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Preface

This volume contains the papers presented at WADS 2015—Algorithms and Data
Structures Symposium—which was held during August 4–6, 2015, in Victoria, BC.
WADS alternates with the Scandinavian Workshop on Algorithms Theory (SWAT),
continuing the tradition of SWAT and WADS starting with SWAT 1988 and WADS
1989.

In response to the call for papers, 148 papers were submitted. From these sub-
missions, the Program Committee selected 51 papers for presentation at WADS 2015.
In addition, invited lectures were given by the following distinguished researchers:
Bernard Chazelle (Princeton), Cyrus Shahabi (USC), and Bodo Manthey (University of
Twente).

On behalf of the Program Committee, we would like to express our appreciation to
the invited speakers, reviewers, and all authors who submitted papers. We would also
like to thank the WADS 2015 sponsors: SAP Inc., Semaphore Solutions Inc., Barrodale
Computing Services Ltd., Semaphore Solutions Inc., the Pacific Institute for the
Mathematical Sciences, and the University of Victoria.

June 2015 Frank Dehne
Jörg-Rüdiger Sack

Ulrike Stege
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Contact Graphs of Circular Arcs
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Abstract. Westudy representations of graphs by contacts of circular arcs,
CCA-representations for short, where the vertices are interior-disjoint cir-
cular arcs in the plane and each edge is realized by an endpoint of one arc
touching the interior of another. A graph is (2, k)-sparse if every s-vertex
subgraph has at most 2s − k edges, and (2, k)-tight if in addition it has
exactly 2n−k edges, where n is the number of vertices. Every graph with a
CCA-representation is planar and (2, 0)-sparse, and it follows from known
results that for k ≥ 3 every (2, k)-sparse graph has a CCA-representation.
Hence the question ofCCA-representability is open for (2, k)-sparse graphs
with 0 ≤ k ≤ 2. We partially answer this question by computing CCA-
representations for several subclasses of planar (2, 0)-sparse graphs. Next,
we study CCA-representations in which each arc has an empty convex hull.
We show that every plane graph of maximum degree 4 has such a represen-
tation, but that finding such a representation for a plane (2, 0)-tight graph
withmaximum degree 5 is NP-complete. Finally, we describe a simple algo-
rithm for representing plane (2, 0)-sparse graphs with wedges, where each
vertex is represented with a sequence of two circular arcs (straight-line
segments).

1 Introduction

In a contact representation of a planar graph, the vertices are represented by
non-overlapping geometric objects such as circles, polygons, or line segments and
the edges are realized by a prespecified type of contact between these objects.
Contact graphs of circles, made famous by the Koebe–Andreev–Thurston circle
packing theorem [16], have a large number of applications in graph drawing (see
e.g. [2] for many references) and this success has motivated the study of many

c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 1–13, 2015.
DOI: 10.1007/978-3-319-21840-3 1
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Fig. 1. CCA representations of a multigraph (a) and two simple graphs (b)–(c)

other contact representations [9,12]. The special cases of contact representations
with curves and line segments are of particular interest [5,8,15]. We consider a
novel type of contact representation where a vertex is represented by a circular
arc, and an edge corresponds to an endpoint of one arc touching an interior
point of another (Fig. 1). Tangencies between interior points of arcs do not
count as contacts as this would trivialize the problem. These representations
are a generalization of the contacts of straight-line segments (which are circular
arcs with infinite radius) and we call them contacts of circular arcs or CCA-
representations for short.

Every k-vertex induced subgraph of a contact graph of curves in the plane has
at most 2k edges, because every edge uses up one of the curve endpoints. This
motivates us to study classes of sparse graphs defined by limits on the numbers
of edges in their subgraphs. A graph G = (V,E) is said to be (p, k)-sparse [17] if
for every W ⊆ V we have |E[W ]| ≤ max{p|W | − k, |W | − 1}; it is (p, k)-tight if
in addition |E| = p|V | − k. For example, (1, 1)-sparse graphs are exactly forests,
while (1, 1)-tight graphs are trees, and the observation above can be rephrased
as stating that all graphs representable by circular arcs are (2, 0)-sparse. This
definition makes sense only for k < 2p: for larger k, each two vertices would
induce no edges and the graph would be empty. However, we may extend the
definition by restricting |W | to be larger than two. Thus, we define a graph to
be (2, 4)-sparse if every s-vertex subgraph with s ≥ 3 has at most 2s − 4 edges,
and (2, 4)-tight if in addition it has exactly 2|V | − 4 edges. A planar graph is
(2, 4)-sparse if and only if it is triangle-free and (2, 4)-tight if and only if it is a
maximal bipartite planar graph. The same idea can be extended to larger k by
restricting |W | to be even greater, but in the remainder we consider only planar
(2, k)-sparse and planar (2, k)-tight graphs for k ∈ {0, 1, 2, 3, 4}.

A graph admits a curve contact representation if and only if it is planar
(because the curves do not cross) and (2, 0)-sparse (each subset of s curves has
at most 2s contacts) [15]. On the other hand, a planar graph has a contact
representation with line segments if and only if it is (2, 3)-sparse [1]. Hence,
natural questions arise: What are the simplest curves that can represent all pla-
nar (2, 0)-sparse graphs? Perhaps the simplest non-straight curves are circular
arcs, so how powerful are circular arcs in terms of contact representations? In
particular, does every planar (2, k)-sparse graph have a CCA-representation for
k ∈ {0, 1, 2}? We partially answer these questions by computing circular-arc
contact representation for several subclasses of planar (2, 0)-sparse graphs, and
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by finding a (2, 0)-sparse plane multigraph that does not have such a represen-
tation.

As another contribution, we resolve an open problem by de Fraysseix and de
Mendez [8]. They proved that any contact representation with curves is home-
omorphic to one with polylines composed of three segments, and asked if two
segments per polyline is sufficient. We affirmatively answer the question.

Preliminaries. In order to state our results, we need some structural infor-
mation about sparse planar graphs. The proofs of the following two auxiliary
lemmas are in the full version of the paper [3].

Lemma 1 (Augmentations)

• For every integer k ∈ {0, 1, 2, 3}, every plane (2, k)-sparse graph is a spanning
subgraph of some plane (2, k)-tight graph.

• A (2, 4)-sparse graph forms a subgraph of a (2, 4)-tight graph if and only if it
is bipartite. In particular, the 5-cycle is (2, 4)-sparse but not a subgraph of a
(2, 4)-tight graph.

Lemma 2 (Plane Duals)

• For every k ∈ {0, 1} and every integer � ∈ Z, there is a plane (2, k)-tight graph
whose dual is not (2, �)-sparse.

• For every k ∈ {2, 3, 4}, every plane (2, k)-tight graph has a (2, 4−k)-tight dual.

In particular, duality is an involution on the plane (2, 2)-tight graphs, so
every plane (2, 2)-tight graph is the dual of another plane (2, 2)-tight graph.
However, for k ∈ {3, 4}, the duals of plane (2, k)-tight graphs form a proper
subclass of all plane (2, 4 − k)-tight graphs. In fact, we prove that the dual of
every plane (2, 3)-tight graph is a co-Laman graph (a graph where |E| = 2|V |−1
and E[W ] ≤ 2|W | − 2 for all W � V ; see Fekete et al. [11]). The duals of the
(2, 4)-tight graph are exactly the 4-regular plane graphs.

New Results. Our main results are:

Theorem 1 (CCA-Representations)

• Every plane (2, 2)-sparse graph admits a CCA-representation.
• Every plane co-Laman multigraph admits a CCA-representation.
• Every plane graph with maximum degree 4 admits a CCA-representation.
• There is a plane (2, 0)-tight multigraph with no CCA-representation.

The theorem above directly implies the following corollary.

Corollary 1. For every k ∈ {0, 1, 2, 3, 4} and every plane (2, k)-tight graph G,
the plane dual G∗ of G has a contact representation with circular arcs, whenever
G∗ is (2, 4 − k)-tight.
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We use two different approaches to construct CCA representations. The first
approach is a constructive one, and it can be used for plane (2, 2)-tight graphs
and plane co-Laman graphs. We find a special construction sequence for each
graph in these two classes (similar to the Henneberg moves [14] for (2, 3)-tight
graphs, also see [11,21,23]), and we show that this construction sequence can
be modified into a construction sequence for a CCA-representation. The second
approach is structural. For some planar (2, 0)-sparse graphs, in particular for all
graphs of maximum degree 4, we can obtain a stronger form of contact repre-
sentation where the convex hull of each arc is empty. For these graphs we define
the notion of a good 2-orientation, and use a circle packing construction to find
this stronger CCA-representation from the good orientation. However, we show

Theorem 2. Testing whether a planar (2, 0)-tight graph has a contact represen-
tation where the convex hull of each arc is empty is NP-complete, even for graphs
of maximum degree 5.

Finally we consider contact representation with wedges (that is, polyline
segments with at most one bend). A wedge can be viewed as a sequence of
two circular arcs (straight-line segments). It is not difficult to prove that every
planar (2, 0)-sparse graph has a contact representation with polylines composed
of three segments [8]. On the other hand, as pointed out earlier, one segment
per polyline is not sufficient. This raises a question (asked in [8]) whether every
planar (2, 0)-sparse graph has a contact representation with polylines composed
of two segments. We resolve the question by showing that every plane (2, 0)-
sparse graph has a contact representation with wedges.

Theorem 3. Every plane (2, 0)-sparse graph has a contact representation where
each vertex is represented by a wedge.

2 Contact Representations from Henneberg Moves

Here we prove the existence of CCA-representations for (2, 2)-sparse and co-
Laman graphs, the first two cases of Theorem 1. We defer the degree-4 and
(2, 0)-tight cases to Section 3.

We begin by describing a set of moves which can be applied to a plane
(2, k)-tight graph, in order to obtain a larger plane (2, k)-tight graph (with more
vertices), where k ∈ {0, 1, 2, 3, 4} depends on the type of move. Afterwards we
show that certain subsets of these moves can be used to generate all plane (2, k)-
tight graphs of a certain class of graphs, starting from one concrete base graph.
All but one of these moves are well-known and have already successfully been
used for this purpose; see Fig. 2.

Definition 1 (Moves). Let G = (V,E) be a plane (2, k)-graph for some k ∈
{0, 1, 2, 3, 4}.
The Henneberg 1 move H1. For a face f of G and two distinct vertices u, v

on f , introduce a new vertex x inside f and add edges from x to u and v.
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Fig. 2. The moves H1, H2, E3, V4 and V 2
2

The Henneberg 2 move H2. For a face f of G and an edge e = (u, v) on f
and a third vertex w �= u, v on f , introduce a new vertex x inside f , add
edges from x to u, v and w, and remove the edge e.

The edge-to-K3 move E3. For an edge e = (u, v) of G and a face f incident
to v, replace v by two vertices v1, v2 connected by an edge (v1, v2), and add
edges from v1 (v2) to each neighbor of v that lies clockwise (counterclockwise)
between f and e (included) around v.

The vertex-to-K4 move V4. For a vertex u of G and three (not necessarily
distinct) faces f0, f1, f2 incident to u, appearing in that clockwise order
around u, replace u by a plane K4 with outer vertices v0, v1, v2, and add
edges from vi to every neighbor of u that lies clockwise between fi and fi+1

around u, i = 0, 1, 2, where indices are taken modulo 3.
The vertex-to-K2

2 move V 2
2 . For a vertex u of G and two (not necessarily

distinct) faces f0, f1 at u, replace u by two vertices v1, v2 connected by two
parallel edges, and add edges from vi to every neighbor of u that lies clockwise
between fi and fi+1 around u, i = 0, 1, where indices are taken modulo 2.

Henneberg moves H1 and H2 were introduced by Henneberg [14], moves E3

and V 2
2 were defined by Whiteley [23], E3 also appears in [11] under the name

vertex-splitting, and the move V4 was introduced by Nixon and Owen [21].
Part (i) of Lemma 3 is due to Henneberg [14], see also Haas et al. [13].

Lemma 3. Each of the following holds.

(i) All plane (2, 3)-tight graphs can be generated by H1 and H2 moves starting
from a triangle [13,14].

(ii) All duals of plane (2, 3)-tight graphs can be generated by E3 and V 2
2 moves

starting from three parallel edges.
(iii) All plane (2, 2)-tight graphs can be generated by E3 and V4 moves starting

from an isolated vertex.

In order to prove (iii) we need one more concept from the literature. A Laman-
plus-one graph is a simple graph G with an edge e = uv, so that deg(u) ≥ 2
and deg(v) ≥ 2, and G − e is a (2, 3)-tight (Laman) graph. Laman-plus-one
graphs form a proper subclass of (2, 2)-tight graphs. Fekete et al. [11] claimed
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the following without a proof on generating Laman-plus-one graphs by E3 moves
starting from K4. For the sake of completeness we prove the claim in [3].

Lemma 4 (Fekete et al. [11]). Every plane Laman-plus-one graph can be
generated by E3 moves starting from K4.

For (2, 2)-tight graphs that are not Laman-plus-one, Nixon [20] proved:

Lemma 5 (Nixon [20]). Let G be a (2, 2)-tight graph with at least one edge.
Then G is a Laman-plus-one graph or there exists a proper (2, 2)-tight subgraph
H of G such that no vertex of G − H is adjacent to more than one vertex in H.

For a subgraph H of a graph G, let V (H) and E(H) be the vertex set and
the edge set of H. Denote by G − H the subgraph of G induced by the vertices
V (G) \ V (H). For two subgraphs H1 and H2 of G, let H1 ∪ H2 be the subgraph
H = (V (H1)∪V (H2), E(H1)∪E(H2)). Let E(H1,H2) be the set of edges between
the vertices of H1 and H2. The following Lemma is proved in the full paper [3].

Lemma 6. Let G be a (2, k)-tight graph and let H be a proper (2, k)-tight sub-
graph of G, for k > 0. Let C and D be a partition of the vertices of G − H
such that there is no edge between vertices in C and vertices in D. Then both
the graphs induced by the vertices of H ∪ C and H ∪ D are also (2, k)-tight.

We are now ready to prove Lemma 3.

Proof. [Proof of Lemma 3] Part (i), that every plane Laman graph can be gener-
ated by H1 and H2 moves starting from a triangle, is already known [13,14].

Now, if G∗ is the plane dual of a plane Laman graph G, then we follow the
construction sequence of G with H1 and H2 moves in the dual and observe that
this gives a construction sequence of G∗ with V 2

2 and E3 moves, starting with
three parallel edges. This proves (ii).

Let G be a plane (2, 2)-tight graph. We prove by induction on |V (G)|, that
G can be generated by E3 and V4 moves, starting with a vertex. If |V (G)| = 1,
this clearly holds. Assume that |V (G)| ≥ 2. If G is Laman-plus-one, it can be
obtained from a single vertex by a single V4 move, followed by a number of E3

moves, by Lemma 4, and the claim follows. Otherwise, by Lemma 5, there exists
a proper (2, 2)-tight subgraph H of G such that no vertex of G−H is adjacent to
more than one vertex in H. Furthermore, since G is (2, 2)-tight, H is connected.
Since H is a proper subgraph of G, assume without loss of generality that the
outer face of H is not vertex-empty in G (otherwise at least one internal face is
not vertex-empty and a similar reasoning holds). Let H ′ be the subgraph of G
consisting of H and all the vertices inside the outer boundary of H. By Lemma 6,
H ′ is also a planar (2, 2)-tight graph, which is a proper subgraph of G. Thus
by the induction hypothesis, H ′ can be constructed from a single vertex by E3

and V4 moves. Let Π1 denote this sequence of these two moves. The graph G′

obtained from G by merging H ′ into a single vertex is simple and planar (2, 2)-
tight. By the induction hypothesis, G′ can be obtained from a single vertex by
a sequence Π2 of E3 and V4 moves. The sequence Π2 followed by the sequence
Π1 generates G from a vertex. �	
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p1

p2

p3

p1

p2

p3

s1

s2

s3

s1

s2

s3

Fig. 3. Performing a V4 move in a CCA-representation

Lemma 7. Let G be a plane graph with a CCA-representation and G′ be a
plane graph obtained from G by a V4, E3 or V 2

2 move. Then G′ admits a CCA-
representation as well.

Proof. Let G′ be obtained from G by a V4, E3 or V 2
2 move. In each case, we

show how to locally modify a given CCA-representation of G into a CCA-
representation of G′. All the cases are similar, so we restrict ourselves to a careful
description of the first case only, and provide figures illustrating the remaining
cases.

Let v be the vertex in G and {v1, v2, v3, v4} be the four vertices in G′ that
replace v. Let Si = NG′(vi) \ {v1, v2, v3, v4}, i = 1, 2, 3, 4. By definition, we have
Si ∩ Sj = ∅ for i �= j, S4 = ∅, S1 ∪ S2 ∪ S3 = NG(v) and each of S1, S2, S3 forms
a subset of NG(v) that appears consecutively in the clockwise order around v
in G. Assume without loss of generality that the circular arc cv for v in the
given CCA-representation of G is a straight segment. The boundary of cv can
be partitioned into three consecutive pieces p1, p2, p3, so that pi contains exactly
the contacts corresponding to vertices in Si, i = 1, 2, 3; see Fig. 3.

From the pieces p1, p2, p3, we define straight segments s1, s2, s3 parallel to cv
so that each si intersects exactly the circular arcs for vertices in Si, i = 1, 2, 3.
Then, each si is “curved” into a circular arc, so that s1, s2, s3 form a triangle
with one free endpoint on the inside. We add a fourth circular arc for v4 in the
triangle, containing the free endpoint in its interior and touching the other two
circular arcs with its two endpoints; see Fig. 3.

The cases for E3 move or V 2
2 are similar; the only difference is that we define

only two sets S1, S2 (with S1 ∩S2 = {u} for an E3 move) and consequently only
two pieces p1, p2 and two straight segments s1, s2; see Fig. 4. �	

Finally, we prove the main theorem of this section.

Proof. [Proof of Theorem 1, Cases 1 and 2] Let G be a plane graph. We show
that G admits a CCA-representation, provided it is (2, 2)-sparse or a co-Laman
graph.
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� �

� �

p1

p2

s1

s2

p1
p2

s1
s2

E3 move

E3 move V 2
2 move

V 2
2 move

Fig. 4. Performing an E3 move and V 2
2 move in a CCA-representation

(a) (b)

G1

G2u
v

(c)

Fig. 5. The base case G0 for (a) (2, 2)-tight graphs and (b) co-Laman graphs. (c) A
plane (2, 0)-tight graph that does not admit a CCA-representation.

Case 1, G is (2, 2)-tight. By Lemma 3, G can be generated by E3 and V4

moves, starting from a graph G0 with a single vertex. Since G0 admits a CCA-
representation (Fig. 5(a)), by Lemma 7, G also has a CCA-representation.
Case 2, G is co-Laman. By Lemma 3, G can be generated by E3 and V 2

2

moves, starting from a graph G0 with two vertices and three edges. Since G0 has
a CCA-representation (Fig. 5(b)), by Lemma 7, so does G. �	

3 Good Orientations and One-Sided Representations

Next we consider the third case of Theorem 1, graphs of maximum degree four.
An orientation of a graph G is a directed graph whose underlying undirected

graph is G. We call it a 2-orientation if every vertex has out-degree exactly 2,
and a 2−-orientation if every vertex has out-degree at most 2. An orientation of
G is called good if, for every vertex v of G, all the outgoing edges (equivalently
incoming edges) incident to v are consecutive in the circular ordering of the
edges around v. A CCA-representation is called one-sided if, for each arc a, the
endpoints of other arcs that touch a all do so on one side of a. This analogous
to the concept of one-sided segment contact representations [10,15]. A CCA-
representation is interior-disjoint if each arc has nonzero curvature and the
interior of the convex hull of each arc is disjoint from all the other arcs.

Lemma 8. A simple plane graph with a good 2−-orientation has an interior-
disjoint CCA-representation.
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�

(a) (b)

Fig. 6. (a) From a contact representation with disks and a good 2−-orientation to a
CCA-representation. (b) A planar Laman graph with the minimum degree 3, that has
no good 2-orientation.

Proof. Consider a plane graph G with a good 2−-orientation. As with any plane
graph, G has a contact representation with disks [16]. For each vertex v of G
with out-deg(v) = 2, the two outgoing edges of v define two points, p and p′,
on the circle C(v) representing v. If out-deg(v) = 1, the outgoing edge defines
p and we choose p′ ∈ C(v) very close to it. If out-deg(v) = 0 we choose p and
p′ distinct from all contacts of C(v) and close to each other. In both cases the
two points, p and p′, split C(v) into two circular arcs. Since the 2−-orientation
is good, one of these two arcs contains none of the contacts of C(v) with other
disks. We represent each vertex v by the other circular arc defined by C(v), p
and p′, which contains all the contacts of C(v); see Fig. 6(a). �	
Lemma 9. Every plane graph G with maximum degree 4 has a good 2−-
orientation.

Proof. First note that vertices of degree strictly less than 4 are harmless, as long
as they have at most two outgoing edges: their outgoing edges (if any) cannot be
non-consecutive. In order to find a 2−-orientation of G in which every vertex of
degree 4 has consecutive outgoing edges, we define a number of walks in G. Start
with any edge and define a walk so that, when entering some vertex v of degree 4
via edge e the walk always continues with the edge e′ that lies opposite of e at v.
At a degree-3 vertex that has not already been made part of one of these walks,
continue the walk with an arbitrary incident edge, and otherwise stop. Orienting
every edge in this walk consistently and starting another iteration with any so-
far unoriented edge (if any exists), eventually gives a good 2−-orientation of G.

�	
Not every planar (2, 0)-sparse graph has a good orientation; a counterexample

is easy to construct by adding sufficiently many degree-2 vertices. Moreover,
there is a counterexample with minimum degree 3; see Fig. 6(b). Indeed, the
bold subgraph (induced by the black vertices) has five edges and four vertices.
Thus, in any 2−-orientation, at least one black vertex has two bold outgoing
edges. At this vertex, all light edges are incoming, breaking up its outgoing
edges.

Lemma 10. For a simple plane graph G, the following statements are equiva-
lent.
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(1) G has a good 2−-orientation
(2) G has a one-sided CCA-representation
(3) G has an interior-disjoint CCA-representation

Proof. The implication (3) ⇒ (2) is obvious (every interior-disjoint representation
is one-sided) and the (1) ⇒ (3) is Lemma 8. It remains to prove that every graph
with a one-sided CCA-representation has a good 2−-orientation. But each vertex
of the 2−-orientation derived from a CCA-representation has incoming edges on
the two sides of the corresponding arc separated by outgoing edges at the two
arc endpoints; in a one-sided representation, one set of incoming edges is empty
and cannot separate the outgoing edges. �	
Proof. [Proof of Theorem 1, Cases 3, 4] Let G be a plane graph with the maximum
degree 4. By Lemma 9, G admits a good 2−-orientation; and hence by Lemma 8
G admits a CCA-representation. This completes Case 3.

A plane (2, 0)-tight multigraph with no CCA-representation is shown in
Fig. 5(c). It has two vertices u, v joined by two parallel edges e, e′, and two
plane (2, 0)-tight subgraphs G1 and G2. G1 lies in the unbounded region and
G2 lies in the bounded region defined by e, e′, and u and v are connected by
an edge to a vertex in G1 and G2, respectively. G is plane and (2, 0)-tight and
admits no CCA-representation since two touching circular arcs have their free
ends either both in the bounded or both in the unbounded region defined by
the closed created curve (Fig. 5(c)). Note that whether every planar (2, 0)-tight
multigraph has a plane embedding that has a CCA-representation is an open
question. �	

As noted in the introduction, Case 3 of the proof of Theorem 1 always con-
structs an interior-disjoint CCA-representation for graphs of maximum degree 4.
We now show that finding such representations without the degree constraint is
hard. We only provide a sketch here; the details are in [3].

(a) wire (b) splitter

true false

false

(c) clause

Fig. 7. The gadgets used in the reduction; gray
edges show how adjacent gadgets are connected

Proof Sketch.[Theorem 2] It is suf-
ficient to prove that finding a
good representation of a (2, 0)-
tight graph is NP-complete. We
first prove this for plane multi-
graphs. We reduce from the
known NP-complete problem Pos-
itive Planar 1-in-3SAT [18]. Our
reduction uses wire, splitter, and
clause gadgets (Fig. 7) based
on the fact that, for a good 2-
orientation at a degree-4 vertex,
each incoming edge is opposite to an outgoing edge and vice versa. Each variable
of the 3SAT formula is a wire gadget, that is closed to a circle with doubled edges.
There are two good 2-orientations of this circle, encoding the truth value of the
variable. A splitter gadget with a short piece of wire propagate this signal to the
clause gadgets, representing clauses. Due to the degree-4 vertices, there is only
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one good 2-orientation for the splitter that extends a “wire signal”. The degree-3
vertex in the clause gadget verifies that exactly two of the attached wires carry
a false signal. Finally we convert this multigraph to a (2, 0)-tight simple planar
graph, keeping the existence of a good 2-orientation; see [3] for details. �	

4 Contact Representations with Wedges

A wedge is a polyline segment with at most one bend (thus two circular arcs). We
show that plane (2, 0)-sparse graphs have a contact representations with wedges.

Theorem 3. Every plane (2, 0)-sparse graph has a contact representation where
each vertex is represented by a wedge.

a

b c

d

ef

a

b c

d

ef

(a) (b)

Fig. 8. (a) A straight-line drawing and a
2-orientation of a (2, 0)-sparse graph G,
(b) a contact representation of G with
wedges.

Proof. A plane (2, 0)-sparse graph G
has a 2−-orientation [4,6,19]. Con-
sider a straight-line drawing of G.
For each vertex v, the wedge for v is
the union of the line segments rep-
resenting the outgoing edges from
v. Here all the contacts representing
the incoming edges for a vertex is at
the bend-point of the wedge, but a
small perturbation of the represen-
tation is sufficient to get rid of this
degeneracy; see Fig. 8. Indeed, one
can slide the endpoint of every wedge a bit along the wedge it touches, ensuring
that the endpoints of wedges with smaller incoming angle slide a bit further. �	

5 Conclusion and Open Questions

We presented new results about contact representations of graphs with circular
arcs. Although every graph with such a contact representation is planar and
(2, 0)-sparse, we provided a (2, 0)-tight plane multigraph that does not admit
such a representation. On the other hand, we identified several subclasses of
plane (2, 0)-sparse graphs that have CCA representations. The natural question
remains open: does every simple planar (2, 0)-sparse graph have a circular-arc
contact representation, if we allow changing the embedding?

A circular-arc contact representation Γ for a (2, 0)-tight graph G defines
a 3-regular skeleton graph [22], where the points of contact are vertices and
arcs between contacts are edges (Fig. 1). Each vertex of G with degree d ≥ 3
corresponds to a path of d − 2 vertices in Γ along one circular arc. Thus one
way to find a circular-arc contact representation for a plane (2, 0)-tight graph
G is to find a 3-regular graph by splitting each vertex of degree d > 3 into
(d − 2) degree-3 vertices (each choice of splitting corresponds to a different 2−-
orientation), and align the path associated with each vertex of G into a circular
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arc. Given a 3-regular graph with a path-cover, to find a representation with
each path aligned as a circular arc is related to the stretchability question [7],
which is still open.

We also showed that every plane (2, 0)-sparse graph has a contact representa-
tion with polyline segments with a single bend (wedges). In this context, several
questions seem interesting: does every (2, 0)-sparse graph admit a contact repre-
sentation with equilateral wedges (i.e., wedges with equal-length segments)? Can
we bound the smallest angle at the corner of the wedges (to say, 45◦)?
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Abstract. We study contact representations of non-planar graphs in
which vertices are represented by axis-aligned polyhedra in 3D and edges
are realized by non-zero area common boundaries between corresponding
polyhedra. We present a liner-time algorithm constructing a representa-
tion of a 3-connected planar graph, its dual, and the vertex-face incidence
graph with 3D boxes. We then investigate contact representations of 1-
planar graphs. We first prove that optimal 1-planar graphs without sep-
arating 4-cycles admit a contact representation with 3D boxes. However,
since not every optimal 1-planar graph can be represented in this way, we
also consider contact representations with the next simplest axis-aligned
3D object, L-shaped polyhedra. We provide a quadratic-time algorithm
for representing optimal 1-planar graphs with L-shapes.

1 Introduction

Graphs are often used to describe relationships between objects, and graph
embedding techniques allow us to visualize such relationships. There are com-
pelling theoretical and practical reasons to study contact representations of
graphs, where vertices are interior-disjoint geometric objects and edges corre-
spond to pairs of objects touching in some specified fashion. In practice, 2D
contact representations with rectangles, circles, and polygons of low complexity
are intuitive, as they provide the viewer with the familiar metaphor of geograph-
ical maps. Such representations are preferred in some contexts over the standard
node-link representations for displaying relational information [9].

A large body of work considers representing graphs by contacts of simple
curves or polygons in 2D. Graphs that can be represented in this way are planar
and Koebe’s 1936 theorem established that all planar graphs can be represented
by touching disks [18]. Every planar graph also has a contact representation with
triangles [15]. Curves, line-segments, and L-shapes have also been used [14,17].
In particular, it is known that all planar bipartite graphs can be represented
by contacts of axis-aligned segments [10]. For non-planar graphs such contact
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 14–27, 2015.
DOI: 10.1007/978-3-319-21840-3 2
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(a) (b) (c) (d)

Fig. 1. (a) A plane graph K4 and its dual; primal-dual contact representations of the
graph with (b) circles and (c) triangles. (d) The primal-dual box-contact representation
of K4 with dual vertices shown dashed. The outer box (shell) contains all other boxes.

representations in 2D are impossible. In a natural generalization for non-planar
graphs, vertices can be represented with 3D-polyhedra. For example, represen-
tations of complete graphs and complete bipartite graphs using spheres and
cylinders have been considered [5,16]. Overall, very little is known about such
contact representations of non-planar graphs.

As a first step towards representing non-planar graphs, we consider primal-
dual contact representations, in which a plane graph (a planar graph with a fixed
planar embedding), its dual graph, and the face-vertex incidence graph are all
represented simultaneously. More formally, in such a representation vertices and
faces are represented by some geometric objects so that:

(i) the objects for the vertices are interior-disjoint and induce a contact rep-
resentation for the primal graph;

(ii) the objects for the faces are interior-disjoint except for the object for the
outer face, which contains all the objects for the internal faces, and together
they induce a contact representation of the dual graph;

(iii) the objects for a vertex v and a face f intersect if and only if v and f are
incident.

Primal-dual representations of plane graphs have been studied in 2D. Every
3-connected plane graph has a primal-dual representation with circles [2] and
triangles [15]; see Fig. 1(a)–(c). Our first result in this paper is an analogous
primal-dual representation using axis-aligned 3D boxes. While it is known that
every planar graph has a contact representation with 3D boxes [7,12,23], Theo-
rem 1 strengthens the result; see Fig. 1d.

Theorem 1. Every 3-connected plane graph G = (V,E) admits a proper primal-
dual box-contact representation in 3D and it can be computed in O(|V |) time.

Before proving this theorem we point out two important differences between
our result for box-contact representation and the earlier primal-dual represen-
tations for circles and triangles [2,15]. First, the existing constructions induce
non-proper (point) contacts, while our contacts are always proper, that is, have
non-zero areas. Second, for a given 3-connected plane graph, it is not always
possible to find a primal-dual representation with circles by a polynomial-time
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algorithm, although it can be constructed numerically by polynomial-time iter-
ative schemes [19]. There is also no known polynomial-time algorithm that com-
putes a primal-dual representation with triangles for a given plane graph. In
contrast, our box-contact representation for an n-vertex graph can be computed
in linear time and realized on the O(n) × O(n) × O(n) grid.

We prove Theorem 1 with a constructive algorithm, which uses the notions of
Schnyder woods and orthogonal surfaces, as defined in [13]. It is known that every
3-connected planar graph induces an orthogonal surface; we will show how to
construct a new contact representation with interior-disjoint boxes from such an
orthogonal surface. Since the orthogonal surfaces for a 3-connected planar graph
and its dual coincide topologically, we show how to geometrically realize the pri-
mal and the dual box-contact representations so that they fit together to realize
all the desired contacts. The construction idea is inspired by recent box-contact
representation algorithms for maximal planar graphs [7]. Note, however, that we
generalize one such algorithm to handle 3-connected planar graphs (rather than
maximal-planar graphs) and show how to combine the primal and dual repre-
sentations. Our method relies on a correspondence between Schnyder woods and
generalized canonical orders for 3-connected planar graphs. Although the corre-
spondence has been claimed in [3], the earlier proof appears to be incomplete.
We provide a complete proof of the claim in the full version of the paper [1].

The representation in Theorem 1 immediately gives box-contact representa-
tions for a special class of non-planar graphs that are formed by the union of
a planar graph, its dual, and the vertex-face incidence graph. The graphs were
called prime by Ringel [20], who studied them in the context of simultaneously
coloring a planar graph and its dual, and are defined as follows. A simple graph
G = (V,E) is said to be 1-planar if it can be drawn on the plane so that each of
its edges crosses at most one other edge. A 1-planar graph has at most 4|V | − 8
edges and it is optimal if it has exactly 4|V | − 8 edges [11], that is, it is the
densest 1-planar graph on the vertex set. An optimal 1-planar graph is called
prime if it has no separating 4-cycles, that is, cycles of length 4 whose removal
disconnects the graph. These optimal 1-planar graphs are exactly the ones that
are 5-connected; alternatively, these graphs can be obtained as the union of a
3-connected simple plane graph, its dual and its vertex-face-incidence graph [21].

As in earlier primal-dual contact representations, it is not possible to have
all vertex-objects interior disjoint. Specifically, one vertex-object (be it triangle,
circle, or box) contains all the others. We call this special box the shell and such
a representation a shelled box-contact representation. Here all the vertices are
represented by 3D boxes, except for one vertex, which is a shell, and the interiors
of all boxes and the exterior of the shell are disjoint. Note that a similar shell
is required in circle-contact and triangle-contact representations; see Fig. 1. The
following is a direct corollary of Theorem 1.
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Corollary 1. Every prime 1-planar graph G has a shelled box-contact represen-
tation in 3D and it can be computed in linear time.

Fig. 2. An
L-shaped polyhe-
dron

One may wonder whether every 1-planar graph admits a
box-contact representation in 3D, but it is easy to see that
there are 1-planar graphs, even as simple as K5, that do not
admit a box-contact representation. Furthermore, there exist
optimal 1-planar graphs (which contain separating 4-cycles)
that have neither a box-contact representation nor a shelled
box-contact representation; see the full paper [1].

Therefore, we consider representations with the next sim-
plest axis-aligned object in 3D, an L-shaped polyhedron or
simply an L, which is an axis-aligned box minus the inter-
section of two axis-aligned half-spaces; see Fig. 2. An L can also be considered
the union of two 3D boxes. Note that the union of two axis-aligned boxes does
not always form an L (e.g., it could form a T-shape); an L is the simplest of all
such polyhedra. We provide a quadratic-time algorithm for representing every
optimal 1-planar graph with L’s (note that a 3D box is simply a degenerate L).

Theorem 2. Every embedded optimal 1-planar graph G = (V,E) has a proper
L-contact representation in 3D and it can be computed in O(|V |2) time.

Our algorithm is similar to a recursive procedure used for constructing box-
contact representations of planar graphs in [12,23]. The basic idea is to find
separating 4-cycles and represent the inner and the outer parts of the graph
induced by the cycles separately. Then these parts are combined to produce
the final representation. Since the separating 4-cycles can be nested inside each
other, the running time of our algorithm is dominated by the time required to
find separating 4-cycles and their nested structure. Unlike the early algorithms
for box-contact representations of planar graphs [12,23], our algorithms produce
proper contacts between the 3D objects (boxes and L’s).

2 Primal-Dual Contact Representations

In this section we prove Theorem 1. Specifically, we describe a linear-time algo-
rithm that computes a box-contact representation for the primal graph and
the dual graph separately and then fits them together to also realize the face-
vertex incidence graph. We first require some concepts about Schnyder woods
and ordered path partitions.

Let G be a 3-connected plane graph with a specified pair of vertices {v1, v2}
and a third vertex v3 /∈ {v1, v2}, such that v1, v2, v3 are all on the outer face in
that counterclockwise order. Add the edge (v1, v2) to the outer face of G (if it
does not already contain it) such that v3 remains on the outerface and call the
augmented graph G′. Let Π = (V1, V2, . . . , VL) be a partition of the vertices of
G such that each Vi induces a path in G; Π is an ordered path partition [3] of G
if the following conditions hold:
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Fig. 3. (a) An ordered path partition and its corresponding Schnyder wood for a 3-
connected graph G. (b) The Schnyder woods for the primal and the dual of G. The
thick solid red, dotted blue and thin solid green edges represent the three trees in the
Schnyder wood.

(1) V1 contains the vertices on the counterclockwise path from v1 to v2 on the
outer cycle; VL = {v3};

(2) for 1 ≤ k ≤ L, the subgraph Gk of G′ induced by the vertices in V1 ∪ . . .∪Vk

is 2-connected and internally 3-connected (that is, removing two internal
vertices of Gk does not disconnect it); hence the outer cycle Ck of Gk is a
simple cycle containing the edge (v1, v2);

(3) for 2 ≤ k ≤ L, each vertex on Ck−1 has at most one neighbor in Vk.
The pair (v1, v2) forms the base-pair for Π and v3 is the head vertex of Π.

For an ordered path partition Π = (V1, V2, . . . , VL) of G, a vertex v of G has
label k if v ∈ Vk. The predecessors of v are the neighbors of v with equal or
smaller labels; the successors of v are the neighbors of v with equal or larger
labels; see Fig. 3a.

Again consider the three specified vertices v1, v2, v3 in that counterclockwise
order on the outer face of G. For i ∈ {1, 2, 3}, add a half-edge from vi reaching
into the outer face. A Schnyder wood [6] is an orientation and a coloring of the
edges of G (including the added half-edges) with the colors 1, 2, 3 satisfying the
following conditions:
(1) every edge e is oriented in either one (uni-directional) or two opposite direc-

tions (bi-directional). The edges are colored so that if e is bi-directional, the
two directions (half-edges) have distinct colors;

(2) the half-edge at vi is directed outwards and colored i;
(3) each vertex v has out-degree exactly one in each color, and the counterclock-

wise order of edges incident to v is: outgoing in color 1, incoming in color
2, outgoing in color 3, incoming in color 1, outgoing in color 2, incoming in
color 3;

(4) there is no interior face whose boundary is a directed cycle in one color.
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These conditions imply that for i ∈ {1, 2, 3}, the edges with color i induce a
tree Ti rooted at vi, where all edges of Ti are directed towards the root. Denote
by T −1

i the tree with all the edges of Ti reversed, and the Schnyder wood by
(T1, T2, T3). Every 3-connected plane graph has a Schnyder wood [4,13]. From a
Schnyder wood of a 3-connected plane graph G, one can construct a dual Schny-
der wood (the Schnyder wood for the dual of G). Consider the dual graph G∗

of G in which the vertex for the outer face of G has been split into three ver-
tices forming a triangle. These three vertices represent the three regions between
pairs of half edges from the outer vertices of G. Then a Schnyder wood for G∗

is formed by orienting and coloring the edges so that between an edge e in G
and its dual e∗ in G∗, all three colors 1, 2, 3 have been used. In particular, if e
is uni-directional in color i, i ∈ {1, 2, 3}, then e∗ is bi-directional in colors i − 1,
i + 1 and vice versa; see Fig. 3b; also see [6].

It is known that an ordered path partition of G defines a Schnyder wood on
G, where the three outgoing edges for each vertex are to its (1) leftmost prede-
cessor, (2) rightmost predecessor, and (3) highest-labeled successor [4,13]. We
call an ordered path partition and the corresponding Schnyder wood computed
this way to be compatible with each other. Badent et al. [3] argue that the con-
verse can also be done, that is, given a Schnyder wood on G, one can compute
an ordered path partition, compatible with the Schnyder wood (and hence, there
is a one-to-one correspondence between the concepts). However, the algorithm
in [3] for converting a Schnyder wood to a compatible ordered path partition is
incomplete, that is, the computed ordered path partition is not always compat-
ible with the Schnyder wood. In the full version of the paper [1] we show such
an example and provide a correction of the algorithm. Hence, we have:

Lemma 1. Let (T1, T2, T3) be a Schnyder wood of a 3-connected plane graph
G with three specified vertices v1, v2, v3 in that counterclockwise order on the
outer face. Then for i ∈ {1, 2, 3}, one can compute in linear time an ordered
path partition Πi compatible with (T1, T2, T3) such that Πi has (vi−1, vi+1) as the
base-pair and vi as the head. Furthermore Πi is consistent with the partial order
defined by T −1

i−1 ∪ T −1
i+1 ∪ Ti.

We denote a connected region in a plane embedding of a graph by a face,
and a side of a 3D shape by a facet. For a 3D box R, call the facet with highest
(lowest) x-coordinate as the x+-facet (x−-facet) of R. The y+-facet, y−-facet,
z+-facet and z−-facet of R are defined similarly. For convenience, we denote the
x+-, x−-, y+-, y−-, z+- and z−-facets of R as the right, left, front, back, top and
bottom facets of R, respectively. We now sketch a proof for Theorem 1; see [1]
for a complete version.

Theorem 1. Every 3-connected plane graph G = (V,E) admits a proper primal-
dual box-contact representation in 3D and it can be computed in O(|V |) time.

Proof sketch. Our algorithm consists of the following steps. Let v1, v2 and v3
be three vertices on the outer face of G in the counterclockwise order. First, we
create a Schnyder wood (T1, T2, T3) such that for i ∈ {1, 2, 3}, Ti is rooted at
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Fig. 4. Box-contact representation (a) for the graph in Fig. 3 with its primal-dual
Schnyder wood (b) and the associated orthogonal surface (c). The thick solid red,
dotted blue and thin solid green edges represent the three trees in the Schnyder wood.

vi. Then using Lemma 1, we compute three ordered path partitions compatible
with (T1, T2, T3). Next the ordered path partitions are used to calculate the coor-
dinates of 3D boxes that form a contact representation for the primal graph G;
a number of local modifications is performed to obtain proper contacts. Finally,
the same steps are applied, starting with the dual Schnyder wood of (T1, T2, T3),
to construct the representation of the dual graph G∗. These two representations
induce the same orthogonal surfaces [13]; hence, they can be combined together
to form a primal-dual box-contact representation.

Note that a similar idea is used in [7] to compute a box-contact representation
for a maximal planar graph. We strengthen the result by (1) generalizing the
method to 3-connected planar graphs and (2) computing an ordered path par-
tition compatible with a Schnyder wood. The latter guarantees the fit between
the primal and the dual.

We sketch the steps for computing the primal representation from a Schnyder
wood (T1, T2, T3); the computation for the dual representation is analogous. By
Lemma 1, for i ∈ {1, 2, 3}, one can compute a compatible ordered path partition
with the base-pair (vi−1, vi+1) and head vi, consistent with the partial order
defined by T −1

i−1 ∪ T −1
i+1 ∪ Ti. Denote by <X , <Y and <Z the three ordered path

partitions compatible with (T1, T2, T3), that are consistent with T −1
3 ∪T −1

2 ∪T1,
T −1
1 ∪ T −1

3 ∪ T2, and T −1
2 ∪ T −1

1 ∪ T3, respectively. For a vertex u, let xM (u),
yM (u), and zM (u) be the labels of u in the ordered path partitions <X , <Y , and
<Z , respectively. Define xm(u) = xM (b), ym(u) = yM (g) and zm(u) = zM (r),
where b, g and r are the parents of u in T1, T2 and T3, respectively, when the
parents are defined. For each special vertex vi, i ∈ {1, 2, 3}, the parent is not
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defined in Ti. Assign xm(v1) = 0, ym(v2) = 0 and zm(v3) = 0. For each vertex
u, define a box R(u) as [xM (u), xm(u)] × [yM (u), ym(u)] × [zM (u), zm(u)].

The boxes defined above yield a box-contact representation for G. Similarly,
a representation for the dual graph G∗ is computed. These representations can
be combined together; see [1] for details. Finally, the three boxes for the three
outer vertices of G∗ are replaced by a single shell-box, which forms the boundary
of the entire representation.

The algorithm runs in O(|V |) time since computing the primal and the dual
Schnyder woods [13], computing ordered path partitions from Schnyder woods
(Lemma 1), and the computation of the coordinates all can be accomplished in
linear time. ��

3 L-Contact Representation of Optimal 1-Planar Graphs

In this section we prove Corollary 1 and Theorem 2. Throughout, let G be an
optimal 1-planar graph with a fixed 1-planar embedding. An edge is crossing
if it crosses another edge, and non-crossing otherwise. A cycle in a connected
graph is separating if removing it disconnects the graph. We list some properties
of optimal 1-planar graphs.

Lemma 2 (Brinkmann et al. [8], Suzuki [22])

– The subgraph of an embedded optimal 1-planar graph G induced by the non-
crossing edges is a plane quadrangulation Q with bipartition classes W , B.

– The induced subgraphs GW = G[W ] and GB = G[B] on white and black
vertices, respectively, are planar and dual to each other.

– GB and GW are 3-connected if and only if Q has no separating 4-cycles.
– There exists a simple optimal 1-planar graph with quadrangulation Q if and

only if Q is 3-connected.

An optimal 1-planar graph is prime if its quadrangulation has no separating
4-cycle.

Corollary 1. Every prime 1-planar graph G has a shelled box-contact represen-
tation in 3D and it can be computed in linear time.

Proof. Let Q be the quadrangulation of G and let B, W be the bipartition classes
of Q. By Lemma 2, GB = G[B] and GW = G[W ] are 3-connected planar and
dual to each other. By Theorem 1, a primal-dual box-contact representation Γ
of GB can be computed in linear time. We claim that Γ , with the outer face of
GB as bounding box, is a contact representation of G. Indeed, the edges of G
are partitioned into GB , GW , Q. Each edge in GB is realized by contact of two
“primal” boxes, each edge in GW by contact of “dual” boxes, and each edge in
Q by contact of a primal and a dual box. ��
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(a) (b) (c)

Fig. 5. (a) An embedded optimal 1-planar graph, its quadrangulation Q (bold) and
the partition into white and black vertices. (b) The graph Gout produced by removing
the interior of separating 4-cycle C. (c) The graph Gin(C) comprised of the separating
4-cycle and its interior.

Next, assume that G is any (not necessarily prime) optimal 1-planar graph.
To find an L-representation for G, we find all separating 4-cycles in G, replace
their interiors by a pair of crossing edges and construct an L-representation Γout

of the obtained prime 1-planar graph Gout from a shelled box-contact representa-
tion given by Corollary 1. We ensure that Γout has some “available space” where
we place the L-representations for the removed subgraph in each separating 4-
cycle, which we construct recursively. We remark that similar procedures were
used, e.g., for maximal planar graphs and their separating triangles [12,23]. A
separating 4-cycle is maximal if its interior is inclusion-wise maximal. A 1-planar
graph with at least 5 vertices is almost-optimal if its non-crossing edges induce
a quadrangulation Q and inside each face of Q, other than the outer face, there
is a pair of crossing edges.

Algorithm. L-Contact(optimal 1-planar graph G)
1. Find all separating 4-cycles in the quadrangulation Q of G
2. if some inner vertex w of Q is adjacent to two outer vertices of Q
3. then C = the two 4-cycles containing w and 3 outer vertices of Q. (Case 1)

else C = set of all maximal separating 4-cycles in Q. (Case 2)
4. Take the optimal 1-planar (multi)graph Gout obtained from G by replacing

for each 4-cycle C ∈ C all vertices strictly inside C by a pair of crossing
edges; see Fig. 5b.

5. Compute an L-representation of Gout with “some space” at each 4-cycle
C ∈ C. In Case 2, this is based on the box-contact representation of Gout in
Corollary 1.

6. For each C ∈ C, take the almost-optimal 1-planar subgraph Gin(C) induced
by C and all vertices inside C; see Fig. 5c. Recursively compute an L-
representation of Gin(C) and insert into the corresponding “space” in the
L-representation of Gout.

Let us formalize the idea of “available space” mentioned in steps 5 and 6. Let
Γ be any L-representation of some graph G and C be a 4-cycle in G. A frame
for C is a 3-dimensional axis-aligned box F together with an injective mapping
of V (C) onto the facets of F such that the two facets without a preimage are
adjacent. Every frame has one of two possible types. If two opposite vertices of
C are mapped onto two opposite facets of F , then F has type (⊥−||); otherwise,
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Fig. 6. (a) Illustration for Lemma 3. (b) A frame of type (⊥−||) (left) and of type
(⊥−⊥) (right).

F has type (⊥−⊥); see Fig. 6b. Finally, for an almost-optimal 1-planar graph G
with corresponding quadrangulation Q and outer face C, and a given frame F
for C, we say that an L-representation Γ of G fits into F if replacing the boxes
or L’s for the vertices in C by the corresponding facets of F yields a proper
contact representation of G − E(G[C]) that is strictly contained in F .

Before we prove Theorem 2, we need one last lemma addressing the structure
of maximal separating 4-cycles in almost-optimal 1-planar graphs.

Lemma 3. Let G be an almost-optimal 1-planar graph with corresponding quad-
rangulation Q. Then all maximal separating 4-cycles of Q are interior-disjoint,
unless two inner vertices w and w′ of Q are adjacent to two outer vertices of Q.

Proof. When two maximal separating 4-cycles C and C ′ are not interior-disjoint,
then some vertex from C lies strictly inside C ′ and some vertex from C ′ lies
strictly inside C. It follows that V (C) ∩ V (C ′) is a pair x, y of two vertices
from the same bipartition class of Q, say x, y ∈ B, and that some v ∈ V (C)
lies strictly outside C ′ and some v′ ∈ V (C ′) lies strictly outside C. We have
v, v′ ∈ W and that C∗ = (x, v, y, v′) is a 4-cycle whose interior strictly contains
C and C ′. By the maximality of C and C ′, C∗ is not separating. Since the
vertices w ∈ V (C) \ V (C∗) and w′ ∈ V (C ′) \ V (C∗) lie strictly inside C∗, C∗ is
the outer cycle of Q and w,w′ are the desired vertices. ��
Theorem 2. Every embedded optimal 1-planar graph G = (V,E) has a proper
L-contact representation in 3D and it can be computed in O(|V |2) time.

Proof. Let Q be the quadrangulation of G with outer cycle Cout. Following
algorithm L-Contact, we distinguish two cases. If (Case 1) some inner vertex
w of Q has two neighbors on Cout we let C be the set of the two 4-cycles in Q
that consist of w and 3 vertices of Cout. Otherwise (Case 2), let C be the set of
all maximal separating 4-cycles in Q. By Lemma 3 the cycles in C are interior-
disjoint. As in step 4 we define Gout to be the optimal 1-planar (multi)graph
obtained from G by replacing for each C ∈ C all vertices strictly inside C by a
pair of crossing edges. Note that in Case 1 the quadrangulation corresponding to
Gout is K2,3 with inner vertex w. We proceed by proving the following lemma,
which corresponds to step 5 in the algorithm.
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Fig. 7. Illustration for Lemma 4: (a) Case 1 construction, (b) Creating a frame FC

in Case 2 for an inner facial cycle C = (a1, b1, a2, b2) of QH by releasing the contact
between a1 and a2

Lemma 4. Let H be an almost-optimal 1-planar (multi)graph whose corre-
sponding quadrangulation QH is either K2,3 or has no separating 4-cycles. Let C
be a set of facial 4-cycles of QH , different from its outer cycle Co, and H ′ be the
graph obtained from H by removing the crossing edges in each C ∈ C. Then for
any given frame F for Co, one can compute an L-representation Γ of H ′ fitting
into F so that there is a frame FC ⊆ F for every C ∈ C that is interior-disjoint
from all boxes and L’s in Γ .

Proof. Case 1, QH = K2,3. Let w be the inner vertex of H. Without loss
of generality let F = [0, 5] × [0, 5] × [0, 4] and let V (Co) be mapped onto the
top, back left, bottom and back right facets of F . Define the L for w to be
the union of [0, 3] × [2, 3] × [0, 4] and [2, 3] × [0, 3] × [0, 4]. Define four boxes
F1 = [0, 2]× [0, 1]× [0, 1], F2 = [0, 2]× [0, 1]× [3, 4], F3 = [3, 4]× [0, 1]× [0, 4] and
F4 = [0, 1] × [3, 4] × [0, 4], each completely contained in F and disjoint from the
L for w; see Fig. 7a. Each Fi, i ∈ {1, 2, 3, 4} is a frame for a 4-tuple containing w
and three vertices of Co. Thus independent of the type of F and the neighbors
of w in QH , we find a frame for the inner faces of QH .
Case 2, QH 
= K2,3. Let B and W be the bipartition classes of QH and
Co = (v1, w1, v2, w2) with vi ∈ B and wi ∈ W , i = 1, 2. Without loss of
generality v1, v2, w1 are mapped onto the back left, back right and top facets
of F , respectively, and w2 is mapped onto the bottom facet if (Case 2.1) F
has type (⊥−||) and onto the front left facet if (Case 2.2) F has type (⊥−⊥).
Let H∗ be the graph obtained from H by inserting a pair of crossing edges in
Co, leaving v1, w2 and v2 on the unbounded region. By assumption, H∗ is a
prime 1-planar graph and thus by Lemma 2 H∗

B = H∗[B] and H∗
W = H∗[W ]

are planar 3-connected and dual to each other. We choose v3 to be the clockwise
next vertex after v2 on the outer face of H∗

B and compute (using Corollary 1)
a shelled box-contact representation Γ ∗ of H∗, in which w2 is represented as
the bounding box F ∗ = [0, n]3, n ∈ N, and v1, v2, w1 as [0, n] × [0, 1] × [0, n],
[0, 1] × [0, n] × [1, n] × [1, n] × [n − 1, n], i.e., these boxes constitute the back left,
back right and top facets of F ∗, respectively.

Next we show how to create a frame for each facial 4-cycle C ∈ C. Let
a1, b1, a2, b2 be the vertices of C in cyclic order. Assume without loss of generality
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Fig. 8. Modifying Γ ′ when F has type (⊥−||) (Case 2.1) to find a representation
fitting F

that a1, a2 ∈ W and b1, b2 ∈ B. Thus (a1, a2) and (b1, b2) are crossing edges of
H∗

W and H∗
B , respectively. In the Schnyder wood of H∗

W underlying Corollary 1
exactly one of (a1, a2), (b1, b2) is uni-directed, say (a1, a2) is uni-directed in tree
T1. Then there is a point in R

3 in common with all four boxes in Γ ∗ corresponding
to vertices of C. Moreover, by construction boxes b1, a2, b2 touch box a1 with
their y+, z+, y− facets, respectively; see Fig. 7b. Now we can increase the lower
z-coordinate of the box a1 by some ε > 0 so that a1 and a2 lose contact and
between these two boxes a cubic frame FC with side length ε is created; see again
Fig. 7b. Note that the z− facet of a1 makes contact only with a2 and hence if ε
is small enough all other contacts in Γ ∗ are maintained. We apply this operation
to each C ∈ C and obtain a shelled box-representation Γ ′ of H ′.

