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Abstract. Consider an undirected and vertex-weighted graph modeling
a social network, where the vertices represent individuals, the edges do
connections among them, and weights do levels of importance of indi-
viduals. In the competitive diffusion game, each of a number of players
chooses a vertex as a seed to propagate his/her idea which spreads along
the edges in the graph. The objective of every player is to maximize the
sum of weights of vertices infected by his/her idea. In this paper, we
study a computational problem of asking whether a pure Nash equilib-
rium exists in a given graph, and present several negative and positive
results with regard to graph classes. We first prove that the problem
is W[1]-hard when parameterized by the number of players even for
unweighted graphs. We also show that the problem is NP-hard even
for series-parallel graphs with positive integer weights, and is NP-hard
even for forests with arbitrary integer weights. Furthermore, we show
that the problem for forests of paths with arbitrary weights is solvable
in pseudo-polynomial time; and it is solvable in quadratic time if a given
graph is unweighted. We also prove that the problem is solvable in poly-
nomial time for chain graphs, cochain graphs, and threshold graphs with
arbitrary integer weights.

1 Introduction

Ideas, innovations or trends spread by interactions between individuals. Social
networks such as Facebook and Twitter facilitate their diffusion; an idea of an
influential individual spreads along the connections over a network, and a small
number of initial seeds can yield widespread infection. Since we can employ
the so-called word-of-mouth effect as a tool for viral marketing, analysis of the
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dynamics and process of the diffusion receive increasing attention in computer
science. A number of papers focus on a task for a single company that wishes
to advertise their product through a network; they investigate a problem of
finding key individuals for maximizing the largest expected infection based on
a given stochastic model of diffusion process [9,19,20,22]. Another active line
of research stems from a task for multiple competing companies which try to
advertise their products through a network, where the diffusion process is set in
a game-theoretic formulation [1–7,10,15,16,23,24].

In this paper, we focus on the latter setting, and consider the one intro-
duced by Alon et al. [1]. In their setting, a network is modeled by an unweighted
graph, and each of a given number of competing companies chooses a vertex in
the graph as a seed of their advertisement. Then their advertisements determin-
istically spread along the edges of a graph so that every infected vertex adopts
its neighbors in a discrete time step. The objective of every player is to maximize
the number of infected vertices. (The precise definition of the game is given in
Section 2.) Alon et al. call the game competitive diffusion game, and show that
there exists an unweighted graph of diameter three that does not admit a Nash
equilibrium for two players. Following the paper [1], several results are known for
the competitive diffusion game. Takehara et al. provided an unweighted graph
G of diameter two that does not admit a Nash equilibrium for two players [24].
Small and Mason considered the case where a social network has a tree structure,
and show that any tree admits a Nash equilibrium for two players [23]. More
recently, Bulteau et al. consider certain graph classes including paths, cycles and
grid graphs; in particular, they prove that there is no Nash equilibrium for three
players on m × n grids with min{m,n} ≥ 5 [6].

We generalize the game to weighted graphs, where a weight on a vertex
represents a level of importance of an individual; negative weights are admitted
to express very demanding customers. We then focus on a problem Competitive
Diffusion of deciding whether, given the number k, a graph G and weight
function w, the competitive diffusion game on G with w for k players has a Nash
equilibrium.

We establish solid complexity foundation of Competitive Diffusion with
regard to graph classes. Since there are a number of theoretical models of social
networks, and some of them are directly related to restricted graph classes (such
as random trees with scale free properties [8]), our results give useful tools for
obtaining algorithmic results on such models.

