
Finding Articulation Points of Large Graphs
in Linear Time

Mart́ın Farach-Colton1, Tsan-sheng Hsu2, Meng Li1,
and Meng-Tsung Tsai1(B)

1 Rutgers University, New Brunswick, NJ 08901, USA
{farach,ml910,mtsung.tsai}@cs.rutgers.edu

2 Academia Sinica, Taipei 115, Taiwan
tshsu@iis.sinica.edu.tw

Abstract. Given an n-node m-edge graph G, the articulation points of
graph G can be found in O(m + n) time in the RAM model, through
a DFS-based algorithm. In the semi-streaming model for large graphs,
where memory is limited to O(n polylog n) and edges may only be
accessed in one or more sequential passes, no efficient DFS algorithm
is known, so another approach is needed.

We show that the articulation points can be found in O(m + n) time
using O(n) space and one sequential pass of the graph. The previous
best algorithm in the semi-streaming model also uses O(n) space and
one pass, but has running time O(mα(n)+n log n), where α denotes the
inverse of Ackermann function.

Keywords: Articulation points · Semi-streaming algorithm · Linear-
time algorithm · Space lower bound

1 Introduction

An articulation point is a node whose removal increases the number of con-
nected components of a graph. There are efficient algorithms in various models
for finding all articulation points in an n-node m-edge graph G. For example,
in the RAM model, Hopcroft and Tarjan [10] give a DFS-based algorithm that
runs in O(m + n) time.

This classical algorithm does not scale to graphs that are larger than memory.
We consider algorithms in the semi-streaming model [11–13], in which we are
allowed O(npolylog n) working space and edges may be accessed in sequential
read-only passes through the graph. The goal is then to minimize the number of
passes and the time complexity of the algorithm.

Some graph problems, e.g. connectivity or minimum spanning tree, can be
solved optimally [7]. Other graph problems, e.g. counting the number of 3-cycles,
maximum matching and graph degeneracy, can be approximated [1,3,6]. Some

This research was supported in part by NSF grants CNS-1408782, IIS-1247750 and
by Ministry of Science and Technology, Taiwan, Grant MOST 103-2221-E-001-033.

c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 363–372, 2015.
DOI: 10.1007/978-3-319-21840-3 30

364 M. Farach-Colton et al.

fundamental problems, such as breath-first search, depth-first search, topologi-
cal sorting, and directed connectivity, are believed to be difficult to solve in a
small number of passes [9,12,13]. Hence, the known algorithms [2,7] for finding
articulation points take approaches other than computing a DFS tree.

Feigenbaum et al. [7] gave a first semi-streaming algorithm for finding artic-
ulation points. Their algorithm, which we refer to as the FKMSZ algorithm, has
quadratic run time O(mnα(n)), where α denotes the inverse Ackermann func-
tion. Ausiello et al. [2] later gave an algorithm with run time O(mα(n)+n log n).
Both these algorithms use O(n) space and perform one pass. Here, we present
the first linear-time algorithm for this problem. It also uses O(n) space and
performs one pass.

Instead of maintaining a structure that processes each incoming edge as it is
scanned, we achieve optimality by buffering incoming edges and processing them
in batches of size O(n). We extend this approach to the problems of computing
spanning trees and of finding all bridges, where a bridge is an edge whose
removal increases the number of connected components. Our algorithm has run
time O(m+n), which improves the run time O(mα(n)) that comes from directly
using the disjoint union-find set data structure [14].

The proposed algorithm not only has an optimal time complexity but has an
optimal space complexity. A lower bound for space complexity can be obtained
by noting that biconnectivity1 is a balanced property [8]. For any balanced
property P, testing property P with probability at least 3/4 has a space lower
bound of Ω(n) bits. Since finding articulation points is no easier than biconnec-
tivity, it has a space lower bound of Ω(n) bits. In Section 6, we give a tighter
analysis that finding articulation points in one sequential pass requires Ω(n log n)
bits. Hence, the space complexity of the proposed algorithm is optimal.

Organizations. In Section 2, we illustrate the idea of batches on two simpler
problems. In Section 3, we revisit the FKMSZ algorithm. We explain a simple
version of the proposed algorithm in Section 4 and defer the discussion of the full
version to Section 5. In Section 6, we prove the space lower bound, Ω(n log n)
bits.

