classes in the hierarchy of BLO for blood cancers. The distinction between AML and
other leukemia types is the myeloid cell lineage. Using the hierarchy of AML in BLO
is possible to define the first relation of AML as a subsumption <is_a> relation, which
connects a class to another one <class, class>. So, acute myeloid leukemia is_a hema‐
topoietic neoplasm. Among other possible relations to define ALM, one can highlight
the of the relation of derivation c <derives_from> c1, for example: Acute Myeloid
Leukemia derives-from hematopoietic stem cell. Those relations are based on two mate‐
rial continuants [1], each one distinct of each other. Derivation is a relation between
instances, where a simple continuant creates a plurality of other continuants. Some other
examples of definitions based on class-class sort of relation are: <has_a> as in: Acute
Myeloid Leukemia has_a Clonal Disorder; and Acute Myeloid Leukemia has_a myeloid
(monocytic) lineage. Using the class-class relation <Located_in> relation, one can
found: Acute Myeloid Leukemia Located_in Blood [13]. We used the definition of AML
to illustrate the process of formulating textual definition on leukemia domain: Df = A
leukemia that occurs when a hematopoietic stem cell undergoes malignant transforma‐
tion into a primitive, differentiated cell with abnormal longevity and with abnormal
proliferation of myeloid cells lineage. The main contribution of our approach is to
emphasize the need of adopting some rules for creating definitions in ontologies. In
general, people building ontologies don’t follow any guidelines to create definitions.

4 Final Remarks

We present part of an ongoing project within Information Science field. We show our
preliminary and partial results in defining a range of biomedical terms. This initial stage
is presented with the aim of emphasizing the need of some guidelines or even a list of
topics to formulate proper definitions. This will helps one, for example, to understand
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that the nature of things can be different (continuants and occurrrents), as well as other
required distinctions, for example, that relations among instances are different of rela‐
tions among classes. So, we expect that in using our list of topics, one will be able to
build better ontologies and provide advances in the development of expert medical
systems. In reason of space limitations, we don’t present any example here, but we intend
to do this in future papers.
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Abstract. To complete large-scale clinical research, organizations must share
data. Because institutional database schemas are inherently heterogeneous, they
need a standard metadata representation in order to exchange and combine data
for multi-center research. The AGNIS application (A Growable Network Infor‐
mation System) facilitates the exchange of hematopoietic cell transplantation
outcomes data using data standards. However, adoption rates remain low due to
a significant mapping burden. The AGNIS experience shows that developing a
data standard is not enough. Tools and resources are needed to facilitate utilization
of the standard.

Keywords: Data integration · Interoperability · Data standards · Hematopoietic
cell transplant outcomes data

1 Introduction

Data standards are often viewed as the key to interoperability. If everyone speaks the
same language, then data can flow freely among all interested parties. Unfortunately,
the reality is not that simple. Multiple data standards and heterogeneous database
systems preclude such a simplistic view. The reality often involves painstaking, labor-
intensive manual mapping of a database system to a particular standard or standards
only to find out later that the mappings must be updated because the standard has
changed.

This reality is exemplified by the AGNIS application (A Growable Network Infor‐
mation System) developed by the Center for International Blood and Marrow Transplant
Research (CIBMTR). The goal of the AGNIS project is to facilitate the integration of
hematopoietic cell transplant (HCT) outcomes data. In this paper, we describe the
AGNIS project, its current state, the challenges it has encountered, and potential strat‐
egies to address the challenges.
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2 Background

The CIBMTR is a research collaboration between the National Marrow Donor Program
(NMDP)/Be The Match and the Medical College of Wisconsin. Its mission is to improve
the outcomes of HCT and cellular therapies through observational and interventional
research. The CIBMTR maintains a registry of outcomes data for more than 400,000
transplant recipients, with data submitted from 350 transplant centers worldwide [1].
This collaboration between the CIBMTR, transplant centers, data managers, clinicians,
and researchers provides an invaluable resource for the medical community and the
patients they serve.

The CIBMTR also maintains the Stem Cell Therapeutic Outcomes Database
(SCTOD). The SCTOD is part of the C.W. Bill Young Cell Transplantation Program,
known as the Program, established by the Stem Cell Therapeutic and Research Act of
2005. The Program collects a defined set of outcomes data, required when either the
donor or the recipient is from the United States, to facilitate research that improves
patient outcomes and increases the availability of adult volunteer donors and umbilical
cord blood units [1]. Summaries of the outcomes data are publicly available via a Health
Resources and Services Administration (HRSA) website [2].

To help transplant centers submit this federally required outcomes data, the CIBMTR
developed FormsNet, a web-based application allowing real-time data entry and vali‐
dation. While FormsNet collects high-quality data, for those centers with electronic
medical records (EMRs) and/or local research databases, it requires double-data entry,
an expense introducing the possibility of data transcription errors.

Eliminating double-data entry is crucial to cost-effective sharing of high-quality data.
Indeed, Aljurf et al. say, “Many centers report data to a myriad of overlapping registries
and databases. Integration, interfacing and interoperability are the key ingredients for
optimum outcomes and use of these registries” [3]. To improve electronic data integra‐
tion, the CIBMTR developed the AGNIS application, a web service based messaging
system enabling the secure transmission of standardized data between disparate database
systems [1]. Transplant centers can submit new or updated forms to the Java-based
AGNIS server. The AGNIS server then submits those forms to the FormsNet system,
which sends a response back to the center. Additionally, the FormsNet system periodi‐
cally sends completed forms to the AGNIS server, which stores the forms in a MySQL
database repository. Centers can retrieve the completed forms from the AGNIS reposi‐
tory [4]. AGNIS supports the transmission of all data required by the Program.

AGNIS serves strictly as a messaging system. In order for the messages to have
meaning, both the transplant center’s database and the FormsNet database must speak
the same language. A standard language for the representation of the HCT outcomes
data is critical to the implementation of AGNIS. The CIBMTR chose the cancer Data
Standards Registry and Repository (caDSR), which is maintained by the National
Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology
(CBIIT) [5], as that standard language because it uses an internationally-recognized
metadata framework and provides metadata management tools.

The semantics of a data point in the caDSR are expressed using an internationally
recognized framework, ISO/IEC 11179. Its high-level construct is a Common Data
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Element (CDE), which is comprised of two parts: a Data Element Concept (DEC) and
a Value Domain (VD). The DEC is a contextual representation of the data element –
roughly equivalent to the form question. The VD is a physical representation of the data
element which describes how the answer to the question gets stored in the database (data
type, maximum length, and list of allowed values if applicable) [6].

The caDSR provides a wealth of web-based metadata development, deployment, and
maintenance tools. These tools include the Curation Tool, the CDE Browser, Form
Builder, and the Sentinel Tool. The Curation Tool walks the end-user through all steps
needed to create well-defined CDEs linked to a common terminology maintained by the
NCI Enterprise Vocabulary Services. The CDE Browser allows searching the caDSR
CDEs, viewing results via a graphical user interface, and downloading the CDEs in Excel
or Extensible Markup Language (XML) format. The Form Builder website is CIBMTR’s
primary means of organizing the CDEs for mapping by the transplant centers. The CDEs
are arranged in a manner that mimics the CIBMTR’s data collection forms. The CDEs are
presented in the order in which they appear on a form along with form headers and instruc‐
tions. Finally, the caDSR’s Sentinel Tool supports monitoring changes to either CDEs or
Form Builder reports via email alerts. This monitoring helps maintain the overall metadata
quality by showing changes that may negatively impact content [5, 7].

To supplement caDSR tools, the CIBMTR has developed a custom reporting tool
that supports its robust, multi-step review process. It automatically verifies that each
CDE complies with established caDSR best practices and does not violate the CIBM‐
TR’s metadata business rules. A metadata analyst then generates detailed reports to
facilitate a comprehensive CDE review that verifies that each CDE accurately captures
the data element semantics and is constructed according to proper ISO/IEC 11179
guidelines. A more general report facilitates the review of each CDE for correct seman‐
tics by a clinician. This detailed review process ensures CDE quality.

These CDEs serve as the standard language for data transmission via AGNIS. To
use AGNIS, each transplant center or software vendor must map their data elements to
the AGNIS CDEs.

3 Current State of AGNIS Data Transmission

To date, 26 HCT recipient outcomes forms and their associated 6,795 FormsNet database
fields have been released in the caDSR. 1,515 CDEs are used to represent the database
fields on those forms. These forms represent 71.5 % of all completed recipient forms in
the FormsNet database.

Four vendors, four domestic transplant centers, and one international registry are
using AGNIS to submit data to the CIBMTR. The vendor applications are being used
by twenty-six centers. The number of centers utilizing AGNIS represents 13 % of all
domestic transplant centers. The transplant centers support an average of seven forms;
the vendors support an average of 18 forms.

Unfortunately, use of AGNIS has yet to reach its full potential. In 2014, AGNIS was
used by US transplant centers to submit 7,700 forms which represents just 4 % of all
recipient forms and 6 % of AGNIS-supported forms collected by the CIBMTR. While
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the utilization of AGNIS has increased since its initial release in 2009, this valuable
resource is still underutilized.

In the remainder of the paper, we explore some of the possible reasons for this
underutilization and potential strategies for increasing it.

4 Challenges in Integrating Data

Mapping the transplant center’s database to the CDEs is by far the largest barrier to the
utilization of AGNIS. As Warzel et al. say, “Complex metadata requirements, overlap‐
ping and competing medical terminology standards, and inconsistent information
models presented challenges and obstacles to CDE standardization” [8]. Their chal‐
lenges are similar to those in the AGNIS project, which we group into three broad cate‐
gories: complexities of the mapping process; changes to clinical practice; and inconsis‐
tencies and evolution of the data standard.

Complex Mappings. Mapping from heterogeneous database systems to a data standard
is complex. It requires an in-depth knowledge of the database system, the clinical
domain, and the business process. The transplant center’s EMR may consist of separate
databases for information about laboratory results, accounting information, HCT -
related information, and others. Consequently, the human mapper may be required to
search through several systems to obtain an accurate mapping. Additionally, the
mapping to one CDE may require applying complex business rules and calculations to
several database fields. Involving clinicians and business process subject matter experts
helps ensure that these complex mappings are semantically accurate.

Changes to the Clinical Domain. The nature of the clinical domain necessitates change.
As clinical practice changes, new CDEs are created, and old CDEs are removed in order
to maintain data that is timely and useful. Therefore, the CIBMTR periodically reviews
and revises forms to ensure that they are consistent with current medical practice. The
latest round of form revisions was released in the FormsNet application in 2013. During
this revision cycle, 26 recipient forms were revised. Of these, seven were supported by
AGNIS. In the AGNIS supported forms alone, 801 questions were added, and 580
questions were deleted. These essential changes burden the transplant centers with the
task of updating their mappings.

Inconsistencies in and Evolution of the Standard. Inconsistencies commonly exist
within a data standard [9–14]. The CIBMTR has not been immune to this universal
challenge. For example, the CIBMTR employs a form-based data management
approach. Historically, each form question was defined independently from other forms.
Therefore, semantically identical data points were defined multiple times, resulting in
inconsistencies across forms. The CIBMTR has addressed these inconsistencies by
linking the questions to a robust data dictionary. In November, 2013, the CIBMTR
released forms revised using the new data dictionary structure. They had 62 % data
dictionary instance reuse versus a previous 4 %. The new forms’ questions were more
consistent, facilitating the transplant center’s mapping effort.
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In addition, best practices for CDE development have evolved. In AGNIS version
1.0, the XML message structure allowed a particular CDE to be used only once per form.
This created a conflict between clinical practice and functional capability. For example,
forms commonly collect data for the same data element at multiple time points. Due to
XML messaging structure limits, two or more CDEs would be created for this data
element. In AGNIS version 2.0, the XML messaging structure allowed for the repetition
of a CDE within a form. Thus, more generic CDEs facilitating CDE reuse are possible.
In the long-term, this change eases the transplant center’s mapping effort. In the short-
term, the change complicates overall mapping efforts because the centers must update
their mappings to reflect the usage of the new CDEs. To minimize the impact of these
changes, new CDEs are incorporated only when the CIBMTR releases new revisions of
the forms, and comprehensive change notes that map the old CDEs to the new, seman‐
tically equivalent CDEs are provided.

5 Strategies to Resolve Data Integration Problems

While the adoption rate of AGNIS among transplant centers is low now, this is a very
exciting time for the AGNIS project. The CIBMTR has created a solid foundation for
the integration of HCT outcomes data, and there are several innovative strategies that
can facilitate the increased utilization of AGNIS. Since each transplant center is
different, there is not a one-size-fits-all approach, as center size, patient volume, and
available information technology resources will vary. Some strategies to facilitate
AGNIS adoption are: the BRIDG project; mapping aids; annotation with other stand‐
ards; and marketing AGNIS and its potential return on investment.

BRIDG. The Biomedical Research Integrated Domain Group (BRIDG) Model repre‐
sents collaboration between the NCI, the Clinical Data Interchange Standards Consor‐
tium, Health Level Seven International, and the Food and Drug Administration. Its goal
is “to produce a shared view of the dynamic and static semantics for the domain of
protocol-driven research and its associated regulatory artifacts” [15]. The model is an
implementation agnostic representation of the semantics of clinical research that does
not provide a physical database model. The CIBMTR, in collaboration with a team of
subject matter experts from BRIDG and MD Anderson Cancer Center, along with
Computer Science graduate students from the University of Minnesota and NMDP
summer interns, mapped the HCT CDEs to the BRIDG Model. This mapping served as
the foundation for the development of a BRIDG-compliant physical database for the
HCT domain. The broader HCT community is now reviewing the first version of the
physical database.

The next step of the project is to develop an integration engine that will allow for bi-
directional transmission of data between the BRIDG-compliant physical database and
the FormsNet database. The integration engine will contain all of the mappings and
business rules needed for data transmission. This strategy is helpful for primarily those
transplant centers that either do not have a database system or are looking to replace
their existing one. For them, the combination of the integration engine and the physical
database can facilitate the development of electronic data submission to the CIBMTR
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by significantly reducing their mapping efforts. In addition, they can extend the database
model to capture information specific to their needs.

For those transplant centers who already have an integrated database system, the
BRIDG-compliant physical database will not significantly reduce their mapping efforts.
To utilize the integration engine, they will still need to map their database to the BRIDG-
compliant database. While there may be fewer attributes to which to map, the mapping
effort will not be eliminated entirely.

Mapping Aids. Since the mapping of database fields to either the CDEs or the BRIDG-
compliant physical database will never be eliminated completely, innovative solutions
are needed to reduce the mapping burden. Interesting research is being conducted into
ways to do so. For example, Lin et al. have developed a process that combines CDEs,
ontologies, and natural language processing to develop a query tool that matches form
question texts to a list of potential CDEs. While the tool is still a prototype, initial tests
yielded a 90 % accuracy rate along with favorable feedback [16].

The work of Lin et al. is not the only work being done is this field. As another
example, the MAPONTO tool uses the web ontology language (OWL) and SQL DDL
declarations to map an existing database to an ontology [17]. An evaluation of this tool
found that it was “able to infer the semantics of many relational tables occurring in
practice in terms of an independently developed ontology” which resulted in “significant
saving in terms of human labors” [18].

Also, the Karma system, as described by Knoblock et al., provides a semi-automated
way to match structured data such as databases to ontologies. Karma not only determines
the most likely mapping, but it also provides an interface so that the user can modify the
mapping. The goal is to facilitate the work of the subject matter expert while shielding
them from the complexities of the mapping process [19]. Karma has been used to meet
the needs of several projects such as a mapping project conducted by the Smithsonian
American Art Museum [20].

This is just a small sampling of the work that is being done in the field of ontology
mapping, and it indicates that there is significant work upon which a mapping aid for
AGNIS can be built.

Annotation of Other Standards. EMRs use a wealth of standards, including controlled
vocabularies such as LOINC, SNOMED CT, and ICD, which liberate one from the curse
of free text. Ideally, there would be one standard used for the capture of all clinical
information. Until that time, annotating the CDEs used by AGNIS with the appropriate
code from the most commonly used standards may help facilitate the mapping of a
transplant center’s database to the CDEs. Annotation of multiple standards would serve
as a type of Rosetta Stone. The transplant center may not understand all of the standards,
but knowing part may help them understand the whole. The effort needed to annotate
the CDEs with other standards would be significant. Prior to beginning the annotation
project, it would be critical to survey the AGNIS end-users so that work could begin on
the highest-impact standards first.

Communicating and Marketing the Standard. To date there has not been a strong
effort to market the AGNIS application. The primary means of marketing employed the
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CIBMTR websites, AGNIS user groups, presentations at transplant conferences, 27
visits to transplant centers, and word of mouth. Despite these efforts, some centers are
not aware of either AGNIS or the data elements defined in the caDSR.

In addition, clearly communicating the return on investment that might be realized
with an AGNIS implementation can help facilitate its adoption. The CIBMTR has
produced documentation about the estimated costs associated with the mapping process.
Unfortunately, the documentation does not consider the potential long-term cost savings
of the mapping effort [18]. Surveying current AGNIS users to better estimate those cost
savings would provide potential users with a clearer understanding of the benefits of
AGNIS and help them advocate for an AGNIS implementation project.

6 Conclusion

The AGNIS project is an excellent case study of the universal challenges in data stand‐
ards adoption. The complexities of the mapping process, the changing nature of the
clinical domain, and inconsistencies within the standard itself hinders the widespread
adoption of data standards. While progress has been made since the 2008 update on the
NIH Roadmap for Reengineering Clinical Research [21], of which AGNIS is a part,
additional work remains.

The move from an underlying form-based model to the BRIDG model, with its focus
on a structure common to all protocol-driven research, has potential to lower the barrier
to adoption. Transplantation is an area of biomedical research where data sharing has
been essential and productive. It stands to reason that the value of a shared domain model
and semantics for protocol-driven research will be realized in due time in other fields,
whether the motivation is financial, regulatory or scientific. Clear, quantitative commu‐
nication of the benefits of standards adoption along with tools and resources to facilitate
its adoption will go a long way towards bridging the gaps in data standard utilization.
After all, a standard is worthless unless it is being used.
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Abstract. The task of assigning classification codes to short medical
text is a hard text classification problem, especially when the set of pos-
sible codes is as big as the ICD-9-CM set. The problem, which has been
only partially tamed for a subset of ICD-9-CM, becomes even harder in
real world applications, where the labeled data are scarce and noisy. In
this paper we first show the ineffectivenesss of current Text Classification
algorithms on large datasets, then we present a novel incremental app-
roach to clinical Text Classification, which overcomes the low accuracy
problem through the top-K retrieval, exploits Transfer Learning tech-
niques in order to expand a skewed dataset and improves the overall
accuracy over time, learning from user selection.
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1 Introduction

The International Classification of Diseases (ICD) is a standard, broadly used
classification system, that codes a large number of specific diseases, symptoms,
injuries and medical procedures into numerical classes. Assigning a code to a clin-
ical case means classifying that case into one or more particular discrete class,
hence allowing further statistics studies and automated calculations. The possi-
bility to have a discrete code instead of a text in natural language is intuitively
a great advantage for data processing systems. The use of such classification is
becoming increasingly important for, but not limited to, epidemiological, eco-
nomic and policy-making purposes.

The presentation of this work has been partly funded by FIRB project Information
monitoring, propagation analysis and community detection in Social Network Sites.
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While the ICD Classification is clearly useful on many aspects, physicians and
clinical personnel think and write in natural language and, after that, assign the
right code to their text description aided by manuals, guidelines, or their own
memory.

The ICD-9-CM contains more than 14 thousand classification codes for dis-
eases, meaning that manual methods are inadequate to locate the right classes
in a real-world scenario, even for expert clinical coders. In some medical depart-
ments the codes used are just a tiny subset of the ICD classification set, hence
the problem is reduced, but in many other and in generic departments like the
Emergency, this subset covers a big portion of the classification codes. An accu-
rate system that assist the medical personnel in the task of coding is needed to
reduce costs and to provide better standardization of the medical data (Table 1).

Table 1. Samples of medical text with the associated ICD-9-CM codes

Clinical short text ICD-9-CM labels

5-year-old male with cough, normal slightly hypoventilatory
chest x-ray, no pneumonia

786.2

Urinary tract infections. Normal sonographic appearance of
the kidney bilaterally. Trace amount of nonspecific free
fluid in the pelvis

599.0, 780.31, 780.39

Vesicoureteral reflux followup. Normal renal ultrasound.
Mild intermittent left hydroureter proximally at the renal
pelvis

593.70, V13.09, 593.5

Among the many attempts to simplify or automate the coding task of medical
text we can distinguish between two approaches: the Information Retrieval
(IR) of codes from a dictionary and the machine learning or rule-based Text
Classification (TC).

In the first approach a typical boolean IR model allows the personnel to
search the dictionary for a set of one or more terms. Often these systems allow
also to search for disjunction and conjunction of terms (boolean queries), exact
text matching (full-text search) and the use of jolly characters, to expand the
queries (regular expressions). Nevertheless these methods represent the most
used techniques in real world applications, due to their simplicity of implemen-
tation and their ability to cover seamlessly an entire set with thousands entries.

Over the last years, TC has received attention as a valuable solution to
medical text coding [3,8]. The described problem fall into a TC problem with
some properties:

1. Multi-class Classification: the number of output classes (ICD codes) can be
very high, contrary to the simplest binary classification.

2. Multi-label Classification: a text instance can be associated with more than
one label. This is true for two reasons: because a text can include different
diseases (e.g. injuries to different arms) and because there might need more
than one code to describe a clinical condition (primary and secondary).
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The TC approach to the problem is the most promising one, since it aims
at providing automatic code assignment, without any user interaction. Unfortu-
nately, even getting a clean and balanced training set of labeled medical text, TC
achieved great results on small datasets, but almost fails in classifying large-scale
taxonomies, like the ICD, in both classification accuracy and performance. The
effectivenesss of cutting-edge classification algorithms is heavily reduced when
applied to very large taxonomies. We will conduct a short survey on classification
accuracy in Sect. 3.1, showing the accuracy degradation over increasing number
of classes.

The code retrieval approach that we propose is a mixed approach, as it shares
features and ideas of both IR and TC. The proposed approach is based on learn-
ing from labeled samples and auxiliary sources, retrieving the K most relevant
classes based on term-frequency similarities and improving the ranking by learn-
ing from the users feedback. The impossibility to achieve a reasonable accuracy
on a large class space, together with the online assisted coding approach, leads
to prefer a top-K retrieval model over a strict text classifier. Instead of precisely
selecting the right number of labels for a medical text, we are interested in show-
ing the most relevant codes, and then let the user to choose the appropriate ones.
Moreover this ensures associations with the right codes, allowing a running sys-
tem to further learn and improve itself, using the users’ selection as a continue
flow of training data.

In order to address the lack of high-quality annotated examples we took some
ideas from Transfer Learning, that is a set of methods to extract useful knowl-
edge from different but related auxiliary domains [16]. Using the ICD code as an
attribute to match related contents, we augmented our training set with knowl-
edge from auxiliary sources (e.g. Wikipedia, ICD Manuals, etc.), thus obtaining
a model with a greater accuracy.

In Sect. 2 we present the related work. In Sect. 3 we outline the addressed
problem and we lay the foundations for the proposed approach. In Sect. 4 we
present the approach in further details showing our implementation. In Sect. 5
we evaluate the accuracy of the system in different settings on medical datasets.
In Sect. 6 we summarize the contributions of the paper and propose further
experiments.

2 Related Work

The goal of fully automating the ICD-9-CM assignment of codes to medical
text is unrealistic for many practical reasons we will outline hereafter. Neverthe-
less some attempts and studies have been made by researchers in the last two
decades, most of which have been conducted on a small subset of the coding
classes. Larkey and Croft [10] trained three statistical classifiers for the auto-
matic assignment of ICD-9 codes, and then combined their results to obtain a
better classification. Their work is based on discharge summaries, for which the
number of labels per document is from 1 to 15. This combined classifier pro-
duces a ranked list of the top-K most relevant codes, which makes it very similar
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to our approach, but the instances domain is different, as discharge summaries
have different terms distribution than short diagnosis. Lussier et al. [13] stud-
ied the feasibility of automating the ICD-9-CM coding task, concluding that
more external knowledge bases and manual revisions where needed to improve
accuracy.

The lack of a shared, publicly available training and testing dataset with
labeled medical text discouraged further reasearches, until the CMC Challenge
in 2007 [17]. The challenge consisted in building a classifier that could auto-
matically encode medical text in ICD-9-CM classification. For the challenge
purposes, data were collected from the Cincinnati Childrens Hospital Medical
Centers (CCHMC) Department of Radiology. Since code annotation is a difficult
task, each document in the corpus was evaluated by three expert annotators. A
gold annotation was created by taking the majority of the annotators. With
only 45 ICD codes, this corpus is still really far from the ideal. A group of 50
teams and individuals submitted their results for the challenge. The best results
for classification accuracy have been scored by rules-based systems [7], which
dominated the challenge. These systems were based entirely or partly on hand-
crafted expert rules. In the challenge context this was a feasible approach and
has been proved to be the best model in terms of prediction accuracy. However
it would be very time-consuming, if not impossible, to hand-craft expert rules
for all ICD codes. Another approach is the machine learning one [20], in which
the classifier is automatically built from the training data, without the need for
human intervention. We will show in Sect. 3.1 that the accuracy tends to drop
dramatically as the number of classes increases [12].

3 ICD Code Retrieval

Our work is focused on the practical problem that medical personnel face on a
daily basis. Medical personnel manually assign ICD codes while or after exami-
nations and procedures. The code assignment task has become part of the pro-
cedure and is not an a posterieri practice, therefore a coding system should help
the personnel during the coding. This significant property of the problem should
be exploited with a new approach to overcome the low accuracy of automated
solutions.

3.1 Text Classification Accuracy Decay

In the task of Multi-label TC we have a set of text instances such that each
instance must be associated with a subset of all possible classes Y = {c1, ..., cn}.

TC on large taxonomies, like ICD-9-CM codes set, is a major challenge for
state-of-the-art machine learning algorithms, including Support Vector Machines
(SVM). Machine learning algorithms, like SVM, have achieved great results in
classifying small text collections [4], but proved to be less and less accurate when
the number of classes starts growing [4,12].
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As discussed in [11,18], current machine learning methods need significant
improvement when applied to very large-scale datasets. Effectiveness of state-of-
the-art models is unacceptable on large-scale applications, partially due to the
data sparseness in rare classes.

In order to show the relation between number of classes and classification
accuracy, we conducted a short survey on classification performance, summa-
rized in Fig. 1. Accuracy values are measured as F1 score, a popular measure
of accuracy in classification problems. Given the number of true positive results
(TP), false positives (FP) and false negatives (FN), the F1 score is calculated as:

F1 =
2TP

2TP + FP + FN
(1)

The Macro-averaged F1 is the average of the F1 scores of each instance in
the specific test collection.

Fig. 1. Values of accuracy (Macro-averaged F1) using SVM on datasets with different
|Y| value (classes space size). Trend and class space scale are logarithmic.

Results from various multi-label classification experiments on small, medium
and large popular datasets are shown. In particular, we selected results of Sup-
port Vector Machines (SVM) algorithms on collections with different size |Y| of
the target class space Y: |Y| = 10 and |Y| = 115 are from Reuters 21578 [4],
|Y| = 45 is the best result for the CMC Challenge [20], |Y| = 163 is from the
LookSmart web directory [2], |Y| = 22, 803 is from the MERG subset of Yahoo!
Directory [12], |Y| = 132, 199 is from Yahoo! Directory [11]. All the results are
obtained using SVM algorithms except for the CMC Challenge (|Y| = 45), which
derives from a rule-based system. Those results come from different works on
text categorization, therefore the SVM implementation may vary slightly, but
the overall degradation of accuracy on larger datasets is evident in Fig. 1.

3.2 Top-K Code Retrieval

As pointed out in [15,21], there is no obvious winner in multi-class classification
techniques. For practical problems, the choice of approach will have to be made
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depending on the constraints, e.g. the desired accuracy level, the time available,
and the nature of the problem.

In the hard version of the classification problem, a particular set of labels is
explicitly assigned to the instance, whereas in the soft version of the classification
problem, a score is assigned to the each label. The approach for interactive TC
that we refer to as the code retrieval approach solve a soft version of the TC
problem. It has been applied on the ICD-9-CM classification problem by Larkley
and Croft [10] in 1995. A similar approach is found more recently in [14] in which
a semi-automatic approach is proposed to automatically classifying the easiest
associations while hardest instances are left to the user judgement.

In a top-K IR model, results are displayed in a ranked order to the user.
Similarly, in code retrieval, most probable ICD codes for a medical text are
retrieved and displayed in ranked order. In most multi-label TC algorithms, a
ranked set of the best scoring classes is also produced, however a thresholding
strategy exists to select how many codes, from the best scoring ranked set, should
be assigned to the text instance.

In multi-label TC, different choices of the threshold strategy lead to different
accuracy results [6], while in our approach results are presented in ranked order,
without a thresholding strategy. Since no specific set of codes is assigned in
code retrieval, accuracy measures are evaluated over the first K ranked results
returned, for different values of K. Each value of K can be considered as the
number of ranked results to be shown in the first Search Engine Results Page
(SERP). It is important to note that the total lack of the right code in the
retrieved results is unacceptable: the end-user must be able to get more than K
results whenever he asks to. However, it is desirable to obtain the right codes
in the first SERP: from a user point of view, earlier researches have shown that
only 30 % of users view results past the first SERP in search engines [9], which
in the average case counts 10 results.