Our contributions are twofold. On the one hand, we provide the following
three hardness results:

(i) Competitive Diffusion is W[1]-hard when parameterized by the number
of players even for unweighted graphs;

(ii) Competitive Diffusion is NP-complete even for series-parallel graphs
with positive integer weights;

(iii) Competitive Diffusion is NP-complete even for forests with arbitrary
integer weights.
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Fig. 1. Example of competitive diffusion with k = 3 players. (a) The graph G and
weight w; numbers in the gray squares are weights. (b) p1, p2 and p3 choose v1, v7 and
v9 in G, respectively; thus a strategy profile s = (v1, v7, v9). (c) Each player dominates
the neighbor. (d) The game ends; the two gray vertices are neutral. Consequently,
U1(s) = 2, U2(s) = 3 and U3(s) = 1.

Very recently, Etesami and Basar studied unweighted version of the problem,
and showed that Competitive Diffusion is a NP-complete problem [12], but
their result does not imply ours. On the other hand, we obtain the following two
algorithmic results.

(iv) For forests of paths, we prove that Competitive Diffusion is solvable in
pseudo-polynomial time. In particular, we give a quadratic-time algorithm
for forests of unweighted paths;

(v) For chain graphs, cochain graphs, and threshold graphs with arbitrary inte-
ger weights, we show that Competitive Diffusion is solvable in polyno-
mial time.

Note that, while four years past after Alon et al. introduced the competitive
diffusion game, no nontrivial algorithm for the k-player game is known, even for
unweighted trees with k ≥ 3. Our research breaks this situation, and provides a
new landscape of the computational aspect of the game.

The rest of the paper is organized as follows. In Section 2, we formally define
the competitive diffusion game and the problem Competitive Diffusion.
In Section 3, we present our hardness results for Competitive Diffusion.
In Section 4, we give algorithms for forests of paths. In Section 5, we provide an
algorithm for chain, cochain, and threshold graphs.

2 Preliminaries

We model a network as an undirected graph G = (V,E), where the vertex set V
represents individuals in the network, and the edge set E does the connections
among them. The weight function w : V → Z represents a level of importance of
each individual. For a positive integer k, we define [k] = {1, 2, . . . , k}, and call
the k players p1, p2, . . . , pk.

The competitive diffusion game (k,G,w) proceeds as follows (see Fig. 1(a)–
(d) for an explicit example). At time one, each player chooses a vertex in V ;
suppose a player pi, i ∈ [k], chooses a vertex v ∈ V . If any other player pj ,



Competitive Diffusion on Weighted Graphs 425

Fig. 2. The vertex v3 becomes neutral at time 2, and consequently, p3 dominates v4
at time 7

i �= j, does not choose the vertex v, then pi dominates v; and otherwise (that
is, if there exists a player pj , i �= j, who chooses v), v becomes a neutral vertex.
In the subsequent time steps, no player can dominate the neutral vertex. For
each time t, t ≥ 2, a vertex v ∈ V is dominated by a player pi at time t if (i) v
is neither neutral nor dominated by any player by time (t − 1), and (ii) v has
a neighbor dominated by pi, but does not have a neighbor dominated by any
player pj , i �= j. If v satisfies (i) and there are two or more players who dominate
neighbors of v, then v becomes a neutral vertex at time t. The game ends when
no player can dominate a vertex any more.

We note that the notion of a neutral vertex plays important role in the game;
it sometimes gives critical effect on the result. (See Fig 2.) This contrasts to a
similar game, called Voronoi game, where a player can dominate all the nearest
vertices; if there is a vertex whose distances to seeds of two or more players tie,
then they do not dominate but share the vertex [11,13,21,25].

Let s = (s(1), s(2), . . . , s(k)) ∈ V k be the vector of vertices which the players
choose at the beginning of the game. We call s a strategy profile. For every i ∈ [k],
we define a utility Ui(s) of pi for s as the sum of the weights of the vertices which
pi dominates at the end. (See Fig. 1(d).)