2 Preliminaries

We begin by showing how to reduce the running time for two simpler problems:
finding a spanning tree and all bridges in a given graph G. We illustrate the idea
of buffering scanned edges and processing them in a batch. This is the main idea
used in our articulation-point algorithm.

Consider a spanning-tree algorithm in the semi-streaming model, and let F
be a spanning forest of G, given the edges seen so far. As each edges e gets
scanned, it can be added to F if it does not form a cycle. Testing cyclicity can
be accomplished via a disjoint union-find data structure, which takes O(mα(n))
in total.
1 A graph is biconnected iff it has no articulation point.

Finding Articulation Points of Large Graphs in Linear Time 365

In order to reduce the total running time, process n edges for inclusion into
the tree, instead of one at a time. Let B be the set of the next n edges to process,
and let F be the current spanning forest. Compute a spanning forest of B ∪ F
in O(n) time by an in-memory DFS. After all O(m/n) batches of edges have
been processed in a single pass, the final F is a spanning forest of the original
graph and the total computation time is O(m + n).

We apply the same idea to finding all bridges. Let F denote the spanning
forest produced by the above algorithm. Note that if an edge e /∈ F , then the
edge e is on some cycle and thus cannot be a bridge. In addition to comput-
ing F , compute FD, a spanning forest of G\F , the discarded edges. This can be
computed during the same pass where F is computed. Together they take O(n)
space, one pass and O(m + n) time to compute. Once F and FD are computed,
the bridges in G can be reduced to find bridges in F ∪FD due to Lemma 1, thus
in O(n) time by a DFS.

This approach improves the previously best O(mα(n) + n log n)-time algo-
rithm for finding bridges [2] to linear time.

Lemma 1. An edge (u, v) ∈ bridge(G) if and only if (u, v) ∈ F \ FD and
(u, v) ∈ bridge(F ∪FD), where bridge(H) denotes the set of bridges in graph H.

Proof. Let FD = T1 ∪ T2 ∪ · · · ∪ Tk, where each Ti is a maximal tree in FD.
(⇒) If (u, v) ∈ bridge(G), then (u, v) ∈ F , (u, v) /∈ FD. Assume that

(u, v) /∈ bridge(F ∪ FD), then there is a path P connecting nodes u, v in F ∪ FD

without passing through (u, v). The path P is also in G because F ∪ FD ⊆ G, a
contradiction.

(⇐) If (u, v) ∈ F \ FD and (u, v) ∈ bridge(F ∪ FD), then u ∈ Ta, v ∈ Tb for
some a �= b. Assume that (u, v) /∈ bridge(G), then there is a path P connecting
nodes u, v in G without passing through (u, v). Since (u, v) ∈ bridge(F ∪ FD),
there are some edges (x1, y1), (x2, y2), . . . in P are discarded. Note that for any
discarded edge (xi, yi) the nodes xi, yi are both contained in some Tj , implying
that a path Pi in Tj connects nodes xi, yi. Since u ∈ Ta, v ∈ Tb for some a �= b,
then (u, v) /∈ Pi for all i. Therefore, the closed loop formed by bridge (u, v)
and path P with replacing the discarded edges with Pi’s (note that (u, v) /∈ Pi)
implies a simple cycle passing through (u, v) in F ∪ FD, a contradiction. �	

3 The FKMSZ Algorithm

The classical algorithm for finding articulation points in the RAM model generates
a DFS tree T and detects articulation points by identifying backedges. However, in
the semi-streaming model, no efficient algorithm is known for generating a DFS
tree. The FKMSZ algorithm replaces the DFS tree with an arbitrary spanning
tree, implicitly relying on Lemmas 2 and 4. Since these lemmas were not stated
as such in [7], we provide a statement and proof for each here for completeness.

We define some notions before proceeding to the lemmas. Given a spanning
tree T of graph G, if nodes u, v are both tree neighbors of some node x, then we

366 M. Farach-Colton et al.

say nodes u, v are co-paired at node x or that they are a co-pair for short,
since x is uniquely defined as the only shared neighbor of u and v.

We say that nodes u and v are tree-biconnected if there exists an edge
e ∈ G \ T such that u and v are biconnected in T ∪ {e}. Note that if two
nodes are tree-biconnected, they are biconnected, but the converse is not true.
Tree-biconnectivity is easier to test for than biconnectivity.

