
Select with Groups of 3 or 4

Ke Chen(B) and Adrian Dumitrescu

Department of Computer Science, University of Wisconsin-Milwaukee,
Milwaukee 53201-0784, USA
{kechen,dumitres}@uwm.edu

Abstract. We revisit the selection problem, namely that of comput-
ing the ith order statistic of n given elements, in particular the clas-
sical deterministic algorithm by grouping and partition due to Blum,
Floyd, Pratt, Rivest, and Tarjan (1973). While the original algorithm
uses groups of odd size at least 5 and runs in linear time, it has been
perpetuated in the literature that using groups of 3 or 4 will force the
worst-case running time to become superlinear, namely Ω(n log n). We
first point out that the arguments existent in the literature justifying the
superlinear worst-case running time fall short of proving this claim. We
further prove that it is possible to use group size 3 or 4 while maintaining
the worst case linear running time. To this end we introduce two simple
variants of the classical algorithm, the repeated step algorithm and the
shifting target algorithm, both running in linear time.

Keywords: Median selection · ith order statistic ·Comparison algorithm

1 Introduction

Together with sorting, selection is one of the most widely used procedure in
computer algorithms. Indeed, it is easy to find hundreds if not thousands of
algorithms (documented in at least as many research articles) that use selection
as a subroutine. A classical example is [24].

Given a sequence A of n numbers (usually stored in an array), and an integer
(target) parameter 1 ≤ i ≤ n, the selection problem asks to find the ith smallest
element in A. Trivially sorting solves the selection problem, but if one aims at a
linear time algorithm, a higher level of sophistication is needed. A now classical
approach for selection [6,14,18,27,29] from the 1970s is to use an element in A
as a pivot to partition A into two smaller subsequences and recurse on one of
them with a (possibly different) selection parameter i.

The time complexity of this kind of algorithms is sensitive to the pivots
used. For example, if a good pivot is used, many elements in A can be discarded;
while if a bad pivot is used, in the worst case, the size of the problem may be
only reduced by a constant, leading to a quadratic worst-case running time. But
choosing a good pivot can be time consuming.

Randomly choosing the pivots yields a well-known randomized algorithm
with expected linear running time (see e.g., [7, Ch. 9.2], [22, Ch. 13.5], or [25,
Ch. 3.4]), however its worst case running time is quadratic in n.
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 189–199, 2015.
DOI: 10.1007/978-3-319-21840-3 16

190 K. Chen and A. Dumitrescu

The first deterministic linear time selection algorithm select (called pick by
the authors), in fact a theoretical breakthrough at the time, was introduced by
Blum et al. [6]. By using the median of medians of small (constant size) disjoint
groups of A, good pivots that guarantee reducing the size of the problem by a
constant fraction can be chosen with low costs. The authors [6, page 451, proof
of Theorem 1] required the group size to be at least 5 for the select algorithm
to run in linear time. It has been perpetuated in the literature the idea that
select with groups of 3 or 4 does not run in linear time: an exercise of the
book by Cormen et al. [7, page 223, exercise 9.3-1] asks the readers to argue
that “select does not run in linear time if groups of 3 are used”.

We first point out that the argument for the Ω(n log n) lower bound in the
solution to this exercise [8, page 23] is incomplete by failing to provide an input
sequence with one third of the elements being discarded in each recursive call
in both the current sequence and its sequence of medians; the difficulty in com-
pleting the argument lies in the fact that these two sequences are not disjoint
thus cannot be constructed or controlled independently. The question whether
the original select algorithm runs in linear time with groups of 3 remains open
at the time of this writing.

Further, we show that this restriction on the group size is unnecessary, namely
that group sizes 3 or 4 can be used to obtain a deterministic linear time algorithm
for the selection problem. Since selecting the median in smaller groups is easier to
implement and requires fewer comparisons (e.g., 3 comparisons for group size 3
versus 6 comparisons for group size 5), it is attractive to have linear time selection
algorithms that use smaller groups. Our main result concerning selection with
small group size is summarized in the following theorem.

Theorem 1. There exist suitable variants of select with groups of 3 and 4
running in O(n) time.