For an index i ∈ [k], we define (s−i, v
′) as a strategy profile such that pi

chooses v′ instead of s(i), but any other player pj , i �= j, chooses s(j): (s−i, v
′) =

(s(1), s(2), . . . , s(i−1), v′, s(i+1), . . . , s(k)). For simplicity, we write Ui(s−i, v
′) for

Ui((s−i, v
′)). Then, if s satisfies Ui(s−i, v

′) ≤ Ui(s) for every i ∈ [k] and every
v′ ∈ V , we say that s is a (pure) Nash equilibrium. The strategy profile given in
Fig. 1(b) is, in fact, a Nash equilibrium. We define Competitive Diffusion as
the problem of deciding whether (k,G,w) has a Nash equilibrium.

3 Hardness Results on Competitive Diffusion

In this section, we observe computational complexity of Competitive Diffu-
sion. Our first hardness result is the following theorem.

Theorem 1. Competitive Diffusion is W [1]-hard even for unweighted
graphs when parameterized by the number of players.
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To prove the theorem, we construct a reduction from a well-known W [1]-
hard problem, Independent Set [14]. Given a graph G = (V,E) and a positive
integer k, Independent Set asks whether there exists an independent set I of
size at least k, where a set I (⊆ V ) is called an independent set if there is no
pair of vertices u, v ∈ I such that (u, v) ∈ E.

Below we provide the desired reduction and a proof overview.
Proof idea. We construct a graph G′ = (V ′, E′) such that G = (V,E) has an
independent set I of size |I| ≥ k if and only if (k + 3, G′, w′) has a pure Nash
equilibrium, where w′ : V ′ → {1}.

Construction of G′

Let n = |V |, and dv be the degree of v for every v ∈ V . The graph G′ consists
of two connected components A = (VA, EA) and B = (VB , EB).

We obtain the component A as follows. We construct a path of four ver-
tices a1, a2, a3, a4; and make 2n vertices a′

1, a
′
2, . . . , a

′
n and a′′

1 , a′′
2 , . . . , a′′

n. Then
we connect the terminal a1 to a′

1, a
′
2, . . . , a

′
n, and connect the terminal a4 to

a′′
1 , a′′

2 , . . . , a′′
n. We obtain the component B from the original graph G as follows.

For every edge e = (u, v) ∈ E, we add a vertex be subdividing e. Then, for each
v ∈ V , we introduce a set Dv of n − dv vertices, and connect v to every u ∈ Dv.
Lastly we make a vertex b and λ vertices b1, b2, . . . , bλ, where λ is a sufficiently
large number satisfying λ = Θ(n3), and connect b to every v ∈ V , and connect
b to b1, b2, . . . , bλ. Thus, we have V ′ = VA ∪ VB and E′ = EA ∪ EB .

Consider the game (k +3, G′, w′). We can easily observe that any Nash equi-
librium includes a strategy of a single player choosing the vertex b, since the strat-
egy always give the maximum utility. Consequently, we can show that exactly
two players can choose vertices other than the ones in the original graph G to
hold a Nash equilibrium; otherwise, some player has extremely low utility (that
is, below two) due to the player choosing b. In fact, we can show that any Nash
equilibrium includes strategies of the two players choosing the vertex a2 and
a3. Then the existence of a Nash equilibrium depends on whether there exists
a strategy profile such that the other k players choose vertices composing an
independent set: If the strategy profile of the other k players does not compose
an independent set, then one of the k player obtains the utility less than n + 1;
but the player can obtain the utility exactly n + 1 by changing its strategy to
a1 or a4. 	


For the cases where weights can be nonnegative or arbitrary integers, we can
obtain the following stronger hardness results.

Theorem 2. Competitive Diffusion is NP-complete even for series-parallel
graphs with nonnegative integer weights.

Theorem 3. Competitive Diffusion is NP-complete even for forests of two
components with integer weights.

The proofs for Theorems 2 and 3 are similar to the one for Theorem 1, but we
use other tricks by means of a neutral vertex together with positive and negative
weights; we omit them due to the page limitation.