Lemma 2. Given a spanning tree T of graph G, a node x is an articulation
point if and only if some co-pair at x is not biconnected.

Proof. (⇒) By definition, if x is an articulation point in graph G, then, for
some nodes a, b ∈ G, a, b �= x, every path connecting a, b passes through x. This
implies that, for some neighbors u, v ∈ G of node x, every path connecting u, v
passes through node x.

We divide the x’s neighbors into two classes w.r.t. T : tree neighbors and non-
tree neighbors. Suppose that node u is a non-tree neighbor of node x, then u, x
are connected by a non-tree edge and therefore u and some x’s tree neighbor are
connected in G \ {x}. Therefore, no matter whether u, v are x’s tree neighbors
or non-tree neighbors, if nodes u, v are disconnected in G \ {x}, then some pair
of x’s tree neighbors are also disconnected in G \ {x}. Hence, some co-pair at x
is not biconnected.

(⇐) Suppose that x is not an articulation point, and let y be an articulation
point that separates u and v. Such a y must exist because u and v are not
biconnected. But removing y �= x leaves the u, x, v path intact, contradicting
that y separates u and v. �	
Corollary 3. If x is a leaf node in any spanning tree T of graph G, then x is
not an articulation point of graph G.

Lemma 4. Given a spanning tree T of graph G, a co-pair (u, v) at node x is
biconnected if and only if there exist nodes u = w0, w1, . . . , wt = v such that
(wi−1, wi) is a tree-biconnected co-pair at node x for all i ∈ [t].

Proof. (⇐) If (wi−1, wi) is a tree-biconnected co-pair at node x, then nodes
wi−1, wi are contained in some cycle of T ∪{e} for some non-tree edge e. There-
fore, nodes wi−1, wi are connected in G \ {x}. Since connectivity is transitive,
u, v are connected in G \ {x}.

(⇒) Observe that T \ {x} is a set of subtrees. Each of x’s tree neighbors
belongs to an unique subtree and each subtree contains an unique tree neigh-
bor of x. Observe further that G \ {x} is a set of connected components. The
connected components induced by the forest is a refinement of the connected
components of the graph. That is, each connected component of the graph is
spanned by one or more trees in the forest.

Since (u, v) is a co-pair at x, nodes u, v belong to different subtrees Tu, Tv.
Since nodes u, v are biconnected, Tu, Tv are subgraphs of the same connected
component C. Suppose C contains k subtrees, then k − 1 non-tree edges suffice

Finding Articulation Points of Large Graphs in Linear Time 367

to connect the subtrees. Each of the k−1 non-tree edges indicates that a co-pair
at x is tree-biconnected, implying that there exist nodes u = w0, w1, . . . , wt = v
such that (wi−1, wi) is a tree-biconnected co-pair at node x. �	

To realize the procedure in Lemma 4, we need an Union-Find data structure.
In Section 4, we will introduce an Union-Find data structure that improves the
run time of FKMSZ, but for now we will use a standard solution [14]. Let S(x)
be such a data structure for x, and initialize S(x) with x’s tree neighbors. The
main idea of the algorithm is, for each tree-biconnected co-pair (u, v) at node x,
to union u and v in S(x). Thus, by Lemmas 2 and 4, we know that when we are
done processing all edges, x is an articulation point iff S(x) contains multiple
sets, which we can check by performing a find on each element in S(x). Putting
this together gives the FKMSZ Algorithm:

1 Find a spanning tree T of graph G;
2 Prepare a union-find data structure S(x) for each node x and make an element

in S(x) for each of x’s tree neighbors ;
3 foreach incoming non-tree edge (u, v) do
4 Find the path PT (u, v), a1 = u, a2, . . . , at = v in tree T ;
5 For each co-pair (ai−1, ai+1), union ai−1 and ai+1 in S(ai);

6 foreach node x do
7 Let rx be the find of any element in S(x).;
8 foreach element y in S(x) do
9 if find(y) �= rx, report x as an articulation point & break;

Algorithm 1. Pseudo-code of FKMSZ algorithm.