3.3 Transfer Learning

Dealing with a collection of real labeled data provided by partner hospitals, we
came across different issues regarding its use as a training set:

1. Data Sparseness: uncommon or specific clinical conditions are never or
rarely present in the data.

2. Unreliable Labels Association: due to the coding task complexity, the
chosen labels (ICD codes) are not always objectively accurate. The con-
struction of a reliable ground truth would involve several experts to indi-
vidually vote for every association, as in the CMC Challenge for radiology
department [17].

3. Unbalanced Distribution of Labels: while less common diseases or very
specific codes are missing or scarce, generic codes and codes related to com-
mon clinical conditions are used very often resulting in over abundance of
positive samples for a small subset of the labels space.
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When a valid training set is not available, one strategy to improve the learning
is to expand the training set with text-code associations from auxiliary sources,
a practice that falls under the Transfer Learning category. Transfer Learning
refers to the framework of methods for machine learning where training data
or classification model are extracted from an auxiliary source to augment the
original learning model. In a Transfer Learning setting a transfer of knowledge
occurs from a source domain (the auxiliary source) to the target domain (the
domain of the model you want to learn). Apart from this common meaning,
many different settings and definitions of the Transfer Learning model exist and
found application in different contexts of classification [16]. Our scenario fits in
an inductive Transfer Learning setting, in which labeled data from the source
domain are used to induce a predictive model for the target domain. Since a
lot of labeled data are available in the source domain, the inductive Transfer
Learning setting aims at improving the learning task in the source domain by
transferring knowledge from the source task.

4 Implementation

The overall architecture of the implementation is shown in Fig. 2. The main
processes of the implementation are:

1. Training Set Learning: labeled samples, consisting of diagnoses labeled
with codes from the ICD standard, compose the training set of the original
domain.

2. Trasfer Learning: external sources, like dictionary entries and encyclopedia
articles, are extracted along with the related ICD codes. Generic codes are
mapped onto a subset of the labels set Y.

3. Text Preprocessing: a set of filters is applied on the text data from both the
training set and the auxiliary domains, in order to improve the final accuracy
and reduce the index size.

4. TF/IDF Indexing: the preprocessed text data, with the associated labels,
is indexed in a vector space using standard term weighting based on terms
frequency.

5. Top-K Retrieval: when a user issue a set of words describing a disease
(query), the K best scoring labels are selected using a textual similarity model,
and provided to the user for manual picking. We evaluated three different
similarities: Vector Space Model, Language Model and Okapi BM25, in the
implementations provided by the Apache LuceneTMframework1. We found
the BM25 similarity to be the most effective similarity model for this task.

6. Learning to Rank Cycle: from the set of K relevant codes, the user select
the right ones. The user selection feedback allows further improvement of
future scoring: the issued query text is used as a positive training sample for
the hand-picked labels.

1 http://lucene.apache.org.

http://lucene.apache.org
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Fig. 2. The architecture of the ICD code retrieval implementation, showing the data
flow involved in the main processes.

4.1 Preprocessing and Indexing

In order to improve efficiency and effectivenesss of the classification and reduce
the index size, some pre-processing actions must be taken. The pre-processing
filters are applied in sequence to the textual data. Apart from the HTML filter,
which is applied only to the auxiliary domain instances coming from web sources,
the rest of the pipeline is applied on all the text involved: labeled samples,
auxiliary instances, test instances (user queries).

All the modules in the pre-processing pipeline are:

1. HTML Code Removal: this filter applies only on auxiliary instances coming
from web sources. If the text data is in unformatted form, the filter is ignored.

2. Keep Word Filter: this module ensures that the words on a list are not dis-
carded or altered by the pre-processing. The keep list is populated with abbre-
viations and expressions from the medical jargon.

3. Stop Word Removal: common words (e.g. “the”, “that”, “a”, “an”) are dis-
carded in order to reduce index size and improve effectivenesss.

4. Lowercase Filter: transforms the letters in each term to lowercase only letters,
in order to reduce the number of tokens.

5. Porter Stemmer: Porter’s stemming algorithm is applied to remove the com-
moner morphological and inflexional endings of the terms, improving recall
and reducing the index size.

6. Shingle Filter: combine together adjacent terms to form n-grams of terms,
producing a new token for every combination, therefore improving precision
without affecting the recall of single terms.

The last two filters significantly improved accuracy on both general and med-
ical TC.
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4.2 Cross-Domain Transfer Learning

For each auxiliary domain a specific crawler is required to retrieve all the doc-
uments associated with ICD codes. Each document is then processed with a
scraper, built on a set of hand-crafted regular expression, which extract different
fields of a semi-structured document, along with the attribute related to the
ICD-9-CM code (see Fig. 3).

Fig. 3. Cross-domain data extraction and mapping for Transfer Learning. New features
from different domains are extracted and decomposed into fields with specific weights.

Transfer learning is a valuable solution when the training set is small rel-
atively to the number of classes and the labels distribution is unbalanced. It
improves the recall of the system, expanding the terms in the training set with
synonyms and related words. However this augmentation may associates terms
which are not strictly related to a disease, whose relationship makes sense only
in the context of the source domain.

A strategy to address the degradation of precision is to weight differently
the domains and the fields involved in the training, as in Fig. 3. Given the set
of all fields T = {t1, ..., tr} from all domains, a weight vector W = {w1, ..., wr}
is computed, denoting the relative significance of every field. At retrieval time,
the probability of a code c with respect to a text is computed as the linear
combination of the probabilities of each single field ti associated with c, with
wi the coefficient for ti. The Apache DisMax query parser allows to alter the
similarity model by specifying different weights for different fields of a structured
document, therefore implementing the linear combination described.

The optimal weight vector W depends on the involved auxiliary domains and
can be determined empirically, selecting the vector that maximize the overall
accuracy. While this exhaustive search can be viable for the small CMC Corpus,
it becomes extremely time-consuming for larger datasets. In this case the weight
wi of each field ti can be approximated as the accuracy produced by the system
trained with ti only. This means training the system r times with a different
binary permutation of the vector W .
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Fig. 4. Accuracies (macro-averaged F1 scores) obtained training with each single field
only. The first field is the description of official italian dictionary of all ICD-9-CM
codes. From italian wikipedia pages of diseases are extracted the title and the whole
article. The real dataset are text medical reports from the ITA50.

We conducted the experiment on the ITA50 corpus [5] using the known
minimum K for every instance of the testing set. The resulting accuracies are
shown in Fig. 4 for 4 different domain fields, of which 3 fields comes from transfer
learning. The first 4 accuracies are obtained training the sistem with each single
field alone. The rightmost accuracy show the results of the linear combination
of all the fields, proving the advantage of transfer learning.

4.3 Incremental Learning to Rank

The learning to rank paradigm allows a running system to improve the ranking
relying on past user selections. Based on this idea, the proposed code retrieval
approach increase its capabilities over time, using additional knowledge and users
interaction.

In the typical scenario, when a coding assistant software is not yet deployed,
there are no labeled instances for training yet, or the ones available are not
reliable. With no other supplementary knowledge, the best and only help a non-
expert code can get is a search engine on the dictionary.

Our approach permits, within a single framework, to first relying solely on
a simple search engine and a provided dictionary. Then to increase the sys-
tem capability providing other knowledge bases, like encyclopedia and manuals,
assuming these are properly structured. Finally, every medical text issued in the
system, along with the selected codes, will contribute at improving the system.

The user query text, together with the subset of codes in the ranked list
selected by the user, is regarded as a labeled sample, in the same domain of the
training set, therefore weighted accordingly.

5 Experimental Results

Since it has not been possible to test the implementation with medical personnel,
we conducted several experiments on labeled corpuses to assess the benefits of
the proposed approach. The indexing, preprocessing and scoring tasks have been
carried out using the Apache LuceneTM framework.
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5.1 Dataset

Popular TC datasets, such as Reuters 21578 and 20 Newsgroups have been first
used to evaluate the model as a classic text categorization algorithm, obtaining
average results. The CMC corpus [17] and a set of 50 thousand text-label asso-
ciations for short clinical reports from italian hospitals (ITA50 [5]) have been
used for accuracy testing on medical text data.

Since there is no publicly available English dataset for medical classification
with a label space Y larger than 45 codes, the ITA50 corpus represented the
most reliable dataset to validate our approach in a realistic scenario. The ITA50
corpus is a set of human labeled samples from real hospital clinical reports, edited
in italian language and coded accordingly to the ICD-9-CM guidelines. Albeit
the learning sources involved in training and Transfer Learning are obviously
language dependent, the proposed approach abstracts from any specific language.
The ITA50 corpus is composed of 14,304 different medical records and 50,078
text-label associations, meaning an average of 3.5 labels per text record. The
distribution of classes among the records is strongly unbalanced: 3,259 different
classes of which 1,061 associated with only 1 record instance, while the 4 most
frequent classes alone counts 5,187 records. The average number of words per
text record is 18.

5.2 Evaluation

The commonly used performance evaluation criteria for multi-label classification
is the F1 accuracy score. Since our approach is strongly related to Information
Retrieval, significant measures considered in our tests comprise also precision
and recall measures at specific K values. In fact, since a fixed K of results will
be returned, it is crucial to investigate recall and precision over K.

The precision score denotes the fraction of TP in the returned results:

Precision =
TP

TP + FP
(2)

The recall score denotes the fraction of TP in the set of right codes:

Recall =
TP

TP + FN
(3)

In the evaluation on the ITA50 corpus we considered the total set of ICD-9-
CM classes (14,170 in the italian dictionary), despite the ITA50 comprises only
3,259 labels, of which 1,061 labels are either in the training or in the testing set.
Given the imbalance in the number of samples per class, we splitted the corpus
with a ratio 10/90 between testing and training set.

Using values of K from 1 to 100 we evaluated the overall system accuracy
under precision, recall and macro-averaged F1, as shown in Fig. 5.

With only 3.5 right labels per test instance on average, accuracy measures
taking into account false positives (i.e. precision and F1) are clearly disadvan-
taged for larger values of K. We are instead mostly interested in the recall of the
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Fig. 5. Recall, precision and macro-averaged F1 evaluated for a different number K of
returned scores, on the ITA50 corpus [5].

retrieval over K values, which can be viewed as the probability to find the entire
set of right codes within the first K results.

Evaluation on the CMC corpus has been carried out using transfer learn-
ing from Wikipedia English (articles title and body) and from the Centers for
Medicare and Medicaid Services (abbreviated and full descriptions in dictio-
nary). As for the accuracy of strict TC classifiers, the accuracy of soft classifiers
depends on the number of classes involved, as shown in the top-k experiment on
the CMC corpus. Considering a SERP of 10 results, the probability of getting
all the right codes in the first SERP is quite different in the two datasets: this
probability is 97.3 % for the 45 codes of the CMC corpus (Fig. 6) and 56.7 % for
the 3,259 codes in ITA50.

ICD code retrieval is a soft classifier in which it returns k classes sorted by
probability of relevance, therefore no thresholding strategy is defined. Conversely,
the CMC challenge systems were hard classifiers, returning a definite set of
classes for each sample of the testing set. In order to compare a soft classifier
with hard classifiers we defined two elementary thresholding:

– Fixed K: K is fixed to 1, i.e. only the first class is retrieved. Threshold is fixed
for all samples of testing set, this can be seen as the worst case scenario.

Fig. 6. Recall, precision and macro-averaged F1 evaluated for a different number K of
returned scores, on the CMC corpus [17].
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– Perfect Ks: for each sample s of the testing set, the top Ks are retrieved,
where Ks is the exact number of labels for the sample s. This emulates an
ideal thresholding strategy, therefore can be seen as the best case scenario.

Table 2. Final results for top 8 submission of CMC challenge [1], sorted by macro-
averaged F1, in comparison with ICD Code Retrieval scores in the two different thresh-
olding settings.

Team/System Ma-F1 Challenge Rank Approach

ICD Code Retrieval (Perfect K) 0.806 BM25 + Transfer learning.

LMCO-IS & S 0.776 5 N/A

Szeged [7] 0.7691 1 Rule based + C4.5 + Maximum entropy classifier

ICD Code Retrieval (Fixed K) 0.756 BM25 + Transfer learning.

LLX 0.7343 21 N/A

GMJ JL 0.7334 6 N/A

SULTRG 0.7322 7 N/A

University at Albany [8] 0.7291 2 Rule-based + synonyms from www.icd9data.com

PENN [3] 0.721 4 Rule-based + synonyms from MeSH

University of Turku [20] 0.7034 3 SVM-like (RLS) + concepts from UMLS

Knowing the right number K of codes for each instance in the testing set,
we selected the top-K codes from our implementation, thus yelding a macro-
averaged F1 of 80.6 %, which is higher than the best scoring rule-based system
in the challenge (macro-averaged F1 76.9 % [7]). Even setting a global fixed K
to 1, the resulting macro-averaged F1 is 75.6 %, which is slightly lower than the
best system, but still higher than any machine-learning approach in literature
[19,20]. As shown in Fig. 6, we then evaluated precision, recall and F1 for each
globally fixed K between 1 and 10 (Table 2).

6 Conclusion and Future Work

We have presented and evaluated a complete approach for assisting users in
diseases coding. Our approach consider two related problems of ICD computer
assisted coding systems: the low accuracy in automated TC for large labels space
and the lack of balanced, well coded labeled samples.

The low accuracy problem is first established by surveying related works,
showing that the accuracy of multi-label TC algorithms is strongly affected by
the number of target classes. In order to overcome the difficulty, we have proposed
an end-user oriented approach that aims at maximizing the recall of returned
results, allowing the user to select the right labels in the smallest possible set of
best-scoring matches. In the worst case, when the selected target subset of ICD
is bigger than a few hundred codes, navigation through more than one results
page could be necessary.

The unavailability of an adequate training set has been tackled through
Transfer Learning techniques: the proposed incremental learning strategy allows
to bootstrap with an acceptable search engine, which then improves its accu-
racy through machine learning on users selection feedback. We have shown the
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substantial benefit of using a combination of multiple sources with respect to a
single source (e.g. training labeled samples).

Analysis of unreviewed labeled data coming from italian hospitals has pro-
vided a deeper understanding of the real problem hardness, addressing research
towards more realistic solutions. Evaluation on the CMC corpus shown evidence
of the accuracy of the proposed approach in comparison to the best-scoring
systems in literature.

Future work will investigate hierarchical implementations of the proposed
soft classifier, in order to leverage the taxonomy of the ICD-9-CM for improved
accuracy. A more solid validation must be carried out on a large labeled corpus
to show the effectiveness of the proposed approach. A period of expert usage is
needed to assess the improvement of the system over time through the learning
to rank process.
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Abstract. The integration of multidimensional, longitudinal data acquired using
the combined use of structural neuroimaging [e.g. magnetic resonance imaging
(MRI), computed tomography (CT)] and neurophysiological recordings [e.g.
electroencephalography (EEG)] poses substantial challenges to neuroinformati‐
cians and to biomedical scientists who interact frequently with such data. In trau‐
matic brain injury (TBI) studies, this challenge is even more severe due to the
substantial heterogeneity of TBIs across patients and to the variety of neurophy‐
siological responses to injury. Additionally, the study of acute epileptiform
activity prompted by TBI poses logistic, analytic and data integration difficulties.
Here we describe our proposed solutions to the integration of structural neuroi‐
maging with neurophysiological recordings to study epileptiform activity after
TBI. Based on techniques for TBI-robust segmentation and electrical activity
localization, we have developed an approach to the joint analysis of
MRI/CT/EEG data to identify the foci of seizure-related activity and to facilitate
the study of TBI-related neuropathophysiology.

Keywords: Magnetic resonance imaging · Computed tomography ·
Electroencephalography · Traumatic brain injury · Big data · Segmentation ·
Seizure · Neurophysiology

1 Introduction

The advent and proliferation of multimodal neuroimaging approaches for the study of
brain structure and function have greatly facilitated both clinical and basic science
advances. With such progress, however, has also come the necessity to accommodate,
share, process and analyze very large amounts of data. Neuroimaging scans acquired
using techniques such as magnetic resonance imaging (MRI) and computed tomography
(CT) have the advantage of relatively high spatial resolution, though simultaneously the
potential disadvantage of requiring large amounts of data storage and of computation‐
ally-intensive algorithms for their analysis. Techniques such as functional MRI (fMRI)
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involve the acquisition of four-dimensional (4D) data (3 spatial dimensions and time),
leading to even higher demands from the standpoint of data storage and computation.
On the other hand, neurophysiological recordings acquired using methods such as elec‐
troencephalography (EEG) benefit from high temporal resolution (on the order of milli‐
seconds), though they suffer from relatively poor spatial resolution compared to MRI.
Nevertheless, the use of anatomically-informed inverse localization procedures [1] has
greatly widened the horizon of applicability for EEG, though at the expense of
compounded, multiplicative increases in data storage allocation and computational time
requirements. For these reasons, improved approaches to the problems of storage,
management, sharing and analysis of combined MRI/CT/EEG recordings are necessary.

The task of multimodal neuroimaging data integration and joint analysis is particularly
challenging in studies of traumatic brain injury (TBI), where the structural profile of the
brain can change dramatically over the days and even hours following injury. In TBI
patients, large alterations in the biochemical, neurophysiologic and metabolic activity of the
brain can occur very rapidly and may require immediate clinical intervention and moni‐
toring. For this reason, neuroimaging the TBI brain to inform clinical decision-making can
necessitate frequent acquisition of CT and MRI scans to monitor injury evolution and to
formulate appropriate treatments. What is more, TBI is a very heterogeneous condition
because the spatiotemporal profiles of brain lesions are extremely difficult to quantify
without substantial input from neuroimaging technologies.

Electrophysiological recordings via continuous EEG (cEEG) are used routinely in
neurointensive care units to identify changes in the baseline electrical activity of the brain
as well as neuropathophysiological manifestations such as epileptiform spiking, seizures,
and more serious conditions such status epilepticus [2]. Other monitoring techniques which
are used routinely in neurointensive care units include magnetic resonance spectroscopy
(MRS), blood assays, depth electrode recordings, positron emission tomography (PET),
etc. The integration, analysis, and interpretation of data being made available from so many
sources can pose substantial challenges not only to clinicians but also to biomedical
researchers who aim to integrate, analyze and translate basic findings about TBI into infor‐
mation which has broad bedside relevance and applicability.

In this paper, we aim to describe our proposed solutions to the task of integrating
structural neuroimaging with neurophysiological recordings to study epileptiform
activity prompted by TBI. Based on techniques which we and our collaborators have
pioneered for the purpose of TBI-robust segmentation and electrical activity localiza‐
tion, we have developed a set of approaches for the joint analysis of MRI/CT/EEG data
acquired from TBI patients. The integration of these methods across modalities can
facilitate the study of TBI-related neuropathophysiology by identifying and analyzing
the spatiotemporal properties of seizure-related activity and can contribute to the formu‐
lation of TBI patient-tailored interventions and treatments.

2 Methodologies

In what follows, a series of integrated   techniques for the acquisition, analysis and
interpretation of MRI/CT/EEG   data acquired   from TBI   patients are   illustrated.
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The approaches described below have resulted from over half a decade of collabo‐
rative research between the Laboratory of Neuro Imaging (LONI) and Institute for
Neuroimaging and Informatics (INI) at the University of Southern California and the
Brain Injury Research Center (BIRC) at the University of California, Los Angeles.
In addition to detailed descriptions of the analysis steps involved, we outline some
of our numerous challenges and potential solutions for the integration of vastly
different neuroimaging modalities in the attempt to combine knowledge of brain
structure with information provided by neurophysiology techniques.

2.1 Neuroimaging Data Acquisition

Before studies are conducted, each patient or her/his legally-authorized representative
provides informed written consent as required by the Declaration of Helsinki, U.S. 45
CFR 46. Neuroimage volume acquisition is conducted with the approval of the local
ethics committees at the research institution where data are acquired. Brain imaging data
sets are fully anonymized and stored on the LONI Image Data Archive (IDA), and no
linked coding or keys to subject identity are maintained.

One important feature of the approach we use for neuroimaging data integration is
that it accommodates multimodally-acquired data. This is very helpful in studies of TBI,
where more than one MRI acquisition sequences are often required to identify the nature
and extent of pathology. In our own studies, MRI volumes are acquired at 3.0 T using
a Trio TIM scanner (Siemens Corp., Erlangen, Germany), although various field
strengths, voxel sizes and sequence parameters can be used. The acquisition protocol is
designed to optimize the amount of information which can be inferred from multimodal
MRI, while minimizing the amount of time which the patient must spend in the scanner.
The protocol itself consists of magnetization prepared rapid acquisition gradient echo
(MP-RAGE) T1-weighted imaging, fluid attenuated inversion recovery (FLAIR), turbo
spin echo (TSE) T2-weighted imaging, gradient recalled echo (GRE) T2-weighted
imaging and susceptibility-weighted imaging (SWI; see Fig. 1). For T1-weighted
volumes, typical acquisition parameters include a repetition time (TR) of 1900 ms, an
echo time (TE) of 3.52 ms, a flip angle (FA) of 9 degrees, an inversion time (TI) of
900 ms, a voxel size of 1 mm3, a phase field of view (FOV) of 100 %, a matrix size of
256 × 256 × 256 and 100 % sampling. A detailed list of typical parameters for the other
sequence types is provided in [2]. For diffusion tensor imaging (DTI), volumes with up
to 68 diffusion gradient directions are typically acquired using a 12-channel coil and a
sequence with the following parameters: TR = 9.4 s, TE = 88 ms, flip angle = 90°, voxel
size = 2 mm3, acquisition matrix = 128 × 128 × 128. Two non-diffusion weighted
volumes are usually acquired for each patient (  values: 0 s/mm2 and 1,000 s/mm2).
Conventional computed tomography (CT) scans are also obtained. Continuous electro‐
encephalographic (cEEG) measurements are acquired and monitored continuously at
the patient’s bedside starting immediately after admission to the neurointensive care unit
(NICU).
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Fig. 1. Visualization of a TBI brain, showing healthy-appearing GM/WM (translucent), the
ventricular system (blue), edema (green), and hemorrhage (red) (Color figure onlilne).

2.2 MRI Processing

Prior to any analysis, MRI, CT and DTI volumes are co-registered using a 12-param‐
eter affine registration. Image processing is performed using the LONI Pipeline
environment (pipeline.loni.usc.edu), including operations such as bias field correc‐
tion, skull stripping, and multimodal volume co-registration. Hemorrhagic tissues are
segmented from SWI and GRE T2-weighted volumes, whereas edematous tissues are
segmented from TSE T2–weighted and FLAIR volumes (see Fig. 1). The details of
the procedure for pathology identification are detailed elsewhere [4]. FreeSurfer
(freesurfer.net) is utilized to segment healthy-appearing white matter (WM), grey
matter (GM), and cerebrospinal fluid (CSF) from T1–weighted volumes, as well as
to perform regional parcellation [5, 6]. Briefly, the cortical surface of each patient
is reconstructed as a triangular tessellation with an average inter-vertex distance
of ~1 mm to produce a high-resolution, smooth representation of the WM/GM inter‐
face [7]. At each tessellation vertex, cortical thickness is measured as the distance
between the cortical surface and the WM/GM boundary. A total of 74 cortical struc‐
tures (gyri and sulci) are identified and parceled using a probabilistic atlas [8].
Neuroanatomical labels are assigned to voxels based on probabilistic information
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estimated from a manually-labeled training set; this method uses the previous prob‐
ability of a tissue class occurring at a specific atlas location as well as the proba‐
bility of the local spatial configuration of labels given each tissue class. The
technique is comparable in accuracy with manual labeling [9].

TBI-related lesions are segmented from GRE/SWI/FLAIR volumes as outlined else‐
where [10, 11], the scalp is segmented from T1–weighted MRI, and hard bone is segmented
from CT volumes. Eyes, muscle, cartilage, mucus, nerves, teeth, and ventriculostomy
shunts are labeled based on T1/T2 MRI. 3D models for all tissue type are generated in 3D
Slicer (slicer.org), which is also used to generate 3D models and visualizations of TBI-
related pathology and of healthy-appearing tissues. Manual correction of segmentation
errors is performed by three experienced users with training in neuroanatomy.

2.3 DTI Processing

For DTI, eddy current correction is first applied to each volume, which is subsequently
processed using TrackVis (trackvis.org) as well with the Diffusion ToolKit to recon‐
struct fiber tracts using deterministic tractography. A brain mask is first created using
FSL [12] to minimize extra-cerebral noise, and TrackVis is then used to reconstruct and
to render fiber tracts, which can subsequently be loaded and viewed in 3D Slicer or using
other tractography visualization software. Fiber bundles shorter than 1.5 cm are
discarded. Fiber tracts which do not intersect pathology-affected regions can be
discarded. To reconstruct tracts of specific interest, seed regions can placed in particular
locations (such as the brain stem and the internal capsule in the case of the corticospinal
tract, CST), and the WM tracts intersecting these regions can then be isolated (Fig. 2).

2.4 Longitudinal Structural Analysis

Importantly, longitudinal studies can be accommodated in our approach. For example,
in a typical study, scanning sessions are held both several days (acute baseline) as well
as 6 months (chronic follow-up) after TBI, and the same MRI scanner and acquisition
parameters are used in both cases. Lesion volumes are measured in cubic centimeters
based on pathology models created in 3D Slicer or ITKSnap (itksnap.org). The percen‐
tages of longitudinal volumetric changes in pathology as well as in healthy-appearing
WM and GM are calculated as , where  and  are the volumes of the
respective structures at times  and , respectively (Fig. 4).

Several ways to analyze longitudinal changes in WM connections are available in
our environment. To quantify the manner and extent to which fibers are affected by
pathology, the sum over the lengths of fibers intersecting pathology-affected regions can
be divided by the sum of the lengths of fibers in the whole brain, thereby yielding the
percentage of WM connections in the brain which intersect the primary injury. This is
useful because it provides useful information on how broadly DAI may have affected
each patient. Alternatively, changes in connectivity strength between different regions
can be investigated to determine how severely the wiring of the brain has been affected
by TBI. Finally, changes in the ratio of T1 to T2-weighted image intensities can provide
a surrogate measure of axonal demyelination [13], which allows us to study long-term
effects of brain injuries (Fig. 3).
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2.5 EEG Forward Modeling

Integrating structural MRI, CT and DTI data with neurophysiological recordings poses
daunting complexities in the context of TBI research. Nevertheless, the advantages of
such an integration are manifold because it can allow the high spatial resolution of MRI/
DTI to be combined with the high temporal resolution of EEG and, thereby, to take
advantage of all techniques simultaneously (Fig. 5).

The primary sources of EEG potentials are typically currents within the apical
dendrites of cortical pyramidal cells [14]; for this reason, EEG generators are assumed
to be dipolar currents whose orientations are perpendicular to the cortical surface [15].
In the first step of EEG modeling, finite element method (FEM) models are created by
discretizing the head volume of each subject into linear hexahedral isoparametric
elements using information provided by the MRI-derived segmentation. A grid-based

Fig. 2. (A) Sample MRI slices acquired from a typical TBI patient using various sequences.
Arrows indicate the locations of primary injuries. (B) Translucent models of the WM and GM (as
reconstructed based on the segmentation) with edema (cyan) and hemorrhage (red) shown using
opaque 3D models. Note the fronto-temporal spatial distribution of the injuries, typical in TBI
(Color figure onlilne).
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mesh with a mean edge length of ~2 mm, with ~450,000 linear elements and ~400,000
nodes is then generated. After co-registration of the head and sensor locations, the pres‐
ence of scalp electrodes arranged in the standard 10–10 montage is taken into account
and as many as 25 tissue types with distinct conductivity values σ are included.

A TBI-tailored version of the METUFEM software package [16, 17] is used to
compute the forward matrix A of dimensions m × n, where m and n are the number of
sensors and sources, respectively. In each volume element within the head, the electric
potential Φ is computed using linear interpolation functions [16]. For a given sensor i
and cortical source j, the matrix element aij of A specifies Φ as recorded by sensor i due
to a dipolar source of unit strength which is active at the location of source j. Row ai of
A is the so-called ‘lead field’ (LF) of sensor i, which indicates how each current dipole
contributes to the signal recorded by sensor i. Leting Jp denote the primary electric
current density of sources in the brain, the solution to the forward problem of electrical
source imaging is provided by solving for Φ subject to the boundary conditions

(1)

(2)
where V and S are the head volume and surface, respectively, n is the unit normal vector
on the surface S, and σ denotes the local tissue conductivity. A point source model [18]
is used to assign the desired locations of dipoles within the head. An equivalent discre‐
tized model is then constructed for each finite element using Galerkin’s weighted

Fig. 3. Detailed views of WM tract deformation (red arrows) due to primary TBI (edema: cyan;
hemorrhage: red). Because of the mechanical forces exerted by injuries, WM fibers are subjected
to stretching and shearing which lead to diffuse axonal injury (DAI) (Color figure onlilne).
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residuals method, and each element contribution is assembled to construct a system of
equations whose numerical solution yields the values of Φ [16].