Competitive Diffusion on Weighted Graphs 427

4 Algorithms for Forests of Paths

In the last section, we have shown that Competitive Diffusion is basically a
computational hard problem. However, we can solve the problem for some partic-
ular graph classes. In Section 4.1, we give a pseudo-polynomial-time algorithm
to solve Competitive Diffusion for forests of weighted paths; as its conse-
quence, we show that the problem is solvable in polynomial time for forest of
unweighted paths. In Section 4.2, we improve the running time of our algorithm
to quadratic for the unweighted case.

4.1 Forests of Weighted Paths

Let F be a forest consisting of weighted m paths P1, P2, . . . , Pm, and let Wj

be the sum of the positive weights in a path Pj , j ∈ [m]. Then, we define
W = maxj∈[m] Wj as the upper bound on utility for F , that is, any player can
obtain at most W in F . In this subsection, we prove the following theorem.

Theorem 4. Let F be a forest of weighted paths. Let n and W be the number
of vertices in F and the upper bound on utility for F , respectively. Then, we can
solve Competitive Diffusion, and find a Nash equilibrium, if any, in O(Wn9)
time.

We note that W = O(n) if F is an unweighted graph. Therefore, by Theo-
rem 4, Competitive Diffusion is solvable in O(n10) time for an unweighted
graph F ; this running time will be improved to O(n2) in Section 4.2.

Idea and Definitions
Let F be a given forest consisting of weighted m paths P1, P2, . . . , Pm. Let w
be a given weight function; we sometimes denote by wj the weight function
restricted to the path Pj , j ∈ [m]. Suppose that, for an integer k, there exists a
strategy profile s for the game (k, F,w) that is a Nash equilibrium. Then, the
strategy profile restricted to each path Pj , j ∈ [m], forms a Nash equilibrium for
(kj , Pj , wj), where kj is the number of players who chose vertices in Pj . However,
the other direction does not always hold: A Nash equilibrium sj for (kj , Pj , wj) is
not always extended to a Nash equilibrium for the whole forest F , because some
player may increase its utility by moving to another path in F . To capture such
a situation, we classify a Nash equilibrium for a (single) path Pj more precisely.

Consider the game (κj , Pj , wj) for an integer κj ≥ 0. For a strategy profile sj

for (κj , Pj , wj), we define μPj
(sj) as the minimum utility over all the κj players:

μPj
(sj) = mini∈[κj ] Ui(sj). In other words, any player in Pj obtains the utility

at least μPj
(sj). For the case where κj = 0, we define sj = ∅ as the unique

strategy profile for (κj , Pj , wj); then, sj is a Nash equilibrium and we define
μPj

(sj) = +∞.
For a strategy profile sj =

(
s
(1)
j , s

(2)
j , . . . , s

(κj)
j

)
for (κj , Pj , wj), we then

define the “potential” of the maximum utility under sj that can be expected
to gain by an extra player other than the κj players. More formally, for a vertex
v in Pj , we denote by sj + v the strategy profile

(
s
(1)
j , s

(2)
j , . . . , s

(κj)
j , s

(κj+1)
j

)
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for (κj + 1, Pj , wj) such that s
(κj+1)
j = v. Then, we define νPj

(sj) =
maxv∈V (Pj) Uκj+1(sj + v).

For two nonnegative integers κj and t, we say that Pj admits κj players
with a boundary t if there exists a strategy profile sj such that sj is a Nash
equilibrium for (κj , Pj , wj) and νPj

(sj) ≤ t ≤ μPj
(sj) holds. Then, the following

lemma characterizes a Nash equilibrium of the game (k, F,w) in terms of the
components of F ; we omit the proof.

Lemma 1. The game (k, F,w) has a Nash equilibrium if and only if there exist
nonnegative integers κ1, κ2, . . . , κm and t such that k =

∑m
j=1 κj and Pj admits

κj players with the common boundary t for every j ∈ [m].

Algorithm
We first focus on a weighted single path.