4 A Two Pass Algorithm for Articulation Points

We explain a simple, two-pass version of our algorithm in this section and defer
the full one-pass version to Section 5. The simplified algorithm finds all articula-
tion points of an n-node m-edge graph G in O(m + n) time after two sequential
passes on the entire graph. We assume that graph G is connected; otherwise,
one can adapt our algorithm to the unconnected cases in a straightforward way.

Our algorithm proceeds as follows. In the first pass, we find a spanning tree
T of graph G and preprocess T . In the second pass, we execute Algorithm 1,
achieving linear time by exploiting our preprocessing.

4.1 First Pass

We find a spanning tree T of graph G in O(m+n) time. Before the second pass,
we root T at an arbitrary node and preprocess T in O(n) time to answer the
following queries in O(1) time:

368 M. Farach-Colton et al.

(1) degT (x): the degree of node x in tree T ,
(2) depthT (x): the depth of node x in tree T ,
(3) lcaT (u, v): the lowest common ancestor of nodes u and v in rooted tree

T [4],
(4) laT (u, d): the ancestor of node u that has depth d in rooted tree T [5].

In addition, we need to build, for each node x, an union-find data structure,
uf(x). We initialize uf(x) with all of its neighbors. We specify an union in the
typical manner: uf(x).union(u, v) performs an union in uf(x) between the set
that contains u and the set that contains v.

In order to beat the bound for union find, we do two things. First, rather than
allow arbitrary find queries, we only allow queries uf(x).one(), which returns
True if uf(x) contains only one set, that is, if all sets have been merged into
one. Second, we favor unions over queries. As we will see in our analysis, unions
are much more common than queries, so this tradeoff will give us a better total
run time than using an off-the-shelf union-find algorithm would.

Lemma 5. The union-find data structure uf(x) can be implemented using
O(degT (x)) space such that uf(x).union(u, v) takes amortized constant time
and uf(x).one() takes O(degT (x)) time.

Proof. Let each set in uf(x) be a node, and let d = degT (x). We maintain a
forest F of all nodes, where two nodes are in the same tree iff they are in the same
set. This takes space O(d). We use a buffer of size d. During uf(x).union(u, v), an
edge (u, v) is placed in the buffer. If the buffer is not full, then uf(x).union(u, v)
takes constant time. If the buffer is full, let B be the set of edges in the buffer.
We compute a new spanning forest of F ∪ B in time O(d). The new spanning
forest takes space O(d), and the buffer is now empty. Since this flushing step
happens after every d edge insertions, the amortized edge insertion cost is O(1).

The query returns true iff F ∪ B has a single connected component, which
can be checked in O(d) time. �	

4.2 Second Pass

We need to apply the unions specified by Algorithm 1 for each tree-biconnected
co-pair found. However, if we do this, then each of the m non-tree edges found
during the second pass would take time equal to the length of the cycle induced
by adding the edge to T . In the worst case, we would end up with O(mn) time.

The problem is that this approach unions the same sets many times. To
improve this, instead of enumerating the co-pairs on path PT (u, v) for each non-
tree edge (u, v) individually, we defer the enumeration until there are n such
paths waiting for enumeration. Then, we enumerate the co-pairs on n paths in
a batch. In this way, we can avoid much of the work of finding the same co-pair
many times, as follows.

Decompose each path PT (u, v) into paths PT (u,w) and PT (v, w), where w =
lcaT (u, v), the lowest common ancestor of node u and node v in tree T . Then,

Finding Articulation Points of Large Graphs in Linear Time 369

the set of co-pairs on path PT (u, v) is the union of co-pairs on path PT (u,w),
those on path PT (v, w), and the co-pair (wu, wv) if wu, wv exist, where by wu we
denote the child of node w that is an ancestor of node u in tree T and likewise
for node wv. Since there are at most n co-pairs of this last form, the enumeration
of such co-pairs takes O(n) time. Hence, the only difficulty lies in how to union
the short paths to reduce the repeated enumeration.

Note that all such paths go from a descendant to an ancestor. We partition
the paths by their deepest node. Now, for each u, we union all the paths in
u’s partition. Notice that if PT (u, a) and PT (u, b) are in u’s partition, then a
and b are both ancestors of u, so one is an ancestor of the other. Furthermore,
PT (u, a) ⊆ PT (u, b) if b is an ancestor of a, a condition we can check in O(1)
time since we have precomputed the depth of every node. Thus, all we need to do
is find the shallowest node in u’s partition, and we can discard all other paths.
There are at most 2n paths total, so these steps take O(n) time for all paths
and all nodes.