Historical background. The interest in selection algorithms has remained high
over the years with many exciting developments (e.g., lower bounds, parallel
algorithms, etc) taking place; we only cite a few here [2,5,9,11–17,19,20,26,
28,29]. We also refer the reader to the dedicated book chapters on selection
in [1,3,7,10,22,23] and the recent article [21].

Outline. In Section 2, the classical select algorithm is introduced (rephrased)
under standard simplifying assumptions. In Section 3, we introduce a variant of
select, the repeated step algorithm, which runs in linear time with both group
size 3 and 4. With groups of 3, the algorithm executes a certain step, “group by
3 and find the medians of the groups”, twice in a row. In Section 4, we introduce
another variant of select, the shifting target algorithm, a linear time selection
algorithm with group size 4. In each iteration, upper or lower medians are used
based on the current rank of the target, and the shift in the target parameter i
is controlled over three consecutive iterations. In Section 5, we briefly introduce
three other variants of select with group size 4, including one due to Zwick [30],
all running in linear time. We also put forward a conjecture on the running time

Select with Groups of 3 or 4 191

of the original select algorithm from [6] with groups of 3 and 4. In Section 6, we
present experimental results comparing the running times of our algorithms (with
group size 3 and 4) to the running time of the original select algorithm (with
group size 5).

2 Preliminaries

Without affecting the results, the following two standard simplifying assumptions
are convenient: (i) the input sequence A contains n distinct numbers; and (ii) the
floor and ceiling functions are omitted in the descriptions of the algorithms and
their analyses. We also assume that all the grouping steps are carried out using
the “natural” order, i.e., given a sequence A = {a1, a2, . . . , an}, “arrange A into
groups of size m” means that group 1 contains a1, a2, . . . , am, group 2 contains
am+1, am+2, . . . , a2m and so on. Under these assumptions, select with groups
of 5 (from [6]) can be described as follows (using this group size has become
increasingly popular, see e.g., [7, Ch. 9.2]):

1. If n ≤ 5, sort A and return the ith smallest number.
2. Arrange A into groups of size 5. Let M be the sequence of medians of these

n/5 groups. Select the median of M recursively, let it be m.
3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}

(the order of elements is preserved). If i = |A1|+1, return m. If i < |A1|+1,
go to step 1 with A ← A1 and n ← |A1|. If i > |A1| + 1, go to step 1 with
A ← A2, n ← |A2| and i ← i − |A1| − 1.

Denote the worst case running time of the recursive selection algorithm on
an n-element input by T (n). As shown in Figure 1, at least (n/5)/2 ∗ 3 = 3n/10
elements are discarded at each iteration, which yields the recurrence

T (n) ≤ T (n/5) + T (7n/10) + O(n).

Since the coefficients sum to 1/5 + 7/10 = 9/10 < 1, the recursion solves to
T (n) = Θ(n) (as it is well-known).

m

3n/10 elements greater or equal to m

3n/10 elements smaller or equal to m

Fig. 1. One iteration of the select algorithm with group size 5. At least 3n/10 ele-
ments can be discarded.

192 K. Chen and A. Dumitrescu

3 The Repeated Step Algorithm

Using group size 3 directly in the select algorithm in [6] yields

T (n) ≤ T (n/3) + T (2n/3) + O(n), (1)

which solves to T (n) = O(n log n). Here a large portion (at least one third) of
A is discarded in each iteration but the cost of finding such a good pivot is too
high, namely T (n/3). The idea of our repeated step algorithm, inspired by the
algorithm in [4], is to find a weaker pivot in a faster manner by performing the
operation “group by 3 and find the medians” twice in a row (as illustrated in
Figure 2).

Algorithm

1. If n ≤ 3, sort A and return the it smallest number.
2. Arrange A into groups of size 3. Let M be the sequence of medians of these

n/3 groups.
3. Arrange M into groups of size 3. Let M ′ be the sequence of medians of these

n/9 groups.
4. Select the median of M ′ recursively, let it be m.
5. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If

i = |A1|+1, return m. If i < |A1|+1, go to step 1 with A ← A1 and n ← |A1|.
If i > |A1| + 1, go to step 1 with A ← A2, n ← |A2| and i ← i − |A1| − 1.

m

M

M

Fig. 2. One iteration of the repeated step algorithm with groups of 3. Empty disks
represent elements that are guaranteed to be smaller or equal to m.