Lemma 2. Let P be a weighted path of n vertices, and t be a nonnegative inte-
ger. Then, one can find in O(n9) time the set K ⊆ {0, 1, . . . , 2n} of all the
integers κ such that P admits κ players with boundary t.

Based on Lemma 2, we can obtain the m sets K1,K2, . . . , Km, where Kj ⊆
{0, 1, . . . , 2n}, j ∈ [m], is the set of all the integers κ such that P admits κ
players with boundary t. This can be done in O(n9) time, where n is the number
of vertices in the whole forest F .

We now claim that, for a given integer t, it can be decided in O(n3) time
whether there exist nonnegative integers κ1, κ2, . . . , κm such that k =

∑m
j=1 κj

and Pj admits κj players with the common boundary t for every j ∈ [m]; later
we will apply this procedure to all possible values of t, 0 ≤ t ≤ W . To show
this, observe that finding desired m integers κ1, κ2, . . . , κm from the m sets
K1,K2, . . . , Km can be regarded as solving an instance of the multiple-choice
knapsack problem [18]: The capacity c of the knapsack is equal to k; each integer
κ′ in Kj , j ∈ [m], corresponds to an item with profit κ′ and cost κ′; the items
from the same set Kj form one class, from which at most one item can be packed
into the knapsack. The multiple-choice knapsack problem can be solved in O(cN)
time [18], where N is the number of all items. Since c = k and N = O(mn), we
can solve the corresponding instance in time O(kmn) = O(n3).

We finally apply the procedure above to all possible values of boundaries t.
Since any player can obtain at most the upper bound W on utility for F , it
suffices to consider t ∈ [W ]. Therefore, our algorithm runs in O(Wn9) time in
total.

4.2 Forests of Unweighted Paths

In this subsection, we improve the running time of our algorithm in Section 4.1
to quadratic when restricted to the unweighted case.

Theorem 5. Let F be a forest of unweighted paths, and n be the number of
vertices in F . Then, we can solve Competitive Diffusion, and find a Nash
equilibrium, if any, in O(n2) time.



Competitive Diffusion on Weighted Graphs 429

In the rest of this subsection, we consider unweighted graphs, and thus define
w : V → {1} for the vertex set V of a given forest. We assume that the number
k of players is less than n; otherwise, a Nash equilibrium always exists. Note
that, in this case, every player has utility at least one for any Nash equilibrium.

We first show that the set Kj of Lemma 2 can be obtained in O(1) time,
instead of O(n9) time, by characterizing Nash equilibriums for (κ, P,w) in terms
of κ, t and n.

Lemma 3. Let P be a single unweighted path of n vertices, and let κ and t be
nonnegative and positive integers, respectively.

(1) P admits κ = 0 player with boundary t if and only if n ≤ t.
(2) P admits κ = 1 player with t if and only if t ≤ n ≤ 2t + 1.
(3) P admits κ = 2 players with t if and only if 2t ≤ n ≤ 2t + 2.
(4) P admits κ = 3 players with t if and only if t = 1 and n = 3, 4 or 5.
(5) For any integer κ ≥ 4, P admits κ players with t if and only if

(κ + 1)t − 1 ≤ n ≤ (2κ − 4)t + κ if κ is odd;
κt ≤ n ≤ (2κ − 4)t + κ if κ is even.

By Lemme 3, we can immediately obtain the number of players which P
admits with a given boundary t:

Corollary 1. Consider a fixed boundary t. If P is a path of n vertices, the
numbers of players which P admits with a boundary t is given as follows.