Finally, we show how to modify Γ ′ to obtain an L-representation of H ′ fitting
the given frame F . If (Case 2.1) F has type (⊥−||), we define a new box for
w2 to be [0, n + 1] × [0, n] × [−1, 0]. For each white neighbor of w2 we union the
corresponding box with another box that is contained in [n, n+1]× [0, n]× [0, n]
with bottom facet at z = 0 so that the result is an L-shape. For each black
neighbor of w2 we set the lower z-coordinate of the corresponding box to 0;
see Fig. 8. (This requires the proper contacts for outer edges of GB , except for
(v1, v2), to be parallel to the xz-plane, which we can easily guarantee.) We then
apply an affine transformation mapping [1, n + 1] × [1, n] × [0, n − 1] onto F . If
(Case 2.2) F has type (⊥−⊥), define a new box for w2 to be [0, n] × [n, n +
1] × [0, n] and apply an affine transformation mapping [1, n] × [1, n] × [0, n − 1]
to F . In both cases we have an L-representation of H ′ fitting F . ��

By the lemma above we can compute an L-representation Γout of Gout fitting
any given frame Fout for Cout in O(|V (Gout)|) time. Moreover, Γout has a set of
disjoint frames {FC | C ∈ C}. Following step 6 of algorithm L-Contact, for each
C ∈ C, let Gin(C) be the almost-optimal 1-planar graph given by all vertices
and edges of G on and strictly inside C. Recursively applying the lemma we can
compute an L-representation ΓC of Gin(C) fitting the frame FC for C in Γout.
Clearly, Γ = Γout ∪ ⋃

C∈C ΓC is an L-representation of G fitting Fout. We pick
a frame Fout of arbitrary type for Cout to complete the construction. Although
computing an L-representation of Gout takes O(|V (Gout)|) time, recursive com-
putation and affine transformations on the L’s for the vertices in Gin(C) for
each C ∈ C require O(|V |2) time. ��
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4 Conclusion and Open Questions

We described efficient algorithms for 3D contact representation of several types
on non-planar graphs. Many interesting problems remain open. A planar graph
has a contact representation with rectangles in 2D if and only if it has no separat-
ing triangles. Is there a similar characterization for 3D box-contact representa-
tions? It is known that any planar graph admits a proper contact representation
with boxes in 3D and a non-proper contact representation with cubes (boxes
with equal sides). Does every planar graph admit a proper contact representa-
tion with cubes? Representing graphs with contacts of constant-complexity 3D
shapes, such as L’s, is open for many graph classes with a linear number of edges,
such as 1-planar, quasi-planar and other nearly planar graphs.

Acknowledgments. Work on this problem began at the 9th Bertinoro Workshop on
Graph Drawing. J. Alam and S. Kobourov are supported by NSF grant CCF-1115971.
W. Evans is supported by NSERC. We thank M. Bekos, T. Biedl, F. Brandenburg, M.
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Abstract. We consider an interval coverage problem. Given n intervals
of the same length on a line L and a line segment B on L, we wish to
move the intervals along L such that every point of B is covered by at
least one interval and the sum of the moving distances of all intervals
is minimized. As a basic geometry problem, it also has applications in
mobile sensor barrier coverage. The previous work solved the problem in
O(n2) time. In this paper, we present an O(n logn) time algorithm.

1 Introduction

We consider an interval coverage problem, which has applications in barrier
coverage of mobile sensors. For convenience, we will introduce and discuss the
problem from the barrier coverage point of view. Given a set of n points S =
{s1, s2, . . . , sn} on a line L, say, the x-axis, each point si represents a sensor.
Let xi be the coordinate of si on L for each 1 ≤ i ≤ n. For any two coordinates
x and x′ with x ≤ x′, we use [x, x′] to denote the interval of L between x and
x′. The sensors of S have the same covering range, denoted by z, such that for
each 1 ≤ i ≤ n, sensor si covers the interval [xi − z, xi + z]. Let B be a line
segment of L and we call B a “barrier”. We assume that the length of B is at
most 2z · n since otherwise B could not be fully covered by these sensors. The
problem is to move all sensors along L such that each point of B is covered by
at least one sensor of S and the sum of the moving distances of all sensors is
minimized. Note that although sensors are initially on L, they may not be on
B. We call this problem the min-sum barrier coverage, denoted by MSBC.

The problem MSBC has been studied before and Czyzowicz et al. [6] gave
an O(n2) time algorithm. In this paper, we present an O(n log n) time algorithm
and we also show an Ω(n log n) time lower bound for this problem.

Related Work. A number of related problems have been studied in the literature.
If sensors have different ranges, Czyzowicz et al. [7] proved that the problem
MSBC is NP-hard. In the min-max version of MSBC, the objective is to minimize
the maximum movement of all sensors. If the sensors have the same range,
Czyzowicz et al. [6] gave an O(n2) time algorithm, and later Chen et al. presented
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an O(n log n) time solution [4]. If sensors have different ranges, Chen et al. [4]
gave an O(n2 log n) time algorithm.

Mehrandish et al. [9,10] considered another variant, where the goal is to move
the minimum number of sensors to form a barrier coverage. They [9,10] proved
the problem is NP-hard if sensors have different ranges and gave polynomial
time algorithms otherwise. In addition, Li et al. [8] considered setting an energy
for each sensor to form a coverage such that the cost of all sensors is minimized.
There [8], the sensors are not allowed to move, and the more energy a sensor has,
the larger the covering range of the sensor and the larger the cost of the sensor.
Another problem variation is considered in [2], where the goal is to maximize
the barrier coverage lifetime subject to the limited battery powers.

Bhattacharya et al. [3] studied a two-dimensional barrier coverage in which
the barrier is a circle and the sensors, initially located inside the circle, are moved
to the circle to minimize the sensor movements; the ranges of the sensors are
not explicitly specified but the destinations of the sensors are required to form a
regular n-gon on the circle. Algorithms for both min-sum and min-max versions
were given in [3] and subsequent improvements were made in [5].

Outline. In Section 2, we introduce some notations. If the covering intervals
of all sensors intersect B, we call it the containing case. If the sensors whose
covering intervals do not intersect B are all in one side of B, it is the one-sided
case. Otherwise, it is the general case. We solve the three cases respectively in
Sections 3, 4, and 5. Based on the O(n2) time algorithm in [6], we solve the
containing case in O(n log n) time by using a more efficient implementation.
To solve the one-sided case, we use our containing case algorithm as an initial
step and apply a sequence of so-called “reverse operations”, which is based on a
number of interesting observations on the structure of the optimal solution. For
solving the general case, we generalize the techniques for the one-sided case. In
addition, we prove the Ω(n log n) time lower bound by a reduction from sorting.

Due to the space limit, proofs and many details are omitted but can be found
in the full version of the paper [1].

2 Preliminaries

A line segment of L is also an interval and vice versa. Let β denote the length
of B. Without loss of generality, we assume the barrier B is the interval [0, β].
For short, sensor covering intervals are called sc-intervals.

We assume the sensors of S are already sorted, i.e., x1 ≤ x2 ≤ · · · ≤ xn. For
each sensor si, we use I(si) to denote its covering interval. Recall that z is the
covering range of each sensor and the length of each sc-interval is 2z. We assume
2z < β since otherwise the solution would be trivial. A crucial observation given
in [7] is the following order preserving property: there always exists an optimal
solution where the order of the sensors is the same as that in the input. Note
that this property does not hold if sensors have different ranges.

Sensors will be moved during the algorithm. For any sensor si, suppose its
location at some moment is yi; the value xi − yi is called the displacement of si.
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Fig. 1. Illustrating gaps (denoted by g)
and overlaps (denoted by o)

B

β0

a b

c d

I(si)

I(si+1)

Fig. 2. I(si) ∩ I(si+1) contains 0 in its
interior

Hence, if the displacement of si is positive (resp., negative), then it is to the left
(resp., right) of its original location in the input.

As in [7], we define two concepts: gaps and overlaps. A gap refers to a maximal
sub-segment of B such that each point of the sub-segment is not covered by any
sensors (e.g., see Fig. 1). Each endpoint of any gap is an endpoint of either an
sc-interval or B. Specifically, consider two adjacent sensors si and si+1 such that
xi+z < xi+1−z. If 0 ≤ xi+z and xi+1−z ≤ β, then the interval [xi+z, xi+1−z]
is on B and defines a gap, and si and si+1 are called the left and right generators
of the gap, respectively. If xi + z < 0 < xi+1 − z ≤ β, then [0, xi+1 − z] is a gap
and si+1 is the only generator of the gap. Similarly, if 0 ≤ xi +z < β < xi+1 −z,
then [xi + z, β] is a gap and si is the only generator.

Consider two adjacent sensors si and si+1. The intersection I(si)∩I(si+1)∩B
defines an overlap if it is not empty (e.g., see Fig. 1), and we call si and si+1

the left and right generators of the overlap, respectively. Consider any sensor si.
If I(si) is not completely on B, then the sub-interval of I(si) that is not on B
defines an overlap and si is its only generator (e.g., see Fig. 1). A subtle situation
appears when I(si) ∩ I(si+1) contains an endpoint of B in its interior. Refer to
Fig. 2 as an example, where 0 is in the interior of I(si)∩I(si+1) with I(si) = [a, b]
and I(si+1) = [c, d]. According to our definition, si and si+1 together define an
overlap [0, b]; si itself defines an overlap [a, 0]; si+1 itself defines an overlap [c, 0].
However, to make the discussions easier, we consider the union of [c, 0] and [0, b]
as a single overlap [c, b] defined by si and si+1 together, but si still itself defines
the overlap [a, 0]. Symmetrically, if I(si)∩I(si+1) contains β in its interior, then
we consider I(si) ∩ I(si+1) as a single overlap defined by si and si+1, and si+1

itself defines an overlap that is the portion of I(si+1) outside B.
We should point out that according to our above definition, if an overlap has

two generators, then these two generators must be two adjacent sensors (e.g., si

and si+1 for some i). In other words, even if the sc-intervals of two non-adjacent
sensors (e.g., si and si+2) intersect, their intersection does not define any overlap.

For any gap or overlap a, we use |a| to denote its length; if a has only one
generator si, then both the left and the right generators of a refer to si.

The total number of overlaps and gaps is O(n). To solve MSBC, the goal is
to move sensors to cover all gaps by eliminating overlaps. We say a gap/overlap
go1 is to the left (resp., right) of another gap/overlap go2 if the left generator of
go1 is to the left (resp., right) of the left generator of go2 (in the case of Fig. 2,
where overlaps [c, b] and [a, 0] have the same left generator si, [a, 0] is considered
to the left of [c, b]). For any i and j with i ≤ j, let S(i, j) = {si, si+1, . . . , sj}.
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3 The Containing Case

The high-level scheme of our algorithm for the containing case is the same as
the O(n2) time algorithm in [7], but with an O(n log n) time implementation
using efficient data structures. Below, we sketch the algorithmic scheme and our
improvement (see the full paper [1] for details), and this will help us explain our
algorithms in Sections 4 and 5. The algorithm “greedily” covers all gaps from
left to right one by one, by eliminating overlaps. Suppose the first i − 1 gaps
have just been covered completely and the algorithm is about to cover gap gi.

Let or
i (resp., ol

i) be the closest overlap to the right (resp., left) of gi. We
will cover gi using either or

i or ol
i, depending on their costs C(or

i ) and C(ol
i),

defined as follows. Let Sr(gi) be the set of sensors between the right generator
of gi and the left generator of or

i . Define C(or
i ) to be |Sr(gi)|. The intuition of

this definition is that suppose we shift all sensors of Sr(gi) to the left for an
infinitesimal distance ε > 0 (such that gi becomes ε shorter), then the sum of
the moving distances of all sensors of Sr(gi) is ε · C(or

i ). As will be clear later,
the current displacement of each sensor in Sr(gi) may be positive but cannot
be negative. For C(ol

i), it is defined differently. Let Sl(gi) be the set of sensors
between the left generator of gi and the right generator of ol

i, and let S′
l(gi) be

the subset of sensors of Sl(gi) whose displacements are positive. If we shift all
sensors in Sl(gi) to the right for an infinitesimal distance ε > 0, although the
sum of the moving distances of all sensors of Sl(gi) is ε · |Sl(gi)|, the total moving
distance contributed to the sum of the moving distances of all sensors of S is
actually ε · (|Sl(gi)|−2 · |S′

l(gi)|) because the sensors of S′
l(gi) are moved towards

their original locations. Hence, the cost C(ol
i) is defined to be |Sl(gi)|−2·|S′

l(gi)|.
Note that the sensors in Sr(gi) or Sl(gi) are consecutive in their index order.

If C(or
i ) < C(ol

i), we move each sensor in Sr(gi) leftwards by min{|or
i |, |gi|},

and we call this a left-shift process. Note that if there is any gap gj between two
sensors in Sr(gi), then the above shift process will move gj leftwards as well,
but the size and the generators of gj do not change, and thus we can still use
gj without causing any problems. If |gi| ≤ |or

i |, then after the left-shift process
gi is covered completely and we proceed on the next gap gi+1. Otherwise, or

i is
eliminated and gi is only partially covered. We proceed on the remaining gi.

If C(or
i ) ≥ C(ol

i), we move each sensor in Sl(gi) rightwards by distance
min{|ol

i|, |gi|, α}, where α is the smallest displacement of the sensors in S′
l(gi),

and we call this a right-shift process. After the process, if gi is only partially
covered, we proceed on the remaining gi; otherwise we proceed on gi+1.

The algorithm finishes after all gaps are covered. It can be shown that there
are O(n) shift processes in total. The algorithm in [7] implements each shift
process in O(n) time, and thus the overall time is O(n2). Instead, we implement
each shift process in O(log n) amortized time. Specifically, we design an overlap
tree To, a position tree Tp, and a left-shift tree Tl. We store gaps and overlaps
by their generators. The tree To maintains all overlaps such that or

i and ol
i can

be determined in O(log n) time (after having or
i and ol

i, |Sr(gi)| and |Sl(gi)|
are known immediately). The tree Tp implicitly maintains the positions of each
sensor such that each of the following shift operation can be done in O(log n)
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time: given j and k with j ≤ k and a distance δ, move all sensors of S(j, k) by
δ. The main difficulty of our approach is to determine the values |S′

l(gi)| and α
in O(log n) time, which is done by the left-shift tree Tl. The details are omitted.

Only the position tree Tp is used in Sections 4 and 5 and we briefly explain it
here. Tp is a complete binary tree of n leaves and O(log n) height. The leaves from
left to right correspond to the sensors in their index order. For each 1 ≤ j ≤ n,
leaf j (i.e., the j-th leaf from the left) stores the original location xj of sensor
sj . Each node of Tp (either an internal node or a leaf) is associated with a shift
value, which is zero initially. At any moment during the algorithm, the actual
location of each sensor sj is xj plus the sum of the shift values of the nodes in
the path from the root to leaf j, which can be obtained in O(log n) time.

Consider a right-shift process that moves sensors in S(j, k) for j ≤ k right-
wards by a distance δ. We first find a set Vjk of O(log n) nodes of Tp such that
the leaves of the subtrees of all these nodes correspond to exactly the sensors in
Sjk, which can be done in O(log n) time by a standard approach. Then, for each
node in Vjk, we increase its shift value by δ. This finishes the right-shift process.
Similarly, each left-shift process can also be done in O(log n) time.

4 The One-Sided Case

Without loss of generality, we assume that the sensors whose covering intervals
do not intersect B are all to the right side of B, i.e., 0 ≤ x1+z holds. We assume
at least one sc-interval does not intersect B since otherwise it would become the
containing case. Note that this implies β < xn − z.

We use configuration to refer to a specification of where each sensor is located.
For example, in the input configuration, each sensor si is located at xi.

A sequence of consecutive sensors si, si+1, . . . sj are said to be in attached
positions if for each i ≤ k ≤ j − 1, the right endpoint of the covering interval
I(sk) of sk is at the same position as the left endpoint of I(sk+1).

The following lemma solves a special case where no sc-interval intersects B.

Lemma 1. If β < x1 − z, we can find an optimal solution in O(n) time.

In the following, we assume β ≥ x1 − z, i.e., I(s1) intersects B. Let m be the
largest index such that I(sm) intersects B. Note that m < n due to β < xn − z.
To simplify the notation, let SI = S(1,m) and SR = S(m + 1, n).

Our containing case algorithm is not applicable here and one can easily verify
that the cost functions we used in the containing case do not work for the sensors
in SR. More specifically, suppose we want to move a sensor si in SR leftwards to
cover a gap; there will be an “additive” cost xi − z − β, i.e., I(si) has to move
leftwards by that distance before it touches B. Recall that the cost we defined on
overlaps in the containing case is a “multiplicative” cost, and the above additive
cost is not consistent with the multiplicative cost. To overcome this difficulty,
we have to use a different approach to solve the one-sided case.

Our main idea is to somehow reduce the one-sided case to the containing
case so that we can use our containing case algorithm. Let Dopt be any optimal
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solution for our problem. By slightly abusing notation, depending on the context,
a “solution” may either refer to the configuration of the solution or the sum of
moving distances of all sensors in the solution. If no sensor of SR is moved
in Dopt, then we can compute Dopt by running our containing case algorithm
on the sensors in SI . Otherwise, let m∗ be the largest index such that sensor
sm∗ ∈ SR is moved in Dopt. If we know m∗, then we can easily compute Dopt in
O(n log n) time as follows. First, we “manually” move all sensors in S(m+1,m∗)
leftwards to β + z such that the left endpoints of their covering intervals are at
β. Then, we apply our containing case algorithm on all sensors in S1m∗ , which
now all have their covering intervals intersecting B (which is an instance of the
containing case), and let D(m∗) be the solution obtained above. Based on the
order preserving property, we can show that D(m∗) is Dopt.

By the above discussion, one main task of our algorithm is to determine m∗.
For each j with m < j ≤ n, let Ds(j) =

∑j
i=m+1(xi − z −β), i.e., the sum of

the moving distances for “manually” moving all sensors in S(m + 1, j) leftwards
to β + z, and we use Fj to denote the configuration after the above manual
movement and we let Fj contain only the sensors in S(1, j) (i.e., sensors in
S(j+1, n) do not exist in Fj). Let Ds(m) = 0 and Fm be the input configuration
but containing only sensors in S(1,m). For each m ≤ j ≤ n, suppose we apply
our containing case algorithm on Fj and denote by Dc(j) the solution (in the
case where β > 2zj, we let Dc(j) = +∞), and further, let D(j) = Ds(j)+Dc(j).

The above discussion leads to the following lemma.

Lemma 2. Dopt = minm≤j≤n D(j) and m∗ = arg minm≤j≤n D(j).

Our algorithm will compute D(j) for all j = m,m + 1, . . . , n. Recall that
D(j) = Ds(j) + Dc(j). Since it is easy to compute all Ds(j)’s in O(n) time,
we focus on computing Dc(j)’s. The main idea is the following. Suppose we
already have the solution Dc(j − 1), which can be considered as being obtained
by our containing case algorithm. To compute Dc(j), since we have an additional
overlap defined by sj at β + z, i.e., the sc-interval I(sj), we modify Dc(j − 1)
by “reversing” some shift processes that have been performed in the containing
algorithm when computing Dc(j − 1), i.e., using I(sj) to cover some gaps that
were covered by other overlaps in Dc(j − 1). The details are given below.

We first compute Dc(m) on the configuration Fm. If 2zm < β, then Dc(j) =
+∞ for each m ≤ j < � β

2z �; in this case, we can start from computing Dc(� β
2z �)

and use the similar idea as the following algorithm. To make it more general, we
assume m ≥ � β

2z �, and thus Dc(m) < +∞.
Consider our containing case algorithm for computing Dc(m). Recall that

our containing case algorithm consists of shift processes and each shift process
covers a gap using an overlap. Let p1, p2, . . . , pq be the shift processes performed
in the algorithm in the inverse order of time (e.g., p1 is the last process), where
q is the total number of processes in the algorithm. For each 1 ≤ i ≤ q, let gi

be the gap covered in the process pi by using/eliminating an overlap, denoted
by oi. Note that each gap/overlap above may not be an original gap/overlap in
the input configuration but only a subset of an original gap/overlap. It holds
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that |oi| = |gi| for each 1 ≤ i ≤ q. We call G = {g1, g2, . . . , gq} the gap list of
Dc(m). For each i, we use C(oi) to denote the cost of oi when the algorithm
uses oi to cover gi in the process pi. Note that the above process information can
be explicitly stored during our containing case algorithm without affecting the
overall running time asymptotically. We will use these information later. Note
that according to our algorithm the gaps in G are sorted from right to left.

Next, we compute Dc(m + 1), by modifying the configuration Dc(m). Com-
paring with Fm, the configuration Fm+1 has an additional overlap defined by
sm+1 at β + z, and we use o(sm+1) to denote it. We have the following lemma.

Lemma 3. Dc(m + 1) = Dc(m) holds if one of the following happens: (1) the
coordinate of the right endpoint of I(sm) is strictly larger than β; (2) o1 is to
the right of g1; (3) o1 is to the left of g1 and the cost C(o1) is not greater than
the number of sensors between g1 and sm+1.

To compute Dc(m+1), we first check whether one of the three cases in Lemma
3 happens, which can be done in constant time by the above process information
stored when computing Dc(m). If any of the three cases happens, we are done
for computing Dc(m + 1). Below, we assume none of the cases happens.

Let C(sm+1, g1) be the number of sensors between g1 and sm+1, which would
be the cost of the overlap o(sm+1) if it were there right before we cover g1. Note
that since we know the generators of g1, C(sm+1, g1) can be computed in constant
time (e.g., if g1 has two generators, C(sm+1, g1) = m + 1 − a + 1, where a is the
index of the right generator of g1). Define R(g1) to be C(sm+1, g1) − C(o1). We
can consider R(g1) as the “unit revenue” (or savings) if we use o(sm+1) to cover
g1 instead of using o1. Note that R(g1) > 0 otherwise the third case of Lemma
3 would happen. Hence, it is possible to obtain a better solution than Dc(m) by
using o(sm+1) to cover g1 instead of o1. Note that |g1| ≤ 2z and |o(sm+1)| = 2z.

If |o(sm+1)| = |g1|, then we use o(sm+1) to cover g1. Specifically, we move all
sensors in S(a,m+1) leftwards by distance |g1|, where a is the index of the right
generator of g1. The above essentially “restores” the overlap o1 and covers g1 by
eliminating o(sm+1). We refer to it as a reverse operation (i.e., it reverses the shift
process that covers g1 by using o1 in the algorithm for computing Dc(m)). Due to
|o(sm+1)| = |g1|, after the reverse operation, g1 is fully covered by o(sm+1) and
o(sm+1) is eliminated. We can show that the current configuration is Dc(m+1).
Note that Dc(m + 1) = Dc(m) − R(g1) · |g1|. Again, o1 is restored in Dc(m + 1).
Finally, we remove g1 from the list G.

If |g1| < |o(sm+1)|, then we do a revere operation by using o(sm+1) to cover
g1 and restore o1, after which o(sm+1) is not eliminated but becomes shorter.
We remove g1 from G and proceed on the next gap g2.

In general, suppose we have covered gaps g1, g2, . . . , gk by using o(sm+1) and
the overlap o(sm+1) still partially remains (i.e.,

∑k
t=1 |gi| < 2z). The above gaps

have all been removed from G. Let F ′ denote the current configuration. If G
is now empty, then we are done with computing Dc(m + 1), which is equal to
Dc(m) − ∑k

t=1 R(gt) · |gt|; otherwise, we consider gap gk+1, as follows.
Similar to Lemma 3, we can show that F ′ is Dc(m+1) if one of the following

two cases happens: (1) ok+1 is to the right of gk+1; (2) ok+1 is to the left of gk+1
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but C(ok+1) is not greater than the number of sensors between gk+1 and sm+1. If
one of the two cases happens, then we are done with computing Dc(m+1), which
is equal to Dc(m) − ∑k

t=1 R(gt) · |gt|. Otherwise, we do the following. Note that
the length of o(sm+1) in F ′ is 2z−∑k

t=1 |gt|. Depending on whether |o(sm+1)| ≥
|gk+1|, there are two cases. As for g1, we define C(sm+1, gk+1) as the number of
sensors between gk+1 and sm+1, and define R(gk+1) = C(ok+1)−C(sm+1, gk+1).

If |o(sm+1)| ≥ |gk+1|, then we do a reverse operation to cover gk+1 by using
o(sm+1). If |o(sm+1)| = |gk+1|, Dc(m+1) is obtained, which is equal to Dc(m)−
∑k+1

t=1 R(gt) · |gt|; otherwise, we proceed on the next gap gk+2. In either case, we
remove gk+1 from G, and the reverse operation restores the overlap ok+1.

If |o(sm+1)| < |gk+1|, then o(sm+1) is not long enough to cover gk+1. We do a
reverse operation to use o(sm+1) to partially cover gk+1 of length |o(sm+1)|, and
the remaining part of gk+1 is still covered by ok+1. We are done with computing
Dc(m+1), which is equal to Dc(m)−∑k

t=1 R(gt)·|gt|−R(gk+1)·|o(sm+1)|. Since
gk+1 still partially remains in Dc(m + 1), we do not remove gk+1 from G but
change its size accordingly. Also, overlap ok+1 is partially restored in Dc(m+1),
with size |o(sm+1)|. The algorithm stops after Dc(m + 1) is obtained.

Next, we use the same approach to compute Dc(m+2) by using the remaining
gaps in G. Let Gm denote the remaining G. In order to correctly compute Dc(m+
2), one may wonder that we should use the corresponding gap list of Dc(m + 1)
(i.e., the gap list of the containing case algorithm if we apply it on Fm+1 to
compute Dc(m + 1)), which may not be the same as Gm. However, we can
show that the result obtained using Gm is Dc(m + 2), and further, this can be
generalized to the next solution until Dc(n), i.e., we can use the same approach
to compute Dc(m + 3),Dc(m + 4), . . . , Dc(n) by using the remaining gaps.

Our algorithm can be easily implemented in O(n log n) time to compute Dc(i)
for all i = m,m + 1, . . . , n. First, we compute Dc(m) in O(n log n) time using
our containing case algorithm. During the algorithm, we explicitly record the
information of each shift process pi, as discussed earlier. In fact, we only need to
record all right-shift processes after the last left-shift process of the algorithm,
and let G be the gap list for the above right-shift processes (i.e., for each gap gi

in G, oi is to the left of gi).
Next, we apply the reverse operations on G to compute solutions Dc(j) for

m + 1 ≤ j ≤ n one by one. To this end, we only need to use the position tree
Tp (the other two trees are not necessary). Each reverse operation can be done
in O(log n) time using Tp because the operation essentially moves a sequence of
consecutive sensors leftwards by the same distance. If G becomes ∅ during the
algorithm, then the current configuration is the solution we seek. The overall
time for computing all solutions Dc(j) for m + 1 ≤ j ≤ n is O(K · log n), where
K is the total number of reverse operations in the entire algorithm. Note that
each reverse operation either covers completely a gap of G or eliminates an
overlap o(sj) for m + 1 ≤ j ≤ n. Therefore, K ≤ |G| + n − m = O(n).

In summary, we can compute the solutions Dc(j) for all m ≤ j ≤ n in
O(n log n) time, and thus, the one-sided case is solved in O(n log n) time.
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If there is more than one index j ∈ [m,n] such that D(j) = Dopt, then we let
m∗ refer to the smallest such index. The following lemma, which will be useful in
Section 5, shows a unimodal property of the values D(j) for j = m,m+1, . . . , n.

Lemma 4. As j increases from m to n, the value D(j) first strictly decreases
until D(m∗) and then strictly increases except that D(m∗) = D(m∗ + 1) may be
possible. Formally, D(j − 1) > D(j) for any m < j ≤ m∗; D(m∗) ≤ D(m∗ + 1);
D(j − 1) < D(j) for any m∗ + 2 < j ≤ n.

5 The General Case

We assume there is at least one sensor whose covering interval intersects B. The
case where this assumption does not hold can be solved using similar but simpler
techniques (see the full paper for details).

Let sl (resp., sr) be the leftmost (resp., rightmost) sensor whose covering
interval intersects B. We assume 1 < l and r < n, since otherwise it becomes
the one-sided case. Let SL = S(1, l − 1), SI = S(l, r), and SR = S(r + 1, n).

Let λ = � β
2z �, i.e., the minimum number of sensors necessary to fully cover B.

Consider any i with 1 ≤ i ≤ l and any j with r ≤ j ≤ n such that j−i+1 ≥ λ. If
i 
= l, define DL

s (i, j) =
∑l−1

t=i (−z−xt), i.e., the total sum of the moving distances
for “manually” moving all sensors in S(i, l − 1) rightwards to −z (such that the
right endpoints of their covering intervals are all at 0); otherwise, DL

s (l, j) = 0.
Similarly, if j 
= r, define DR

s (i, j) =
∑j

t=r+1(xt−z−β); otherwise, DR
s (i, r) = 0.

Let Ds(i, j) = DL
s (i, j) + DR

s (i, j). Let F (i, j) denote the configuration after the
above manual movements and including only sensors in S(i, j). Hence, F (i, j)
is an instance of the containing case on sensors in S(i, j). Let Dc(i, j) be the
solution obtained by applying our containing case algorithm on F (i, j). Finally,
let D(i, j) = Dc(i, j)+Ds(i, j). For simplicity, for any i and j with j − i+1 < λ,
we let D(i, j) = +∞, as S(i, j) does not have enough sensors to fully cover B.

For each i with 1 ≤ i ≤ l, define f(i) to be the index in [r, n] such that
D(i, f(i)) = minr≤j≤n D(i, j). Similarly, for each j with r ≤ j ≤ n, define f(j)
to be the index in [1, l] such that D(f(j), j) = min1≤i≤l D(i, j).

Let Dopt denote the optimal solution. We have the following lemma.

Lemma 5. Dopt = min1≤i≤l,r≤j≤n D(i, j) = min1≤i≤l D(i, f(i)) =
minr≤j≤n D(f(j), j).

Let l∗ and r∗ be the indices with 1 ≤ l∗ ≤ l and r ≤ r∗ ≤ n such that
D(l∗, r∗) = Dopt. It is easy to see that l∗ = f(r∗) and r∗ = f(l∗).

To compute Dopt, if we know either l∗ or r∗, then Dopt can be computed in
additional O(n log n) time, as follows. Suppose l∗ is known. We first “manually”
move each sensor si for l∗ ≤ i ≤ l−1 rightwards to −z (this step is not necessary
for the case l∗ = l) and then apply our one-sided case algorithm on S(l∗, n) (the
obtained solution is Dopt). Hence, the key is to determine l∗ or r∗.

Lemma 6. If |SI | ≥ λ, then it holds that f(i) = r∗ for any i ∈ [1, l] and
f(j) = l∗ for any j ∈ [r, n].
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By Lemma 6, if |SI | ≥ λ, then it holds that f(1) = r∗, which can be easily
computed in O(n log n) time by applying our one-sided case algorithm on S(1, n)
after moving sensors in SL rightwards to the position −z.

Below we assume |SI | < λ. Note that |S(l∗, r∗)| ≥ λ always holds. Since both
|S(l∗, r∗)| and λ are integers, either |S(l∗, r∗)| ≥ λ + 1 or |S(l∗, r∗)| = λ.

Lemma 7. If |S(l∗, r∗)| ≥ λ+1, then f(i) = r∗ holds for any i with 1 ≤ i < l∗.

By Lemma 7, if |S(l∗, r∗)| ≥ λ + 1, then f(1) = r∗, which again can be
computed in O(n log n) time.

It remains to handle the case where |S(l∗, r∗)| = λ. Due to l∗ ≤ l and r∗ ≥ r,
we have max{1, r−λ+1} ≤ l∗ ≤ min{l, n−λ+1}. In the following, for simplicity
of discussion, we assume r−λ+1 > 1 and l < n−λ+1 since the other cases can
be solved similarly. Let l′ = r−λ+1. Thus, we have l′ ≤ l∗ ≤ l, and for any i with
i ≥ 0 and r+i ≤ n, |S(l′+i, r+i)| = λ. Clearly, Dopt = min0≤i≤l−l′ D(l′+i, r+i).

Let l′′ = l− l′. In the following, we present an O(n log n) time algorithm that
can compute D(l′ + i, r + i) for all i = 0, 1, . . . , l′′. Recall that D(l′ + i, r + i) =
Dc(l′ + i, r + i) + Ds(l′ + i, r + i). We can easily compute Ds(l′ + i, r + i) for all
i = 0, 1, . . . , l′′ in O(n) time. Therefore, it is sufficient to compute the solutions
Dc(l′ +i, r+i) for all i = 0, 1, . . . , l′′ in O(n log n) time, which is our focus below.
To simplify the notation, we use Dc(i) to represent Dc(l′ + i, r + i).

Below, unless otherwise stated, we assume all sensors in S(1, l − 1) are at −z
and all sensors in S(r + 1, n) are at β + z; sensors in S(l, r) are in their original
locations as input. In other words, we work on the configuration F (1, n).

We first consider a special case where λ = β
2z , i.e., β

2z is an integer. In this
case, for each 0 ≤ i ≤ l′′, the configuration Dc(i) has a special pattern: sensors
in S(l′ + i, r + i) are in attached positions with sl′+i at z. Due to this property,
we can easily compute Dopt in O(n log n) time and the algorithm is omitted.

In the following, we assume λ 
= β
2z , i.e., β

2z is not an integer. This implies
that there must be an overlap in any solution Dc(i) for 0 ≤ i ≤ l′′.

Suppose we already have Dc(0). Below, we compute Dc(1) by modifying the
configuration Dc(0). The algorithm consists of two main steps. The first step is
to compute Dc(l′, r + 1) by doing reverse operations on Dc(l′) (i.e., Dc(l′, r))
with sensor sr+1 at β + z, in the same way as in our one-sided case. The second
step is to compute Dc(1) by modifying the configuration Dc(l′, r+1), as follows.

Note that Dc(1) is on the configuration F (l′ +1, r +1) with sensors in S(l′ +
1, r+1) while Dc(l′, r+1) is on F (l′, r+1) with sensors in S(l′, r+1). Hence, sl′

is not used in Dc(1) but may be used in Dc(l′, r+1). If in Dc(l′, r+1), sl′ covers
some portion of B that is not covered by any other sensor in S(l′ + 1, r + 1),
then we should move sensors of S(l′ + 1, r′ + 1) to cover the above portion and
more specifically, that portion should be covered by eliminating some overlaps
in Dc(l′, r + 1). The details are given below.

Consider the configuration Dc(l′, r + 1). If sl′ is at −z, then I(sl′) ∩ B = ∅
and B is covered by sensors of S(l′+1, r+1), implying that Dc(1) = Dc(l′, r+1).

If sl′ is not at −z, then let g = I(sl′) ∩ B. We can show that sl′ is the only
sensor that covers g in Dc(l′, r+1). To obtain Dc(l′ +1), we remove sl′ and cover
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g by eliminating overlaps of Dc(l′, r+1) from left to right until g is fully covered.
Specifically, let o1, o2, . . . , ok be the overlaps of Dc(l′, r + 1) sorted from left to
right. We move the sensors between g and o1 leftwards by distance min{|g|, |o1|}.
This movement can be done in O(log n) time by updating the position tree Tp.
If |g| ≤ |o1|, then we are done. Otherwise, we consider the next overlap o2. We
continue this procedure until g is fully covered. Since |S(l′ + 1, r + 1)| = λ,
∑k

i=1 |oi| ≥ |g| holds, implying that g will eventually be fully covered. We can
show that the obtained configuration is Dc(1).

The above gives a way to compute Dc(1) from Dc(0). In general, for each
0 ≤ i ≤ l′′, if we know Dc(i), we can use the same approach to compute Dc(i+1).

We say a solution Dc(i) for i ∈ [0, l′′] is trivial if the right endpoint of I(sr+i)
is strictly to the right of β. The algorithm for Lemma 8 is omitted.

Lemma 8. Suppose k is the smallest index in [0, l′′] such that Dc(k) is a trivial
solution. We can compute Dc(i) for all i = k, k + 1, . . . , l′′ in O(n log n) time.

In the following, we compute solutions Dc(i) for all i = 0, 1, . . . , l′′ in
O(n log n) time. Our algorithm will compute Dc(i) in the order from 0 to l′′

until either Dc(l′′) is obtained, or we find a trivial solution (and then we apply
Lemma 8).

First, we compute Dc(0) in O(n log n) time by applying our containing case
algorithm on the configuration F (l′, r). As in our one-sided case algorithm, we
also maintain the process information of the right-shift processes after the last
left-shift process in the above algorithm. Let P = {p1, p2, . . . , pq} be the above
process list in the inverse time order (i.e., p1 is the last process of the algorithm),
where q is the number of these processes. Let G = {g1, g2, . . . , gq} and O =
{o1, o2, . . . , oq} be the corresponding gap list and overlap list, i.e., for each 1 ≤
i ≤ q, process pi covers gi by eliminating oi. For each 1 ≤ i ≤ q, we also maintain
the cost C(oi) of the overlap oi. As discussed in Section 4, the gaps of G are
sorted from right to left while the overlaps of O are sorted from left to right.
In addition, we maintain an extra overlap list O′ = {o′

1, o
′
2, . . . , o

′
h}, which are

the overlaps in the configuration Dc(0) sorted from left to right. The list O′ will
be used in the second main step for computing each Dc(i). According to their
definitions, all overlaps of O′ are to the left of the overlaps of O.

To compute Dc(1), the first main step is to compute Dc(l′, r+1) by doing the
reverse operations on Dc(0) with sr+1, similar to the one-sided case. Let o(sr+1)
be the overlap [β, β+2z] defined by sr+1 at β+z. In general, suppose during the
reverse operations g1, g2, . . . , gt−1 are the gaps fully covered by o(sr+1) and gt is
only partially covered by a length of dt. Then, gaps g1, g2, . . . , gt−1 are removed
from G, and gt is still in G but its length is changed to its original length minus
dt. Correspondingly, the overlaps o1, o2, . . . , ot−1 are restored and ot is partially
restored with length dt in Dc(l′, r+1). We append o1, o2, . . . , ot at the end of O′.
Since overlaps of O′ are to the left of overlaps of O and overlaps of the two lists
O and O′ are both sorted from left to right, after the above “append” operation,
the overlaps of the new list O′ are still sorted from left to right.
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The second main step is to compute Dc(1) from Dc(l′, r + 1), by eliminating
overlaps of O′ from left to right until I(sl′) ∩ B is covered, as discussed earlier.
For each overlap that is eliminated, we remove it from O′.

If Dc(1) is a trivial solution, we are done. Otherwise, we continue to compute
Dc(2), again by first computing Dc(l′ + 1, r + 2). Let G1 be the remaining gap
list of G after Dc(1) is computed. To compute Dc(l′ + 1, r + 2), we use G1 to
do the reverse operations on Dc(1) with sr+2. Although G1 may not be the
corresponding gap list for Dc(1), we can show that the obtained result using G1

is Dc(2), and further, this can be generalized to Dc(3),Dc(4), . . . until Dc(l′′).
After obtaining Dc(l′ + 1, r + 2), we can use the same approach to compute

Dc(2) (i.e., cover I(sl′+1) ∩ B by eliminating the overlaps of Dc(l′ + 1, r + 2)
from left to right). We continue the same algorithm to compute Dc(i) for i =
3, 4, . . . , l′′, until we find a trivial solution or Dc(l′′) is computed.

Lemma 9. It takes O(n log n) time to compute Dc(i) for i = 0, 1, . . . , l′′, until
we find a trivial solution or Dc(l′′) is computed.

As a summary, the general case is solvable in O(n log n) time. The Ω(n log n)
time lower bound is based on a reduction from sorting and is omitted.
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Abstract. In this paper, we study the advice complexity of the online
bin packing problem. In this well-studied setting, the online algorithm
is supplemented with some additional information concerning the input.
We improve upon both known upper and lower bounds of online algo-
rithms for this problem. On the positive side, we first provide a rel-
atively simple algorithm that achieves a competitive ratio arbitrarily
close to 1.5, using constant-size advice. Our result implies that 16 bits
of advice suffice to obtain a competitive ratio better than any online
algorithm without advice, thus improving the previously known bound
of O(log(n)) bits required to attain this performance. In addition, we
introduce a more complex algorithm that still requires only constant-
size advice, and which is below 1.5-competitive, namely has competitive
ratio arbitrarily close to 1.47012. This is the currently best performance
of any online bin packing algorithm with sublinear advice. On the nega-
tive side, we extend a construction due to Boyar et al. [10] so as to show
that no online algorithm with sub-linear advice can be 7/6-competitive,
which improves upon the known lower bound of 9/8.

1 Introduction

Bin packing is a fundamental optimization problem that has played an important
role in the development of approximation and online algorithms. An instance of
the problem is defined by a set of items of different sizes, and the objective is to
place these items into a minimum number of bins. For convenience, it is often
assumed that the bins have capacity 1 and items have sizes in the range (0, 1].
In the online setting, the input set is revealed in a sequential manner, and the
online algorithm must make an irrevocable decision concerning the placement
of an item without any knowledge about the forthcoming items. We follow the
canonical framework of competitive analysis of online algorithms, in which the
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performance of an algorithm A is determined by its competitive ratio, namely
the maximum ratio between the cost of A (i.e., the number of bins opened
by A) and that of an optimal offline algorithm Opt for the same sequence.
For the bin packing problem, in particular, we are interested in the asymptotic
competitive ratio which considers sequences for which the costs of A and Opt
are arbitrarily large. For this reason, throughout this paper we refer to the
asymptotic competitive ratio as simply the competitive ratio.

The bin packing problem has provided some of the first-known explicit online
algorithms. NextFit is a simple algorithm that maintains at each step a single
open bin. If an incoming item fits in the bin, it is placed there; otherwise, that bin
is closed and a new bin is opened to accommodate the item. FirstFit orders bins
by their opening time and places an incoming item into the first bin which has
enough space (opening a new bin if required). BestFit works similarly, except
that it places the item into the bin with minimum available capacity which
still has enough space for the item. It is known that Next Fit is 2-competitive,
whereas FirstFit and BestFit are both 1.7-competitive [17]. The best known
online algorithm is Harmonic++ which has a competitive ratio of 1.588 [21].
No online algorithm can have a competitive ratio better than 1.54037 [3], a result
that holds for both deterministic and randomized algorithms.

Competitive analysis, due to its inherent comparison to the offline optimum,
often leads to a more pessimistic performance evaluation of online algorithms
than what observed in practice [8]. Different models have been proposed in order
to address this issue, and one such approach is by allowing the online algorithm
certain additional power. For example, the algorithm may be allowed to repack
some items [14,15]. Alternatively, it may have access to lookahead [16], and,
finally, may know the length of the input sequence [2] or the value of Opt [13].
The advice model is a generalization of the latter in which, any information can
be passed to the algorithm in the form of advice. In this sense, we can think of the
advice as generated by a benevolent offline oracle with access to the entire input;
the online algorithm can exploit the advice so as to produce a better solution.
In principle, there is a certain correlation between the number of advice bits and
the quality of the resulting solution. For many problems, including bin packing,
a large number of advice bits is required in order to achieve optimal solutions;
however, this does not imply that one may not achieve efficient (albeit non-
optimal) solutions with significantly smaller number of bits. In this paper, we
study the impact of small-size advice (typically constant size) in improving the
competitive ratio of bin packing algorithms. While our interest in studying
the advice complexity stems from theoretical considerations, we emphasize that
the advice setting may in fact have tangible applications. For instance, the advice
model captures, among others, any relevant statistical information about the
input that may be available through either preprocessing or historical data. We
define the bin packing problem under the advice setting as follows:

Definition 1. In the online bin packing problem with advice, the input is a
sequence of items σ = 〈x1, . . . , xn〉, with 0 < xi ≤ 1. At time step t, an
online algorithm must pack item xt into a bin, and this decision is a function
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of Φ, x1, . . . , xt−1, where Φ is the content of the advice tape. An algorithm has
advice complexity s(n) if it accesses at most s(n) bits of an advice tape Φ for
any input of length n.

Throughout the paper, for a given algorithm A, we denote by A(σ) the num-
ber of bins used by A on sequence σ. Due to space limitations, we omit or sketch
certain proofs (complete proofs can be found in the long version of the paper).

1.1 Previous Work and Our Contribution

The online advice model was first introduced by Böckenhauer et al. [6,7] and by
Emek et al. [12]. Both papers were inspired by the work of Dobrev et al. [11].
In the model of Emek et al. an online algorithm receives a fixed number of bits
of advice with each input item. Note that this model does not allow advice of
sublinear size. In the model of Böckenhauer et al., the advice is written on a
read-only tape prior to the algorithm’s execution, and the algorithm can read
advice bits from that tape at will. The advice complexity has established itself
as a prolific sub-field of online computation, and many online problems have
been studied under the setting of online computation with advice (e.g., metrical
task systems [12], job shop scheduling [7,18], the k-server problem [6,12,19],
knapsack [5], buffer reordering management [1], and list update [9]).

In this paper, we study online bin packing under the advice-on-tape model. In
this setting, Boyar et al. [10] proved tight bounds on the size of advice required
to be optimal and showed that advice of super-linear size is necessary in order to
attain optimality. They also proved that with advice of linear size, i.e., Θ(n) bits
for a sequence of length n, one can achieve a competitive ratio of 4/3 + ε. This
result was improved by Renault et al. [20] who showed that a competitive ratio
arbitrary close to 1 can be achieved with Θ(n) bits. A related question is how
many bits of advice are sufficient in order to outperform all online algorithms.
Boyar et al. showed that advice of size Θ(log n) is sufficient to achieve an algo-
rithm with competitive ratio of 1.5, which is strictly better than the lower bound
1.54037 for online algorithms. They also proved that no algorithm is better than
9/8-competitive with advice of sub-linear size. A related problem, namely the
minimum makespan problem on identical machines was studied in [20].

In our work, we address the power of small-sized advice in online bin pack-
ing. This is motivated by settings in which one may have some very limited
information about the input, e.g., whether or not the input has many items
of size beyond a certain threshold or some related statistical information. On
the positive side, we prove that O(1) advice suffices to outperform all online
algorithms. More precisely, we first show that with only 16 bits of advice, we
can achieve a competitive ratio of 1.530 (Section 2). Following a more complex
approach, we show that constant-size advice suffices to go beyond the barrier
of 1.5-competitiveness; more precisely, we achieve a competitive ratio arbitrarily
close to 1.47012 (Section 3). This is, to date, the best upper bound for advice
of sublinear size and demonstrates the significant impact of small-size advice
on algorithmic performance. We should mention that the simple algorithm of
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Section 2 reaches 1.5 + ε with fewer advice bits than the complicated algorithm
of Section 3. Last, we give a lower-bound construction that builds on ideas
of [10] and which shows that advice of size Ω(n) is required to achieve a com-
petitive ratio better than 7/6, thus improving the previous lower bound of 9/8
(Section 4).

In terms of techniques, for the upper bound of Section 2, we use information
indirectly related to the ratio of “big” to “small” items; we show that this limited
amount of information suffices to bring us arbitrarily close to the performance of
algorithms that use logarithmic number of bits. For the more complicated upper
bound of Section 3, we introduce two algorithms that, when combined, result in
the desired upper bound. One of these algorithms uses a rounding technique to
create close-to-optimal packings when there is an empty space of size ε or more
in all bins of an optimal solution (ε is an arbitrary small positive value). The
other algorithm achieves a competitive ratio of 1.3904 when all items are larger
than 1/3. Both algorithms use advice of constant size, i.e., independent of the
length of sequence. Last, concerning the lower bound (Section 4), we base our
construction on that of [10], using a better amortization scheme that leads to an
improvement of the bound.

2 Constant-Size Advice Outperforms All Online
Algorithms

In this section, we present an algorithm that achieves a competitive ratio of
1.5+ ε and uses a constant number of bits of advice. Throughout the section, we
distinguish items based on their sizes. An item is huge if it is larger than 2/3,
critical if it is in the range (1/2, 2/3], small if it is in the range (1/3, 1/2], and
tiny if it is in the range (0, 1/3].

Consider the algorithm ReserveCritical [10] that works as follows. The
algorithm treats huge items separately and places each of them in a single bin.
Similarly, it places two small items in the same bin with no other items in said
bin. The algorithm knows the number of critical items and reserves space of
size 2/3 for each of them (i.e., it opens a bin for each item and assumes the
filled space of the bin is 2/3). Critical items are placed in the reserved spaces.
For tiny items, the algorithm uses FirstFit to place them in critical bins with
respect to their reserved spaces (and opens new bins as needed). To encode the
number of critical bins in binary, Θ(log n) advice bits are needed. As shown in
[10], ReserveCritical has a competitive ratio of 1.5. (Since our approach is
related, in the long version of the paper, we provide a simpler proof of the result
in [10].)

In what follows, we analyze another algorithm, called the RedBlue algo-
rithm, that receives an integer i, 0 ≤ i < 2k encoded in binary with k advice
bits, where k is a constant independent of the length of the sequence. The value
of i is determined by the packing of the ReserveCritical algorithm. Let X and
Y denote the number of bins in the packing of ReserveCritical that include
a critical item, and the number of bins opened for the tiny items, respectively.
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The advice encodes an approximate value of X
X+Y , using k bits, by encoding the

value of i such that

β =
i

2k
≤ X

X + Y
<

i + 1
2k

= β +
1
2k

. (1)

Regardless of the value of β, RedBlue always places each huge item in
a single bin, and places small items in dedicated bins, with two such items
per dedicated bin. In the following, we consider three (exhaustive) cases for β:
β > 1 − 1/2k/2, β < 1/2k/2, and 1 − 1/2k/2 ≤ β ≤ 1/2k/2. For each case,
we complete the definition of RedBlue by describing how the critical and tiny
items are packed.

Consider the first case: β > 1 − 1/2k/2. For placing critical and tiny items,
RedBlue maintains a set of blue bins such that each bin has a reserved space of
2/3 for critical items. To pack a critical item, RedBlue packs it using FirstFit
among the set of blue bins, considering only the reserved space. To pack a tiny
item, RedBlue packs it using FirstFit among the set of blue bins, considering,
however, only the non-reserved space (of size 1/3) of such bins. Any bin that
FirstFit opens for critical and tiny items will be blue, i.e., it has a reserved
space of 2/3 for critical and a space of 1/3 for tiny items.

Lemma 1. When β > 1 − 1/2k/2, the competitive ratio of the RedBlue algo-
rithm is at most 1.5 + 7.5

2k/2 .

Proof. From (1) and the statement of the lemma, we have:

Y

X + Y
≤ 1 − β <

1
2k/2

⇒ Y <
1

2k/2
· (X + Y ). (2)

Let B denote the set of blue bins. The first X bins in B are precisely the
first X bins in the packing of ReserveCritical, i.e., they include X critical
items plus the same tiny items. Let Y ′ denote the number |B| − X. Then Y ′

bins in B only include tiny items (i.e., the reserved space is not occupied by
a critical item); the level of all these bins, except possibly one, is at least 1/6
(otherwise, FirstFit could combine two in the same bin). Since the tiny items
placed in these bins are the same as those placed in the last Y bins of the
ReserveCritical algorithm, we have Y ′ ≤ 6Y + 1; this is because the level of
bins in the RedBlue packing is at least 1/6. Let H and S denote the number
of huge and small items. From (2) and the fact that ReserveCritical(σ) =
H + �S/2� + X + Y ≤ 1.5Opt(σ), we obtain RedBlue(σ) ≤ H + �S/2� + X +
6Y + 1 < (1 + 5/2k/2) · 1.5Opt(σ) + 1. �	

Next, we consider the second case: β < 1/2k/2. In this case, RedBlue main-
tains a set of blue bins for critical items and a set of red bins for tiny items.
The algorithm applies FirstFit to pack critical items into the set of blue bins
and tiny items into the set of red items. In this case, all the bins except the blue
bins have a level of at least 2/3; moreover, there are only a few blue bins. We
can show that, on average, the level of all the bins (except 1 bin) is very close
to 2/3.
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Lemma 2. When β < 1
2k/2 , the competitive ratio of RedBlue is at most 3/2+

3
2k−2

.

Next, we focus on the case 1−1/2k/2 ≤ β ≤ 1/2k/2. In this case, the algorithm
maintains a set of blue bins such that each bin has a reserved space of 2/3 for
critical items. The remaining unreserved space of 1/3 will be used for packing
tiny items. The algorithm also maintains a set of red bins for packing tiny items.

We now explain precisely how RedBlue packs critical and tiny items. For
a critical item x, RedBlue uses FirstFit among the blue bins, and places x
in the reserved space of such a bin. If x opens a new bin, the bin is declared
blue. For a tiny item y, the algorithm applies FirstFit to place y in either the
unreserved space of a blue bin, or in a red bin. If the algorithm cannot place
y in one of the existing bins, it opens a new bin for y. It declares the new bin
as either a red or a blue bin as follows. Let B and R denote the number of
blue and red bins, immediately before y is packed, respectively. The algorithm
will then declare the new bin as a blue bin if B+1

B+R+1 ≤ β; otherwise, it will
declare the new bin as red. Note that, in this way, RedBlue guarantees that

Bn

Bn+Rn
≤ β, where Bn and Rn denote the number of blue and red bins after

processing the entire sequence, respectively. It follows that the number of blue
bins in the final packing of RedBlue is equal to X, i.e, the number of critical
items in the sequence. In other words, since β is a lower bound for the ratio

X
X+Y , this strategy ensures that all bins declared as blue eventually receive a
critical item.

Lemma 3. When 1/2k/2 ≤ β ≤ 1 − 1/2k/2, the competitive ratio of RedBlue
is less than 1.5 + 3

2k/2−2
.

Proof. From (1) and the statement of the lemma, we have X
X+Y < β + 1/2k ⇒

X < β+1/2k

1−β−1/2k
Y . In the given range for β, we have β(1 − β)2k − β > 2k/2−1 − 1.

Hence,

1 − β

β
X <

(

1 +
1

β(1 − β)2k − β

)

Y <

(

1 +
1

2k/2−1 − 1

)

Y (3)

Let yi be a tiny item for which RedBlue opens the very last red bin in its
packing. Let Ri and Bi denote the number of red and blue bins after placing yi,
respectively. From the statement of the algorithm, we have Bi+1

Bi+Ri
> β, which

implies that Ri < (1−β)Bi+1
β . Let Rn and Bn be the number of red and blue bins

in the final packing of the algorithm. We have Rn = Ri and Bi ≤ Bn = X. For
the given range of β, in the final packing, all blue bins receive a critical item.
Hence, Rn ≤ 1−β

β X + 1/β. From the above inequality, we obtain Bn + Rn ≤
X + Y +

(
2

2k/2−2

)
Y + 2k/2, and the cost of the algorithm can then be bounded

as follows: RedBlue(σ) = H + �S/2� + Bn + Rn ≤ H + �S/2� + X + Y +
2Y /(2k/2) − 2) + 2k/2 ≤ 1.5Opt(σ) + 3

2k/2−2
Opt(σ) + 2k/2, where we used (3)

and the fact that ReserveCritical(σ) = H + �S/2� + X + Y ≤ 1.5Opt(σ).
Note also that 2k/2 is a constant independent of n. �	
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Theorem 1. For any k ≥ 4, there is an online algorithm for bin packing with
k bits of advice that has competitive ratio 1.5 + 15

2k/2+1 .

Proof. From Lemmas 1, 2,3, the competitive ratio of the algorithm is no more
than 1.5 + max

{
15

2k/2+1 , 3
2k−2

, 3
2k/2−2

}
which is 1.5 + 15

2k/2+1 when k ≥ 4. �	

In particular, for k = 16 bits of advice, we achieve a competitive ratio smaller
than 1.530, which is strictly better than any online algorithm.

3 Beyond 1.5-competitiveness with O(1) Advice Bits

We will present and analyze an online algorithm with constant number of advice
bits that has a competitive ratio that is arbitrarily close to 1.47012. To this end,
we will first introduce an algorithm for sequences in which all items are relatively
large, namely larger than 1/3. We will then use this algorithm as a subroutine
in the final algorithm that handles arbitrary sequences.

3.1 Sequences with Items Larger than 1/3

Assume all items are larger than 1/3. We will show that with only 1 bit of advice,
we can achieve solutions which are 1.3904-competitive. For the remainder of this
subsection, an item is said to be small if it is no larger than 1/2, large if it has
size larger than 1/2 and is placed with a small item in the optimal packing, and
huge if it is larger than 1/2 and is alone in its bin in the optimal packing. We use
S, L and H to denote the number of small, large and huge items, respectively.
We can assume that the size of any huge item is no smaller than large items
(otherwise they can be switched and thus obtain another optimal packing). The
cost of Opt for the input sequence σ is then Opt(σ) = H + L/2 + S/2. We use
Opt2(σ) to denote the number of bins in the optimal packing that include two
items, i.e., Opt2(σ) = S/2 + L/2.

The following is the main theorem of this subsection, and will also be used
later in the proof of Lemma 10, in the context of general sequences.

Theorem 2. For a sequence σ in which all items are strictly larger than 1/3,
there is an online algorithm with 1 bit of advice that opens at most H + 1.3904 ·
Opt2(σ) bins.