Fig. 4. Sample longitudinal analysis illustrating TBI-related axonal demyelination in a typical
patient. Shown are demyelination maps with important WM tracts superimposed. The maps
themselves are shown in the bottom row, illustrating substantial demyelination (brighter areas)
throughout the brain, especially in peri-ventricular and fronto-temporal areas (Color figure
onlilne).
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2.6 EEG Inverse Modeling

The framework for source localization employed here involves a minimum-norm
inverse linear operator previously described and widely used [19]. Briefly, one can start
from the matrix linear equation

(3)

where x is the EEG measurements vector, A is the EEG forward matrix, s is a vector
containing the direction and orientation of each source, and n specifies the sensor noise.

Fig. 5. 3D models of the head for a sample TBI patient. In addition to the full model which
includes all tissue types (first row), lesions are shown as well (second row). Hemorrhagic lesions
are indicated by blue arrows, while edematous regions are indicated by green arrows. Note the
large craniotomy over the right hemisphere of Subject 3, which can be more easily modelled within
the FEM formalism as opposed to the boundary element method (BEM) formalism, which requires
closed surfaces when approximating the shape of the head (Color figure onlilne).
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To identify s from x using a linear approach, an inverse operator W can be calculated
such that the mean difference  between the estimated and true inverse solu‐
tions is minimal. If n and s are normally distributed with zero mean, W is of the form

(4)
where C and R denote the sensor noise and source covariance matrices, respectively
[19]. Normally-distributed white noise can often be assumed for both sources and
sensors, such that R and C are within a constant multiplying factor of the identity matrix.

In EEG inverse localization, the primary interest is in identifying cortical activity
whose magnitude is much larger than that of the noise. Because of this, each row of the
inverse matrix should be normalized based on the noise sensitivity of W at each location
[19]. This allows activity at locations with relatively low noise sensitivity to be assigned
a greater weight than at locations with higher noise sensitivity. Noise sensitivity esti‐
mation can be implemented by projecting the noise covariance estimate onto W, such
that the noise sensitivity-adjusted inverse operator is pre-multiplied by a diagonal noise
sensitivity matrix T whose matrix elements tii are specified by

(5)

and the noise sensitivity-normalized inverse becomes

(6)
Applying the noise-normalized inverse operator to the acquired EEG signals

produces a matrix of inversely-localized signals whose rows correspond to cortical
locations, whose columns correspond to time points in the EEG recording, and whose
units are nAm (electric current dipole strengths). Upon noise normalization, the values
of the signals localized on the cortex follow a T distribution with a very large number
of degrees of freedom (d. f.) which approaches a normal distribution in the limit d.
f. → ∞. For any given cortical location, the value of the t statistic associated with that
location indicates the likelihood that the neuronal source positioned there is electrically
active. Cortical maps of t statistics are generated using purpose-built software in order
to visualize and identify the cortical areas whose activation is most likely to have
produced the EEG signals recorded during each epileptiform discharge.

2.7 Epileptiform Signal Analysis

Epileptic seizures are detected by an NICU nurse or by a neurointensivist within the
first week post-injury either online, during EEG screening, or via the total power trend
seizure detection approach [3]. To identify interictal epileptiform events, cEEG record‐
ings are examined by a neurophysiologist using custom software. For the purpose of
most studies, epileptiform discharges are defined as high-frequency (>80 Hz), high-
amplitude (>100 mV) bursts or runs of interictal activity which are not consistent with
EEG artifacts due to the following causes: (1) electromyographic activity (20–80 Hz),
(2) glossokynetic movement, (3) ocular movement, (4) electrocardiographic activity,
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(5) blood vessel pulsation, (6) respiration, (7) scalp-localized perspiration, (8) electrode
disconnection, (9) alternating currents (ACs), and (10) environment-related movement.

Upon identification, all EEG recording segments related to interictal epileptiform
events are isolated for subsequent analysis and detrended. Short (~3 s) portions of EEG
recordings which either precede or follow each interictal epileptiform event are also
saved separately and treated as baseline activity which is used to compute the noise
covariance matrix for inverse localization, as described in previous sections. Following
the calculation of the noise-normalized inverse operator , all EEG-recorded neural
activity is localized and the cortical location(s) which are most likely to have generated
each epileptiform discharge (i.e. their foci) is/are identified by thresholding the cortical
map of t statistics which had been generated as previously described.

After identifying epileptiform focus locations, the distance(s) between each of these
and the location(s) of primary TBI is/are computed. In the first step, a 3D model of each
hemorrhagic or edematous lesion is generated based on the MRI-derived segmentation.
In the second step, the shortest Euclidian distance D between each focus and the 3D
boundary of each lesion is calculated. In the third step, the location of each epileptiform
activity focus is labeled as either intra-, peri- or non-lesional based on the distance
between it and the lesion(s) (Fig. 6).

2.8 Accommodation of Semantic Conflicts

Implementation of this project has required substantial accommodation of semantic
conflicts between data types to support the process of dynamic reconciliation. To provide
interoperability between MRI, CT, DTI and EEG data organization systems, semantic
reconciliation was provided by integrating data specifications related to the spatial dimen‐
sion of the structural data (MRI, CT, DTI) with the temporal dimension provided by the
neurophysiological data (EEG). Structural and representational differences were found to
occur particularly at the interface between approaches to information organization and

Fig. 6. Example of inversely-localized epileptiform activity in a sample TBI patient. Shown are
values of the t statistic, as overlayed on the cortical surface. Each t statistic indicates the likelihood
that the cortex is electrically active at that location. A negative value indicates that the electric
current is oriented into the cortex, while a positive value indicates the converse. In this particular
case, the presence of a cortical locus of epileptiform electrical activity is found over right parietal
cortex.
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mismatched domains. The process of data integration has involved both static schema
integration (mapping heterogeneous schemas to a global representation, accounting for
context dependencies as precedence relationships during the reconciliation process), as
well as dynamic integration (dynamically building appropriate precedence relationships
based on already-acquired semantic knowledge).

3 Discussion

From the standpoint of structural neuroimaging data integration, using multimodal data
sets which were acquired using different sequences can pose difficulties in several ways.
Firstly, due to logistic or technical considerations, imaging volumes cannot always be
acquired at the same resolution (i.e. voxel size), which implies that voxel-based multi‐
modal analysis may require 3D interpolation. Secondly, volumes acquired using
different modalities may occasionally cover different—though mostly overlapping—
FOVs within the brain. From the standpoint of 3D co-registration, this can pose a chal‐
lenge because the spatial domains containing data to be registered do not feature an
identical extent of head coverage. This problem is often compounded when longitudinal
scans of the same patient are acquired, typically because the position of the patient’s
head within the MRI scanner differs across data acquisition sessions. Thirdly, because
the problem of patient motion in the scanner is greater for TBI patients than in most
other patient populations, motion-related artifacts can be more difficult to correct and
thus highly-robust motion correction algorithms and/or scanning sequences are very
useful in TBI neuroimaging. Fourthly, because distinct sequences can feature widely
different voxel intensity profiles (e.g. in FLAIR vs. SWI), intensity normalization both
across modalities and across time points must be implemented with greater care than in
other studies. For example, the presence of lesions can be associated with regions of
substantial hyper- or hypo-intensities across imaging modalities, which makes the use
of histogram-matching algorithms problematic. In our studies, the challenges described
above are typically addressed using sophisticated, TBI-tailored interpolation algorithms
available within the LONI Pipeline environment which are described in detail elsewhere
[20–22].

Integration of structural MRI data with DTI to study TBI in a longitudinal context
is challenging because, in addition to substantial changes in overall shape, the TBI brain
can also undergo appreciable deformations throughout the WM. Teasing out such defor‐
mations from WM losses can be very difficult because the deformation field which indi‐
cates how each point in the brain changes its location cannot always be determined with
precision. Ideally, a spatially-resolved deformation field which specifies how each point
in the brain has moved from one time point to the next should be available. Nevertheless,
because some brain changes are diffeomorphic whereas others are not, the deformation
field cannot always be determined with accuracy. Additionally, pathology may appear
or disappear between time points, which complicates the task even further. As a result,
substantial future efforts are required to formulate TBI-robust registration and segmen‐
tation methods.

176 A. Irimia et al.



Though there are numerous advantages to the integration of structural (MRI, CT,
DTI) neuroimaging with neurophysiological techniques (EEG in the present case), there
are substantial difficulties associated with the fusion of such characteristically different
types of data. As in our case, overcoming these barriers can involve the use of sophis‐
ticated, anatomically-informed methods for inverse localization of electric potentials.
Such methods have been in common use by scientists who investigate the healthy brain,
though not as common for the study of acute diseases of the brain, and virtually unheard
of—until recently—for the study of TBI. Of crucial importance for the successful inte‐
gration of EEG with structural neuroimaging is the accuracy of the forward models
which are used to calculate the inverse localization operator, primarily because the
propagation of electric currents which generate the scalp EEG is highly sensitive upon
the electric conductivity profile of the head. Thus, it is important to create realistic
geometric models of both healthy-appearing and TBI-affected tissues in order to localize
epileptiform activity with spatial accuracy. Currently, no automatic algorithms exist for
the segmentation of certain tissue types such as fat, muscle, cartilage, connective tissue,
or hard/soft bone, which can make the task of creating accurate EEG forward models
both difficult and time-consuming. For this reason, renewed efforts by computer scien‐
tists and bioengineers are needed in order to develop new or improved methods for the
segmentation of various anatomic structures in addition to those located inside the brain.

4 Conclusion

Although potentially difficult, the integration of structural neuroimaging data with
neurophysiologic recordings is very useful for studying a variety of disorders and path‐
ologies, including TBI. The use of multimodal neuroimaging of brain injury is very
useful—and indeed, essential—to identify, classify and quantify injury types and to
generate realistic models of the TBI head which can be used for EEG modeling and
inverse localization. Though epileptiform electrical activity is common in the acute stage
of TBI, little research has been devoted to understanding the underlying mechanisms of
interictal discharges, which may have an important role in the development of post-
traumatic epilepsy. The reason for this lack of information is partly due to the difficulty
of integrating EEG recordings with other types of neuroimaging which have compara‐
tively higher spatial resolution, such as MRI, CT, DTI and PET. The techniques we have
outlined for such integration have provided the ability to obtain useful insights into TBI-
related neuropathophysiology, although substantial additional research is needed to
develop automatic methods for TBI segmentation as well as for the automatic classifi‐
cation of tissues which play important roles in the accurate inverse localization of electric
potentials.
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Abstract. The rapid evolution of Next Generation Sequencing tech-
nology will soon make it possible to test patients for genetic disorders
at population scale. However, clinical interpretation of human variants
extracted from raw NGS data in the clinical setting is likely to become
a bottleneck, as long as it requires expert human judgement. While sev-
eral attempts are under way to try and automate the diagnostic process,
most still assume a specialist’s understanding of the variants’ signifi-
cance. In this paper we present our early experiments with a simple
process and prototype clinical tool for single-nucleotide variant filter-
ing, called SVI, which automates much of the interpretation process by
integrating disease-gene and disease-variant mapping resources. As the
content and quality of these resources improve over time, it is important
to identify past patients’ cases which may benefit from re-analysis. By
persistently recording the entire diagnostic process, SVI can selectively
trigger case re-analysis on the basis of updates in the external knowledge
sources.

1 Introduction

1.1 Background and Motivation

Whole-exome and whole-genome sequencing (WES, WGS) are increasingly
utilised in clinical diagnostics. As the cost of sequencing a human genome con-
tinues to decrease [1], and with the number of DNA base pairs sequenced per
$ unit reportedly doubling every five months [2], WGS-based genetic testing
is poised to become a routine diagnostic technique that can be deployed on a
large scale [3]. At the same time, allocating the computation resources needed to
process the data is also becoming increasingly affordable. Large initiatives like
the 100,000 Genome Project in the UK1, with specific focus on cancer and rare
diseases, promise to deliver genetic testing at population scale within the next
few years. As genetic diseases affect about 8 % of the UK population (5 million
people), the potential societal benefits in this country alone are substantial.

1 http://www.genomicsengland.co.uk/.
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The diagnosis of genetic disorders based on WGS data consists of two
main stages: variant calling and variant interpretation. Variant calling includes
processing the patients genome, or the exome [4,5], using a well-established
sequence of computational steps, arranged into a pipeline. This results in a large
set of variants, or single-nucleotide mutations and indels. The pipeline incor-
porates bioinformatics tools chosen from a growing pool of publicly available
distributions [6]. The second stage involves analysing the variants based on a
clinical hypothesis established from the patients phenotype, with the goal to
identify variants that support the hypothesis.

The increasing volume of genomes to be processed, along with the widespread
adoption of genetic testing in the clinic, call for scalable solutions for both phases.
The Cloud-e-Genome project, a collaboration between the Institute of Genetic
Medicine and the School of Computing Science at Newcastle University, was
funded in 20132 to investigate such solutions.

In this paper we focus specifically on the variant interpretation phase, while a
separate strand of work is concerned with the exploitation of cloud infrastructure
to address scalability of the NGS data processing pipeline [7]. A first scalability
issue concerning interpretation is that, although the gap between research and
clinical exploitation of genetic diagnostic tools is narrowing, variant interpreta-
tion remains a knowledge-intensive decision process, especially for the diagnosis
of rare disorders [8]. Diagnosis often requires the expertise of a geneticist, a
scarce and expensive resource, for all but the most common cases. This makes
the process difficult to scale, as larger number of patients are enrolled for testing.

A second scalability issue is more subtle. Diagnosis relies upon a combi-
nation of knowledge, i.e. variant-disease associations, and bioinformatics tools,
which compose the exome/genome processing pipeline. Incomplete knowledge
and limitations in the tools still result in both false positives and false nega-
tives, or in inconclusive diagnosis, with success rate reported as low as 25 % [9].
As both these elements evolve over time, however, there is an expectation that
accuracy will improve, suggesting that it may beneficial to periodically revisit
certain old cases that may have not been fully solved at the time they were first
addressed. The choice of which cases to revisit depends on the combination of
knowledge sources and tool selection used to process the original data, and the
type of updates that become available, i.e., either in a variant database or in the
pipeline. As these cases add to the volume, it is important to ensure that they
are chosen accurately.

1.2 Goals

With these premises, in this project we explore two hypotheses. Firstly, that it
is possible to automate much of the diagnostic process, by capturing its most
common elements into a simple-to-use tool which integrates with a number of
external knowledge sources. And secondly, that by recording all details of each

2 Funding for Cloud-e-Genome comes from the NIHR (National Institute for Health
and Research) and Biomedical Research Centre in the UK.
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patient investigation, from variants to diagnosis, it becomes possible to selec-
tively identify old cases that might benefit from re-analysis, in light of knowledge
and/or technology advances.

1.3 Contributions

As our first contribution we have studied a cohort of five patients, seen by the
Institute of Genetic Medicine (IGM) in Newcastle since 2012, to determine how
the temporal evolution of variant-disease associations in the ClinVar3 variation
database affected the ability to diagnose their phenotypes (Sect. 2). This small
study supports our hypothesis that complete traceability and reproducibility of
the diagnostics process is an important requirement, as it enables past patient
cases to be selectively revisited based on their original outcome and following
updates in the knowledge base.

Our second contribution is the design of a process for single-nucleotide variant
interpretation, which reflects emerging practice in the research lab while aiming
to bridge the knowledge gap between genetic research and clinical diagnosis. The
process is described in Sect. 3.

Thirdly, based on such process we have been implementing a variant inter-
pretation user tool that simplifies the decision process by integrating multiple
external knowledge sources to assist in the diagnosis. The tool, code-named
SVI and still currently under development, is described in Sect. 4. SVI currently
integrates OMIM4 and ClinVar as its main external knowledge sources. How-
ever, the architecture is designed to accept additional sources of disease-variant
associations as those may become available.

The SVI tool is still under active development, in collaboration with
researchers at the IGM.

1.4 Related Work

To the best our knowledge, most of the tools available for variant interpreta-
tion cater more to geneticist researchers than to clinicians. One example is the
Exomiser [10,11], which computes variant prioritisation according to a number
of user-defined criteria, which partially overlap with those used in SVI. Patho-
genicity prediction comes from the dbNSFP database [12]. Although the online
tool offers a simple input interface, its output would be difficult for non-specialist
clinicians to interpret.

Qiagen’s Ingeniuty Variant Analysis is a mature tool that benefits from the
HGMD variant-disease association knowledge base5. While it purportedly does
target variant interpretation in the clinic, it is a commercial product that plays
a role in the genetic diagnostics market.

3 http://www.ncbi.nlm.nih.gov/clinvar/.
4 http://www.ncbi.nlm.nih.gov/omim.
5 http://www.hgmd.cf.ac.uk/.

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/omim
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In contrast, Extasy [13] is a research product, derived from the Annotate-it
tool [14], which relies on a combination of multiple predictions from different
sources. We see this tool as a possible additional source of predictive knowledge
of pathogenicity, which we may try to integrate into SVI in the future. Once
again, however, its output is designed to be consumed by specialists.

1.5 Recording the Diagnostic Process

One novel feature of SVI is the tracking of the entire diagnostic process, for each
patient case, including human decisions as well as the dependencies amongst the
data consumed and produced at each step, from user input to diagnosis (which
may be inconclusive). This form of systematic provenance tracking aims to bring
a number of additional benefits to users. Firstly, provenance tracking provides a
way to fulfill one of our main goals, namely to determine which past cases should
be revisited, in view of updates to any of the knowledge bases involved in the
process (or when a new one is added).

Secondly, it provides both accountability and the ability to explain the deci-
sion process in detail. This is important not only because of the sensitivity of
the process domain (clinical diagnostics), but also because of the sensitivity of
the process itself. These include, amongst others, the version of external data
sources, as well as the parameters used for variant filtering, as briefly described
in Sect. 4.

Finally, as the collection of provenance traces grows and it is stored persis-
tently, SVI provides support for a variety of analytical functions that cut across
patient cases, different clinicians, and also range over time. For example, one
common use case for this capability is to establish associations amongst inde-
pendent cases, based on commonalities amongst the data involved in each of their
processes. In turn, this has the potential to make investigators more efficient by
allowing them to selectively share their cases with other group members.

1.6 Choosing a Primary Variant Database

It is broadly accepted within the genetic research community that no single vari-
ant database is sufficient to cover a broad range of pathologies. We have chosen
to use ClinVar, NCBI’s human genomic variations database, as our primary
source for integration into SVI, on account of its fast growth and good overall
coverage, as well as based on availability considerations. While several other vari-
ant repositories are available, not all of them are freely accessible (e.g. HGMD,
mentioned earlier, which requires a license), and those that are tend to focus
on specific phenotypes, or sub-specialties of clinical practice, or are exposed to
false negatives due to incompleteness. Two prominent examples are the family
of Locus Specific Mutation Databases (LSDB)6, hosted on the LOVD (Leiden
Open Variation Database) platform7, and the Decipher project [15].

6 http://grenada.lumc.nl/LSDB list/lsdbs.
7 http://www.lovd.nl/.
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LSDB. As each LSDB is locus-specific, investigations that focus on specific phe-
notypes require that the appropriate databases be selected within the family.
Although their common LOVD interface facilitates integration through pro-
grammatic access, their coverage is unpredictable and on a number of cases
they have proven unreliably incomplete for the purpose of clinical diagnosis.
Consider for instance the NM 020745.3 single nucleotide variant on Gene AARS2
(c.1774C>T). This variant has been described as being highly likely to be patho-
genic, as described in the next section. ClinVar records the variant as Likely
Pathogenic with a known associated condition, which was last evaluated in Aug.
2014, and cites the relevant support literature [16]. Searching for AARS2 variants
across the LOVD network returns hits in three additional databases: the LOVD
shared installation (LUMC - NL), LOVD at University of Melbourne, and the
Mitochondrial Disease MSeqDR-LSDB (Massachusetts). However, of these only
MSeqDR-LSDB reports the variant, and it actually cites ClinVar as the source.
Other pathogenic variants on AARS2, listed on ClinVar, are missing from the
entire network at the time of writing.

Decipher is a recent project aimed at sharing knowledge of genotype-phenotype
associations, following the rationale that “accurate diagnosis of human genetic
disorders in a clinical setting requires the identification of other patients
that share the same/similar genomic variants and comparison of their pheno-
types” [15]. The are two main reasons why Decipher is not a suitable choice for
our investigations. Firstly, it is once again focused on specific phenotypes, namely
developmental delay disorders in children. Such phenotypes are not common in
the clinical setting from which our test cases were obtained, which specialises
on rare mitochondrial diseases and degenerative disorders. Secondly, it relies on
submission of anonymised patient data. In contrast, privacy and patient consent
must be considered before uploading large scale individual genetic data in the
clinical or research setting. Decipher remains, however, one of the best examples
of international collaborative phenotype-genotype consortia. In the future we
may be able to engage with similar initiatives in the area of adult rare disease,
such as GEM.app8.

2 A Small-Scale Time-Travel Experiment

We now present a study on 5 WES patient cases, all of them with the same
phenotype (multiple mitochondrial respiratory complex deficiency), which were
solved by our geneticist researchers in October 2012. The aim of this study is
manifold. We want to determine whether or not a diagnosis can be reached using
a limited number of external knowledge sources, such as OMIM and Clinvar. We
are also interested in tracking, albeit at an anedoctal level, how the diagnostic
power of those sources changes over time, and how it compares with a diagnostic
process based solely on published literature research. Finally, we have used the
study experience to help design the process that forms the basis for our tool.
8 https://genomics.med.miami.edu/.

https://genomics.med.miami.edu/
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Table 1. Variants identified in Clinvar based on records in November 2014.

Patient Gene name Variant Clinvar 2014 Date submitted

1 C12orf65 Hom c.210delA:p.P70fs Pathogenic 22-Nov-13

2 RMND1 Hom. c.1349G>C:p.*450Serext*32 Pathogenic 04-Aug-14

3 AARS2 Het c.1774C>T:p.Arg592Trp Pathogenic 04-Aug-14

4 MTO1 Hom. c.1232C>T:p.Thr411Ile Not found

5 VARS2 Het c.1045G>A:p.Ala349Thr Not found

The study involved “going back in time”, in this case to 2012, to see whether
the knowledge that was available then was sufficient to produce a diagnosis,
either by an expert, who would be using direct research from phenotypic or
investigational search terms relevant for each case within literature search data-
bases such as PubMed, or by an automated process using ClinVar. Our findings
are summarised in Table 1, while the charts in Fig. 1 give a sense of progress in
ClinVar content over time, by reporting on the number of variants of interest
available in 2012 and in 2014.

As the cases were indeed solved with a positive diagnosis, we benefit from the
ground truth consisting of the actual variants found by the researchers. Our first
finding is that none of these variants were recorded in the 2012 version of ClinVar,
while only three out of five appear in the 2014 version. When they do appear,
their clinical significance is reported as Pathogenic/Likely pathogenic, confirming
the early researchers’ diagnosis. This seems to support, at least anecdotically, the
hypothesis that the relevance of a variant databases like ClinVar does increase
over time, complementing and possibly eventually replacing experts’ knowledge.

Next, we focused on articles that could have been used at different points in
time as reference to solve the cases. We recorded the number of papers avail-
able at the time of diagnosis, which are related to the patient phenotype, as
well as the number papers published before the date of diagnosis. Our findings,
reported in Table 2, indicate that of the five cases, only two could have been
solved using literature support. One additional case (patient 5) was solved using
direct researchers’ knowledge of association between the VARS2 gene and the
multiple mitochondrial complex deficiency phenotype.

Despite these successes, it is often the case that genetic diagnosis cannot be
reached. To illustrate, we have analysed a further patient, which to date is still
an unsolved case. Researchers manually identified eight candidate variants for
this patient in 2012, however none of those appeared in ClinVar at the time, or
could otherwise be confirmed as pathogenic. Using the 2014 version of ClinVar,
only one of the variants (c.242G>A:p.Arg81Gln on gene TYMP) was found to
be benign, while the others remain unknown. No additional literature has so far
emerged (to the best of our knowledge) to support the diagnosis.

3 Variant Interpretation for Genetic Diagnosis

We now describe the process of single-nucleotide variant interpretation that
underpins our clinical tool, SVI. In a clinical setting, the interpretation process
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(a) Variants on patients’ genes filtered for their relevant phenotype

(b) Variants on patients’ genes, no phenotype filtering

Fig. 1. ClinVar evolution relative to the variants of interest for sample patients

Table 2. Number of publications in Pubmed concerning the gene of interest for a
specific variant, prior to date of diagnosis in 2012 and in 2014.

Patient Gene

name

Variant Pubmed

publi-

cations

(2014)

Year

reference

paper

pub-

lished

Pubmed

publi-

cations

(before

2012)

Solvable

before

2012?

1 C12orf65 Hom c.210delA:p.P70fs 9 2010 2 Yes

2 RMND1 Hom. c.1349G>C:p.*450Serext*32 6 2012 3 No

3 AARS2 Het c.1774C>T:p.Arg592Trp 4 2011 1 Yes

4 MTO1 Hom. c.1232C>T:p.Thr411Ile 48 2012 29 No

5 VARS2 Het c.1045G>A:p.Ala349Thr 14 NA 11 No
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is normally driven by a disease hypothesis, specified by the clinician on the basis
of factual observations. The goal of the process is to find variants in the patient’s
exome, amongst those called by the upstream pipeline, which have either pre-
viously been reported to be associated conclusively with similar phenotypes,
or conform to the appropriate inheritance pattern, and disease population fre-
quency and occur in genes either known to cause a similar phenotype, or affect
similar biological functions. In addition, in silico software tools provide a mecha-
nism of inferring the biological effect of the mutation. The diagnosis is considered
inconclusive (on the basis of the variants alone) if no such variants can be found.

Genome variant interpretation has been described as a “needle in the bunch
on needles” problem [17], as the target variants are a tiny proportion, typically
no more than ten, of the more than 20,000 variants that are detected by a typical
pipeline. The vast majority of variants are benign, such as common polymor-
phisms, which do not affect a patients health. Ideally, the variants of interest lie
at the intersection between two subsets of the overall patient’s variants, namely
(i) deleterious variants, i.e., protein altering and splice site altering mutations,
and (ii) variants that are known from the literature to play a role in the target
phenotype. As we will see, however, it is not always possible to identify variants
that lie precisely in this intersection. Our selection process therefore aims at seg-
regating variants into classes, depending on the amount of available evidence to
support the hypothesis that they are indeed the basis for a disease diagnosis. The
process consists of three phases, which we describe next: (i) restricting the inves-
tigation to a specific set of genes (phenotype and variant scoping), (ii) variant
filtering aimed at identifying deleterious variants, and (iii) variant classification.
The overall process is depicted in Fig. 2.

3.1 Phenotype and Variant Scoping

In this phase, user input terms are mapped to genes. Users may specify the dis-
ease hypothesis at varying levels of precision, ranging from free text keywords,
to terms from the OMIM vocabulary9 or from the Human Phenotype Ontol-
ogy [18] (HPO10). The latter provides a more precise characterisation of the
phenotype (so called deep phenotyping [19,20]). OMIM and HPO both provide
standard reference taxonomies of phenotype terms. In addition, we normalise
all input formats to OMIM, which also offers phenotype-to-gene mapping. HPO
provides a direct mapping to OMIM, and free text keywords are simply mapped
to OMIM terms through string matching. The resulting OMIM terms are then
mapped to a set of genes, which define the initial scope of the investigation, in
the next phase.

As genetic testing in clinics tends to specialise on specific disorder areas, the
scope can be further restricted to a set of genes that are known to be impli-
cated in phenotypes in that area. Thus, when using the tool the clinician may
also optionally provide a more precise characterisation of the scope of the inves-
tigation, by directly specifying a list of target genes of interest. This process,

9 http://www.omim.org/.
10 http://www.human-phenotype-ontology.org/.

http://www.omim.org/
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Fig. 2. Variant interpretation process as implemented in SVI.

depicted on the top left in Fig. 2, produces a final set of genes in scope. Only
the subset of candidate variants found in phase II (variant filtering), which lie
on the scope genes, will be considered for classification.

3.2 Variant Filtering for Identification of Deleterious Variants

This phase relies on variant annotations, provided by the well-known Annovar
annotation service [21]. SVI implements an extensible set of filters, reflecting
emerging pratice in the lab. Currently, variants are filtered according to the
following conditions.

– Identification of polymorphisms. Variants that are recorded as polymorphisms
in the dbSNP database are excluded, as these are common mutations which
occur at higher frequencies than the disease phenotype in the population, and
are known to be non-deleterious.
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– Coverage test. We check that variants are called at 30x fold or more, as this
is a de facto standard for confidence in a read. Also, we check the exome
coverage percentage (i.e. what fraction of the exome is covered to 30 fold), and
distribution of % coverage across the exome, if this information is available.

– Synonymous variants are removed, as those are non-protein altering or splice
site altering. Only non-synonymous, stop/gain, frameshift mutations are
retained.

– Variants with MAFs (Minor Allele Frequency) greater than 0.01 are also dis-
carded. Ideally, MAF should be checked separately against international con-
trols as well as local control patients. For instance, harmless mutations that
are rare within the general population (low MAF) may be incorrectly included,
although a localised patients control database would reveal a higher frequency
in the patients area of origin. No such localised databases are currently avail-
able to us, however.