Analysis. Since elements are discarded if and only if they are too large or too
small to be the ith smallest element, the correctness of the algorithm follows.
Regarding the time complexity of this algorithm, we have the following lemma:

Lemma 1. The repeated step algorithm with groups of 3 runs in Θ(n) time on
an n-element input.

Select with Groups of 3 or 4 193

Proof. By finding the median of medians of medians instead of the median
of medians, the cost of selecting the pivot m reduces from T (n/3) + O(n) to
T (n/9) + O(n). We need to determine how well m partitions A in the worst
case. In step 4, m is guaranteed to be greater or equal to (n/9)/2 ∗ 2 = n/9
elements in M . Each element in M is a median of a group of size 3 in A, so it
is greater or equal to 2 elements in its group. All the groups of A are disjoint,
thus m is at least greater or equal to 2n/9 elements in A. Similarly, m is at least
smaller or equal to 2n/9 elements in A. Thus, in the last step, at least 2n/9
elements can be discarded. The recursive call in step 4 takes T (n/9) time. So
the resulting recurrence is

T (n) ≤ T (n/9) + T (7n/9) + O(n),

and since the coefficients on the right side sum to 8/9 < 1, we have T (n) = Θ(n),
as required.

Note that grouping by 3 twice and finding the median of medians of medians is
different from grouping by 9 and finding the median of medians. The number of
comparisons required for grouping by 3 twice is 3n/3 + 3n/9 = 12n/9 while for
grouping by 9 the number is 14n/9 (14 comparisons for selecting 5th out of 9).
The number of elements guaranteed to be discard is also different. For grouping
by 3 twice, at least 2n/9 elements can be discarded. For grouping by 9, this
number is 5n/18.

4 The Shifting Target Algorithm

In the select algorithm introduced in [6], the group size is restricted to odd
numbers in order to avoid the calculation of the average of the upper and lower
median. For group size of 4, depending on the choice of upper, lower or average
median, there are three possible partial orders to be considered (see Figure 3).

Fig. 3. Three partial orders of 4 elements based on the upper (left), lower (middle)
and average (right) medians. The empty square represents the average of the upper
and lower median which is not necessarily part of the 4-element sequence.

If the upper (or lower) median is always used, only (n/4)/2∗2 = n/4 elements
are guaranteed to be discarded in each iteration (see Figure 4) which gives the
recurrence

T (n) ≤ T (n/4) + T (3n/4) + O(n). (2)

The term T (n/4) is for the recursive call to find the median of all n/4 medians.
This recursion solves to T (n) = O(n log n). Even if we use the average of the

194 K. Chen and A. Dumitrescu

two medians, the recursion remains the same since only 2 elements from each of
the (n/4)/2 = n/8 groups are guaranteed to be discarded.

Observe that if the target parameter satisfies i ≤ n/2 (resp., i ≥ n/2), using
the lower (resp., upper) median gives a better chance to discard more elements
and thus obtain a better recurrence; detailed calculations are given in the proof
of Lemma 2. Inspired by this idea, we propose the shifting target algorithm as
follows:

Algorithm

1. If n ≤ 4, sort A and return the ith smallest number.
2. Arrange A into groups of size 4. Let M be the sequence of medians of these

n/4 groups. If i ≤ n/2, the lower medians are used; otherwise the upper
medians are used. Select the median of M recursively, let it be m.

3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If
i = |A1|+1, return m. If i < |A1|+1, go to step 1 with A ← A1 and n ← |A1|.
If i > |A1| + 1, go to step 1 with A ← A2, n ← |A2| and i ← i − |A1| − 1.

m

n/4 elements smaller or equal to m

3n/8 elements greater or equal to m

Fig. 4. Group size 4 with lower medians used

Analysis. Regarding the time complexity, we have the following lemma:

Lemma 2. The shifting target algorithm with group size 4 runs in Θ(n) time
on an n-element input.

Proof. Assume first that i ≤ n/4 in some iteration so the lower medians are used.
Recall that m is guaranteed to be greater or equal to (n/4)/2∗2 = n/4 numbers
in A. So either m is the ith smallest element in A or at least (n/4)/2 ∗ 3 = 3n/8
largest numbers are discarded (see Figure 4), hence the worst-case running time
recurrence is

T (n) ≤ T (n/4) + T (5n/8) + O(n). (3)

Observe that in this case the coefficients on the right side sum to 7/8 < 1,
yielding a linear solution, as required.