This is not enough, however, because the paths we have remaining can still
add to length O(n2). In order to compute all co-pairs specified by these paths, we
need to compute, for each node, if it and its grandparent is in one of the specified
paths. But we can test this by a single DFS of the tree as follows. Mark every
node u with path PT (u,w) with depthT (w). Now by DFS, we can compute
for every node v the depth of the shallowest endpoint of every path that goes
through v. If this depth is depthT (v) − 2 or less, then v and its grandparent
form a tree-biconnected co-pair. Thus, we can find all tree-biconnected co-pairs
specified by n non-tree edges in O(n) time. We summarize the result in Lemma 6.

Lemma 6. Given n paths on a tree of n nodes, the (multi-) set of co-pairs on
these n paths can be enumerated in O(n) time.

We are ready to prove the claimed time complexity. In the second pass, for
each n non-tree edges, we enumerate O(n) tree-biconnected co-pairs in O(n) time
due to Lemma 6. We perform all the unions specified by those co-pairs, that is, if
(x, z) is a co-pair at y, we call uf(y).union(x, z), and repeat for each such triple.
This part also takes O(n) due to Lemma 5. Therefore, after processing m edges,
the running time so far is O(m + n).

Since a node x is an articulation point if and only if uf(x).one() returns
False, due to Lemmas 2 and 4, one can find all articulation points in

O
(∑

x∈T

degT (x)

)
= O(n)

time.

Theorem 7. Given an n-node m-edge graph G, all articulation points of G can
be found in O(m + n) time using O(n) space and two sequential passes on the
entire graph.

370 M. Farach-Colton et al.

5 A One Pass Algorithm for Articulation Points

In this section, we modify the above two-pass algorithm into a one-pass algo-
rithm. We do so by bypassing the first pass of the two-pass algorithm and directly
moving into the second pass as if the spanning tree T were given. We are able to
do this because, for every step of pass two, we don’t actually need all of T , but
only the parts of T that have some intersection with edges seen so far during
the second phase. Thus T can be built incrementally, and the first-pass prepro-
cessing can be computed incrementally, as we encounter edges in the “second”
pass.

We first make one modification to the two-pass algorithm. Note that we did
not specify which spanning tree T was needed for the two-pass algorithm. Any
spanning tree suffices. Thus we have the flexibility to pick one that is suitable
for our one-pass algorithm. In Section 2, we present a procedure for finding a
spanning tree T of graph G in linear time. In the procedure, we use a buffer of
size n to accommodate incoming edges and trim the edges to obtain an interme-
diate spanning forest every time the buffer is full. We denote those intermediate
spanning forests by F0 = φ, F1, . . . , Fm/n = T . We say that a such procedure is
stable if Fi is a subgraph of Fj for all i < j. In Lemma 8, we prove that one
can generate a spanning tree with a stable procedure in linear time.

Lemma 8. There is a stable procedure for finding a spanning tree T of an n-
node m-edge graph G that runs in O(m + n) time using O(n) space and one
sequential pass on the entire graph.

Proof. To make the procedure stable, one need to assert that the newly generated
spanning forest Fi+1 is a supergraph of Fi. In other words, one needs to keep
the newer edges with a lower priority than the older ones. To achieve this, one
can contract the connected component in the spanning forest Fi and conduct a
DFS on the contracted graph Fi union newly added edges. Both the contraction
and DFS both takes linear time. �	

To mimic the two-pass algorithm, consider the ith batch of n edges. At this
stage, we have spanning forest Fi, which is a subgraph of the spanning tree T .
Then, for each non-tree edge (u, v) in the current batch, we need to find the
path PT (u, v) given the subgraph Fi. Node u and node v cannot be contained
in two different trees of forest Fi. Otherwise, we would have added edge (u, v)
to Fi. We conclude that PFi

(u, v) = PT (u, v).
The last problem is how to deal with the co-pairs on these paths in the

claimed bound. First, we do not know degT (x) without the entire tree T . How-
ever, we only use degT (x) to allocate space for the union-find data structure
uf(x). One can achieve the same effect without knowing degT (x) by allocating
2s = O(1) space for uf(x) and iteratively doubling s whenever a new forest is
computed and the degree of a node exceeds it’s s − 1. In this way, each uf(x)
grows to the size O(degT (x)) and each uf(x).union(u, v) still takes O(1) amor-
tized time.