– When performing trio genetic testing (typically involving parents and affected
child), remove all variants which do not conform to pedigree, i.e., remove
potentially pathogenic heterozygous variants due to their observation in an
unaffected parent, and the detection of de novo variants. Also, determine
whether the presence of the same variants is consistent with Mendelian inher-
itance, as indicated for instance in [22].

– User-defined thresholds on a variety of individual or aggregate pathogenicity
predictors [23], including PolyPhen11 and others that are available through
Annovar annotations.

The outcome of this phase is denoted as candidate variants in Fig. 2.

3.3 Variant Classification

At this stage we have isolated variants with the following properties: (i) they
are likely to be deleterious, and (ii) they lie in genes that are broadly related
to the target phenotype, via OMIM mapping. The uncertainty associated with
the filtering process, combined with the broad nature of OMIM disease-gene
mapping, suggest that these conditions are still too weak to provide conclusive
evidence in support of the hypothesis. Indeed, at this stage hundreds of variants
are still under consideration, mostly false positives.

Definite evidence can only be provided by research on specific disease-variant
associations. As mentioned, we have chosen ClinVar as our initial reference
source, with the intention to extend the knowledge base to other sources in the
future. To each known single nucleotide variant, ClinVar associates a clinical sig-
nificance that is simple to interpret (Likely benign/Likely pathogenic/Uncertain)
along with the condition associated with a pathogenic significance (using OMIM
terms). Importantly for us, in view of the tracking capabilities of our tool, Clin-
Var also provides metadata about the review status of the entry, with timestamps
of the latest update. As shown in the bottom part of Fig. 3, we exploit the Clin-
Var output to create a simple separation of the candidate variants, into three
11 http://genetics.bwh.harvard.edu/pph2/.
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classes: Red, Amber, and Green, using a “traffic light” metaphor that clinicians
are likely to find simple and useful.

Red variants are those that are recorded as pathogenic in ClinVar. Con-
sidering the prior filtering and scoping, these provide conclusive evidence for a
positive diagnosis.

Amber variants are those that are in scope but either not known to Clin-
Var, denoted Amber/unknown, or recorded in ClinVar with Uncertain signif-
icance (Amber/uncertain). Variants c.4132A>G:p.Ser1378Gly on gene LRP-
PRC and c.842G>A:p.Gly281Aspon PARK2 are examples of Amber/unknown
and Amber/Uncertain variants, respectively. These variants provide weaker evi-
dence than the Red ones, yet they cannot be dismissed, as absence from ClinVar
may simply mean that research is still be ongoing or that curation efforts have
not yet brought recently published research into database.

Finally, Green variants are those that are found in ClinVar, reported as
likely benign.

This simple user output is designed to reduce the clinician’s decision process,
by separating the “easy” cases which reveal Red variants, from all others.
Cases where Amber but no Red variants are found can be referred to specialist
researchers for further investigation.

In SVI, these are the prime candidates for re-analysis when updates to Clin-
Var become available, or when new variant databases are integrated.

4 A Provenance-Aware Diagnostic Tool

We have implemented the process into SVI, a Web-based user tool designed to
be used by clinicians. Evaluation of the tool is still ongoing, both in terms of
effectiveness of the variant filtering, and in terms of usability. We define effec-
tiveness as the ability to reproduce benchmark diagnostics decisions obtained
by experts. While our results are still preliminary, as an example we report the
effect of filtering on the five test patients used in the study described in Sect. 2.
In all cases, from generic user input expressing the patients’ common phenotype
(multiple mitochondrial respiratory complex deficiency) SVI identified between
7 and 11 Red variants, as indicated in Fig. 3 and in Table 3. In all cases, the Red
variants include those listed in Table 1 on page 6.12

In addition to supporting the filtering process, SVI provides complete tracing
of the process itself. The underlying data model (implemented using the Mon-
goDB DBMS) is centred around the main concept of an Investigation (Fig. 4).
An investigation is part of a case about a patient. A case is owned by an inves-
tigator (the clinician/user), and it may consists of multiple investigations, each
containing full details of one individual search. These details include a reference
to the patient, user input (keywords, HPO, OMIM terms) along with their map-
ping to genes, the variants selected at each stage in the process, and the “traffic
light” classification of each variant. Annotations made by the user in support
12 Experts were not available to confirm whether any of the other Red variants had

also been detected.
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Fig. 3. Distribution of variants amongst the Red/Amber/Green classes for out patients
sample (Color figure online)

Table 3. Effect of variant filtering in SVI for a specific phenotype

Patient Candidate
variants

Present in
ClinVar

Red Amber
(uncertain)

Amber
(unknown)

Green

1 631 149 10 77 482 62

2 625 129 7 65 496 57

3 622 139 7 69 483 63

4 618 132 11 67 486 54

5 627 141 8 65 486 68

of a decision, at the level of individual variants, are also captured. Finally, an
investigation records the versions of all external data sources used for filtering.

An investigation provides a persistent provenance trace of each user execu-
tion. We are currently in the process of implementing a number of added value
features on top of this provenance database. These include:

– The ability to selectively trigger new analysis of old cases, when changes occur
anywhere in the knowledge sources (or indeed in the pipeline upstream).
Specifically, when an Amber variant in an investigation appears or changes
status in ClinVar, it moves from the Amber class to either the Green or the
Red class, possibly resulting in the case being revisited by the clinician. This
process can be automated through a simple diff process whenever a new ver-
sion of ClinVar becomes available.

– Analyse historical investigations to determine possible implicit associations
between independent cases. For instance, cases that exhibit a substantial over-
lap in the gene scope or the variant scope may be linked, so that whenever
a problem/solution is found in one, the other can be flagged up for further
consideration.

– Query the investigation database across multiple dimensions (patients, phe-
notype, investigator, time). Examples of queries include: “find all patients
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Fig. 4. Data model centred on investigations, designed for provenance support. The
arrows indicate one-to-many or many-to-many relationships

annotated with shared HPO terms, who also share variants or have variants
on the same genes”, and “determine how many patients with the same variant
have the same HPO matching terms”.

Most importantly, the provenance database provides accountability over the
entire decision process. This is important not only for audit purposes, but also
to allow third party clinicians, who have not been involved in the case, to fully
understand how the investigator reached important decisions, which potentially
affects a patient’s quality of life.

5 Conclusions and Current Work

NGS-based genetic diagnosis is rapidly coming of age. As NGS technology
matures, the new bottleneck is likely to be the clinical interpretation of the
lists of human variants extracted from the raw WGS data, which remains a
knowledge-intensive activity requiring expert human judgement. Making sure
that the diagnostic process scales with the increasing volume of patient cases
requires automation of this activity. In this paper we have presented an initial
attempt at addressing this issue. We have been experimenting with a simple
variant filtering process and tool, code-named SVI, which automates most of
the process by relying on integration of variant databases. In this initial effort,
we have chosen ClinVar as the exemplar variant database, as its content and
curation appear to progress rapidly, increasing the chances to identify relevant
pathogenic variants. The tool includes full traceability of the diagnostic process.

Our work is progressing in several directions. Firstly, we are now evaluating
the effectiveness of SVI in terms of false positives/negatives relative to the expert
judgment on a testbed of real patient cases. Secondly, we are working to integrate
additional sources of variant-disease associations, such as those on the LOVD
platform. Finally, as the number of investigations increases, we expect to be able
to perform interesting analysis on the provenance database.
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Abstract. Ensuring image quality control (QC) for data acquired in a multi-
modality context offers substantial advantages for both multi-level and multi-
point analysis. Although a variety of neuroimage analysis algorithms exist, the
tasks of multimodal neuroimaging data QC and integration remain challenging
because image quality can be affected by numerous factors. Here, we discuss the
challenges of the QC and integration of neuroimaging data and provide two
examples of often-neglected and potentially under-appreciated problems related
to the QC of diffusion tensor imaging (DTI) data and to their integration with
other modalities. Specifically, we illustrate the challenges of (1) DTI/MRI co-
registration and (2) scanner vibration artifacts, both being representative exam‐
ples of difficulties involving both data QC and its integration. Additionally, we
highlight the need for automatic methods which can address neuroimaging data
QC which allows for its successful integration.

Keywords: Neuroimaging · Data quality control · Data integration · Diffusion
tensor imaging · 3D visualization

1 Introduction

The heterogeneity of neuroimaging data can render their integration challenging, partic‐
ularly in the case of diffusion tensor imaging (DTI), where sophisticated post-acquisition
processing can be required for such data to become amenable to integration with other
imaging data types, such as T1-weighted magnetic resonance imaging (MRI), functional
MRI (fMRI) and positron emission tomography (PET). Figure 1 illustrates several
common neuroimaging artifacts affecting study quality which (a) indicate that data
would be a challenge to integrate, and (b) likely imply the necessity of discarding exper‐
imental subjects so affected from further analyses. What is more, during the image
acquisition process, under-appreciated and occasionally-neglected issues may arise.
During DTI scans, artifacts due to scanner vibration may occur and these can translate
into undesired tractography results, with certain types of MRI scanners being more prone
to vibration artifacts than others. The purpose of this paper is to discuss the potential
challenges of multimodal neuroimaging data integration and quality control (QC).
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Fig. 1. Commonly encountered examples of artifacts affecting image quality (in transverse,
saggital, and coronal planes): (A) a dental appliance resulting in T1 image distortion, (B) ghosting
artifact, (C) echo-planar susceptibility artifacts, and (D) T2-weighted image volume slice
misalignment.
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2 QC as a Requirement for Multimodal Integration

Beyond the obvious QC issues shown in Fig. 1, two representative examples of often
unappreciated challenges are provided for illustration purposes. The first is the
scenario where volumes acquired using distinct modalities have different spatial
resolutions, which suggests the need for implementing three-dimensional (3D) inter‐
polation during co-registration prior to data integration and analysis. The applica‐
tion of such operations is often accompanied by numerical errors which can affect
the quality of DTI tractography, and the detailed effects of co-registration/interpo‐
lation methods should be quantified carefully during QC and data integration.
Secondly, we illustrate the under-appreciated problem related to QC and to data
integration, which involves the occasional presence of systematic vibration artifacts
in DTI. Specifically, because large gradient lobes are employed during data acquis‐
ition, the accompanying vibrations of the patient table can lead to substantial disrup‐
tion of diffusion measures, particularly in occipital areas. QC metrics which can
identify and quantify such effects automatically would be very useful, as would their
resolution using image processing methods which can be applied prior to integrating
DTI data with other neuroimaging modalities.

2.1 Accounting for Differences in Spatial Resolution

Neuroimaging data can be acquired using a variety of different modalities which often have
distinct spatial resolutions. For example, T1-weighted MRI volumes are often acquired at
relatively high spatial resolution because they are used to quantify structural properties of
the brain, whereas DTI and PET volumes may have lower resolutions than structural MRI
due to the various challenges of acquiring high-resolution volumes using these modalities
for water diffusion and metabolic measurements, respectively. For multimodal neuroi‐
maging data integration, however, it is often necessary to scale data to the same resolution
because many analysis are performed at the voxel level.

Various methods for the co-registration of DTI volumes to MRI volumes exist. In a
very common approach, the DTI B0 volume is registered and interpolated to the reso‐
lution of the T1-weighted volume, whereafter each DTI gradient volume is registered
and interpolated to the already-interpolated B0 volume. Though common in practice,
this method requires two registration and interpolation steps and appreciable differences
in the end result can exist depending on which interpolation and registration algorithms
are used, possibly resulting in propagated errors.

An alternative approach involves reconstructing the diffusion tensors in the native
space of the DTI volume. Specifically, FA volume and eigenvectors are calculated first
and the FA volume is then registered to the T1-weighted volume. The same transfor‐
mation matrix can then be applied to the other volumes, and this approach requires only
one registration operation. Additionally, the operation of eigenvector normalization can
avoid the cancellation of fiber directions information which may result from eigenvector
interpolation.
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Figure 2 illustrates DTI tractography differences which are due to the use of various
interpolation methods. As the figure suggests, different interpolation methods can yield
vastly different tractography results. Given these substantial differences, it results that
reducing the number of times that interpolation is implemented is desirable because it
reduces the amount of propagated interpolation error.

Fig. 2. (A) Effects of applying several DTI data    interpolation    techniques,    namely sinc,
average, linear and closest neighbor can lead to    substantial    differences in   tractography results.
(B) Eigenvector normalization (B2) is found to improve data quality over the scenario where this
operation is not performed (B1). (C) Correction of an artifact due to scanner table vibration. The
first row illustrates the artifact, and the second row shows corrected images.

This example illustrates the fact that the use of alternative methods for co-registering
and then integrating neuroimaging data may inadvertently result in substantially
different results, which can also pose problems from the standpoint of QC. When the
alternative approach for data integration is applied as described in the previous para‐
graph, the implementation of eigenvector normalization is found to result in improved
quality of the interpolation due to the fact that this operation is only applied once (Fig. 2).

2.2 Accounting for Scanner Vibration Artifacts

Frequently, scanner vibration artifacts in DTI data are insufficiently appreciated.
Although such artifacts have been identified in data acquired from many sites, it is not
clear how widespread this problem is and whether all MRI scanners are affected. Such
artifacts are due to the vibration of the patient table during gradient data acquisition and
can affect DTI recordings, particularly in occipital brain white matter regions. These
artifacts can disrupt DTI image quality and can be controlled via a linear correction
method, which has been found to be effective (Fig. 2). This figure illustrates that, after
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using the linear method for the reduction of artifacts due to scanner motion, the effect
of the latter is greatly reduced, confirming the improvement in image quality and
suggesting that the effects of this artifact can be addressed satisfactorily. For QC
purposes, it would be useful to develop methods which identify this type of artifact and
which can then signal the researcher that an appropriate correction should be imple‐
mented during the process of pre-processing DTI volumes.

Figure 3 illustrates a suggested data integration workflow for MRI/DTI/PET
co-registration and analysis, which can be implemented after accounting for prob‐
lems such as differences in image resolutions and scanner vibration artifacts.
Figure 4 shows the results of multimodal integration of MRI/DTI/PET data, as
visualized simultaneously.

Fig. 3. Workflow for multiple modality image registration. Each of the steps involved in
multimodal registration can present challenges due to the presence of artifacts, resulting in the
need for image QC.
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(a) (b)

(c) (d)

(e)                                                (f)

Fig. 4. DTI/PET/T1-weighted MRI data integration. (A) RGB map with tractography; (B) FA
map with tractography; (C) PET image with tractography; (D): PET, FA map with tractography;
(E) T1 image with tractography; (F) T1, PET image with tractography.
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3 Conclusions

In this paper, we discussed several basic challenges of multimodal image QC and inte‐
gration of neuroimaging data. We provide two examples of often-neglected and poten‐
tially under-appreciated problems related to the QC of diffusion tensor imaging (DTI)
data and to their integration with other modalities. The usefulness of minimizing the
number of interpolations when registering DTI data to structural MRI was illustrated,
in addition to the need to account for scanner vibration artifacts prior to htfidelity data
integration. Additionally, we discussed several challenges of multimodal image QC and
of neuroimaging data integration. For vibration artifacts, MRI scanners may occasion‐
ally induce vibration artifacts during DTI scans due to the nature of pulse sequence
designs for this modality.

In conclusion, we provided examples of often-neglected and potentially under-
appreciated problems related to the QC of diffusion tensor imaging (DTI) data and to
their integration with other modalities. The usefulness of minimizing the number of
interpolations when registering DTI data to structural MRI was illustrated, in addition
to the need to account for scanner vibration artifacts prior to DTI tractography and
analysis. Image QC is a necessary step in advance of high-fidelity data integration.
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Abstract. Pursuant to its commitment to cultivating a greater understanding of
mental illness, the National Institutes of Health (NIH) have created the National
Database for Clinical Trials, where data from a wide variety of NIH-funded
studies are deposited in the hope that as many qualified researchers as possible
can examine these data. As the designated Data Coordinating Center in the Autism
Center of Excellence (ACE) network, the Laboratory of Neuro Imaging (LONI)
is faced with the task of efficiently organizing data from behavioral assessments,
magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor
imaging (DTI), electroencephalography (EEG), and whole-genome analysis. To
encourage fusion of data across modalities, we have integrated a direct National
Database for Autism Research (NDAR) data sharing capability into the LONI
Pipeline processing environment, which allows users to create workflows by
mixing and matching analytic tools from a library of common neuroimaging,
genetics, and statistical software packages.

Keywords: Diffusion tensor imaging · Functional magnetic resonance imaging ·
Genetics · Autism spectrum disorder · Pipeline processing

1 Introduction

Autism spectrum disorders (ASDs) seem to result from a multitude of contributing
factors – from genes to neurotransmitters to structural abnormalities to altered connec‐
tivity (Atkinson and Braddick 2011, McPartland et al. 2011). It is this heterogeneity
which has made understanding this assortment of linked disorders particularly chal‐
lenging, and which makes it ripe for multi-modal examination. Existing research has
led to a variety of proposed treatments, with inconsistent results across different types
of autism cases. The National Autism Center (NAC; www.nationalautismcenter.org)
reports that a myriad of biomedical and neuropsychological data are needed to
adequately assess an individual’s disease severity before an effective treatment plan can
be formulated (National Autism Center 2011). Such necessary information may come
from evaluating genomics data, biographical information, co-morbid conditions,

© Springer International Publishing Switzerland 2015
N. Ashish and J.-L. Ambite (Eds.): DILS 2015, LNBI 9162, pp. 202–207, 2015.
DOI: 10.1007/978-3-319-21843-4_16

http://www.nationalautismcenter.org


neuroimages, the onset and latency of the disorder, the type of treatment, and many other
factors.

As the National Institutes of Health (NIH) increase their efforts to make the data
produced by its funding freely available, its data repositories have come to hold more
and more types of data. Meanwhile, the Autism Centers of Excellence (ACE) network
grants awarded by the NIH seek to facilitate a broader understanding of a very nuanced
spectrum of disorders, and thereby to encourage the acquisition, integration and analysis
of heterogeneous data. Our laboratory functions as the Data Coordinating Center (DCC)
for one such ACE network, i.e. the Multimodal Developmental Neurogenetics of
Females with ASD Collection. (https://ndar.nih.gov/edit_collection.html?id=2021). As
of January 2015, our site alone had collected behavioral, structural, functional, and
genetic information from 135 children. Analysis of such a wide array of data would be
severely limited if it were then only analyzed uni-modally.

One substantial advantage of multi-modal neuroimaging data is their ability to facil‐
itate the creation of more insightful pictures of the brain (Van Horn and Ball, 2008, Van
Horn, Dobson, et al. 2006, Van Horn and Gazzaniga, 2002, Van Horn and Gazzaniga,
2012, Van Horn and Ishai, 2007). Unfortunately, most neuroimaging and genetics tech‐
niques have only become widely available within the last couple of decades. At the
current rate of scientific progress, it may soon become nearly impossible for anyone to
become an expert in each of the collection and analysis methods which are considered
vital for understanding mental illness. In our role as the DCC, we sought to overcome
this barrier partly by using the LONI Pipeline processing environment, where
researchers can create simple data analysis workflows by utilizing some of the most
common analytic tools available today, and then sharing these workflows with others.
A workflow can easily be customized by the expert analyst, or can simply be re-executed
by someone who wants to incorporate an neuroimaging modality into their analysis
without having to learn the details of the analysis technique itself, e.g. in the case of an
EEG researcher who wishes to measure individual brain activation differences as meas‐
ured using fMRI. By combining a massive multi-modal database and a processing envi‐
ronment which can handle a wide variety of data types, our project has aimed to make
data integration the least difficult component of multi-modal studies.

2 Accessing the NDAR Database

Neuroimaging data stored in the National Database for Clinical Trials is subdivided into
smaller databases according to research type. The National Database for Autism Research
(NDAR) repository allows researchers from qualified institutions to download data from
the numerous ACE and ACE network grants. The first step toward gaining such access is
to acquire a username and password by completing the NDAR access application. Inves‐
tigators must be registered with the eRA Commons (https://commons.era.nih.gov) and
must secure local institutional approval (see http://ndar.nih.gov/ndarpublicweb/access.html
for details on the access request process). Upon approval by NIH officials (http://
ndar.nih.gov/policies_data_access_committee.html), researchers can search NDAR
contents, create data packages of useful de-identified data sets, and download them for
further examination. One can even search for pertinent details from the experimental
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protocol of the study or studies in which certain data were collected, such as pertaining to
artifact detection algorithms or data inclusion criteria.

Once approved, one can use the available ‘Query’ tool in order to filter data by type,
age, gender, number of subjects, etc. A ‘Download Data’ button leads to a new webpage
which allows the user to select the types of data they wish to download for their cohort
of interest. Then, these results can be bundled using a ‘Create Package’ functionality.
Once the user requests this, the system asks her/him to name the package. The NDAR
system generates a numerical package ID as well, which can be used to reference the
package in other locations, such as the LONI Pipeline interface.

The NDAR Download Manager is a program which facilitates the download of
collections to researchers’ local storage, thereby enabling them to have data delivered
locally. Conversely, users may prefer not to download data at all, but instead to reference
these NDAR package IDs directly within data processing workflow tools located on
remote computing systems, clusters, or ‘in the cloud’ using NDAR’s ‘Mini-NDAR’ or
‘miNDAR’ capabilities (http://ndar.nih.gov/cloud_get_started.html).

Integrating data collected by someone else can be complex. Some information may
be difficult to communicate within a file. NDAR also utilizes the link-out capability
within PubMed and is now issuing Digital Object Identifiers (DOIs) for shared studies,
so that a simple search can direct researchers to the actual data used in their references.
This feature has vast potential for comparative and replication studies, as well as for
following up on particular directions for future research, as suggested by the authors of
past studies. In this way, NDAR interactivity with the LONI Pipeline can help to formu‐
late hypotheses and to fill knowledge gaps in our understanding of ASD. Conversely,
within the NDAR website, one can search for data based on the laboratory with which
a study is associated, or be directed to all publications associated with a specific cohort.
In this way, autism researchers can investigate how certain data were used in the past,
which can help them to formulate or modify scientific hypotheses for future studies and
analyses conducted using the LONI Pipeline.

3 LONI Pipeline Processing Environment

Scientific workflow methodologies can enable the creation of heterogeneous
processing chains which can be executed on parallel computing systems. Various
workflow systems exist and have been used successfully in neuroimaging (Stef-Praun
et al. 2007, Gorgolewski, Burns et al. 2011). The LONI Pipeline workflow environ‐
ment is a graphical framework for constructing workflows and for implementing
high-throughput analysis (Dinov et al. 2009, Dinov et al. 2010). This program, now
in version 6.0 (as of March 2015), is freely available (http://pipeline.loni.usc.edu)
and provides processing modules from well-known neuroimaging software
programs, as well as end-to-end protocols for performing image-processing tasks.
Employing the LONI Pipeline can help standardize processing methodologies within
or between research groups, and such exact replication of methods can improve the
accuracy of reported data processing provenance (MacKenzie-Graham et al. 2008,
Mackenzie-Graham et al. 2008). Additionally, it can prevent researchers from
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implementing the same data analysis twice, or from executing a set of analysis steps
in an improper order, a safety feature which has been notoriously lacking in the
neuroimaging community (Kennedy 2012). The LONI Pipeline is also available
through the Neuroimaging Tools and Resource Clearinghouse (NITRC; http://
www.nitrc.org) (Luo et al. 2009), which enables researchers to locate, install, and
compare resources for functional and structural neuroimaging analyses, as well as
to collect and point to standardized information about tools for performing such
analyses. Users can interact with the LONI Pipeline client within the Windows,
Mac, or Linux operating systems to design and execute workflows which are phys‐
ically executed on a Pipeline-enabled computer cluster through the use of a remote
connection. LONI itself maintains a large-scale cluster with over 3,500 compute
nodes dedicated to supporting thousands of simultaneous Pipeline workflow submis‐
sions. The Pipeline is also available as an Amazon-EC2 service (http://pipe‐
line.loni.usc.edu/products-services/pipeline-server-on-ec2/) and via the NITRC
Compute Environment (NITRC-CE) (http://www.nitrc.org/projects/nitrc_es).

4 NDAR Access Through LONI Pipeline

Within the Pipeline program there exists the means for directly logging into the NDAR
cloud storage and accessing previously defined data package IDs (see ‘Accessing the
NDAR Database’ above). Once an NDAR data package is specified on the NDAR login
screen, a three-component set of modules is automatically generated. These modules
download the compressed data packages, unzip their contents, and convert them to any
one of three commonly utilized neuroimaging file formats: Analyze, MINC, or the
modules’ default file type, i.e. the NIfTI (.nii) file format (http://nifti.nimh.nih.gov/).
Additional modules are available in the Pipeline Server Library, and can be easily added
to the NDAR download modules. Alternatively, the library also offers fully-developed
workflows for an array of common processing tasks including FSL, FreeSurfer, Brain‐
Suite, and Diffusion Toolkit. Lastly, modules defined for user-built executables can also
be inserted to generate unique workflows.

5 Role of the DCC

The DCC has two primary goals. Firstly, the site is expected to screen incoming data
from each collection site to ensure that all data are readable, formatted correctly, labeled
properly, and organized together with all other data for each subject. Contributors to the
NDAR database are recommended not to convert their imaging data in any way, but to
send the original DICOM output files from their MRI scanner. This rule was imple‐
mented to prevent the loss of metadata, which is often stripped away during conversion
to more compact formats. Having all data in the same format is critical for streamlining
the process of downloading large cohorts of data directly to a processing environment.
Another critical piece of our role is ensuring that datasets do not lack any of the pieces
of necessary information for data analysis. For example, an fMRI data file is useless
without information provided in another file to indicate the time points where stimuli
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were presented, and DTI data require matrices specifying magnetic field gradients in
each direction of data acquisition.

6 Conclusion

With a library of most commonly-used analytic tools for each modality, the LONI Pipe‐
line allows researchers to branch out into the analysis of data types which they may not
have investigated before. Providing members of our collaborative network with the
ability to perform analyses which follow identical steps across sites—especially when
experience in a particular acquisition modality is lacking at a particular site—will hope‐
fully allow researchers to acquire deeper insights into the many facets of ASD. Whereas
almost any study could benefit from the inclusion of additional data types, the investi‐
gation of mental illnesses – which are famously complex and heterogeneous – could
greatly benefit from a higher preponderance of both multi-modal studies as well as inte‐
grated analyses using these modalities. In the status quo, integrated analyses are typically
possible only for the most experienced researchers with expertise across data types, or
for collaborations involving researchers with different areas of expertise who join efforts.
Our hope, however, is that these efforts to integrate neuroimaging and genetics data from
the NDAR database with leading scientific workflow technology will greatly expand the
breadth of researchers able to perform rigorous, comprehensive, and insightful analyses
on patients diagnosed with ASD.
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Abstract. Pattern mining has been applied to classification problems. How-
ever, detection and analysis of frequently occurring patterns in clinical data is
less studied. Instead, data-driven measures of the quality of clinical care are
based on abstractions from clinical guidelines, and often are not validated on the
basis of outcomes. We hypothesize that by using outcomes as a training signal,
we can discover patterns of treatment that lead to better or worse than expected
outcomes. Because clinical data is often censored, traditional classification
algorithms are inappropriate. In addition, it is difficult to infer the latent
meanings of patterns in clinical data if frequency is the only explanation. In this
paper, we present a framework for discovering critical patterns in censored data.
We evaluate this framework by comparing the patterns we detect with guide-
lines. Our framework can improve the accuracy in survival analysis and facil-
itate discovery of patterns of care that improve outcomes.

Keywords: Sequential pattern mining � Survival analysis

1 Introduction

The increased adoption of electronic health records (EHRs) creates new opportunities
for both medical discovery and measurement of the quality of care. These activities
have largely been conducted in parallel with little dialogue between researchers. The
intent of this work is to describe a framework for discovering patterns of care that lead
to better or worse than expected outcomes.

1.1 Electronic Clinical Quality Measures

The widespread adoption of electronic health records has led to a corresponding
interest in using information capture in these applications to measure the quality of
patient care. The Federal Meaningful Use program is an incentive program to
healthcare providers and hospitals to encourage adoption of EHRs. They have released
over 100 such measures that have been developed by expert consensus. These mea-
sures operationalize clinical guidelines into metrics that are based on transactional data

© Springer International Publishing Switzerland 2015
N. Ashish and J.-L. Ambite (Eds.): DILS 2015, LNBI 9162, pp. 208–222, 2015.
DOI: 10.1007/978-3-319-21843-4_17



elements in structured fields in the EHRs. These electronic clinical quality measures
(eCQMs) are generally reported as the ratio of patients that have received high quality
of care to those that have not given that a guideline applies. If a guideline is applicable
to a particular patient he is in the “denominator” of the ratio- the inclusion and
exclusion criteria for measure denominators are defined on the basis of EHR docu-
mentation. The measure numerator is usually either a clinical outcome (e.g. lab test
results indicate good control of diabetes) or a clinical process (treatment with beta
blockers). Like most metrics from transactional databases, the data elements in a
quality measure come in the form of time-stamped events – most commonly the time
stamp is a data entry event, but potentially also a reported time of an event, as in the
history of a heart attack.