Now consider the case n/4 < i ≤ n/2, so the lower medians are used. If
|A1| ≥ i, i.e., the rank of m is higher than i, again at least (n/4)/2 ∗ 3 = 3n/8
largest numbers are discarded and (3) applies. Otherwise, suppose that only

Select with Groups of 3 or 4 195

t = |A1| ≥ (n/4)/2 ∗ 2 = n/4 smallest numbers are discarded. Then in the next
iteration, i′ = i − t, n′ = n − t.

If i′ ≤ n′/4, at least 3n′/8 numbers are discarded. The first iteration satisfies
recurrence (2) and we can use recurrence (3) to bound the term T (3n/4) from
above. We deduce that in two iterations the worst case running time satisfies
the recurrence:

T (n) ≤ T (n/4) + T (3n/4) + O(n)
≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 5/8) + O(n)
= T (n/4) + T (3n/16) + T (15n/32) + O(n). (4)

Observe that the coefficients on the right side sum to 29/32 < 1, yielding a linear
solution, as required. Subsequently, we can therefore assume that i′ ≥ n′/4. We
have

i′/n′ = (i − t)/(n − t)
≤ (i − n/4)/(n − n/4)
≤ (n/2 − n/4)/(n − n/4)
= 1/3.

Since 1/4 < i′/n′ ≤ 1/3 ≤ 1/2, the lower medians will be used. As described
above, if at least 3n′/8 largest numbers are discarded, in two iterations, the worst
case running time satisfies the same recurrence (4).

So suppose that only t′ ≥ (n′/4)/2∗2 = n′/4 smallest numbers are discarded.
Let i′′ = i′ − t′, n′′ = n′ − t′. We have

i′′/n′′ = (i′ − t′)/(n′ − t′)
≤ (i′ − n′/4)/(n′ − n′/4)
≤ (n′/3 − n′/4)/(n′ − n′/4)
= 1/9.

Since i′′/n′′ < 1/4, in the next iteration, at least 3n′′/8 numbers will be dis-
carded. The first two iterations satisfy recurrence (2) and we can use recur-
rence (3) to bound the term T (9n/16) from above. We deduce that in three
iterations the worst case running time satisfies the recurrence:

T (n) ≤ T (n/4) + T (3n/4) + O(n)
≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 3/4) + O(n)
= T (n/4) + T (3n/16) + T (9n/16) + O(n)
≤ T (n/4) + T (3n/16) + T ((9n/16)/4) + T ((9n/16) ∗ 5/8) + O(n)
= T (n/4) + T (3n/16) + T (9n/64) + T (45n/128) + O(n).

The sum of the coefficients on the right side is 119/128 < 1, so again the solution
is T (n) = Θ(n).

By symmetry, the analysis also holds for the case i ≥ n/2, and the proof of
Lemma 2 is complete.

196 K. Chen and A. Dumitrescu

5 Other Variants

A similar idea of repeating the group step (from Section 3) also applies to the
case of groups of 4 and yields

T (n) ≤ T (n/16) + T (7n/8) + O(n),

and thereby another linear time selection algorithm with group size 4.
Yet another variant of select with group size 4 (we refer to it as the hybrid

algorithm), can be obtained by using the ideas of both algorithms together, i.e.,
repeat the grouping by 4 step twice in a row while M contains the lower medians
and M ′ contains the upper medians (or vice versa). Recursively selecting the
median m of M ′ takes time T (n/16). Notice that m is greater or equal to at
least (n/16)/2 ∗ 3 = 3n/32 elements in M of which each is greater or equal to 2
elements in its group in A. So m is greater or equal to at least 3n/16 elements of
A. Also, m is smaller or equal to at least (n/16)/2 ∗ 2 = n/16 elements in M of
which each is smaller or equal to 3 elements in its group of A. So m is smaller
or equal to at least 3n/16 elements of A, thus the resulting recurrence is

T (n) ≤ T (n/16) + T (13n/16) + O(n),

again with a linear solution, as desired.