The following result is direct from Theorem 2, observing that Opt(σ) = H +
Opt2(σ).

Corollary 1. There is an algorithm for online bin packing with items larger
than 1/3 that uses 1 bit of advice and that has competitive ratio 1.3904.

The single advice bit serves the purpose of determining the best algorithm
among two purely online algorithms: AlmostBestFit (Abf) and CrossBest-
Fit (Cbf). Abf is similar to BestFit except that it opens a new bin for each
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item larger than 1/2. Cbf also applies BestFit, but it opens a new bin for each
item smaller than or equal to 1/2.

In order to prove Theorem 2, we consider three different cases and show that
in each case, at least one of Abf and Cbf is better than 1.3904-competitive. To
define these cases, we consider two parameters α and β such that 0 ≤ α ≤ 1 and
1 ≤ β < 2. We will determine the values of these parameters later in the proof.
Note that in an optimal packing, L large items are matched with small items.
We call such two items partners. Thus, the partner of a large item (respectively
a small item) x is a small (respectively large) item which is placed in the same
bin as x in the optimal packing. Let X ≤ L denote the number of large items
which have their partners among the forthcoming items (at the time they are
placed). We consider the following three (exhaustive) cases: I) L ≤ β−1

2−β S, II)
L > β−1

2−β S and X ≥ αL, and III) L > β−1
2−β S and X < αL.

In the final packing of Abf, all small items (except potentially one of them)
are placed with another item. With this observation, we can prove the following
for Case I:

Lemma 4. If L ≤ β−1
2−β S, Abf opens at most H + β · Opt2(σ) bins.

Next, we consider Case II.

Lemma 5. If L > β−1
2−β S and X ≥ αL then Abf opens at most H +(3/2−α/2) ·

Opt2(σ) bins.

Proof. We claim that in the packing of Abf at least X small items are packed
with large items. If this is true, then the number of bins opened by Abf is at most
H+L+(S−X)/2 ≤ H+L+(S−αL)/2 = H+(2−α)L/2+S/2. Note that the ratio
(2−α)L/2+S/2

L/2+S/2 is maximized when L as large as possible, namely when L = S. It

follows that (2−α)L/2+S/2
L/2+S/2 ≤ 3−α

2 , from which we obtain that (2−α)L/2+S/2 ≤
3−α
2 Opt2(σ). We thus conclude that Abf(σ) ≤ H + (3/2 − α/2)Opt2(σ).

It remains to prove the claim. We maintain a mapping of size X as follows
formed by X pairs of items. The mapping is initially formed by the X large items
and their partners which appear later. We use m(y) to denote the mapped item
of an item y. The mapping is said to be valid if it has the following properties:
i) for any pair (x,m(x)) in the mapping, x is larger than 1/2 and x + m(x) ≤ 1;
and ii) for any pair (x,m(x)) in the mapping, x appears earlier than m(x) in the
sequence. Note that the initial mapping is valid. We will show how to maintain
a valid mapping of size X, upon the arrival and packing of each item, in such
a way that all pairs of mapped items are placed in the same bin by the Abf
algorithm.

Suppose that a new item y arrives. If y is larger than 1/2, a new bin is
opened for it and the mapping does not change. Next, suppose that y is small;
moreover, suppose that the pair (z, y) is in the current mapping, for some item
z. If y is placed with z in the same bin, then the mapping does not change.
Assume y is placed with another item z′ which is larger than z (by BestFit
it cannot be placed with a smaller item). If z′ is in the mapping, we replace
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(z, y) with (z′, y) (with a slight abuse of notation, we will say that an element
r is in the mapping if there is an element q such that the pair (r, q) is in the
mapping). Otherwise, since z ≤ z′ we have z+m(z′) ≤ 1. In this case, we replace
(z, y) and (z′,m(z′)) with (z′, y) and (z,m(z′)), respectively. The result is still
a valid mapping. Finally, suppose that y is smaller than 1/2 and it is not in the
mapping. The mapping is not changed after packing y unless y is packed with
an item z which is in the mapping. Note that z cannot be small; otherwise, it
would have been placed with the large item that it is mapped to upon its arrival.
Hence, z is a large item. In this case, we replace the pair (z,m(z)) with (z, y);
this maintains a valid mapping. �	

Finally, it remains to consider Case III. The proof of the following lemma
uses techniques similar to the proof of Lemma 5.

Lemma 6. Suppose L > β−1
2−β S and X < αL then the number of bins opened by

Cbf is at most H + (4 − 2(α + β) + 2αβ) · Opt2(σ).

Proof of Theorem 2. From Lemmas 4, 5, 6, the competitive ratio of the best
algorithm among Abf and Cbf is at most max{β, 3/2−α/2, 4−2(α+β)+2αβ},
where 0 ≤ α ≤ 1 and 1 ≤ β < 2. The optimal choice is β = (7 +

√
17)/8 and

α = (5 − √
17)/4 which gives a competitive ratio at most β < 1.3904. �	

3.2 Arbitrary Sequences

We use the result of the previous section to show that advice of constant size
suffices to achieve a competitive ratio of 1.47012 + ε for any sequence and any
arbitrarily small constant ε, 0 < ε < 1/12. To this end, we first define ε-desirable
solutions.

Definition 2. An ε-desirable packing of a sequence σ is a packing formed by a
set of ε-desirable bins. A bin is ε-desirable and belongs to class 0 if there is an
empty space of size at least ε in the bin. A bin is ε-desirable and belongs to class
i (i ∈ {1, 2, 3}) if its empty space is less than ε and if it includes i items in the
range (1/i − ε, 1/i].

We begin with an outline of our approach. First, we will show that, for
any packing that consists of X ε-desirable bins, there is an online algorithm
DesirableRouding (DR) which opens (1 + ε)X bins and requires advice of
size f(ε), where f is a function of ε (Lemma 7). Given an ε and an optimal
offline packing of a sequence σ, we will define two new packings P1 and P2 in
such a way that at least one of them provides a good approximation of the
optimal packing, and the packings can be approximated in an online manner
with constant advice. More precisely, P1 is an ε-desirable packing of σ. The
packing P2 is comprised of two packings, P2a and P2b, of a partitioning of the
items of σ. P2a is a packing of the items with size at least 1/3, and P2b is an
ε-desirable packing of the items with size no more than 1/3. To approximate P1,
we use the DR algorithm. To approximate P2, we use the algorithm from Section
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3.1 so as to approximate P2a and DR so as to approximate P2b. One additional
bit of advice can determine the best among the two online approximations of P1

and P2.
We now proceed with the technical details of the algorithm.

Lemma 7. Consider an ε-desirable packing Off of a sequence σ. There is an
online algorithm DR with advice of size O(23.7/ε ·log(1/ε)) that outputs a packing
with at most (1 + ε)Off(σ) bins, where Off(σ) is the number of bins in the
desirable packing.

Proof Sketch. We give an outline of the proof. The full details are in the long
version of the paper. Given an ε-desirable packing, the item sizes are rounded
up so that there are m different item sizes or item types, where m is inversely
proportional to ε2. By applying this rounding scheme, there will be a constant
(inversely proportional to ε2) number of possible bin types, where the type of
a bin is based on the number and types of the rounded items packed within.
The advice indicates the approximate value for the fraction of bins from each
bin type in the desirable packing. Each of these values are encoded in k bits,
where k is function of ε. Provided with this advice, DR maintains similar ratios
for the bins of each type that it opens. To accomplish this, instead of opening
single bins, it opens a family of bins in which the bin types are pre-determined
so as to maintain the same fraction of bin types as indicated by the advice. Each
arriving item is packed into the appropriate reserved space based on the bin and
item types. �	

Lemma 7 suggests that we need ε-desirable packings that are good approx-
imations of Opt(σ). Towards this direction, we need to distinguish between
ε-hard and ε-easy bins as follows.

Definition 3. We call a bin ε-hard if it contains two items of size larger than
1/3 such that the total size of these two items is more than 1 − ε. Otherwise, we
call the bin ε-easy.

The following lemma implies that the set of ε-easy bins can be changed into a
set of ε-desirable bins without much overhead. This is accomplished by removing
items so as to make such bins desirable. New bins are opened for these removed
items, in such a way that 3 bins account for one extra bin.

Lemma 8. Given a set of items packed in m ε-easy bins, it is possible to obtain
an ε-desirable packing of these items using at most 4/3 · m + 2 bins.

We now define the packing P1 and the online algorithm that approximates
it. Let H and E denote the number of ε-hard and ε-easy bins in Opt(σ), respec-
tively. Let also γ denote the ratio H /E .

To obtain P1, we apply the procedure of Lemma 8 to transform the E ε-
easy bins in Opt(σ) into at most 4/3E ε-desirable bins. Moreover, by apply-
ing a procedure similar to Lemma 8, we can transform the H ε-hard bins in



50 S. Angelopoulos et al.

Opt(σ) into at most 1.5H ε-desirable bins. To summarize, P1 has at most
1.5H +4/3E = (1.5γ+4/3)E bins (omitting additive constants). From Lemma 7,
the DR algorithm outputs a packing with (1.5γ + 4/3 + ε′)E bins. Comparing
this to Opt(σ) = H + E = (1 + γ)E , we get the following result.

Lemma 9. There is an online algorithm that receives advice of constant size
(dependant on ε) and achieves a competitive ratio of 9γ+8

6γ+6 + ε.

Next, we outline the packing P2 and the online algorithm that approximates
it. In particular, we will define the packings P2a and P2b (as described at the
beginning of this section). For our analysis, we partition the set of ε-easy bins in
the optimal packing into four groups depending on the number of items larger
than 1/2 or 1/3 in these bins. Let E1, E2, E3 and E4 indicate the number of bins
from these groups (E1+E2+E3+E4 = E ). With a similar classifying technique
as in Lemmas 8, 9, we obtain P2 with the following number of bins.

H + 1/2 · E1 + E2 + E3
︸ ︷︷ ︸

P2a:=bins with items>1/3

+ 2ε′H + E1 + 2/3 · E2 + 4/9 · E3 + 4/3 · E4
︸ ︷︷ ︸

P2b:=desirable bins with items≤1/3

To approximate P2a, since it consists of items of size larger than 1/3, we can
use the online algorithm with 1-bit of advice of Section 3.1. To approximate P2b,
since all the bins are ε-desirable, we use the online algorithm DR. This defines
an online algorithm with at most ((1.3904 + 3ε′)γ + 1.8349 + ε′) · E bins. The
formal details can be found in the proof of the following lemma.

Lemma 10. There is an online algorithm that receives advice of constant size
(dependant on ε) and achieves a competitive ratio of 1.3904γ+1.8349

γ+1 + ε.

Theorem 3. There is an online algorithm with advice of constant size (depen-
dant on ε) that achieves a competitive ratio of at most 1.47012 + ε.

Proof. We consider two cases depending on the value of γ. Define γ∗ =
5015/1096 ≈ 4.7633. If γ ≤ γ∗, then we apply the algorithm of Lemma 9; this
gives a ratio of at most 9·γ∗+8

6·γ∗+6 + ε < 1.470112 + ε. If γ > γ∗, then we apply the

algorithm of Lemma 10; the competitive ratio is at most 1.3904·γ∗+1.8349
γ+1 + ε <

1.47012 + ε. �	

4 A 7/6 Lower Bound for Sublinear-Sized Advice

In this section, we prove that any online algorithm with o(n) bits of advice
has a competitive ratio of at least 7/6. Our construction is inspired by the
one given in [10], which showed a lower bound of 9/8. Both lower bounds use a
reduction from a variant of the binary string guessing problem (2-SGKH) [4,12].
In 2-SGKH, the online algorithm must guess an n-length bitstring bit-by-bit.
The value of each bit is revealed after the algorithm makes its guess and the
algorithm incurs a cost of 1 for each incorrect guess. In particular, we use the
binary string guessing problem with promise (2-SGKHβ) that is parameterized
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by β. This problem is the same as 2-SGKH except that the input string is
guaranteed to have exactly a β fraction of 0s (i.e., βn in total). 1

Lemma 11. Any deterministic algorithm for 2-SGKHβ that is guaranteed to
guess correctly more than αn bits, for max {β, 1 − β} < α < 1, requires at least
b(n) = (1 + (1 − α) log(1 − α) + α log α)n − e(γn) − 1 bits of advice, where
γ = min {β, 1 − β} and e(γn) = �log(γn + 1)� + 2 �log (�log(γn + 1)� + 1)� + 1.

Given an instance B of the 2-SGKH1/2 problem with a bitstring of length n,
we construct a request sequence σ for the online bin packing problem with length
2n following [10]. (This is described fully in the long version of the paper.) The
sequence consists of a prefix of n/2 items of size 1/2+ ε, a central part of n items
of size less than 1/2 and a suffix of n/2 items that are the exact complement of
the n/2 smallest items in the central part. Among these n central items, we refer
to the smallest n/2 items as small items and to the remaining items as large
items. We observe that Opt(σ) = n. The n/2 small items are packed with their
complements in the suffix; moreover, the remaining n/2 large items are packed
each with an item of the prefix.

Let B denote an algorithm for the bin packing problem; we will show how
to obtain an online algorithm A for 2-SGKH1/2 that constructs σ and uses B.
B must open a bin for the n/2 items of the prefix of σ. The manner in which B

packs each of n central items will determine the n guesses of A. Let bi be the
i-th such item. Algorithm B has 3 options for packing bi: (1) to open a new bin
for bi; (2) to pack bi in a bin with an item from the prefix; or (3) to pack bi in
a bin with some item bj , j < i. If B chooses option (1), the item is labeled as
small and A guesses 0. If B chooses either option (2) or (3), the item is labeled
as large and A guesses 1.

The following lemma relates the number of incorrect guesses (or number of
mislabeled items) to the number of extra bins opened (in comparison to Opt).
We will use the same accounting technique as in [10], but a new mapping of
incorrect guesses to mislabellings, which leads to an improved bound. More pre-
cisely, we show that each extra bin corresponds to 3 mislabellings (as opposed
to [10], in which the corresponding number equals 4). Let fn denote the family of
all request sequences σ constructed as described above, for all possible bitstrings
of length n with exactly n/2 0s.

Lemma 12. Suppose that there is an algorithm B that uses b(n) bits of advice
and opens at most Opt(σ)+c bins for all σ ∈ fn. Then, there exists an algorithm
for the 2-SGKH1/2 problem that uses b(n) bits of advice and makes at most 3c
errors.

We can now show that Ω(n) advice bits are necessary to obtain a competitive
ratio better than 7/6.
1 Technically, the statement of Lemma 11 is very similar to Lemma 9 in [10]. We note,

however, that the latter is correct only when the number of 0s is n/2. To avoid
any ambiguity, the statement of Lemma 11 is parameterized by β, as opposed to
Lemma 9 in [10].
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Theorem 4. Any deterministic online algorithm with advice for the bin packing
problem requires at least (1 + (1 − α) log(1 − α) + α log α)n − e(n/2) − 1 bits
of advice to be ρ-competitive, 1 < ρ < 7/6, where α = 4 − 3ρ and e(x) =
�log(x + 1)� + 2 �log (�log(x + 1)� + 1)� + 1.
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of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)
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9. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the list update problem
with advice. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
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18. Komm, D., Královič, R.: Advice complexity and barely random algorithms. RAIRO
- Theoretical Informatics and Applications 45(2), 249–267 (2011)

19. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server
problem. Theory of Computing Systems 56(1), 3–21 (2015)

20. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin
packing and scheduling problems. CoRR abs/1311.7589 (2013)

21. Seiden, S.S.: On the online bin packing problem. Journal of the ACM 49, 640–671
(2002)



On the Approximability of Orthogonal Order
Preserving Layout Adjustment

Sayan Bandyapadhyay, Santanu Bhowmick, and Kasturi Varadarajan(B)

Department of Computer Science, University of Iowa, Iowa City, USA
{sayan-bandyapadhyay,santanu-bhowmick,kasturi-varadarajan}@uiowa.edu

Abstract. Given an initial placement of a set of rectangles in the plane,
we consider the problem of finding a disjoint placement of the rectangles
that minimizes the area of the bounding box and preserves the orthogonal
order i.e. maintains the sorted ordering of the rectangle centers along
both x-axis and y-axis with respect to the initial placement. This problem
is known as Layout Adjustment for Disjoint Rectangles (LADR). It was
known that LADR is NP-hard, but only heuristics were known for it. We
show that a certain decision version of LADR is APX-hard, and give a
constant factor approximation for LADR.

1 Introduction

Graphs are often used to visualize relationships between entities in diverse fields
such as software engineering (e.g. UML diagrams), VLSI (circuit schematics) and
biology (e.g. biochemical pathways) [13]. For many such applications, treating
graph nodes as points is insufficient, since each node may have a corresponding
label explaining its significance. The presence of labels may lead to node over-
lapping. For the typical user, an uncluttered layout is more important than the
amount of information presented [21]. For complex graphs, it is tedious to create
meaningful layouts by hand, which has led to algorithms for layout generation.

Layout generation algorithms typically take a combinatorial description of
a graph, and return a corresponding layout. Nodes are usually represented by
boxes, and edges by lines connecting the boxes. For simplicity, the edges of the
graph are ignored while creating the modified layout. In some interactive sys-
tems, modifications to the graph may happen in multiple stages. The layout must
be adjusted after each alteration (if new nodes added overlap existing nodes),
such that the display area is minimized. If we use layout creation algorithms after
each iteration, we may get a layout that is completely different from the previous
layout, which may destroy the ‘mental map’ of the user who is interacting with
the system. Thus, we need an additional constraint in the form of maintaining
some property of the layout, which would be equivalent to preserving the mental
map. Eades et al. [6] defined orthogonal ordering as one of the key properties
that should be maintained in an adjusted layout to preserve the user’s mental
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map. Two layouts of a graph have the same orthogonal ordering if the horizontal
and vertical ordering of the nodes are identical in both layouts.

We now state the problem studied in this paper, which involves laying out
rectangles that represent the nodes in the graph being adjusted. We are given
a set of rectangles R (each ri ∈ R is defined by an ordered pair, ri = (wi, hi),
denoting its width and height respectively) and an initial layout λin. A layout
consists of an assignment λ : R → R

2 of coordinates to the centers of rectan-
gles in R. The goal is to find a layout in which no two rectangles intersect and
orthogonal ordering of the rectangle centers w.r.t λin is maintained, while mini-
mizing the area of the bounding box of the layout. We refer to this problem as
Layout Adjustment for Disjoint Rectangles (LADR). Note that R is really a set
of rectangle dimensions, and not a set of rectangles. Nevertheless, we will refer
to R as a set of rectangles. See Section 2 for a more leisurely problem statement.

1.1 Previous Work

The concept of a mental map was introduced in [6], along with three quantitative
models representing it - orthogonal ordering, proximity relations and topology.
A framework for analyzing the various models of a mental map was presented
in [4], which determined that orthogonal ordering constraint was the best metric
for comparing different drawings of the same graph. A user study designed to
evaluate human perceptions of similarity amongst two sets of drawings was given
in [5], in which orthogonal ordering constraints received the highest rankings.

There has been a lot of work done using the concept of preserving mental
maps. LADR was first introduced in [18], in which the authors described the
Force-Scan (FS) algorithm. FS scans for overlapping nodes in both horizontal
and vertical directions, and separates two intersecting nodes by “forcing” them
apart along the line connecting the centers of the two nodes, while ensuring that
the nodes being forced apart do not intersect any additional nodes in the layout.
In [12], a modification of FS was presented (FS′), which resulted in a more
compact layout than FS. Another version of FS algorithm, called the Force-
Transfer (FT) algorithm, was given in [14]. For any two overlapping nodes,
denote the vertical distance to be moved to remove the overlap as dv, and let
the horizontal distance for removing overlap be dh. FT moves the overlapping
node horizontally if dh < dv, else vertically, and experimentally, it has been
shown that FT gives a layout of smaller area than FS and FS′.

FS, FS′ and FT belong to the family of force based layout algorithms. Spring
based algorithms treat edges as springs obeying Hooke’s Law, and the nodes
are pushed apart or pulled in iteratively to balance the forces till an equilib-
rium is reached. A spring based algorithm ODNLS, which adjusts the attrac-
tive/repulsive force between two nodes dynamically, is proposed in [16], which
preserves the orthogonal ordering of the input layout and typically returns a
smaller overlap-free layout than the force-based family of algorithms. It is worth
noting that none of the algorithms mentioned above give a provable worst-case
guarantee on the quality of the output.
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The hardness of preserving orthogonal constraints w.r.t various optimization
metrics has also been well-studied. Brandes and Pampel [3] showed that it is
NP-hard to determine if there exists an orthogonal-order preserving rectilinear
drawing of a simple path, and extend the result for determination of uniform
edge-length drawings of simple paths with same constraints. LADR was shown
to be NP-hard by Hayashi et al. [12], using a reduction from 3SAT .

1.2 Related Work

Algorithms for label placement and packing that do not account for orthogonal
ordering have been extensively studied. The placement of labels corresponding
to points on a map is a natural problem that arises in geographic information
systems (GIS). In particular, placing labels on maps such that the label boundary
coincides with the point feature has been a well-studied problem. A common
objective in such label-placement problems is to maximize the number of features
labelled, such that the labels are pairwise disjoint. We refer to [2,15] as examples
of this line of work.

Packing rectangles without orthogonality constraints has also been well-
studied. One such problem is the strip packing problem, in which we want to
pack a set of rectangles into a strip of given width while minimizing the height of
the packing. It is known that the strip-packing problem is strongly NP-hard [17].
It can be easily seen that if the constraint for orthogonal order preservation is
removed, then LADR can be reduced to multiple instances of strip packing prob-
lem. There has been extensive work done on strip packing [10,19,20], with the
current best algorithm being a 5/3 + ε-approximation by Harren et al. [9].

Another related packing problem is the two-dimensional geometric knapsack
problem, defined as follows. The input consists of a set of weighted rectangles and
a rectangular knapsack, and the goal is to find a subset of rectangles of maximum
weight that can be placed in the knapsack such that no two rectangles have an
overlap. The 2D-knapsack problem is known to be strongly NP-hard even when
the input consists of a set of unweighted squares [17]. Recently, Adamaszek
and Wiese [1] gave a quasi-polynomial time (1 + ε) approximation scheme for
this problem, with the assumption that the input consists of quasi-polynomially
bounded integers.

1.3 Our Results

We point out an intimate connection between LADR and the problem of hitting
segments using a minimum number of horizontal and vertical lines. In particular,
the segments to be hit are the ones connecting each pair of rectangle centers in
the input layout. The connection to the hitting set is described in Section 3.
To our knowledge, this connection to hitting sets has not been observed in the
literature. We exploit the connection to hitting set to prove hardness results
for LADR in Section 4 that complement the NP-completeness result in [12]. We
show that it is APX-hard to find a layout that minimizes the perimeter of the
bounding box. We also show that if there is an approximate decision procedure
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that determines whether there is a layout that fits within a bounding box of
specified dimensions, then P = NP. These hardness results hold even when the
input rectangles are unit squares. The results for LADR follow from a hardness
of approximation result that we show for a hitting set problem. The starting
point of the latter is the result of Hassin and Megiddo [11] who show that
it is NP-hard to determine if there is a set of k axis-parallel lines that hit a
set of horizontal segments of unit length. The added difficulty that we need to
overcome is that in our case, the set of segments that need to be hit cannot be
arbitrarily constructed. Rather, the set consists of all segments induced by a set
of arbitrarily constructed points. Due to space constraints, we defer most of the
proofs to the full version of our paper.

It is possible to exploit this connection to hitting sets and use known algo-
rithms for hitting sets (e.g. [8]) to devise an O(1) approximation algorithm for
LADR. Instead, we describe (in Section 5) a direct polynomial time algorithm
for LADR that achieves a 4(1+o(1)) approximation. This is the first polynomial
time algorithm for LADR with a provable approximation guarantee. The algo-
rithm involves solving a linear-programming relaxation of LADR followed by a
simple rounding.

2 Preliminaries

We define a layout λ of a set of rectangles R as an assignment of coordinates to
the center of each rectangle r ∈ R i.e. λ : R → R

2. Our input for LADR consists
of a set of rectangles R, and an initial layout λin. We will assume that λin is
injective, i.e. no two rectangle centers coincide in the input layout. A rectangle
r is defined by its horizontal width wr and vertical height hr, both of which are
assumed to be integral. It is given that all rectangles are axis-parallel in λin, and
rotation of rectangles is not allowed in any adjusted layout.

The coordinates of center of r in layout λ is denoted by λ(r) = (xr, yr).
For brevity, we denote the x-coordinate of λ(r) by λx(r), and the corresponding
y-coordinate by λy(r). The set of points {λ(r) : r ∈ R} is denoted by λ(R).

A pair of rectangles r, r′ ∈ R is said to intersect in a layout λ if and only if

|λx(r) − λx(r′)| <
wr + wr′

2
and |λy(r) − λy(r′)| <

hr + hr′

2
. (1)

A layout λ is termed as a disjoint layout if no two rectangles in R intersect
with each other. Let Wl(λ) and Wr(λ) denote the x-coordinates of the left and
right sides of the smallest axis-parallel rectangle bounding the rectangles of R
placed by λ, respectively. We then define the width of the layout, W (λ) =
Wr(λ) − Wl(λ). Similarly, let Ht(λ) and Hb(λ) define the y-coordinates of the
top and bottom of the bounding rectangle, and the height of the layout is defined
as H(λ) = Ht(λ)−Hb(λ). The area of λ is thus defined as A(λ) = H(λ)×W (λ).
The perimeter of λ is 2(H(λ) + W (λ)).

Let λ and λ′ be two layouts of R. Then, λ and λ′ are defined to have the
same orthogonal ordering if for any two rectangles r, r′ ∈ R,
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λx(r) < λx(r′) ⇐⇒ λ′
x(r) < λ′

x(r′) (2)
λy(r) < λy(r′) ⇐⇒ λ′

y(r) < λ′
y(r′) (3)

λx(r) = λx(r′) ⇐⇒ λ′
x(r) = λ′

x(r′) (4)
λy(r) = λy(r′) ⇐⇒ λ′

y(r) = λ′
y(r′) (5)

For any R and corresponding λin, the minimal area of a layout is defined as:
Amin = inf{A(λ) : λ is a disjoint layout, λ has same orthogonal ordering as λin}
It should be noted that it may not be possible to attain a disjoint orthogonality
preserving layout whose area is the same as Amin - we can only aim to get a
layout whose area is arbitrarily close to Amin.

Let φ(p, p′) be the segment whose endpoints are points p, p′. Then the set of
segments induced by a set of points P is defined as Φ(P ) = {φ(p, p′) : p, p′ ∈
P, p �= p′}, denoted by Φ when P is clear from the context.

We also consider a simpler version of LADR where the set of rectangles
R consists of unit squares. We call this version as the Layout Adjustment for
Disjoint Squares problem, and refer to it as LADS for brevity.

3 Reduction of LADS to Hitting Set

We formally define a unit grid as follows. Let f : R
2 → Z

2 be the function
f(x, y) = (�x�, �y�). The function f induces a partition of R2 into grid cells -
grid cell (i, j) is the set {p ∈ R

2 | f(p) = (i, j)}. We call this partition a unit
grid on R

2. The ‘grid lines’ are the vertical lines x = α and y = α for integer α.
Let S be the set of unit squares provided as input to LADS, having initial

layout λin. Consider a disjoint, orthogonal order preserving layout λ for S . Let L
be the subset consisting of those grid lines that intersect the minimum bounding
box of λ(S). Let φ be the line segment connecting the points λ(s) and λ(s′), for
some s, s′ ∈ S. Since the layout λ is disjoint, λ(s) and λ(s′) lie in different grid
cells. Thus, there exists at least one line τ ∈ L that intersects φ. Motivated by
this, we define a hitting set problem as follows.

We say a line τ hits a line segment φ if τ intersects the relative interior of
φ but not either end point of φ. Thus, if φ is a horizontal line segment, then φ
cannot be hit by a horizontal line τ ∈ L. We thus define the Uniform Hitting
Set (UHS) problem as follows:

Definition 1 (Uniform Hitting Set - Decision Problem). Given a set of
segments Φ induced by a point set P and a non-negative integer k, is there a set
of axis-parallel lines L that hit all segments in Φ, such that |L| ≤ k?

Since the area of the minimum bounding box for λ(S) is roughly the product
of the number of horizontal grid lines intersecting it and the number of vertical
grid lines intersecting it, we also need the following variant.
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Definition 2 (Constrained Uniform Hitting Set - Decision Problem).
Given a set of line segments, Φ, induced by a set of points P , and non negative
integers r, c, is it possible to hit all segments in Φ with a set of lines L containing
at most r horizontal lines and c vertical lines ?

The term ‘uniform’ in the problem name refers to the fact that each segment
in Φ needs to be hit only once by a horizontal or vertical line. We denote the
problem thus defined as CUHS, and proceed to show its equivalence with a
constrained version of the layout adjustment problem.

Definition 3 (Constrained LADS - Decision Problem). Given n unit
squares S, initial layout λin, positive integers w, h and a constant 0 < ε < 1,
is there a layout λ′ having height H(λ′) ≤ h + ε and width W (λ′) ≤ w + ε,
satisfying the following conditions?

1. λ′ is a disjoint layout.
2. λin and λ′ have the same orthogonal order.

We term the constrained version of layout adjustment problem as CLADS.
We now show how to transform a given instance of CLADS into an instance of
CUHS. We define Φ as the set of all line segments induced by points in λin(S).

Lemma 1. If there is a set of lines L containing at most r horizontal lines and
at most c vertical lines that hit all segments in Φ, then there is a disjoint layout
λ′ that has the same orthogonality as λin and whose height and width is bounded
by h + ε and w + ε, for any ε > 0. Here h = r + 1, w = c + 1.

To solve LADS by multiple iterations of a procedure for solving CUHS, it
would be useful to guess the width of a disjoint layout with near-optimal area.
The following observation allows us to restrict our attention to layouts with
near integral width. That makes it possible to discretize LADS, by solving a
constrained version of LADS for all values of widths in {1, 2, . . . , |S|}.

Lemma 2. Any disjoint layout λ can be modified into a disjoint layout λ′ having
the same height and orthogonal ordering as λ, such that W (λ′)(≤ W (λ)) lies in
the interval [w,w+ε], where w ∈ {1, 2, . . . , |S|} and ε > 0 is an arbitrarily small
constant.

We can similarly modify a disjoint layout λ into an orthogonal order preserv-
ing disjoint layout λ′ which has the same width, and whose height lies in the
interval [h, h + ε] for some integer h > 0. Thus, combining the two methods, we
obtain the following corollary:

Corollary 3. Any disjoint layout λ can be modified into an orthogonal order
preserving disjoint layout λ′, such that W (λ′)(≤ W (λ)) lies in the interval
[w,w + ε] and H(λ′)(≤ H(λ)) lies in the interval [h, h + ε], where w, h ∈
{1, 2, . . . , |S|} and ε > 0 is an arbitrarily small constant.
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Lemma 4. For any ε < 1/2, if there is a disjoint layout λ′ that has the same
orthogonality as λin and whose height and width is bounded by h + ε and w +
ε respectively, where h,w are positive integers, then there is a set of lines L
containing at most c vertical lines and r horizontal lines that hit all segments in
Φ. Here r = h − 1, c = w − 1.

Lemmas 1 and 3 and Corollary 4 show the close connection between CLADS
and CUHS. In subsequent sections, we exploit this connection to derive hardness
results for CLADS.

4 Inapproximability of Layout Adjustment Problems

In this section, we prove APX-hardness of various layout adjustment problems.
We consider a variant of LADS where instead of minimizing the area, we would
like to minimize the perimeter of the output layout. We prove an inapprox-
imability result for this problem which readily follows from APX-hardness of
the Uniform Hitting Set problem. We also show that the decision problem Con-
strained LADS (CLADS) is NP-hard. Recall that in this problem, given an initial
layout of n unit squares, positive integers w, h, and a constant ε > 0, the goal is
to determine if there is an orthogonal order preserving layout having height and
width at most h+ε and w+ε respectively. To be precise, we show a more general
inapproximability result for this problem. We prove that there exists 0 < ξ < 1
such that, given an instance of CLADS, it is NP-hard to determine whether there
is an output layout of height and width at most h + ε and w + ε respectively, or
there is no output layout of respective height and width at most (1 + ξ)(h + ε)
and (1+ ξ)(w + ε). This result follows from the connection of CLADS with Con-
strained Uniform Hitting Set (CUHS) described in Section 3 and APX-hardness
of CUHS. The APX-hardness of CUHS follows from the APX-hardness of UHS,
to which we turn to next.

APX-Hardness of Hitting Set Problem. We consider the optimization version of
UHS, in which given a set of points P , the goal is to find minimum number of
vertical and horizontal lines that hit all segments in Φ(P ). In this section, we
prove that there exists some 0 < ξ < 1 such that there is no polynomial time
(1 + ξ)-factor approximation algorithm for UHS, unless P = NP. Note that the
UHS problem we consider here is a special case of the hitting set problem where,
given any set of segments S, the goal is to find a hitting set for S. This problem
is known to be NP-hard. But, in case of UHS, given a set of points, we need to hit
all the segments induced by the points. Thus the nontriviality in our result is to
show that even this special case of hitting set is not only NP-hard, but also hard
to approximate. To prove the result we reduce a version of maximum satisfiability
problem (5-OCC-MAX-3SAT) to UHS. 5-OCC-MAX-3SAT is defined as follows.
Given a set X of n boolean variables and a conjunction φ of m clauses such that
each clause contains precisely three distinct literals and each variable is contained
in exactly five clauses (m = 5n

3 ), the goal is to find a binary assignment of the
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variables in X so that the maximum number of clauses of φ are satisfied. The
following theorem follows from the work of Feige [7].

Theorem 5. For some γ > 0, it is NP-hard to distinguish between an instance
of 5-OCC-MAX-3SAT consisting of all satisfiable clauses, and one in which less
than (1 − γ)-fraction of the clauses can be satisfied.

The crux of the hardness result is to show the existence of a reduction from
5-OCC-MAX-3SAT to UHS having the following properties:

1. Any instance of 5-OCC-MAX-3SAT in which all the clauses can be satisfied,
is reduced to an instance of UHS in which the line segments in Φ(P ) can be
hit using at most k lines, where k is a function of m and n.

2. Any instance of 5-OCC-MAX-3SAT in which less than 1 − δ (for 0 < δ ≤ 1)
fraction of the clauses can be satisfied, is reduced to an instance of UHS in
which more than (1 + 1

55δ)k lines are needed to hit the segments in Φ(P ).

The complete reduction appears in the full paper. The next theorem follows
from the existence of such a reduction and from Theorem 5.

Theorem 6. There is no polynomial time (1 + ξ)-factor approximation algo-
rithm for UHS with ξ ≤ 1

55γ, unless P = NP, γ being the constant in Theorem 5.

Now we consider the variant of LADS where we would like to minimize the
perimeter 2(w+v) of the output layout, where w and v are the width and height
of the layout respectively. We refer to this problem as Layout Adjustment for
Disjoint Squares - Minimum Perimeter (LADS-MP). We note that in UHS we
minimize the sum of the number of horizontal and vertical lines (k = r+c). Thus
by Lemma 1 and Lemma 4 it follows that a solution for UHS gives a solution
for LADS-MP (within an additive constant) and vice versa. Hence the following
theorem easily follows from Theorem 6.

Theorem 7. No polynomial time (1+ξ′)-factor approximation algorithm exists
for LADS-MP with ξ′ = ξ

4 , unless P = NP, ξ being the constant in Theorem 6.

Inapproximability of CUHS. We show that if there is a polynomial time approxi-
mate decision algorithm for Constrained Uniform Hitting Set - Decision Problem
(CUHS), then P = NP. We use the inapproximability result of UHS for this pur-
pose. See Definition 2 for the definition of CUHS. Now we have the following
theorem whose proof follows from Theorem 6.

Theorem 8. Suppose there is a polynomial time algorithm that, given Φ(P ) and
non-negative integers r, c as input to CUHS,

(1) outputs “yes”, if there is a set with at most c vertical and r horizontal lines
that hits the segments in Φ(P ); and

(2) outputs “no”, if there is no hitting set for Φ(P ) using at most (1+ξ)c vertical
and (1 + ξ)r horizontal lines, where ξ is the constant in Theorem 6.

Then P = NP.
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Inapproximability of CLADS. We show that the existence of a polynomial time
approximate decision algorithm for CLADS implies P = NP. See Definition 3
for the definition of CLADS. Now we have the following theorem whose proof
follows from Theorem 8.

Theorem 9. Suppose there is a polynomial time algorithm that, given S, λin,
w, h, and ε as input to CLADS,

(1) outputs “yes”, if there is an output layout λ′ with H(λ′) ≤ h+ε and W (λ′) ≤
w + ε; and

(2) outputs “no”, if there is no output layout λ′ with H(λ′) ≤ (1 + ξ′)(h + ε)
and W (λ′) ≤ (1+ ξ′)(w + ε), where ξ′ = ξ

4 and ξ is the constant in Theorem
6.

Then P = NP.

5 Approximation Algorithm

In this section, we describe an approximation algorithm for LADR i.e. for a
set R of axis-parallel rectangles having initial layout λin, we need to find a
disjoint layout of minimum area that preserves the orthogonal ordering of λin.
Let Wmax = max{wr | r ∈ R} and Hmax = max{hr | r ∈ R} be the maximum
width and maximum height, respectively, amongst all rectangles in R. Lemma
2 showed that if the input consists of a set of squares S, any disjoint layout of
S can be modified into a disjoint layout having same orthogonality such that its
width is arbitrarily close to an integer from the set {1, . . . , |S|}. It can be seen
that Lemma 2 can be extended in a straightforward manner for a set of axis-
parallel rectangles R i.e. any disjoint layout of R can be modified into a disjoint
orthogonal-order preserving layout having a width that is arbitrarily close to
an integer from the set {Wmax,Wmax + 1, . . . , WR}, where WR =

∑

r∈R

wr. We

henceforth state Corollary 3 in the context of LADR as follows.

Corollary 10. Let WR =
∑

r∈R

wr and HR =
∑

r∈R

hr be the sum of the widths

and sum of the heights of all the rectangles in R, respectively. Then, any disjoint
layout λ of R can be modified into an orthogonal order preserving layout λ′ of R,
such that W (λ′)(≤ W (λ)) lies in the interval [w,w+ε] and H(λ′)(≤ H(λ)) lies in
the interval [h, h+ε], where w ∈ {Wmax,Wmax+1, . . . , WR}, h ∈ {Hmax,Hmax+
1, . . . , HR} and ε > 0 is an arbitrarily small constant.

Using Corollary 10, we know that for any disjoint layout λ of R, there is a
corresponding disjoint layout λ′ having the same orthogonal order as λ, whose
height and width are arbitrarily close to an integer from a known set of integers.
Hence, we look at all disjoint orthogonality preserving layouts in that range, and
choose the one with the minimum area as our solution.

Given positive integers w ∈ {Wmax,Wmax + 1, . . . , WR} and h ∈
{Hmax,Hmax+1, . . . , HR}, we formulate as a LP the problem of whether there is
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an orthogonal order preserving layout λ with W (λ) ≤ w+ε, H(λ) ≤ h+ε. Here
we fix some 0 < ε < 1. Recall that a layout λ assigns a location λ(r) = (xr, yr)
for the center of each rectangle r ∈ R. The variables of our linear program are
∪r∈R{xr, yr}. For any two rectangles r, r′ ∈ R, λin

x (r) < λin
x (r′) implies that

xr < x′
r. We add such a constraint for each pair of rectangles in R, both for

x-coordinate and y-coordinate of the layout. Similarly, we add the constraint
xr = x′

r for all pair of rectangles r, r′ ∈ R for which λin
x (r) = λin

x (r′). These
constraints ensure orthogonality is preserved in the output layout.

We now look at constraints that ensure disjointness of the output layout. Let
r and r′ be two rectangles in the initial layout λin, having dimensions (wr, hr) and
(wr′ , hr′) respectively. We define w(r, r′) = wr+wr′

2 and h(r, r′) = hr+hr′
2 . Let

xdiff(r, r′) =

{
xr − xr′ , if λin

x (r′) ≤ λin
x (r)

xr′ − xr, otherwise
. We define ydiff(r, r′) analogously.

If r, r′ are disjoint in some layout, then either their x-projections or their y-
projections are disjoint in that layout. Equivalently, either the difference in x-
coordinates of the centers of rectangles r, r′ is at least w(r, r′), or the difference
in y-coordinates of the centers is at least h(r, r′). We thus get the following LP:

xr < xr′ ∀r, r′ ∈ R : λin
x (r) < λin

x (r′) (6)

xr = xr′ ∀r, r′ ∈ R : λin
x (r) = λin

x (r′) (7)

yr < yr′ ∀r, r′ ∈ R : λin
y (r) < λin

y (r′) (8)

yr = yr′ ∀r, r′ ∈ R : λin
y (r) = λin

y (r′) (9)
(
xr′ +

wr′

2

)
−

(
xr − wr

2

)
≤ w + ε ∀r, r′ ∈ R : λin

x (r) < λin
x (r′) (10)

(

yr′ +
hr′

2

)

−
(

yr − hr

2

)

≤ h + ε ∀r, r′ ∈ R : λin
y (r) < λin

y (r′) (11)

xdiff(r, r′)
w(r, r′)

+
ydiff(r, r′)

h(r, r′)
≥ 1 ∀r, r′ ∈ R (12)

Inequalities (6) to (9) model the orthogonal ordering requirement for a lay-
out, while Inequalities (10) to (11) restrict the width and height of the layout
respectively. Since any two rectangles r, r′ in a disjoint layout are separated by
at least half the sum of their widths in the x-direction (w(r, r′)) or at least half
the sum of their heights in the y-direction (h(r, r′)), Inequality (12) ensures that
every such layout is a valid solution for the linear program. We incorporate the
linear program into Algorithm 1 for solving LADR.

Lemma 11. ApproxLADR(R, λin) returnsa4 + O(ε)-approximation forLADR.

Proof. Let λw,h be any feasible layout returned by the LP in Line 4, for some
value of w, h. Let r, r′ be two rectangles in R, and assume that λin

x (r) > λin
x (r′),

λin
y (r) > λin

y (r′). (The other cases are symmetric). By Inequality (12), either
xdiff(r,r′)

w(r,r′) ≥ 1
2 or ydiff(r,r′)

h(r,r′) ≥ 1
2 . Without loss of generality, assume its the for-

mer. Consider the layout λ = 2λw,h, as in Line 7. Hence, our assumption that
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Algorithm 1. ApproxLADR(R, λin)

Input: A set of rectangles R, and initial layout λin.
Output: A disjoint layout that has the same orthogonal order as λin.
1: for w = Wmax to WR do
2: for h = Hmax to HR do
3: if LP stated in Inequalities (6) to (12) is feasible then
4: λw,h ← Layout returned by solution of LP.
5: if λmin is undefined or A(λw,h) < A(λmin) then
6: λmin ← λw,h

7: Define λ(R) = 2 · λmin(R) i.e. λ(r) =
(
2 ∗ λmin

x (r), 2 ∗ λmin
y (r)

)
, ∀r ∈ R

8: return The layout λ.

xdiff(r,r′)
w(r,r′) ≥ 1

2 implies that λx(r) − λx(r′) = 2xr − 2xr′ ≥ w(r, r′), which satisfies
the criteria for disjointness in Inequality (1). Since the final layout λ returned
by the algorithm equals 2 · λw′,h′ for some feasible layout λw′,h′ , λ is a disjoint
layout that also satisfies the constraints for orthogonal ordering.

Let λ∗ be any disjoint layout preserving the orthogonal ordering of λin. We
may assume, by Corollary 10, that its width is in the interval [w′, w′ + ε] and
its height is in the interval [h′, h′ + ε], for some integers w′ ∈ {Wmax,Wmax +
1, . . . , WR}, h′ ∈ {Hmax,Hmax + 1, . . . , HR} and ε as fixed in the LP. Consider
the iteration of the inner for loop in Algorithm 1 with w = w′ and h = h′. Since
λ∗ is a valid solution for the LP, the layout λw,h computed in Line 4 (and hence
λmin) has an area that is at most (w′ + ε)(h′ + ε). Algorithm 1 returns a layout
λ(R) obtained by multiplying each of the coordinates in λmin by a factor of 2.
Hence, the layout λ(R) has width at most 2(w′ +ε) and height at most 2(h′ +ε),
ensuring that A(λ) ≤ 4 ∗ (w′ + ε)(h′ + ε).

We note that since WR,HR are not polynomial in the input size, the resultant
algorithm is a pseudo-polynomial time algorithm. But by searching across expo-
nentially increasing value of widths, and thereby losing a small approximation
factor, we can obtain a 4(1 + o(1)) polynomial time approximation for LADR.
We also note that our approach can be used to get a 2(1 + o(1)) approximation
for the problem of finding a layout of rectangles that minimizes the perimeter.
We conclude by summarizing our result as follows:

Theorem 12. There is a polynomial time algorithm that returns a 4(1 + o(1))-
approximation for LADR i.e. given a set of rectangles R and an initial layout
λin, it returns an orthogonal order preserving disjoint layout whose area is at
most 4(1 + o(1)) times the area attainable by any such layout.
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Abstract. Let P be a set of n points in general position in the plane
which is partitioned into color classes. P is said to be color-balanced if the
number of points of each color is at most �n/2�. Given a color-balanced
point set P , a balanced cut is a line which partitions P into two color-
balanced point sets, each of size at most 2n/3+1. A colored matching of P
is a perfect matching in which every edge connects two points of distinct
colors by a straight line segment. A plane colored matching is a colored
matching which is non-crossing. In this paper, we present an algorithm
which computes a balanced cut for P in linear time. Consequently, we
present an algorithm which computes a plane colored matching of P
optimally in Θ(n log n) time.

1 Introduction

Let P be a set of n points in general position (no three points on a line) in the
plane. Assume P is partitioned into color classes, i.e., each point in P is colored
by one of the given colors. P is said to be color-balanced if the number of points
of each color is at most �n/2�. In other words, P is color-balanced if no color is
in strict majority. For a color-balanced point set P , we define a feasible cut as a
line � which partitions P into two point sets Q1 and Q2 such that both Q1 and
Q2 are color-balanced. In addition, if the number of points in each of Q1 and Q2

is at most 2n/3 + 1, then � is said to be a balanced cut. The well-known ham-
sandwich cut (see [10]) is a balanced cut: given a set of 2m red points and 2m
blue points in general position in the plane, a ham-sandwich cut is a line � which
partitions the point set into two sets, each of them having m red points and m
blue points. Feasible cuts and balanced cuts are useful for convex partitioning of
the plane and for computing plane structures, e.g., plane matchings and plane
spanning trees.

Let n be an even number. Let {R,B} be a partition of P such that
|R| = |B| = n/2. Let Kn(R,B) be the complete bipartite geometric graph on
P which connects every point in R to every point in B by a straight-line edge.
An RB-matching in P is a perfect matching in Kn(R,B). Assume the points
in R are colored red and the points in B are colored blue. An RB-matching in
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P is also referred to as a red-blue matching or a bichromatic matching. A plane
RB-matching is an RB-matching in which no two edges cross. Let {P1, . . . , Pk},
where k ≥ 2, be a partition of P . Let Kn(P1, . . . , Pk) be the complete multipar-
tite geometric graph on P which connects every point in Pi to every point in Pj

by a straight-line edge, for all 1 ≤ i < j ≤ k. Imagine the points in P to be col-
ored, such that all the points in Pi have the same color, and for i �= j, the points
in Pi have a different color from the points in Pj . We say that P is a k-colored
point set. A colored matching of P is a perfect matching in Kn(P1, . . . , Pk). A
plane colored matching of P is a perfect matching in Kn(P1, . . . , Pk) in which no
two edges cross. See Figure 1(a) (see the online version for colored figures).

In this paper we consider the problem of computing a balanced cut for a
given color-balanced point set in general position in the plane. We show how to
use balanced cuts to compute plane matchings in multipartite geometric graphs.

�

(a) (b)

Fig. 1. (a) A plane colored matching. (b) Recursive ham sandwich cuts.

1.1 Previous Work

1.1.1 2-Colored Point Sets
Let P be a set of n = 2m points in general position in the plane. Let {R,B} be
a partition of P such that |R| = |B| = m. Assume the points in R are colored
red and the points in B are colored blue. It is well-known that Kn(R,B) has
a plane RB-matching [1]. In fact, a minimum weight RB-matching, i.e., a per-
fect matching that minimizes the total Euclidean length of the edges, is plane.
A minimum weight RB-matching in Kn(R,B) can be computed in O(n2.5 log n)
time [13], or even in O(n2+ε) time [2]. Consequently, a plane RB-matching can
be computed in O(n2+ε) time. As a plane RB-matching is not necessarily a min-
imum weight RB-matching, one may compute a plane RB-matching faster than
computing a minimum weight RB-matching. Hershberger and Suri [8] presented
an O(n log n) time algorithm for computing a plane RB-matching. They also
proved a lower bound of Ω(n log n) time for computing a plane RB-matching,
by providing a reduction from sorting.

Alternatively, one can compute a plane RB-matching by recursively applying
the ham sandwich theorem; see Figure 1(b). We say that a line � bisects a point
set R if both sides of � have the same number of points of R; if |R| is odd, then
� contains one point of R.
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Theorem 1 (Ham Sandwich Theorem). For a point set P in general posi-
tion in the plane which is partitioned into sets R and B, there exists a line that
simultaneously bisects R and B.

A line � that simultaneously bisects R and B can be computed in O(|R| + |B|)
time, assuming R ∪ B is in general position in the plane [10]. By recursively
applying Theorem 1, we can compute a plane RB-matching in Θ(n log n) time.

1.1.2 3-Colored Point Sets
Let P be a set of n = 3m points in general position in the plane. Let {R,G,B}
be a partition of P such that |R| = |G| = |B| = m. Assume the points in
R are colored red, the points in G are colored green, and the points in B are
colored blue. A lot of research has been done to generalize the ham sandwich
theorem to 3-colored point sets, see e.g. [4,5,9]. It is easy to see that there
exist configurations of P such that there exists no line which bisects R, G,
and B, simultaneously. Furthermore, for some configurations of P , for any k ∈
{1, . . . , m − 1}, there does not exist any line � such that an open half-plane
bounded by � contains k red, k green, and k blue points (see [5] for an example).
For the special case, where the points on the convex hull of P are monochromatic,
Bereg and Kano [5] proved that there exists an integer 1 ≤ k ≤ m − 1 and an
open half-plane containing exactly k points from each color.

Bereg et al. [4] proved that if the points of P are on any closed Jordan
curve γ, then for every integer k with 0 ≤ k ≤ m there exists a pair of disjoint
intervals on γ whose union contains exactly k points of each color. In addition,
they showed that if m is even, then there exists a double wedge that contains
exactly m/2 points of each color.

Now, let P be a 3-colored point set of size n in general position in the plane,
with n even. Assume the points in P are colored red, green, and blue such that P
is color-balanced. Let R, G, and B denote the set of red, green, and blue points,
respectively. Note that |R|, |G|, and |B| are at most �n/2�, but, they are not
necessarily equal. Kano et al. [9] proved the existence of a feasible cut, when the
points on the convex hull of P are monochromatic.

Theorem 2 (Kano et al. [9]). Let P be a 3-colored point set in general position
in the plane, such that P is color-balanced and |P | is even. If the points on the
convex hull of P are monochromatic, then there exists a line � which partitions
P into Q1 and Q2 such that both Q1 and Q2 are color-balanced and have an even
number of points and 2 ≤ |Qi| ≤ |P | − 2, for i = 1, 2.

They also proved the existence of a plane perfect matching in Kn(R,G,B)
by recursively applying Theorem 2. Their proof is constructive. Although they
did not analyze the running time, it can be shown that their algorithm runs in
O(n2 log n) time as follows. If the size of the largest color class is exactly n/2,
then consider the points in the largest color class as R and the other points as B,
then compute a plane RB-matching; and we are done. If there are two adjacent
points of distinct colors on the convex hull, then match these two points and
recurse on the remaining points. Otherwise, if the convex hull is monochromatic,
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pick a point p ∈ P on the convex hull and sort the points in P \ {p} around p.
A line �—partitioning the point set into two color-balanced point sets—is found
by scanning the sorted list. Then recurse on each of the partitions. To find � they
spend O(n log n) time. The total running time of their algorithm is O(n2 log n).

Based on the algorithm of Kano et al. [9], we can show that a plane perfect
matching in Kn(R,G,B) can be computed in O(n log3 n) time. We can prove
the existence of a feasible cut for P , even if the points on the convex hull of
P are not monochromatic. To find feasible cuts recursively, we use the dynamic
convex hull structure of Overmars and Leeuwen [11], which uses O(log2 n) time
for each insertion and deletion. Pick a point p ∈ P on the convex hull of P
and look for a point q ∈ P \ {p}, such that the line passing through p and q
is a feasible cut. Search for q, alternatively, in clockwise and counterclockwise
directions around p. To do this, we repeatedly check if the line passing through
p and its (clockwise and counterclockwise in turn) neighbor on the convex hull,
say r, is a feasible cut. If the line through p and r is not a feasible cut, then we
delete r. At some point we find a feasible cut � which divides P into Q1 and Q2.
Add the two points on � to either Q1 or Q2 such that they remain color-balanced.
Let |Q1| = k and |Q2| ≥ k. In order to compute the data structure for Q2, we
use the current data structure and undo the deletions on the side of � which
contains Q2. We rebuild the data structure for Q1. Then, we recurse on Q1 and
Q2. The running time can be expressed by T (n) = T (n−k)+T (k)+O(k log2 n),
where k ≤ n − k. This recurrence solves to O(n log3 n).

1.1.3 Multicolored Point Sets
Let {P1, . . . , Pk}, where k ≥ 2, be a partition of P and Kn(P1, . . . , Pk) be the
complete multipartite geometric graph on P . A necessary and sufficient condi-
tion for the existence of a perfect matching in Kn(P1, . . . , Pk) follows from the
following result of Sitton [12].

Theorem 3 (Sitton [12]). The size of a maximum matching in any complete
multipartite graph Kn1,...,nk

, with n = n1 + · · · + nk vertices, where n1 ≥ · · · ≥
nk, is

|Mmax| = min

{
k∑

i=2

ni,

⌊
1
2

k∑

i=1

ni

⌋}

.

Theorem 3 implies that if n is even and n1 ≤ n
2 , then Kn1,...,nk

has a perfect
matching. It is obvious that if n1 > n

2 , then Kn1,...,nk
does not have any perfect

matching. Therefore,

Corollary 1. Let k ≥ 2 and consider a partition {P1, . . . , Pk} of a point set P ,
where |P | is even. Then, Kn(P1, . . . , Pk) has a colored matching if and only if
P is color-balanced.

Aichholzer et al. [3], and Kano et al. [9] show that the same condition as
in Corollary 1 is necessary and sufficient for the existence of a plane colored
matching in Kn(P1, . . . , Pk):



70 A. Biniaz et al.

Theorem 4 (Aichholzer et al. [3], and Kano et al. [9]). Let k ≥ 2 and
consider a partition {P1, . . . , Pk} of a point set P , where |P | is even. Then,
Kn(P1, . . . , Pk) has a plane colored matching if and only if P is color-balanced.

In fact, they show something stronger. Aichholzer et al. [3] show that a
minimum weight colored matching in Kn(P1, . . . , Pk), which minimizes the total
Euclidean length of the edges, is plane. Gabow [7] gave an implementation of
Edmonds’ algorithm which computes a minimum weight matching in general
graphs in O(n(m + n log n)) time, where m is the number of edges in G. Since
P is color-balanced, Kn(P1, . . . , Pk) has Θ(n2) edges. Thus, a minimum weight
colored matching in Kn(P1, . . . , Pk), and hence a plane colored matching in
Kn(P1, . . . , Pk), can be computed in O(n3) time. Kano et al. [9] extended their
O(n2 log n)-time algorithm for the 3-colored point sets to the multicolored case.

Since the problem of computing a plane RB-matching in Kn(R,B) is a special
case of the problem of computing a plane colored matching in Kn(P1, . . . , Pk),
the Ω(n log n) time lower bound for computing a plane RB-matching holds for
computing a plane colored matching.