(1) If n ≤ t − 1, the number is only 0.
(2) If n = t, the numbers are 0 and 1.
(3) If t + 1 ≤ n ≤ 2t − 1, the number is only 1.
(4) If 2t ≤ n ≤ 2t + 1 and n = 3, the numbers are 1, 2 and 3; and if 2t ≤ n ≤

2t + 1 and n �= 3, the numbers are 1 and 2.
(5) If n = 2t + 2 and n = 4, the numbers are 2, 3 and 4; and if n = 2t + 2 and

n �= 4, the number is only 2.
(6) If 2t + 3 ≤ n ≤ 4t − 1, P has no desired Nash equilibrium.
(7) If 4t ≤ n and 5 ≤ n, the numbers are integers κ such that

⌈
n + 4t

2t + 1

⌉
≤ κ ≤ max(kodd, keven),

where kodd is the maximum odd integer satisfying kodd ≤ (n − t + 1)/t, and
keven is the maximum even integer satisfying keven ≤ n/t.

We use Corollary 1 to design our algorithm for forests of paths.
Without loss of generality, we assume that P1 is a longest path among the

m paths, and has n1 vertices. For each t, 1 ≤ t ≤ n1, we repeat the following
procedure: For every j, 1 ≤ j ≤ m, we obtain, using Corollary 1, the minimum
number kmin

j and the maximum number kmax
j of players which Pj admits with

the boundary t. Corollary 1 implies that, for every j, 1 ≤ j ≤ m, Pj admits κ
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players with t for any κ between kmin
j and kmax

j , and hence (k, F,w) has a Nash
equilibrium with the common boundary t if and only if

m∑

j=1

kmin
j ≤ k ≤

m∑

j=1

kmax
j . (1)

We thus complete the procedure by checking if the two inequalities in (1) both
hold. Since Corollary 1 implies that we can obtain kmin

j and kmax
j in constant

time for every j, the running time of the procedure above for single t is O(m),
and hence that of our entire algorithm is O(n1m) = O(n2), as desired.

5 Algorithms for Chain, Cochain, and Threshold Graphs

A bipartite graph B = (X,Y ;E) with |X| = p and |Y | = q is a chain graph
if there is an ordering (x1, x2, . . . , xp) on X such that N(x1) ⊆ N(x2) ⊆ · · · ⊆
N(xp), where N(u) denote a set of neighbors of a vertex u. If there is such
an ordering on X, then there also exists an ordering (y1, y2, . . . , yq) on Y such
that N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yq). We call such orderings inclusion orderings.
A graph B′ is a cochain graph if it can be obtained from a chain graph B =
(X,Y ;E) by making the independent sets X and Y into cliques. A graph B′′

is a threshold graph if it can be obtained from a chain graph B = (X,Y ;E) by
making one of the independent sets X and Y into a clique. Observe that inclusion
orderings on X and Y in B can be seen as inclusion orderings in B′ and B′′ if
we use closed neighborhoods in cliques. Such inclusion orderings can be found
in linear time [17]. Because the algorithm for chain graphs we will describe in
this section depends only on its property of having inclusion orderings, we can
apply the exactly same algorithm for cochain graphs and threshold graphs.

The following lemma follows directly from the definitions. Note that we
denote N [u] = N(u) ∪ {u}.

Lemma 4. If N(u) ⊆ N(v) or N [u] ⊆ N [v] holds for u = s(i) �= v = s(j), then

Ui(s) =

{
0 if there is h �= i such that s(h) = u,

w(u) otherwise.

In what follows, let B = (X,Y ;E) be a chain graph with inclusion orderings
(x1, . . . , xp) and (y1, . . . , yq) on X and Y , respectively. We define η(s,X) =
max({0} ∪ {i | xi ∈ V (s)}) and η(s, Y ) = max({0} ∪ {i | yi ∈ V (s)}).