Zwick’s variant. The fact that the select algorithm can be modified so that
it works with groups of 4 in linear time was observed prior to this writing. The
following variant, from 2010, is due to Zwick [30]. Split the elements in A into
quartets. Find the 2nd smallest element of each quartet (i.e., the lower median),
and let M be this subset of n/4 elements. Recursively find the (3/5)(n/4)th
smallest element m of M . Now (3/5)(n/4) groups of A have 2 elements smaller
or equal to m, so m is greater or equal to at least 2(3/5)(n/4) = 3n/10 elements
in A. Similarly, (2/5)(n/4) groups of A have 3 elements greater or equal to m,
so m is smaller or equal to at least 3(2/5)(n/4) = 3n/10 elements in A. Thus,
the remaining recursive call involves at most 7n/10 elements, and the resulting
recurrence is

T (n) ≤ T (n/4) + T (7n/10) + O(n).

Since 1/4 + 7/10 < 1, the solution is linear.

Comment. The question whether the original selection algorithm introduced
in [6] (outlined in Section 2) runs in linear time with group size 3 and 4 remains
open. Although the recurrences

T (n) ≤ T (n/3) + T (2n/3) + O(n), and
T (n) ≤ T (n/4) + T (3n/4) + O(n)

(see (1) and (2)) for its worst-case running time with these group sizes both solve
to T (n) = O(n log n), we believe that they only give non-tight upper bounds on
the worst case scenarios. In any case, and against popular belief we think that
Θ(n log n) is not the answer:

Select with Groups of 3 or 4 197

Conjecture 1. The select algorithm introduced by Blum et al. [6] runs in
o(n log n) time with groups of 3 or 4.

6 Experimental Results

To compare our algorithms with the original select algorithm, we first derive
upper bounds on the exact numbers of comparisons for each variant in the same
manner as in Section 2 of [6]. Sharper upper bounds are possible by taking extra
care in avoiding comparisons with known outcomes against the pivot; however,
for simplicity of implementation we opted to forego this saving. In order to avoid
the overhead of repeated array copying, all the five algorithms were implemented
in-place, in the sense that, with the exception of the recursion, only O(1) extra
space is used in addition to the input array. This requires minor modifications
of the algorithms; however, their running time analyses remain unchanged.

Let now T (n) denote the total number of comparisons performed. For the
original select algorithm with group size 5, we have

T (n) ≤ T (n/5) + T (7n/10) + 6n/5 + n,

in which 6n/5 is for computing the n/5 medians (recall that each takes at most
6 comparisons) and n is for partitioning the sequence using the selected pivot.
Solving the recurrence yields T (n) ≤ 22n. Similarly, for the repeated step algo-
rithm, we have

T (n) ≤ T (n/9) + T (7n/9) + 3n/3 + 3n/9 + n,

and consequently, T (n) ≤ 21n. For the hybrid algorithm, we have

T (n) ≤ T (n/16) + T (13n/16) + 4n/4 + 4n/16 + n,

and consequently, T (n) ≤ 18n. For Zwick’s algorithm, we have

T (n) ≤ T (n/4) + T (7n/10) + 4n/4 + n,

and consequently, T (n) ≤ 40n. For the shifting target algorithm, the analysis is
more involved; it yields T (n) ≤ 66n.

We carried out 1000 experiments1 on selecting medians in arrays of 10 million
randomly permuted distinct integers. The results are summarized in the following
table:

Algorithm Number of Comparisons Average Running Time
Hybrid algorithm ≤ 18n 434.4ms

Repeated step algorithm ≤ 21n 442.8ms
Original algorithm ≤ 22n 523.7ms
Zwick’s algorithm ≤ 40n 620.7ms

Shifting target algorithm ≤ 66n 619.5ms

1 The experiments were performed on a laptop with 64bits operating system, 4GB
memory and Intel� Coretm i5-2410M 2.3GHz processor.