Finding Articulation Points of Large Graphs in Linear Time 371

Second, for each Fi we preprocess the data structures to answer the queries
used in the two-pass algorithm in constant time. Since the preprocessing can
be done in time linear to the size of Fi, the total preprocessing time is thus
O (

∑
i |Fi|) = O(m +n). Therefore, this variation of the two-pass algorithm can

be simulated by one-pass.

Theorem 9. All articulation point of an n-node m-edge graph G can be done
in O(m + n) time using O(n) space and one sequential pass on the entire graph.

6 Space Lower Bound

In this section, we prove the following theorem.

Theorem 10. Any semi-streaming algorithm that can output all articulation
points of an n-node m-edge graph after one sequential pass requires Ω(n log n)
bits of space.

Proof. Let function h be a bijection function from [n] to [n]. Function h can be
encoded with the graph Gh in Figure 1 without the dashed edge e = (0, n + k)
where k ∈ [n] and there are n possible choices for e.

Then, we construct a stream for all edges in G ∪ {e}, where the dashed edge
e is placed last. The articulation points of graph G ∪ {e} are node 0 and every
node h(i) for i �= k. Therefore, an algorithm that can output all articulation
points of the graph G ∪ {e} also answers what h(k) is, by computing the sum
SAP of the node labels of articulation points

SAP = n(n + 1)/2 − h(k).

At the time that a semi-streaming algorithm processes the last edge e =
(0, n+k), the state of memory must include an encoding of the bijection function
h : [n] → [n] because based on the state of memory and the last edge e =
(0, n + k), one has to answer what h(k) is, for any possible k. Since the number
of possibilities of such a bijection function h : [n] → [n] is n!, the memory must
have size at least Ω(n log n) bits. �	

0

h(1) h(2) h(k) h(n)

n + 1 n + 2 n + k n + n

· · ·

· · ·

· · ·

· · ·

Fig. 1. Graph encoding of the bijection function h : [n] → [n]

372 M. Farach-Colton et al.

References

1. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with appli-
cation to the maximum matching problem. In: Aceto, L., Henzinger, M., Sgall, J.
(eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 526–538. Springer, Heidelberg
(2011)

2. Ausiello, G., Firmani, D., Laura, L.: Real-time monitoring of undirected networks:
Articulation points, bridges, and connected and biconnected components. Network
59(3), 275–288 (2012)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: 13th Annual ACM-SIAM
Symposium on Discrete algorithms (SODA), pp. 623–632. SIAM (2002)

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

5. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoret-
ical Computer Science 321(1), 5–12 (2004)

6. Farach-Colton, M., Tsai, M.-T.: Computing the degeneracy of large graphs. In:
Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 250–260. Springer,
Heidelberg (2014)

7. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theoretical Computer Science 348(2), 207–216 (2005)

8. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the data-stream model. SIAM Journal on Computing 38(5), 1709–1727 (2008)

9. Guruswami, V., Onak, K.: Superlinear lower bounds for multipass graph process-
ing. In: 28th Conference on Computational Complexity (CCC), pp. 287–298. IEEE
(2013)

10. Hopcroft, J., Tarjan, R.: Efficient algorithms for graph manipulation. Commun.
ACM 16(6), 372–378 (1973)

11. Muthukrishnan, S.: Data streams: Algorithms and applications. Tech. rep. (2003)
12. O’Connell, T.C.: A survey of graph algorithms under extended streaming models

of computation. In: Fundamental Problems in Computing, pp. 455–476. Springer
(2009)

13. Ruhl, J.M.: Efficient Algorithms for New Computational Models. Ph.D. thesis,
Massachusetts Institute of Technology, September 2003

14. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

	Finding Articulation Points of Large Graphs in Linear Time
	1 Introduction
	2 Preliminaries
	3 The FKMSZ Algorithm
	4 A Two Pass Algorithm for Articulation Points
	4.1 First Pass
	4.2 Second Pass

	5 A One Pass Algorithm for Articulation Points
	6 Space Lower Bound
	References