Lemma 5. Let s be a Nash equilibrium of B. If s(i) /∈ {xη(s,X), yη(s,Y )}, then

w(s(i)) ≥ max
{
w(u) | u ∈ ({xj |j ≤ η(s,X)} ∪ {yj |j ≤ η(s, Y )})\V (s)

}
. (2)

Proof. Since N(s(i)) ⊆ N(xη(s,X)) or N(s(i)) ⊆ N(yη(s,Y )), it follows that
Ui(s) ≤ w(s(i)) by Lemma 4. Suppose for the contrary that there exists
u ∈ ({xj | j ≤ η(s,X)} ∪ {yj | j ≤ η(s, Y )}) \ V (s) such that w(s(i)) < w(u).
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Algorithm 1. Find a Nash equilibrium s ∈ V k of a chain graph B = (X,Y ;E)
1: Let (x1, . . . , xp) on X and (y1, . . . , yq) on Y be inclusion orderings.
2: // The following is for the case where η(s, X) �= 0.
3: for all guesses (η(s, X), η(s, Y )) ∈ {1, . . . , p} × {0, . . . , q} do
4: s(1) := xη(s,X). s(2) := yη(s,Y ) if η(s, Y ) �= 0.
5: R := {xi | i < η(s, X)} ∪ {yi | i < η(s, Y )}.
6: while there is a player i not assigned to a vertex do
7: v := arg maxu∈R w(u).
8: if w(v) ≥ 0 then
9: s(i) := v. R := R \ {v}.

10: else
11: s(i) := xη(s,X).
12: end if
13: end while
14: return s if it is a Nash equilibrium.
15: end for
16: return “no Nash equilibrium”

Now it holds that N(u) ⊆ N(xη(s,X)) or N(u) ⊆ N(yη(s,Y )). Thus, by Lemma 4,
we have Ui(s−i, u) = w(u) > w(s(i)) ≥ Ui(s). This contradicts the assumption
that s is a Nash equilibrium. 	


Thus, it suffices to check the strategy profiles satisfying Eq. (2) for our purpose.

Theorem 6. Let G be a chain, cochain, or threshold graph of n vertices and
m edges. Then, we can solve Competitive Diffusion for G, and find a Nash
equilibrium, if any, in O(n4(m + n)) time.

Proof. We present an algorithm for chain graphs only. As previously described,
we can apply the same algorithm for cochain and threshold graph.

We first guess η(s,X) and η(s, Y ). Here we assume η(s,X) �= 0. The other
case can be treated in the same way by swapping X and Y . We assign xη(s,X)

to the first player. If η(s, Y ) �= 0, then we assign yη(s,Y ) to the second player.
By Lemma 5, if s is a Nash equilibrium, then the other players have to select
the heaviest vertices in {xi | i < η(s,X)} ∪ {yi | i < η(s, Y )}. For each of the
remaining players, we assign a vacant vertex with the maximum non-negative
weight. If there is no such a vertex, we assign xη(s,X). We then test whether the
strategy profile is a Nash equilibrium. See Algorithm 1.

Lemma 5 implies that if the algorithm assigns at most one player to xη(s,X),
then the algorithm is correct. If two or more players are assigned to xη(s,X),
then these players have utility 0. In such a case, there are not enough number of
vertices of non-negative weights in {xi | i < η(s,X)} ∪ {yi | i < η(s, Y )}. Thus
every s with the guesses η(s,X) and η(s, Y ) has a player with non-positive
utility. If such a player, say pi, has negative utility, then s is clearly not a Nash
equilibrium. If pi has utility 0, then it may improve its utility only if there is
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a vertex v ∈ {xη(s,X)+1, . . . , xp} ∪ {yη(s,Y )+1, . . . , yq} such that Ui(s−i, v) > 0.
However, in this case, there is no Nash equilibrium with the guesses η(s,X) and
η(s, Y ). Therefore, the algorithm is correct.

We now analyze the running time of the algorithm. We have O(n2) options
for guessing xη(s,X) and yη(s,Y ). For each guess, the bottle-neck of the running
time is to test whether the strategy profile is a Nash equilibrium or not. It
takes O(n2(m + n)) time as follows: we have O(n2) candidates of moves of
players; for each candidate, we can compute the utility of the player moved by
running a breadth-first search once in O(m + n) time by adding a virtual root
connecting to all the vertices occupied by the players. In total, the algorithm
runs in O(n4(m + n)) time. 	
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