While some eCQMs are based on very complicated patterns that define a sequence
of inclusion and exclusion criteria intended to increase the specificity of the applicable
populations, some guidelines that have been operationalized into electronic quality
measures are more straightforward. Furthermore, many quality measures that are
abstracted from clinical guidelines have not been shown to have predictive validity on
the basis of certain outcomes [1]. These characteristics make many eCQMs poor
candidates for evaluating our framework, but also demonstrate the need for a frame-
work that links process of care to outcomes. Some of the simplest eCQMs are repre-
sented by known Drug-Drug-Interactions (DDIs) – patients concurrently exposed to
two drugs known to interact are likely to have worse outcomes than similar patients
that were not exposed to both drugs. The knowledgebase of DDI is standardized and
well-developed, with the denominator population easily defined on the basis of
exposure to one of two drugs known to interact. For these reasons, we can assess the
face validity of our results on the basis of our ability to detect DDIs.

1.2 Methods for Mining Clinical Data

Large observational datasets provide a valuable compliment to the gold standard of
randomized clinical trials. It has often been pointed out that clinical trials have a careful
selection of uncomplicated subjects that may not reflect real-world exposures [2, 3].
A less frequently acknowledged value conferred by observational analyses is a richer
complexity of treatment histories and combinations of exposures to multiple therapies.
Therefore, some data mining approaches like text mining [4], temporal pattern mining
[5, 6] or sequential pattern mining (SPM) [7, 8] have been applied to medical data with
the expectation of accelerating novel knowledge discovery. However, some new issues
are raised after these general data mining techniques are directly applied to medical
data.

Data mining in medicine is differentiated from other fields insofar as the notion of
“comprehensibility” plays an important role [9], and hypothesis-generating studies
such as these must also have external validity and comport with clinical models.
Because observational studies cannot control for selection bias, they must be conducted
and interpreted carefully for purposes of causal inference [10]. Therefore, one big issue
raised from data mining results, such as sequential pattern mining, is the interpretation
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difficulty because results are mined according to frequency, which not only generates
too many similar patterns but also hard to explain these patterns’ latent meaning.

Outside of biomedical literature, sequential pattern mining has been more broadly
adopted to solve classification problems. For example, Cheng et al. [11, 12] applied the
discriminative pattern mining on software failure detection and trajectories on road
network classification. While classifiers, such as logistic regression or SVM [13] are
commonly used tools in biomedical literature and data mining, important methods in a
clinical data analyst’s arsenal are survival analyses.

Survival analysis accounts for censoring – the lack of complete follow up on
outcomes used to train classification algorithms. Most clinical data where outcomes can
only be observed after extended time has elapsed have this limitation. Censoring means
the precise survival time cannot be fully captured by the observational data. For
example, suppose two patients who entered our dataset at age 90, one of which was
observed for 8 years before he died and the other was observed for 6 months before
becoming lost to follow up. At the end of the study, we do not know the actual survival
time of the patient followed up to 6 months because his outcome, death, is not
observed. In terms of modeling censored data, survival analysis is better than classi-
fication because survival analysis accounts not only for the likelihood of outcomes and
exposure of interest, but also for the likelihood that each subject could have been
observed given the observation length. Using binary classification to model censored
data has several drawbacks. First, we cannot simply classify patients as “alive” or
“dead” because some actual outcomes may not be observed. Second, the number of
observed events is typically significantly undersized in the population, leading to a
skewed dataset.

So far, discovering critical patterns in censored data is less studied. Mining critical
patterns help researchers identify which patterns play key roles in the survival prob-
ability. For purposes of causal inference, it is also important to interpret the latent
meanings of patterns, such as their relative influence upon the survival probability.

Considering the problems mentioned above, we will solve two problems in this
paper. First, we discover a set of critical sequential patterns, which have stronger
relationships with the survival outcome after an incident diagnosis from the censored
data. For example, if we incorporate these patterns as covariates into survival analysis,
such as Cox proportional hazard regression model [14], these patterns should perform
as reliable predictors. Secondly, we expect the latent meanings of these critical patterns
to be interpretable, such as to what extent these critical patterns influence the survival
outcome. To the best of our knowledge, mining the critical sequential patterns in the
censoring data for survival analysis is are yet to be studied.

The rest of the paper is structured as follows: In Sect. 2, we discuss related work
about data mining in health data. Our framework about how to discover reliable fre-
quent patterns as covariates is introduced in Sect. 3. In Sect. 4, we present the
experimental evaluations. Lastly, we conclude the paper with study limitation and
future work in Sect. 5.
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2 Related Work

2.1 Care Pathways, Treatment Patterns, and Outcomes in Healthcare
Databases

Treatment guidelines and care pathways are currently developed primarily by delib-
erative expert consensus to promote the practice of “evidence based medicine”. The
evidence under consideration is typically in the form of a systematic review of the
literature, with higher ‘evidence value’ being placed on randomized clinical trials that
may or may not have ecological validity. These care pathways are often operationalized
into quality indicators and performance metrics as process measures that inform policy
and, in turn, practice. Despite this careful attention to evidence in the literature, and
acknowledgement of the importance of predictive validity by organizations such as the
National Quality Forum, there have been few studies investigating whether pathways
and patterns in quality indicators are indeed associated with better outcomes in the real
world after adjusting for underlying risk factors. We argue that there is not only a need
to bolster the evidence that “evidence-based medicine” is effective, but also that there
may be undiscovered patterns and pathways that lead to better than expected outcomes
that exploratory analysis might surface as candidates for quality indicators.

By contrast, there has been extensive attention to worse than expected outcomes for
drug treatments in the field of pharmacovigilance [15]. These studies, while originally
focused on adverse event reporting databases, soon extended to include analysis of the
same data sources that are being used to compute performance metrics – administrative
claims and electronic medical records. These studies have fallen into two categories –
(1) post-market surveillance in the form of risk-adjusted hypothesis testing (with a
focus on specific drugs and outcomes) and (2) exploratory data mining to potentially
identify new patterns. While the first category of work has generated substantial
innovations in risk-adjustment methods that are relevant to addressing selection bias
[16] (a primary limitation of observational data analysis), we are more interested in the
second category for the purposes of this work. In addition to conventional association
mining between a single drug and a single outcome in the form of disproportionality
analysis, there have been studies that have explored combinations and sequences to
generate new hypotheses about combinations of drugs [17] and methods for detecting
interesting temporal patterns [18]. Similar to genome-wide association studies, this type
of exploratory analysis requires insuring against spurious correlations and multiple
comparisons [9, 19].

2.2 Pattern Mining in Medical Domain

Currently, applying data mining to medical data is a growing trend and most data
mining applications in medical fields are directly using the state of art approaches like
classical classifier, clustering or association rules to derive results [20]. However,
directly applying these generalized methods to health data still cannot achieve satisfied
expectations. In health studies, survival analysis is one of the most important statistical
approaches. Since the health data is often censored due to the termination of a study or
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the failure to follow-up observation subject, usually the outcome of interest in survival
analysis is the time-to-event data. Thus far, there are only a few works studied in the
relationship between frequent sequential treatment patterns and survival time. Silva
et al. [8] studied how to evaluate the relationship between survival time with sequential
treatment patterns. They used Kaplan Meier [21] to estimate the median survival time
among a set of patients who have the same treatment patterns and further pruned out
patterns with shorter median survival time. In our work, we further examine how each
sequential treatment pattern will influence the survival probability. Malhotra et al. [7]
also used a sequential pattern mining technique to retrieve frequent sequential treatment
patterns for Glioblastoma Multiforme (GBM). They formulate their problem as a
classification problem, and use these sequential treatment patterns as additional features
to predict whether a patient can survive longer than the median survival period or not.
In our work, we consider using Cox proportional hazard regression instead of classi-
fication to model the survival problem since most health data contains censored issues.

3 Framework

3.1 Data Description

Source of Data. The primary source of data for this study was administrative claims
submitted to insurance companies by healthcare providers to receive reimbursement for
services. Administrative claims lack the clinical detail that might be present in elec-
tronic health records, but have the benefit of capturing care and outcomes across all of
the healthcare providers from whom a patient has received care. These administrative
data sets were aggregated and cleaned by the Innovation in Medical Evidence
Development and Surveillances (IMEDS) lab [22] hosted by Reagan-Udall Foundation
for the FDA. This clinical data is translated into standardized vocabularies containing
all of the medical code sets, terminologies, vocabularies and ontologies taxonomies.
Drugs are also coded with RxNorm, which is a drug reference terminology maintained
by the National Library of Medicine (NLM), and conforms to the Observational
Medical Outcomes Partnership (OMOP) Common Data Model originally developed by
the Foundation for the National Institutes of Health (http://omop.fnih.org).

Clinical Population. We randomly sampled 42,365 patients from a total of 1,027,339
patients diagnosed with Congestive Heart Failure (CHF) between January 1, 2003 and
March 31, 2003. Among these 42,365 patients, 1,599 death events were observed. We
used gender, Deyo’s Charlson Comorbidity Index Variables, [23] and the age at CHF
index diagnosis date as a part of patient features. Summary statistics are listed in
Table 1. We used random samples of 42,365 patients to run the experiments due to
computational constraints. This approach is valid for the following reasons: (1) We
wished to verify whether frequent patterns can perform as reliable predictors in cen-
sored data, and (2) We want to ascertain whether the latent meaning of frequent patterns
can be discovered through our method. Our experiments show that our framework has
potential for achieving these goals.
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3.2 Framework Overview

We briefly introduce our framework and then illustrate details in each section. Initially,
we set a censored date and randomly sample a set of patients with demographic, disease
and drug information. Then, we construct two types of features for each patient. The
first are baseline characteristics composed of demographic and health status at index
diagnosis, and another is the treatment feature type derived from sequential pattern
mining. Because the quantity of treatment features may grow to more than 5,000, when
we relax the support threshold, we screen out those inactive features before we
incorporate them into Cox regression model. Thus, we take two screening strategies to
do the ranking. We select only top-K treatments after controlling for baseline health
status and age in the Cox model. We hypothesize that the screening strategy can
reliably bring predictive patterns into the model.

3.3 Feature Generation

In our study, we generate two types of feature for patients. The first are baseline
characteristics that cannot be changed during the course of medical care, such as age at
index diagnosis, sex and comorbidity diseases listed in Table 1. For each patient, the

Table 1. Population description.

Covariate Proportion (%)
Male 54.04
Myocardial Infarction 8.90
Peripheral Vascular Disease 3.05
Cerebrovascular Disease 12.27
Dementia 0.28
Chronic Pulmonary Disease 27.53
Rheumatologic Disease 4.24
Peptic Ulcer Disease 2.11
Mild Liver Disease 1.75
Diabetes 33.42
Diabetes with Chronic Complications 9.10
Hemiplegia or Paraplegia 1.07
Renal Disease 10.08
Moderate or Severe Liver Disease 5.86
AIDS 0.43

Covariate Min Max Mean Std
Age on Index Date (years) 0 89 53 11.5
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first date that s/he was diagnosed with CHF is referred to as index date. The comorbid
disease features are based on Charlson Comorbidity Index Indicators [23] – 13 diseases
coded by ICD9 (International Classification of Diseases and Related Health Problem,
v9) such as renal disease, liver disease and HIV. For example, if a CHF patient also has
liver disease and heart disease before the index date, we will assign a binary value 1 in
these two features. By controlling for these covariates we will detect patterns that arise
independent of health status.

The covariates of interest in this work (treatment covariates) are the treatment
sequence after the index date. We build treatment covariates by using sequential pattern
mining to extract patterns from patients’ drug history after the index date. We view
patients’ drug history as a transaction database D which contains a set of tuples (pid,
tid, Itemset), where pid is a patient id, tid is a transaction id based on the prescription
time, and Itemset is a set of drugs prescribed on the same day. All these tuples with the
same pid can be regarded as a sequence of itemsets ordered by increasing tid. Thus, we
can leverage the state-of-the-art sequential pattern mining algorithm to generate a set of
frequent sequential patterns as treatment patterns.

In this work, we leverage SPADE [24] and VMSP [25] as our sequential pattern
mining approach. The difference between SPADE and VMSP is that the former gen-
erates a complete set of frequent patterns while the latter generates maximum length
frequent patterns. Treatment covariates are denoted as binary value. If a frequent
pattern occurs in a patient’s sequence, we assign it as true; otherwise we label it as
false.

3.4 Feature Screening

So far, we generate a feature set including patients’ demographic information, given
health conditions and a set of frequent sequential treatment patterns. When the number
of patterns is massive, only critical patterns are necessary for building a regression
model. Most regression models leverage feature selection strategy by adding a specific
penalty function into the regression model. When the quantity of covariates and the
sample size are large, high computational cost makes this method inefficient. In this
work, we are focusing on how to effectively select critical patterns before we use them
to train a regression model. We also do not want to limit the feature selection strategy
for a certain type regression model. Here we provide two approaches to achieve
pruning.

Model-free Screening. To estimate the discriminative power of a feature, we leverage
the novel feature screening method proposed by Zhu et al. [26]. The most distin-
guishable point of their method, Model-free screening (MFS), is that the ranking
procedure widely covers many parametric and semi-parametric models, such as linear
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regression, logistic regression and Cox proportional hazard regression. When the
number of covariates is huge and the information about the underlying model is lim-
ited, MFS provides a great flexibility to rank these features.

In MFS, covariates Z ¼ ðZ1; Z2; . . .; ZpÞT are classified into two sets, active pre-
dictors with non-zero coefficient, ZA, and inactive predictors with zero coefficients ZI .
Their method claims that ZA can be consistently ranked before ZI .

Given a sample with size n, they use cwk as a natural estimator for measuring the
marginal utility of the k’th element in Z, where

cwk ¼ 1
n

Xn

j¼1
f1
n

Xn

i¼1
ZikIðYi\YjÞg2

with assumptions 1
n

Pn
i¼1 Zik ¼ 0 and 1

n

Pn
i¼1 Z

2
ik ¼ 1. By ranking cwk in descending

order, their approach is claimed to consistently screen out inactive predictors. To
implement their ranking method, the first step is to rank tuples in the sample set
according to the outcome variable Y in ascending order. Next, calculating cwk for each
covariate is through scanning Zk value in n tuples. Lastly, order the p covariates by cwk

in descending sequence. The complexity requires Oðnlognþ npþ plogpÞ.
Maximized Coverage Screening. We can observe that when the sample size n goes
large, the complexity of MFS will be dominated by OðnpÞ. In this work, we provide
another heuristic strategy to rank these features in a more efficient way.

Our basic idea is to choose the feature with maximized coverage of data points in
each round. At the first step, we rank sequential patterns by supports in descending
order. Then, we pick the one with the widest coverage rate, which means the largest
number of individuals who own this feature. If more than one feature contain the same
highest coverage rate, we choose the feature with the highest support. After we select a
feature, all individuals having this feature will be eliminated. In the next iteration, the
identical choosing strategy is applied, but to a smaller set of individuals. When all
individuals are eliminated, we recover all individuals back and we continue the
selection procedure until all features are ranked.

In order to efficiently select the feature with the highest coverage rate, we use the
bitmap representation to denote how a sequential pattern distributes among individuals
in the sample dataset. Initially, we have an empty bitmap, BMall; with length BMallj j ¼
n and all bits in the BMall are set to zero. For each sequential pattern i, a bitmap BMi is
created and the index of each bit in a bitmap represents each individual in the dataset. If
a sequential pattern i occurs in individual j’s sequence, the j’th bit will be set to one in
i’s bitmap, BMi jð Þ ¼ 1; otherwise, BMi jð Þ ¼ 0. We apply BMi ANDNOT BMall, and
then counting the cardinality of BMi, meaning the number of new individuals are
covered by the feature i in current iteration. After the highest coverage sequential
pattern h derived in current iteration, we simply use BMh OR BMall to represent how
many individuals are already covered so far. Then in the next round, we use the
updated BMall to discover the next candidate among the rest sequential patterns. Once
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all bits in BMall are set to one, we reset the BMall. The ranking process is continued
until all sequential patterns are ranked. Since computing the coverage rate can be
regarded as constant time by implementing in bitmap, the total cost is bounded by
Oðp2Þ.

3.5 Feature Construction

In our study, we leverage both immutable covariates and treatment covariates as fea-
tures in the Cox model. After we rank treatment covariates either by MFS or by
Maximized Coverage, only top-K patterns will be incorporated into the regression
model. The reason that we need to include immutable covariates is we do not want to
incorrectly assume people are dying because of the drug rather than the illness. We set
a censored date as the termination of the observation, and we set the event as death.
Finally, we leverage immutable covariates, treatment covariates and outcomes to train
the Cox model.

Algorithm.  Maximize Coverage Screening

Input: Frequent sequential_pattern_set F

Output: An ordered selected pattern set F
s

Sort patterns in F according to support in descending order.

currentCoverage 0

maxCoverage 0

clear each bits

clear each bits

While F is not null

For each pattern p in F, do
.ANDNOT( )

currentCoverage

if currentCoverage > maxCoverage

maxCoverage=currentCoverage;

if is not null

.OR( )

F.remove(pattern max)

F
s
.add(pattern max)

else clear each bits

end

return F
s
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4 Experimental Evaluation

In this section, we evaluate the performance of the Cox model incorporated with
frequent patterns. All experiments are conducted on 8 EC2 Compute Units (4 virtual
cores with 2 EC2 Compute Units each) with 15 GB of main memory, running on Linux
64-bit platform.

Our goal in this study is to select critical sequential patterns as covariates in the Cox
regression adjusted for underlying risk. We expect that the selected sequential patterns
can be sufficient enough to perform as reliable predictors in the Cox regression. In our
evaluation, as the response variable of Cox regression contains both binary and con-
tinuous variable which associate with time, we chose to use RisksetAUC [27] as our
main measurement.

4.1 Approaches for Comparison

We compare three different ranking mechanisms to order sequential patterns and we
apply the greedy forward selection to iteratively pick top-K sequential patterns as Cox
regression covariates. For each Cox regression, we measure the RisksetAUC value as
the performance. The benchmark ranking method is to order sequential patterns by the
support value from high to low. The other two ranking methods are MFS and Maxi-
mized coverage.

The experiment data is extracted randomly from IMEDS with medical records
ranging from January 1, 2003 to March 31, 2013 among 1,027,339 CHF patients.
Initially we set censored date on October 10, 2014 and we randomly selected 42,365
patients. Next, we apply both SPADE and VMSP in package spmf [28], with setting
minimum support threshold 0.1, 0.05 and 0.025. Table 2 shows the number of
sequential patterns generated in dataset DS2014.

4.2 Results

Accuracy of Survival Analysis Controlling for Charlson Index Indicators in
Absence of Treatment Covariates. Table 3 shows coefficients of Cox model trained
with patients’ immutable features in dataset DS2014. Positive coefficient represents a
patient that has that feature, and his hazard ratio is expected to increase. We can see that
most coefficients are positive and this result is reasonable since comorbid diseases
denoted in Charlson index indeed have the potential to increase the risk among each
other.

Table 2. The number of features generated.

Method SPADE VMSP

Threshold 0.1 0.05 0.025 0.1 0.05 0.025
Number of Patterns 85 643 5162 59 373 2,750
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Accuracy Results. Since the feature set of the Cox model can be formed by three
ranking mechanisms, (support, MFS and Maximized coverage), we compare how these
ranking methods affect the Cox model accuracy when we incorporate top-K features
into the model. In each figure, we list the total number of patterns generated by the
pattern mining algorithm associated with a threshold. For example, the main title,
SPADE_0.1, in Fig. 1a means we apply SPADE with threshold 0.1 to generate frequent
patterns and we obtain total 85 patterns in this case. The accuracy depicted in all figures
starts from the base AUC, 0.648.

In some cases, including all patterns into the model is allowable, such as Fig. 1a
and d. However, in some other cases, not all patterns are suitable to be fully incor-
porated due to the large number of patterns, such as Fig. 1c and f. Thus, the feature
screen strategy is important in the latter scenarios. For example, in Fig. 1c, if we select
only 10 % of features into the Cox model and attain higher than 85 % accuracy, this
implies that these features are sufficient to play as reliable predictors for the dataset.

From Fig. 1 we can observe that the base accuracy is enhanced significantly when
we bring these patterns into the model initially, and then the accuracy grows stable until
all features are included. Compare to MFS and Maximized coverage, we also observe
that the support ranking strategy does not effectively choose reliable predictors into
top-K feature set in most cases because the RisksetAUC of support does not show
competitive accuracy until we include all features into the Cox model, such as Fig. 1a
and d. This implies that patterns chosen by support may not be sufficient enough to
explain the outcome unless we apply all patterns to describe it. Next, we can view that
features filtered by MFS provide highest accuracy when we include only a few of them

Table 3. Coefficients and accuracy of immutable features.

Coef p-value

Gender 0.002 0.278
Myocardial Infarction 0.205 0.013
Peripheral Vascular Disease 0.050 0.699
Cerebrovascular Disease –0.004 0.958
Dementia –0.231 0.609
Chronic Pulmonary Disease 0.369 0
Rheumatologic Disease 0.313 0.002
Peptic Ulcer Disease 0.308 0.019
Mild Liver Disease 1.070 0
Diabetes 0.058 0.323
Diabetes with Chronic Complications 0.217 0.008
Hemiplegia or Paraplegia 0.926 0
Renal Disease 0.884 0
Moderate or Severe Liver Disease 0.619 0
AIDS 0.949 0
Age on Index Date 0.035 0
AUC 0.648
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into the model. When we incorporate more covariates, Maximized coverage is able to
support equal or higher discriminative ability. This observation delivers flexibility of
choosing the ranking strategy from MFS or Maximized coverage. For example, if we
want to preserve just a few features, such as the number is less than 100, MFS will be a
good option for feature screening. However, if we want to keep more features at the
beginning because the size of frequent pattern is large (such as more than 5000),
Maximized Coverage serves as a better choice. The reason is that Maximized Coverage
not only saves more computation time, especially when the number of features and the
number of tuples are massive, but also attains equal or higher accuracy than MFS.

Empirical Validation. In this section, we want to ascertain the validity of our selected
critical patterns, and we use drug-drug interaction (DDI) as our sanity check. We run a
simple validation as following. For each Cox model, we apply Benjamin Hochberg
method to adjust each feature’s p-value for reducing false discovery rate, and then we
select positive coefficient feature with adjusted p-value less than 0.05. The latent
meaning of the selected feature is: (1) this feature is significantly related to the out-
come, and (2) if a patient has this feature, his hazard ratio is expected to increase. Next,
we use external knowledgebase [29] to see whether this selected pattern contains
known DDI. The external knowledgebase classifies DDI into two levels, moderate and
severe. If the selected pattern contains DDI, we list it in the results.

Fig. 1. The effect of ranking mechanism on accuracy for DS2014.
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We use Cox models trained from DS2014 to run the DDI validation. Frequent
patterns are generated by VMSP with threshold 0.05, and patterns are ordered by
support, MFS and Maximized Coverage, respectively. Due to space constraints, we
only list distinct patterns detected with DDI in Table 4. For example, in Table 4, when
the Cox model incorporating top 120 patterns, ranked by MFS, as covariates, the
pattern {Acetaminophen → Warfarin} is significant and this pattern with positive
coefficient is also verified as having severe DDI. We observe that our proposed
framework has potential to select truly critical patterns and some of their latent
meanings can be verified. For the other significant patterns, they might be candidates in
new medical knowledge discovery after further investigation with medical domain
experts.

5 Conclusion

In this paper, we proposed a framework to efficiently discover critical sequential pat-
terns as reliable predictors in censored data. We used Cox regression to model the
censored data in order to avoid the skewed data problem in classification. We applied
SPM to generate frequent patterns and we provide two feature-ranking methods, MFS
and Maximized coverage, to select important patterns. Our main contribution is to
accurately screen out those insignificant but frequent sequential patterns. In experi-
ments, we demonstrated that the discovered sequential patterns are able to improve the
prediction accuracy, and we also showed that the Cox regression model provides a
better way to explain the latent meaning of sequential patterns.

Table 4. Verified DDI patterns mined by VMSP

PtnN DDI Coef adjP Drug sequence

Support 48 Moderate 0.353 0.001 Furosemide → Albuterol
84 Moderate 0.450 0.000 salmeterol fluticasone
132 Moderate 0.343 0.049 Azithromycin → Prednisone
228 Severe 0.350 0.044 Acetaminophen → Warfarin
348 Moderate 0.408 0.041 Lisinopril → Furosemide

MFS 120 Severe 0.349 0.001 Acetaminophen → Warfarin
132 Severe 0.324 0.018 Furosemide → Warfarin
288 Moderate 0.384 0.040 Albuterol → Prednisone
300 Severe 0.384 0.045 Azithromycin → Levofloxacin
312 Moderate 0.520 0.000 salmeterol fluticasone
336 Moderate 0.396 0.047 Lisinopril → Furosemide

Maximized coverage 60 Moderate 0.216 0.039 salmeterol fluticasone
72 Moderate 0.303 0.008 Lisinopril → Furosemide
96 Moderate 0.228 0.049 Furosemide → Albuterol
132 Moderate 0.351 0.023 Albuterol → Prednisone
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The framework we adopted has some limitations that might be addressed in future
work. By adopting an epidemiological framework that holds fixed the disease state at
the index date of CHF diagnosis, we are not addressing the dynamic nature of disease
evolution and the challenges associated multi-morbid patients and complex interactions
between disease, side-effects, and treatments. In future work, we might consider
Bayesian networks to help disentangle some of these confounding effects and incor-
porate knowledge that has been generated in hypothesis-driven research. This approach
would help resolve confounding concerns between drugs used to treat conditions that
evolve after the index date and indications that may be side-effects.
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Abstract. Probabilistic graphical modelling technique has been widely
used to infer the causal relations in the network from high-dimensional
data. One of the most challenging biological questions is the inference and
verification of biological network, for example, gene regulatory network
and signaling pathway, from high-dimensional omics data. Conditionally
dependent genes and undirected network can be inferred from the inde-
pendently and identically distributed static data, while the time series
data can help reconstruct a directed network which is more important
to our understanding of the complex biological system. Due to the curse
of dimensionality and network sparsity, statistical inference algorithm
alone is not efficient and realistic to infer and verify large networks.
In this work, we propose a novel technique, which applies the dimen-
sionality reduction, network inference and formal verification meth-
ods together to reconstruct some regulatory networks from the static
and time-series microarray data. A graphical lasso algorithm is first
applied to learn the structure of Gaussian graphical models from static
data and infer some conditionally dependent genes. Then, an extended
dynamic Bayesian network method is applied to reconstruct some
weighted and directed networks from the time series data of selected
genes, and also generate symbolic model verification code for model
checking. Finally, we apply this technique to reconstruct and verify some
regulatory networks in yeast and prostate cancer in response to stress
and irradiation respectively for illustration.

Keywords: Dimensionality reduction · Gaussian graphical model ·
Graphical lasso · Dynamic Bayesian network · Model checking · Microar-
ray · Prostate cancer

1 Introduction

High-dimensional data, including the static and time-series types, provide abun-
dant and important information to help us understand the dynamic and temporal
properties in the complex system. One of the most challenging biological ques-
tions is the inference and verification of complex biological network, for example,
c© Springer International Publishing Switzerland 2015
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gene regulatory network and signaling pathway, from high-dimensional omics
data. Correctly deciphering the gene regulatory networks can elucidate some
fundamental biological processes in the cell and pathogenesis of some diseases.
A number of machine learning and statistical inference algorithms [18,26,28],
including the graphical model methods [5,6,16], have been proposed to study
the gene regulatory networks (GRN) from microarray data, where, each node
represents a variable, and the edge connecting two nodes indicates a possible
causal relationship.

Since the chemical reactions in the regulatory network are stochastic
processes, probabilistic graphical model methods have been widely used to
describe the conditional dependence between two random variables in the net-
work. Two nodes in the graph are connected if and only if they are condition-
ally dependent given the other variables. Gaussian graphical model (GGM) has
attracted a lot of attention from computational biologists to learn network struc-
tures from static microarray data. In the Gaussian graphical models, the random
variable vector X follows a multivariate Gaussian distribution with mean-vector
μ and covariance matrix Σ. In the undirected graph, a missing edge implies a
conditional independence between two random variables given the rest. So, the
problem of inferring a GGM is equivalent to estimating an inverse covariance
matrix Σ−1, where the non-zero off-diagnol element indicates the existence of
an edge between two nodes. Due to a large number of covariates p (e.g., genes)
and insufficient observations (n << p), different optimization techniques [2,20],
e.g., graphical lasso regularization algorithm [4], have been proposed to estimate
the inverse covariance matrix and increase its sparsity through maximizing the
L1-penalized log-lihelihood function. However, these techniques could only infer
an undirected network, while other important information, such as the posi-
tions of genes in the pathway, upstream or downstream, activation or inhibition
relationship can not be inferred.

Dynamic Bayesian network (DBN) [6,16,17,22] is a promising learning tech-
nique that can reconstruct a directed gene regulatory network with feedback
loops from time-series data. Expectation-maximisation algorithm [24] can esti-
mate the parameters in the model. DBN method is based on the first-order
Markov chain, and different DBN-based softwares have been developed to
increase inference accuracy and reduce computational time. However, most of
these softwares can not either infer the “activation” or “inhibition” relation-
ship between different genes in the directed network, or estimate the interaction
strength. Moreover, the inferred networks are sensitive to the data discretization
policies. Bayesian network inference with Java objects, called Banjo [28] which
is based on DBN, can infer an optimal directed and weighted network through
calculating an signed (activation or inhibition) influence score for each edge.