1.2 Our Contribution

Our main contribution, which is presented in Section 2, is the following: given
any color-balanced point set P in general position in the plane, there exists
a balanced cut for P . Further, we show that if n is even, then there exists
a balanced cut which partitions P into two point sets each of even size, and
such a balanced cut can be computed in linear time. In Section 3, we present
a divide-and-conquer algorithm which computes a plane colored matching in
Kn(P1, . . . , Pk) in Θ(n log n) time, by recursively finding balanced cuts in color-
balanced subsets of P . In case P is not color-balanced, then Kn(P1, . . . , Pk) does
not admit a perfect matching; we describe how to find a plane colored matching
with the maximum number of edges in Section 3.1. In addition, we show how
to compute a maximum matching in any complete multipartite graph in linear
time.

2 Balanced Cut Theorem

Given a color-balanced point set P with n ≥ 4 points in general position in the
plane, a balanced cut is a line which partitions P into two point sets Q1 and Q2,
such that both Q1 and Q2 are color-balanced and max{|Q1|, |Q2|} ≤ 2n

3 +1. Let
{P1, . . . , Pk} be a partition of P , where the points in Pi are colored Ci. In this
section we prove the existence of a balanced cut for P . Moreover, we show how
to find such a balance cut in O(n) time.

If k = 2, the existence of a balanced cut follows from the ham sandwich cut
theorem. If k ≥ 4, we reduce the k-colored point set P to a three colored point
set. Afterwards, we prove the statement for k = 3.
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Lemma 1. Let P be a color-balanced point set of size n in the plane with k ≥ 4
colors. In O(n) time P can be reduced to a color-balanced point set P ′ with 3
colors such that any balanced cut for P ′ is also a balanced cut for P .

Proof. We repeatedly merge the color families in P until we get a color-balanced
point set P ′ with three colors. Afterwards, we show that any balanced cut for
P ′ is also a balanced cut for P .

Without loss of generality assume that C1, . . . , Ck is a non-increasing order
of the color classes according to the number of points in each color class. That
is, �|P |/2� ≥ |P1| ≥ · · · ≥ |Pk| ≥ 1 (note that P is color-balanced). In order
to reduce the k-colored problem to a 3-colored problem, we repeatedly merge
the two color families of the smallest cardinality. In each iteration we merge
the stwo smallest color families, Ck−1 and Ck, to get a new color class, C ′

k−1,
where P ′

k−1 = Pk−1∪Pk. In order to prove that P ′ = P1∪· · ·∪Pk−2∪P ′
k−1 is color-

balanced with respect to the coloring C1, . . . , Ck−2, C
′
k−1 we have to show that

|P ′
k−1| ≤ �|P ′|/2�. Note that before the merge we have |P | = |P1|+ · · ·+ |Pk−2|+

|Pk−1| + |Pk|, while after the merge we have |P ′| = |P1| + · · · + |Pk−2| + |P ′
k−1|,

where |P ′
k−1| = |Pk−1| + |Pk|. Since Pk−1 and Pk are the two smallest and

k ≥ 4, |P ′
k−1| ≤ |P1| + · · · + |Pk−2|. This implies that after the merge we have

|P ′
k−1| ≤ �|P ′|/2�. Thus P ′ is color-balanced. By repeatedly merging the points

of the two smallest color families, at some point we get a 3-colored point set P ′

which is color-balanced. Without loss of generality assume that P ′ is colored by
R, G, and B. Consider any balanced cut � for P ′; � partitions P ′ into two sets
Q1 and Q2, each of size at most 2

3n + 1, such that the number points of each
color in Qi is at most �|Qi|/2�, where i = 1, 2. Note that the set of points in
P colored Cj , for 1 ≤ j ≤ k, is a subset of points in P ′ colored either R, G,
or B. Thus, the number of points colored Cj in Qi is at most �|Qi|/2�, where
j = 1, . . . , k and i = 1, 2. Therefore, � is a balanced cut for P .

In order to merge the color families, a monotone priority queue (see [6]) can
be used, where the priority of each color Cj is the number of points colored Cj .
The monotone priority queue offers insert and extract-min operations where the
priority of an inserted element is greater than the priority of the last element
extracted from the queue. We store the color families in a monotone priority
queue of size n

2 (because all elements are in the range of 1 up to n
2 ). Afterwards,

we perform a sequence of O(k) extract-min and insert operations. Since k ≤ n,
the total time to merge k color families is O(n). 	


According to Lemma 1, from now on we assume that P is a color-balanced
point set consisting of n points colored by three colors.

Lemma 2. Let P be a color-balanced point set of n ≥ 4 points in general position
in the plane with three colors. In O(n) time we can compute a line � such that

1. � does not contain any point of P .
2. � partitions P into two point sets Q1 and Q2, where

(a) both Q1 and Q2 are color-balanced,
(b) both Q1 and Q2 contains at most 2

3n + 1 points.
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Fig. 2. Illustrating the balanced cut theorem. The blue points in X are surrounded by
circles. The line � is a balanced cut where: (a) |R| is even, and (b) |R| is odd.

Proof. Assume that the points in P are colored red, green, and blue. Let R,
G, and B denote the set of red, green, and blue points, respectively. Without
loss of generality assume that 1 ≤ |B| ≤ |G| ≤ |R|. Since P is color-balanced,
|R| ≤ �n

2 �. Let X be an arbitrary subset of B such that |X| = |R| − |G|; note
that X = ∅ when |R| = |G|, and X = B when |R| = n

2 (where n is even). Let
Y = B −X. Let � be a ham sandwich cut for R and G∪X (pretending that the
points in G∪X have the same color). Let Q1 and Q2 denote the set of points on
each side of �; see Figure 2(a). If |R| is odd, then � contains a point r ∈ R and a
point x ∈ G ∪ X; see Figure 2(b). In this case without loss of generality assume
that the number of blue points in Q2 is at least the number of blue points in Q1;
slide � slightly such that r and x lie in the same side as Q2, i.e. Q2 is changed
to Q2 ∪ {r, x}. We prove that � satisfies the statement of the theorem. The line
� does not contain any point of P and by the ham sandwich cut theorem it can
be computed in O(n) time.

Now we prove that both Q1 and Q2 are color-balanced. Let R1, G1, and B1

be the set of red, green, and blue points in Q1, where X1 = X ∩Q1, Y1 = Y ∩Q1,
and B1 = X1 ∪ Y1. Similarly, define R2, G2, B2, X2, and Y2 as subsets of Q2.
Since |R| = |G ∪ X| and � bisects both R and G ∪ X, we have |R1| = �|R|/2�
and |G1|+ |X1| = |R1|. In the case that |R| is odd, we add the points on � to Q2

(assuming that |B2| ≥ |B1|). Thus, in either case (|R| is even or odd) we have
|R2| = |R|/2� and |G2| + |X2| = |R2|. Therefore,

|Q1| ≥ |R1| + |G1| + |X1| = 2�|R|/2�,
|Q2| ≥ |R2| + |G2| + |X2| = 2|R|/2�. (1)

Let t1 and t2 be the total number of red and green points in Q1 and Q2, respec-
tively. Then, we have the following inequalities:

t1 = |R1| + |G1|
= 2|R1| − |X1|
≥ 2|R1| − |X|
= 2�|R|/2� − (|R| − |G|)
=

{ |G| if R is even
|G| − 1 if R is odd,

t2 = |R2| + |G2|
= 2|R2| − |X2|
≥ 2|R2| − |X|
= 2|R|/2� − (|R| − |G|)
=

{ |G| if R is even
|G| + 1 if R is odd.

(2)
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In addition, we have the following equations:

|Q1| = t1 + |B1| and |Q2| = t2 + |B2|. (3)

Note that |R1| = �|R|/2� and |G1| ≤ |R1|, thus, by Inequality (1) we have
|R1| ≤ �|Q1|/2� and |G1| ≤ �|Q1|/2�. Similarly, |R2| ≤ �|Q2|/2� and |G2| ≤
�|Q2|/2�. Therefore, in order to argue that Q1 and Q2 are color-balanced, it
only remains to show that |B1| ≤ �|Q1|/2� and |B2| ≤ �|Q2|/2�. Note that
|B1|, |B2| ≤ |B| and by initial assumption |B| ≤ |G|. We differentiate between
two cases where |R| is even and |R| is odd. If |R| is even, by Inequalities (2)
we have t1, t2 ≥ |G|. Therefore, by Equation (3), |B1| ≤ �|Q1|/2� and |B2| ≤
�|Q2|/2�. If |R| is odd, we slide � towards Q1; assuming that |B2| ≥ |B1|. In
addition, since |B1| + |B2| = |B| and |B| ≥ 1, |B2| ≥ 1. Thus, |B1| ≤ |B| − 1 ≤
|G| − 1, while by Inequality (2), t1 ≥ |G| − 1. Therefore, Equality (3) implies
that |B1| ≤ �|Q1|/2�. Similarly, by Inequality (2) we have t2 ≥ |G| + 1 while
|B2| ≤ |G|. Thus, Equality (3) implies that |B2| ≤ �|Q2|/2�. Therefore, both Q1

and Q2 are color-balanced.
We complete the proof for k = 3 by providing the following upper bound

on the size of Q1 and Q2. Since we assume that R is the largest color class,
|R| ≥ n

3 �. By Inequality (1), min{|Q1|, |Q2|} ≥ 2�|R|/2�, which implies that

max{|Q1|, |Q2|} ≤ n − 2� |R|
2

� ≤ n − 2(
|R| − 1

2
) ≤ n − n

3
+ 1 =

2n

3
+ 1.

	

Therefore, by Lemma 1 and Lemma 2, we have proved the following theorem:

Theorem 5 (Balanced Cut Theorem). Let P be a color-balanced point set
of n ≥ 4 points in general position in the plane. In O(n) time we can compute a
line � such that

1. � does not contain any point of P .
2. � partitions P into two point sets Q1 and Q2, where

(a) both Q1 and Q2 are color-balanced,
(b) both Q1 and Q2 contains at most 2

3n + 1 points.

By Theorem 4, if P has even number of points and no color is in strict
majority, then P admits a plane perfect matching. By Theorem 5, we partition
P into two sets Q1 and Q2 such that in each of them no point is in strict
majority. But, in order to apply the balanced cut theorem, recursively, to obtain
a perfect matching on each side of the cut, we need both Q1 and Q2 to have an
even number of points. Thus, we extend the result of Theorem 5 to a restricted
version of the problem where |P | is even and we are looking for a balanced cut
which partitions P into Q1 and Q2 such that both |Q1| and |Q2| are even. The
following theorem describes how to find such a balanced cut.
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Fig. 3. Updating � to make |Q1| and |Q2| even numbers, where: (a) � passes over one
point, and (b) � passes over two points

Theorem 6. Let P be a color-balanced point set of n ≥ 4 points in general
position in the plane with n even and three colors. In O(n) time we can compute
a line � such that

1. � does not contain any point of P .
2. � partitions P into two point sets Q1 and Q2, where

(a) both Q1 and Q2 are color-balanced,
(b) both Q1 and Q2 have even number of points,
(c) both Q1 and Q2 contains at most 2

3n + 1 points.

Proof. Let � be the balanced cut obtained in the proof of Lemma 2, which divides
P into Q1 and Q2. Note that � does not contain any point of P . If |Q1| is even,
subsequently |Q2| is even, thus � satisfies the statement of the theorem and we are
done. Assume that |Q1| and |Q2| are odd. Note that |Q1| = |R1|+|G1|+|X1|+|Y1|
and |Q2| = |R2| + |G2| + |X2| + |Y2|. Recall that |R1| = |G1| + |X1| = �|R|/2�
and |R2| = |G2|+ |X2| = |R|/2�. Thus, |R1|+ |G1|+ |X1| and |R2|+ |G2|+ |X2|
are even. In order to make |Q1| and |Q2| to be odd numbers, both |Y1| and |Y2|
have to be odd numbers. Thus, |Y1| ≥ 1 and |Y2| ≥ 1, which implies that

|Q1| = |R1| + |G1| + |X1| + |Y1| ≥ 2�|R|/2� + 1,

|Q2| = |R2| + |G2| + |X2| + |Y2| ≥ 2|R|/2� + 1. (4)

In addition,

|B1| = |B| − (|X2| + |Y2|) ≤ |B| − 1,

|B2| = |B| − (|X1| + |Y1|) ≤ |B| − 1. (5)

Note that Q1 is color-balanced. That is, |R1|, |G1|, |B1| ≤ �|Q1|/2�, where
|Q1| is odd. Thus, by addition of one point (of any color) to Q1, it still remain
color-balanced. Therefore, we slide � slightly towards Q2 and stop as soon as it
passes over a point x ∈ Q2; see Figure 3(a). If � passes over two points x and y,
rotate � slightly, such that x lies on the same side as Q1 and y remains on the
other side; see Figure 3(b). We prove that � satisfies the statement of the theorem.
It is obvious that updating the position of � takes O(n) time. Let Q′

1 = Q1 ∪{x}
and Q′

2 = Q2 − {x}. By the previous argument Q′
1 is color-balanced. Now we
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show that Q′
2 is color-balanced as well. Note that |Q′

2| = |Q2| − 1, thus, by
Inequality (4) we have

|Q′
2| ≥ 2|R|/2�.

Let R′
2, G′

2, and B′
2 be the set of red, green, and blue points in Q′

2, and let
t′2 be the total number of red and green points in Q′

2. Then,

|Q′
2| = t′2 + |B′

2|. (6)

To prove that Q′
2 is color-balanced we differentiate between three cases, where

x ∈ R2, x ∈ G2, or x ∈ B2:

• x ∈ R2. In this case: (i) |R′
2| = |R2| − 1 = |R|/2� − 1 ≤ �|Q′

2|/2�. (ii) |G′
2|

= |G2| ≤ |R2| = |R|/2� ≤ �|Q′
2|/2�. (iii) t′2 = t2 − 1 ≥ |G| − 1, while |B′

2|
= |B2| ≤ |B| − 1 ≤ |G| − 1; Inequality (6) implies that |B′

2| ≤ �|Q′
2|/2�.

• x ∈ G2. In this case: (i) |R′
2| = |R2| = |R|/2� ≤ �|Q′

2|/2�. (ii) |G′
2| = |G2|−1

≤ |R2| − 1 = |R|/2� − 1 ≤ �|Q′
2|/2�. (iii) t′2 = t2 − 1 ≥ |G| − 1, while |B′

2|
= |B2| ≤ |B| − 1 ≤ |G| − 1; Inequality (6) implies that |B′

2| ≤ �|Q′
2|/2�.

• x ∈ B2. In this case: (i) |R′
2| = |R2| = |R|/2� ≤ �|Q′

2|/2�. (ii) |G′
2| = |G2|

≤ |R2| = |R|/2� ≤ �|Q′
2|/2�. (iii) t′2 = t2 ≥ |G|, while |B′

2| = |B2| − 1
≤ |B| − 2 ≤ |G| − 2; Inequality (6) implies that |B′

2| ≤ �|Q′
2|/2�.

In all cases |R′
2|, |G′

2|, |B′
2| ≤ �|Q′

2|/2�, which imply that Q′
2 is color-balanced.

As for the size condition,

min{|Q′
1|, |Q′

2|} = min{|Q1| + 1, |Q2| − 1} ≥ 2�|R|/2�,
where the last inequality resulted from Inequality (4). This implies that
max{|Q′

1|, |Q′
2|} ≤ 2n

3 + 1. Thus, � satisfies the statement of the theorem, where
Q1 = Q′

1 and Q2 = Q′
2. 	


Note that both Theorem 6 and Theorem 2 prove the existence of a line �
which partitions a color-balanced point set P into two color-balanced point sets
Q1 and Q2. But, there are two main differences: (i) Theorem 6 can be applied on
any color-balanced point set P in general position. Theorem 2 is only applicable
on color-balanced point sets in general position, where the points on the convex
hull are monochromatic. (ii) Theorem 6 proves the existence of a balanced cut
such that n

3 − 1 ≤ |Qi| ≤ 2n
3 + 1, while the cut computed by Theorem 2 is

not necessarily balanced, as 2 ≤ |Qi| ≤ n − 2, where i = 1, 2. In addition, the
balanced cut in Theorem 6 can be computed in O(n) time, while the cut in
Theorem 2 is computed in O(n log n) time.

3 Plane Colored Matching Algorithm

Let P be a color-balanced point set of n points in general position in the plane
with respect to a partition {P1, . . . , Pk}, where n is even and k ≥ 2. In this
section we present an algorithm which computes a plane colored matching in
Kn(P1, . . . , Pk) in Θ(n log n) time.
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Let {C1, . . . , Ck} be a set of k colors. Imagine all the points in Pi are colored
Ci for all 1 ≤ i ≤ k. Without loss of generality, assume that |P1| ≥ |P2| ≥
· · · ≥ |Pk|. If k = 2, then we can compute an RB-matching in O(n log n) time
by recursively applying the ham sandwich theorem. If k ≥ 4, as in Lemma 1,
in O(n) time, we compute a color-balanced point set P with three colors. Any
plane colored matching for P with respect to the three colors, say (R,G,B), is
also a plane colored matching with respect to the coloring C1, . . . , Ck. Hereafter,
assume that P is a color-balanced point set which is colored by three colors.

By Theorem 6, in linear time we can find a line � that partitions P into
two sets Q1 and Q2, where both Q1 and Q2 are color-balanced with an even
number of points, such that max{|Q1|, |Q2|} ≤ 2n

3 + 1. Since Q1 and Q2 are
color-balanced, by Corollary 1, both Q1 and Q2 admit plane colored matchings.
Let M(Q1) and M(Q2) be plane colored matchings in Q1 and Q2, respectively.
Since Q1 and Q2 are separated by �, M(Q1)∪M(Q2) is a plane colored matching
for P . Thus, in order to compute a plane colored matching in P , one can compute
plane colored matchings in Q1 and Q2 recursively, as described in Algorithm 1.
The RGB-matching function receives a colored point set P of n points, where n
is even and the points of P are colored by three colors, and computes a plane
colored matching in P . The BalancedCut function partitions P into Q1 and Q2

where both are color-balanced and have even number of points.

Algorithm 1.. RGB-matching(P )
Input: a color-balanced point set P with respect to (R, G, B), where |P | is even.
Output: a plane colored matching in P .

1: if P is 2-colored then
2: return RB-matching(P )
3: else
4: � ← BalancedCut(P )
5: Q1 ← points of P to the left of �
6: Q2 ← points of P to the right of �
7: return RGB-matching(Q1) ∪ RGB-matching(Q2)

Now we analyze the running time of the algorithm. If k = 2, then in O(n log n)
time we can find a plane RB-matching for P . If k ≥ 4, then by Lemma 1, in O(n)
time we reduce the k-colored problem to a 3-colored problem. Then, the function
RGB-matching computes a plane colored matching in P . Let T (n) denote the
running time of RGB-matching on the 3-colored point set P , where |P | = n. As
described in Theorem 5 and Theorem 6, in linear time we can find a balanced
cut � in line 4 in Algorithm 1. The recursive calls to RGB-matching function in
line 7 takes T (|Q1|) and T (|Q2|) time. Thus, the running time of RGB-matching
can be expressed by the following recurrence:

T (n) = T (|Q1|) + T (|Q2|) + O(n).

Since |Q1|, |Q2| ≤ 2n
3 + 1 and |Q1| + |Q2| = n, this recurrence solves to

T (n) = O(n log n).
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Theorem 7. Given a color-balanced point set P of size n in general position
in the plane with n even, a plane colored matching in P can be computed in
Θ(n log n) time.

3.1 Maximum Matching

If P is not color-balanced, then Kn(P1, . . . , Pk) does not admit a perfect match-
ing. In this case we compute a maximum matching.

Theorem 8. Given a colored point set P of size n in general position in the
plane, a maximum plane colored matching M in P can be computed optimally
in Θ(n + |M | log |M |) time.

Theorem 9. Given any complete multipartite graph Kn(V1, . . . , Vk) on n ver-
tices and k ≥ 2, a maximum matching in Kn(V1, . . . , Vk) can be computed opti-
mally in Θ(n) time.
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Abstract. A colouring of a graph X is an assignment of colours to the
vertices of X. A distinguishing colouring of X is a colouring such that
no non-trivial automorphism of X preserves all colours. The distinguish-
ing number of X is the minimum number of colours in a distinguishing
colouring. This research presents a new algorithm for the generation of
all colourings and all distinguishing colourings of a graph X up to isomor-
phism, and presents computational data on the distinguishing numbers
of vertex transitive graphs.

Keywords: Graph distinguishability · Combinatorial generation ·
Graph theory

1 Colourings of Graphs

A k-colouring of a graph X on n vertices is a sequence C = c1c2 . . . cn such that
ci ∈ {0, 1, . . . , k − 1} for 1 ≤ i ≤ n. In this article, the term ‘colouring’ does
not carry any inherent restrictions on which vertices can receive which colours.
The classical graph colouring problem in which adjacent vertices must receive
different colours will be called ‘proper colouring’ for clarity.

A k-colouring C of a graph X is distinguishing if no automorphism of X
besides the identity fixes the colour of every vertex of X. The minimum k such
that there exists a k-distinguishing colouring of X is denoted by D(X) and called
the distinguishing number of X. In Figure 1, two colourings of C5 (which has
distinguishing number 3) are shown, one of which is 3-distinguishing and the
other of which is not distinguishing.

The distinguishing number was introduced in an article by Albertson and
Collins [1], which also proved several fundamental theorems about distinguisha-
bility. Subsequent research on distinguishability has led to results classifying the
distinguishing number for certain families of graphs [3,6,7,17,22] and algorithms
to evaluate the distinguishing number [2,22]. There is a paucity of data on the
distinguishing numbers of graphs which are not among the families for which
D(X) has been classified analytically.

This article presents an algorithm to generate all k-colourings of a graph X up
to isomorphism. The algorithm can easily be adapted to generate colourings with
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(a) A 3-distinguishing
colouring

(b) A non-distinguishing
colouring

Fig. 1. Two colourings of the 5-cycle C5. The left colouring is 3-distinguishing. The
colouring on the right is fixed by a horizontal reflection, so it is not distinguishing.

restrictions, such as distinguishing colourings or proper colourings. Using the
algorithm, along with various bounds on D(X), we computed the distinguishing
numbers of all vertex transitive graphs on up to 20 vertices. The computational
results are summarized in Section 3.

2 Generating All k-colourings up to Isomorphism

This section presents a backtracking algorithm to generate k-colourings of a
graph X up to isomorphism. The action of the automorphism group Aut(X)
partitions the set of all k-colourings into equivalence classes. Our algorithm
generates the lexicographically minimum colouring in each equivalence class.
Figure 2 shows the lexicographically minimum 2- and 3-colourings of the 4-cycle
C4. The algorithm is capable of handling extremely large group sizes (for the
distinguishing number data summarized later in this article, the algorithm was
run on groups as large as 20! ≈ 2.4 · 1018). Section 2.1 discusses one previous
generation algorithm, which is limited to groups that can be stored explicitly in
main memory. Section 2.2 introduces the Sims Table data structure, which is used
by the algorithm to store the group, and Section 2.3 describes the algorithm itself.
Finally, Section 2.4 describes the modification necessary to make the algorithm
only generate distinguishing colourings.

The Symmetric Group on n symbols, denoted Sn, is the set of all permuta-
tions of {1, 2, . . . , n}. The automorphism group of a graph X on the vertex set
V = {v1, v2, . . . , vn}, denoted Aut(X), is a subgroup of Sn which acts on V . In
this article, permutations will be treated as bijective functions, not as a special
class of object. Therefore, the group operation of permutation groups will be
function composition, which is evaluated in right-to-left order.

2.1 The Permutation List Algorithm

Myrvold and Fowler, in [16], gave a backtracking algorithm to generate colourings
of a graph up to isomorphism. In the original article, the main application of
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4

21

3

(a) Graph

0000
0001
0011
0101
0111
1111

(b) 2-colourings

0000 0102 0222
0001 0111 1111
0002 0112 1112
0011 0121 1122
0012 0122 1212
0022 0202 1222
0101 0212 2222

(c) 3-colourings

Fig. 2. The 4-cycle C4 with its lexicographically minimum 2- and 3-colourings

the algorithm is the generation of independent sets up to isomorphism, but the
algorithm can also be used to generate k-colourings, k-distinguishing colourings,
proper colourings and perfect matchings.

The algorithm in [16] takes a graph X and a listing of the permutations in
the automorphism group Aut(X) of X as input, and produces a listing of the
lexicographically minimum k-colourings under the action of G. Since it operates
on a list of the permutations in the group, this algorithm will be called the
Permutation List (PL) algorithm in this article. The PL algorithm is relatively
simple and has very high performance on graphs with a relatively small automor-
phism group for their size. As documented in [16], the PL algorithm outperforms
traditional parent-child schemes for generation, which is why the PL algorithm
was chosen as the baseline for comparison with our new algorithm.

The PL algorithm requires that all permutations in the automorphism group
be stored explicitly in main memory. As a result, graphs whose automorphism
group is too large to fit into memory cannot be processed. This limitation does
not reflect the true complexity of storing the automorphism group, which can
be represented much more compactly by a generating set. For example, Jerrum
[11] gave a polynomial-time algorithm to produce a generating set containing
at most n − 1 permutations for any permutation group G ≤ Sn. To process
groups too large for the PL algorithm, our new algorithm was developed using a
Sims Table data structure, which requires O(n3) words of memory to represent
a group G ≤ Sn.

2.2 Computational Group Representation

Fundamentally, representations of a permutation group G ≤ Sn in a computer
lie between two extremes. One extreme is storing a complete list of all group
elements. This is relatively simple and allows every group element to be accessed
easily, but requires Θ(n|G|) words of memory. The other extreme is storing a
minimal generating set for the group, which requires at most Θ(n2) words of
memory [11] but does not give easy access to every element of the group (which
must be formed by a product of generators).
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As the basis for a generation algorithm, which needs fast and efficient access
to all elements of the group with a small memory footprint, a data structure
called a Sims Table [13,20,21] provides a compromise between the two extremes.
A Sims Table for a group G ≤ Sn is an n×n array of permutations. The entry in
row r and column c is a permutation σrc ∈ G that fixes symbols 1, 2, . . . , r-1 (that
is, σrc(k) = k for all k < r) and maps symbol r to symbol c (that is, σrc(r) = c).
If no such permutation exists for a given r and c, the table entry is marked
as invalid (denoted in this article with the symbol ×). All valid permutations
in a Sims Table will lie on or above the forward diagonal. By convention, the
diagonal entries σii are normally set to the identity permutation e, although any
permutation meeting the definition is permissible. Figure 3 gives a Sims Table
for an example graph.

3

2

41

5

(a) Graph

⎛
⎜⎜⎜⎜⎝

e σ12 × σ14 σ15

× e × × ×
× × e × ×
× × × e σ45

× × × × e

⎞
⎟⎟⎟⎟⎠

(b) Sims Table

σ12 = (12)
σ14 = (14)(25)
σ15 = (15)(24)
σ45 = (45)

(c) Sims Permutations

Fig. 3. Sims Table and permutations for a sample graph

Given a permutation group G ≤ Sn, the notation Gi will be used to denote
the set

Gi = {π ∈ G : π(j) = j for all j < i}
which is the pointwise stabilizer of all values less than i. It can be easily verified
that each Gi is a group and

G = G1 ≥ G2 ≥ . . . ≥ Gn = {e}.

For each i, the group Gi is generated by the permutations in rows i through
n of a Sims Table for G.

Sims’ original publications [20,21] described a polynomial-time algorithm
to create a Sims Table from a polynomial number of generators for G. The
algorithm is usually called the ‘Schreier-Sims algorithm’ since it relies on a lemma
of Schreier [10]. The term ‘Sims Table’ seems to originate with Knuth [12,13].
Several distinct formulations of the Schreier-Sims algorithm exist, each relying
on the same mechanics as Sims’ original results but differing in the specific
structure of the algorithm [4]. To produce Sims Tables for the graphs studied
in this article, pseudocode published by Kocay [14], based on a variant of the
Schreier-Sims algorithm originated by Furst, Hopcroft and Luks [8], was used.
One major advantage of a Sims Table compared to other generating sets is the
unique factorization described by the following Lemma.
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Lemma 1 (Sims [20]). Given a Sims Table for G ≤ Sn, every element π ∈ G
can be written uniquely in the form

π = σ1j1σ2j2 . . . σnjn .

Lemma 1 implies a simple algorithm to test whether a permutation π ∈ Sn is
a member of the group G ≤ Sn. Specifically, if a decomposition π = βα is known
such that β = σ1j1σ2j2 . . . σiji for some i, and α(k) = k for all k ≤ i, then π ∈ G
if and only if α ∈ Gi+1. When i = n, α must be the identity, so the permutation
β will give the factorization of π using the Sims table representation. Otherwise,
let k = πi+1(i + 1). If there is a permutation σi+1,k, the decomposition can
be continued recursively by taking β′ = βσi+1,k and α′ = σ−1

i+1,kα. If no such
permutation σi+1,k exists in the Sims Table, then no factorization of π exists,
and therefore π /∈ G. Algorithm 1 gives pseudocode for this test. The arguments
to the recursive TestMembership function are a Sims Table T for G, the
permutation π to be tested, and the current row i. For the initial call, i will be
set to 1. At each recursive step, the algorithm determines which permutation
σiji comprises the next element of the decomposition of π. If σiji = ×, the
decomposition cannot exist and therefore π cannot be an element of G.

Algorithm 1. Test membership in G with a Sims Table
1: procedure TestMembership(T, π, i)
2: if i = n then return true

3: if T [i][π(i)] = × then return false

4: σ ← T [i][π(i)]
5: return TestMembership(T, σ−1π, i + 1)
6: end procedure

2.3 Sims Table Generation Algorithm

A new colouring algorithm, which requires only O(n3) words of memory to gen-
erate all colourings of a group G ≤ Sn, was developed by using a Sims Table
representation of the group G. Besides providing a compact representation, the
generating set contained in the Sims Table for G is very convenient for generat-
ing lexicographically minimum colourings. Our algorithm recursively generates
partially-formed permutations in G and prefixes of colourings of G, backtracking
when partial colourings are found to be infeasible.

Since all permutations below row i of a Sims Table for G must fix elements
1 through i, it is possible to avoid testing all permutations in G when verifying
a potential minimum colouring C by only testing certain ‘prefix’ permutations
π = σ1j1σ2j2 . . . σiji . If π maps C to a lexicographically greater colouring, all
permutations prefixed by π will do so as well. Lemma 2 formalizes this condition.
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Lemma 2 (Permutation Prefix Condition). Let G ≤ Sn, let T be a Sims
Table for G and let C = c1 . . . cn be a colouring of G. Let π = σ1i1σ2i2 . . . σqiq

be a permutation such that each σrir is a valid entry of T . If cπ(j) = cj for all
j < q, and cπ(q) > cq, then Cπα > C for all α ∈ Gq+1.

Algorithm 2. Test whether a colouring is lexicographically minimum
1: procedure TestMinimum(n, T, C, π, i)
2: if i = n + 1 then return true

3: for j ← i, i + 1, . . . , n do
4: if T [i][j] �= × then
5: {Get the image of i under π ◦ T [i][j]}
6: q ← π(j)
7: if C[q] < C[i] then return false

8: else if C[q] > C[i] then return true

9: else
10: α ← π ◦ T [i][j]
11: if TestMinimum(n, T, C, α, i + 1) = false then return false

12: end if
13: end if
14: end for
15: return true

16: end procedure

Lemma 2 implies a method to test whether a colouring C is minimum without
necessarily testing C against all permutations in G. To check a given colouring
C = c1 . . . cn, the elements of G are generated by recursively building prefixes
π = σ1i1σ2i2 . . . σqiq from the entries of the Sims Table. At each level q, if
cπ(q) < cq, the test returns false (since π maps C to a lexicographically smaller
colouring). If cπ(q) > cq, no permutation prefixed by π will map C to a smaller
colouring by Lemma 2, so recursion backtracks. Otherwise, if cπ(q) = cq, all per-
mutations π′ = πσq+1,jq+1 are tested recursively. Algorithm 2 gives pseudocode
for the test. The arguments to the TestMinimum function in algorithm 2 are
the number of elements n, a Sims Table for G in the form of a 2-dimensional
array of permutations T , the colouring C, a prefix π and the first row i to test.
The initial call to the recursive TestMinimum function sets π to the identity
permutation e and i to 1.

A naive method to generate all lexicographically minimum colourings simply
generates all colourings and outputs those which Algorithm 2 reports as being
minimum. A prefix condition for colourings, in a similar vein to Lemma 2, can be
used to reduce the number of colourings considered. Lemma 3 gives the colouring
prefix condition.

Lemma 3 (Colouring Prefix Condition). Let Cr = c1, . . . , cr be a partial
assignment of colours to elements of a group G ≤ Sn. There is a lexicographically
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minimum colouring prefixed by Ci only if there does not exist a permutation
π ∈ G such that π(r) < r, cπ(r) > cr and for all j < π(r),

π(j) < r, and
cπ(j) = cj .

Our algorithm was developed as an outgrowth of Algorithm 2, with extra
logic added to enforce Lemma 3. The algorithm uses the following data during
recursion:

– The 2-dimensional array T stores a Sims Table for the group G.
– The current row i is tracked, and a permutation perm is maintained which

is the product of entries from the first i − 1 rows of the Sims Table. At the
beginning of recursion, i is set to 1 and perm is set to the identity permutation
e.

– A vector path is used to store indices such that

perm = T [1][path[1]] ◦ T [2][path[2]] ◦ . . . ◦ T [i − 1][path[i − 1]].

– The colouring C is stored as a vector of length n, initially set to all zeroes.
– Since elements of C are not necessarily assigned values in left-to-right order,

a boolean vector fixed is used to track the coloured elements. If C[i] has
been assigned a colour, fixed[i] is set to true. Initially, every element of
fixed is set to false.

Before recursion begins, C[1] is set to each possible colour value (and the
recursive process is run after each assignment). To start the recursive process,
the variables described above are each assigned their initial values, and fixed[1]
is set to true. At each recursive step, it is assumed that the colour of each element
before C[i] is fixed, and that the partial colouring C[1], C[2], . . . , C[i] does not
violate Lemma 3. The main operation at each recursive step is as follows:

1. The smallest index j ≥ path[i] such that T [i][j] �= × is found. If no such
value of j exists (that is, when T [i][j] = × for all j ≥ path[i]), row i of the
Sims table has been exhausted, so recursion returns to the previous level of
the table. To do this, perm is first multiplied on the right by the inverse of
T [i−1][path[i−1]] to return it to its state before descending to level i, then
path[i] is set to 0, the value of path[i − 1] is incremented by 1, and finally, i
is decremented. In the event that i is equal to −1 after decrementation, all
permutations have been checked against C and no violations of either prefix
condition have been found, so the colouring C is output as a minimum
colouring.

2. The image q of i under perm◦T [i][j], which is equivalent to perm[j], is found.
3. If C[q] < C[i], Lemma 3 is violated for c1, . . . , cq, so element q must be

fixed to a colour greater than or equal to C[i]. Note that the invariant above
implies that q > i. If position q is already fixed, it is impossible to change
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the colour of C[q], so the branch of recursion terminates. Otherwise, fixed[q]
is set to true and new branches of recursion are started for each possible
colour assignment to C[q]. After all branches terminate, the current branch
is terminated.

4. If C[q] > C[i], then by Lemma 2, no permutation prefixed by perm ◦ T [i][j]
will map C to any lexicographically smaller permutation, so T [i][j] does
not need to be considered further and path[i] is set to j + 1 and recursion
continues.

5. If C[q] = C[i], then new branches of recursion are created for all assignments
to C[i] and C[q] such that C[q] ≥ C[i]. In branches where C[q] continues to
be equal to C[i], i is incremented and perm is multiplied on the right by
T [i][j], since the permutation perm ◦ T [i][j] has not yet been ruled out by
Lemma 2. Branches where C[q] > C[i] are handled according to step 4 above.

2.4 Generating k-distinguishing Colourings

A simple modification to the algorithm given in the previous section restricts
the generated colourings to k-distinguishing colourings. When the current row i
reaches n, the permutation perm will contain a permutation in G which fixes the
current colouring C. As a result, C is not distinguishing and the active branch
of recursion terminates. Since the recursive process reaches row n of the table
if and only if every element of the current colouring C is fixed by the current
permutation perm, this modification is sufficient to enforce the condition that C
is distinguishing.

3 Finding the Distinguishing Number of Transitive
Graphs

A graph X is vertex transitive if, for every pair of vertices u, v ∈ V (X), there
exists some π ∈ Aut(X) such that π(v) = u. The automorphism group of a vertex
transitive graph has a single orbit containing all vertices. Using a combination
of bounds on the distinguishing number and the recursive colouring generation
algorithm, the distinguishing number of every vertex transitive graph on up to 20
vertices was found. The distribution of distinguishing numbers by vertex count
is summarized in Table 1.

The input graphs were taken from the database of all vertex transitive graphs
published by Royle [18]. The nauty program [15] was used to find a generating
set for the automorphism group of each graph, and an implementation of the
Schreier-Sims algorithm, using the pseudocode given by Kocay in [14], was used
to find a Sims Table for each group.

To find the distinguishing number of each graph X, upper and lower bounds
on D(X) were first evaluated. If the bounds differed, then the recursive colouring
algorithm was used to search for a distinguishing colouring using progressively
more colours until the upper bound was reached.
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Four previously published upper bounds were evaluated [1,5,19,22], as well
as a new upper bound (Theorem 1), based on the number of equivalence classes
of all k-colourings. A new lower bound (Theorem 2) was also proven, and seems
to be the first general lower bound on D(X).

Theorem 1. Let X be a graph on n vertices and k ≥ 1. If q is the number of
equivalence classes of the kn k-colourings of X under the action of Aut(X), and

q <
2kn

|Aut(X)|
then

D(X) ≤ k.

Proof. Consider a k-colouring C of X. Let S contain all permutations in Aut(X)
which fix C. Note that S is a subgroup of Aut(X) since it is closed under per-
mutation composition and for every α ∈ S, the inverse permutation α−1 is also
a member of S. Therefore, by Lagrange’s Theorem, |S| divides |Aut(X)|. Since
each α ∈ S has the property Cα = C, for any π ∈ Aut(X), Cπα = Cπ, so the
equivalence class of C under the action of Aut(X) contains one colouring for
each coset of S in Aut(X).

If C is distinguishing, then S = {e}. Otherwise, |S| ≥ 2 and the equivalence
class of C has size |Aut(X)|

|S| ≤ |Aut(X)|
2

.

The union of all equivalence classes must equal the complete set of k-
colourings. If there are q equivalence classes of k-colourings with sizes s1, . . . , sq,
then

q∑

i=1

si = kn.

When no distinguishing colourings exist, every si must comply with the bound
above, so

q∑

i=1

si = kn ≤ q
|Aut(X)|

2
.

Therefore, if

q
|Aut(X)|

2
< kn,

there must exist at least one k-distinguishing colouring of X. �	
Theorem 2. Let X be a graph on n vertices. Let C be a k-colouring of the
vertices of X with li equal to the number of vertices receiving colour i. If C is a
distinguishing colouring of X, then

|Aut(X)| ≤
(

n

l1, l2, . . . , lk

)

.
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Proof. Suppose C is a distinguishing colouring. Then each permutation in
Aut(X) carries C to a distinct colouring with the same distribution of colours.
By the pigeonhole principle, the size of Aut(X) can be no greater than the
number of such colourings, which is

(
n

l1, . . . , lk

)

.

�	
Graphs composed of disjoint copies of a complete graph were difficult for our

algorithm to process. By using our new Theorem 3, which analytically classifies
the distinguishing number of such graphs, it was not necessary to perform a
computational search on such graphs.

Theorem 3. If X is a graph comprising q disjoint copies of Kn (for some
n ≥ 1), then D(X) is equal to the least integer k ≥ n such that

q ≤
(

k

n

)

.

Proof. It was proven in [1] that D(Kn) = n. Within each copy of Kn, for every
pair v1, v2 of vertices there exists a permutation in Aut(X) which exchange v1
and v2 while fixing the rest of X. Therefore, any distinguishing colouring of X
must assign distinct colours to each vertex within a copy of Kn. To prevent an
automorphism from exchanging two copies of Kn, it is necessary for each copy
of Kn to use a different subset of n-colours. A distinguishing colouring must
therefore use at least k colours, with k defined as above, to allow each copy of
Kn to receive a distinct set of colours.

A k-distinguishing colouring can be constructed by choosing q distinct n-
subsets of {1, . . . , k} and assigning the colours in each subset to a copy of Kn.

�	
The distinguishing number data for the set of all vertex transitive graphs on

up to 20 vertices is summarized in Table 1. Several diagonal patterns can be
observed in the table, corresponding to complete graphs and graphs consisting
of copies of complete graphs. All of the graphs with distinguishing number six
or more are graphs of this type (or their complement).

4 Future Research

Our generation algorithm can be adapted to produce all distinguishing colourings
with k colours, all proper colourings with k colours and all independent sets up
to isomorphism with minor modifications. A question for future work is whether
it can be used as the basis for an algorithm to generate structures with more
global restrictions, such as perfect matchings and vertex coverings. Additionally,
although the two prefix conditions given in Section 2.3 are sufficient to make the
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Table 1. Distinguishing numbers of all vertex transitive graphs on 1 − 20 vertices

Distinguishing Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u
m
b
e
r
o
f
V
e
rt
ic
e
s

1 1
2 2
3 2
4 2 2
5 1 2
6 2 2 2 2
7 2 2
8 4 4 2 2 2
9 4 1 2 2

10 8 8 2 2 2
11 6 2
12 48 12 8 2 2 2
13 12 2
14 44 6 2 2 2
15 38 2 2 2 2 2
16 250 22 4 6 2 2
17 34 2
18 342 16 12 4 2 2 2
19 58 2
20 1150 44 6 6 4 2 2

Total 1 2004 122 42 26 10 6 4 4 4 4 2 2 2 2 2 2 2 2 2

algorithm practical, there may be ways to refine both conditions further, or add
extra conditions to further prune the search space.

The computational problem of generating all k-colourings is at least hard as
counting all k-colourings, which is #P-Hard [9]. The complexity of generating
distinguishing colourings is not yet known, although previous results have deter-
mined the complexity of several problems related to distinguishability [19]. The
new bounds on D(X) given in Section 3 rely on the structure of the equivalence
classes of the k-colourings of X under the action of Aut(X). This provides an
interesting link between distinguishing colourings and unrestricted colourings.
Using similar techniques, it may be possible to derive much tighter bounds for
specific families of groups (or families of graphs).
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Abstract. The binary heap of Williams (1964) is a simple priority queue
characterized by only storing an array containing the elements and the
number of elements n – here denoted a strictly implicit priority queue.
We introduce two new strictly implicit priority queues. The first struc-
ture supports amortized O(1) time Insert and O(log n) time Extract-
Min operations, where both operations require amortized O(1) element
moves. No previous implicit heap with O(1) time Insert supports both
operations with O(1) moves. The second structure supports worst-case
O(1) time Insert and O(log n) time (and moves) ExtractMin opera-
tions. Previous results were either amortized or needed O(log n) bits of
additional state information between operations.

1 Introduction

In 1964 Williams presented “Algorithm 232” [12], commonly known as the binary
heap. The binary heap is a priority queue data structure storing a dynamic set
of n elements from a totally ordered universe, supporting the insertion of an
element (Insert) and the deletion of the minimum element (ExtractMin) in
worst-case O(log n) time. The binary heap structure is an implicit data structure,
i.e., it consists of an array of length n storing the elements, and no information is
stored between operations except for the array and the value n. Sometimes data
structures storing O(1) additional words are also called implicit. In this paper
we restrict our attention to strictly implicit priority queues, i.e., data structures
that do not store any additional information than the array of elements and the
value n between operations.

Due to the Ω(n log n) lower bound on comparison based sorting, either
Insert or ExtractMin must take Ω(log n) time, but not necessarily both.
Carlson et al. [5] presented an implicit priority queue with worst-case O(1) and
O(log n) time Insert and ExtractMin operations, respectively. However, the
structure is not strictly implicit since it needs to store O(1) additional words.
Harvey and Zatloukal [11] presented a strictly implicit priority structure achiev-
ing the same bounds, but amortized. No previous strictly implicit priority queue
with matching worst-case time bounds is known.
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Table 1. Selected previous and new results for implicit priority queues. The bounds
are asymptotic, and � are amortized bounds.

Extract- Identical
Insert Min Moves Strict elements

Williams [12] log n log n log n yes yes
Carlsson et al. [5] 1 log n log n no yes
Edelkamp et al. [7] 1 log n log n no yes
Harvey and Zatloukal [11] � 1 � log n � log n yes yes
Franceschini and Munro [9] � log n � log n � 1 yes no
Section 2 � 1 � log n � 1 yes yes
Section 3 1 log n log n yes no

A measurement often studied in implicit data structures and in-place algo-
rithms is the number of element moves performed during the execution of a pro-
cedure. Franceschini showed how to sort n elements implicitly using O(n log n)
comparisons and O(n) moves [8], and Franceschini and Munro [9] presented
implicit dictionaries with amortized O(log n) time updates with amortized O(1)
moves per update. The latter immediately implies an implicit priority queue
with amortized O(log n) time Insert and ExtractMin operations performing
amortized O(1) moves per operation. No previous implicit priority queue with
O(1) time Insert operations achieving O(1) moves per operation is known.

For a more thorough survey of previous priority queue results, see [1].

Our Contribution. We present two strictly implicit priority queues. The first
structure (Section 2) limits the number of moves to O(1) per operation with
amortized O(1) and O(log n) time Insert and ExtractMin operations, respec-
tively. However the bounds are all amortized and it remains an open problem to
achieve these bounds in the worst case for strictly implicit priority queues. We
note that this structure implies a different way of sorting in-place with O(n log n)
comparisons and O(n) moves. The second structure (Section 3) improves over
[5,11] by achieving Insert and ExtractMin operations with worst-case O(1)
and O(log n) time (and moves), respectively. The structure in Section 3 assumes
all elements to be distinct where as the structure in Section 2 also can be
extended to support identical elements (see [4]). See Figure 1 for a compari-
son of new and previous results.

Preliminaries. We assume the strictly implicit model as defined in [3] where we
are only allowed to store the number of elements n and an array containing
the n elements. Comparisons are the only allowed operations on the elements.
The number n is stored in a memory cell with Θ(log n) bits (word size) and
any operation usually found in a RAM is allowed for computations on n and
intermediate values. The number of moves is the number of writes to the array
storing the elements. That is, swapping two elements costs two moves.

A fundamental technique in the implicit model is to encode a 0/1-bit with a
pair of distinct elements (x, y), where the pair encodes 1 if x < y and 0 otherwise.
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A binary heap is a complete binary tree structure where each node stores an
element and the tree satisfies heap order, i.e., the element at a non-root node
is larger than or equal to the element at the parent node. Binary heaps can be
generalized to d-ary heaps [10], where the degree of each node is d rather than
two. This implies O(logd n) and O(d logd n) time for Insert and ExtractMin,
respectively, using O(logd n) moves for both operations.

2 Amortized O(1) Moves

In this section we describe a strictly implicit priority queue supporting amortized
O(1) time Insert and amortized O(log n) time ExtractMin. Both operations
perform amortized O(1) moves. In Sections 2.1-2.3 we assume elements are dis-
tinct. In [4] we describe how to handle identical elements.

Overview. The basic idea of our priority queue is the following (the details are
presented in Section 2.1). The structure consists of four components: an insertion
buffer B of size O(log3 n); m insertion heaps I1, I2, . . . , Im each of size Θ(log3 n),
where m = O(n/ log3 n); a singles structure T , of size O(n); and a binary heap Q,
storing {1, 2, . . . ,m} (integers encoded by pairs of elements) with the ordering
i ≤ j if and only if min Ii ≤ min Ij . Each Ii and B is a log n-ary heap of size
O(log3 n). The table below summarizes the performance of each component:

Insert ExtractMin
Structure Time Moves Time Moves

B, Ii 1 1 log n 1
Q log2 n log2 n log2 n log2 n
T log n 1 log n 1

It should be noted that the implicit dictionary of Franceschini and Munro [9]
could be used for T , but we will give a more direct solution since we only need
the restricted ExtractMin operation for deletions.

The Insert operation inserts new elements into B. If the size of B becomes
Θ(log3 n), then m is incremented by one, B becomes Im, m is inserted into Q,
and B becomes a new empty log n-ary heap. An ExtractMin operation first
identifies the minimum element in B, Q and T . If the overall minimum element e
is in B or T , e is removed from B or T . If the minimum element e resided in Ii,
where i is stored at the root of Q, then e and log2 n further smallest elements
are extracted from Ii (if Ii is not empty) and all except e inserted into T (T
has cheap operations whereas Q does not, thus the expensive operation on Q is
amortized over inexpensive ones in T ), and i is deleted from and reinserted into
Q with respect to the new minimum element in Ii. Finally e is returned.

For the analysis we see that Insert takes O(1) time and moves, except
when converting B to a new Im and inserting m into Q. The O(log2 n) time
and moves for this conversion is amortized over the insertions into B, which
becomes amortized O(1), since |B| = Ω(log2 n). For ExtractMin we observe
that an expensive deletion from Q only happens once for every log2 n-th element
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from Ii (the remaining ones from Ii are moved to T and deleted from T ), and
finally if there have been d ExtractMin operations, then at most d + m log2 n
elements have been inserted into T , with a total cost of O((d+m log2 n) log n) =
O(n + d log n), since m = O(n/ log3 n).

2.1 The Implicit Structure

et r D1 D2 · · ·q I1 I2 · · · B1 B2

Change in log n since last rebuild (1 bit)

Number of used Di’s
Order maintenance on Di’s

Δ3 sized heaps
Binary heap with pointers to Ii’s

Threshold
element

S Qh

Insertion heaps 1-2 Insertion buffers

Qrev

Reverse pointers for Ii’s

b DK Im

Number of
insert buffers istart

T Q I B

Fig. 1. The different structures ansd their layout in memory

We now give the details of our representation (see Figure 1). We select one ele-
ment et as our threshold element, and denote elements greater than et as dummy
elements. The current number of elements in the priority queue is denoted n.
We fix an integer N that is an approximation of n, where N ≤ n < 4N and
N = 2j for some j. Instead of storing N , we store a bit r = �log n� − log N ,
encoded by two dummy elements. We can then compute N as N = 2�log n�−r,
where �log n� is the position of the most significant bit in the binary repre-
sentation of n (which we assume is computable in constant time). The value
r is easily maintained: When �log n� changes, r changes accordingly. We let
Δ = log(4N) = �log n� + 2 − r, i.e., Δ bits is sufficient to store an integer in the
range 0..n. We let M = �4N/Δ3�.

We maintain the invariant that the size of the insertion buffer B satisfies
1 ≤ |B| ≤ 2Δ3, and that B is split into two parts B1 and B2, each being Δ-ary
heaps (B2 possibly empty), where |B1| = min{|B|,Δ3} and |B2| = |B|−|B1|. We
use two buffers to prevent expensive operation sequences that alternate inserting
and deleting the same element. We store a bit b indicating if B2 is nonempty, i.e.,
b = 1 if and only if |B2| �= 0. The bit b is encoded using two dummy elements.
The structures I1, I2, . . . , Im are Δ-ary heaps storing Δ3 elements. The binary
heap Q is stored using two arrays Qh and Qrev each of a fixed size M ≥ m and
storing integers in the range 1..m. Each value in both arrays is encoded using
2Δ dummy elements, i.e., Q is stored using 4MΔ dummy elements. The first
m entries of Qh store the binary heap, whereas Qrev acts as reverse pointers,
i.e., if Qh[j] = i then Qrev[i] = j. All operations on a regular binary heap take
O(log n) time, but since each “read”/”write” from/to Q needs to decode/encode
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an integer the time increases by a factor 2Δ. It follows that Q supports Insert
and ExtractMin in O(log2 n) time, and FindMin in O(log n) time.

We now describe T and we need the following density maintenance result.

Lemma 1 ([2]). There is a dynamic data structure storing n comparable ele-
ments in an array of length (1 + ε)n, supporting Insert and ExtractMin in
amortized O(log2 n) time and FindPredecessor in worst case O(log n) time.
FindPredecessor does not modify the array.

Corollary 1. There is an implicit data structure storing n (key, index) pairs,
while supporting Insert and ExtractMin in amortized O(log3 n) time and
moves, and FindPredecessor in O(log n) time in an array of length Δ(2+ε)n.

Proof. We use the structure from Lemma 1 to store pairs of a key and an index,
where the index is encoded using 2Δ dummy elements. All additional space
is filled with dummy elements. However comparisons are only made on keys
and not indexes, which means we retain O(log n) time for FindMin. Since the
stored elements are now an O(Δ) = Θ(log n) factor larger, the time for update
operations becomes an O(log n) factor slower giving amortized O(log3 n) time
for Insert and ExtractMin. 	


The singles structure T intuitively consists of a sorted list of the elements
stored in T partitioned into buckets D1, . . . , Dq of size at most Δ3, where the
minimum element e from bucket Di is stored in a structure S from Corollary 1
as the pair (e, i). Each Di is stored as a Δ-ary heap of size Δ3, where empty slots
are filled with dummy elements. Recall implicit heaps are complete trees, which
means all dummy elements in Di are stored consecutively after the last non-
dummy element. In S we consider pairs (e, i) where e > et to be empty spaces.

More specifically, the structure T consists of: q, S, D1,D2, . . . , DK , where
K = � N

16Δ3 � ≥ q is the number of Di’s available. The structure S uses
⌈

N
4Δ2

⌉

elements and q uses 2Δ elements to encode a pointer. Each Di uses Δ3 elements.
The Di’s and S relate as follows. The number of Di’s is at most the maximum

number of items that can be stored in S. Let (e, i) ∈ S, then ∀x ∈ Di : e < x,
and furthermore for any (e′, i′) ∈ S with e < e′ we have ∀x ∈ Di : x < e′. These
invariants do not apply to dummy elements. Since Di is a Δ-ary heap with Δ3

elements we get O(logΔ Δ3) = O(1) time for Insert and O(Δ logΔ Δ3) = O(Δ)
for ExtractMin on a Di.

2.2 Operations

For both Insert and ExtractMin we need to know N , Δ, and whether there
are one or two insert buffers as well as their sizes. First r is decoded and we
compute Δ = 2+msb(n)−r, where msb(n) is the position of the most significant
bit in the binary representation of n (indexed from zero). From this we compute
N = 2Δ−2, K = �N/(16Δ3)�, and M = �4N/Δ3�. By decoding b we get the
number of insert buffers. To find the sizes of B1 and B2 we compute the value
istart which is the index of the first element in I1. The size of B1 is computed
as follows. If (n − istart) mod Δ3 = 0 then |B1| = Δ3. If B2 exists then B1
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starts at n − 2Δ3 and otherwise B1 starts at n − Δ3. If B2 exists and (n −
istart) mod Δ3 = 0 then |B2| = Δ3, otherwise |B2| = (n − istart) mod Δ3. Once
all of this information is computed the actual operation can start. If n = N + 1
and an ExtractMin operation is called, then the ExtractMin procedure is
executed and afterwards the structure is rebuilt as described in the paragraph
below. Similarly if n = 4N − 1 before an Insert operation the new element is
appended and the data structure is rebuilt.

Insert. If |B1| < Δ3 the new element is inserted in B1 by the standard insertion
algorithm for Δ-ary heaps. If |B1| = Δ3 and |B2| = 0 and a new element is
inserted the two elements in b are swapped to indicate that B2 now exists.
When |B1| = |B2| = Δ3 and a new element is inserted, B1 becomes Im+1, B2

becomes B1, m + 1 is inserted in Q (possibly requiring O(log n) values in Qh and
Qrev to be updated in O(log2 n) time). Finally the new element becomes B2.

ExtractMin. Searches for the minimum element e are performed in B1, B2, S,
and Q. If e is in B1 or B2 it is deleted, the last element in the array is swapped
with the now empty slot and the usual bubbling for heaps is performed. If B2

disappears as a result, the bit b is updated accordingly. If B1 disappears as a
result, Im becomes B1, and m is removed from Q.