198 K. Chen and A. Dumitrescu

The C code used can be downloaded at https://pantherfile.uwm.edu/kechen/
linear selection small group/small group experiment/src/.
We observed that the experimental results agree with the worst-case estimates
in the number of comparisons, i.e., showing roughly the same speed ranking.
Note also that the optimizations introduced in Section 3 of [6] are applicable
to reduce the constant factors computed here. However, as the authors of [6]
stated, “The optimized algorithm is full of red tape, and could not in practice
be implemented efficiently,...”.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms.
Addison-Wesley, Reading (1983)

2. Ajtai, M., Komlós, J., Steiger, W.L., Szemerédi, E.: Optimal parallel selection has
complexity O(log log n). Journal of Computer and System Sciences 38(1), 125–133
(1989)

3. Baase, S.: Computer Algorithms: Introduction to Design and Analysis, 2nd edn.
Addison-Wesley, Reading (1988)

4. Battiato, S., Cantone, D., Catalano, D., Cincotti, G., Hofri, M.: An efficient
algorithm for the approximate median selection problem. In: Bongiovanni, G.,
Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, p. 226. Springer,
Heidelberg (2000)

5. Bent, S.W., John, J.W.: Finding the median requires 2n comparisons. In: Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing (STOC 1985),
pp. 213–216. ACM (1985)

6. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

8. Cormen, T.H., Lee, C., Lin, E.: Instructor’s Manual, to accompany Introduction
to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

9. Cunto, W., Munro, J.I.: Average case selection. Journal of ACM 36(2), 270–279
(1989)

10. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. Mc Graw Hill, New
York (2008)

11. Dor, D., H̊astad, J., Ulfberg, S., Zwick, U.: On lower bounds for selecting the
median. SIAM Journal on Discrete Mathematics 14(3), 299–311 (2001)

12. Dor, D., Zwick, U.: Finding the αnth largest element. Combinatorica 16(1), 41–58
(1996)

13. Dor, D., Zwick, U.: Selecting the median. SIAM Journal on Computing 28(5),
1722–1758 (1999)

14. Floyd, R.W., Rivest, R.L.: Expected time bounds for selection. Communications
of ACM 18(3), 165–172 (1975)

15. Fussenegger, F., Gabow, H.N.: A counting approach to lower bounds for selection
problems. Journal of ACM 26(2), 227–238 (1979)

16. Hadian, A., Sobel, M.: Selecting the t-th largest using binary errorless comparisons.
Combinatorial Theory and Its Applications 4, 585–599 (1969)

17. Hoare, C.A.R.: Algorithm 63 (PARTITION) and algorithm 65 (FIND). Commu-
nications of the ACM 4(7), 321–322 (1961)

https://pantherfile.uwm.edu/kechen/linear_selection_small_group/small_group_experiment/src/
https://pantherfile.uwm.edu/kechen/linear_selection_small_group/small_group_experiment/src/

Select with Groups of 3 or 4 199

18. Hyafil, L.: Bounds for selection. SIAM Journal on Computing 5(1), 109–114 (1976)
19. John, J.W.: A new lower bound for the set-partitioning problem. SIAM Journal

on Computing 17(4), 640–647 (1988)
20. Kirkpatrick, D.G.: A unified lower bound for selection and set partitioning

problems. Journal of ACM 28(1), 150–165 (1981)
21. Kirkpatrick, D.: Closing a long-standing complexity gap for selection: V3(42) = 50.

In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS,
vol. 8066, pp. 61–76. Springer, Heidelberg (2013)

22. Kleinberg, J., Tardos, É.: Algorithm Design. Pearson & Addison-Wesley, Boston
(2006)

23. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3,
2nd edn. Addison-Wesley, Reading (1998)

24. Megiddo, N.: Partitioning with two lines in the plane. Journal of Algorithms 6(3),
430–433 (1985)

25. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

26. Paterson, M.: Progress in selection. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996.
LNCS, vol. 1097, pp. 368–379. Springer, Heidelberg (1996)

27. Schönhage, A., Paterson, M., Pippenger, N.: Finding the median. Journal of
Computer and System Sciences 13(2), 184–199 (1976)

28. Yao, A., Yao, F.: On the average-case complexity of selecting the kth best. SIAM
Journal on Computing 11(3), 428–447 (1982)

29. Yap, C.K.: New upper bounds for selection. Communications of the ACM 19(9),
501–508 (1976)

30. Zwick, U.: Personal communication, September 2014

	Select with Groups of 3 or 4
	1 Introduction
	2 Preliminaries
	3 The Repeated Step Algorithm
	4 The Shifting Target Algorithm
	5 Other Variants
	6 Experimental Results
	References