Another important aspect in the gene regulatory network learning is the
model validation. Previous studies focus on the development of novel inference
algorithms to learn a statistically optimal network, and the inferred networks
are manually compared with existing database or known models, which is not
realistic in the large network verification. Our work has proposed and applied a
formal verification technique, called model checking, alone to study some given
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signaling pathways [10,11,13,14,19] in the cancer cells. Model checking [3] can
automatically and exhaustively search the state space to determine whether or
not a given system satisfies some desired temporal logic formula. Recently, we
proposed a novel procedure [9] to apply the dynamic Bayesian network algorithm
with model checking technique to infer and verify a subnetwork from time series
data of yeast. In that work, we have to manually select a subset of genes to
reconstruct a subnetwork, and also manually prepare the formal verification code
to do model checking for each network, which is not realistic for the verification
of multiple large networks.

The goal of this work is to integrate the dimensionality reduction, network
inference and model checking methods to reconstruct and verify gene regula-
tory network from high-dimensional static and time-series microarray data. A
graphical lasso algorithm is first applied to learn an undirected Gaussian graph-
ical model and identify some conditionally dependent variables from static data.
Then, a dynamic Bayesian network inference method (modified Banjo) is applied
to reconstruct some directed and weighted regulatory network candidates, and
also automatically generate formal verification code for each model. Finally,
model checker is applied to automatically verify the inferred networks. We illus-
trate this technique to reconstruct and verify gene regulatory networks from the
microarray data of yeast and prostate cancer.

2 Statistical Learning and Verification Methods

2.1 Dimensionality Reduction with Graphical Lasso

In this section, we assume the observations measuring the expression levels of
genes in the static microarray data are independent and follow the Gaussian
distribution, that is, the random vectors X1, . . . ,Xn ∼ N(μ,Σp), where μ ∈ Rp

is a mean vector (p denotes the number of features or genes) and Σp is p × p
covariance matrix. In this work, without loss of generality, we assume μ = 0.
The precision matrix Θ = Σ−1

p has been used to represent the conditional inde-
pendence and dependence relationship among the variables [4] in the Gaussian
graphical models (GGM). A non-zero off-diagonal element (θij �= 0) in the preci-
sion matrix indicates a dependence between two covariates, while, θij = 0 implies
a conditional independence between two variables given the rest.

Inference of the GGM is equivalent to estimating the elements in an unknown
precision matrix Θ, which are taken as random variables instead of fixed para-
meters. Then, the problem is to optimize the log-likelihood function, that is, the
log of a joint probability density function which is expressed as

l(X1, . . . ,Xn, Θ) = logP (X1, . . . ,Xn|Θ) + logP (Θ)

∝ n

2
log det Θ − n

2
tr(ΘS) + logP (Θ), (1)

where S is an observed or empirical covariance matrix of the data, and it is
written as
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S =
1
n

n∑

i=1

(Xi − X̄)(Xi − X̄)T .

If we assume the random variables Θ follow Laplacian distribution, that is, the
prior

θij ∼ λ

2
exp(−λ|θij |),

then, the likelihood function in Eq. 1 can be written as

l(X1, . . . ,Xn, Θ) ∝ n

2
log det Θ − n

2
tr(ΘS) − n

2
λ||Θ||1, (2)

Equation 2 is equivalent to the graphical lasso method which builds undi-
rected graphs by panalizing the off-diagonal elements of Θ with an L1 norm
proposed by Friedman et al. [4]. The optimization problem is expressed as

maximize
Θ

l(Θ) = maximize
Θ

{log det Θ − tr(SΘ) − λ||Θ||1}, (3)

where λ is a nonnegative tuning parameter controling the sparsity of the matrix,
and ||Θ||1 =

∑
ij |θij |. That is, we need solve the following equation

∂

∂Θ
l(Θ) = Θ−1 − S − λ · sign(Θ) = 0. (4)

Algorithm 1 describes the graphical lasso based on the block-coordinate
descent method which can estimate the sparse precision matrix Θ. We will briefly
discuss the procedure to solve Eq. 4 proposed in [4]. Each matrix, including
W = Θ−1, Θ, and S, will be partitioned as following:

(
W11 w12

wT
12 w22

)

,

(
Θ11 θ12
θT12 θ22

)

,

(
S11 s12
sT12 s22

)

,

where the sizes of (W11, Θ11, S11) and (w12, θ12 and s12) are (p− 1)× (p− 1),
(p − 1) × 1 respectively, w22, θ22 and s22 are scalars.

Algorithm 1. Graphical lasso based on a block-coordinate descent method
Input: Omics Data, S, λ
Output: Θ, conditionally dependent variables
Initialization: W = Θ−1 = S + λI
while W is not converged do

Partition of matrix W into blocks
Apply block-coordiate descent approach to solve L1 lasso penalized problem.
Update w12

end

Calculate θ22 = 1/(w22 − wT
12W

−1
11 w12);

Calculate θ12 = −θ22W
−1
11 w12.

return Θ;
output conditionally dependent variables.
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Then, the elements in the precision matrix Θ can be expressed as θ12 =
−θ22W−1

11 w12, and θ22 = 1/(w22 −wT
12W

−1
11 w12), where w12 = −W11θ12/θ22.

Graphical lasso method (implemented by the R package GLASSOPATH) applies
L1 lasso algorithm based on a block-coordinate descent method to estimate the
sparse precision matrix.

We can apply the graphical lasso algorithm to infer a sparse undirected prob-
abilistic graphical model which is composed of conditionally-dependent genes.
However, biologists are more interested in the directed regulatory network which
contains not only the conditional dependence information, but also the activation
or inhibition relationship between two genes. Next we will introduce an extended
dynamic Bayesian network inference algorithm which can reconstruct directed
regulatory networks from the time series data and automatically generate formal
verification code for model checking.

2.2 Directed Network Inference

In the time series microarray data, the expression levels of p genes at n dif-
ferent time points can be described by the random vectors X1, . . . ,Xn, where
Xi = (Xi1, ...,Xip)T is defined as the p random variables (e.g., genes) measured
at time i, and xij represents an observation value (expression level) of the ran-
dom variable Xij . Dynamic Bayesian network (DBN) [6,16,22] has been used to
reconstruct a directed network, where each edge can be either activation or inhi-
bition relationship between two nodes. This method is based on the first-order
Markov chain assumption that, each random variable at time i is dependent on
its parents at time i − 1 only. Therefore, a directed network can be graphically
represented by a joint distribution of n random vectors over time [16], which
is expressed as P (X1,X2, . . . ,Xn) = P (X1)P (X2|X1) × . . . × P (Xn|Xn−1),
and P (Xi|Xi−1) = P (Xi1|Par(Xi1)) × ... × P (Xip|Par(Xip)), where Par(Xij)
represents the gene j’s parents at time i − 1 [9,16].

In this work, we use the n × p matrix X to represent the time-series microar-
ray data which consists of p genes measured at n different time points, and also it
is discrete. The goodness of a network is evaluated by the likelihood-equivalence
Bayesian Dirichlet (BDe) scoring function proposed in Heckerman et al’s work
and used by many researchers in the network inference studies [9,15,16,22]. This
work will apply the Bayesian network inference with Java objects [28], which is a
network learning software, to calculate BDe scores. The idea is to maximize the
posterior probability distribution of the network G conditional on the microarray
data X, which is written as

P (G|X) ∝ P (G,X) =
∫

P (G,X,Θ)dΘ = P (G)
∫

P (X|G,Θ)P (Θ |G)dΘ,

where, P (G) is the prior of the network G, which can be chosen in different
ways, for example, Friedman chose P (G) based on the minimal description length
(MDL) encoding of G. The BDe score function is based on the following assump-
tions [15]:
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1. The data X is a multinomial sample dependent on the parameters Θ, that
is, X|Θ ∼ Multinomial(Θ);

2. The parameters in Θ are globally and locally independent;
3. Given a network G, the parameters in Θ follows Dirichlet distribution with a

hyperparameter vector α, that is, Θ|G ∼ Dirichlet(α). The Dirichlet function
has been given in [15,16].

4. Two directed acyclic networks G1, G2 are equivalent if they encode the same
joint probability distribution;

5. If the network G1 is equivalent to G2, the distribution function of Θ will be
same in both networks.

The BDe scores for all possible networks will be calculated by the Bayesian
network inference with Java objects [28], then, a greedy searching or simulated
annealing algorithm proposed by Heckerman will be used to find optimal net-
works. Learning the activation and inhibition relationship between two genes will
help us comprehensively understand the mechanism underlying the gene regula-
tory network. The influence score proposed in Yu et al.’s work [28] can be used
to identify the activation and inhibition relationship and interaction strength.
A positive influence score indicates an activation event, while a negative value
corresponds to an inhibition event between two nodes. If the influence score is
close to 0, the sign can not be identified based on the current time series data.
The Bayesian network inference with Java objects [28] used a voting system and
the value of a cumulative distribution function to estimate the influence score

Gijk(t) =
k∑

l=0

ωijl(t) =
k∑

l=0

P (Xti = 1|Par(Xti) = j). (5)

Gijk(t) describes the probability that, at time t, gene Xti takes a (discrete)
value less than or equal to k given its parent gene takes a value of j, where,
ωijk(t) is the probability that gene Xti takes a value of k given its parent gene
Par(Xti) takes a value of j. The interested reader could refer to [28] for details.
Algorithm 2 shows the procedure of dynamic Bayesian network inference based
on BDe metrics and influence score estimation. We modified the Banjo code to
search and output top n high-scoring directed networks with influence scores,
and automatically generate the weighted SMV formal verification code for each
network to do model checking.

Model verification is another aspect to studying the gene regulatory network
due to the complexity of biological system. How to verify or falsify the network
candidates inferred by the DBN? Recently, we proposed a weighted symbolic
model verification (SMV) technique [9] to formally verify the networks. However,
in that work [9], the regulatory subnetworks are inferred from a given subset of
genes, and they are manually encoded into SMV program for model checking,
which is not realistic and efficient to encode multiple large networks.

Besides the dimensionality reduction method is first used to select the condi-
tionally dependent genes intead of manually selecting a subset of genes, another
novelty in this work is that, the extended dynamic Bayesian network inference
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Algorithm 2. Directed graph inference based on dynamic Bayesian net-
work method

Input : Conditionally-dependent variables selected by Algorithm 1;
Time series data X

Output: Directed networks of top n BDe scores;
Symbolic model verification (SMV) code for each network.

Data Discretization;
for each network G do

Evaluate the goodness of a network ;
Data X|Θ ∼ Multinomial(Θ);
Θ|G ∼ Dirichlet(α);
Calculate BDe score based on P (G|X);

Network searching;
Network sorting based on BDe scores;
Greedy search or simulated annealing algorithm;

Estimate influence score;
for each edge (Xi, Par(Xi)) do

Compute ωijk(t) = P (Xti = k|Par(Xti) = j) ;
Estimate Gijk(t) =

∑k
l=0 ωijl(t);

Identify the sign and magnitude of interaction using a vote
end

Output top n networks;
Generate weighted SMV code for each model.
end

with Java object method can automatically encode all the inferred network can-
didates into weighted SMV program for model checking. Next, we will introduce
the weighted symbolic model checking technique used for network verification
which has been discussed in our recent work [9].

2.3 Network Verification

An inferred network might be trustable only if it is consistent with the exist-
ing experiment or knowledge. Previous studies manually compared the inferred
network with existing database or known models. Our recent studies [9,14] have
demonstrated the power of formal verification technique in the biological stud-
ies. Model checking [3] is a powerful and automatic formal verification method,
it can check whether or not a given model M satisfies a desired temporal logic
formula ψ, denoted by M |= ψ. Different model checkers have been developed
and successfully applied to verify the hardware and software systems in the past
thirty years.

We have discussed the model checking technique in our recent work [9,14],
for completeness, we will review some fundamental concepts and algorithms in
this work. In formal verification studies, a model is described as a Kripke struc-
ture [3,12] M = (S, s0, R, L) with the initial state s0 ∈ S, states transition
relation R, and a labeling function L. SMV [21] is one of the most popular sym-
bolic model checking tools that are encoded by ordered binary decision diagram
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(OBDD) [1]. During model checking process, SMV model checker will automat-
ically and exhaustively search the state transition system M to verify some
desired property ψ which is expressed as a computation tree logic (CTL) for-
mula. CTL formula is composed of Boolean logic connectives, temporal operators
describing some property on a path and path quantifiers describing the branch-
ing structure in the computation tree. Table 1 lists these operators and the
corresponding meanings. For example, AG(AF)φ means φ is globally (finally)
true on all paths; EG(EF)φ means φ will be true always (in the future) on some
path. In this work, most CTL formulas are constructed using these 6 operators:
AX,EX,AG,EG,AF,EF. The interested readers could refer to [3] for more
interesting operators. In the CTL syntax, the state formula and path formula
are represented by ψ and φ respectively, and an infinite sequence of states or a
path is denoted by π. The interested readers could refer to [3] for the syntax and
semantics of CTL logic, and CTL formulas. After verification, the SMV model
checker will output either “True” if the property is satisfied, or “False” with a
counter example.

Table 1. Boolean logic connective, temporal operator and path quantifier in CTL
formula.

Operators ! | & → X F G U A E

Meaning not or and implies neXt Future Globally Until All paths There Exists
some path

Algorithm 3 (Part I) presents the weighted symbolic model checking
pseudocode of SMV program that can be automatically genetated by the
Algorithm 2 for each network, which is an extension of the unweighted model
checking method. Similar to the unweighted model checking code, the program
should start with “MODULE MAIN”, and all the variables are defined and ini-
tialized by “VAR” and “init” respectively under the keyword “ASSIGN”. The
difference is, the state transition update for each variable is not only depen-
dent on its parents’ states, but also the integral influence score (only integers or
Boolean values are allowed in the symbolic model checking), which is calculated
by Algorithm 2. SMV model checker will automatically verify all the CTL for-
mulas (encoded by the keyword “SPEC”) to find the best models (which could
be more than one candidates) satisfying all or most of the properties proposed or
desired by the investigators. Part II shows the SMV algorithm based on OBDD
data structure [1]. A Boolean function is applied to describe the transition rela-
tion between states implicitly. Detailed symbolic model checking algorithm and
weighted SMV code have been discussed in [3,9,21].

3 Applications

In this section, we will apply the proposed integrative methods in the Algorithms
1–3 to analyze the static and time series microarray data of yeast and prostate
cancer. The graphical lasso method is first applied for dimensionality reduction,
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Algorithm 3. Weighted symbolic model checking pseudocode and SMV
algorithm

Part I: Weighted symbolic model checking pseudocode

Input 1 : Inferred regulatory networks M by Algorithm 2;
Temporal logic formula ψ

Output 1: True or False

for each network do
Variable declaration by ”VAR”;
Variable initialization by ”init”;
State update with the weighted transfer functions by ”next”;
CTL formula specification by ”SPEC”;
M |= ψ: output True or False.

end

Part II: SMV Algorithm [3]

Input 2: A model M ; desired CTL formulas f, g
Check: Take a CTL formula as its argument
Return: OBDD for the set of states that satisfy a given temporal logic formula.
Output 2: A set of states of M , which satisfy the formula.

– if f is an atomic proposition vi: return Check(f) = vi;
– if ¬f : return Check(¬f) = ¬Check(f);
– if f ∨ g: return Check(f)∨ Check(g);
– if EXf : return Check(EX(Check(f)));
– if E[fUg]: return Check(EU(Check(f),Check(g)));
– if EGf : return Check(EG(Check(f))).

infer an undirected Gaussian graph model from the static data, and identify a
subset of genes that are conditionally dependent. Then the dynamic Bayesian
network inference method is applied to reconstruct some directed networks from
the time series data of conditionally dependent genes, which will be verified
by the symbolic model checking technique. The graphical lasso, modified Banjo
code, and weighted SMV code developed for this work are available at http://
cs.slu.edu/∼gong/Research/DILS.zip.

3.1 Yeast Data Analysis

The static microarray data (Accession No: GSE19213) of the yeast studies the
transcription factor Yap1 which mediates an adaptive response to oxidative stress
(e.g., H2O2 or thiol-reactive chemicals) by regulating some protective genes [23].
For illustration, only the top around 5000 differently expressed genes (between
treatment and control group) in the wild-type strain treated with H2O2 will be
used in our studies. For simplicity, the expression levels among different probes
that map to the same gene were averaged to a single value in our data analysis.

http://cs.slu.edu/~gong/Research/DILS.zip
http://cs.slu.edu/~gong/Research/DILS.zip
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Fig. 1. Conditionally dependent genes and undirected Gaussian graph models inferred
from static microarray data of yeast with different values of λ: (a) λ = 0.41,
(b) λ = 0.30.

Graphical lasso method is applied with different λ values in order to infer
the precision matrices ranging from a dense matrix to a sparse one, it is known
that a large λ value will result in a sparse matrix. Figure 1 shows two figures
with λ = 0.41 (16 genes) and λ = 0.30 (37 genes) for demonstration. More
figures with a wide range of λ value are given in the online supplementary files.
It is apparent that Fig. 1(a) is a subnetwork of Fig. 1(b), SPB1 and CGR1 are
highly connected genes, which are also called hub genes. Goel et al’s work [8]
has confirmed the hub protein SPB1’s important role in rRNA processing and
ribosome biogenesis.

Then, the modified dynamic Bayesian network inference with Java Object is
applied to reconstruct directed regulatory networks of high-BDe scores from time
series microarray data and automatically output the encoded symbolic model

Table 2. Proposed CTL formulas for the network verification of yeast

CTL formula

Property 1 A(CGR1 = 1 → AX(RRP12 = 1))

Property 2 EG(TEA1 = 1 → EF(SNU66 ≤ 0) )

Property 3 AG(RRP12 = 1 → AF(SNU66 = −1) )

Property 4 AG(CGR1 = 1 → AF(MRPL4 < 0 & HOS2 < 0 & VRP1 = 1))

Property 5 EG((SWF1 = 1 | FMT1= 1 → EF(RPA12 = 0 & GIT1 ≥ 0)))

Property 6 AG((SNU66 = 1 → AF(TEA1 = 1)) &(TEA1 = 1 → AF(SNU66 ≤ 0)))
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verification (SMV) program for all the network candidates. The time series data
(Access No: GSE62120) measure the expression levels of yeast in response to the
oxidative stress (H2O2) with 11 time points. Only the conditionally dependent
genes identified by the graphical lasso in Fig. 1 will be used for the directed
network reconstruction. Since the Banjo performs well with a small number of
genes, in this work, we select 16 genes for network construction. The goal is to
find a network that might regulate the oxidative stress in the yeast.

Figure 2 demonstrates some directed and weighted regulatory network can-
didates (of top two BDe scores) based on the genes selected in the GGM with
λ = 0.41 and two different discretization policies q2 (a–b) and i2 (c–d). The
solid lines with arrows represent an activation event, while the circle-head arrows
represent inhibition processes. The integers on the directed edges represent the

(a) (b)

(c) (d)

Fig. 2. Top two directed and weighted gene regulatory network candidates of yeast
based on q2 (a–b) and i2 (c–d) discretization policies with λ = 0.41. Solid lines with
arrows represent an activation event, circle-head arrows represent inhibition processes.
The values on the directed edges represent the influence scores.
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modified influence scores or weights, which will be used for the weighted symbolic
model checking. All these network candidates take the MRPL4 gene as a hub,
which plays an important role in the protein synthesis within the mitochondrion.

Figures 1 and 2 demonstrate that, given different values of λ, graphical lasso
and dynamic Bayesian network inference methods could generate many statisti-
cally optimal undirected and directed network candidates. Compared with our
previous work, the novelty of this method is that, the extended dynamic Bayesian
network inference method, a modified Banjo, could automatically generate SMV
verification code for each network candidate which will be used for model check-
ing. Then, next step, we apply SMV model checker to verify or falsify these
inferred networks through checking some putative properties that we defined in
the Table 2.

Table 2 summarizes some putative CTL formulas that we assume the inferred
networks should satisfy. Each gene or variable can take three possible values:
−1, 0, 1, which denote inhibited, normal and activated, and the initial state is
set to be either 0 or −1. Property 1 indicates that RRP12 might be a downstream
gene of CGR1, that is, CGR1’s activation will immediately activate RRP12 in
the neXt step. Property 2 means, there exist a path on which TEA1’s activation
will finally inhibit SNU66’s expression, while Property 3 means, for all paths,
it is globally true that RRP12’s activation will finally inhibit SNU66’s activ-
ity. Property 4 and 5 are similar to property 3 and 2 respectively. Property 5
describes a negative feedback loop between SNU66 and TEA1.

Next, symbolic model checker will automatically verify or falsify all the
4 inferred networks shown in Fig. 2, and output either “True” or “False” if
some property is satisfied or not respectively. Table 3 summarizes the verifi-
cation results of these putative properties in 4 different models. Our methods do
not intend to infer and verify only one statistically optimal network (as other
researchers’ work), however, the model checker will search and find one or a
pool of “best-fit” networks from a number of inferred network candidates which
satisfies all or most of desired temporal logic properties. Moreover, new evidence
or future studies can continue to refine the “optimal” network pool with more
properties. In our examples, the inferred networks in Fig. 2 (a–b), which satisfy
4 putative properties, might be better than those in Fig. 2 (c–d). But more tem-
poral properties from the wet lab experiments will be needed to identify a really
best-fit network candidate.

Table 3. Network verification results of yeast

Property 1 Property 2 Property 3 Property 4 Property 5 Property 6

Model a True True True False False True

Model b True True True False False True

Model c True True False False False True

Model d True True False False False True
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3.2 Prostate Cancer Data Analysis

The static microarray data of prostate cancer [25] contains 639 tumor samples,
including 270 African-American and 369 European American patients, where
517 genes linked with prostate cancer were measured by 1,507 probes (Gene
Expression Omnibus accession number GSE41969). The expression levels among
different probes that map to the same gene were averaged to a single value for the
data analysis. The time series data (GSE770) studied the androgen-independent
LNCaP C4-2 human prostate adenocarcinoma cells following irradiation, the
RNA was extracted from cells at 1, 2, 4, 6, 8, 12, 16, 20 and 24 h after irradiation,
and the untreated control sample was labeled 0. Our goal is to find some networks
that might be associated with the prostate cancer in response to irradiation.

(a)

(b)

Fig. 3. Conditionally dependent genes and undirected Gaussian graph models inferred
from static microarray data of prostate cancer with different values of λ: (a) λ = 0.39,
(b) λ = 0.32.

Similar to the yeast data analysis, we first select some conditionally depen-
dent genes and infer undirected Gaussian graphical models given different values
of λ which are shown in the Fig. 3 ((a) λ = 0.39, (b) λ = 0.32). The highly
connected genes, including ERG, ALOX15B, TRIM29 have been found to be
deregulated in the prostate cancer [7]. ERG activation, one of the most com-
mon oncogenic alterations, is present in 50–70 % of prostate tumors; especially,
TRIM29 can negatively regulates p53 via inhibition of Tip60 [27], and it is over-
expressed in lung, bladder, pancreatic and endometrial cancers, but opposite in
prostate cancer.

Figure 4 shows four optimal directed and weighted network candidates of
androgen-independent prostate cancer in response to irradiation based on the
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(a) (b)

(c) (d)

Fig. 4. Top two directed and weighted gene regulatory network candidates of prostate
cancer based on q2 (a–b) and i2 (c–d) discretization policies with λ = 0.39.

conditionally dependent genes selected by GGM with λ = 0.39 and two different
discretization policies q2 (a–b) and i2 (c–d) using the modified Banjo software.
Besides the verification of desired properties, the model checker could also predict
some properties that the future experiments can test. We proposed two predic-
tions which describe two possible feedback loops related to the highly connected
gene TRIM29. Prediction 1 incorporates two inhibition events, while Prediction
2 is composed of activation events only. The difference of these two predictions
could be observed easily from the Fig. 4, which is a small network, but difficult in
the large model. However, the model checker could easily and automatically find
this difference in different models through checking the following two properties
using the generated SMV formal verification code:

Prediction 1: AG((HPN1 = 1 → AF(TRIM29 ≤ 0)) & (TRIM29 ≤ 0 →
AF(ALOX15B ≥ 0)) & (ALOX15B ≥ 0 → AF(HPN ≥ 0))).
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Prediction 2: A((ERG = 1 → AF(TRIM29 = 1)) & (TRIM29 = 1 →
AF(GDF15 = 1)) & (GDF15 = 1 → AF(ERG = 1))).

Figure 4(a–b) satisfy both predictions, but Fig. 4(c–d) only satisfy the Pre-
diction 2. The future experiments could help validate these predictions, and help
refine the inferred models of prostate cancer cells after irradiation.

4 Conclusions

Correct learning and efficient verification of complex biological networks from
high dimensional data is a challening job in systems biology. In this work, we pro-
posed an integrative technique, which incorporates the graphical lasso, dynamic
Bayesian network inference algorithm and weighted symbolic model checker, to
analyze both static and time series microarray data of yeast and prostate cancer
in response to oxidative stress and irradiation respectively. The graphical lasso
first identified some conditionally dependent genes and inferred undirected net-
works from static microarray data that are associated with the oxidative stress
or irradiation; then, DBN is applied to reconstruct the directed and weighted
networks from time series data using different data discretization policies and
automatically generate formal verification code for model checking. Compared
with other researchers’ work which learns only one statistically optimal network,
this proposed method can both infer and verify several optimal networks that
satisfy some desired temporal properties. This method is universal and applica-
ble to any type of static and time series data, which can help us investigate the
biological networks implicated in the pathogenesis of some diseases.

Our studies found the Bayesian network inference with Java objects [28]
method is very sensitive to the data discretization policies, and it could learn
and generate reasonably-connected networks only if the number of genes are not
very large. However the gene regulatory network is large in fact and the model
checking technique is powerful in the verification of large networks. Our future
work will develop new learning algorithms which can handle the inference of
large number of variables and take advantage of the verification power in model
checking. Moreover, we will develop a GUI version to make the network learning
and verification easy and convenient.

5 Contribution

HG proposed the project, YM wrote the glasso code and analyzed the microar-
ray data, KD and JK modified the Banjo code to infer directed network and
automatically generate verification code.
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Abstract. SPIRIT-ML (Software Platform for Integrated Research
Information and Transformation - Machine Learning) is a synergistic
and flexible machine learning component of integrated research infor-
matics platform, SPIRIT, being developed at City of Hope. SPIRIT-ML
is being developed to analyze varied data analysis problems in biomed-
ical and clinical datasets to further translational research. An interac-
tive interface, broad spectrum of data driven learning models, multiple
cross-validation techniques, visualization methods and reporting metrics
constitute the platform.
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1 Introduction

Machine learning algorithms have been applied to solve research problems
encountered routinely in various biological and clinical settings. They have been
applied to identify patient cohorts based on electronic medical record (EMR)
data, identify malignant tumors based on image data, and for adverse drug sur-
veillance based on publicly available databases, to name a few [2].

A biomedical dataset containing collection of patterns can be grouped into
clusters based on similarity. For example, a cohort of cancer patients can be
stratified into distinct clusters based on their demographic, biological and clini-
cal characteristics. In solving a classification problem, we are interested in pre-
dicting the outcome (class label) of the dataset by building a model based on a
training dataset. Similarly, malignant and benign tumors can be classified based
on tumor characteristics from breast cancer patients [3,4]. Bayesian networks can
help discover the dependent and independent variables [5] in high throughput
molecular dataset consisting of genes and proteins identified in gene regulatory
pathways.

Significant effort is spent when various machine learning methods are applied
to biomedical and clinical problems using independent one-off deployment of
computational pipeline. To address this problem we extended SPIRIT plat-
form to include an interactive interface for applying a comprehensive set of
c© Springer International Publishing Switzerland 2015
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machine learning methods. SPIRIT-ML allows normalization and binning of the
input data, applies uniform data validation methods and creates reports that
allow users to compare results across all the methods. SPIRIT-ML is specifically
designed for extracting knowledge from biomedical datasets. SPIRIT-ML comes
with a standard set of machine learning algorithms. Additional algorithms can
be incorporated efficiently into SPIRIT-ML.

2 Methods

Increasingly, a large number of cloud based machine learning platforms are avail-
able for large scale data analysis and predictive analytics. These include, AWS
machine learning platform [16], H2O [17], Apache Mahout [18] etc. WEKA [19]
is an open source application that integrates several machine learning algorithms
for data mining tasks. WEKA has been integrated with KNIME data pipelin-
ing tool to create data analysis pipeline. Our approach is similar, but singularly
focused on biomedical data.