If e is in Ii then i is deleted from Q, e is extracted from Ii, and the last element
in the array is inserted in Ii. The Δ2 smallest elements in Ii are extracted and
inserted into the singles structure: for each element a search in S is performed
to find the range it belongs to, i.e. Dj , the structure it is to be inserted in.
Then it is inserted in Dj (replacing a dummy element that is put in Ii, found by
binary search). If |Dj | = Δ3 and q = K the priority queue is rebuilt. Otherwise
if |Dj | = Δ3, Dj is split in two by finding the median y of Dj using a linear
time selection algorithm [6]. Elements ≥ y in Dj are swapped with the first
Δ3/2 elements in Dq then Dj and Dq are made into Δ-ary heaps by repeated
insertion. Then y is extracted from Dq and (y, q) is inserted in S. The dummy
element pushed out of S by y is inserted in Dq. Finally q is incremented and we
reinsert i into Q. Note that it does not matter if any of the elements in Ii are
dummy elements, the invariants are still maintained.

If (e, i) ∈ S, the last element of the array is inserted into the singles structure,
which pushes out a dummy element z. The minimum element y of Di is extracted
and z inserted instead. We replace e by y in S. If y is a dummy element, we
update S as if (y, i) was removed. Finally e is returned. Note this might make
B1 or B2 disappear as a result and the steps above are executed if needed.

Rebuilding. We let the new N = n′/2, where n′ is n rounded to the nearest power
of two. Using a linear time selection algorithm [6], find the element with rank
n − istart, this element is the new threshold element et, and it is put in the first
position of the array. Following et are all the elements greater than et and they
are followed by all the elements comparing less than et. We make sure to have
at least Δ3/2 elements in B1 and at most Δ3/2 elements in B2 which dictates
whether b encodes 0 or 1. The value q is initialized to 1. All the Di structures
are considered empty since they only contain dummy elements. The pointers in
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Qh and Qrev are all reset to the value 0. All the Ii structures as well as B1

(and possibly B2) are made into Δ-ary heaps with the usual heap construction
algorithm. For each Ij structure the Δ2 smallest elements are inserted in the
singles structure as described in the ExtractMin procedure, and j is inserted
into Q. The structure now satisfies all the invariants.

2.3 Analysis
In this subsection we give the analysis that leads to the following theorem.

Theorem 1. There is a strictly implicit priority queue supporting Insert in
amortized O(1) time, ExtractMin in amortized O(log n) time. Both operations
perform amortized O(1) moves.

Insert. While |B| < 2Δ3, each insertion takes O(1) time. When an insertion
happens and |B| = 2Δ3, the insertion into Q requires O(log2 n) time and moves.
During a sequence of s insertions, this can at most happen �s/Δ3� times, since
|B| can only increase for values above Δ3 by insertions, and each insertion at
most causes |B| to increase by one. The total cost for s insertions is O(s+s/Δ3 ·
log2 n) = O(s), i.e., amortized constant per insertion.

ExtractMin. We first analyze the cost of updating the singles structure. Each
operation on a Di takes time O(Δ) and performs O(1) moves. Locating an
appropriate bucket using S takes O(log n) time and no moves. At least Ω(Δ3)
operations must be performed on a bucket to trigger an expensive bucket split or
bucket elimination in S. Since updating S takes O(log3 n) time, the amortized
cost for updating S is O(1) moves per insertion and extraction from the sin-
gles structure. In total the operations on the singles structure require amortized
O(log n) times and amortized O(1) moves. For ExtractMin the searches per-
formed all take O(log n) comparisons and no moves. If B1 disappears as a result
of an extraction we know at least Ω(Δ3) extractions have occurred because a
rebuild ensures |B1| ≥ Δ3/2. These extractions pay for extracting Im from Qh

which takes O(log2 n) time and moves, amortized this gives O(1/ log n) addi-
tional time and moves. If the extracted element was in Ii for some i, then Δ2

insertions occur in the singles structure each taking O(log n) time and O(1)
moves amortized. If that happens either Ω(Δ3) insertions or Δ2 extractions
have occurred: Suppose no elements from Ii have been inserted in the singles
structure, then the reason there is a pointer to Ii in Qh is due to Ω(Δ3) inser-
tions. When inserting elements in the singles structure from Ii the number of
elements inserted is Δ2 and these must first be deleted. From this discussion
it is evident that we have saved up Ω(Δ2) moves and Ω(Δ3) time, which pay
for the expensive extraction. Finally if the minimum element was in S, then
an extraction on a Δ-ary heap is performed which takes O(Δ) time and O(1)
moves, since its height is O(1).

Rebuilding. The cost of rebuilding is O(n), due to a selection and building heaps
with O(1) height. There are three reasons a rebuild might occur: (i) n became
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4N , (ii) n became N − 1, or (iii) An insertion into T would cause q > K. By the
choice of N during a rebuild it is guaranteed that in the first and second case at
least Ω(N) insertions or extractions occurred since the last rebuild, and we have
thus saved up at least Ω(N) time and moves. For the last case we know that
each extraction incur O(1) insertions in the singles structure in an amortized
sense. Since the singles structure accommodates Ω(N) elements and a rebuild
ensures the singles structure has o(n) non dummy elements (Lemma 2), at least
Ω(N) extractions have occurred which pay for the rebuild.

Lemma 2. Immediately after a rebuild o(n) elements in the singles structure
are non-dummy elements

Proof. There are at most n/Δ3 of the Ii structures and Δ2 elements are inserted
in the singles structure from each Ii, thus at most n/Δ = o(n) non-dummy
elements reside in the singles structure after a rebuild. 	

The paragraphs above establish Theorem 1.

3 Worst Case Solution

In this section we present a strictly implicit priority queue supporting Insert
in worst-case O(1) time and ExtractMin in worst-case O(log n) time (and
moves). The data structure requires all elements to be distinct. The main concept
used is a variation on binomial trees. The priority queue is a forest of O(log n)
such trees. We start with a discussion of the variant we call relaxed binomial
trees, then we describe how to maintain a forest of these trees in an amortized
sense, and finally we give the deamortization.

3.1 Relaxed Binomial Tree

Binomial trees are defined inductively: A single node is a binomial tree of size
one and the node is also the root. A binomial tree of size 2i+1 is made by linking
two binomial trees T1 and T2 both of size 2i, such that one root becomes the
rightmost child of the other root. We lay out in memory a binomial tree of size 2i

by a preorder traversal of the tree where children are visited in order of increasing
size, i.e. c0, c1, . . . , ci−1. This layout is also described in [5]. See Figure 2 for an
illustration of the layout. In a relaxed binomial tree (RBT) each nodes stores an
element, satisfying the following order: Let p be a node with i children, and let
cj be a child of p. Let Tcj

denote the set of elements in the subtree rooted at cj .
We have the invariant that the element c� is less than either all elements in Tc�

or less than all elements in
⋃

j<� Tcj
(see Figure 2). In particular we have the

requirement that the root must store the smallest element in the tree. In each
node we store a flag indicating in which direction the ordering is satisfied. Note
that linking two adjacent RBTs of equal size can be done in O(1) time: compare
the keys of the two roots, if the lesser is to the right, swap the two nodes and
finally update the flags to reflect the changes as just described.

For an unrelated technical purpose we also need to store whether a node is
the root of a RBT. This information is encoded using three elements per node
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Fig. 2. An example of an RBT on 16 elements (a,b,...,o). The layout in memory of an
RBT and a regular binomial tree is the same. Note here that node 9 has element c and
is not the minimum of its subtree because node 11 has element b, but c is the minimum
among the subtrees rooted at nodes 2, 3, and 5 (c0, c1, and c2). Note also that node 5
is the minimum of its subtree but not the minimum among the trees rooted at nodes
2 and 3, which means only one state is valid. Finally node 3 is the minimum of both
its own subtree and the subtree rooted at node 2, which means both states are valid
for that node.

(allowing 3! = 6 permutations, and we only need to differentiate between three
states per node: “root”, “minimum of its own subtree”, or “minimum among
strictly smaller subtrees”).

To extract the minimum element of an RBT it is replaced by another ele-
ment. The reason for replacing is that the forest of RBTs is implicitly maintained
in an array and elements are removed from the right end, meaning only an ele-
ment from the last RBT is removed. If the last RBT is of size 1, it is trivial
to remove the element. If it is larger, then we decompose it. We first describe
how to perform a Decompose operation which changes an RBT of size 2i into
i structures Ti−1, . . . , T1, T0, where |Tj | = 2j . Then we describe how to per-
form ReplaceMin which takes one argument, a new element, and extracts the
minimum element from an RBT and inserts the argument in the same structure.

A Decompose procedure is essentially reversing insertions. We describe a
tail recursive procedure taking as argument a node r. If the structure is of size
one, we are done. If the structure is of size 2i the (i − 1)th child, ci−1, of r is
inspected, if it is not the minimum of its own subtree, the element of ci−1 and
r are swapped. The (i − 1)th child should now encode “root”, that way we have
two trees of size 2i−1 and we recurse on the subtree to the right in the memory
layout. This procedure terminates in O(i) steps and gives i+1 structures of sizes
2i−1, 2i−2, . . . , 2, 1, and 1 laid out in decreasing order of size (note there are two
structures of size 1). This enables easy removal of a single element.

The ReplaceMin operation works similarly to the Decompose, where
instead of always recursing on the right, we recurse where the minimum ele-
ment is the root. When the recursion ends, the minimum element is now in
a structure of size 1, which is deleted and replaced by the new element. The



100 G.S. Brodal et al.

decomposition is then reversed by linking the RBTs using the Link procedure.
Note it is possible to keep track of which side was recursed on at every level with
O(log n) extra bits, i.e. O(1) words. The operation takes O(log n) steps and cor-
rectness follows by the Decompose and Link procedures. This concludes the
description of RBTs and yields the following theorem.

Theorem 2. On an RBT with 3 · 2i elements, Link and FindMin can be sup-
ported in O(1) time and Decompose and ReplaceMin in O(i) time.

3.2 How to Maintain a Forest

As mentioned our priority queue is a forest of the relaxed binomial trees from
Theorem 2. An easy amortized solution is to store one structure of size 3 · 2j

for every set bit j in the binary representation of �n/3�. During an insertion
this could cause O(log n) Link operations, but by a similar argument to that of
binary counting, this yields O(1) amortized insertion time. We are aiming for a
worst case constant time solution so we maintain the invariant that there are at
most 5 structures of size 2i for i = 0, 1, . . . , �log n�. This enables us to postpone
some of the Link operations to appropriate times. We are storing O(log n) RBTs,
but we do not store which sizes we have, this information must be decodable
in constant time since we do not allow storing additional words. Recall that
we need 3 elements per node in an RBT, thus in the following we let n be the
number of elements and N = �n/3� be the number of nodes. We say a node is
in node position k if the three elements in it are in positions 3k − 2, 3k − 1, and
3k. This means there is a buffer of 0, 1, or 2 elements at the end of the array.
When a third element is inserted, the elements in the buffer become an RBT
with a single node and the buffer is now empty. If an Insert operation does not
create a new node, the new element is simply appended to the buffer. We are
not storing the structure of the forest (i.e. how many RBTs of size 2j exists for
each j), since that would require additional space. To be able to navigate the
forest we need the following two lemmas.

Lemma 3. There is a structure of size 2i at node positions k, k+1, . . . , k+2i−1
if and only if the node at position k encodes “root”, the node at position k + 2i

encodes “root” and the node at position k + 2i−1 encodes “not root”.

Proof. It is trivially true that the mentioned nodes encode “root”, “root” and
“not root” if an RBT with 2i nodes is present in those locations.

We first observe there cannot be a structure of size 2i−1 starting at position k,
since that would force the node at position k + 2i−1 to encode “root”. Also all
structures between k and N must have less than 2i elements, since both nodes
at positions k and k + 2i encode “root”. We now break the analysis in a few
cases and the lemma follows from a proof by contradiction. Suppose there is a
structure of size 2i−2 starting at k, then for the same reason as before there
cannot be another one of size 2i−2. Similarly, there can at most be one structure
of size 2i−3 following that structure. Now we can bound the total number of
nodes from position k onwards in the structure as: 2i−2 + 2i−3 + 5

∑i−4
j=0 2j =

2i − 5 < 2i, which is a contradiction. So there cannot be a structure of size 2i−2
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starting at position k. Note there can at most be three structures of size 2i−3

starting at position k, and we can again bound the total number of nodes as:
3 · 2i−3 + 5

∑i−4
j=0 2j = 2i − 5 < 2i, again a contradiction. 	


Lemma 4. If there is an RBT with 2i nodes the root is in position N−2ik−x+1
for k = 1, 2, 3, 4 or 5 and x = N mod 2i.

Proof. There are at most 5·2i−5 nodes in structures of size ≤ 2i−1. All structures
of size ≥ 2i contribute 0 to x, thus the number of nodes in structures with ≤ 2i−1

nodes must be x counting modulo 2i. This gives exactly the five possibilities for
where the first tree of size 2i can be. 	


We now describe how to perform an ExtractMin. First, if there is no buffer
(n mod 3 = 0) then Decompose is executed on the smallest structure. We apply
Lemma 4 iteratively for i = 0 to �log N� and use Lemma 3 to find structures of
size 2i. If there is a structure we call the FindMin procedure (i.e. inspect the
element of the root node) and remember which structure the minimum element
resides in. If the minimum element is in the buffer, it is deleted and the rightmost
element is put in the empty position. If there is no buffer, we are guaranteed due
to the first step that there is a structure with 1 node, which is now the buffer.
On the structure with the minimum element ReplaceMin is called with the
rightmost element of the array. The running time is O(log n) for finding all
the structures, O(log n) for decomposing the smallest structure and O(log n) for
the ReplaceMin procedure, in total we get O(log n) for ExtractMin.

The Insert procedure is simpler but the correctness proof is somewhat
involved. A new element is inserted in the buffer, if the buffer becomes a node,
then the least significant bit i of N is computed. If at least two structures of size
2i exist (found using the two lemmas above), then they are linked and become
one structure of size 2i+1.

Lemma 5. The Insert and ExtractMin procedures maintain that at most
five structures of size 2i exist for all i ≤ �log n�.
Proof. Let N≤i be the total number of nodes in structures of size ≤ 2i. Then
the following is an invariant for i = 0, 1, . . . , �log N�.

N≤i + (2i+1 − ((N + 2i) mod 2i+1))) ≤ 6 · 2i − 1

The invariant states that N≤i plus the number of inserts until we try to link
two trees of size 2i is at most 6 · 2i − 1. Suppose that a new node is inserted
and i is not the least significant bit of N then N≤i increases by one and so does
(N + 2i) mod 2i+1, which means the invariant is maintained. Suppose that i is
the least significant bit in N (i.e. we try to link structures of size 2i) and there
are at least two structures of size 2i, then the insertion makes N≤i decrease by
2 · 2i − 1 = 2i+1 − 1 and 2i+1 − (N + 2i mod 2i+1)) increases by 2i+1 − 1, since
(N + 2i) mod 2i+1 becomes zero, which means the invariant is maintained. Now
suppose there is at most one structure of size 2i and i is the least significant bit of
N . We know by the invariant that N≤i−1+(2i −(N +2i−1 mod 2i)) ≤ 6 ·2i−1−1
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which implies N≤i−1 ≤ 6·2i−1−1−2i+2i−1 = 5·2i−1−1. Since we assumed there
is at most one structure of size 2i we get that N≤i ≤ 2i+N≤i−1 ≤ 2i+5·2i−1−1 =
3.5 · 2i − 1. Since N mod 2i+1 = 2i (i is the least significant bit of N) we have
N≤i + (2i+1 − (N + 2i mod 2i+1)) ≤ 3.5 · 2i − 1 + 2i+1 = 5.5 · 2i − 1 < 6 · 2i − 1.

The invariant is also maintained when deleting: for each i where Ni > 0 before
the ExtractMin, Ni decreases by one. For all i the second term increases by at
most one, and possibly decreases by 2i+1 − 1. Thus the invariant is maintained
for all i where Ni > 0 before the procedure. If Ni = 0 before an ExtractMin,
we get Nj = 2j+1 − 1 for j ≤ i. Since the second term can at most contribute
2j+1, we get Nj + (2j+1 − ((N + 2j) mod 2j+1)) ≤ 2j+1 − 1 + 2j+1 ≤ 6 · 2j − 1,
thus the invariant is maintained. 	


Correctness and running times of the procedures have now been established.
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Abstract. A conflict-free coloring of a hypergraph H = (V, E) with
n = |V | vertices and m = |E| hyperedges (where E ⊆ 2V ), is a coloring
of the vertices V such that every hyperedge E ∈ E contains a vertex
of “unique” color. Our goal is to minimize the total number of distinct
colors. In its full generality, this problem is known as the conflict-free
(hypergraph) coloring problem. It is known that Θ(

√
m) colors might be

needed in general.
In this paper we study the relaxation of the problem where one is

allowed to assign multiple colors to the same node. The goal here is to
substantially reduce the total number of colors, while keeping the num-
ber of colors per node as small as possible. By a simple adaptation of
a result by Pach and Tardos [2009] on the single-color version of the
problem, one obtains that only O(log2 m) colors in total are sufficient
(on every instance) if each node is allowed to use up to O(log m) colors.

By improving on the result of Pach and Tardos (under the assump-
tion n � m), we show that the same result can be achieved with
O(log m·log n) colors in total, and either O(log m) or O(log n·log log m) ⊆
O(log2 n) colors per node. The latter coloring can be computed by a
polynomial-time Las Vegas algorithm.

1 Introduction

Consider the following scenario motivated by wireless applications. We are given
a collection of n transmitters, where each transmitter can transmit at a chosen
frequency. Furthermore, we are given a collection of m receivers, where each
receiver receives the signal of some subset of the transmitters. Each receiver
can tune to a proper frequency, and it receives any message transmitted at
that frequency if precisely one transmitter in its range is transmitting at that
frequency (if two or more such transmitters do this, then interferences destroy
the message). We have to choose frequencies such that each receiver can receive
messages, and our goal is to minimize the total number of frequencies used
altogether.

In its full generality, this is known as the conflict-free (hypergraph) coloring
problem. We are given a hypergraph H = (V, E), E ⊆ 2V , with n nodes and m
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hyperedges. A coloring of H with k colors is an assignment c : V → {1, . . . , k}
of an integer value (color) to each node. A coloring is conflict-free if for each
hyperedge E there exists at least one node v ∈ E such that c(v) �= c(u) for any
other node u �= v with u ∈ E. Our goal is to find a conflict-free coloring with
the minimum number of colors. The latter quantity χcf(H) is the conflict-free
chromatic number of H. Obviously, in the above scenario, nodes, hyperedges,
and colors model transmitters, receivers, and frequencies, respectively.

Trivially, min{n,m + 1} frequencies are sufficient to achieve (in general) a
conflict-free coloring. This result can be improved to Θ(

√
m) [17]1. The latter

result is already tight: simply consider a complete graph on n nodes; a conflict-
free coloring requires n = Θ(

√
m) colors.

Our Results and Techniques. Motivated by the large (polynomial) number
of colors needed to solve conflict-free coloring in general, in this paper we study
a relaxation of the problem where we are allowed to use multiple colors at each
node. This models a situation in which transmitters can transmit on multiple
frequencies.

More formally, we study the following conflict-free (hypergraph) multi-
coloring problem. Given a hypergraph H = (V, E), E ⊆ 2V , with n nodes
and m hyperedges, a multi-coloring of H with k colors is an assignment
C : V → 2{1,...,k} of a subset of integer values (colors) to each node. A hyper-
edge E ∈ E is conflict-free if there exists at least one node v ∈ E and one color
c(v) ∈ C(v) such that, for any other node v �= u ∈ E and any c(u) ∈ C(u), one
has c(v) �= c(u) (intuitively, some color appears exactly once in E). A multi-
coloring is conflict-free if all hyperedges are conflict-free. Our goal is now two-
fold: on one side, as before, we wish to minimize the total number of colors.
At the same time, we would like to minimize the maximum number of colors
assigned to each node. At high-level, we address the following main question:
Is a small number of colors per node sufficient to drastically reduce the total
number of colors?

We answer affirmatively to the above question. Indeed, one simple way to
achieve a result of the above kind is via an adaptation of a result by Pach and
Tardos [17] on the standard (single-color) version of the problem. Suppose that
all hyperedges have size at least 2t − 1 (for any integer t ≥ 1). They show how
to compute a conflict-free coloring with O(tm1/t log m) colors in total using a
simple (expected) polynomial-time Las-Vegas algorithm. The idea is to make
Θ(log m) copies of each node, and then apply the algorithm in [17]. The set of
colors assigned to a given node is simply the union of the colors assigned to its
copies. This way each node is assigned at most O(log m) colors, and the total
number of colors is O(log2 m). Pach and Tardos improve their result when the
dependencies among hyperedges are limited, by means of a constructive version
[16] of Lovász’s Local Lemma (LLL) [10,19,22]. More formally, let Γ ≤ m − 1

1 Note that this is an absolute upper bound on the conflict-free chromatic number,
while of course some hypergraphs might need fewer colors. All upper bounds in this
paper are of this type.
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denote the maximum number of different hyperedges that any hyperedge E
intersects (the maximum hyperedge degree of H). In this case the result in [17] is
refined to O(tΓ 1/t log Γ ), and consequently one can obtain a conflict-free multi-
coloring with O(log2 Γ ) colors in total, and O(log Γ ) colors per node.

Our main result (which might be of independent interest) is an improvement
on the O(tΓ 1/t log Γ ) upper bound, under each of the following assumptions:
(i) n is sufficiently smaller than Γ (see Section 2), (ii) hyperedges have size at
most O(log Γ ) (see Section 3):

Theorem 1. There exists a polynomial-time Las Vegas algorithm for conflict-
free coloring using O(tΓ 1/t log n) ⊆ O(tm1/t log n) colors, where 2t−1 is a lower
bound on the size of any hyperedge and Γ is the maximum hyperedge degree. If
the maximum hyperedge size is O(log Γ ), the number of colors can be reduced to
O(tΓ 1/t).

We remark that there are ranges of values of Γ , m and n such that we reduce
the upper-bound on the conflict-free chromatic number by a factor Ω(

√
n). For

example, consider a hypergraph on n nodes for which we choose uniformly at
random m = n

√
n/ lnn hyperedges of size

√
n. Then the probability that two

hyperedges E,E′ intersect is at least 1/
√

n (the probability that a fixed node
is contained in E′). Hence in expectation a given hyperedge intersects at least
(m − 1)/

√
n other hyperedges. Therefore we can assume Γ ∈ Ω(m/

√
n). Since

also Γ ≤ m − 1, we have
√

n ∈ Θ(log m) = Θ(log Γ ). In this case the result of
Pach-Tardos gives the (up to constant factors) trivial bound of O(log2 Γ ) = O(n)
colors, while our construction uses only O(log Γ ) = O(

√
n) colors.

Furthermore we can improve on Theorem 1 by a refined analysis in case of
hypergraphs with hyperedge sizes bounded from below by 2t−1 and from above
by O(t). For such almost-uniform hypergraphs we achieve a conflict-free coloring
with O(tm1/(t+1)) colors. This generalizes a result on uniform hypergraphs [14].

We next discuss the main ideas behind Theorem 1. The conflict-free coloring
algorithm in [17] works as follows. There is a sequence of rounds. At round i we
use a new color i and color each still uncolored node independently at random
with some (fairly small) probability p. Observe that the color assigned to each
node follows a geometric distribution.

Our main idea is to replace colors in the above approach with disjoint color
classes, each one containing h colors. Then each node is independently assigned
a color chosen uniformly at random in its color class. For our goal it is convenient
to use a constant probability p and a large enough value of h. The rough idea
is that, with large-enough probability, for each hyperdge E there is some round
i where for the yet unassigned nodes E′ ⊆ E we have that (h/|E′|)|E′| is lower
bounded by a polynomial in the maximum hyperedge degree Γ . Therefore with
sufficiently large probability (with respect to 1/Γ ) some color in the i-th color
class will appear only once in E′ and hence in E, since color classes are disjoint.

By using node duplication as discussed before, one immediately obtains the
following corollary for conflict-free multi-coloring.
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Corollary 1. There exists a polynomial-time Las Vegas algorithm for conflict-
free multi-coloring using O(log Γ · log n) colors in total, and O(log Γ ) colors per
node, where Γ is the maximum hyperedge degree.

Note that m (hence Γ ) can be exponential in n. Therefore the upper bound
O(log Γ ) on the number of colors per node can be linear in n: this might be too
much due to technological constraints. We were able to reduce the mentioned
upper bound (for large enough Γ ) by means of a more sophisticated algorithm,
without increasing the total number of colors (see Section 3).

Theorem 2. There exists a polynomial-time Las Vegas algorithm for conflict-
free multi-coloring using O(log Γ · log n) colors in total, and O(log n · log log Γ ) ⊆
O(log2 n) colors per node, where Γ is the maximum hyperedge degree.

The above refinement is obtained as follows: Observe that, using our result from
Theorem 1, hyperedges of size Ω(log Γ ) can be conflict-free colored with a single
color per node and O(log Γ · log n) colors in total. We partition the remaining
hyperedges in O(log log Γ ) buckets of approximately uniform size. Hyperedges in
each bucket are colored independently, using a novel set of colors each time. In
each bucket we perform a node duplication which is strictly sufficient to achieve
hyperedges of size Θ(log Γ ), and then apply a modified conflict-free coloring
algorithm. As mentioned, due to the (approximate) uniformity of the hyperedge
sizes, O(tΓ 1/t) = O(log Γ ) colors are sufficient in each bucket (adding overall
O(log Γ · log log Γ ) ⊆ O(log Γ · log n) many colors to the total). For increasing
value of the bucket size, on one hand the (potential) number of hyperedges
increases, while on the other hand the number of node duplicates needed to reach
the size Ω(log Γ ) decreases. The two phenomena compensate well. In particular,
it is always sufficient to create O(log n) copies of each node (hence the total
number of colors per node is O(log n log log Γ ) ⊆ O(log2 n)).

Our work also implies improved bounds for conflict hypergraphs induced by
certain shapes in the plane. In particular, we can easily extend some known
results for axis-parallel rectangles and disks to any shape with constant descrip-
tion complexity. Details are omitted from this extended abstract.

The following lower bounds show that our results are not very far from best
possible, at least in some relevant cases.

Theorem 3. Consider a complete r-uniform hypergraph on n nodes, with r <
n/2. Then any conflict-free multi-coloring needs to use Ω(log n) colors in total.
Furthermore, any such coloring using polylog(n) colors has to use Ω( log n

log log n )
colors on some node.

For intuition we give a proof for r = 2; the complete proof will be given in the
full version of the paper. We can represent the multi-coloring of each node as a
0-1 vector, where the 1’s indicate the colors assigned to that node. If two nodes
u and v are labelled with the same vector, then the edge uv is not conflict-free.
Suppose we use htot colors in total, and at most hmax colors per node. Then
the number of 0-1 vectors is O(min{hhmax

tot , 2htot}). As a consequence, we need
htot = Ω(log n) to have n distinct vectors. Similarly, if htot = polylog(n), we
need hmax = Ω(log n/ log log n) to have n distinct vectors.
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Table 1. Bounds on the conflict-free chromatic number of hypergraphs on n vertices,
m edges and maximum hyperedge degree Γ

Constraint Previous Results Our Results

∀E ∈ E : 2t − 1 ≤ |E| O(tΓ 1/t log Γ ) [17] O(tΓ 1/t log n)

∀E ∈ E : 2t − 1 ≤ |E| ∈ O(log Γ ) O(tΓ 1/t)

∀E ∈ E : |E| = r Ω( rm2/(r+2)

logm
), O(rm

2
r+2 ) [14]

∀E ∈ E : 2t − 1 ≤ |E| ∈ O(t) O(tm1/(t+1))

For comparison, consider a hypergraph on m =
(
n
r

)
hyperedges of uniform

size r ≤ n/e. Observe that
(

n
r

)r ≤ m ≤ (
n·e
r

)r, hence r ≤ r(ln n − ln r) ≤ ln m.
The algorithm from Theorem 2 uses only one bucket and by this refined analysis
assigns O(log m) = O(r log n) colors in total and O(log n) colors per node. Hence
for small r our algorithm is not far from best possible.

Related Work. An anonymous reviewer pointed us to the independent work
of Bar-Yehuda, Goldreich and Itai [5] on the radio broadcast problem, which
considers assigning time-slots to transmitters (rather than frequencies) in a peri-
odic schedule. One can reinterpret time slots of their framework as colors in a
multi-coloring, hence obtaining for our setting a randomized multi-coloring algo-
rithm using O(log m · log Δ) colors in total, where Δ is the maximum hyperedge
size. Using Lovász’s Local Lemma one can infer that this can be improved to
O(log Γ · log Δ) colors in total and O(log Γ ) colors per node. Considering Theo-
rem 2, the two results differ (i) for the total number of colors if log Γ 	 Δ 	 n
and (ii) for the number of colors per transmitter if Γ 
 n.

Other multi-coloring models for frequency assignment problems have been
considered for standard graphs (for a survey, see e.g. [1]). We already mentioned
a few results about the (single-color) conflict-free hypergraph coloring problem.
Pach and Tardos [17] raised the question whether it is possible to get a coloring
with Õ(tm1/t) colors even when hyperedges have size at least t (rather than
2t − 1). Kostochka et al. [14] have answered this in the negative, proving that
there exists a r-uniform hypergraph H with m hyperedges (and even r ≤ ln m)
such that χcf(H) ∈ Ω(rm2/(r+2)/ log m). They have also shown that for all r-
uniform hypergraphs H, χcf(H) ∈ O(rm2/(r+2)). The known bounds on the
conflict-free chromatic number are summarized in Table 1.

For obvious reasons related to the mentioned applications, it makes sense to
consider the conflict-free coloring problem under geometric restrictions on the
structure of the hypergraph. In particular, one can consider transmitters and
receivers as points in an Euclidean space. Here each transmitter v reaches all the
receivers E in a given geometric region around v (e.g., a circle or sphere centered
at v). Indeed, the problem was first defined having such a geometric model in
mind by Even et al. [11], and has further been studied by Smorodinsky [2,12,20],
Pach [18] and Cheilaris [4,8] for various geometric hypergraphs, such as those
induced by disks, rectangles or intervals. The problem has been studied in terms
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of approximation [13] and online algorithms [3,9]. For a comprehensive survey
on this problem, see also [21].

Another recently studied conflict-free coloring problem is a chromatic variant
of the art gallery problem, in which the hypergraph is induced by visibility
regions of transmitters in a given polygon [6,7]. In this problem, the structure
of the hypergraph depends on the placement of the transmitters, which is not
prescribed, but rather can be chosen together with the coloring.

2 An Improved Conflict-Free Coloring Algorithm

In this section we describe the conflict free-coloring algorithm from Theorem
1. Recall that n denotes the number of nodes, m the number of hyperedges,
and Γ ≤ m − 1 the maximum number of hyperedges that intersect any given
hyperedge E. Furthermore, the minimum hyperedge size is 2t − 1.

Our proof proceeds as follows. We start by describing a simple randomized
algorithm that assigns colors independently to each node. We remark that our
algorithm framework contains the algorithm by Pach and Tardos [17] as a special
case, however our choice of parameters is substantially different. Let BE denote
the (bad) event that a given hyperedge E is not conflict-free. We will show that
Pr[BE ] ≤ 1

eΓ . Since the event BE depends on at most Γ other bad events BF

(namely those corresponding to hyperedges F intersecting E), we conclude from
Lovasz Local Lemma (LLL) that our algorithm succeeds with positive proba-
bility2. We can therefore use the polynomial-time Las Vegas algorithm MT by
Moser and Tardos [16] to construct the desired conflict-free coloring in expected
polynomial time.

A Geometric Color Classes Algorithm. Consider the following Geometric
Color Classes algorithm GCC. GCC has two parameters, a probability p and a
positive integer h (to be fixed later). Let C1, C2, . . . , C�lnn� be pairwise disjoint
subsets of h colors each (color classes). Our algorithm works in two steps:

Step 1 We independently assign a color class Ci to each node as follows.
At each round i = 1, . . . , �ln n� − 1 we consider every node v that has not been
assigned any color class yet, and we independently assign color class Ci to v with
probability p. At the end of the process we assign the final color class C�lnn� to
the remaining unassigned nodes.

Step 2 For each node v we choose independently and uniformly at random
one of the h colors from its assigned color class.
We next set the parameters p and h, and discuss some consequences of our
choices that will turn out to be useful in the analysis of the algorithm. We
choose p = 1 − 1

e and h = 48t(2eΓ )1/t.

Remark 1. The assignment of nodes to color classes follows a truncated geomet-
ric distribution. In more detail, the probability that a node v is assigned to the
2 Here we consider the refined version of LLL given by Shearer [19], however this is

not crucial for us modulo updating a few constants.
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color class Ci is p(1 − p)i−1 for i < ln n, and (1 − p)�lnn�−1 for i = �ln n�.
In particular, the number X of nodes assigned to C�lnn� in expectation is
E [X] = n · (1/e)�lnn�−1 ≤ e.

Remark 2. Consider h as a function h(t) of t. Note that we can restrict the
domain of h(t) to t ≤ ln Γ : Since tΓ 1/t achieves its minimum for t = ln Γ , and
since any hyperedge with more than 2 ln Γ − 1 nodes has size at least 2 ln Γ − 1,
it is enough to show the claimed bound of O(tΓ 1/t log n) colors for t ≤ ln Γ .
Over this domain h(t) is monotonically decreasing because for t ≤ ln Γ we have
h′(t) = 48(2eΓ )1/t · (t − ln Γ − ln 2 − 1)/t < 0. We will make use of the fact that
t ≤ t′ ≤ ln Γ implies h(t) ≥ h(t′).

Existence of a Good Coloring. In this section we will show that GCC, using
O(tΓ 1/t log n) colors, finds a conflict-free coloring with positive probability. To
this end, we prove that LLL is applicable to the randomized coloring given by
GCC. Recall that in LLL one considers a set of (bad) events, each one happening
with probability at most p, where each event is independent of all the others
except for at most d of them. Then, if epd ≤ 1, there is a nonzero probability
that none of the events occur [19]. In our case the bad events are {BE}E∈E ,
where BE denotes the event that the hyperedge E is not conflict-free. Since E
intersects at most Γ other hyperedges and colors are assigned independently,
BE is independent from all but Γ other events BF (i.e., d = Γ ). By LLL it is
sufficient to show that Pr[BE ] ≤ 1

eΓ .
Consider any given hyperedge E of size s. Recall that by assumption s ≥

2t − 1. We distinguish between the case that E is small, i.e., s ≤ 24 ln Γ , and
the case that E is large, i.e., s > 24 ln Γ .

Case of small hyperedges. Let E be a (small) hyperedge with s = |E| ≤ 24 ln Γ
nodes. We can upper bound Pr[BE ] by means of the following coupling argument.
Suppose that a node v is assigned the j-th color of the i-th color class Ci. Then we
reassign to v the j-th color of C1. Clearly this reassignment can only decrease the
probability that each given hyperedge E is conflict-free. Therefore it is sufficient
to upper bound Pr[BE ] under the assumption that all nodes in E are assigned
to the same color class. Lemma 1 follows Kostochka et al. [14]:

Lemma 1. Let E be a hyperedge of size s and let its nodes be colored uniformly
at random with h colors. Then the probability that there is no unique color in E

is Pr [BE ] ≤ (
2s
h

)�s/2�.

Lemma 2. For any small hyperedge E, Pr [BE ] ≤ 1
2eΓ .

Proof. By definition one has s = |E| with 2t − 1 ≤ s ≤ 24 ln Γ . First note that
by Lemma 1 (and the mentioned coupling argument) we have

Pr [BE ] ≤ (
2s
h

)�s/2� =
(

2s
48t(2eΓ )1/t

)�s/2�
. (1)
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Now we distinguish between two cases, depending on whether the size s of E is
relatively close to t or not, i.e. whether s ≤ 24t or t < s

24 .
Case 1: s ≤ 24t. One has 2s ≤ 48t and �s/2� ≥ t. Hence the right-hand side of
(1) is bounded by

(
2s

48t(2eΓ )1/t

)�s/2�
≤

(
1

(2eΓ )1/t

)�s/2�
≤

(
1

(2eΓ )1/t

)t

= 1
2eΓ .

Case 2: t < s
24 . Recall that by assumption we have s ≤ 24 ln Γ ⇔ s = 24d ln Γ

for some d ≤ 1. Thus we can write t < d ln Γ ≤ ln Γ . By Remark 2, h(t) is
monotonically decreasing for t ≤ ln Γ and thus h = h(t) > h(d ln Γ ). Further-
more, �s/2� ≥ 12d ln Γ . Putting everything together, the right-hand side of (1)
is bounded by

(
2s

48t(2eΓ )1/t

)�s/2�
≤

(
48d lnΓ

48d lnΓ ·(2eΓ )1/(d ln Γ )

)12d lnΓ

= 1
(2eΓ )12 ≤ 1

2eΓ . ��

Case of Large Hyperedges. Let E be a (large) hyperedge with s = |E| > 24 ln Γ
nodes. To upper bound Pr[BE ], we show that with large enough probability E
contains a subset of nodes E′

� E of size 2t − 1 ≤ |E′| ≤ 24 ln Γ , whose nodes
are assigned colors not appearing in E \ E′. This allows us to reuse the analysis
for the case of small hyperedges (a coloring that is conflict-free on E′ will also
be conflict-free on E).

In more detail, consider the color classes assigned to the nodes of E by GCC,
and denote them by C ′

1, C
′
2, . . . , C

′
k (in the order given by the algorithm.) Recall

that these color classes are pairwise disjoint. Denote by Ej the subset of nodes
with color class C ′

j . We show that there is either a single subset Ej of small
size or that there is a union E>k−l :=

⋃l−1
j=0 Ek−j of the last l subsets, for some

l, that has a small size. Depending on which case applies, we will use either
E′ = Ej or E′ = E>k−l. Let us formally define these two events, for which we
use mnemonic identifiers S (single color class) and U (union of color classes):

– S = “There is an index j, 1 ≤ j ≤ l, such that 2t − 1 ≤ |Ej | ≤ 24 ln Γ .”
– U = “There is an index l, 0 ≤ l < k, such that 2t − 1 ≤ |E>k−l| ≤ 24 ln Γ .”

Lemma 3. For the events S and U as defined, we have Pr [¬S ∧ ¬U ] ≤ 1
2e

1
Γ .

Proof. Assume neither S nor U occurs. Recall that E>k−l =
⋃l−1

j=0 Ek−j . Since
by assumption U does not occur, there exists a unique l with 0 ≤ l < k such
that E′ := E>k−l has a comparatively very small size |E′| < 2t − 1, while
E′′ = E>k−l−1 = E′ ∪ Ek−l already has a large size |E′′| := a ln Γ for some
a > 24.

Since S does not occur, we must have |Ek−l| > 24 ln Γ . Recall that by
Remark 2 we can restrict ourselves to the case t ≤ ln Γ and hence |E′| < 2t−1 <
2 ln Γ . Thus |Ek−l| = |E′′ \ E′| > (a − 2) ln Γ . We can conclude that

Pr [¬S ∧ ¬U ] ≤ Pr[|Ek−l| ≥ ln Γ · max{24, a − 2}].



On Conflict-Free Multi-coloring 111

We distinguish two cases, depending on whether C ′
k−l is the last color class

C�lnn� ever assigned by the algorithm or not.
First let us implicitly condition on the event C ′

k−l = C�lnn�. By Remark 1, the
number of all nodes X with assigned color class C�lnn� is a sum of indepen-
dent Bernoulli random variables with expectation E[X] ≤ e. Thus we can apply
Chernoff bounds (see, e.g., [15]) to get

Pr [|Ek−l| ≥ 24 ln Γ ] ≤ Pr [X ≥ 24 ln Γ ] ≤ 2−24 lnΓ ≤ 1
2eΓ .

In the above inequalities we used the fact that X ≥ |Ek−l| and that Γ is suffi-
ciently large.
Next we implicitly condition on the event C ′

k−l �= C�lnn�. Each of the nodes
in E′′ is chosen into Ek−l independently with probability p = 1 − 1

e . Thus
|Ek−l| is a sum of independent Bernoulli random variables with expectation
E [|Ek−l|] = p · |E′′| = (e−1)a

e lnΓ . Hence we can apply Chernoff bounds to get

Pr [|Ek−l| ≥ (a − 2) ln Γ ] = Pr
[
|Ek−l| ≥

(
1 + a−2e

(e−1)a

)
(e−1)a

e ln Γ
]

≤ e− (e−1)a
e lnΓ ·( a−2e

(e−1)a )2· 13 = e− lnΓ
(a−2e)2

3e(e−1)a ≤ e− lnΓ
(24−2e)2

3e(e−1)·24 ≤ 1
2eΓ .

In the above inequalities we used the fact that (a−2e)2

3e(e−1)a is monotonically increas-
ing in a for a ≥ 24 and that Γ is sufficiently large. ��
Lemma 4. For any large hyperedge E, Pr[BE ] ≤ 1

eΓ .

Proof. Using previous notation we getPr[BE ] ≤ Pr [¬S ∧ ¬U ]+Pr[BE |S∨U ]. By
Lemma 3, Pr [¬S ∧ ¬U ] ≤ 1

2eΓ . Given the event S ∨U , let E′ be a corresponding
subset of nodes of E. We recall that by definition 2t−1 ≤ |E′| ≤ 24 ln Γ , and no
color used for nodes in E′ is also used for nodes in E \ E′. By the same analysis
as in Lemma 2, the event BE′ that there is no unique color among nodes E′ has
probability at most Pr[BE′ ] ≤ 1

2eΓ . Furthermore, when there is a unique color
in E′, then there is a unique color also in E, hence Pr[¬BE′ ] ≤ Pr[¬BE |S ∨ U ].
Consequently, Pr[BE |S ∨ U ] ≤ Pr[BE′ ] ≤ 1

2eΓ and Pr[BE ] ≤ 2
2eΓ ≤ 1

eΓ . ��
By Lemmas 2 and 4, and applying LLL, we obtain the following result.

Lemma 5. Algorithm GCC computes a coloring using at most O(tΓ 1/t log n)
colors. This coloring is conflict-free with positive probability.

Computing a Conflict-Free Coloring. The probability that GCC computes
a conflict-free coloring might be very small. For this reason, we rather use the
Las Vegas algorithm ML in [16], adapted to our setting. In more detail, we start
by coloring nodes according to GCC. Then, while there is some hyperedge E that
is not conflict-free, we recolor the nodes in E using GCC (by resampling from
the same product probability space as before, restricted to E). By the analysis
in [16], this new algorithm GCC+ computes a conflict-free coloring in expected
time polynomial in n and m, provided that there exists a conflict-free coloring
among the ones that can be returned by GCC. The latter condition holds by
Lemma 5. The main part of Theorem 1 immediately follows.
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3 A Refined Multi-coloring Algorithm

In this section we prove Theorem 2. This is achieved in two steps. First we
describe and analyze a refined conflict-free coloring algorithm for the case that
hyperedges have sizes in a small range. Then we present a non-trivial multi-
coloring algorithm that exploits the new (and also the previous) coloring algo-
rithm as a subroutine.

Hyperedges with Upper Bounded Size. Suppose that every hyperedge has
size at most k · ln Γ , with k ∈ o(log n). Then we can modify the parameters in
GCC to achieve an improved upper bound of O(tΓ 1/tk) colors. In particular, for
constant k the number of colors needed in the single-color case is O(tΓ 1/t) only.

In more detail, we set p = 1 and h = 2kt(3eΓ )1/t (i.e., we use only one color
class of a size depending linearly on k). We denote this algorithm by 1C. In order
to prove that we have a conflict-free coloring with sufficiently large probability,
it is sufficient to slightly adapt the proof of Lemma 2. In particular, in the case
distinction we distinguish between hypedges of size s ≤ k t and hyperedges of
size k t < s ≤ k ln Γ . The rest of the analysis is the same. We can also similarly
modify the algorithm to make it run in expected polynomial time using the
approach in [16]: let 1C+ denote this variant. Hence we obtain the following
lemma, which shows the second part of Theorem 1.

Lemma 6. There is a polynomial-time Las Vegas algorithm for conflict-free col-
oring using O(tΓ 1/tk) colors, assuming that hyperedges have size at least 2t − 1
and at most k lnΓ .

For Γ ∈ Θ(m), Lemma 6 yields a conflict-free coloring using O(tm1/tk)
colors. Suppose that, additionally, all the hyperedges have size at most k · t, with
k a constant. Then we can improve the upper bound to O(tm1/(t+1)) by using
a deterministic preprocessing of the hypergraph similarly to [14]. Though this is
not needed for our multi-coloring algorithm, we briefly present this result since it
might be of some interest. Indeed, this generalizes the bound in [14] from uniform
hypergraphs to hypergraphs with a constant factor gap between the minimum
and maximum hyperedge size. The proof is omitted from this extended abstract.

Lemma 7. There is a polynomial-time Las Vegas algorithm for conflict-free col-
oring using O(tm1/(t+1)) colors, assuming that hyperedges have size at least 2t−1
and at most O(t).

A Bucketing Multi-coloring Algorithm. We consider the following refined
conflict-free multi-coloring algorithm. Let q = �log2(ln Γ )�. Note that we have
q ∈ O(log log Γ ). We partition the hyperedges into subsets E0, . . . , Eq, where for
i < q the subset Ei contains all hyperedges of size in

[
2i, 2i+1

)
, while the last

subset Eq contains all the remaining hyperedges (which have size ≥ 2q ≥ ln Γ ).
Then there is a sequence of rounds i = 0, . . . , q. In round i the algorithm considers
the sub-hypergraph induced by Ei (containing only the nodes Vi spanned by Ei).
If i = q, the algorithm colors nodes in Vi using algorithm GCC+ from Theorem 1.
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Otherwise, the algorithm splits each node in Vi into �ln Γi/2i� copies, and colors
such copies using algorithm 1C+ from Lemma 6. Here Γi ≤ |Ei| − 1 denotes the
value of Γ in the considered sub-hypergraph. The algorithm uses a novel set of
colors in each round. The final assignment of colors to a node v is simply the
union of the colors assigned to any copy of v in any round. We next analyze this
refined algorithm, proving Theorem 2.

Proof. (of Theorem 2) Consider the above Las Vegas algorithm. Its expected
running is trivially polynomial. In each round i the algorithm obtains a conflict-
free multi-coloring of hyperedges Ei. Since each round uses different colors, the
overall multi-coloring is conflict-free, too.

It remains to bound the total number of colors and the maximum number of
colors per node. By Theorem 1, in round i = q the algorithm uses one color per
node and O(log Γ log n) colors in total. In round i < q, the algorithm considers
an instance with mi = |Ei| hyperedges of size Θ(log Γi) each (after node dupli-
cation). Applying Lemma 6 with t = Θ(log Γi) and k = O(1), the total number
of colors used is O(tΓ 1/t

i k) = O(log Γi) ⊆ O(log Γ ). Furthermore, the number
of extra colors used for each node is at most O(log(Γi)/2i) = O(log(mi)/2i) =
O(log(n2i+1

)/2i) = O(log n). Here we used the fact that hyperedges in Ei have
size at most 2i+1, hence there can be at most O(n2i+1

) such hyperedges. Alto-
gether, in rounds i = 0, . . . , q − 1 the algorithm uses O(log Γ log log Γ ) ⊆
O(log Γ log n) colors in total and O(log n log log Γ ) ⊆ O(log2 n) colors per node.
The claim follows. ��
Remark 3. In case hyperedges have size at most O(log Γ ), the above algorithm
(with a slight adaptation of q) uses only O(log Γ · log log Γ ) colors in total.
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Abstract. Motivated by a path planning problem we consider the fol-
lowing procedure. Assume that we have two points s and t in the plane
and take K = ∅. At each step we add to K a compact convex set that is
disjoint from s and t. We must recognize when the union of the sets in
K separates s and t, at which point the procedure terminates. We show
how to add one set to K in O(1 + kα(n)) amortized time plus the time
needed to find all sets of K intersecting the newly added set, where n is
the cardinality of K, k is the number of sets in K intersecting the newly
added set, and α(·) is the inverse of the Ackermann function.

1 Introduction

Consider the path planning problem from robotics, also known as the piano
mover’s problem [9] [3, Ch.13]: Given an initial and a target configuration of a
robot, the task is to decide whether the robot can move from the initial to the
target configuration without colliding with itself or a surrounding object (and to
find such a transformation if it exists). The problem is typically tackled by setting
up a configuration space X where every robot position is encoded as a single
point. Then X is partitioned into a free space F ⊆ X of allowed configurations
and its complement F̄ = X\F denoting configurations that collide with obstacles.
The initial and final state are denoted by two points s and t in F, and the task
is to decide whether s and t are in the same path-connected component of F.

The following approach to solve the path planning problem is discussed by
Wang, Chiang and Yap [13]. Assume for simplicity that the configuration space
X is a unit cube in Rd. For any given subcube, which we call box from now,
we can decide whether the box is entirely contained in F, entirely contained
in F̄, or both contains points of F and F̄. We color a box green, red, or yellow,
respectively, depending on the predicates outcome. Now, starting with the entire
X, we build a quadtree structure and keep subdividing yellow boxes into 2d boxes
of equal size until one of the following events occur:

(1) Points s and t lie in green boxes and are connected by a path that lies entirely
in green boxes. Such a path is a solution to the path planning problem.

(2) Each path from s to t intersects some red box. In this case, no collision-free
path from s to t can exist, and we say that the red boxes separate s and t.

c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 115–126, 2015.
DOI: 10.1007/978-3-319-21840-3 10
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s

t t

s

Fig. 1. Left: Configuration space with two (convex) holes. Right: Configuration space
with an annulus-shaped obstacle.

Examples showing the events (1) and (2) are in Figure 1, left and right, respec-
tively, where the next step of the subdivision is dashed. The described subdivision
strategy is also used for the task of segmentation of digital images; see [1] and
references therein. In that situation, the approach decides whether two pixels s
and t belong to the same component of the image.

How quickly can we decide whether one of the two conditions is satisfied?
Condition (1) can be easily checked by union-find [12]: just create a new element
for each new green box and make unions to keep together adjacent green boxes,
always checking whether the boxes containing s and t fall into the same set.
That means that the amortized complexity of checking condition (1) is almost
linear in the number of green boxes produced. For condition (2), the case seems
less clear – an alternative way of phrasing the condition is to check whether the
union of green and yellow boxes contains s and t in the same component. The
union-find approach cannot directly be applied because yellow regions might
turn into red and, therefore, the area covered by the boxes may shrink. In this
paper, we discuss how to test the second condition in the planar case (d = 2).

We consider the following generalization of the problem. We have two points s
and t in the plane. We get a set K of compact, convex sets in the plane iteratively,
adding the sets one by one. Each of the sets added to K is disjoint from s and t.
In the motivating problem, the red boxes would be the elements of K. At the end
of the insertion of a new compact convex set into K, we want to know whether K
separates s and t. Thus, we want a semi-dynamic data structure to store K that
allows the insertion of new elements to K and decides whether K separates s and t.

We show that we can maintain K under insertions using a slightly more
sophisticated union-find approach. The time to insert a new set Ku into K is the
time we need to find all the k elements of K intersecting Ku, plus O(k) union-find
operations. In most cases, finding the elements intersecting Ku dominates the
time complexity. However, in some applications with additional structure, as in
our motivating scenario, the time needed for the union-find operations dominates
the total running time. The idea is based on a classical parity argument saying
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that s and t are separated if and only if we can find a closed curve contained in
the union of the elements of K that is crossed an odd number of times by the line
segment � from s to t. We maintain a union-find data structure for the sets of K
and augment it by storing additional information about the parity of crossings
with the line segment �. Using this additional knowledge, we can quickly decide
whether adding a new set to K forms a cycle that separates s and t, and the
information can be maintained under union-find operations.

If in the motivating subdivision procedure we always subdivide a largest
yellow box, we obtain O(1) time per yellow box and O(α(n)) amortized time
per red box, where n is the number of red boxes and α(·) is the inverse of the
Ackermann function. The smooth quadtree discussed by Bennett and Yap [2]
permits to subdivide boxes in an arbitrary order. Thus, we obtain the same
asymptotic behavior for testing conditions (1) and (2).

Roadmap. In Section 2 we discuss a criterion to decide when K separates s and
t in the static case. In Section 3 we extend this to the semi-dynamic case. In
Section 4 we discuss the application to the motivating subdivision procedure.

Our aim is to provide a self-contained exposition. Some of the arguments are
an adaptation of Cabello and Giannopoulos [4] to this simpler setting, others
can be shorten substantially using machinery from Algebraic Topology.

2 Static Connectivity

Let K denote a finite family of compact convex sets in the plane, and let K denote
their union. We use the notation K̄ = R2 \ K. Let s and t be points in K̄.

The set K separates s and t if they are in different path-connected compo-
nents of K̄. Equivalently, K separates s and t if each path in the plane from s to
t intersects K. We also say that K separates s and t.

In the next subsection we discuss a criterion to decide when K separates s
and t. The criterion is based on considering all polygonal paths contained in K,
and thus is computationally unfeasible. In Subsection 2.2 we discuss how this
criterion can be checked in the intersection graph of K, and thus obtain a discrete
version suitable for computations.

We will consistently use Greek letters π, γ, τ, . . . only for (polygonal) curves.

2.1 Topological Criterion for Separation

A polygonal curve π is generic (with respect to s and t) if π does not contain s
nor t and the line segment from s to t does neither contain an endpoint of π nor
a self-intersection of π. We will assume in our discussion that all the polygonal
curves are generic. We can enforce this assumption making a rotation, so that
� is horizontal, and replacing the point s by s′ = s + (0, ε), for an infinitesimal
ε > 0. We always use the same perturbed point s′. Since K is finite, separation of
s and t with K is equivalent to separation of s′ and t with K. The computations
can then be made using simulation of simplicity [7].
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We fix � as the line segment joining s′ and t. The crossing number of �
with a polygonal curve π is the number of intersections of � and π. We denote by
cr2(�, π) the modulo 2 value of the crossing number of � and π. Thus, cr2(�, π) =
1 if and only if the crossing number is odd. For the whole paper, any arithmetic
involving cr2(·, ·) is done modulo 2.

A polygonal curve π is closed if its endpoints coincide. It is simple if it
does not have any self-intersections, except for the common endpoint in the case
of closed polygonal paths.

Lemma 1. The set K separates s and t if and only if there exists a closed polyg-
onal curve π contained in K such that cr2(�, π) = 1.

Proof. We use the following classical argument (e.g. [10, Sec. 2.1]): A simple
closed polygonal curve π separates s′ and t if and only if � and π have an odd
crossing number.

Assume that K contains a closed polygonal curve π such that � and π have
an odd crossing number. If π is not simple, we can split it at self-intersections
to obtain simple, closed polygonal curves, and at least one of them has an odd
crossing number with �. This proves that K separates s and t.

Assume that K separates s and t, that is, s and t lie in different connected
components of K̄. Since K is bounded, at least one of s or t lies in a bounded
component A of K̄. The boundary curve of A is a simple closed curve in K that
separates s and t. Using the convexity of elements in K and the compactness
of K, we can transform this separating curve into a simple polygonal curve in K
that still separates s and t, and therefore has odd crossing number with �. ��
Corollary 1. Let Ku and Kv be two compact convex sets of K. For any two
generic polygonal curves π and π′ contained in Ku∪Kv with the same endpoints,
we have cr2(�, π) = cr2(�, π′).

Proof. A simple argument shows that a union of two compact convex sets Ku ∪
Kv cannot separate s and t. Therefore, Lemma 1 implies that any closed path γ
contained in Ku ∪ Kv has cr2(�, γ) = 0. The concatenation of π and the reverse
of π′ is a closed path in Ku ∪ Kv, so cr2(�, π) + cr2(�, π′) = 0. ��

2.2 Criterion on the Intersection Graph

Consider the intersection graph of K and denote it by G. Each element Kv ∈ K
is a node of G; we will denote the node by v to match standard graph theory
notation. There is an edge uv in G if and only if Ku and Kv intersect. The graph
G is an abstract graph. Next we provide a geometric representation.