We utilize a commercial data pipelining and scientific informatics platform
(Biovia’s Pipeline Pilot, [21]) to integrate several machine learning algorithms
from R, MATLAB, Huggin etc. One of the advantages of SPIRIT-ML is its ability
to utilize a rich source of components in Pipeline Pilot. For example, Pipeline
Pilot has an extensive collection of cheminformatics components. These com-
ponents enable molecular similarity analysis, prediction of toxicology profiles
of molecules and molecular database searching. Combing the machine learn-
ing algorithms with these cheminformatics algorithms can provide a powerful
molecular classification application. Similarly, Pipeline Pilot provides access to
a wide variety of computational protocols in bioinformatics. For example, Fig. 1
is a Pipeline Pilot protocol that is available to stratify Acute Lymphoblastic
Leukemia (ALL) patients based on gene expression data [1]. Starting from the
gene expression data from 32 ALL patients, using pairwise differential expres-
sion component along with intensity variation component one can extract the
genes that meet the selection criteria. A PCA analysis of the corresponding
microarrays is able to identify two clusters of patients as seen in Fig. 2. Pipeline
Pilot protocols like this when integrated with machine learning algorithms in
SPIRIT-ML increases its utility.

Pipeline Pilot can also be utilized to create machine learning applications for
image analysis as well as text analysis. Image segmentation, morphology, trans-
formations, image filtering and enhancement are some of areas within image
analysis with multiple Pipeline Pilot protocols potentially available to SPIRIT-
ML. For example, Per Object Thresholding component within image segmenta-
tion finds a different threshold for each biological cell in an array and successfully
segments all arrays. Text analysis orientated Pipeline Pilot protocols can help
crawl web pages, can create ontology files from different source formats, perform
local searches (by indexing Pubmed for example) etc.

The entire SPIRIT-ML platform is built on top of Pipeline Pilot, a data
pipeline software that provides a web interface for accepting user specified
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Fig. 1. A Pipeline Pilot protocol based on gene expression data to separate pediatric
acute lymphoblastic E2A-PBX1 patients from T-ALL patients

Fig. 2. A PCA of the gene expression data shows two clusters (T-ALL patients in
green and E2A-PBX1 patients in red) (Color figure online)

options as well as displaying all the results obtained. Pipeline Pilot uses a data
pipeling approach to handle and analyze research data. It uses a data flow frame-
work to describe the processing of data. Algorithms written in R and MATLAB
as well as external APIs provided by other scientific software applications like
Hugin [20] can be integrated within the Pipeline Pilot environment. Using indi-
vidual components, the entire data pre-processing, data analysis, visualization
and web reporting is handled conveniently within Pipeline Pilot.

Figure 3 presents SPIRIT-ML approach to analyzing biomedical data sets.
The data is grouped together as a matrix with columns containing features or
attributes and rows containing observations or instances. The raw data is trans-
formed via built-in options such as normalization and binning. Data attributes
that are continuous are selected for normalization. Normalization scales the
instances of each selected attribute to lie within unit range. The attributes that
need to be binned can then be selected with user specified number of bins.
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Fig. 3. SPIRIT-ML: The machine learning component of Software Platform for Inte-
grated Research Information and Transformation. The texts in red color were imple-
mented by using the R clustering algorithms implement in Pipeline Pilot version 9.1.
The texts in green color were implemented by using different libraries in R. The texts
in blue color were implanted using MATLAB (Color figure online).

SPIRIT-ML is a comprehensive framework for clustering, classifying, and deci-
phering relationships among covariates. It provides three types of data driven
learning methods: unsupervised learning algorithms (i.e. clustering), supervised
learning algorithms and Bayesian network models.

Clustering methods in SPIRIT-ML includes both hierarchical as well as
non-hierarchical algorithms [6]. Agnes algorithm, an agglomerative hierarchi-
cal method, and DIANA algorithm, a divisive hierarchical method, are two
hierarchical R clustering algorithms included as part of SPIRIT-ML. Non-
hierarchical algorithms that are part of the clustering module of SPIRIT-ML
include K-means [7], PAM and CLARA that can deal with large datasets. We
have also implemented Cluster Fanny, a fuzzy clustering algorithm. Except,
K-Means, all unsupervised learning algorithms are implemented using the cluster
library in R. The K-Means algorithm is implemented using the stats library in
R. Hierarchical algorithms with well known distance based metrics like Euclid-
ean and Chebychev available in MATLAB are implemented in the SPIRIT-ML
platform.

For classification problems, the transformed data is distributed with a fixed
percentage utilized for training (usually 70 %), validating (15 %) and testing pur-
poses (15 %) prior to developing the learning models. This is part of all R and
MATLAB codes integrated within SPIRIT-ML. Decision tree [8] algorithm using
the rpart library and C5.0 algorithm [9] using the C50 library were implemented
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in R. These algorithms help convert the features into rules/decisions driven by
the underlying data. Support Vector Machines (SVMs) [10] and Näıve Bayes
algorithms [4] were implanted using the e1071 package in R. SVMs are use-
ful to separate datasets using linear classifiers in a higher dimensional space.
Independent features are best modeled using the Näıve Bayes classifier. Biolog-
ically inspired artificial neural networks [11] are able to approximate nonlinear
functions and are referred to as nonlinear classifiers. MATLAB’s neural net-
work toolbox was utilized to implement this algorithm in SPIRIT-ML. Logistic
regression i.e. multinomial log-linear model was implanted in R using the nnet
library. These are best suited for classification problems where the class label is
binary. Random Forests (RF [12]) implemented using the randomForests library
in R is an ensemble of decision trees included in the suite of supervised learning
algorithms.

SPIRIT-ML ranks features in decreasing order of their importance in building
supervised learning models. For decision trees, the topmost node of the tree
where maximum data instances are classified was used to identify the first rank.
This process is iteratively applied on the remaining set of features. For SVMs,
the root squared coefficients of the support vectors were used to rank all the
features. For ANNs, the connection weights between the different layers were
used to rank the features. For RF, the importance measure in the randomForest
package in R was used to rank the features. For multinomial log-linear models,
the exponential of logistic regression coefficients were used to rank the features.

For developing Bayesian networks from a given dataset, eight algorithms
(Grow-Shrink, Hill-Climbing, Tabu Search, Restricted Maximization, Incremen-
tal Association, Max-Min Hill Climbing, Fast Incremental Association and
Chow-Liu algorithms) have been implemented using the bnlearn library in R
[13]. Hugin module within SPIRIT-ML can be utilized to create influence dia-
grams.

Multiple cross-validation methods [14] such as 5-fold, 10-fold as well as leave
one out cross validation methods have been implemented. The outputs of the
unsupervised models are clusters that may be visualized either as dendrograms
or cluster plots. The performance of the supervised learning models are visual-
ized using the Receiver Operating Characteristic curves (ROC). The results are
summarized and made available as a pdf file. This file includes a side by side
comparison of all the supervised learning model results obtained when solving
a classification problem, the visualizations obtained from unsupervised learning
models obtained when solving clustering problems and learning diagrams when
constructing Bayesian network models.

3 Results

3.1 Predictive Model Building: Use Case 1

Fine needle aspiration (FNA) cytology characteristics of tumor cells differ
between benign and malignant samples from breast cancer patients. Determinis-
tic features measured by Dr. Wolberg and colleagues at University of Wisconsin
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Fig. 4. Normalization and binning raw data

Hospitals from digitized image of aspirated cells [3,4] can be used to predict
tumor malignancy. The dataset has been archived at UCI’s machine learning
repository and is referred to as the Wisconsin Breast Cancer dataset. This
dataset contains 699 instances with each instance represented by a sample ID
and 9 other numeric features. Supervised learning (classification) algorithms in
SPIRIT-ML were utilized to predict tumor malignancy.

Figure 4 displays the features that were analyzed in the Wisconsin Breast
Cancer dataset. The features assumed numeric values in the range of 1–10. The
class labels were benign as well as malignant. In 16 instances, one of the nine
features (bareNuclei) analyzed was missing a value. A random value between 1
and 10 was assigned for these instances. Since the nine features considered were
continuous with values ranging between 1 and 10, we chose to normalize all of
them. Each feature was then binned (4 bins with uniform width).

If the tab that indicates Expand to change the default parameters is selected,
a drop down appears as a list of parameters (Fig. 5) for supervised learning mod-
els with editable values. For example, DT minsplit, DT CP and DT minbucket
refer to the minsplit, CP(Complexity Parameter) and minbucket parameters,
respectively, expected by control option within the rpart command for the deci-
sion tree algorithm in R.

For the supervised learning task, SPIRIT-ML provides the results for all
the algorithms side by side (Fig. 6). The first table compares the accuracy of
the seven supervised learning models based on the training dataset which in this
case comprised of 70 % of the entire dataset. The second table in Fig. 6 compares
the Precision, Recall, F Measure and Specificity [15] across all the models. The
final table in Fig. 6 ranks the top five features that led to the classification based
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Fig. 5. Default parameters that can be modified

Fig. 6. Accuracy, Performance Measures and Feature Ranking based on training data

once on the training data. To combine the results of feature ranking we adopt
the consensus polling method to determine the most important features. In our
use case they were: BlandChromatin, UniformityofCellSize, ClumpThickness,
MarginalAdhesion, UniformityofCellShape and BareNuclei.
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Fig. 7. ROC based on training data for two supervised learning algorithms

Fig. 8. Accuracy, Performance Measures and Feature Ranking based on test data

The Receiver Operating Characteristic (ROC) curves based on the training
data for two of the supervised learning models are shown in Fig. 7. They indicate
that for the training data these models are quite good. To test these models, we
used the test data against the models we created. The results for all the models
are shown in Fig. 8. We found that the accuracy and performance on test data
are greater than 94 % for all models except that obtained by Random Forests
algorithm.

3.2 Clustering Dataset: Use Case 2

Identifying relevant patient characteristics in the case of complex diseases such as
diabetes, cancer and dementia is quite challenging. Patient demographics, diag-
nosis and procedure information are usually captured in coded format within
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Fig. 9. Dendrogram depicting 5 clusters using Cluster DIANA

clinical databases. Patterns within the coded fields may reveal clinical charac-
teristics across patients that would be difficult to determine manually. To auto-
mate this process, we developed a use case based on coded features derived from
MIMIC II dataset (http://mimic.physionet.org/), a publicly available clinical
database, using SPIRIT-ML.

Type II diabetic patients with certain types of cancer (Liver, Pancreatic,
Uterus, Colon, Bladder, Breast, Kidney, Esophageal and Ovarian) within MIMIC
II dataset were clustered using the clustering algorithms in SPIRIT-ML to reveal
clinical characteristics across patients. A total of 194 patients (instances) with
ten features (Age, Gender, Ethnicity, BMI, Congestive Heart Failure Yes/No,
Cardiac Arrthymias Yes/No, Hypertension Yes/No, Chronic Pulmonary Yes/No,
Renal Failure Yes/No and Liver Disease Yes/No) were analyzed.

Figure 9 is a dendrogram visualization of the five clusters obtained by Cluster
DIANA algorithm, one of the six clustering algorithms implemented in SPIRIT-
ML. The threshold decides the number of clusters identified. In this case, there
are two major clusters and three minor clusters. The numbers in Fig. 10 indicate
the number of patients in each cluster. The characteristics that decide the cluster
membership for each patient can be determined by converting the clustering
problem into a classification problem where the cluster membership is taken to
be the class label. Figure 8 depicts the cluster plot for the five clusters. These
plots are helpful in visualizing where the individual clusters lie in relation to other
clusters. The clusters with 3 and 7 patients seemed to be within the cluster with
96 patients. The cluster with 6 patients overlaps with the two major clusters.
This plot suggests that in reality there are only two main patient clusters.

http://mimic.physionet.org/
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Fig. 10. Cluster plot using cluster DIANA

4 Future Work

The future development of platform will include vertical and horizontal integra-
tion to enable integrated research informatics. The horizontal integration cur-
rently planned include integration of SPIRIT-ML with the biomedical and clinical
natural language processing component of SPIRIT (SPIRIT-NLP), image analy-
sis and genomics computational pipelines being implemented at COH as part of
SPIRIT platform.

The vertical integration of SPIRIT-ML with the n-tier SPIRIT platform is
also being planned. This integration will include application integration using
FUSION middleware, web services, common user interface components shared
amongst other SPIRIT applications.

5 Conclusions

SPIRIT-ML is a functional machine learning platform that is used to discover
and reveal patterns in biomedical datasets. SPIRIT-ML provides the following
features: (a) Normalization and harmonization of input data (b) Clustering, clas-
sification and Bayesian network algorithms for deciphering relationships within
a dataset (c) Various Validation methods (d) Integrated reporting system for
comparative analysis of results. The underlying design of the platform is flexible
enough to include machine learning models of choice, and facilitates comparison
of results obtained by each model side by side. With the aid of SPIRIT-ML, the
needs of multiple translational research projects that require data driven knowl-
edge extraction can be addressed. We intend SPIRIT-ML to be an open source
platform so that machine learning methods developed in other packages such as
WEKA can be incorporated with minimal effort via Web Services.
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1 Introduction

This demonstration paper will illustrate the use of two tools, Ferret and semEP,
to mine the sentence evidence and the annotation evidence, respectively, for
cross genome gene function discovery. A case study of the plant hormone ethyl-
ene across the genomes of a plant, Arabidopsis thaliana and an alga, Spirogyra
pratensis, will use the annotation evidence and sentences from the literature to
showcase our discovery process and tools.

2 Background on a Cross Genome Discovery Case Study

Co-authors Chang and Van de Poel are investigating the evolution of the plant
hormone ethylene. Chang is an expert on ethylene signaling in Arabidopsis
thaliana. They are now studying Spirogyra pratensis, a freshwater alga [3]. As
the closest living relative of land plants, this algal group is very valuable for
studying the evolution of plants and their transition to land. One of their goals
is to identify the genes and pathways that are regulated by ethylene. Since the
growth and development of plants is regulated by signaling from plant hormones,
a well known approach for such research would first identify evidence of hormonal
crosstalk that involves ethylene. This can eventually lead to the identification of
relevant genes and pathways. They carried out a time-course RNA-seq exper-
iment to see which genes are differentially expressed upon ethylene treatment
of Spirogyra and air (as a control), with samples taken at different time points.
For this case, they provided us with a set of 569 genes that were up- or down-
regulated by ethylene, and the corresponding Arabidopsis AT numbers.

c© Springer International Publishing Switzerland 2015
N. Ashish and J.-L. Ambite (Eds.): DILS 2015, LNBI 9162, pp. 251–255, 2015.
DOI: 10.1007/978-3-319-21843-4 20



252 N. Becker et al.

3 Mining the Sentence Evidence Using Ferret

Ferret is a system for sentence-based scanning of the literature [6]. It has a focus
on gene-centric relationships and supports multi-species searches. The system
takes as input a list of one or more genes of interest and an optional list of
keywords. Keywords may be a combination of phenotypes, treatments, drugs,
function verbs, etc. Ferret employs document filters and gene ambiguity detection
and resolution strategies, and measures of sentence interestingness. Sentences are
selected if they are likely to show a relationship between two genes or between
a gene and a keyword. Ferret outputs a set of ranked sentences with links to the
associated documents.

Ferret supports the bio scientist with varying literature-tracking goals. A
scientist may want to find out all that is known about two interacting genes, or
to explore possible functions and phenotypes of a newly encountered gene, or
find explanations for observed empirical results.

We summarize the results of a Ferret search for sentence evidence for this
case; details are reported in [6]. The scientists used a gene functional annotation
tool, DAVID [2], to identify GO terms that were enriched for the 569 genes.
This resulted in the following Top K keywords: ethylene, abscisic acid (ABA),
auxin, cytokinin, gibberellin and brassinosteroid. Note that these five terms are
hormones. Ferret then performed a search using the 569 genes and these six
keywords. Of 167,286 searches, 722 retrieved 1 or more sentences from 3,690
documents. The researchers rated 1,668 sentences (from 1011 documents); they
found 1073 sentences (530 documents) to be relevant and 595 sentences (481
documents) to be non relevant. This reflects that Ferret was used to quickly
scan 1000+ documents via 1600+ sentences and found 52 % of the documents
and 64 % (1073/1668) of the sentences to be relevant. Specific insights from the
study are reported in [6].

4 Finding Patterns in Bipartite Annotation Graphs
Using semEP

The semEP methodology to discover patterns in the annotation evidence will
focus on a labeled (typed) bipartite graph, i.e., where all nodes and edges are
associated with a type. Consider a labeled bipartite graph, BG = (Gene ∪ GO,
HasAnnotation), where Gene represents a set of genes (nodes), GO represents
a set of Gene Ontology (GO) terms (nodes), and HasAnnotation represents an
annotation (edge) of a gene with a GO term. We used the results of the Ferret
retrieval mentioned in the previous section to create an annotation dataset for
semEP using the following protocol:

– A search was completed by Ferret using the keyword Ethylene and the 569
genes circa October 2014.

– Co-authors Chang and Van de Poel rated the retrieved sentences. From sen-
tences ranked to be relevant and/or interesting, we obtained 21 genes.
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– 221 GO annotations were then retrieved from TAIR (https://www.
arabidopsis.org) for the 21 genes, and were used to create three bipartite
graph corresponding to the three branches - Biological Process (BP), Molec-
ular Function (MF) and Cellular Component (CC), of GO.

– A normalized BLAST similarity score was used to compute the semantic dis-
tance between a pair of genes. A topological similarity metric was used to
compute the semantic distance between a pair of GO terms. Details are in [5].

Our methodology relies on a semantics based edge partitioning (semEP) solu-
tion; semEP is a variant of community detection. Details of semEP are in [1,4].
For ease of understanding, we skip the technical details and use Fig. 1 to illus-
trate the application of semEP, to the three bipartite graphs BP, MF and CC,
to create clusters. Each cluster would favor groups of genes that were similar to
each other, as well as groups of genes that shared a neighborhood of GO terms.
Each cluster also included a group of related GO terms reflecting some concept
captured by GO. Genes could be placed in multiple clusters to reflect a diversity
of gene function. In contrast, a GO term would typically be associated with a
single concept and placed in a single cluster. A GO term would be placed in
multiple clusters if it annotated a pair of genes that had low sequence based
similarity and did not share any other GO terms.

5 Results of Ferret Sentence Retrieval for semEP
Clusters

We first highlight some insights from the sentence from Ferret, across the 569
genes and six search terms. We then discuss Ferret retrieval applied to semEP
clusters.

Ferret sentence evidence highlights potential complex hormonal crosstalk
with ethylene in Spirogyra. Sentences retrieved for AT4G26080 (ABI2), a gene
involved in ABA signaling, indicated that this gene might be a key gene for
hormonal crosstalk between ethylene and ABA in Spirogyra. Other ABA signal-
ing, transport and biosynthesis genes including the following four: AT4G33950
(OST1), AT5G05440 (PYL5), AT5G13630 (ABAR) and AT5G67030 (ABA1),
were found to have many (>80) matching sentences. Similarly, AT5G35750
(AHK2) and AT1G27320 (AHK3), two cytokinin receptor homologs were used
to retrieve many (>60) sentences and might indicate hormonal crosstalk between
ethylene and cytokinin in Spirogyra. For the other plant hormones (auxins,
brassinosteroids and gibberellins) no significant sentences were retrieved.

After applying semEP clustering to the set of 21 genes and their 221 GO
annotations, we selected several clusters in which three histidine kinase genes,
AHK2 (AT5G35750), AHK3 (AT1G27320) and AHK4 (AT2G01830) participate.
Figure 1 shows a partial view of the clusters; the large number of genes and GO
terms in some semEP clusters prevents a complete visualization. Ferret retrieved
sentences for the three genes, AHK2, AHK3 and AHK4 and the following key-
words (corresponding to the GO terms in the clusters): cytokinin, phosphorelay,
ABA, circadian rhythm and anthocyanin.

https://www.arabidopsis.org
https://www.arabidopsis.org
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Fig. 1. Several clusters for genes AHK2, AHK3 and AHK4

As expected, there was excellent evidence for cytokinin including 90 sentences
for AHK4 and 20 sentences each for AHK2 and AHK3.

There was no sentence evidence retrieved for the keyword circadian rhythm
which is associated with AHK3 in the semEP clusters. An examination of the
annotation details for AHK3 reveals that this annotation has evidence code
inferred from reviewed computational analysis. Three sentences were retrieved for
phosphorelay and AHK4; 2 of these sentences also mention AHK2 and AHK3.
One sentence associating ABA with AHK2 and AHK3 was also retrieved by
ferret.

6 Summary

We demonstrate the use of Ferret and semEP to explore the sentence and anno-
tation evidence for gene function discovery. To summarize the case, using Ferret
alone, sentence evidence for hormonal crosstalk between ethylene and the plant
hormones ABA and cytokinin was obtained. Using a workflow of Ferret retrieval,
followed by semEP clustering, followed by Ferret retrieval, a combination of the
sentence and annotation evidence was used to target three genes, AHK2, AHK3
and AHK4. An additional GO term related to phosphorelay signal transduction
was identified as well as some evidence for ABA signaling. Finally, semEP iden-
tified (inferred) annotation evidence to associate AHK3 with circadian rhythm.
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Abstract. We present our experience with technology for developing virtual
machines and virtual appliances. Our goal is to facilitate scientific workflow
sharing and analysis for scientific investigation using virtual machine technology.
Our work is in the context of a larger effort on building an efficient data sharing
and analysis network for data providers as well as scientific investigators in the
domain of Alzheimer’s Disease (AD) research.

1 Introduction

This student abstract discusses our work in progress on virtual machine technology for
scientific workflows sharing and analysis. The overall context of our work is an effort
for “GAAIN” which stands for the Global Alzheimer’s Association Interactive Network
(1GAAIN 2014), which is a federated network of Alzheimer’s disease organisations
from around the globe. The aim of GAAIN is to provide harmonised data across multiple,
independently created Alzheimer’s datasets from data providers around the globe to the
investigators. GAAIN also aims to provide computational and analytical resources,
storage and other capabilities to any investigator on the network, by leveraging it
anywhere on the shared network. As a part of this network infrastructure, we aim to
provide the capability of independently developing and sharing scientific workflows and
analysis amongst the investigators and data providers. This work reports our experience
with the same.

The technology for medical (or generally scientific) analysis and workflow manage‐
ment is well developed. In the recent years, scientific workflow frameworks are being
developed for more dynamic and flexible computing environments such as grids or cloud
environments [1]. For instance, the 2LONI Pipeline is a robust and widely adopted
workflow system in the Neuroimaging and Informatics domain [2]. Other popular
workflow frameworks including Taverna, Pegasus are highly used in Bio-Informatics
[3–5]. The utility based resources available through cloud computing has several bene‐
fits, such as, the pay-as-you-go model for access to high-end data storage and computing,
outsourcing of computation and data management to the cloud, and enhanced collabo‐

1 www.gaain.org.
2 www.loni.usc.edu/Software/Pipeline.

© Springer International Publishing Switzerland 2015
N. Ashish and J.-L. Ambite (Eds.): DILS 2015, LNBI 9162, pp. 259–264, 2015.
DOI: 10.1007/978-3-319-21843-4_21

http://www.gaain.org
http://www.loni.usc.edu/Software/Pipeline


ration capability, has motivated researchers to develop scientific workflow systems for
cloud based frameworks such as for 3Amazon-EC2 [4, 6, 10].

Such paradigms and frameworks have brought significant utility to the investigators
and can indeed be credited for making high end and often expensive computation and
storage resources readily and widely accessible to a larger pool of investigators. Such
frameworks, however, are not suitable for the analysis of sensitive data. For example,
in the Alzheimer’s disease domain, organisations typically have data comprising of
demographics, imaging, genetics and phenotypic details for each subject and should be
carefully handled. Data owners are highly sensitive with regard to the distribution of
such data given the scientific value and also resources committed towards creating and
assembling such data. In many cases, the data also contains identity details and hence,
data owners are under legal and ethical obligation to not to distribute the data indis‐
criminately. As a result, cloud or grid-based workflow environment is not suitable for
shared data analysis, as the risk of data exposure exists. Also data transfer over a network
is a matter of concern. In the Alzheimer’s disease domain the size of data for every
subject is often huge [7] and is in GBs. The data transfer time has in fact motivated the
development of tools such as GridFTP to optimise and manage the transfer of large
volumes of biomedical data over a network or grid [8]. On the other hand, the merits of
medical workflow analysis and data sharing, with in-built collaboration capability are
well acknowledged, and hence, motivates the need for the data owner to provide the
sensitive data for research and analysis. Our approach to address the above is simple,
which is, instead of sending data to where the processing (workflow) is, we ‘ship’ the
processing workflow to the place where the data resides. We achieve this via the concept
of a ‘Virtual Appliance’ (VA), a virtual computing machine, i.e., a software footprint
that can be sent to the data provider.

2 Virtual Machines and Appliances

A Virtual Machine (VM) is defined as “a software-based computer that provides oper‐
ating systems and applications with ‘virtual’ access to hardware resources such as CPU,
RAM, networking and storage.” (4VMWare 2014). The VM encapsulates and provides
all the capabilities of a ‘regular’ computing machine, such as a PC, and also has several
advantages such as, user may not have to obtain or maintain the computing hardware,
ability to share a Virtual Machine (remotely) to multiple users, if required, and the ability
to use the resources on pay-as-you-go basis. Virtual Appliances, like virtual machines,
incorporate an application, operating system and virtual hardware. However, virtual
appliances differ from virtual machines in a way that they are delivered to customers as
preconfigured “turnkey” solutions that simplify deployment for customers by elimi‐
nating the need for manual configuration of the virtual machines and operating systems
used to run the appliance.

3 www.aws.amazon.com/ec2/.
4 www.vmware.com.
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Popular frameworks for hosted Virtual Machines on the cloud includes the likes of
5Amazon EC2 (EC2 2014) and 6Microsoft Azure (Azure 2014). Many frameworks are
now available for developers to create their own virtual machines on a virtual environ‐
ment that they can enable on their desktop or on dedicated hardware. Some of these
frameworks include VMWare (VMWare 2014), 7SUSE Studio (SUSE 2014), 8Oracle
VirtualBox (VirtualBox 2014), 9Citrix XenServer (XenSever 2014), Microsoft Hyper-
V (HyperV 2014), 10Virtual Bridges (Bridges 2014), 11Proxmox (Proxmox 2014),
12Parallels (Parallels 2014) and 13IBM z/VM (IBM VM 2014). These frameworks
provide easy to use desktop capabilities to developers to create, use and share virtual
machines. An example of a virtual machine, and the virtual machine framework desktop
manager, using the Oracle VirtualBox framework is illustrated in Fig. 1. We have
adopted Oracle VirtualBox as one of the primary frameworks for GAAIN virtual
machines given that it is robust, easy and intuitive to use, and is also an open-source
technology.

Fig. 1. A virtual machine, and a virtual machine manager console

A very recent framework, Docker14, is significantly more light-weight framework
for developing virtualised and packaged applications. Docker is an open platform for
developers and administrators to develop, ship, and execute distributed applications. At
the core of Docker is the Docker Engine, a portable, lightweight runtime tool that
supports the encapsulation and exaction of applications. And also The Docker Hub, a
cloud-based service for sharing applications and managing access control. The key

5 www.aws.amazon.com.
6 www.azure.microsoft.com.
7 www.susestudio.com.
8 www.oracle.com.
9   www.citrix.com.
10   www.vbridge.com.
11   www.proxmox.com.
12   www.parallels.com.
13   www.ibm.com.
14   www.docker.com.
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differentiator between Docker and a “regular” virtual machine is that while a virtual
machine typically include a complete operating system, a Docker image typically has a
very minimal layer for application support. Developers add utilities only to the extent
required to be able to run their specific applications which helps in keeping overall image
size to minimum.

Table 1 provides the information on key aspects of the VirtualBox and Docker
frameworks based on our experience with building virtual appliances with them.

Table 1. VirtualBox and Docker

Aspects VirtualBox Docker

Virtual image type (formats) The open-virtual-format as
‘.OVF’ and ‘.OVA’ files

Proprietary Docker image
format

Requirements Any virtualization hypervisor
that can run the open virtu‐
alization format images

Docker shell

Architecture Typically the core virtual
image contains a complete
operating system of choice

Minimal system layer is
provided and components
are added only as required

‘Typical’ image sizes Encapsulating a simple appli‐
cation (for instance a single
workflow) results in a
machine of size ~1.5 GB.
However options are
recently becoming avail‐
able for including only a
liminal operating system
layer.

Typically only a few hundred
MB for the same applica‐
tions

Management and sharing No specific capabilities
provided

Docker Hub for centralized
Docker image storage,
tagging, and sharing

Access control No specific capabilities
provided

Docker Hub provides account
management and access
control

Network access Can provide network access
between Virtual Box VM
and external machines/
networks.

External network access to
Docker image can be
provided but with limita‐
tions

Host folder mounting Possible but with some addi‐
tional software installation

Host folder mounting can be
done more easily with a
single command

3 Challenges

Software Execution in VM: Some minor technical issues with the execution of software
within the VM environment are encountered. For instance, one of the issue is that the
workflow analysis in VA starts it’s execution before the data from the host machine
actually gets mounted. However, this can be addressed by initial configuration of the
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virtual appliance after installation to ensure that the shared folder mounting happens
before any packaged analysis workflow starts it’s execution on the VM [9].