For each node v of G choose a point pv in Kv. For each edge uv of G, let γ(uv)
be a polygonal path from pu to pv contained in the union Ku∪Kv. Since Ku and
Kv are convex and intersect, we can choose γ(uv) with at most 2 segments. The
collection of pv’s and γ(uv)’s is a drawing of G. (It is not necessarily a planar
embedding because drawings of edges may cross.) For each walk W = e1 . . . ek in
G, let γ(W ) be the polygonal path obtained by concatenating γ(e1), . . . , γ(ek).
If W is a closed walk, then γ(W ) is a closed polygonal curve.
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Fig. 2. Notation in the proof of Lemma 2

Lemma 2. The set K separates s and t if and only if there exists a closed walk
W in G such that cr2(�, γ(W )) = 1.

Proof. Assume that K separates s and t. Because of Lemma 1, there is some
polygonal curve π contained in K such that cr2(�, π) = 1. We break the path π
into pieces such that each piece is contained in one set from K. Let π1, . . . , πk

be the resulting pieces, each of them a polygonal curve. For each piece πi, let
xi and yi be the endpoints of πi, and let Kui

be the element of K that contains
πi. Note that yi ∈ Kui+1 and thus uiui+1 is an edge of G. To avoid arithmetic
in the subsubindex, define vi = ui+1 for all i. Note that vk = u1. Let W be the
closed walk with edges u1v1, . . . , ukvk.

We claim that cr2(�, γ(W )) = cr2(�, π) = 1. To see this, consider for each
piece πi the polygonal curve γ̂i from pui

to pvi
obtained by concatenating the

line segment from pui
to xi, followed by πi, and followed by the line segment

from yi to pvi
. See Figure 2 for an example. For each piece πi, the polygonal

curves γ̂i and γ(uivi) have the same endpoints and are contained in the union
Kui

∪ Kvi
. Because of Lemma 1, we have cr2(�, γ̂i) = cr2(�, γ(uivi)). It follows

that, if we define γ̂ as the concatenation of γ̂1, . . . , γ̂k, we have cr2(�, γ(W )) =
cr2(�, γ̂). Moreover, cr2(�, γ̂) = cr2(�, π) because γ̂ is essentially π with spokes
connecting xi to pui

, where the number of crossings evens out. We conclude that
cr2(�, γ(W )) = cr2(�, γ̂) = cr2(�, π) = 1, finishing one direction of the proof.

For the other direction, assume that G has a closed walk W such that the
crossing number of � and γ(W ) is odd. Since the closed polygonal path γ(W ) is
contained in K by construction, Lemma 1 implies that K separates s and t. ��

We extend Lemma 2 to a necessary and sufficient condition for s and t being
disconnected that involves only a few cycles of G. Let T be any maximal spanning
forest of G, that is, T contains a spanning tree of each connected component of
G. For each edge e of G−E(T ), let cycle(T, e) be the unique cycle in T + e, and
let τ(T, e) be the curve γ(cycle(T, e)). That is, τ(T, e) is the polygonal curve
describing cycle(T, e) in the drawing.

Lemma 3. Let T be a maximal spanning forest of G. The set K separates s and t
if and only if there exists some edge e ∈ E(G)\E(T ) such that cr2(�, τ(T, e)) = 1.
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Proof. The essential idea is to use the so-called cycle space of a graph and the
fact that {cycle(T, e) | e ∈ E(G) \ E(T )} is a basis. We next provide the details
using no background.

Since we can treat each component of G (and thus K) independently, we will
just assume that G is connected. This means that T is a spanning tree of G.

Fix any node r ∈ V (G) and take the point pr ∈ Kr as a basepoint. For each
node v ∈ V (T ), let T [r, v] be the simple walk in T from r to v. For each edge uv
of G we define a closed polygonal curve λ(uv) as the concatenation of γ(T [r, u]),
γ(uv), and the reverse of γ(T [r, v]). Note that λ(uv) is a closed polygonal path
through pr.

When uv /∈ E(T ), λ(uv) is τ(T, uv) concatenated with γ(T [r, w]) and its
reverse, where w is the last common node of T [r, u] and T [r, v]. This implies
that

∀uv ∈ E(G) \ E(T ) : cr2(�, τ(T, uv)) = cr2(�, λ(uv)). (1)

When uv ∈ E(T ), λ(uv) is a polygonal curve concatenated with its reverse, and
therefore

∀uv ∈ E(T ) : cr2(�, λ(uv)) = 0. (2)

Assume that the points s and t lie in different path-components of K̄. Because
of Lemma 2, there exists some closed walk W in G with cr2(�, γ(W )) = 1. Let
u1v1, . . . , ukvk be the sequence of edges in W , where u1 = vk. Using arithmetic
modulo 2, a simple calculation shows that

1 = cr2(�, γ(W )) =
k∑

i=1

cr2(�, γ(uivi)) =
k∑

i=1

cr2(�, λ(uivi)),

using that all segments on the right hand side involving r appear an even number
of times and therefore cancel out. This means that, for some edge uivi of W , we
have cr2(�, λ(uivi)) = 1. This edge uivi cannot be in T because of (2). Therefore
we have some edge uivi in E(W ), where uivi /∈ E(T ), with cr2(�, λ(uivi)) = 1.
Because of (1) we have cr2(�, τ(T, uivi)) = cr2(�, λ(uivi)) = 1. This finishes the
proof of one direction of the statement.

For the other direction, assume that there exists some edge e ∈ E(G) \ E(T )
such that cr2(�, τ(T, e)) = 1. Taking W = cycle(T, e) and using that τ(T, e) =
γ(W ) by definition, this means that W is a closed walk in G with cr2(�, γ(W )) =
1. It follows from Lemma 2 that K separates s and t. ��

3 Semi-dynamic Connectivity

In this section we discuss the separation of s and t under the addition of new
sets to K. We first describe a standard union-find data structure because we will
build on it. Then we describe the setting and the notation we will use. It follows
a description of the extension of the union-find data structure for our setting.
Finally, we describe the data structure, its maintenance, and its correctness.
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Algorithm Find(u)
1. if u �= parent(u) then
2. parent(u) ← Find(parent(u))
3. return parent(u)

Algorithm Union(u, v)
1. ū ← Find(u)
2. v̄ ← Find(v)
3. if rank(ū) > rank(v̄) then
4. parent(v̄) ← ū
5. else (* rank(ū) ≤ rank(v̄) *)
6. parent(ū) ← v̄
7. if rank(ū) = rank(v̄) then
8. rank(v̄) ← rank(v̄) + 1

Fig. 3. The main two operations in the union-find data structure. u and v are nodes
of the tree.

3.1 Preliminaries: Union-find

Here we review a standard union-find data structure and some of its properties.
See [5, Chapter21], [6, Chapter5] or [8] for a comprehensive exposition.

A union-find data structure represents a disjoint set system support-
ing the operations MakeSet (create a new disjoint set with a single element),
Union (merge two sets), and Find (return a representative of a given set). We
can test whether two elements belong to the same set by testing whether the
output of Find for those two elements is the same. A common realization is to
represent each disjoint set by a rooted tree in which each node holds one element
of the set. The root of the tree holds the representative of the set. Each node
has a pointer to its parent, while the root points to itself. Then Find simply
follows the parent pointer until it finds the root of the tree. The union operation
merges two trees by making the root of one subtree a child of the root of the
other. Thus, given two elements, we first locate the roots of their corresponding
trees calling Find, and then we proceed with the union.

Two optimizations are commonly used to obtain an efficient realization.
Union-by-rank determines which root gets merged in a union operation: each
root has a rank associated to it, in an union we simply make the root of lower
rank a child of the root with larger rank, and we increase the rank of the root
if both roots had the same rank. Path compression makes all nodes found on a
search path from a node to its root direct children of the root. For later refer-
ence and modification, we include pseudocode in Figure 3. Combining these two
optimizations, each operation has an amortized time complexity of α(n), where
n is the number of elements in the set system and α(·) is the extremely slow
growing inverse Ackermann function. See references [5, Chapter21], [8] or [11]
for an analysis of the time complexity.

3.2 Setting

Let s and t be two points in the plane. We have a finite family of convex sets K,
all of them disjoint from s and t. Following the previous notation, we denote by
K the union of the sets in K, and by G the intersection graph of K.
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Consider the addition of a new compact convex set Ku to K. We use Knew

for the resulting set, Knew for the union of its sets, and Gnew for the intersection
graph of Knew.

The analysis of our data structure is based on a maximal spanning forest of
the intersection graph of the convex sets. The definition of such spanning forest is
iterative: Let uv1, . . . , uvk be an enumeration of the edges incident to u in Gnew.
That is, Kv1 , . . . , Kvk

are the sets of K intersecting the new set Ku. We consider
adding the edges uv1, . . . , uvk to G one by one. We thus define G0 as the union
of G and a new vertex u for Ku. For each index 1 ≤ j ≤ k, we define the graph
Gj = Gj−1 + uvj . Note that Gnew = Gk. The intermediate graphs G1, . . . , Gk−1

are not intersection graphs of K or Knew, but something in between.
If at the time of adding uvj the vertices u and vj are already connected

in the graph Gj−1, then we call uvj a cycle edge . Otherwise, uvj merges two
components of Gj−1 and we call it a merge edge . Whether an edge is a cycle
edge or a merge edge depends on the order used in the addition of edges.

Let T be the maximal spanning forest of G. We define T0 as the union of T
and a new vertex u for Ku. For each index 1 ≤ j ≤ k we define

Tj =

{
Tj−1 if uvj is a cycle edge,
Tj−1 + uvj if uvj is a merge edge.

It is easy to see by induction that, for each index 1 ≤ j ≤ k, Tj is a maximal
spanning forest of Gj . We define Tnew as Tk. Thus Tnew is a maximal spanning
forest of Gnew = Gk.

As it was done in Section 2.2, for each Ku we choose a point pu in Ku and for
each edge uv we choose a polygonal curve γ(uv). These choices are made in the
first appearance of the node or edge, and remain invariant from there onwards.

3.3 Augmented Union-find

We maintain a union-find data structure for the connected components of the
graphs Gj . Recall that Tj is a maximal spanning forest of Gj . For each node v
of Gj , we store a parity bit , denoted as parity(v), with the following property:

– If v is the root of a union-find tree, then parity(v) = 0.
– If v has parent w in a union-find tree, then parity(v) = cr2(�, Tj [w, v]). That

is, we look at the parity of the crossing number of � with the polygonal curve
from pv to pw defined by the drawing of Tj .

For the rest of the paper, any arithmetic involving parity bits is done modulo 2.
We next argue that the correct parity bits can be maintained in the same

complexity as the union-find operations, assuming that only certain unions are
made. That is clear for MakeSet by giving the new node parity 0.

Consider the Find operation, which changes parent pointers due to path
compression. Note that the graphs Gj and Tj do not change, but the union-
find data structure does. Let u, v, w be nodes such that, in the union-find data
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Algorithm FindExt(u)
1. if u �= parent(u) then
2. w ← parent(u)
3. r ← Find(w)
4. p(u) ← p(u) + p(w)
5. parent(u) ← r
6. return parent(u)

Algorithm UnionExt(u, v)
1. ū ← FindExt(u)
2. v̄ ← FindExt(v)
3. b ← p(u) + p(v) + cr2(�, γ(uv))
4. if rank(ū) > rank(v̄) then
5. parent(v̄) ← ū
6. p(v̄) ← b
7. else (* rank(ū) ≤ rank(v̄) *)
8. parent(ū) ← v̄
9. p(ū) ← b
10. if rank(ū) = rank(v̄) then
11. rank(v̄) = rank(v̄) + 1

Fig. 4. Extended find and union operations for nodes u and v. We write p(·) instead
of parity(·) for a more compact notation.

structure, w is parent of v and v is parent of u. Note that

cr2(�, γ(Tj [u,w])) = cr2(�, γ(Tj [u, v])) + cr2(�, γ(Tj [v, w]))
= parity(u) + parity(v).

Therefore, when we update parent(u) ← w, we just have to set parity(u) ←
parity(u) + parity(v) to restore parity(u) to its correct value.

We can now easily realize the augmented path compression. We define an
extended function FindExt(u) that, for all nodes v from u to the root r of the
tree containing u, sets parent(u) = r and updates the value parity(v) accord-
ingly. Pseudocode is given in Figure 4 (left). It easily follows by induction that
FindExt correctly maintains the parity bit of all elements.

Finally, we discuss the extension Union to UnionExt. Its arguments are
two nodes u and vj such that uvj is a merge edge and the union-find data
structure stores the connectivity of Gj−1. Since uvj is a merge edge, we have
Tj = Tj−1 + uvj . This means that the sets Ku and Kvj

intersect but u and
vj were in different connected components of Gj−1. Like before, we first find
the roots ū and v̄ of their trees using FindExt(·). After this it holds that
parity(u) = cr2(�, γ(Tj−1[ū, u])), and similarly parity(v) = cr2(�, γ(Tj−1[v̄, v])).

The walk Tj [ū, v̄] can be split into Tj−1[ū, u], uv, and Tj−1[v, v̄]. Thus,

cr2(�, γ(Tj [ū, v̄])) = cr2(�, γ(Tj−1[u, ū])) + cr2(�, γ(uv)) + cr2(�, γ(Tj−1[v, v̄]))
= parity(u) + cr2(�, γ(uv)) + parity(v).

The last values are either available through parity(·) or computable in con-
stant time. If, for example, ū gets v̄ as its parent, then we have parity(ū) =
cr2(�, γ(Tj [u, v])). The other case is similar. We provide the resulting pseudocode
in Figure 4 (right).

The properties of union-find imply that each of the extended operations,
UnionExt and FindExt, has an amortized complexity of α(n), where n is the
cardinality of K.
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3.4 Semi-dynamic Data Structure

We now describe the data structure to maintain K. The data structure supports
one operation: add a new compact convex set Ku to K and then report whether
K ∪ {Ku} separates s and t. We use the notation from Sections 3.2 and 3.3.

The data structure has the following elements:

– an augmented union-find data structure as described in Section 3.3;
– for each element Kv of K, we store the point pv;
– a semi-dynamic data structure DS(K) that can find, for the new Ku, all the

objects of K that intersect Ku.

The intersection graph G and the maximal spanning forest T are not kept. They
are used only for the analysis.

We next describe how to insert Ku. We use the data structure DS(K) to
find the sets Kv1 , . . . , Kvk

of K that intersect Ku. We then insert Ku in the data
structure DS(K) to obtain DS(Knew). We choose a point pu in Ku and create
a new node u in the extended union-find data structure.

We then iterate over the edges uv1, . . . , uvk. We first decide whether the con-
sidered edge uvj is a merge edge or a cycle edge by checking whether FindExt(u)
and FindExt(vj) return the same representative. If uvj is a merge edge, we just
call UnionExt(u, vj) and continue with the next step of the filtration.

Otherwise, uvj is a cycle edge, and we proceed as follows. We want to check
whether cr2(�, τ(Tj , uvj)) = cr2(�, τ(Tj−1, uvj)) is 1 or 0. For this, we use that
u and v have already the same parent because of the calls FindExt(u) and
FindExt(v). If we denote such a common parent by r, then

cr2(�, τ(Tj , uvj)) = cr2(�, γ(Tj−1[u, vj ])) + cr2(�, γ(uvj))
= cr2(�, γ(Tj−1[u, r])) + cr2(�, γ(Tj−1[vj , r])) + cr2(�, γ(uvj))
= parity(u) + parity(vj) + cr2(�, γ(uvj)).

If cr2(�, τ(Tj , uvj)) = 1, then we conclude that Knew separates s and t and we
finish the algorithm. If cr2(�, τ(Tj , uvj)) = 0, we proceed to the next edge uvj+1.
This finishes the description of the algorithm. (Pseudocode for the insertion of
Ku is given in the appendix.)

It follows from the invariants of the extended union-find discussed in
Section 3.3, that we are correctly computing the value cr2(�, τ(Tj , uvj)). When
cr2(�, τ(Tj , uvj)) = 1, then Lemma 3 implies that Knew separates s and t. From
that point on, we only need to remember that s and t are separated.

If cr2(�, τ(Tj , uvj)) = 0, then cr2(�, τ(T, uvj)) will remain 0 for all future
maximal spanning forests T . This is so because the maximal spanning forest
we maintain is monotone increasing: we only add vertices and edges, but never
remove anything. Thus, we never need to check cr2(�, τ(T, uvj)) again later. In
particular, if K did not separate s and t and we have cr2(�, τ(Tj , uvj)) = 0 for
all j, then

∀vv′ ∈ E(Gnew) \ E(Tnew) : cr2(�, τ(Tnew, vv′)) = 0.
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Since Tnew is a maximal spanning forest of Gnew, Lemma 3 implies that Knew

does not separate s and t.
For each edge uvj we are making 2 calls to FindExt, at most one call to

UnionExt, and additional O(1) work. This means that for each edge we spend
O(α(n)) amortized time, where n is the cardinality of K. We also need the time
needed to find the elements of K intersecting the new element Ku. We conclude.

Theorem 1. Let s and t be two points in the plane. There is a semi-dynamic
data structure to maintain a family K of n compact convex sets in the plane
under insertions to decide whether K separates s can t. The insertion of a new
set Ku in K that intersects k sets of K takes O(1 + kα(n)) amortized time, plus
the time needed to find the k elements of K intersecting Ku.

Once s and t are separated by K, the insertion of each new set can be carried
out in constant time, since we only need to remember that K separates s and t.

4 Application to Dynamic Connectivity under
Subdivision

We consider now the application discussed in the Introduction for d = 2.
We have two points s and t inside the unit square X. Initially, the box X is

colored yellow. In each iteration, we take a largest yellow box, subdivide it into
4 subboxes, and color each of them as red, yellow, or green depending on the
outcome of some oracle. The boxes containing s or t are always colored yellow or
green. We want to know at which point the red boxes separate s and t, meaning
that each path from s to t contained in the unit square intersects some red box.

Boxes are assumed to contain their boundary, so that any two boxes intersect
if their boundaries intersect, possibly only at a common vertex. For our argu-
ments it is convenient to surround X with 8 red boxes of the same size as X. This
reduces the problem to finding certain curves within the red region. Without
those additional squares, we should also consider boundary-to-boundary curves.

We maintain through the algorithm the intersection graph H of the yel-
low and red boxes. This intersection graph H has one node for each box that
is yellow or red, and an edge between two nodes whenever the corresponding
boxes intersect. The graph H is stored using an adjacency list representation [5,
Chapter22]. The adjacency list of each vertex is stored as a doubly linked list.
Moreover, for the appearance of a node v in the adjacency list of u, we keep
a pointer to the appearance of u in the adjacency list of v. With this, we can
perform the deletion of a node v in time proportional to its degree.

When we want to subdivide a yellow box Ku represented by a node u, we can
locate its set of neighbors N = NH(u) in the graph H, delete u from the graph,
subdivide Ku into four boxes, create the at most four new nodes representing the
yellow and red boxes arising from the subdivision of Ku, check for intersection
each of them against each of the nodes in N , and update the graph H accordingly.
All this takes time O(1 + |N |) time.
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If we always subdivide a largest yellow box, there are at most 12 other boxes
intersecting it. The same property is achieved is we maintain a smooth quadtree,
as discussed by Bennett and Yap [2], and in such case we can subdivide boxes
in an arbitrary order. This means that we can update the intersection graph H
of yellow and red boxes in O(1) time. Thus, we spend O(1) time per subdivided
yellow box and, for each red box, we get its neighboring red boxes in O(1) time.
Using Theorem 1 for the red boxes, and a normal union-find for the green boxes,
as discussed in the Introduction, we obtain the following result.

Theorem 2. Consider the subdivision procedure described in the Introduction
where we always subdivide a largest yellow box. We can perform the subdivision
until condition (1) or (2) occurs in O(nα(n)) time, where n is the number of
subdivisions performed.
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Abstract. A set of intervals is independent when the intervals are pair-
wise disjoint. In the interval selection problem, we are given a set I of
intervals and we want to find an independent subset of intervals of largest
cardinality, denoted α(I). We discuss the estimation of α(I) in the stream-
ing model, where we only have one-time, sequential access to I, the end-
points of the intervals lie in {1, . . . , n}, and the amount of the memory
is constrained.

For intervals of different sizes, we provide an algorithm that com-
putes an estimate α̂ of α(I) that, with probability at least 2/3, satisfies
1
2
(1 − ε)α(I) ≤ α̂ ≤ α(I). For same-length intervals, we provide another

algorithm that computes an estimate α̂ of α(I) that, with probability
at least 2/3, satisfies 2

3
(1 − ε)α(I) ≤ α̂ ≤ α(I). The space used by our

algorithms is bounded by a polynomial in ε−1 and log n. We also show
that no better estimations can be achieved using o(n) bits.

1 Introduction

Several fundamental problems have been explored in the data streaming model [3,
14], where we have bounds on the amount of available memory, the data arrives
sequentially, and we cannot afford to look at input data of the past, unless it
was stored in our limited memory. This is effectively equivalent to assuming that
we can only make one pass over the input data.

We consider the interval selection problem. A set of intervals is independent
when all the intervals are pairwise disjoint. In the interval selection problem ,
the input is a set I of intervals and we want to find an independent subset of
largest cardinality. Let α(I) denote this largest cardinality. There are actually
two different problems: one problem is finding (or approximating) a largest inde-
pendent subset, while the other problem is estimating α(I). In this paper, we
focus on the estimation of α(I).

The full version is online at the arXiv repository [2].
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There are many natural reasons to consider the interval selection problem in
the data streaming model. Firstly, it appears in many different contexts and sev-
eral extensions have been studied [12]. Secondly, it is a natural generalization of
the distinct elements problem: given a data stream of numbers, identify how many
distinct numbers appeared in the stream. The distinct elements problem has a
long tradition in data streams; see Kane, Nelson and Woodruff [11] for the lat-
est result. Thirdly, there has been interest in understanding graph problems in
the data stream model. However, several problems cannot be solved within the
usual memory constraints, and other models have been proposed [6,7]. Finally,
geometrically-defined graphs provide a rich family of graphs where certain graph
problems may be solved within the traditional model. We advocate that graph
problems should be considered for geometrically-defined graphs in the data stream
model. The interval selection problem is one such case, since it is exactly finding
a largest independent set in the intersection graph of the input intervals.

Previous Works. Emek, Halldórsson and Rosén [5] consider the interval selection
problem with O(α(I)) space. They provide a 2-approximation algorithm for the
case of arbitrary intervals and a (3/2)-approximation for the case of proper
intervals, that is, when no interval contains another interval. Most importantly,
they show that no better approximation factor can be achieved with sublinear
space. Since any O(1)-approximation obviously requires Ω(α(I)) space, their
algorithms are optimal. They do not consider the problem of estimating α(I).
Halldórsson et al. [7] consider maximum independent set in a different streaming
model related to preemptive online algorithms.

Results. We consider the estimation of α(I) in the data streaming model for inter-
vals with endpoints in [n] = {1, . . . , n}. In this model it is common to assume that
the input data, in our case the endpoints of the intervals, is from [n].

(a) We provide an algorithm to obtain a value α̂(I) such that (1/2 − ε)α(I) ≤
α̂(I) ≤ α(I) with probability at least 2/3. The algorithm uses O(ε−5 log6 n)
space. This is explained in Section 3.

(b) For same-length intervals, we show how to find in O(ε−2 log(1/ε) + log n)
space an estimate α̂(I) such that (2/3−ε)α(I) ≤ α̂(I) ≤ α(I) with probability
at least 2/3. This is explained in Section 4.

(c) We provide lower bounds showing that the approximation ratios in (a) and
(b) are essentially optimal, if we use o(n) bits of space. Note that the lower
bounds of Emek, Halldórsson and Rosén [5] hold for the interval selection
problem but not for the estimation of α(I). This is explained in Section 5.

For the results in (a) and (b) we assume that a unit of memory can store
values from [n]. As usual, the probability of error can be reduced by parallel repe-
tition of the algorithm and taking the median of the results. The lower bounds of
(c) are stated at bit level. Omitted details can be found in the full version [2]. In
the full version we also develop new, approximate solutions to the interval selec-
tion problem, where we want to report a feasible solution using O(α(I)) space.
Our algorithms for the interval selection problem match the optimal results by
Emek et al. [5], but are much simpler.
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2 Preliminaries

We assume that the input intervals are closed. Our algorithms can be easily
adapted to handle other type of intervals. We will use the term ‘interval’ only
for the input intervals. We will use the term ‘window’ for intervals constructed
through the algorithm and ‘segment’ for intervals associated with the nodes
of a segment tree. (This segment tree is explained later on.) The windows we
consider may be of any type regarding the inclusion of endpoints. We assume
that 0 < ε < 1/2. Sometimes we use the notation a = b ± c for b − c ≤ a ≤ b + c.

A family of permutations H = {h : [n] → [n]} is ε-min-wise independent
if it satisfies

∀X ⊆ [n], y ∈ X : (1 − ε)/|X| ≤ Pr
h∈H

[h(y) = min h(X)] ≤ (1 + ε)/|X|.

Here, h ∈ H is chosen uniformly at random. The family of all permutations is
0-min-wise independent. However, there is no compact way to specify an arbi-
trary permutation. As discussed by Broder, Charikar and Mitzenmacher [1], the
results of Indyk [9] can be used to construct a compact, computable family of
permutations that is ε-min-wise independent. We prove this in the next lemma.

Lemma 1. For every ε ∈ (0, 1/2) and n > 0 there exists a family of permu-
tations H(n, ε) = {h : [n] → [n]} such that: (i) H(n, ε) has nO(log(1/ε)) permu-
tations; (ii) H(n, ε) is ε-min-wise independent; (iii) an element of H(n, ε) can
be chosen uniformly at random in O(log(1/ε)) time; and (iv) for h ∈ H(n, ε)
and x, y ∈ [n], we can decide with O(log(1/ε)) arithmetic operations whether
h(x) < h(y).

Let us explain now how to use Lemma 1 to make a (nearly-uniform) random
sample. We learned this idea from Datar and Muthukrishnan [4]. Consider any
fixed subset X ⊆ [n] and let H = H(n, ε) be the family of permutations given in
Lemma 1. An H-random element s of X is obtained by choosing a permutation
function h ∈ H uniformly at random, and setting s = arg min{h(x) | x ∈ X}.
Although s is not chosen uniformly at random from X, from the definition of
ε-min-wise independence we have

∀Y ⊆ X : (1 − ε)|Y |/|X| ≤ Pr[s ∈ Y ] ≤ (1 + ε)|Y |/|X|.
This means that, for a fixed Y , we can estimate the ratio |Y |/|X| using H-random
samples from X repeatedly, and counting how many belong to Y .

Usually we use H-random samples for the portion of the stream seen so far.
We will also use H to make conditional sampling: we select H-random samples
until we get one satisfying a certain property. To analyze such a technique, the
following result will be useful.

Lemma 2. Let Y ⊆ X ⊆ [n], ε ∈ (0, 1/2), H = H(n, ε) be the family of permu-
tations of Lemma 1, and s a H-random sample from X. Then

∀y ∈ Y : (1 − 4ε)/|Y | ≤ Pr[s = y | s ∈ Y ] ≤ (1 + 4ε)/|Y |.
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3 Size of Largest Independent Set of Intervals

Our idea is to carefully split the window [1, n] into segments, and compute for
each segment a 2-approximation using the algorithm of Emek et al. [5] or our new,
simpler algorithm [2]. If each segment contains enough disjoint intervals from the
input, then we do not do much error combining the results of the segments. We
then have to estimate the number of segments in the partition of [1, n] and the
number of independent intervals in each segment. For the second estimation, it
is useful that each segment does not contain too many independent intervals.

First, we describe the ingredients, independent of the streaming model, and
discuss their properties. Then, we discuss how they can be computed in the
streaming model.

3.1 Segments and Their Associated Information

Let T be a balanced segment tree on the n segments [i, i + 1), i ∈ [n]. Each leaf
of T corresponds to a segment [i, i + 1) and the order of the leaves in T agrees
with the order of their corresponding intervals along the real line. Each node v
of T has an associated segment, denoted S(v), that is the union of all segments
stored at its descendants. It is easy to see that, for any internal node v with
children v� and vr, the segment S(v) is the disjoint union of S(v�) and S(vr).
We denote the root of T by r and have S(r) = [1, n + 1).

Let S be the set of 2n − 1 segments associated with all nodes of T . Each
S ∈ S contains the left endpoint and does not contain the right endpoint. For
any segment S ∈ S, where S �= S(r), let π(S) be the “parent” segment of S: this
is the segment stored at the parent of v, where S(v) = S.

For any S ∈ S, let β(S) = α({I ∈ I | I ⊂ S}). That is, we consider the
restriction of the problem to intervals of I contained in S. Similarly, let β̂(S)
be the size of a feasible solution computed for {I ∈ I | I ⊂ S} by using any
2-approximation algorithm [2,5]. Thus, β(S) ≥ β̂(S) ≥ β(S)/2 for all S ∈ S.

Lemma 3. Let S′ ⊂ S be such that: (i) S(r) is the disjoint union of the segments
in S

′, and (ii) for each S ∈ S
′, we have β(π(S)) ≥ 2ε−1
log n�. Then,

α(I) ≥
∑

S∈S′
β̂(S) ≥ (1/2 − ε) α(I).

Proof. Since the segments in S
′ are disjoint because of hypothesis (i), we can

merge the solutions giving β(S) independent intervals, for all S ∈ S
′, to obtain

a global feasible solution. We conclude that α(I) ≥ ∑
S∈S′ β(S) ≥ ∑

S∈S′ β̂(S).
Let S̃ be the minimum subset of {π(S) | S ∈ S

′} with the following property:
for each S ∈ S

′, some segment S̃ ∈ S̃ is contained in the segment π(S). Thus,
each S̃ ∈ S̃ has some child in S

′ and no proper descendant in S̃. For each S̃ ∈ S̃,
let ΠT (S̃) be the path in T from the root to S̃. By construction, for each S ∈ S

′

there exists some S̃ ∈ S̃ such that the parent of S is on ΠT (S̃). By assumption
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(ii), for each S̃ ∈ S̃, we have β(S̃) ≥ 2ε−1
log n�. Each S̃ ∈ S̃ is going to “pay” for
the error we make in the sum at the segments whose parents belong to ΠT (S̃).

Let J∗ ⊆ I be an optimal solution to the interval selection problem. For each
segment S ∈ S, J∗ has at most 2 intervals that intersect S but are not contained
in S. Therefore, for all S ∈ S we have that

|{J ∈ J
∗ | J ∩ S �= ∅}| ≤ |{J ∈ J

∗ | J ⊂ S}| + 2 ≤ β(S) + 2. (1)

The segments in S̃ are pairwise disjoint because in T none is a descendant of the
other. This means that we can join solutions obtained inside the segments of S̃
into a feasible solution. Combining this with hypothesis (ii) we get

|J∗| ≥
∑

S̃∈S̃

β(S̃) ≥ |S̃| · 2ε−1
log n�. (2)

For each S̃ ∈ S̃, the path ΠT (S̃) has at most 
log n� vertices. Since each
S ∈ S

′ has a parent in ΠT (S̃), for some S̃ ∈ S̃, we obtain from equation (2) that

|S′| ≤ 2
log n� · |S̃| ≤ 2
log n� · |J∗|
2ε−1
log n� = ε · |J∗|. (3)

Using that S(r) =
⋃

S′∈S′ S
′, equations (1) and (3), and the fact that β̂(·) is

a 2-approximation of β(·), we obtain

|J∗| ≤
∑

S∈S′
|{J ∈ J

∗ | J ∩ S �= ∅}| ≤
∑

S∈S′
(β(S) + 2) = 2 · |S′| +

∑

S∈S′
β(S)

≤ 2ε · |J∗| +
∑

S∈S′
β(S) ≤ 2ε · |J∗| +

∑

S∈S′
2 · β̂(S).

The second inequality of the Theorem is obtained because |J∗| = α(I). ��
We would like to find a set S

′ satisfying the hypothesis of Lemma 3. How-
ever, the definition should be local. The estimator β̂(S) is not suitable because
for some segment S ∈ S \ {S(r)} it may happen that β̂(π(S)) < β̂(S). We
introduce another estimate that is an O(log n)-approximation but is monotone
non-decreasing along paths to the root. For each segment S ∈ S, we define γ(S)
as the number of segments of S that are contained in S and contain some input
interval.

Lemma 4. For all S ∈ S, we have the following properties:

(i) γ(S) ≤ γ(π(S)), if S �= S(r),
(ii) γ(S) ≤ β(S) · 
log n�,
(iii) γ(S) ≥ β(S), and
(iv) γ(S) can be computed in O(γ(S)) space using the portion of the stream

after the first interval contained in S.
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Proof. Property (i) is obvious from the definition because any S′ contained in
S is also contained in the parent π(S). For the rest of the proof, fix some S ∈ S

and define S
′ as the segments of S that are contained in S and contain some

input interval. Note that γ(S) = |S′|. Let TS be the subtree of T rooted at S.
For property (ii), note that TS has at most 
log n� levels. By the pigeonhole

principle, there is some level L of TS that contains at least γ(S)/
log n� different
intervals of S

′. The segments of S
′ contained in level L are disjoint, and each

of them contains some intervals of I. Picking an interval from each S′ ∈ L, we
get a subset of intervals from I that are pairwise disjoint, and thus β(S) ≥
γ(S)/
log n�.

For property (iii), consider an optimal solution J
∗ for the interval selection

problem in {I ∈ I | I ⊂ S}. Thus |J∗| = β(S). For each interval J ∈ J
∗,

let S(J) be the smallest S ∈ S that contains J . Then S(J) ∈ S
′. Note that J

contains the middle point of S(J), as otherwise there would be a smaller segment
in S containing J . This implies that the segments S(J), J ∈ J

∗, are all distinct.
(However, they are not necessarily disjoint.) We then have γ(S) = |S′| ≥ |{S(J) |
J ∈ J

∗}| = |J∗| = β(S).
For property (iv), we store the elements of S′ in a binary search tree. When-

ever we obtain an interval I, we check whether the segments contained in S and
containing I are already in the search tree and, if needed, update the structure.
The space needed in a binary search tree is proportional to the number of ele-
ments stored and thus we need O(γ(S)) space. ��

A segment S of S, S �= S(r), is relevant if the next two conditions are
satisfied: γ(π(S)) ≥ 2ε−1
log n�2 and 1 ≤ γ(S) < 2ε−1
log n�2. Let Srel ⊆ S be
the set of relevant segments. If Srel is empty, then we take Srel = {S(r)}.

Because of Lemma 4(i), γ(·) is non-decreasing along a leaf-to-root path in T .
Combining lemmas 3 and 4, we obtain the following:

Lemma 5. We have

α(I) ≥
∑

S∈Srel

β̂(S) ≥ (1/2 − ε) α(I).

Proof. (Sketch) We define

S0 = {S ∈ S \ {S(r)} | γ(S) = 0 and γ(π(S)) ≥ 2ε−1
log n�2},

and show that S
′ = Srel ∪ S0 satisfies the conditions of Lemma 3. We then use

that γ(S) = β̂(S) = 0 for all S ∈ S0. ��
Let Nrel be the number of relevant segments. A segment S ∈ S is active if

S = S(r) or its parent π(S) contains some input interval. Let Nact be the number
of active segments in S. We are going to estimate Nact, the ratio Nrel/Nact, and
the average value of β̂(S) over the relevant segments S ∈ Srel. With this, we will
be able to estimate the sum considered in Lemma 5. The next section describes
how the estimations are obtained in the data streaming model.
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3.2 Algorithms in the Streaming Model

For each interval I, we use σS(I) for the sequence of segments from S that
are active because of interval I, ordered non-increasingly by size. Thus, σS(I)
contains S(r) followed by the segments whose parents contain I. The selected
ordering implies that a parent π(S) appears before S, for all S in the sequence
σS(I). Note that σS(I) has at most 2
log n� elements because T is balanced.

Lemma 6. There is an algorithm in the data stream model that in O(ε−2+log n)
space computes a value N̂act such that

Pr
[|Nact − N̂act| ≤ ε · Nact

] ≥ 11/12.

Proof. The stream I = I1, I2, . . . defines the stream σ = σS(I1), σS(I2), . . . of seg-
ments, that is O(log n) times longer. The segments appearing in σ are precisely
the active segments. We have reduced the problem to the question of how many
distinct elements appear in a stream of segments from S. The result of Kane, Nel-
son and Woodruff [11] for distinct elements uses O(ε−2+log |S|) = O(ε−2+log n)
space and computes a value N̂act satisfying the claim. ��
Lemma 7. There is an algorithm in the data stream model that uses
O(ε−4 log4 n) space and computes a value N̂rel such that

Pr
[|Nrel − N̂rel| ≤ ε · Nrel

] ≥ 10/12.

Proof. (Sketch) The idea is the following. We estimate Nact by N̂act using
Lemma 6. We take a sample of active segments, and count how many of them
are relevant. To get a representative sample, it is important to use a lower bound
on Nrel/Nact. With this we can estimate Nrel = (Nrel/Nact) · Nact accurately.

In T , each relevant segment S′ ∈ Srel has 2γ(S′) < 4ε−1
log n�2 active
segments below it and at most 2
log n� active segments whose parent is an
ancestor of S′. This means that, for each relevant segment, there are at most
4ε−1
log n�2 + 2
log n� = O(ε−1 log2 n) active segments. Therefore Nrel/Nact =
Ω(ε/ log2 n).

We fix any injective mapping b between S and [n2] that can be easily com-
puted, and consider a family H = H(n2, ε) of permutations [n2] → [n2] guar-
anteed by Lemma 1. For each h ∈ H, the function h ◦ b gives an order among
the elements of S, and we use them to compute H-random samples among the
active segments.

We set an appropriate k = Θ(ε−3 log2 n), and choose permutations
h1, . . . , hk ∈ H uniformly and independently at random. For each hj , where
j ∈ [k], let Sj be the active segment of S that minimizes (hj ◦ b)(·). Thus,
Sj = arg min{hj(b(S)) | S ∈ S is active}. The idea is that Sj is nearly a random
active segment of S. Therefore, if we define the random variable

X =
∣
∣{j ∈ {1, . . . , k} | Sj is relevant}∣∣

then Nrel/Nact ≈ X/k. Below we discuss the computation of X.
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To analyze the variable X, we define p = Prhj∈H[Sj is relevant]. Since Sj

is selected among the active segments, the discussion after Lemma 1 implies
p = (1 ± ε)Nrel/Nact. Using the lower bound on Nrel/Nact and Chebyshev’s
inequality, we can prove that Pr[|X/k − p| ≥ εp] ≤ 1/12.

To finalize, we define the estimator N̂rel = N̂act(X/k) of Nrel. The events[|Nact−N̂act| ≤ εNact

]
and

[|X/k−p| ≤ εp
]

occur simultaneously with probabil-
ity at least 10/12, and in such case it follows that N̂rel = (1±7ε)Nrel. Replacing
ε by ε/7, the bound follows.

It remains to discuss how X can be computed. For each j ∈ [k], we keep a
variable that stores the current segment Sj for all the segments that are active so
far, keep information about the choice of hj , and keep information about γ(Sj)
and γ(π(Sj)), so that we can decide whether Sj is relevant.

Let I1, I2, . . . be the data stream of input intervals. We consider the stream of
segments σ = σS(I1), σS(I2), . . . . When handling a segment S of the stream σ, we
have to update Sj when hj(b(S)) < hj(b(Sj)). Note that we can indeed maintain
γ(π(Sj)) because Sj becomes active the first time that its parent contains some
input interval. This is also the first time when γ(π(Sj)) becomes nonzero, and
thus the forthcoming part of the stream has enough information to compute γ(Sj)
and γ(π(Sj)). (Here it is convenient that σS(I) gives segments in decreasing size.)
To maintain γ(Sj) and γ(π(Sj)), we use Lemma 4(iv). Since we are interested
in knowing only whether γ(Sj) and γ(π(Sj)) are smaller than 2ε−1
log n�2, we
never need to store more than O(ε−1 log2 n) segments. Therefore, we need in
total O(kε−1 log2 n) = O(ε−4 log4 n) space. ��

Let ρ =
(∑

S∈Srel
β̂(S)

)
/|Srel|. The next result shows how to estimate ρ.

Lemma 8. There is an algorithm in the data stream model that uses
O(ε−5 log6 n) space and computes a value ρ̂ such that

Pr
[|ρ − ρ̂| ≤ ερ

] ≥ 10/12.

Proof. (Sketch) Fix any injective mapping b between S and [n2], and consider a
family H = H(n2, ε) of permutations [n2] → [n2] guaranteed by Lemma 1. Let
Sact be the set of active segments, and consider a random variable Y1 defined
as follows. We repeatedly sample h ∈ H uniformly at random, until we get that
S1 = arg minS∈Sact

h(b(S)) is a relevant segment, and set Y1 = β̂(S1). Because
of Lemma 2, where X = Sact and Y = Srel, we have

∀S ∈ Srel : (1 − 4ε)/|Srel| ≤ Pr[S1 = S] ≤ (1 + 4ε)/|Srel|.
This can be used to show that E[Y1] = (1±4ε) ·ρ and Var[Y1] ≤ O(ρ ·ε−1 log2 n).
Note also that γ(S) ≥ 1 implies β̂(S) ≥ 1 and therefore ρ ≥ 1.

Consider an integer k to be chosen later. Let Y2, . . . , Yk be independent
random variables with the same distribution that Y1, and define the esti-
mate ρ̂ = (

∑k
i=1 Yi)/k. We can use Chebyshev’s inequality and linearity to

see that Pr[|ρ̂ − E[Y1]| ≥ ερ] ≤ O(k−1ε−3 log2 n). Setting an appropriate
k = Θ(ε−3 log2 n), we obtain Pr[|ρ̂ − E[Y1]| ≥ ερ] ≤ 1/12.
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We then proceed similar to the proof of Lemma 7. We choose an appropriate
k0 = Θ(kε−1 log2 n) = Θ(ε−4 log4 n). For each j ∈ [k0], take a function hj ∈ H
uniformly at random and select Sj = arg min{h(b(S)) | S is active}. Let X be
the number of relevant segments in S1, . . . , Sk0 , and let p = Pr[S1 ∈ Srel]. It can
be proven that Pr[|X−k0p| ≥ k0p/2] ≤ 1/12, which means that, with probability
at least 11/12, the sample S1, . . . , Sk0 contains at least (1/2)k0p ≥ k relevant
segments. We can then use the first k of those relevant segments to compute the
estimate ρ̂, satisfying Pr[|ρ − ρ̂| ≤ 5ερ] ≥ 10/12.

It remains to show that we can compute ρ̂ in the data stream model. Like
before, for each j ∈ [k0], we have to maintain the segment Sj , information about
the choice of hj , information about γ(Sj) and γ(π(Sj)), and the value β̂(Sj).
Since β̂(Sj) ≤ β(Sj) ≤ γ(Sj) because of Lemma 4(iii), we need O(ε−1 log2 n)
space per index j. In total we need O(k0ε−1 log2 n) = O(ε−5 log6 n) space. ��
Theorem 1. Let ε ∈ (0, 1/2) and I be a set of intervals with endpoints in [n]
that arrive in a data stream. There is an algorithm that uses O(ε−5 log6 n) space
and computes a value α̂ such that

Pr
[
(1/2 − ε) · α(I) ≤ α̂ ≤ α(I)

] ≥ 2/3.

Proof. (Sketch) We compute the estimates N̂rel of Lemma 7 and ρ̂ of Lemma 8.
Define the estimate α̂ = N̂rel · ρ̂. With probability at least 1−2/12−2/12 = 2/3
the events

[|Nrel − N̂rel| ≤ ε · Nrel

]
and

[|ρ − ρ̂| ≤ ερ
]

simultaneously hold.
When both events occur, we can use the definitions of Nrel and ρ together with
Lemma 5, to prove that (1 − ε)2(1/2 − ε)α(I) ≤ α̂ ≤ (1 + ε)2α(I). Rescaling
ε and α̂ to avoid overestimation, the claimed approximation is obtained. The
space bounds are those from Lemmas 7 and 8. ��

4 Size of Largest Independent Set for Same-Size Intervals

We consider the case when all the input intervals have the same length λ. The
idea is based on the shifting technique of Hochbaum and Mass [8] with a grid of
length 3λ and shifts of length λ. We observe that we can maintain an optimal
solution restricted to a window of length 3λ because at most two disjoint intervals
of length λ can fit in.

For  ∈ R, let W� denote the window [,  + 3λ). For each a ∈ {0, 1, 2} we
define the partition of the real line Wa = {W(a+3j)λ | j ∈ Z} and let Ia be the
set of input intervals contained in some window of Wa. Since each interval of
length λ is contained in exactly two windows of

⋃
a Wa, it follows that

max{α(I0), α(I1), α(I2)} ≥ (2/3)α(I).

For a = 0, 1, 2, we will compute a value α̂a that (1+ ε)-approximates α(Ia) with
reasonable probability. We then return α̂ = max{α̂0, α̂1, α̂2}, which catches a
fraction at least 2(1 − ε)/3 of α(I).
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Lemma 9. Let a ∈ {0, 1, 2} and ε ∈ (0, 1). There is an algorithm in the data
stream model that in O(ε−2 log(1/ε)+log n) space computes a value α̂a such that

Pr
[|α(Ia) − α̂a| ≤ ε · α(Ia)

] ≥ 8/9.

Proof. (Sketch) Let us fix some a ∈ {0, 1, 2}. We say that a window W of Wa is
of type i if W contains at least i disjoint input intervals. Since the windows of
Wa have length 3λ, they can be of type 0, 1 or 2. For i = 0, 1, 2, let γi be the
number of windows of type i in Wa. Then α(Ia) = γ1 + γ2.

We compute an estimate γ̂1 to γ1 as follows. The stream of intervals I =
I1, I2, . . . defines the sequence of windows W (I) = W (I1),W (I2), . . . , where
W (Ii) denotes the window of Wa that contains Ii; if Ii is not contained in any
window of Wa, we then skip Ii. Then, γ1 is the number of distinct elements in
the sequence W (I). Because of [11], we can compute using O(ε−2 + log n) space
a value γ̂1 such that Pr[(1 − ε)γ1 ≤ γ̂1 ≤ (1 + ε)γ1] ≥ 17/18.

We next explain how to estimate the ratio γ2/γ1 ≤ 1. Consider a family H =
H(n, ε) of permutations [n] → [n] guaranteed by Lemma 1, set an appropriate k =
Θ(ε−2), and choose permutations h1, . . . , hk ∈ H uniformly and independently at
random. For each permutation hj , where j ∈ [k], let Wj be the window [,  + 3λ)
of Wa that contains some input interval and minimizes hj(). Thus

Wj = arg min
{

hj() | [, +3λ) ∈ Wa, some I ∈ I is contained in [,  + 3λ)
}

.

The idea is that Wj is a nearly-uniform random window of Wa, among those
that contain some input interval. Therefore, if we define the random variable

M =
∣
∣{j ∈ {1, . . . , k} | Wj is of type 2}∣∣

then Mγ1/k is roughly γ2. We use Chebyshev’s inequality on M and the choice
of k to show that Mγ1/k = γ2 ± εγ1 with probability at least 17/18. Note that
we cannot guarantee an error smaller than εγ2 because γ2 may be negligible in
comparison to γ1. However, since we want to estimate γ1 + γ2, making an error
of εγ1 in the estimation of γ2 is good enough. We then return γ̂1

(
1 + M

k

)
.

The computation of M can be done in O(k log(1/ε)) = O(ε−2 log(1/ε)) space
as follows. For each j ∈ [k], we keep information about the choice of hj , keep
a variable that stores the current window Wj for all the intervals that have
been seen so far, and store the leftmost and rightmost intervals contained in Wj .
Those two intervals tell us whether Wj is of type 1 or 2. ��
Theorem 2. Let ε ∈ (0, 1/2) and I be a set of intervals of length λ with end-
points in [n] that arrive in a data stream. There is an algorithm that uses
O(ε−2 log(1/ε) + log n) space and computes a value α̂ such that

Pr
[
(2/3 − ε) · α(I) ≤ α̂ ≤ α(I)

] ≥ 2/3.

Proof. For each a = 0, 1, 2 we compute the estimate α̂a to α(Ia) with the algo-
rithm described in Lemma 9. We then have that the three events [|α(Ia)− α̂a| ≤
ε·α(Ia)], a = 0, 1, 2, simultaneously occur with probability at least 2/3. When the
three events occur, it follows that 2

3 (1−ε) ·α(I) ≤ max{α̂0, α̂1, α̂2} ≤ (1+ε)α(I).
Rescaling α̂ by 1/(1 + ε) and ε by 1/2, the result is achieved. ��
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5 Lower Bounds

Emek, Halldórsson and Rosén [5] showed that any streaming algorithm for the
interval selection problem, where we have to report a feasible solution, cannot
achieve an approximation ratio of r, for any constant r < 2, unless it uses Θ(n)
bits. They also show that, for same-size intervals, one cannot obtain an approx-
imation ratio below 3/2. We are going to show that similar inapproximability
results hold for estimating α(I).

Consider the problem Index: The input is a pair (S, i) ∈ {0, 1}n × [n] and the
output, denoted Index(S, i), is the i-th bit of S. One can think of S as a subset
of [n], and then Index(S, i) is asking whether element i is in the subset or not.

The one-way communication complexity of Index is well understood. In this
scenario, Alice has S and Bob has i. Alice sends a message to Bob and then Bob
has to compute Index(S, i). The key question is how long should be the message
in the worst case so that Bob can compute Index(S, i) correctly with probability
greater than, say, 2/3. (Attaining probability 1/2 is of course trivial.) To achieve
this, the message of Alice must have Ω(n) bits in the worst case [10,13].

Theorem 3. Let c > 0 be an arbitrary constant. Consider the problem of esti-
mating α(I) for sets of same-length intervals I with endpoints in [n]. In the data
streaming model, there is no algorithm that uses o(n) bits of memory and com-
putes an estimate α̂ such that

Pr
[
(2/3 + c) α(I) ≤ α̂ ≤ α(I)

] ≥ 2/3.

Proof. (Sketch) For simplicity, we use intervals with endpoints in [3n] and mix
closed and open intervals in the proof. Given an input (S, i) for Index, consider
the following stream of intervals. Set L = n + 2. Let σ1(S) be a stream that,
for each j ∈ S, contains the closed interval [L + j, 2L + j]. Let σ2(i) be the
length-two stream with open intervals (i, L + i) and (2L + i, 3L + i). Finally, let
σ(S, i) be the concatenation of σ1(S) and σ2(i). See Figure 1 for an example.
Let I be the intervals in σ(S, i). It is straightforward to see that α(I) is 2 or 3.
Moreover, α(I) = 3 if and only if Index(S, i) = 1.

Assume, for the sake of contradiction, that we have an algorithm in the
data streaming model that uses o(n) bits of space and computes a value α̂ that
satisfies Pr [(2/3 + c) α(I) ≤ α̂ ≤ α(I)] ≥ 2/3. Then, Alice and Bob can solve
Index(S, i) using o(n) bits, as follows. Alice simulates the data stream algorithm
on σ1(S) and sends to Bob a message encoding the state of the memory at the
end of processing σ1(S). The message of Alice has o(n) bits. Then, Bob continues
the simulation on the last two items of σ(S, i), that is, σ2(i). Bob has correctly
computed the output of the algorithm on σ(S, i), and therefore obtains α̂ so that
Pr [(2/3 + c) α(I) ≤ α̂ ≤ α(I)] ≥ 2/3. If α̂ > 2, then Bob returns the bit β̂ = 1.
If α̂ ≤ 2, then Bob returns β̂ = 0. This finishes the description of the protocol.

Analyzing separately the cases where Index(S, i) = 1 and Index(S, i) = 0, we
obtain that Pr

[
β̂ = Index(S, i)

]
≥ 2/3. Since Bob computes β̂ after a message

from Alice with o(n) bits, this contradicts the lower bound of Index. ��
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1 2 15 20105 25 30 34

Fig. 1. Example showing σ(S, i) for n = 7, S = {1, 3, 4, 6}, L = 9, and i = 2 in the
proof of Theorem 3. The intervals are sorted from bottom to top in the order they
appear in the data stream. The empty dots represent endpoints that are not included
in the interval, while the full dots represent endpoints included in the interval.

For intervals of different sizes, we can use an alternative construction with
the property that α(I) is either k + 1 or 2k + 1. This means that we cannot get
an approximation ratio arbitrarily close to 2.

Theorem 4. Let c > 0 be an arbitrary constant. Consider the problem of esti-
mating α(I) for sets of intervals I with endpoints in [n]. In the data streaming
model, there is no algorithm that uses o(n) bits of memory and computes an
estimate α̂ such that

Pr
[
(1/2 + c) α(I) ≤ α̂ ≤ α(I)

] ≥ 2/3.
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Abstract. We study the problem of assigning transmission ranges to
radio stations in the plane such that any pair of stations can communi-
cate within a bounded number of hops h and the cost of the network is
minimized. The cost of transmitting in a range r is proportional to rα,
where α ≥ 1.

We consider two settings of this problem: collinear station locations
and arbitrary locations. For the case of collinear stations, we introduce
the pioneer polynomial-time exact algorithm for any α ≥ 1 and constant
h, and thus conclude that the 1D version of the problem, where h is a
constant, is in P . For an arbitrary h, not necessarily a constant, and
α = 1, we propose a 1.5-approximation algorithm. This improves the
previously best known approximation ratio of 2.

For the case of stations placed arbitrarily in the plane, we present a
(6 + ε)-approximation algorithm, for any ε > 0. This improves the pre-
viously best known approximation ratio of 4(9h−2)/( h

√
2 − 1). Moreover,

we show a (1.5 + ε)-approximation algorithm for a case where deviation
of one hop (h + 1 hops in total) is acceptable.

1 Introduction

A wireless ad-hoc network prevails in scenarios where a fixed wired infrastructure
is not available, either because it is physically impossible or not economically prac-
tical. A wireless ad-hoc network is a decentralized network that consists of inde-
pendent radio stations communicating over radio channels without relying on any
existing infrastructure. Each station is able to transmit a signal over a fixed range,
and any other station within this transmission range receives the message. Com-
munication with stations outside the transmission range is achieved by multi-hop
transmission. The twenty-first century witnesses widespread deployment of wire-
less networks for both professional and private applications. This field continu-
ously experiences technological progress and market growth. For a comprehensive
survey of this field see [15].

Let S be a set of points in the Euclidean plane representing radio stations.
A range assignment for S is a function ρ : S → R+ that assigns each point
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a transmission range (radius). The cost of a range assignment is defined as
cost(ρ) =

∑
v∈S(ρ(v))α, for some real constant α ≥ 1. In the case of α ∈ (1, 6],

the cost represents the power consumption of the network, where α varies
depending on different environmental factors [15]. The linear setting of the prob-
lem (α = 1) corresponds to minimizing the sum of ranges (radii).

A range assignment ρ induces a directed communication graph Gρ = (S,Eρ),
where Eρ = {(u, v) : ρ(u) ≥ |uv|} and |uv| denotes the Euclidean distance
between u and v. There is a variety of minimum cost range assignment prob-
lems that aim to find a minimum cost range assignment ρ, provided that the
induced communication graph admits a specified constraint, mainly regarding
its connectivity. This class of problems has been considered extensively in many
settings, for different values of α and with respect to various required constraints.
We refer to a range assignment as feasible if its induced graph satisfies the con-
straint of the addressed problem.

In this paper we consider the Bounded-Hop Minimum Cost (Power) Range
Assignment (hMinPower) problem, whose objective is to compute a minimum
cost range assignment under the constraint that the induced graph contains a
directed path between any two nodes with at most h edges for a given 1 ≤
h ≤ n − 1, where α ≥ 1. Some of our work concentrate on the specific linear
case where α = 1. We refer to the hMinPower problem under this linear
model as the hMinRange problem. Minimization of the radii sum (α = 1)
has been considered also in the context of the unbounded-hop version [2,4] and
other range assignment problems, such as a set of circles connectivity [5] and
circle coverage [1,13,14]. This linear model may be appropriate also for power
consumption in future systems, as predicted in [14], where the transmitting
stations do not transmit in all directions simultaneously, but rather focus the
transmission energy in a narrow angle beam whose direction changes according
to the needs of the network.

In [11], Kirousis et al. considered the 1D hMinPower problem for the
case with h = n − 1, where n is the number of input points, i.e., the
unbounded-hop version, and showed an O(n4)-time exact algorithm. Later, Das
et al. [9] improved the running time to O(n3). Finally, Carmi and Chaitman-
Yerushalmi [4] proposed an O(n2)-time exact algorithm. Unlike the unbounded
case, the complexity of the 1D hMinPower problem for h < n−1 has not been
known. The best known approximation algorithm is due to Clementi et al. [7]
that ensures a 2-approximation ratio, for any arbitrary 1 ≤ h < n.

In Section 2, we present the first polynomial-time exact algorithm for the
hMinPower problem, for any constant 1 ≤ h < n. For any arbitrary 1 ≤ h < n,
not necessarily a constant, we show an algorithm that outputs a feasible range
assignment for the hMinRange problem of cost 1.5 times the optimal cost. This
improves the previously best known approximation ratio for the problem, which
is 2.

While the 1D version of the hMinPower problem, where h is a constant,
can be solved optimally, no exact algorithm is known for the hMinPower prob-
lem in higher dimensions. The unbounded case, i.e., h = n − 1, has been proven
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to be NP -hard [6,11] for any d ≥ 2 and α ≥ 1, however, a 2-approximation
algorithm exists due to Kirousis et al. [11]. For α = 1, Ambühl et al. [2]
gave a 1.5-approximation, and lately Carmi et al. [4] gave an algorithm with
improved approximation ratio of 1.5 − c, for a suitable constant c > 0. In the
case where the hop bound is a constant 1 ≤ h < n, Calinescu et al. [3] pro-
vided an (O((log n)/h), O((log n)α)) bi-criteria approximation algorithm for any
α ≥ 1. Namely, their algorithm outputs an assignment whose cost is bounded
by O(log n) times the optimal cost and the induced network has a hop-diameter
bounded by O(log n) times h. Kantor and Peleg introduced in [10] the first
constant-approximation (though exponential in h) for the problem (for general
metrics) with approximation ratio of (1/ h

√
2 − 1)α(1 + 3α)(3α+1)h−2. For the

Euclidean hMinRange problem, this ratio equals 4(9h−2)/( h
√

2 − 1).
In Section 3, we present two approximation algorithms for the hMinRange

problem in the plane. The first algorithm admits a (3/2 + ε, 1 + 1/h) bi-criteria
approximation. Namely, it outputs an assignment whose cost is bounded by
(3/2 + ε) times the optimal cost and the induced network has a hop-diameter
bounded by h + 1, rather than h. The second algorithm has an approximation
ratio of (6+ε), while it guarantees a hop-diameter of exactly h. Both results hold
for any small enough positive constant ε and use the PTAS for the bounded-hop
MST problem by Laue et al. [12].

2 The hMinPower Problem in 1D

Consider a set S = {s1, . . . sn} of points on a line, representing stations. For
simplicity, we assume that the line is horizontal and for every i < j, si lies to
the left of sj . Given a range assignment ρ : S → R+, we say that a station si

reaches sj , and denote it by i →ρ j, if ρ(si) ≥ |sisj |. In addition, we say that a

station si reaches sj in at most h hops, and denote it by i
h−→ρ j, if there is a

path in Gρ from si to sj with at most h edges.
We present a polynomial-time exact algorithm for the hMinPower problem

for every α ≥ 1 and a constant h. In addition, we show a 1.5-approximation
algorithm for the hMinRange problem for any arbitrary h, not necessarily a
constant. The later improves the previously best known 2-approximation algo-
rithm [7] for the linear model of the hMinRange problem.

2.1 Exact Algorithm for the hMinPower Problem

Our algorithm uses a dynamic programming approach inspired by the
polynomial-time approximation scheme in [12]. We begin with a simple observa-
tion.

Observation 1. A range assignment ρ for S is feasible if and only if every
sk ∈ S satisfies k

h−→ρ 1 and k
h−→ρ n.
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Our algorithm finds a minimum cost range assignment under the constraint
that every sk ∈ S reaches both s1 and sn in at most h hops. By Observation 1,
this assignment admits an optimal solution for the hMinPower problem.

Consider the communication graph induced by an optimal range assignment.
Each si, for i ∈ {1, n}, implies a shortest-paths tree rooted at si, which we refer
as Ti. Each tree Ti associates each station with a value between 0 to h that
corresponds to its level in the tree Ti. Namely, a station of level j in Ti, referred
as a j-leveli station, is a station whose hop-distance to si in Ti is j. Clearly, si is
a single station of level 0 in Ti (0-leveli), see Figure 1. Therefore, each station is
associated with two levels with respect to the two trees T1 and Tn. Our algorithm
uses dynamic programming approach in order to determine for every station its
level, j, and its distance from the closest (j − 1)-level station, in both T1 and
Tn. This implies the range of the station, which is the maximal among the two
distances.

Next, we describe a hierarchical decomposition of the input set that is later
used to define our subproblems. Consider the input S and a bounding interval IS

containing all points of S in its interior (and no point on its boundary). We divide
IS into two intervals sharing a common boundary point located between s�n/2�
and s�n/2�+1. Thus, each interval contains at most �n/2� points. We continue
with dividing the two intervals recursively by the same method until the intervals
contain a single point. We view the obtained intervals as nodes of a binary split
tree with IS as a root. The children of an interval node correspond to the two
intervals obtained by the above partition. Note that this tree has O(n) nodes.

We define a set of subproblems on each interval I in the split-tree. Each
subproblem on I represents a different sequence of “guessed” distances from I’s
boundaries to the closest j-level station in Ti for each i ∈ {1, n} and 0 ≤ j ≤ h−1.
Formally, each subproblem is specified by the following parameters (see Figure 1):

• an interval in the split-tree;

• for every i ∈ {1, n} and 0 ≤ j ≤ h − 1, a function in(i,j) that assigns each
boundary point of the interval the distance to the closest j-leveli station
inside the interval; and

• for every i ∈ {1, n} and 0 ≤ j ≤ h − 1, a function out(i,j) that assigns the
left (resp. right) boundary point of the interval the distance to the closest
j-leveli station, outside, on the left (resp. right) of the interval;

For an interval I in the split-tree, a pair (i, j) ∈ {1, n} × {0, ..., h − 1}, and
a boundary point p of I, there are O(n) possible values for each in(i,j)(p) and
out(i,j)(p) that correspond to distances between I’s boundaries and stations.
Note that the distance may be ∞. Thus, the number of subproblems on a given
interval is O(n4h).

The cost of a subproblem on an interval I corresponds to
∑

s∈I(ρ(s))α, where
ρ is an optimal assignment with respect to the “guessed” distances. The algo-
rithm performs a bottom-up traversal of the split tree, and at each step it solves
the set of subproblems on the current interval and stores their costs in a table.



144 P. Carmi et al.
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Fig. 1. The tree T1 is depicted in black with the associated levels of all stations. The
gray interval I has a left boundary point pL and a right boundary point pR. The
values of the in(i,j) and outi,j functions, depicted as dashed segments, correspond to a
subproblem on I of optimal cost (since it complies with the correct levels in T1).

Finally, it returns the minimum value among all table entries corresponding to
subproblems on IS .

Computing the Subproblems.

Base Subproblems. The base subproblems correspond to leaves of the split-
tree, i.e., intervals containing a single station s. Their cost is determined only
by the range assigned to s. For every i ∈ {1, n}, s should be associated with
exactly one level 0 ≤ ji ≤ h. Thus, legal subproblems must satisfy the following
property:

Property 1. For every i ∈ {1, n}, there exists at most one 0 ≤ ji ≤ h that
satisfies: for each boundary point p of the interval,
1. if ji < h, then in(i,ji)(p) = |p s|; and
2. for every k 
= ji, in(i,k)(p) = ∞.

Moreover, if s is s1 (resp. sn), then j1 (resp. jn) must be 0.

If Property 1 is satisfied, then for every i ∈ {1, n}, we consider s as a ji-leveli
station in Ti and thus it must reach the closest (ji − 1)-leveli station. Therefore,
the cost of the subproblem stored in the table is

max
i∈{1,n}

{di} , where di =

⎧
⎨

⎩

0, s = si(

min
boundary p

{|sp| + out(i,ji−1)(p)}
)α

, otherwise

⎫
⎬

⎭
.

Otherwise (Property 1 is not satisfied), the cost is ∞.
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General Subproblems. The cost of a subproblem on an interval I with two
children I1 and I2 is computed as follows. Assume w.l.o.g. that I1 is to the left
of I2. Let pL (resp. pR) denote the left (resp. right) boundary point of I and let
pM be the division point, i.e., the common boundary point of I1 and I2. The
algorithm considers all pairs of subproblems on I1 and I2 with associated func-
tions out1(i,j), in

1
(i,j) and out2(i,j), in

2
(i,j), respectively, that satisfy the following

property:

Property 2. For every i ∈ {1, n} and 0 ≤ j ≤ h − 1,
1. the subproblem on I complies with those on I1 and I2:

out(i,j)(pL) = out1(i,j)(pL),

out(i,j)(pR) = out2(i,j)(pR),

in(i,j)(pL) = min{in1
(i,j)(pL), |pLpM | + in2

(i,j)(pM)},

in(i,j)(pR) = min{in2
(i,j)(pR), |pRpM | + in1

(i,j)(pM)}; and

2. the subproblems on I1 and I2 comply with each other:

out2(i,j)(pM) = min{in1
(i,j)(pM), |pMpL| + out1(i,j)(pL)},

out1(i,j)(pM) = min{in2
(i,j)(pM), |pMpR| + out2(i,j)(pR)};

Then, the algorithm observes the table entries of all such pairs, chooses the
pair that sums to minimal cost and sets this sum to be the cost of the current
subproblem. Note that every pair of subproblems on I1 and I2 complies with
exactly one subproblem on I. Therefore, the time required for computing all
subproblems for I is O((n4h)2). Since there are O(n) intervals, the total running
time is O(n8h+1) and Theorem 2 follows.

Theorem 2. Given a set S of points on a line, the hMinPower problem for
every α ≥ 1 can be solved in O(n8h+1) time.

2.2 1.5-Approximation Algorithm for the hMinRange Problem for
an Arbitrary h

In this section we present a 1.5-approximation algorithm for the hMinRange
problem in 1D for an arbitrary h. This result improves the 2-approximation
algorithm suggested in [8] for the linear model of the hMinRange problem. For
consistency, we follow the definitions from [8] with only slight changes.

Definition 1. For any 1 ≤ i < j ≤ n,

−−→
ALLh(i, j) = min

ρ
{cost(ρ) | ∀k ∈ [i, j], k

h−→ρ j};

←−−
ALLh(i, j) = min

ρ
{cost(ρ) | ∀k ∈ [i, j], k

h−→ρ i}.
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Definition 2. We say that a station si is a Base if i −→ρ 1 and i →ρ n. A range
assignment ρ is of type B if there is at least one Base and for every 1 ≤ i ≤ n,
there exists a Base sb such that i

h−1−−−→ρ b. The cost of a minimum assignment for
S of type B is denoted by BASESh(S). The cost of a minimum assignment for S
of type B subject to the constraint that si is a Base is denoted by BASESh(S, i).
We also define BASESr

h(S, i) (resp. BASESl
h(S, i)) as the cost of a minimum

assignment for S of type B subject to the constraint that si is the rightmost
(resp. leftmost) Base.

According to [8], the values
−−→
ALLh(i, j),

←−−
ALLh(i, j), BASESh(S), BASESr

h(S, i)
and BASESl

h(S, i) over all 1 ≤ i < j ≤ n can be computed in O(hn3) time.

Corollary 1. The values BASESh(S, i) over all 1 ≤ i ≤ n can be computed in
O(hn3) time.

Proof. Consider the minimum range assignment of type B for S under the con-
straint that si is a Base. Note that for every station sj with 1 ≤ j < i there
exists a Base sb with 1 ≤ b ≤ i, such that sj reaches sb in at most h − 1 hops.
Symmetrically, for every station sj with i < j ≤ n there exists a Base sb with
i ≤ b ≤ n, such that sj reaches sb in at most h − 1 hops. Let ρ be the assign-
ment associated with the cost BASESr

h(S, i) (resp. BASESl
h(S, i)), then for every

i < j ≤ n (resp. 1 ≤ j < i), it holds that j
h−1−−−→ρ i. Therefore,

BASESh(S, i) = BASESr
h(S, i) − ←−−

ALLh−1(i, n)+

BASESl
h(S, i) − −−→

ALLh−1(1, i) − max{|s1si|, |sisn|},

where the subtraction of max{|s1si|, |sisn|} is due to the double addition of si’s
range to the total cost. �

Let sm be the closest station to the midpoint of the segment s1sn. Lemma 1
states an invariant that holds for any feasible assignment for S.

Lemma 1. For every 1 ≤ i ≤ n, si reaches sm or a Base in at most h− 1 hops.

Proof. Consider a station si and assume w.l.o.g. that si is to the right of sm,
i.e., i > m. If si reaches sm in exactly h hops, then it also reaches s1 in exactly
h hops. This means that the last edge in the corresponding path from si to s1 is
necessarily (sj , s1) for j > m. Thus, sj reaches s1 in one hop which implies that
sj also reaches sn in one hop, namely, sj is a Base. Since si reaches sj in h − 1
hops, the lemma follows. �

Consider an optimal assignment to the hMinRange problem, ρ∗, and its
cost OPT . By Lemma 1, applying one modification on ρ∗ of setting sm to be a
Base yields an assignment of type B having sm as a Base. Therefore,

BASESh(S,m) ≤ OPT + max{|s1sm|, |smsn|}.
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Assume w.l.o.g. that sm is to the left of the midpoint, then

max{|s1sm|, |smsn|} ≤ (|s1sn| + |smsm+1|)/2.

By Lemma 3 (in Section 3), for every e ∈ MST (S) it holds that OPT ≥
wt(MST (S)) + wt(e); especially, OPT ≥ |s1sn| + |smsm+1|. Therefore,
BASESh(S,m) ≤ 1.5 · OPT and Theorem 3 follows.

Theorem 3. Given a set S of points on a line, a 1.5-approximation for the
hMinRange problem and an arbitrary h can be computed in O(hn3) time.

3 The hMinRange Problem in the Plane

In this section we introduce two approximation algorithms for the hMinRange
problem in the plane. First we present a (3/2 + ε, 1 + 1

h ) cost-hop bi-criteria
approximation, i.e., the algorithm outputs an assignment whose cost is bounded
by (3/2 + ε) times the optimal cost and the induced graph has a hop-diameter
bounded by h + 1. Later, we show an algorithm that does not exceed the h
hop bound, at the cost of increasing the approximation ratio to (6 + ε). Both
algorithms use the PTAS by Laue et al., denoted by HMST, for the bounded-hop
MST (hHopMST) problem [12]. This problem receives as an input a set S, a
root node r ∈ S and a hop bound h and outputs a minimum weight tree rooted
at r, in which every node is connected to r with a path containing at most h
edges. The output of the HMST algorithm for an input (S, r, h) is denoted by
HMST(S,r,h).

Throughout this section, let S denote the input set. We denote by ρ∗ the
optimal assignment for the hMinRange problem and by OPTρ its cost. In
addition, we denote by T ∗

r the optimal assignment for the hHopMST problem
with a root r ∈ S and by OPTTr its weight. We begin with bounding the weight
of any feasible solution for the hMinRange problem with respect to an optimal
solution of the hHopMST problem, rooted at r ∈ S.

The following lemmas introduce some lower bounds on OPTρ, used later to
analyze the approximation ratio of our algorithms.

Lemma 2. For any r ∈ S, OPTρ > OPTTr.

Proof. Let T ρ
r be the shortest paths tree (with respect to number of edges) to

r, induced by ρ∗, having r as its root. That is, for each v ∈ V , we compute the
directed shortest-hop path from v to r in Gρ∗ . This construction yields that (i)
wt(T ρ

r ) < cost(ρ∗); (ii) for all v ∈ V there is a path from v to r in T ρ
r consisting

of at most h edges. Since T ∗
r is the tree of minimum weight among all trees

rooted at r with bounded hop h, i.e., wt(T ∗
r ) ≤ wt(T ρ

r ), the lemma follows. �
Lemma 3. Let e be an edge in MST (S), then

OPTρ ≥ wt(MST (S)) + wt(e).

Proof. Consider the two connected components of MST (S)\e. To connected
them there must be a station s ∈ S with a range of at least wt(e). Moreover,
since all points in S\{s} must reach s, by the same arguments as in the proof of
Lemma 2, their ranges must sum up to at least wt(MST (S)). �
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3.1 Bi-criteria Approximation Algorithm for the hMinRange
Problem

In this section we show a (3/2 + ε, 1 + 1
h ) cost-hop bi-criteria approximation

algorithm for the hMinRange problem. We start by describing our algorithm,
then we prove the feasibility of the received range assignment and bound its cost.

Algorithm Description. Given a set S of points in R2 and a constant h > 0,
the algorithm finds a point r ∈ S that minimizes the enclosing circle centered at
r (containing all points in S). Let dr be the radius of this minimum enclosing
circle centered at r, and let T be HMST(S,r,h). Moreover, let ρT be the range
assignment induced by T by directing all edges toward r. The algorithm sets ρ
to be ρT with one modification that is ρ(r) = dr and returns the assignment ρ.

Algorithm Analysis. The weight of T is at most (1 + ε)OPTTr, which by
Lemma 2 is smaller than (1 + ε)OPTρ. Note that cost(ρT ) = wt(T ) and thus,
cost(ρT ) < (1 + ε)OPTρ. Next we bound the additional range dr which the
algorithm sets to r.

Consider the longest path in MST (S) and its midpoint m. Obviously, the
minimum enclosing circle centered at m has a radius of at most wt(MST (S)/2,
however, m may lie on an edge of MST (S). Let c ∈ S be the closest station to
m, then the radius dc of the minimum enclosing circle centered at c is at most
(wt(MST (S)) + wt(em))/2, where em is the largest edge in MST (S). By the
choice of r, dr ≤ dc and by Lemma 3, OPTρ ≥ wt(MST (S)) + wt(em); thus,
dr ≤ OPTρ/2.

Altogether we receive

cost(ρ) ≤ (1 + ε)OPTρ +
OPTρ

2
= (

3
2

+ ε)OPTρ.

As for the feasibility, any point has a path with at most h edges to r in Gρ,
and r can reach any point in one hop. Thus, we have the following theorem.

Theorem 4. Given a set S of points in the plane and an integer h, a polynomial
(3/2 + ε, 1 + 1/h) cost-hop approximation for the hMinRange can be computed
in polynomial time, for any small ε > 0.

3.2 (6 + ε)-Approximation for the hMinRange Problem

In this section we present an approximation algorithm that outputs an assign-
ment ρ of cost at most (6+ ε)OPTρ, for any small ε > 0. We start by giving the
algorithm description, illustrated in Figure 2.

Let l and r be the two farthest points in S, w.l.o.g. assume that both are on
the x-axis and l is to the left of r. Let b be the perpendicular bisector to the
segment lr and let Hl and Hr be the half planes to the left and to the right of
b, respectively.



On the Bounded-Hop Range Assignment Problem 149

Algorithm 1.
Input: A set of points S in R2 and an integer h > 0
Output: A range assignment ρ
1: let Tl := HMST (S, l, h), Tr := HMST (S, r, h);
2: let ρl (resp. ρr) be the range assignment induced by Tl (resp. Tr), by directing

the edges of Tl (resp. Tr) towards l (resp. r).
3: for every (q, l) ∈ Tl do
4: if q has a descendant qd ∈ Hr in Tl then
5: set ρl(q) := |lr|;
6: for every (q, r) ∈ Tr do
7: if q has a descendant qd ∈ Hl then
8: set ρr(q) := |lr|;
9: for every v ∈ S do

10: ρ(v) := max{ρl(v), ρr(v)};
11: return ρ;

l r

q qd

Tl

Hl Hr

Fig. 2. An illustration of the tree Tl from Algorithm 1. The points q to which a range
|lr| is assigned are depicted as circles. The paths of Tl that are charged for those ranges
are depicted in bold.

The correctness of the algorithm is proved in the following two lemmas. In
Lemma 4 we show that the algorithm returns a feasible range assignment ρ and
Lemma 5 proves that ρ admits the required approximation ratio.

Lemma 4. The induced graph Gρ has a path with at most h edges between any
two points in S.

Proof. Let u, v ∈ S and assume w.l.o.g. that u ∈ Hr. Since the assignment ρl is
induced by the bounded-hop tree Tl, there exists a path, Pu,l, from u to l in Gρl

with at most h hops. Let (q, l) ∈ Tl be the (last) edge in Pu,l. Then, since u ∈ Hr

is a descendant of q in Tl, the algorithm set ρl(q) to be |lr|. Thus, ρ(q) = |lr|,
i.e., the maximum distance between any two points in S. Since the prefix of Pu,l

from u to q contains at most h − 1 edges, and q can reach any point in S and in
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particular v, we have that Gρ has a path with at most h edges from u to v, and
the lemma follows.

�
Lemma 5. For any choice of ε > 0, cost(ρ) ≤ (6 + ε)OPTρ.

Proof. At the end of step 2 of the algorithm, we have

cost(ρl) + cost(ρr) = wt(Tl) + wt(Tr).

In the rest of the algorithm, additional |lr| ranges are assigned to points q adja-
cent to l or r that have a descendant qd beyond the bisector. Consider such a
point q adjacent to l (the arguments for points adjacent to r are symmetric).
The path from qd to l in Tl weights at least |lr|/2. We can charge this path twice
to achieve the required range assigned to q. Since any two neighbors of l have no
common descendants and the paths from their descendants to l in Tl are vertex
disjoint, we do not charge any path more than once (see Figure 2). Therefore,
we have

cost(ρ) ≤ cost(ρl) + cost(ρr) ≤ 3(wt(Tl) + wt(Tr)).

By Lemma 2, each of Tl and Tr weights at most (1 + ε′)OPTρ which implies

cost(ρ) ≤ (6 + 6ε′)OPTρ,

and by picking ε′ = ε/6 the lemma follows. �
By the above 2 lemmas, we conclude the following theorem.

Theorem 5. Given a set S of points in the plane and an integer h, a (6 + ε)-
approximation for the hMinRange can be computed in polynomial time, for any
ε > 0.
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Kurt Mehlhorn1, and Thatchaphol Saranurak3

1 Max-Planck Institute for Informatics, 66123 Saarbrücken, Germany
2 Department of Computer Science,

Saarland University, 66123 Saarbrücken, Germany
kozma@cs.uni-saarland.de

3 KTH Royal Institute of Technology, 11428 Stockholm, Sweden

Abstract. In this paper we extend the geometric binary search
tree (BST) model of Demaine, Harmon, Iacono, Kane, and Pǎtraşcu
(DHIKP) to accommodate for insertions and deletions. Within this
extended model, we study the online Greedy BST algorithm intro-
duced by DHIKP. Greedy BST is known to be equivalent to a maxi-
mally greedy (but inherently offline) algorithm introduced independently
by Lucas in 1988 and Munro in 2000, conjectured to be dynamically
optimal.

With the application of forbidden-submatrix theory, we prove a quasi-
linear upper bound on the performance of Greedy BST on deque
sequences. It has been conjectured (Tarjan, 1985) that splay trees
(Sleator and Tarjan, 1983) can serve such sequences in linear time. Cur-
rently neither splay trees, nor other general-purpose BST algorithms
are known to fulfill this requirement. As a special case, we show that
Greedy BST can serve output-restricted deque sequences in linear time.
A similar result is known for splay trees (Tarjan, 1985; Elmasry, 2004).

As a further application of the insert-delete model, we give a simple
proof that, given a set U of permutations of [n], the access cost of any
BST algorithm is Ω(log |U | + n) on “most” of the permutations from U.
In particular, this implies that the access cost for a random permutation
of [n] is Ω(n log n) with high probability.

Besides the splay tree noted before, Greedy BST has recently
emerged as a plausible candidate for dynamic optimality. Compared to
splay trees, much less effort has gone into analyzing Greedy BST. Our
work is intended as a step towards a full understanding of Greedy BST,
and we remark that forbidden-submatrix arguments seem particularly
well suited for carrying out this program.

1 Introduction

Binary search trees (BST) are among the most popular and most thoroughly
studied data structures for the dictionary problem. There remain however, sev-
eral outstanding open questions related to the BST model. In particular, what

T. Saranurak—Work mostly done while at Saarland University.

c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 152–165, 2015.
DOI: 10.1007/978-3-319-21840-3 13



Greedy Is an Almost Optimal Deque 153

is the best way to adapt a BST in an online fashion, in reaction to a sequence
of operations (e.g. access, insert, and delete), and what are the theoretical lim-
its of such an adaptation? Does there exist a “one-size-fits-all” BST algorithm,
asymptotically as efficient as any other dynamic BST algorithm, regardless of
the input sequence?

Splay trees have been proposed by Sleator and Tarjan [13] as an efficient
BST algorithm, and were shown to be competitive with any static BST (besides
a number of other attractive properties, such as the balance, working set, and
static finger properties). Furthermore, Sleator and Tarjan conjectured splay trees
to be competitive with any dynamic BST algorithm; this is the famous dynamic
optimality conjecture [13]. An easier, but similarly unresolved, question asks
whether such a dynamically optimal algorithm exists at all. We refer to [7] for a
survey of work related to the conjecture.

A different BST algorithm (later called GreedyFuture) has been pro-
posed independently by Lucas [8] and by Munro [9]. GreedyFuture is an
offline algorithm: it anticipates future accesses, preparing for them according to
a greedy strategy. In a breakthrough result, Demaine, Harmon, Iacono, Kane,
and Pǎtraşcu (DHIKP) transformed GreedyFuture into an online algorithm
(called here Greedy BST), and presented a geometric view of BST that facil-
itates the analysis of access costs (while abstracting away many details of the
BST model).

At present, our understanding of both splay trees and Greedy BST is
incomplete. For splay trees, besides the above-mentioned four properties (essen-
tially subsumed1 by a single statement called the access lemma), a few other
corollaries of dynamic optimality have been shown, including the sequential
access [15] and the dynamic finger [1,2] theorems. The only known proof of
the latter result uses very sophisticated arguments, which makes one pessimistic
about the possibility of proving even stronger statements.

A further property conjectured for splay trees is a linear cost on deque
sequences (stated as the “deque conjecture” by Tarjan [15] in 1985). Informally,
a deque sequence consists of insert and delete operations at minimum or maxi-
mum elements of the current dictionary. Upper bounds for the cost of splay on
a sequence of n deque operations are O(nα(n)) by Sundar [14] and O(nα∗(n)) by
Pettie [10]. Here α is the extremely slowly growing inverse Ackermann function,
and α∗ is its iterated version. A linear bound for splay trees on output-restricted
deque sequences (i.e. where deletes occur only at minima) has been shown by
Tarjan [15], and later improved by Elmasry [5].

In general, our understanding of Greedy BST is even more limited. Fox [6]
has shown that Greedy BST satisfies the access lemma and the sequential
access theorem, but no other nontrivial bounds appear to be known. One might
optimistically ascribe this to a (relative) lack of trying, rather than to insur-
mountable technical obstacles. This motivates our attempt at the deque conjec-
ture for Greedy BST.

1 Apart from a technicality for working set, that poses no problem in the case of splay
trees and Greedy BST.
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As mentioned earlier, a deque sequence consists of insert and delete opera-
tions. In the tree-view, e.g. for splay trees, such operations have a straightforward
implementation. Unfortunately, the geometric view in which Greedy BST can
be most naturally expressed only concerns with accesses. Thus, prior to our
work there was no way to formulate the deque conjecture in a managable way
for Greedy BST.

Our Contributions. We augment the geometric model of DHIKP to allow insert
and delete operations (exemplified by the extension of the Greedy BST algo-
rithm), and we show the offline and online equivalence of a sequence of operations
in geometric view with the corresponding sequence in tree-view. This extended
model allows us to formulate the deque conjecture for Greedy BST. We tran-
scribe the geometric view of Greedy BST in matrix form, and we apply the
forbidden-submatrix technique to derive the quasilinear bound O(m2α(m,m+n) + n)
on the cost of Greedy BST, while serving a deque sequence of length m on
keys from [n].

We also prove an O(m+n) upper bound for the special case of output-restricted
deque sequences. We find this proof considerably simpler than the corresponding
proofs for splay trees, and we observe that a slight modification of the argument
gives a new (and perhaps simpler) proof of the sequential access theorem for
Greedy BST.

As a further application of the insert-delete model we show through a reduc-
tion to sorting that for any BST algorithm, most representatives from a set U of
permutations on [n] have an access cost of Ω(log |U |+n). In particular, this implies
that a random permutation of [n] has access cost Ω(n log n) with high probabil-
ity. A similar result has been shown by Wilber [16] for random access sequences
(that might not be permutations). Our proof is self-contained, not relying on
Wilber’s BST lower bound. Permutation access sequences are important, since
it is known that the existence of a BST algorithm that is constant-competitive
on permutations implies the existence of a dynamically optimal algorithm (on
arbitrary access sequences).

Related Work. A linear cost for deque sequences is achieved by the multi-splay
algorithm [4, Thm 3] in the special case when the initial tree is empty; by
contrast, the results in this paper make no assumption on the initial tree.

Most relevant to our work is the deque bound of Pettie for splay trees [10].
That result relies on bounds for Davenport-Schinzel sequences, which can
be reformulated in the forbidden-submatrix framework. Indeed, the use of
forbidden-submatrix theory for proving data structure bounds was pioneered
by Pettie, who reproved the sequential access theorem for splay trees [11]
(among other data structure results). Our application of forbidden-submatrix
theory is somewhat simpler and perhaps more intuitive: the geometric view of
Greedy BST seems particularly suitable for these types of arguments, as the
structure of BST accesses is readily available in a matrix form, without the need
for an extra “transcribing” step.
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2 Geometric Formulation of BST with Insertion/Deletion

In this section we extend the model of DHIKP [3] to allow for insertions and
deletions. After defining our geometric model, we prove the equivalence of the
arboreal (i.e. tree-view) and the geometric views of BSTs.

2.1 Rotations and Updates

Definition 1 (Valid Reconfiguration). Given a BST T1, a (connected) sub-
tree τ of T1 containing the root, and a tree τ′ on the same nodes as τ, except
that one node may be missing or newly added, we say that T1 can be reconfigured
by an operation τ → τ′ to another BST T2 if T2 is identical to T1 except for τ
being replaced by τ′, meaning that the child pointers of elements not in τ do not
change. The cost of the reconfiguration is max{|τ|, |τ′|}.
This definition differs from [3, Def.2] in that τ′ need not be defined on the same
nodes as τ. Note that, according to the definition, if an operation τ→ τ′ changes
a child pointer of an element x, then x ∈ τ. See Figure 1 for examples.

Definition 2 (Execution of Update Sequence). Given an update sequence

S = 〈(s1, op1), (s2, op2), . . . , (sm, opm)〉, where opi ∈ {access, insert, delete},
we say that a BST algorithm executes S by an execution E = 〈T0, τ1 →
τ′1, . . . , τm → τ′m〉 if all reconfigurations τt → τ′t transforming Tt−1 to Tt are valid,
and for all t

– if opt = access, then st ∈ τt and τ′t = τt as a set,
– if opt = insert, then τ′t = {st}∪̇τt as a set,
– if opt = delete, then τt = {st}∪̇τ′t as a set.

We also say that E executes S . The cost of execution of E is the sum over
all reconfiguration costs. If an element x ∈ τt ∪ τ′t , we say that x is touched at
time t.

We assume that we work over the set [n]. Each element can be inserted or
deleted many times, but insertions and deletions on the same element must be
alternating. We also assume that every element is accessed or updated at least
once.

2.2 Valid Sets

Definition 3 (Geometric View of Update Sequence). The geometric view
of an update sequence S is a point set P(S ) = A(S )∪̇I(S )∪̇D(S ) in the integer grid
[n]×[m] consisting of access points A(S ) = {(st, t) | opt = access}, insertion points
I(S ) = {(st, t) | opt = insert}, and deletion points D(S ) = {(st, t) | opt = delete}.
Update points are U(S ) = I(S )∪̇D(S ).
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Fig. 1. (left) Examples of valid insert/delete operations. Circled elements indicate τ
and τ′; (right) Examples of invalid operations: τ does not contain root (above) and τ′

cannot link all pendant trees (below)

We usually omit the parameter S and simply write A, I,D,U when the choice of
S is clear from context. We denote the x-coordinate and t-coordinate of a point
p by (px, pt). By element x, we mean the column x. By time t, we mean the row
t.

Definition 4 (Valid Point). Given a point set P(S ) in the integer grid [n]×[m],
let p be a point (p may not be in P(S )), and let p′, p′′ ∈ U(S ) denote the update
points nearest to p, below (resp. above) p, i.e. p′x = p′′x = px, and p′t < pt < p′′t .
One or both of p′ and p′′ might not exist. We say that p is valid in P(S ), iff:

– p � U(S ), p′ ∈ I(S ) (or does not exist), and p′′ ∈ D(S ) (or does not exist), or
– p ∈ I(S ), p′ ∈ D(S ) (or does not exist), and p′′ ∈ D(S ) (or does not exist), or
– p ∈ D(S ), p′ ∈ I(S ) (or does not exist), and p′′ ∈ I(S ) (or does not exist).

Let Tt denote the resulting tree at time t during an execution of the BST
algorithm E on the update sequence S . Observe that Definition 4 allows elements
to be accessed or deleted without having been inserted before. Such elements are
(implicitly) in the initial tree T0.

Fact 5. A point x can be touched at time t iff (x, t) is valid.

Suppose that (x, t) is valid. If (x, t) is a deletion point, then x is in Tt−1 but
not Tt, and it is touched. If (x, t) is an insertion point, then x is in Tt but not
Tt−1, and it is touched. If (x, t) is not an update point, then x is in both trees,
and might or might not be touched. See Figure 2 for an illustration.

Definition 6 (Predecessor/Successor of a Point). Given P(S ), the prede-
cessor pred(p) of a point p is the largest element x′ smaller than px such that
(x′, pt) is valid. We also write pred(p) = (x′, pt) as a point. The successor succ(p)
of p is symmetrically defined.

Definition 7 (Valid Set). A point set P ⊇ P(S ) is valid iff every point p ∈ P
is valid.
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Fig. 2. A point set with insert (�) and
delete (×) points. Dashed lines indicate
valid points. Observe that succ(x) = v3,
succ(y) = v2, and pred(x) = pred(y) = v1.

For any node x in a tree T , let
predT (x) and succT (x) denote the predeces-
sor, respectively successor of x in T . The
following lemma shows that points in a
valid set, and their predecessor and suc-
cessor, are associated with nodes in the
tree at the corresponding time.

Lemma 8. Let P ⊇ P(S ) be a valid point
set, and E executes S . For any p ∈
U(S ), we have pred(p) = predTpt

(px) and
succ(p) = succTpt

(px).

Proof: Let x′ = pred(p) and hence (x′, pt)
is valid by definition. By Fact 5, x′ can
be touched at time pt. Since x′ is not an
updated element, we have x′ ∈ Tpt . More-
over, x′ is the closest element on the left
of px at this time. So x′ = predTpt

(px). The
proof for successor is symmetric. 
�

Definition 9 (Active Time of Points). Let p be a point in a valid point set
P ⊇ P(S ). The active time act(p) of p is the maximal consecutive interval of time
[tins(p), tdel(p)] containing pt such that, for all t ∈ act(p), (px, t) is valid. We call
tins(p) insertion time of p, and tdel(p) deletion time of p.

2.3 Arboreally Satisfied Set

Definition 10 (Geometric View of BST Execution). The geometric view
of a BST execution E = 〈T0, τ1 → τ′1, . . . , τm → τ′m〉 of some update sequence S
is the point set P(E) = {(x, t) | x ∈ τt ∪ τ′t} in the integer grid, indicating which
element is touched at which time. Note that P(E) ⊇ P(S ).

Definition 11 (Arboreally Satisfied Set). A valid point set P ⊇ P(S ) is
(arboreally) satisfied iff the following holds:

• For each pair p, q ∈ P that are both active from time pt to qt (called an active
pair), either both p and q lie in the same vertical/horizontal line, or there
is a point r ∈ �pq ∩ P \ {p, q}. If r is on the bottommost row of �pq, then r
cannot be a deletion point. If r is on the topmost row of �pq, then r cannot
be an insertion point.
• For each update point p ∈ U, if both pred(p) and succ(p) exist, then either

pred(p) or succ(p) is also in P.

The first condition is almost the same as the one in [3, Def.2.3] but focused only
on active pairs (they are active from pt to qt), and with additional technical
condition due to update points. The second condition says that if the updated
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element is not the current minimum/maximum, then one of its adjacent elements
must be touched.

Note that if there are no update points, then all points are active the whole
time and our definition is equivalent to [3, Def.2.3]. The proof of the following
fact is omitted in this version of the paper.

Fact 12. Suppose that P is satisfied. Then, for each pair p, q ∈ P which are both
active from time pt to qt and pt < qt, there exists a point in P \ {p, q} on a side
of �pq incident to p, that is either a non-deletion point, or the corner (px, qt).
Similarly, there exists a point in P \ {p, q} on a side of �pq incident to q, that is
either a non-insertion point, or the corner (qx, pt).

3 Equivalence of Arboreal and Geometric Views

In this section we prove the following theorem:

Theorem 13. A point set P is satisfied iff P = P(E) for some BST execution E.

The first direction of the proof involves considering a BST algorithm and
showing that it generates a satisfied point set (tree to geometry). The second
direction is showing how to convert a satisfied point set to a BST algorithm
(geometry to tree).

3.1 Tree to Geometry

Lemma 14. Let x and z be elements with consecutive values in a BST T , with
x < z. Then one of x and z is an ancestor of the other.

Proof: Suppose not. Then the lowest common ancestor of x and z is another
element y. We know x < y < z which is a contradiction. 
�

Lemma 15. Suppose that y is not the minimum or maximum element in a BST
T . To insert or delete y in T , either predT (y) or succT (y) must be touched.

Lemma 16. For any execution E, a point set P(E) is satisfied.

Proof: There are two conditions that need to be checked.
For the first condition, let p, q be a pair of points in P(E) active from time

pt to qt. Suppose that p, q violate the condition. Hence, they are not vertically
or horizontally aligned. We assume that pt < qt and px < qx. Since px and qx are
active at time pt, by Fact 5 and the statement below the fact, they exist in the
tree Tpt . Hence, a lowest common ancestor a of px and qx in Tpt is well-defined.
There are two cases.

If a = px, then px is an ancestor of qx. Since �pq is not satisfied, qx is not
touched from time pt to qt − 1 and px remains an ancestor of qx right before
time qt. Thus, to touch qx at time qt, px must be touched, and so (px, qt) ∈ �pq.
Only insertion point can be in the topmost row of unsatisfied �pq. So (px, qt)
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an insertion point. But this implies that p and q are not active pair, which is a
contradiction.

If a � px, then a must be touched at time pt. As a has value between px and
qx, we have (a, pt) ∈ �pq. Since �pq is not satisfied, (a, pt) is a deletion point and,
moreover, px must be its predecessor. Hence px becomes an ancestor of qx right
after time pt and we can use the previous argument again.

For the second condition, suppose that p ∈ U is an update point. That is,
we update px in the BST Tpt . If both pred(p) and succ(p) exist, then px is not a
minimum or maximum in Tpt . By Lemma 15, either predTpt

(px) or succTpt
(px) is

touched at time pt. By Lemma 8, predTpt
(px) = pred(p) and succTpt

(px) = succ(p),
and we are done. 
�

3.2 Geometry to Tree

Now we show how to convert a valid point set to an offline algorithm first. We
need the following lemma, which is essentially a converse of Lemma 15, saying
that if we touch either predT (y) or succT (y), then we can insert or delete y. The
proofs of the following two statements are deferred to the full version of the
paper.

Lemma 17. Suppose either predT (y) or succT (y) is in a subtree τ containing the
root of T , or y is the minimum or maximum element in T . Then (i) any recon-
figuration τ→ τ′, where τ′ = τ∪̇{y} as a set, is valid, and (ii) any reconfiguration
τ→ τ′, where τ = τ′∪̇{y} as a set, is valid.

Lemma 18 (Offline Equivalence). For any satisfied set X, there is a point
set P(E) = X for some execution E. We call E a tree view of X.

By Lemma 16 and 18, this concludes the proof of Theorem 13.
Observe that if X = P(E), the quantity |X| is exactly the execution cost of E.

3.3 Geometry to Tree: Online

The discussion in § 3.2 assumes that a satisfied set X is available all at once, and
we show that there exists an execution E (i.e. an offline BST algorithm) whose
point set P(E) is exactly X.

We call an online geometric algorithm an algorithm that, given a geometric
update sequence P(S ) ⊆ [n] × [m], outputs a satisfied superset P ⊇ P(S ), with
the condition that both the input and output are revealed row-by-row (i.e. the
decision on which points to touch can depend only on the current and preceding
rows of the input). We remark that Greedy BST (as extended in § 4) is such
an algorithm.

Analogously, by an online BST algorithm we mean a procedure that, given
an initial set S 0 ⊆ [n], and an update sequence S , outputs an execution E, with
the condition that both the input and output are revealed item-by-item (i.e. the
decision on which reconfiguration to perform can depend only on the current
and preceding update operations).
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Theorem 19 (Online Equivalence). For any online geometric algorithm A,
there exists an online BST algorithm A′ such that, on any update sequence, the
cost of A′ is bounded by a constant times the cost of A.

The proof of Theorem 19 is an adaptation of the proof of Lemma 2.3 in [3]
to the new geometric setting, and is analogous to the proof of Lemma 18. We
omit the proof in this extended abstract.

4 Defining Greedy BST with Insertion/Deletion

Greedy BST is an online algorithm for constructing a satisfied set given an
update sequence S . At each time t, Greedy BST minimally satisfies the point
set up to time t. Having defined satisfied sets when there are update points, we
naturally obtain the extension of Greedy BST that can handle insertions and
deletions.

Fig. 3. A Greedy BST execution
with insert (�), delete (×), access (�),
touched (�) points, and touched points
at time pt (�). Thick line shows stair
of p. Observe that a non-(min/max)
insert or delete must access a neighbor
as well.

We develop some notation for describ-
ing the algorithm. A rectangle �pq is
unsatisfied if there is no other point in
the proper (closed) rectangle formed by
points p and q. We say that p and q are
an active pair if they are active from time
pt to qt. The stair of point p is denoted
by stair(p) = {p} ∪ {q | �pq is unsatisfied
rectangle formed by an active pair p and
q where q is below p}. The stair of element
x at time t is the stair of the point (x, t).
Satisfying/touching stair(x, t) means visit-
ing/touching, at time t, the elements of
points in the stair: {(qx, t) | q ∈ stair(x, t)}.
These elements are then added to the row
at time t.

Fact 20. Touching the stair stair(p) is to
minimally satisfy the point p.

Therefore, when Greedy BST gets an
access point p, it touches only stair(p). For
an update point p, if p is not the min-
imum or maximum, then Greedy BST
chooses the smaller set between stair(p) ∪

stair(pred(p)) and stair(p) ∪ stair(succ(p)). This is because of the second condi-
tion of satisfied set. If p is the minimum or maximum, then Greedy BST just
touches stair(p). The execution of Greedy BST is illustrated in Figure 3.

The following observation is useful for deque sequences. For insertion point
p, observe that stair(p) = {p} because the active time of p begins at time pt itself
(for any point q below p, p and q are not an active pair by definition).
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Fact 21. To insert p such that p is the minimum or maximum, Greedy BST
touches only p.

5 Performance of Greedy BST on Deque Sequences

Definition 22 (Deque Sequence). An update sequence is a deque sequence
if it has only insertions and deletions at the current minimum or maximum
element, and no access operations.

Definition 23 (Output-restricted). A deque sequence is output-restricted if
it has deletions only at minimum elements.

Theorem 24. The cost of executing a deque sequence on [n] of length m by
Greedy BST is at most O(m2α(m,n+m) + n), where α is the inverse Ackermann
function.

Theorem 25. The cost of executing an output-restricted deque sequence on [n]
of length m by Greedy BST is at most 24m + 12n.

Fig. 4. Sample execution of
Greedy BST on a concentrated
deque sequence with insert (�), delete
(×), and touched (�) points. Dashed
lines show the active times of elements.

Remark. The bound in Theorem 25
refers to the cost of the online geomet-
ric Greedy BST. In the online tree-view
equivalent the constants can be larger,
hinging on the details of Theorem 19, but
the bound remains of the form O(m + n).

The rest of this section is devoted to
the proofs of Theorems 24 and 25.

5.1 Concentrated Deque
Sequences

We first reduce the analysis of
Greedy BST on any deque sequence
to that on a special type of deque
sequence that we call a concentrated
deque sequence. Recall that in a deque
sequence we can delete only the current
minimum or maximum. We define two
sets of elements as follows: let Lt be the
set of elements which are deleted (from
the left) before time t when they were the
minimum at their deletion time, and Rt

be the set of elements which are deleted
(from the right) before time t when they
were not the minimum at their deletion
time. Observe that Lt ∩ Rt = ∅.
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Definition 26 (Concentrated Deque Sequence). A deque sequence is con-
centrated if, for any time t, if the inserted element x is the minimum, then y < x
for all y ∈ Lt, and if x is the maximum, then x < y for all y ∈ Rt.

Note that the definition implies that each element in a concentrated deque
sequence can be inserted and deleted at most once. The proof of the following
lemma is deferred to the full paper.

Lemma 27. For any deque sequence S , there is a concentrated deque sequence
S ′ such that the execution of any BST algorithm on S ′ and S have the same
cost.

5.2 Greedy BST on a Concentrated Deque Sequence

Now we analyze the performance of Greedy BST on concentrated deque
sequences (see Figure 4 for an example). Because of Lemma 27, we can view
the points touched by Greedy BST as an (m× (n+m)) binary matrix (i.e. with
entries 0 and 1), with all touched points represented as ones, and all other grid
elements as zeroes. Notice that the number of columns is n + m instead of n
because of the reduction in Lemma 27 which allows each element to be inserted
and deleted at most once. We further observe that if a deque sequence is output-
restricted, then the transformation of Lemma 27 yields a concentrated deque
sequences that is similarly output-restricted.

Definition 28 (Forbidden Pattern). A binary matrix M is said to avoid a
binary matrix P (called a pattern) if there exists no submatrix M′ of M with
same dimensions as P, such that for all 1-entries of P, the corresponding entry
in M′ is 1 (the 0-entries of P are “don’t care” values).

We denote by Ex(P,m, n) the largest number of 1s in an (m×n) matrix M that
avoids pattern P. In this work, we refer to the following patterns (as customary,
we write dots for 1-entries and empty spaces for 0-entries).

P5 =

(• • •
• •

)
and P4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
•
•
•
•

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Lemma 29. The execution of Greedy BST on concentrated deque sequences
avoids the pattern P5.

Proof: Suppose that P5 appears in the Greedy BST execution, and name the
touched points matched to the 1-entries in P5 from left to right as a, b, c, d, and
e.

Let t > bt be smallest such that (cx, t) is touched. Then t ≤ ct and either b or
d must have been deleted within the time interval [bt, t]. Otherwise, any update
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point in the interval [bt, t] is outside the interval [bx, dx] and cx is “hidden” by b
and d (it cannot be on the stair of any update point).

Assume w.l.o.g. that b is deleted. If b is deleted by a minimum-delete, then
a cannot be touched. If b is deleted by a maximum-delete, then e cannot be
touched. This is because the sequence is concentrated. 
�

Lemma 30. The execution of Greedy BST on concentrated output-restricted
deque sequences avoids the pattern P4.

Proof: Suppose that P4 appears in the Greedy BST execution, and name
the touched points matched to the 1-entries in P4 from left to right as a, b, c,
and d. We claim that in order to touch c, there has to be a deletion point in
the interval [bx, dx] in the time interval [dt, ct]. Otherwise, any deletion point in
the time interval [dt, ct] is left of bx (as deletes happen only at the minimum).
Furthermore, all insertion points in the time interval [bt, ct] must be outside of
[bx, dx] (since both b and d are active at time bt). We remind that insertion
touches nothing else besides the insertion point itself. This means that c cannot
be touched: it is “hidden” to deletion points on the left of bx by b.

Denote the deletion point in the rectangle [bx, dx]× [dt, ct] as d′. Observe that
a is to the left of and above d′, and since we only delete minima, a is not active
at time d′t . In order to be touched, a must become active after d′t via an insertion,
contradicting that the sequence is concentrated. 
�

Fact 31. ( [12, Thm3.4] ). Ex(P5, u, v) = O(u2α(u,v) + v).

Fact 32. ( [12, Thm1.5(5)] ). Ex(P4, u, v) < 12(u + v).

Proof of Theorem 24: By Lemma 27, it is enough to analyze the cost of
Greedy BST on concentrated deque sequences. This cost is bounded by
O(m2α(m,m+n) + n) using Lemma 29 and Fact 31.

Proof of Theorem 25: By Lemma 27, it is enough to analyze the cost of
Greedy BST on concentrated deque sequences. This cost is bounded by
24m + 12n using Lemma 30 and Fact 32.

Remark. The proof of Theorem 25 can be minimally adjusted to prove the
sequential access theorem for Greedy BST. Sequential access can be simulated
as a sequence of minimum-deletions. In this way we undercount the cost by
exactly one touched point above each access, which adds a linear term to the
bound.

6 A Lower Bound on Accessing a Set of Permutations

Let U be a set of permutations on [n]. In this section we prove the following
theorem:
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Theorem 33. Fix a BST algorithmA and a constant ε < 1. There exists U
′ ⊆ U

of size |U ′ | ≥ (1 − 1
|U |ε )|U | such that A requires Ω(log |U | + n) access cost on any

permutation in U
′
.

Proof: The proof utilizes the geometric view of insertions, and uses two reduc-
tions. We first claim that there exists an algorithm B that is capable of insertions
such that the cost of A to access a permutation π is no less than the cost of B
to insert π. Note that since A is accessing π, all the points are active by defi-
nition. We will describe B in the geometric view simply by requiring that upon
inserting π(t) at time t, B touches all the points that A touches while accessing
π(t) at time t. Note that A touches at least all the points in stair(π(t), t), and
B is required only to touch either pred(π(t)) and its stair, or succ(π(t)) and its
stair (Definition 11). Since pred(π(t)) belongs to stair(π(t), t), one easily sees that
stair(pred(p)) ⊂ stair(π(t), t), and this defines a valid insertion algorithm.

We now reduce B to an algorithm for sorting π. Just by a traversal of the tree
maintained by B at time n, we can produce the sorted order of π after incurring
a cost of O(n). However, we know that to sort a set U of permutations, any
(comparison-based) sorting algorithm must require Ω(log |U | + n) comparisons
on at least a 1 − 1

|U |ε fraction of the permutations in U. To see this, note that
the decision tree of any sorting algorithm must have at least |U | leaves (note
that here we are assuming the weaker hypothesis that A and hence the sorting
algorithm, are only designed to work on U; they may fail outside U). The number
of leaves at height at most (1 − ε) log |U | is at most |U |1−ε , and hence at least a
1− 1

|U |ε fraction require at least (1−ε) log |U | = Ω(log |U |) comparisons. Adding the
trivial bound of Ω(n) to scan the input permutation gives us the desired bound.

Remark. Upper bounds proved for our model do not directly translate into
bounds for algorithms. For example, when a new maximum is inserted, this can
be done at a cost of one by making the element the root of the tree, respectively,
only touching the element inserted. Note that this requires the promise that
the element inserted is actually a new maximum. A slight extension makes the
model algorithmic. This is best described in tree-view. We put all nodes of the
tree in in-order into a doubly-linked list. Then, in the case of an insertion one can
actually stop the search once the predecessor or the successor of the new element
has been reached in the search because by also comparing the new element with
the neighboring list element, one can verify that a node contains the predecessor
or successor. Thus at the cost of a constant factor, bounds proved for our model
are algorithmic. 
�
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Abstract. A contact graph representation is a classical graph draw-
ing style in which vertices are represented by geometric objects such
that edges correspond to contacts between objects. Based on a char-
acterization of stretchable systems of pseudo segments, we present a
new approach for constructing a wide range of contact graph representa-
tions. Using Courcelle’s theorem, some useful fixed-parameter tractabil-
ity results are derived. Our approach can also be applied to giving quick
proofs for some existing results of contact graph representations. We feel
that the technique developed in the paper gives new insight to the study
of contact representations of plane graphs.

1 Introduction

A contact graph representation is a classical graph drawing style in which ver-
tices are represented by interior-disjoint geometric objects such that edges cor-
respond to contacts between those objects. Following the well-known Koebe’s
circle packing theorem [12] that every planar graph can be drawn as touching
circles, a variety of contact representations have been proposed and studied over
the years. Parameters that differentiate one contact representation from another
include the object shape (circle, triangle, . . . , etc) and the contact style (point
vs. side contact, for instance).

Several quality measures arise naturally in designing contact graph represen-
tations. It is intuitive that one should avoid the presence of holes and minimize
the size of the unused areas if at all possible. From the aesthetic and cognitive
viewpoints, convex polygons are more pleasing to the eye than non-convex ones.
To simplify the complexity of the drawing, it is also desirable that the number
of sides of polygons (i.e., the polygonal complexity) be minimized.

Motivated by applications in floor-planning, cartographic design, and data
visualization, rectangular duals, where all vertices are represented by axis-aligned
rectangles such that the drawing forms a tiling of a rectangle (as a result, the
drawing contains no hole), have received extensive investigation in both VLSI
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design and graph drawing communities. Rectilinear duals, which generalize rect-
angular duals, allow vertices to be drawn as rectilinear polygons. See, e.g., [2].

In reality, it is not uncommon to encounter objects displayed as non-
rectilinear polygons, see, e.g., [8], which deals with table cartograms with seg-
ments drawn not in an axis-aligned fashion. As it is mathematically more difficult
to deal with a non-rectilinear situation, only a scarcity of results were available in
this setting. The most notable in non-rectilinear setting is the so-called triangle
contact representations. A contact representation that forms a triangular tilling
of a triangle is called a proper touching triangle graph (proper-TTG) represen-
tation. The investigation of proper-TTG representations has been reported in
two recent articles, i.e., [11] and [9]. In [11], a fixed-parameter tractable decision
algorithm was proposed for triconnected planar graphs, and an inductive con-
struction approach was used to show triconnected cubic planar graphs to admit
proper-TTG representations. In [9], strongly-connected outerplanar graphs, a
subclass of biconnected outerplanar graphs, were shown to have proper-TTG
representations iff the graph has at most 2 internal faces. Touching triangle rep-
resentations without boundary constraints have been studied in [10]. See Fig. 1
for a showcase of some triangle contact representations.

Fig. 1. A variety of triangle contact representations: (1) the 5-cycle, (2) the point-
side triangle contact representation, (3) the TTG representation without any boundary
constraint, (4) the proper-TTG representation, (5) the 3-sided convex polygonal dual

Our goal in this paper is to present a new technique for constructing a wide
range of contact representations, in particular tackling the non-rectilinear situ-
ation. In particular, the contributions of our work include the following:

– A very general drawing style called the convex polygonal dual, which sub-
sumes well-studied drawing styles like the proper-TTG representation and
the rectangular dual, is proposed.

– We characterize graphs admitting straight-line convex t-gon representations
and straight-line t-gon representations, which can be regarded as a primal
version of convex polygonal duals. This extends the main result of [1].

– Based on the above result, a characterization for a plane graph to admit a
t-sided convex polygonal dual is presented.

– Using Courcelle’s theorem, we derive some useful fixed-parameter tractabil-
ity results for convex polygonal duals.

– To show that our approach is useful, we give quick alternative proofs for the
following existing results:

• Maximal plane graphs admit 6-sided convex polygonal duals [7].
• Triconnected cubic plane graphs admit proper-TTG representations [11].