VA Size: The size of the VAs is a concern. Generally, for a VA to run complex work‐
flows, the underlying VM must be provided with sufficient memory and virtual disk
resources, which causes the size of the VM image to be quite large (size ranges in single
digit GB). Thus, the time to transfer VM images over the network is large. Conventional
file compression techniques do not apply to compressing virtual machine images as the
machine image is not the data that can be compressed, rather it encapsulates resources
such as virtual disks and memory for a machine. We have investigated techniques and
softwares that are built specifically for virtual machine image compression. An example
is the 15Parallels Compressor which (1) defragments virtual disks and cleans up unused
space, and (2) compacts virtual disks on the virtual machine, to compress the VM image.

Interoperability: It is important for the GAAIN VAs to be able to run across multiple
VM frameworks. This is because partners on the network can already be committed to
or may be using any specific virtualisation framework at their end. For instance,
NeuGRID uses XenServer (XenServer 2014) for its overall computing environment, so
it is an advantage if the GAAIN VAs can execute seamlessly on the XenServer envi‐
ronment, as there are no additional virtualisation requirements at the NeuGRID end.
Similarly, vSphere (VMWare 2014) is another common virtualisation environment
included in Alzheimer’s and other medical informatics computing and data management
facilities. We are thus exploring interoperability with multiple virtualisation frameworks
to ensure that GAAIN VMs can run seamlessly on a wide variety of frameworks.

Execution Validation: The virtual appliance is created by one organisation but typically
executes in the execution environment of another. It is important to try and ensure that
the VA is only conducting legitimate and permissible analysis operations and data
transfer at and from the environment it runs in. We are working on adding logging
capabilities and other heuristic checks on data transferred (out) by the VA in this regard.

4 Conclusions and Future Work

We have reported our experience with the “initial design and implementation” of a
virtual appliances based solution for medical data analysis in environments where data
ownership is of paramount concern. Currently, we are working on scaling the solution
to operate on a larger scale within the GAAIN network. By this, we envision a virtual
appliances environment wherein a large number of investigators from across the globe
can contribute in data analysis workflows. And also the other investigators can select
and use (or build upon) such pre-packaged workflows from a large library of virtual
appliances with pre-packaged workflows. Our model also incorporates abstraction of
data from the investigator.

15 www.parallels.com.
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An important element here becomes the provenance associated with each VA i.e., a
meta-data description of the virtual appliance and the workflow(s) it contains. The virtual
machine image itself has been identified as a source of provenance for a virtual appliance
or machine [11, 12], however the provenance needs to be extended to meaningful
descriptions and terms that investigators would use to both describe their workflows as
well as when trying to locate them for their use.
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Abstract. We discuss our work in progress towards the practical application of
a system we have developed for automated schema mapping of medical datasets.
While starting with a purely knowledge-driven approach to the schema mapping
problem, based on information in data dictionaries, we are now incorporating
machine-learning classification for determining mappings. We are further inte‐
grating the mapping system into a production medical informatics environment.
We discuss our ongoing approach and progress in these areas, as well as current
challenges.

1 Introduction and Motivation

This student abstract discusses our in progress work on a system for automated schema
mapping of medical datasets. In particular, we discuss the work on practical application
of the system for medical data management and integration tasks. The overall context
of our work is a system call the GAAIN Entity Mapper or “GEM” [2] which we have
developed for automated mapping of data elements from datasets of Alzheimer’s disease
research data. GAAIN itself stands for the Global Alzheimer’s Association Interactive
Network,1 a data sharing federated network of Alzheimer’s disease datasets from around
the globe. The aim of GAAIN is to create a network of Alzheimer’s disease data,
researchers, analytical tools and computational resources to better our understanding of
this disease. A key capability of this network is also to provide investigators with access
to harmonized data across multiple, independently created Alzheimer’s datasets. For the
harmonization of data, GAAIN employs a common data model approach where any
Alzheimer’s disease dataset in the GAAIN network is mapped to a common data model.
By mapping we mean establishing a correspondence and transformation between indi‐
vidual data elements in any dataset and data elements in the common data model. Such
data mappings are typically done manually, which is an effort, time and resource inten‐
sive process. We are thus developing the GEM automated data mapping tool that we
envision as being an intelligent software assistant utility to data analysts conducting data
mapping tasks.

We have completed a first version of the GEM system [1] where we have taken a
knowledge driven approach. We exploit the detailed information provided in descriptive

1 http://www.gaain.org
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data dictionaries with each dataset. This work discusses our ongoing work as we begin
to apply the GEM system to actual data mapping tasks in the GAAIN project as well as
related data or schema mapping tasks in other medical informatics efforts. Specifically,
we focus on two problems:

(1) Adding active-learning [3] capabilities and machine-learning techniques to
improve data mapping in the GEM system. Further, the system can learn and
improve from ‘feedback’ provided by users as they conduct mapping tasks.

(2) Providing a usable schema mapping library to data analysts for a variety of data
design and integration tasks.

2 Methods

2.1 Active Learning and Machine-Learning Incorporation

Our motivation for the incorporation of machine-learning based classification techni‐
ques for schema mapping is two-fold. First, in the existing GEM system we try and map
data elements across different datasets using multiple indicators associated with the data
elements. These indicators include the similarity of two data element names, the text
similarity of the element descriptions using two different algorithms namely a text simi‐
larity match based on topic modeling and also TFIDF based text similarity match. To
optimally combine such and other indicators for determining mappings we need a feature
based classifier approach. Next, the GEM system is intended to operate as an intelligent
software assistant that suggests data mappings to human data analysts and data integra‐
tion developers. As such analysts and developers “select” correct matches (from alter‐
natives provided by the system), they implicitly provide training data to the system in
terms of labeled data mapping examples. The system must incorporate this training data
and improve the data mapping by leveraging the new knowledge.

Given a pair of data elements from different sources, our system uses a combination
of both supervised and unsupervised machine learning approaches to classify the pair
as matching or not. For each pair of data elements, we generate various features from
the metadata information extracted from the data dictionaries. In particular, we extract
the following features

1. TFIDF Similarity. We calculate the similarity score of the text descriptions based
on TFIDF similarity [4] of the two data elements present in their respective data
dictionaries.

2. Topic Modeling Similarity Score. We build a topic model [1, 5] from the column
descriptions of all the data elements of the two sources. We then calculate a simi‐
larity score based on the cosine similarity of the topic distributions of the two data
elements.

3. TFIDF Rank. Sometimes the TFIDF and topic modeling score for an element may
not be high, however the score maybe relatively higher than other data elements in
the second source. To counter the situation, given a data element e1 from source
s1, we get the list of all data elements from source2 sorted by their TFIDF score
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and calculate the rank of element e2 among the sorted list. We use the rank as one
of the features.

4. Topic Modeling Rank. Similar to 3.
5. Name Match. Data element names in medical data are cryptic and/or composite.

We have developed a classifier for computing name similarity across two element
names that takes into account common abbreviations, prefixes and other qualifiers
(such as year or visit number) in the element names. This feature is set to true if a
name match exist, and is false by default.

6. Name Matching Score. This feature stores the confidence score for the previous
feature. A high value of this score along with the “true” label for the previous feature
is a very strong indication of a good name match. Similarly, a high value of this
score along with the “false” label for the previous feature is a very strong indication
of not a good name match.

7. Cardinality. We extract the cardinality of the two data elements from the data
dictionaries and use them as features.

8. Range. We extract the range (min and max) of the two data elements from the data
dictionaries and use them as features.

9. Edit Distance. We calculate the edit distance (word based) between the source and
the destination.

10. Table Names. Data elements in a dataset are typically clustered into several distinct
groups such as elements related to family history, physical examination, neuro‐
logical assessments etc. The previous system considered elements individually
when mapping. We have tried to leverage inter element associations during
mapping. Hence we use table names of the two data elements as reference of
locality.

We then use the feature vector of all the training examples for training a classi‐
fier that classifies a given pair of data elements as matching or non-matching. We
have conducted preliminary experimental evaluations by employing the above kinds
of features and evaluating multiple classifiers for determining mappings. We used
four of the data sources of Alzheimer’s disease data that we have in GAAIN namely
ADNI [6, 7], NACC [8], INDD [9] and LAADC [10]. Our experimental setup
consists of a manually curated goldset of true mappings between above sources. We
generate features for the examples in the goldset and use them as positive training
examples. For each example in the goldset we also randomly select 20 non-matches
and use them as negative training examples. The number of positive and negative

Table 1. Preliminary results

Dataset/schema
pairs

Precision Recall F-Score Positive
examples

Negative
examples

LAADC-ADNI 0.944 0.895 0.919 38     798

INDD-ADNI 1 0.886 0.939 35     735

NACC-ADNI 0.944 0.905 0.924 74 1554
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examples used for training is mentioned in the table. Below are the results that we
obtained using a Simple Logistic Regression classifier with 10-fold cross validation.

Overall the preliminary results, conducted for various pairs of GAAIN datasets as
shown in Table 1, look promising. We see that using a supervised approach on top of
our unsupervised model has improved our F-Score by almost 5 %.

Figure 1 illustrates the active learning capability where Fig. 1(a) is a schematic
representation of the active-learning architecture and Fig. 1(b) illustrates the graphical
interface to the GEM schema-mapping system. As illustrated, the user is provided
multiple alternative proposed matches for a given data element and he/she can select
and identify the correct match.

(a) Active-Learning Workflow

(b) Schema Mapping Interface

Fig. 1. GEM active learning
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2.2 Library for Data Analysts

As mentioned earlier, any dataset to be integrated into the GAAIN network is trans‐
formed to the GAAIN common data model. This transformation is done by a software
system called the GAAIN Transformation Tool. The data mappings in this tool are
currently provided manually, using a graphical user interface, where a developer
manually established data correspondence between the dataset data elements and the
common model elements. We are currently integration the GEM system with this trans‐
formation tool. We are providing a packaged library of generic mapping functions that
can further be called by the transformation tool. The transformation tool will also provide
graphical browsing and querying for a developer to browse suggested data mappings.

Another practical use of our tool has been in model discovery i.e., identifying data
elements for a common data model over a collection of multiple, disparate datasets.
Common data model design in medical data domains and in general is a complex
problem with multiple considerations that must be made towards an “optimal” common
model. The optimality of a common data model depends not only on the constituent data
sources it must encompass, but also the data retrieval application(s) the common model
must serve in the first place. Both top-down as well as bottom-up methodologies have
a role in this process. A system such as GEM can aid significantly in the bottom-up
aspect of common model design by identifying the characteristics of various data
elements based upon mappings. For instance it may help a data analyst to know for all
data elements in a particular dataset or source, what are the mappings to the element i.e.,
corresponding data elements in all other datasets in a collection. It would help to know
the ‘coverage’ i.e., fraction of sources a particular data element is present in.

We are currently developing such utilities over the GEM core mapping functional‐
ities, where we aim to provide the above kinds of aggregated mappings and statistics to
data analysts over a large collection of datasets. Such information would be valuable in
identifying good candidate common model elements.

3 Challenges

The following are the current research and technical challenges in our work.

Feature Engineering and Classifiers. We are in the process of identifying optimal
feature sets and applicable classifiers to the machine learning classification problem.
We identified the table name as one of the features. However we have encountered
datasets where the data dictionary does not provide any tables associated with the data
elements, rather the data elements are (at best) grouped into broad categories such as
‘Patient Demographic’, ‘Clinical Assessments’ etc., We are exploring ways to represent
and leverage such grouping information as well, in the absence of table associations.

Data Dictionary Format. Currently we require the users to provide data dictionaries
in a specified Excel format. However this may be restrictive in certain environments as
we are putting the burden of translating a data dictionary in its native format to our
specified format. We will consider incorporating some utilities to assist with this process.
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There are two problems to be addressed. First, the native data dictionary may be in a
non-Excel format for instance as an MSWord or PDF document, in which case we need
to be able to extract the data dictionary (element) details in a structured manner. Next
we must ensure that the data dictionary information (per element) is formatted to our
expected format.

Model Discovery. The functionality and specific capabilities that can be provided by a
schema mapping system such as ours to help in data model design and discovery are
best determined by developers and analysts that actual conduct such model design. We
are thus working closely with such developers in the GAAIN project and other efforts
to understand and provide mapping capabilities and functions for their needs.
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Abstract. A key tenet of the Global Alzheimer’s Association Interactive
Network (GAAIN) is to protect the data ownership rights of its members. This
prohibits data shared by its federated data repositories from being copied to any
GAAIN disk drive and requires all GAAIN server caches to be managed in
memory only. Further, the different data repositories collect different attributes
for their subjects, and often there are different amounts of data collected for the
subjects within the same data repository. We present a relational database design
to manage this sparse cached data using elementary bit operators to perform
queries and extract results from compact value representations.

Keywords: Relational database · Sparse data · Query optimization

1 Introduction

The Global Alzheimer’s Association Interactive Network (GAAIN) is consolidating the
efforts of independent Alzheimer’s disease data repositories around the world with the
goals of revealing more insights into the causes of Alzheimer’s disease, improving
treatments, and designing preventative measures that delay the onset of physical symp‐
toms. As participation in GAAIN is voluntary, the needs and concerns of the participants
must be properly addressed. One essential requirement is that the data ownership rights
of its members must be protected. To this end, GAAIN has implemented a policy that
prevents any data from the repositories it federates to be stored on any GAAIN server
disk drive. In order to optimize performance, all data managed by GAAIN servers must
then be cached in memory. The cache temporarily holds the results of recent queries
that are accumulated from the GAAIN clients that are installed at each data repository.

Each data repository in GAAIN collects information (e.g., demographics, cognitive
assessments, family history) on subjects who have volunteered to be studied. We define
each recorded field as an attribute; for example, a gender attribute is used for collecting
the attribute values “male” or “female” for each subject. This information is collected
at different points in time in which each subject is contacted at predefined intervals after
they first enter the study. Each time point is called a visit and the time between visits in
GAAIN usually occurs in 6 month or 1 year intervals. Some attributes will change over
time (e.g., subject’s age) and others will not (e.g., subject’s genotype).
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One important characteristic of the attribute data in GAAIN is that it is sparse.
Different data repositories collect different attributes for their subjects, and often there
are different amounts of data collected for the subjects within the same data repository.
So for any given subject, the number of attributes for which data was collected is small.
The requirements for our database design are: (1) the cache must efficiently manage
sparse data, (2) cache queries must be optimal, and (3) the cache must reside entirely in
computer memory.

Previous work on managing sparse data in Relational Database Management
Systems (RDBMS) has involved different strategies to reorganize the data into data
structures that require less storage space. One approach [1, 2] is to modify existing
database source code. A disadvantage to this is that the modified code must be main‐
tained for each new database version and it is not readily extendible between different
database implementations. Other schemes [3, 4] attempt to create multiple tables that
depend upon the sparseness characteristics of the data. Clustering algorithms [4] and
correlation coefficients [3] are computed for each data set and used to determine the
number of database tables to create as well as how the data is distributed in the tables.
However, this approach is not optimal for managing sparse data in a cache where the
data varies depending upon the results of the most recent queries. As the data is updated,
the cache would have to be reexamined which may result in needing to reorganize the
data frequently. Although sparse data can be managed in NoSQL databases using less
storage than in RDBMS, to our knowledge there are no NoSQL database implementa‐
tions that support storage entirely in memory. Our approach is similar to the bit-cube
algorithms used in RDF storage engines [5] that first prune candidates using bit-vectors
and then generate results from those candidates. Because our data model is simple and
does not require a rich description framework for its description, we chose to pursue a
simpler RDBMS implementation instead of using RDF.

In what follows, we present a strategy for efficiently managing sparse GAAIN data
in an unmodified RDBMS using compact interpreted records [1] that store multiple
values together in a tuple. Because each tuple is managed as a single item by the database,
we introduce a scheme that makes use of simple bit operators to extract values from
each tuple for use in basic SQL queries.

2 Methods

We divide each database query into two parts. First we find all the attributes referenced
in the restriction of the query and then we use those to determine all the subjects that
have non-null values for those attributes. Next, we use that subject list to locate and find
the attribute values and perform the query. In our approach, we make use of long strings
of bits (blob types) to keep track of subjects and attribute values and we perform bit
operations such as bitwise AND’s, bit shifts, and bit counts to manipulate sets of subjects
and extract attribute values from stored tuples.

The number N of subjects in GAAIN is the total number of subjects from all the
federated data repositories, and we assign each subject a unique number (0, 1,…, N–1).
We also enumerate the attributes along with their visits by assigning each attribute/visit
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pair an attribute number (1, 2, …). We create a table that has two columns as shown in
Table 1. For each attribute, we store a bit string of length N that records whether or not
each subject has a non-null value for that attribute. A “1” in the bit string signifies that
a subject has a non-null value for the attribute; for example, a bit string of “011” indicates
that subject #0 has a null value of the attribute and subjects #1 and #2 have non-null
values.

Table 1. Example of the table for recording non-null attribute values for each subject.

Attribute_number Subject bit string

1 101….

2 100….

3 010….

At the beginning of a GAAIN query, we find all attributes referenced in the restriction
of the query (WHERE clause) and get the subject bit strings for each of those attributes.
We then perform a bitwise AND of all bit strings in this set. The result of this operation
is a bit string of the subjects in the result set of the query. Because the data is sparse,
this step can eliminate many unnecessary attribute table searches by quickly determining
the subjects whose data need be searched. It is also worth noting that this table can be
stored on disk because GAAIN requires only that attribute values be cached in computer
memory.

If the subject bit string resulting from the bitwise AND’s is S and there is a table
with a column subject_number that stores the number of each subject, we can use it in
the WHERE clause of an SQL query to restrict the results to the subjects in the bit string:

We note that in order to make efficient use of storage space, we can map finite sets of
attribute values to a set of integers. For example, the values of a gender attribute (“male”
and “female”) can be numbered (0, 1) and stored using one bit. In the case of floating
point numbers, we can limit the precision of each value and store instead integer values
(e.g., “3.1415” might be rounded to “3.14” and stored as “314” using 9 bits).

We store the non-null attribute values for each subject in the compact form in shown
in Table 2. A table is defined for all attribute values that are stored using the same number
of bits per value. Table 2 shows values that can be stored using 3 bits, and we call this
a 3-bit table. In these tables there is a row for each subject that has at least one non-null
attribute value stored in the table. After determining the attributes whose values are
stored in the table, we assign each of them a number (1, 2,…). The attribute values for
each subject are concatenated and stored in the tuple column of the table. A bit string is
constructed that indexes the values in the tuple and it is stored in a separate column.
Because the data is sparse, the tuple representation of the attributes values is an efficient
way to store the data values.
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Table 2. Example of a table that stores 3 bit attribute values for each subject.

Subject_number Index bit string Tuple

1 1000 110

2 1010 001110

3 1101 110101111

In the example shown in Table 2, there are 4 attributes that have values that can be
stored using 3 bits. A “1” in an index bit string signifies that there is a value stored for
an attribute. The index bit string in the first row is “1000,” which indicates that subject
#1 has a value (“110”) for only the first attribute. There are two attributes values stored
in the tuple in the second row, one for the first attribute and one for the third attribute
(as denoted in that row’s index bit string “1010”). The value for the first attribute is
“001” and the value for the third attribute is “110.”

We can extract a value from a tuple using the following bit operations. If we want
the 4th attribute value in the tuple that is indexed by an index bit string A in a 3-bit table,
we first construct a string of 1’s that has a length of 4 (“1111”). The index of the value
is computed using:

To extract the value, we need to bit shift the tuple to the value:

where we have made use of the fact that each value is 3 bits.

3 Discussion

Our use of elementary bit operators (bitwise AND, bit shift, and bit count) provides a
simple, non-database specific method of managing sparse data sets in a relational database.

We are using MySQL1 in our test implementation, which is limited to 64-bit oper‐
ations, and although it defines the bit operators we need, it does not implement those
functions for blob types greater than 64 bits. Creating stored functions was found to be
inefficient because of the buffering MySQL uses when managing the inputs and outputs
of the functions. It resulted in slowness due to unwanted copying. MySQL’s implicit
string casting has also added to unwanted type conversions. We have overcome many
of these limitations using MySQL’s User Defined Functions (UDF) but this restricts
generalization to other RDBMS.

We note that we could compress bit strings and tuples before storing to save even
more space. Since this will result in slower query times as these quantities need to be
uncompressed, we plan on evaluating this approach to see if it is worthwhile.

1 http://www.mysql.com
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Abstract. With the advent of the web search and microblogging, the
percentage of Online Health Information Seekers (OHIS) using these
online services to share and seek health real-time information has
increased exponentially. OHIS use web search engines or microblogging
search services to seek out latest, relevant as well as reliable health infor-
mation. When OHIS turn to microblogging search services to search
real-time content, trends and breaking news, etc. the search results are
not promising. Two major challenges exist in the current microblogging
search engines are keyword based techniques and results do not contain
real-time information. To address these challenges, we developed an app-
roach to search near real-time and reliable content from Twitter, based
on triple-pattern mining, near real-time retrieval, and ranking consider-
ing popularity and relevancy of the results.

Keywords: Twitter · Data mining · Triple pattern · Real-time ·
Health · Chronic disease · Social media analysis · Text mining

1 Introduction

Over the past ten years, percentage of social media users has increased exponen-
tially. In the U.S, 72 % of online users use social media and its popularity grown
by 64 % since 2005 [1]. Social media has become primary mode for users to share
and find information on different topics, including health information. Accord-
ing to a consumer survey, one-third of the consumers now use social media for
seeking medical, tracking and sharing health information [2]. A popular service,
Twitter, allows users to create tweets and optionally include links in the tweets
to share health information publicly. This health information can be useful for
others to learn from the shared information. On the Twitter, more than 75 K
worldwide healthcare professionals post 152 K tweets every day [6]. In our study,
we have used Twitter as a data source and one of the most common chronic
diseases, diabetes, as a use case.

1.1 Background and Motivation

OHIS have different preferences when it comes to find out information related
to health conditions through social media search [3]. Some OHIS prefer real-
time (latest) information, breaking news (articles), while others prefer facts and
c© Springer International Publishing Switzerland 2015
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the information that contributes to general understanding of a health condition
[3,4], etc. OHIS have many options on the Internet for health information seeking
in real-time such as Google time-bound search, Twitter search, etc. But search
results from these venues possess some significant challenges: the results are not
real-time, search results are based on keyword-based techniques, and ranking of
the results based on a relevance to each individual keyword in the query. A lead-
ing microblog search service such as Twitter use keyword-based approach, and
since the Twitter is overloaded with information, and merely matching query
keywords with tweets to locate relevant set of documents of information is inap-
propriate. Also, we observed that in Twitter search the results are not near
real-time due to the keyword-based relevancy algorithm. Furthermore, Twitter
search does not use domain knowledge and reliability factors to rank the results.

The objective of this research is to build a system for users to ask health-
related questions to obtain reliable, and relevant health information shared on
social media in near real-time. But, how to extract near real-time, reliable and
relevant documents from the health information shared on a Twitter for a given
user query? To extract relevant documents from a Twitter in near real-time
based on a given user query, we have to deal with real-time tweets, information
overload, and noisy data.

2 Related Work

2.1 Microblog Retrieval Method

The amount of conversation on Twitter has increased exponentially over
last decade. To address the Twitter’s information overload challenge, many
researchers use microblogging services like Twitter to find out health informa-
tion;however, extracting useful information is challenging given its volume, incon-
sistent writing, and noise. To extract useful information from a Twitter, many
researchers worked on various retrieval models such as a user-based tree model,
term-based, and pattern-based approaches. A Twitter based social media analyt-
ics system, Twitris uses Spatio-Temporal-Thematic (STT) processing of the Twit-
ter data [9,10]. However, many researches favor term-based extraction model also
known as keyword based extraction. The keyword based model extract informa-
tion based on keyword matching of users query. Its possible to extract undesired
results based on a user query due to keyword based model extraction.

Magnani et al. proposed a term-based model for retrieving conversations
from microblogs [5]. In this study, the concept of conversation retrieval from
Twitter, a preliminary version of the concept presented by Magnani et al., pro-
poses a user-based tree model to retrieve conversations from microblogs [5]. In
this research, the whole conversation of users are represented as a tree, and its
message and reply are represented as nodes. These conversations are stored in
IR engine Lucene for indexing the text which can help the system to retrieve
the relevant conversation documents based on the query. After finding the rel-
evant conversation, the system ranks the relevant conversations based on text
relevance, popularity, timeliness, audience, and density features.
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3 Data Collection and Feature Extraction

In this study, we have used tweets (messages shared on Twitter) and URLs content
(for URL(s) mentioned in the tweets) as the data sources to extract relevant infor-
mation for a given user query. To extract features from real-time tweets, the first
challenge is to create a infrastructure to collect real-time tweets. In our research,
we have used Apache Storm to collect the real-time tweets using the public Twit-
ter streaming API while also performing meta-data extraction. Apache storm is,
open source software, used for real-time, distributed computing. Spouts and Bolts
are the basic components in the storm for real-time processing of the data. The
bolts contain computation logic to perform features extraction logic in real-time.

A tweet has many features, such as text, short url, latitude or longitude, re-
tweet count, etc. All these features are useful for finding out useful information.
To extract theses features from the tweets in real-time, we have used bolts (a
Apache storm’s components) to implement the logic. This process is also known
as a pre-processing pipeline in our system.

4 Extraction of Relevant Documents

The objective of this research is to build a system to ask health-related questions
on Twitter data. Hence, we have divided users questions into two categories: sta-
tic and dynamic. The static questions are preselected frequently asked questions
collected from the different sources. Also, the dynamic questions are typed by
the user on the fly, which is not the case with the static queries. We proposed
a novel approach by extracting real-time tweets, pattern-mining, incorporating
domain knowledge, and including popularity measures of the content (tweets +
URLs) in ranking of the results.

To make the system near real-time, the search results are divided into inter-
vals of six hours. The near real-time process of extracting relevant documents
is depends on static and dynamic questions are different. In the case of static
questions, we extract documents every six hours, while in dynamic questions,
we extract documents from that moment to last six hours data. To extract
document, we have used triple based pattern (subject, predicate, and object)
mining technique to extracts triple patterns from microblog messages–related
with chronic health conditions. The triple pattern is defined in the initial ques-
tion. To extract information or documents we have used the IBM text analytic
tool AQL (Annotated Query Language). AQL is a query language to help devel-
opers to build queries that extract structured information from unstructured or
semi-structured text. We have used an AQL tool to construct triple-patterns,
and for faster processing we implemented it on Apache Hadoop Map-Reduce
framework. To expand the query (or triple), we have Incorporated the domain
knowledge using UMLS-Metathesaurus (Unified Medical Language System) and
WordNet. UMLS is used to collect authentic and reliable vocabularies related to
health and biomedical. Similarly, we used the WordNet to get the synonyms of
the tokens (non medical term). Furthermore, in addition to tweets, we use URLs
(mentioned in the tweet) content as the data source.
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5 Ranking

To simply receiving results, users want the results to be good quality, reliable
and well-ordered. Existing microblog search engines (e.g., Twitter) focused on
ranking algorithms to order the results based on relevance to each individual
keyword in the query. We have used the following features to rank the results are:
popularity, relevancy, and reliability. To check the popularity of URLs through
social media (e.g., a Twitter and a Facebook) share and like counts. Similarly,
for reliability we use the URLs Google domain pagerank (filtration criteria is
pagerank greater than 4). Also, we have used the relevance of the documents
based on the similarity score. In our approach, we have used a TF-IDF cosine
similarity algorithm. Once all the features are extracted, we have evaluated many
machine learning algorithms and selected one of them based on an evaluation
matrix (Normalized discounted cumulative gain). The algorithm we have chosen
is the “Random Forest” algorithm.

6 Evaluation

As our research is focused on extracting near real-time health information based
on users search queries, we have made the decision to evaluate our systems results
with existing real-time search engine is a Twitter. We have selected reliability,
relevancy, and real-time factors to measure our results with Twitter. To evaluate
the reliable source, we compared a Google domain pagerank of our top 10 results
with the Twitter’s top 10 results. Also, for real-time we have compared the Twit-
ter search results with our system’s search results. We found that Twitter search
results are not real-time as compared to our results (which is six hours of data).
Similarly, we conducted three surveys to check the relevance of the results in which
we selected three questions dealing with the chronic disease diabetes. The ques-
tions are “How to control diabetes?”, “What are the causes of diabetes?”, “What
are the symptoms of diabetes?”. Upon completion of the surveys, for all the queries
50 %, 60 % and 50 % of users ranked the quality of our results as “very good”,
whereas the results were 40 %, 10 % and 40 % for a Twitter search results.

7 Discussion and Conclusion

To find useful health information in real-time from Twitter, there are many
challenges such as the real-time nature of Twitter, information overload and
noisy data. We have dealt with each of the challenges by using state-of-the-arts
technologies and a novel approach in our system. Also, we have used URL’s
content for finding information because the tweets contains less information.
However, the system does not extract factual answers of a user questions. In this
thesis, I am extracting relevant documents based on a user query in near real-
time. We want to extend this thesis further by including semantic categorisation
in which the results will be categorised (drug, medication, symptom, etc.) using
prior work [7,8].
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Twitter has changed the traditional way of sharing and seeking health infor-
mation by health-care professionals and the general users. All kinds of informa-
tion are available on the Internet for each type of user. We have tried to resolve
the challenges for those who want the latest information. Our system provides
a platform to users to use Twitter for finding relevant documents based on a
user’s question in near real-time.
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