168 Y.-J. Chang and H.-C. Yen

2 Preliminary

A graph is planar iff it can be drawn in the Euclidean plane without crossings.
A plane graph is a planar graph with a fixed combinatorial embedding and a
designated outer face. We write fO(G) (or fO if the underlying graph G is
understood) to denote the outer face of a plane graph G = (V,E). Given a face
f , V (f) (resp., E(f)) denotes the set of nodes (resp., edges) along the boundary
of f . We call a vertex (resp., an edge) in V (fO) (resp., E(fO)) a boundary vertex
(resp., edge).

Some definitions presented below can be seen as an extension or generaliza-
tion of similar ones in [1].

Definition 1. Given a biconnected plane graph G = (V,E) such that all degree
2 vertices are in V (fO(G)), a t-flat angle assignment (t-FAA, for short) is a
mapping from a subset of V \ {v|v ∈ V (fO(G))} to inner faces of G such that:

1. Each vertex is assigned at most once;
2. Each inner face F is assigned at least |V (F )| − t times;
3. for each mapping associating a vertex v to a face F , we have v ∈ V (F ).

Intuitively speaking, the idea behind assigning v to a face F in a t-FAA is
to capture the presence of a 180o angle surrounding v in face F in a drawing.
Condition (2) is to ensure that each inner face is drawn as a convex polygon
which has at most t convex corners.

Definition 2. A straight line t-gon representation (t-SLR, for short) is a planar
drawing such that:

1. each inner face is a polygon of at most t sides, and
2. the outer face is a convex polygon.

A straight line convex t-gon representation (t-convex-SLR, for short) is a t-SLR
with an additional constraint that each inner face is convex.

FAAs are also closely related to the so-called contact systems of pseudo-
segments [5], each of which is a set of non-crossing Jordan arcs where any two of
them intersect in at most one point, and each intersecting point is internal to at
most one arc. A contact system is stretchable if there exists a homeomorphism
transforming the contact system into a drawing where each arc is a straight line.
Stretchable contact systems of pseudo-segments were characterized in [5] based
on the notion of extremal points.

Definition 3. A point p is an extremal point of a contact system S of pseudo-
segments if the following three conditions are satisfied:

1. p is an endpoint of a pseudo-segment in S.
2. p is not interior to any pseudo-segment in S.
3. p is incident to the unbounded region of S.
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Theorem 1 ([5]). A contact system S of pseudo-segments is stretchable iff each
of its subsystems (i.e., subsets of pseudo-segments) S′ of cardinality greater than
1 has at least 3 extremal points.

It is not difficult to see that a t-FAA of a plane graph naturally defines a
contact system of pseudo-segments in which each pseudo-segment is associated
with a path e1, ..., ek−1 (ei = (vi, vi+1), 1 ≤ i ≤ k − 1) between two vertices v1
and vk such that k ≥ 2 and ∀1 < j < k, (1) vj is assigned to a face containing
ej−1 and ej , and (2) v1 and vk are unassigned or assigned to a face not containing
e1 and ek−1, respectively. Such a pseudo-segment is said to be induced by edge
ej , where 1 ≤ j ≤ k − 1. Note that an edge induces exactly one pseudo-segment.

Given a plane graph G, the inner (also known as internal or interior) region
of a cycle C is the region enclosed by C, and the outer region of C is the region
outside of C. The inner and outer regions of C are written as in(C) and out(C),
respectively. The edges and vertices located along C are neither in the inner
region nor in the outer region of C. For ease of explanation, we write SC to
denote the set of pseudo-segments induced by C w.r.t. a given t-FAA.

It is clear that a graph admits a t-FAA corresponding to a stretchable contact
system of pseudo-segments iff it admits a t-convex-SLR. With respect to a t-FAA,
we call a corner of an inner face a combinatorial convex corner if it is not assigned
to the face. For a more detailed exposition, the reader is referred to [1].

Fig. 2. Illustrations of concepts introduced in Section 3

3 Characterizing t-sided Convex Polygonal Duals

A t-sided convex polygonal dual is a side-contact representation of a plane graph
in which all vertices are represented by convex polygons of at most t sides such
that the drawing forms a tiling of a convex polygon. The goal in this section is to
give a combinatorial characterization for plane graphs admitting such drawings.

In what follows we first derive a characterization for a graph admitting a
t-convex-SLR based on the notion of t-FAAs.

Definition 4. Let C be a cycle in a biconnected plane graph G whose degree 2
vertices are all in V (fO), and let v be a vertex in C. Given a t-FAA, we call v
free in C if one of the following conditions is satisfied:
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1 v is unassigned, or
2 v is assigned to a face F in out(C), and F is not the only face to which v is

incident in out(C).

Moreover, v is strongly-free if Condition 1 above is replaced by

1’ v is unassigned, and v is either in the outer face or incident to more than
one face in out(C)

Intuitively speaking, a free vertex (strongly-free vertex) of a cycle C indicates
a corner (convex corner) in in(C). Fig. 2(2) is a cycle C in Fig. 2(1), which is
drawn in 5-convex-SLR. The vertices c, d, and g are strongly-free vertices of that
cycle. Fig. 2(3) shows the set of pseudo-segments SC for cycle C. The vertices
a, d, and i are the extremal points in SC . Fig. 2(4) is a 6-SLR. As we shall prove
in the following theorem, the FAA described in Fig. 2(4) cannot be a convex-SLR
since the cycle (c, d, f, g, e) only has 2 strongly-free vertices c and g. Note that
the vertex e is free but not strongly-free. In any drawing realizing that FAA, e
must be a concave corner in the face interior to the cycle (a, c, e, g, i, h).

The following key theorem, one of the main contributions of this paper,
characterizes graphs admitting t-SLR and t-convex-SLR in terms of FAAs.

Theorem 2. Let G be a biconnected plane graph whose degree 2 vertices are all
in V (fO). G admits a t-convex-SLR (resp., t-SLR) iff there exists a t-FAA such
that each cycle has at least 3 strongly-free (resp., free) vertices.

Proof. (Idea) Due to space limitation, here we only give the intuitive idea behind
the proof. From our previous discussion, it is clear that a t-FAA of a plane graph
naturally induces a contact system of pseudo-segments. For deciding whether the
contact system is stretchable (implying that the plane graph admits a t-SLR),
a direct application of Theorem 1 requires checking all sub-systems of pseudo-
segments for the availability of 3 extremal points. The current theorem shows a
simpler characterization, i.e., examining only subsets of pseudo-segments of the
form SC for some cycle C is sufficient. Furthermore, we are able to relate the
availability of 3 extremal points of pseudo-segments of SC to the presence of at
least 3 free vertices along cycle C. See Fig. 2(2, 3, 5, 6) for instance.

If each face is further required to be a convex polygon, we need to prevent
a vertex from causing a face to be a concave polygon, like the vertex e in the
cycle depicted in Fig. 2(5). It turns out that adding the constraint forcing each
free vertex to be incident to more than one face in out(C) (see Condition (1’) in
Definition 4) leads to a necessary and sufficient characterization. ��

It is easy to extend Theorem 2 to all biconnected plane graphs by modifying
the definition of FAAs to handle degree 2 inner vertices. However, as the situation
would not be encountered throughout the paper, we omit it in order to reduce
complication.

To give a characterization of convex polygonal duals, in what follows we
establish a link between t-sided convex polygonal duals and its primal counter-
part, t-convex-SLRs.
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Given a plane graph G, one may hope to find some sort of a ”dual” graph G∗

such that any t-convex-SLR of G∗ is also a t-sided convex polygonal dual of G.
Unfortunately, this kind of a reduction strategy turns out to be more complex
than it appears on the surface, as the polygon associated with a vertex v ∈ fO(G)
may touch the boundary of the t-sided convex polygonal dual of G on 0, 1, . . . ,
t − 1 sides (see Fig. 3(4)). As an attempt to resolve such a difficulty, we define
the G∗ associated with a graph G as follows:

Definition 5. Given a plane graph G and an integer t, the graph G∗ is defined
to be the result of the following construction steps:

1. Add a new vertex s in the unbounded face of G, and add an edge between s
and each vertex in the boundary face.

2. Take the dual, and the new outer face is designated to the one corresponding
to s.

3. Subdivide each edge into a path of t − 1 edges in the boundary face.

See Fig. 3(1)-(2) for a graph G and the corresponding G∗ (for t = 3), respec-
tively.

The following result is then straightforward.

Theorem 3. A plane graph G admits a t-sided convex polygonal dual iff there
is a graph G′, resulting from contracting some edges along the boundary of G∗,
that admits a t-convex-SLR.

Fig. 3. (1) A graph G, (2) its associated G∗, (3) applying edge contractions to the
dashed edges along the boundary of G∗, (4) a 3-convex-SLR of G∗ which is also a 3-
sided convex polygonal dual of G. In (3) and (4), flat angle assignments are annotated
by arrows.

Theorems 2 and 3 relate the problem of finding a convex polygonal dual to
finding a set of edges to be contracted and a corner labeling satisfying some
constraints. In comparison with previous techniques designed for contact graph
representations, the greatest advantage of Theorem 3 is that it turns a geometry
problem to a purely graph-theoretic one. This, in conjunction with Theorem 2,
allows us to get rid of any tedious and laborious geometric construction process
when designing algorithms for contact graph representations.
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By offering the possibility of contracting boundary edges of G∗, polygons
associated with vertices in fO(G) can touch the boundary of the convex polygo-
nal dual of G on 0, 1, . . . , t−1 sides. See Fig. 3(3)-(4). In Fig. 3(4), for instance,
faces B,C and F touch the boundary on 0, 1, or 2 sides, respectively. Note that
an edge contraction has the same effect of a corner assignment in fO(G∗). There-
fore, we can assume that no assignment occurs in fO(G∗) since edge contraction
already handles it.

(Remark) Theorem 2 is of independent interest as it improves the main result
in [1] (i.e., Thm 2.10 in [1]) in the following way: (i) We check only simple cycles
instead of all outline cycles; (ii) the result holds for all t-FAAs instead of 3-FAAs
only; and (iii) we are able to deal with both polygons and convex polygons.

4 Fixed-Parameter Tractability Results

Monadic second-order logic (MSO), a fragment of second-order logic, only allows
quantification over unary relations (i.e., sets). Among numerous applications
of MSO, the study of graph structures has benefited in recent years from the
advance of the theory of MSO. A powerful algorithmic meta-theorem for inves-
tigating graph structures in the logical framework is Courcelle’s theorem, which
says that any graph property expressible in MSO2 is linear time solvable for
graphs of bounded treewidth [3,4], where MSO2 on graphs includes the follow-
ing ingredients:

– Variables: vertices, edges, set of vertices, and set of edges.
– Relations: ∈, =, edge-vertex incidence (inc), and adjacency (adj).
– Connectives: ∨,∧,¬,→.
– Quantifiers: ∀,∃ that can be applied to all kinds of variables.

For more about MSO on graph structures, the reader is referred to, e.g., [4,6].
Recall from Theorem 3 that a plane graph G admitting a t-sided convex

polygonal dual can be characterized by the presence of a t-convex-SLR of G′ (a
graph resulting from applying some edge contraction in fO of G∗), and the latter
can be further captured by t-FAAs (Theorem 2). Like many graph structures
expressible in MSO2, it turns out that such a characterization can be formulated
in the framework of MSO2. More precisely, we have:

Theorem 4. Given a plane graph G, one can construct a graph G̃ along with a
designated set of vertices Fin, a designated vertex fO, and a formula ϕ in MSO2

such that G has a t-sided convex polygonal dual iff (G̃,Fin, fO) |= ϕ.

Proof. (Sketch) First note that the parameter t in a t-sided convex polygonal of
a graph is considered a fixed constant.

The G̃ is constructed from G∗ using the following procedure: (1) add a new
vertex for each face in G∗; (2) for each newly added vertex v and its associated
face F , for all u ∈ V (F ), add edge {u, v}. In setting up ϕ, we allow some
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designated vertices, edges, set of vertices, and set of edges to be associated
with free variables. We use Fin to denote the designated set of vertices in V (G̃)
corresponding to inner faces in G∗, and fO to denote the designated vertex in
V (G̃) corresponding to the outer face in G∗.

We define the formula Corner(e) ≡ (∃u, v)[inc(e, u) ∧inc(e, v) ∧(u ∈ Fin)
∧(v /∈ Fin)] which is true iff e is an edge incident to a vertex in V (G∗) and a
vertex in Fin.

We use a subset U of {e ∈ E(G̃)|Corner(e)} to encode a t-FAA and a
subset R of edges in the outer face of G∗ to encode edge contraction. Since each
e ∈ E(G̃) such that Corner(e) corresponds to a corner in G∗, when e is a corner
of an inner face not located along the boundary of the drawing, it represents a
flat angle assignment.

Our goal is to define ϕ as (∃U,R)t-ValidFAA(U,R), where t-ValidFAA(U,
R) is true iff U , together with R, represents a t-FAA such that each cycle has
at least 3 strongly-free vertices.

t-ValidFAA(U,R) ≡ t-FAA(U,R) ∧ (∀C){Cycle(C,R) →
⋃

k=0,...,3

[(3 − k)-BoundaryCorners(C,R) ∧ (∃v1, . . . , vk)
∧

i=1,...,k

sFree(vi, C, U)]}

t-FAA(U,R) is used to capture Definition 1. Cycle(C,R) is to ensure that
C is a cycle after applying edge contraction R. i-BoundaryCorners(C,R) is
true iff the number of vertices in V (C)∩V (fO) remains at least i after applying
the edge contraction R (these vertices are strongly-free boundary vertices in C).
sFree(v, C, U) is true iff v is strongly-free and non-boundary in C under the
FAA U . Note that

∧
i=1,...,k sFree(vi, C, U) is vacuously true if k = 0. ��

We are in a position to give our main result in this section.

Theorem 5. For any t, it can be decided in polynomial time whether a plane
graph G admits a t-sided convex polygonal dual if there is a constant k such that:

1. tree-width of G ≤ k, or
2. For all v ∈ V (G) such that deg(v) > 3, there is a path linking v to the outer

face of length ≤ k.

Proof. (Idea) In view of Theorem 4 and Courcelle’s theorem, it suffices to show
that each of the two conditions implies that the graph G̃ constructed in the proof
of Theorem 4 is of bounded tree-width.

For the first condition, the tree-width of G̃ can be shown to be bounded by
O(k2). The proof for the second condition is a little bit tricky. The underlying
idea is that a triangle in G∗ whose nearby faces are all triangles is unimportant
and is irrelevant to the decision of whether the graph G admits a t-sided convex
polygonal dual. In this spirit, we devise a modification to G∗ which results in
a bounded tree-width G̃ by eliminating all unimportant portions carefully such
that the property of having t-convex-SLR is preserved. ��
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Theorem 5 implies polynomial time algorithms for many important graph
classes appearing frequently in the literature [9,11]. We have:

Corollary 1. Deciding whether a plane graph admits a t-sided convex polygonal
dual is solvable in polynomial time for graphs of max degree 3, partial 3-trees,
and k-outerplane graphs.

5 Further Applications of our Technique

In addition to the fixed-parameter tractability results in the previous section, in
this section we give short proofs for some interesting existing results using the
technique we have developed. First, we give a simple proof for a result of [7]:

Theorem 6 ([7]). Each maximal plane graph admits a 6-sided convex polygonal
dual.

Proof. The first step in our alternative proof relies on a result of [2], showing that
maximal plane graphs admit rectilinear duals using only upside-down T-modules
and their degenerated modules. Fig. 4(1.1) lists the set of allowed modules, while
modules listed in Fig. 4(1.2) are not allowed.

Given a maximal plane graph G (see Fig. 4(2.1)), an FAA of G∗ is constructed
naturally according to a rectilinear dual as shown in Fig. 4(2.2). To be precise,
we make an assignment at each 180◦ corner not in the boundary of the drawing.
Note that concave corners in any module does not correspond to a vertex in G∗.
As such an FAA may not lead to a stretchable drawing, we do some adjustments
by unassigning some vertices according to the rules specified in Fig. 4(3).

It is easy to see that the resulting FAA is a 6-FAA. Prior to the adjustment,
it is a 6-FAA since only a convex corner of a module can be a combinatorial
convex corner, and since each module has at most 6 convex corners. Though
each adjustment increases the number of combinatorial convex corner of a face
by one, we can apply it only when we have a nearby convex corner that is not a
vertex in G∗.

What is left to be done is to show that each cycle has at least 3 strongly-
free vertices. Let C be any cycle in G∗. Consider the sub-drawing, which is a
rectilinear polygon, of C in the rectilinear dual. Let ab and cd be its highest and
lowest horizontal segments, respectively, as shown in Fig. 4(4). It is immediate
that a and b are strongly-free vertices of C. Suppose that there is no strongly-
free vertex on cd. Then, c and d must be bends in the drawing (i.e. not a vertex
in G∗), and no adjustment is applied on cd. This implies that there is no line
segment touching cd from out(C), meaning that there is a non-convex polygon F
in out(C) incident to cd, which is a contradiction to the allowed set of modules
(i.e., upside-down T-modules and their degeneracies). Therefore, we conclude
that there is a strongly-free vertex in cd, and hence C has at least 3 strongly-
free vertices.

See Fig. 4(2.3) for an example of an FAA after adjustment, and see Fig.
4(2.4) for the resulting convex polygonal dual. ��
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Fig. 4. Illustrations for the proof of Theorem 6

As each Hamiltonian maximal plane graph admits a rectilinear dual using
only L-shape and rectangular modules, following a similar approach, our tech-
nique can be utilized to give a simple proof for the following:

Theorem 7 ([13]). Each Hamiltonian maximal plane graph admits a 5-sided
convex polygonal dual.

Next, we showcase a quick proof for the main result of [11]:

Theorem 8 ([11]). Each triconnected cubic plane graph admits a proper-TTG
representation.

Proof. A proper-TTG representation is just a 3-sided convex polygonal dual
whose boundary is a triangle.

Let G be a triconnected cubic plane graph, and we construct its associated G∗

as described in Section 3. We let fO(G) = (v1, v2, . . . , vs) be the outer face of G.
Note that we must have s ≥ 3 since G is simple. It is easy to see that the subgraph
H of G∗ induced by the faces corresponding to vertices in V (G)\V (fO(G)) (the
shaded area in Fig. 5) is biconnected, since otherwise G is not triconnected.

We contract most of the boundary edges, only leaving a boundary edge for
each of F1, F2, and F3, where Fi is the face in G∗ corresponding to vi. We let
the 3-FAA contain only ui → Fi, i ∈ {1, 2, 3}, where ui ∈ V (G∗) is the shared
non-boundary vertex of Fi and Fi+1. See Fig. 5 for an illustration. We claim
that our edge contraction and FAA work. It is immediate that the assignment
is a 3-FAA such that the boundary in the resulting drawing is a triangle whose
three corners are c1, c2 and c3 in Fig. 5. What remains to be done is to verify
that each cycle C has 3 free vertices:



176 Y.-J. Chang and H.-C. Yen

– If C contains none of c1, c2 and c3, it belongs entirely to H (the shaded area).
Then, certainly all its vertices are free, as they are not assigned to in(C).

– If C contains exactly one of c1, c2 and c3, the one it contains must be c3
(since c1, c2 have only one adjacent non-boundary vertex). Let x and y be
the two neighboring vertices of c3 in C. It is clear that x, c3 and y are 3 free
vertices in C, Since x and y are either unassigned or assigned to out(C), and
since c3 is unassigned.

– If C contains exactly two of c1, c2 and c3, as these two corners already con-
tribute two free vertices to C, the only situation that makes C to have
less than 3 free vertices is that all vertices in C \ {c1, c2, c3} are assigning
to in(C). However, since only u1, u2 and u3 are involved in our FAA (i.e.
V (C) ⊆ {c1, c2, c3, u1, u2, u3}), we can assure that it never happen by exam-
ining a small bounded amount of possibilities.

– If C contains c1, c2 and c3, these three corners form 3 free vertices of C.
��

Fig. 5. Illustrations for the proof of Theorem 8

Adapting our approach, the laborious process of explicitly assigning positions
for each point to construct a drawing, which inevitably appears in many works
on contact graph representations in non-rectilinear situation, can be prevented.

6 Conclusion and Future Work

We have proposed a new approach for tackling a wide range of problems of con-
tact graph representations. In addition to the facilitation of Courcelle’s Theorem
in the framework of MSO2 to yield some fixed-parameter tractability results, the
usefulness of this new technique is further amplified through several short proofs
of some interesting existing results. Some intriguing problems still remain:

– Is there a general approach to deal with the case when holes are allowed?
Also, how about other types of contact styles?

– As the huge constant involved in Courcelle’s Theorem makes the FPT algo-
rithm practically unusable, it would be helpful to have a practically usable
solution.
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– The problem of deciding whether a graph admits a t-sided polygonal dual is
still not known to be NP-complete in general.

– The work of [9] showed that a special subclass of outerplanar graphs enjoys
proper-TTG representations. Is it possible to extend the result to a broader
graph class such as the entire class of outerplanar graphs?

– Though we already have a characterization for graphs admitting a t-sided
convex polygonal dual in general, to extend Theorem 8, it will be nice to
have a simpler characterization and a simpler polynomial time recognition
algorithm for the biconnected cubic plane graphs admitting a 3-sided convex
polygonal dual (or proper-TTG representation).

– In view of Theorems 6 and 7, it will be interesting to see more results linking
rectilinear contact representations to non-rectilinear ones.
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Abstract. We study techniques for solving the Maximum Satisfiabil-
ity problem (MaxSAT). Our focus is on variables of degree 4. We iden-
tify cases for degree-4 variables and show how the resolution principle
and the kernelization techniques can be nicely integrated to achieve more
efficient algorithms for MaxSAT. As a result, we present a parameter-
ized algorithm of time O∗(1.3248k) for MaxSAT, improving the previous
best upper bound O∗(1.358k) by Bliznets and Golovnev.

1 Introduction

The Satisfiability problem (SAT) and its optimization version, the Maxi-
mum Satisfiability problem (MaxSAT) are of fundamental importance in
computer science [4], in particular in the study of approximation algorithms [12].
Since the problems are NP-hard [10], different algorithmic approaches, including
heuristic algorithms ([11,17]), approximation algorithms ([2,19]), and exact and
parameterized algorithms ([5,6,16]), have been extensively studied.

The main result of the current paper is an improved parameterized algorithm
for the MaxSAT problem, which is formally defined as follows.

MaxSAT: Given a CNF formula F and an integer k (the parameter), is
there an assignment to the variables in F that satisfies at least k clauses
in F?

It is known that the MaxSAT problem is fixed-parameter tractable, i.e.,
it is solvable in time O∗(f(k)).1 The research on parameterized algorithms for
MaxSAT has an impressive list, as shown in Figure 1.

Most algorithms for SAT and MaxSAT are based on the branch-and-bound
process [11]. The Strong Exponential Time Hypothesis [8,13] indicates, to some
extent, a popular opinion that branch-and-bound is perhaps unavoidable in solv-
ing the SAT problem and its variations.
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1 Following the current convention in exact and parameterized algorithms, we use the
notation O∗(f(k)) to denote the bound f(k)nO(1), where n is the instance size.
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Bound Reference Year

O∗(1.618k) Mahajan, Raman [14] 1999

O∗(1.400k) Niedermeier, Rossmanith [15] 1999

O∗(1.381k) Bansal, Raman [3] 1999

O∗(1.370k) Chen, Kanj [6] 2002

O∗(1.358k) Bliznets, Golovnev [5] 2012

O∗(1.325k) this paper 2015

Fig. 1. Progress in MaxSAT algorithms

Therefore, how to branch more effectively in algorithms solving SAT and
MaxSAT has become critical. For MaxSAT, it is well-known that branching
on variables of high degrees in a formula will be sufficiently effective. On the
other hand, variables of degree bounded by 2 can be handled efficiently based on
the resolution principle [9]. Recently, Bliznets and Golovnev [5] proposed new
strategies for branching on variables of degree 3 effectively and improved Chen-
Kanj’s algorithm [6], which had stood as the best MaxSAT algorithm for 10
years.

The next bottleneck is on degree-4 variables (case 3.10 in [6], Theorem 5,
step 10 in [5]). Degree-4 variables seem neither to have a large enough degree
to support direct branchings efficiently, nor to have structures simple enough to
yield efficient case-by-case manipulations.

A contribution of this paper is to show how the resolution principle [9] can
be used in handling degree-4 variables in solving the MaxSAT problem. The
resolution principle is a quite powerful tool in solving the SAT problem [9],
because it preserves the satisfiability of the formula. Unfortunately, resolutions
cannot be used directly in solving MaxSAT in general because the underlying
formula is not assumed to be satisfiable.

The current paper identifies cases for degree-4 variables and shows how
the resolution principle can be applied efficiently on these cases (R-Rules 6-7).
This technique eliminates the structures that slow down the branching process.
Observing that resolutions on high degree variables may significantly increase
the size of a formula, we integrate resolutions nicely with the technique of
polynomial-time kernelization in parameterized algorithms [6]. Therefore, the
resolution principle can be used whenever it is applicable – once the formula size
gets too large, we simply use the kernelization algorithm to reduce the formula
size. In fact, one of our reduction rules (R-Rule 7) decreases the number of vari-
ables while keeping the parameter value unchanged. This rule is valid since it can
be applied at most polynomial many times while the kernelization of MaxSAT
keeps the formula size from going too large.

A nice approach suggested by Bliznets and Golovnev [5] is to transform
solving a class of special instances of MaxSAT into solving the Set-Cover
problem. However, the method proposed in [5] is not efficient enough to achieve
our bound. For this, we introduce a new branching rule that is sufficiently efficient
and further reduces the instances to an even more restricted form. In particular,
we eliminate all clauses of size 2 and 3. This restricted instance allows us to apply
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more powerful techniques in randomized algorithms and in derandomization [19]
to derive tighter lower bounds on the instances of MaxSAT, so that we can use
more effectively the existing algorithm for Set-Cover [18].

We start with some preliminary concepts and definitions.
A (Boolean) variable x can be assigned value either 1 (true) or 0 (false). A

variable x has two corresponding literals: the positive literal x and the negative
literal x̄, called the literals of x. The variable x is called the variable for the
literals x and x̄. A clause C is a disjunction of a set of literals. Let C1 = zC2

indicate that the clause C1 consists of the literal z plus all literals in the clause
C2, and use C1C2 to denote the clause consisting of all literals that are in either
C1 or C2, or both. Assume that a literal can appear in a clause at most once. A
clause C is satisfied by an assignment if at least one literal in C gets a value 1. A
CNF formula F is a conjunction of clauses, which is satisfied by an assignment
if all clauses in F are satisfied by the assignment. We will always denote by n
(resp. m) the number of variables (resp. clauses) in a given formula.

A literal z is an (i, j)-literal if z appears i times and z̄ appears j times in
F . A variable x is an (i, j)-variable if the literal x is an (i, j)-literal. A variable
x has degree h, called an h-variable, if x is an (i, j)-variable and h = i + j. A
variable is an h+-variable if its degree is at least h.

The size of a clause C is the number of literals in C. A clause is an h-clause
if its size is h, and an h+-clause if its size is at least h. A clause is unit if its size
is 1 and is non-unit if its size is larger than 1. The size of a CNF formula F is
equal to the sum of the sizes of the clauses in F .

A resolvent on a variable x in a formula F is a clause of the form CD such
that xC and x̄D are clauses in F . The resolution on the variable x in F is the
conjunction of all resolvents on x.

2 Reduction Rules

An instance (F, k) of the MaxSAT problem asks whether there is an assignment
to the variables in a given CNF formula F that satisfies at least k clauses in F .
A reduction rule transforms, in polynomial time, an instance (F, k) of MaxSAT
into another instance (F ′, k′) with k ≥ k′ such that (F, k) is a Yes-instance if
and only if (F ′, k′) is a Yes-instance.

We present a set of reduction rules, R-Rules 1-7. An R-Rule j is applied only
when none of R-Rules i with i < j is applicable. The first three reduction rules
are from [6]. Let Fz=1 (resp. Fz=0) be the formula obtained from F with the
literal assignment z = 1 (resp. z = 0).

R-Rule 1 ([6]). (F ∧ (xx̄C), k) → (F, k − 1), (F ∧ (x) ∧ (x̄), k) → (F, k − 1).

R-Rule 2 ([6]). For an (i, j)-literal z such that there are at least j unit clauses
(z) in F , (F, k) → (Fz=1, k − i).

Assume that R-Rule 2 is not applicable to F , then F has no pure literals, i.e.,
literals whose negation does not appear in F . Thus, all variables are 2+-variables.
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Under this condition, we can process 2-variables based on the resolution principle
[9], whose correctness can be easily verified.

R-Rule 3 ([6]). For a 2-variable x, (F ∧ (xC1)∧ (x̄C2), k) → (F ∧ (C1C2), k−1).

In case none of R-Rules 1-3 is applicable, every variable is a 3+-variable.
Moreover, for each (i, 1)-literal z, there is no unit clause (z), and for each (i, 2)-
literal z, there is at most one unit clause (z). Now we show two reduction rules
from [5] (Simplification Rule 5, Corollary 1).

R-Rule 4 ([5]). For a (2, 1)-literal z and an arbitrary literal y, (F ∧(zy)∧(zC2)∧
(z̄C3), k) → (F ∧ (yC3) ∧ (ȳC2C3), k − 1).

R-Rule 5 ([5]). For a formula F0 = F ∧ (zC1) ∧ (zC2) ∧ (z̄C3), where z is a
(2, 1)-literal in F0 and C1 ∪ C2 ∪ C3 contains both y and ȳ for some variable y,
(F ∧ (zC1) ∧ (zC2) ∧ (z̄C3), k) → (F ∧ (C1C3) ∧ (C2C3), k − 1).

Therefore, in case none of R-Rules 1-5 is applicable, for each (2, 1)-literal z,
the two clauses containing z are 3+-clauses. Now, we introduce two new reduction
rules that are based on the resolution principle.

R-Rule 6. If there exist an (i, 1)-literal z and a (j, 1)-literal y in F1 such that
F1 = F∧(zC1)∧· · ·∧(zCi)∧(z̄yC), then (F1 = F∧(zC1)∧· · ·∧(zCi)∧(z̄yC), k) →
(F2 = F ∧ (yCC1) ∧ · · · ∧ (yCCi), k − 1).

Lemma 1. R-Rule 6 transforms instance (F1, k) into (F2, k−1) such that (F1, k)
is a Yes-instance if and only if (F2, k − 1) is a Yes-instance.

Proof. (sketch) It can be shown that there is an optimal assignment to F1 that
satisfies all i+1 clauses (zC1)∧· · ·∧(zCi)∧(z̄yC). Similarly, there is an optimal
assignment to F2 that satisfies all i clauses (yCC1)∧· · ·∧(yCCi). These plus the
resolution principle give immediately that (F1, k) is a Yes-instance if and only if
(F2, k − 1) is a Yes-instance. ��

Based on the resolution principle, our last reduction rule deals with a (2, 2)-
variable, which does not decrease the parameter value k, but reduces the number
of variables by eliminating the (2, 2)-variable.

R-Rule 7. Let z be a (2, 2)-literal in a formula F1 = F ∧ (zy1C1) ∧ (zy2C2) ∧
(z̄y3C3) ∧ (z̄y4C4), such that each yh is an (ih, 1)-literal for some ih. Then,
(F1 = F ∧ (zy1C1) ∧ (zy2C2) ∧ (z̄y3C3) ∧ (z̄y4C4), k) → (F2 = F∧ (y1y3C1C3) ∧
(y2y3C2C3) ∧ (y1y4C1C4) ∧ (y2y4C2C4), k).

Lemma 2. R-Rule 7 transforms the instance (F1, k) into (F2, k) such that
(F1, k) is a Yes-instance if and only if (F2, k) is a Yes-instance.

Proof. (sketch) The proof is similar to that for Lemma 1. It can be proved that
there is an optimal assignment to F1 that satisfies all 4 clauses (zy1C1), (zy2C2),
(z̄y3C3), (z̄y4C4), and there is an optimal assignment to F2 that satisfies all 4
clauses (y1y3C1C3), (y2y3C2C3), (y1y4C1C4), (y2y4C2C4). These two facts plus
the resolution principle give that (F1, k) is a Yes-instance if and only if (F2, k)
is a Yes-instance. ��
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We remark that instead of decreasing the parameter value k, R-Rule 7
decreases the number of variables. It may increase the size of the formula. How-
ever, whenever the size of the formula F in an instance (F, k) gets too large,
we can simply apply the polynomial-time kernelization algorithm in [6] that will
reduce the formula size and bound the size by 2k2.

3 Branching Rules

In a typical branch-and-bound algorithm, a branching step on an instance (F, k)
produces, in polynomial time, a collection {(F1, k − d1), . . ., (Fr, k − dr)} of
instances of MaxSAT, such that (F, k) is a Yes-instance if and only if at least
one of (F1, k − d1), . . ., (Fr, k − dr) is a Yes-instance. Such a branching step is
called a (d1, . . . , dr)-branching, the vector t = (d1, . . . , dr) is called the branching
vector for the branching, and each instance (Fi, k − di), 1 ≤ i ≤ r, is called
a branch of the branching. It can be shown ([7]) that the polynomial pt(x) =
xk−xk−d1 −· · ·−xk−dr , has a unique positive root, denoted as ρ(t), and ρ(t) ≥ 1.
We say that the t1-branching is inferior to the t2-branching if ρ(t1) > ρ(t2). It is
well-known that for a parameterized algorithm based on the branch-and-bound
process, if the root of every branching step in the algorithm is bounded by a
constant c ≥ 1, then the algorithm runs in time O∗(ck).

If any of R-Rules 1-7 is applicable on a formula F , we apply the rule, which
either decreases the parameter value k (R-Rules 1-6) or reduces the number
of variables without increasing the parameter value (R-Rule 7). A formula F
is reduced if none of R-Rules 1-7 is applicable on F . It is obvious that each
of R-Rules 1-7 takes polynomial time, and these rules can be applied at most
polynomial many times (this holds true for R-Rule 7 because MaxSAT problem
has a kernel of size 2k2 [6]). Thus, with a polynomial-time preprocessing, we can
always reduce a given instance into a reduced instance. Therefore, we can assume
that the formula F before the branch-and-bound process is always reduced.

Now, we present a series of branching rules (B-Rules). Again a B-Rule j is
applied only when none of B-Rules i with i < j is applicable.

For an instance (F, k), and an (i, j)-literal z in F , by“branching on z”, we
mean to construct two instances (Fz=1, k − i) and (Fz=0, k − j).

As well known, branching on a high degree variable is efficient enough.

Lemma 3. (B-Rule 1) If a reduced formula F contains a 6+-variable x or a
(3, 2)-literal x, then branch on x. The branching is not inferior to the (3, 2)-
branching.

We also note a result for branching on 3-variables (Theorem 2 in [5]):

Lemma 4. (B-Rule 2) ([5]) If a reduced formula F contains a 3-variable, then
we can make a branching that is not inferior to the (6, 1)-branching, and thus it
is not inferior to the (3, 2)-branching.
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Note that if B-Rules 1-2 are not applicable on a reduced formula F , then
F contains only (4, 1)-, (3, 1)-, and (2, 2)-literals and their negations. An (i, 1)-
literal z in a formula F is an (i, 1)-singleton (resp. (i, 1)-nonsingleton) if the
clause containing z̄ is a unit (resp. non-unit) clause.

Lemma 5. (B-Rule 3) Given a reduced formula F , if a literal z is an (i, 1)-
nonsingleton such that z̄ is contained in a non-unit clause (z̄y1 · · · yh), then
branch with (B1) z = 1; (B2) z = y1 = · · · = yh = 0. The branching is not
inferior to the (3, 2)-branching.

After Lemma 5, we can assume that all (i, 1)-literals are (i, 1)-singletons. A
literal is a singleton if it is an (i, 1)-singleton for some i.

Lemma 6. (B-Rule 4) Given a reduced formula F , if an (i, 1)-literal z is con-
tained in a 2-clause (zy), then branch with: (B1) z = 1; and (B2) z = 0 and
y = 1. The branching is not inferior to the (3, 2)-branching.

By Lemma 6 and R-Rule 2, every (i, 1)-literal is in a 3+-clause.
The next nine branching rules are dealing with (2, 2)-literals, which present

the most difficult cases for our algorithm. The first three rules are easy to prove.
Note that each variable is either a 4-variable or a (4, 1)-variable. For two clauses
that both contain a (2, 2)-literal z and literals of another variable, B-Rules 5-6
solve the cases.

Lemma 7. (B-Rule 5) Given a reduced formula F , if a (2, 2)-literal z is con-
tained in two clauses (zy1C1) and (zy2C2), where y1 and y2 are literals of the
same 4-variable y, then branch with: (B1) z = 0; and (B2) z = 1 followed by an
application of R-Rule 2 or 3. The branching is not inferior to the (3, 2)-branching.

Since B-Rule 5 is not applicable, if any (2, 2)-literal z is contained in two
clauses (zy1C1) and (zy2C2), where y1 and y2 are literals of the same variable,
then y1 and y2 must be (4, 1)-singletons, so y1 = y2.

Lemma 8. (B-Rule 6) Given a reduced formula F , if two clauses both contain
literals z and y, where z is a (2, 2)-literal, then branch with: (B1) y = 0; and
(B2) y = 1 followed by an application of R-Rule 2. The branching is not inferior
to the (3, 2)-branching.

Next, B-Rule 7 deals with unit clauses containing (2, 2)-literals.

Lemma 9. (B-Rule 7) Given a reduced formula F , if there is a (2, 2)-literal
z with two clauses (zC1) and (zC2) such that (z̄) is a unit clause, then branch
with: (B1) z = 1, C1C2 = 0; and (B2) z = 0. The branching is not inferior to
the (3, 2)-branching.

If B-Rule 7 is not applicable, then (2, 2)-literals are only in 2+-clauses. Now,
we show an important branching on (2, 2)-variables.
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Lemma 10. (B-Rule 8) Given a reduced formula F , if one clause contains an
(i, 1)-literal y1 and a (2, 2)-literal z, and another contains z and a (2, 2)-literal
y2, then branch with: (B1) y2 = 1, then apply R-Rule 6; and (B2) y2 = 0. The
branching is not inferior to the (3, 2)-branching.

Denote by (zC1), (zC2), (z̄D1) and (z̄D2) the four clauses containing the
literals of a (2, 2)-variable z. Since R-Rule 7 and B-Rules 7-8 are not applicable,
C1C2D1D2 must satisfy one of the two cases: (1) all literals in C1C2D1D2 are
(2, 2)-literals; and (2) one of C1C2 and D1D2 contains only singletons and the
other contains only (2, 2)-literals. Based on this observation, we introduce two
new terminologies for (2, 2)-literals.

Definition 1. A (2, 2)-literal z is skewed if for z1, which is either z or z̄, all
other literals in the clauses containing z1 are singletons and all literals in the
clauses containing z̄1 are (2, 2)-literals. A (2, 2)-literal z is evened if the four
clauses containing either z or z̄ contain only (2, 2)-literals.

If B-Rules 1-8 are not applicable, then formula F contains only (3, 1)-
singletons, (4, 1)-singletons, skewed (2, 2)-literals, and evened (2, 2)-literals.

Lemma 11. (B-Rule 9) If an evened (2, 2)-literal z is in a 2-clause in a
reduced formula F , then pick any literal y 	= z̄ in a clause containing z̄, and
branch with: (B1) y = 1, then apply R-Rule 2 or 4; and (B2) y = 0. The branch-
ing is not inferior to the (3, 2)-branching.

If B-Rule 9 is not applicable, then every (2, 2)-literal in a 2-clause is skewed.
Combined with the fact that B-Rule 4 is not applicable, this guarantees that
every literal in a 2-clause is a skewed (2, 2)-literal. The next branching rule is to
deal with literals in 2-clauses.

Lemma 12. (B-Rule 10) For a given 2-clause (zy), let the two clauses con-
taining z̄ be (z̄C1) and (z̄C2). Branch with: (B1) y = 1; (B2) y = 0, z = 1;
and (B3) y = z = C1 = C2 = 0. The branching is not inferior to the (8, 4, 2)-
branching, which is not inferior to the (3, 2)-branching.

If B-Rule 10 is not applicable, then all 2+-clauses are 3+-clauses. The next
branching rule solves all skewed (2,2)-literals.

Lemma 13. (B-Rule 11) Given a reduced formula F , if a clause (zyC1) con-
tains two (2, 2)-literals z and y, where y is a skewed (2, 2)-literal and the other
clause containing z is (zC2), then branch with: (B1) z = 0; (B2) z = 1, yC1 = 0;
and (B3) z = 1, C2 = 0. The branching is not inferior to the (6, 5, 2)-branching,
which is not inferior to the (3, 2)-branching.

Let y be a skewed (2, 2)-literal. By Lemma 13, if B-Rule 11 is not applicable,
a clause C containing y cannot contain other (2, 2)-literals. Therefore, all other
literals in the clause C are singletons. Note that ȳ is also a skewed (2, 2)-literal,
so all other literals in a clause containing ȳ are also singletons. However, in this
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case, R-Rule 7 would have become applicable. Therefore, if B-Rule 11 is not
applicable, then a reduced formula F contains no skewed (2, 2)-literals. Thus,
the formula F contains only (4, 1)-singletons, (3, 1)-singletons, and evened (2, 2)-
literals.

Lemma 14. (B-Rule 12) Given a reduced formula F , if the clauses containing
an evened (2, 2)-literal z are (zy1C1) and (zy2C2), and there is a third clause
(y1ȳ2C3), then branch on z and in the branch z = 1 also apply R-Rule 6. The
branching is not inferior to the (3, 2)-branching.

With Lemma 14, we are ready to eliminate all (2, 2)-literals.

Lemma 15. (B-Rule 13) For clauses (zy1C1), (z̄y2C2), (y1D1), (y2D2) in a
reduced formula, where (y1D1) could be the same as (y2D2), and z is an evened
(2, 2)-literal, branch with: (B1) z = 1, y1 = 0, then apply B-Rule 2; (B2) z =
y1 = 1, D1 = 0; (B3) z = 0, y2 = 0, then apply B-Rule 2; and (B4) z = 0,
y2 = 1, D2 = 0. The branching is not inferior to the (10, 10, 6, 6, 5, 5)-branching,
which is not inferior to the (3, 2)-branching.

Remark. Note that the clauses (zy1C1), (z̄y2C2), (y1D1), and (y2D2) contain
only (2, 2)-literals. Thus, when branch (B1) (resp. (B3)) assigns values to z and
y1 (resp. y2), new 3-variables are created so B-Rule 2 becomes applicable. This
verifies the validity of these branches in B-Rule 13.

If the branching rule B-Rule 13 is not applicable, then all literals in a reduced
formula F are either (3, 1)-singletons or (4, 1)-singletons, or their negations.
Moreover, all non-unit clauses are 3+-clauses. The following branching rule will
further eliminate all 3-clauses.

Lemma 16. (B-Rule 14) If a reduced formula F contains a 3-clause (z1z2z3),
then branch with: (B1) z1 = 1; (B2) z1 = 0, z2 = 1; and (B3) z1 = z2 = 0,
z3 = 1. The branching is not inferior to the (3, 4, 5)-branching, which is not
inferior to the (3, 2)-branching.

Summarizing all Lemmas 3-16, we conclude that if none of the reduction
rules R-Rules 1-7 and the branching rules B-Rules 1-14 is applicable, then all
literals are (i, 1)-singletons or their negations, where i is either 3 or 4, and all
non-unit clauses are 4+-clauses.

4 An O∗(1.3248k)-Time Algorithm for MaxSAT

An instance (F, k) is a simplified instance if every variable in F is either a 3-
singleton or a 4-singleton, and each non-unit clause in F is a 4+-clause. By
Lemmas 3-16, for any instance (F, k) of the MaxSAT problem, we apply the
branching rules B-Rules 1-14, which are all not inferior to the (3, 2)-branching,
until the formula F becomes a simplified instance.

The MaxSAT problem on simplified instances can be solved by reducing the
problem to the Min Set-Cover problem [5]. We first refine this method to get
an algorithm of time O∗(1.3226k) (compared to that of time O∗(1.3574k) in [5]),
based on an observation derived from a classical result of Yannakakis [19].
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Lemma 17. If m + n/2 ≥ 1.829k, then for a simplified instance (F, k), there is
an assignment that satisfies at least k clauses in F , and the assignment can be
constructed in polynomial time.

Proof. Since every variable xi in F is a singleton, there are exactly n unit clauses
(x̄i), 1 ≤ i ≤ n, and m − n non-unit clauses. Set p = 0.1795, and assign each
variable xi with value 1 with a probability p. Therefore, each unit clause (x̄i) is
satisfied with a probability 1 − p. Since each non-unit clause contains at least 4
positive literals, the assignment satisfies a non-unit clause with a probability at
least 1− (1− p)4. Therefore, the expected number of satisfied clauses under this
random assignment is at least

n(1 − p) + (m − n)(1 − (1 − p)4) = n(1 − p) + (m +
n

2
)(1 − (1 − p)4)

−3n

2
(1 − (1 − p)4) ≥ (m +

n

2
)(1 − (1 − p)4) ≥ 1.829k(1 − (1 − p)4) ≥ k.

Now a polynomial-time deranandomization process (see [19]) can construct an
assignment satisfying at least k clauses in the formula F . ��

Therefore, we only need to consider simplified instances (F, k) satisfying m+
n/2 < 1.829k. We follow the approach proposed in [5] and reduce the simplified
instance (F, k) of MaxSAT to an instance CF of the Min Set-Cover problem.
Each non-unit clause Ch in F corresponds to an element aCh

in the universal
set UF , and each variable xi in F corresponds to a set Sxi

in CF such that the
set Sxi

contains the element aCh
if and only if the literal xi is in the clause Ch.

Thus, the collection CF consists of n sets Sxi
, 1 ≤ i ≤ n, the universal set UF

has m − n elements (note that there are exactly n unit clauses (x̄i)), and we
are looking for the minimum number of sets in CF that cover all elements in the
universal set UF . As observed in [5], for a given instance (F, k) of MaxSAT, at
least one optimal assignment satisfies all non-unit clauses.

Lemma 18. From any minimum set cover C′ for the collection CF , an optimal
assignment to the formula F in the simplified instance (F, k) of MaxSAT can
be constructed in polynomial time.

Then, we solve such a simplified instance using a result in [18].

Theorem 1. The MaxSAT problem on simplified instances can be solved in
time O∗(1.3226k).

Proof. Min Set-Cover on CF is solvable in time O∗(1.290.6|UF |+0.9|SF |) [18],
where |UF | = m − n, |SF | = n, and by Lemma 17, m + n/2 ≤ 1.829k. Thus,
O∗(1.290.6(m−n)+0.9n) ≤ O∗(1.290.6×1.829k) = O∗(1.3226k). ��

In summary, we present our algorithm in Figure 2.

Theorem 2. The algorithm MaxSAT-Solver solves the MaxSAT problem in
time O∗(1.3248k).
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Algorithm MaxSAT-Solver(F, k)
input: an instance (F, k) of MaxSAT, where F is a CNF formula
output: an assignment that satisfies at least k clauses, or report non-exist
1. apply R-Rules 1-7, in order, repeatedly until (F, k) is reduced;
2. if k ≤ 1 then directly solve the problem and return;
3. if (F, k) is a simplified instance

then solve the problem in time O∗(1.3226k); return;
4. apply the first B-Rule that is applicable to (F, k);

recursively solve the instance in each of the branches.

Fig. 2. The main algorithm for MaxSAT

Proof. Each leaf of the search tree T for an execution of the algorithm cor-
responds to an execution of step 2 or 3, which, by Theorem 1, takes time
O∗(1.3226k) on an instance (F, k). Each internal node of T corresponds to apply-
ing one of B-Rules 1-14 in step 4, which, by Lemmas 3-16, is not inferior to the
(3, 2)-branching that has its root ≤ 1.3248. As a result, the algorithm Max-
SAT-Solver solves MaxSAT in time O∗(1.3248k). ��

5 Conclusion

We presented an O∗(1.3248k)-time algorithm for MaxSAT, improving the best
previous bound O∗(1.358k) [5]. We showed how the resolution principle is used
effectively to eliminate instance structures that cause inefficient branchings. We
presented techniques to show how MaxSAT on simplified instances is more effec-
tively reduced to Set-Cover, leading to a more efficient algorithm for simplified
MaxSAT instances.

The Exponential Time Hypothesis [8,13] conjectures that there is a fixed
constant c0 > 1 such that the MaxSAT problem cannot be solved in time
O∗(ck0). Therefore, there is a limit for improving the constant c for upper bound
O∗(ck) for MaxSAT. Naturally, it will become increasingly harder to further
reduce the value of c, which perhaps requires more careful and tedious analysis
on more complicated instance structures. On the other hand, our algorithm
does not require much more detailed structure analysis but reaches the most
significant improvement, improving the base c by 0.033 over the previous best
result [5], compared with the two recent improvements [5,6] that improve c by
no more than 0.012.

Further improvement over our algorithm seems to require new techniques and
new ideas. Our bound O∗(1.3248k) is “tight” in the sense that all our branching
rules, except B-Rules 2 and 13, have their roots equal to 1.3248. Besides handling
degree-4 variables more efficiently, we will need to deal with (5, 1)- and (3, 2)-
literals, introducing more complicated instance structures that have not been
considered in the literature, yet.

Finally, our results imply improvements on two variations of MaxSAT: (1)
the upper bound for the MaxSAT Above Guaranteed Value problem is
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improved from O∗(6.9158k
′
) [1] to O∗(1.32486k

′
) = O∗(5.41k

′
), using methods

in [14], where we find an assignment satisfying at least 
m/2� + k′ clauses; and
(2) our upper bound O∗(1.325k) also improves the previous best exact algorithm
of time O∗(1.325m) [6], because k ≤ m.
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Select with Groups of 3 or 4

Ke Chen(B) and Adrian Dumitrescu

Department of Computer Science, University of Wisconsin-Milwaukee,
Milwaukee 53201-0784, USA
{kechen,dumitres}@uwm.edu

Abstract. We revisit the selection problem, namely that of comput-
ing the ith order statistic of n given elements, in particular the clas-
sical deterministic algorithm by grouping and partition due to Blum,
Floyd, Pratt, Rivest, and Tarjan (1973). While the original algorithm
uses groups of odd size at least 5 and runs in linear time, it has been
perpetuated in the literature that using groups of 3 or 4 will force the
worst-case running time to become superlinear, namely Ω(n log n). We
first point out that the arguments existent in the literature justifying the
superlinear worst-case running time fall short of proving this claim. We
further prove that it is possible to use group size 3 or 4 while maintaining
the worst case linear running time. To this end we introduce two simple
variants of the classical algorithm, the repeated step algorithm and the
shifting target algorithm, both running in linear time.

Keywords: Median selection · ith order statistic ·Comparison algorithm

1 Introduction

Together with sorting, selection is one of the most widely used procedure in
computer algorithms. Indeed, it is easy to find hundreds if not thousands of
algorithms (documented in at least as many research articles) that use selection
as a subroutine. A classical example is [24].

Given a sequence A of n numbers (usually stored in an array), and an integer
(target) parameter 1 ≤ i ≤ n, the selection problem asks to find the ith smallest
element in A. Trivially sorting solves the selection problem, but if one aims at a
linear time algorithm, a higher level of sophistication is needed. A now classical
approach for selection [6,14,18,27,29] from the 1970s is to use an element in A
as a pivot to partition A into two smaller subsequences and recurse on one of
them with a (possibly different) selection parameter i.

The time complexity of this kind of algorithms is sensitive to the pivots
used. For example, if a good pivot is used, many elements in A can be discarded;
while if a bad pivot is used, in the worst case, the size of the problem may be
only reduced by a constant, leading to a quadratic worst-case running time. But
choosing a good pivot can be time consuming.

Randomly choosing the pivots yields a well-known randomized algorithm
with expected linear running time (see e.g., [7, Ch. 9.2], [22, Ch. 13.5], or [25,
Ch. 3.4]), however its worst case running time is quadratic in n.
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 189–199, 2015.
DOI: 10.1007/978-3-319-21840-3 16
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The first deterministic linear time selection algorithm select (called pick by
the authors), in fact a theoretical breakthrough at the time, was introduced by
Blum et al. [6]. By using the median of medians of small (constant size) disjoint
groups of A, good pivots that guarantee reducing the size of the problem by a
constant fraction can be chosen with low costs. The authors [6, page 451, proof
of Theorem 1] required the group size to be at least 5 for the select algorithm
to run in linear time. It has been perpetuated in the literature the idea that
select with groups of 3 or 4 does not run in linear time: an exercise of the
book by Cormen et al. [7, page 223, exercise 9.3-1] asks the readers to argue
that “select does not run in linear time if groups of 3 are used”.

We first point out that the argument for the Ω(n log n) lower bound in the
solution to this exercise [8, page 23] is incomplete by failing to provide an input
sequence with one third of the elements being discarded in each recursive call
in both the current sequence and its sequence of medians; the difficulty in com-
pleting the argument lies in the fact that these two sequences are not disjoint
thus cannot be constructed or controlled independently. The question whether
the original select algorithm runs in linear time with groups of 3 remains open
at the time of this writing.

Further, we show that this restriction on the group size is unnecessary, namely
that group sizes 3 or 4 can be used to obtain a deterministic linear time algorithm
for the selection problem. Since selecting the median in smaller groups is easier to
implement and requires fewer comparisons (e.g., 3 comparisons for group size 3
versus 6 comparisons for group size 5), it is attractive to have linear time selection
algorithms that use smaller groups. Our main result concerning selection with
small group size is summarized in the following theorem.

Theorem 1. There exist suitable variants of select with groups of 3 and 4
running in O(n) time.

Historical background. The interest in selection algorithms has remained high
over the years with many exciting developments (e.g., lower bounds, parallel
algorithms, etc) taking place; we only cite a few here [2,5,9,11–17,19,20,26,
28,29]. We also refer the reader to the dedicated book chapters on selection
in [1,3,7,10,22,23] and the recent article [21].

Outline. In Section 2, the classical select algorithm is introduced (rephrased)
under standard simplifying assumptions. In Section 3, we introduce a variant of
select, the repeated step algorithm, which runs in linear time with both group
size 3 and 4. With groups of 3, the algorithm executes a certain step, “group by
3 and find the medians of the groups”, twice in a row. In Section 4, we introduce
another variant of select, the shifting target algorithm, a linear time selection
algorithm with group size 4. In each iteration, upper or lower medians are used
based on the current rank of the target, and the shift in the target parameter i
is controlled over three consecutive iterations. In Section 5, we briefly introduce
three other variants of select with group size 4, including one due to Zwick [30],
all running in linear time. We also put forward a conjecture on the running time
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of the original select algorithm from [6] with groups of 3 and 4. In Section 6, we
present experimental results comparing the running times of our algorithms (with
group size 3 and 4) to the running time of the original select algorithm (with
group size 5).

2 Preliminaries

Without affecting the results, the following two standard simplifying assumptions
are convenient: (i) the input sequence A contains n distinct numbers; and (ii) the
floor and ceiling functions are omitted in the descriptions of the algorithms and
their analyses. We also assume that all the grouping steps are carried out using
the “natural” order, i.e., given a sequence A = {a1, a2, . . . , an}, “arrange A into
groups of size m” means that group 1 contains a1, a2, . . . , am, group 2 contains
am+1, am+2, . . . , a2m and so on. Under these assumptions, select with groups
of 5 (from [6]) can be described as follows (using this group size has become
increasingly popular, see e.g., [7, Ch. 9.2]):

1. If n ≤ 5, sort A and return the ith smallest number.
2. Arrange A into groups of size 5. Let M be the sequence of medians of these

n/5 groups. Select the median of M recursively, let it be m.
3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}

(the order of elements is preserved). If i = |A1|+1, return m. If i < |A1|+1,
go to step 1 with A ← A1 and n ← |A1|. If i > |A1| + 1, go to step 1 with
A ← A2, n ← |A2| and i ← i − |A1| − 1.

Denote the worst case running time of the recursive selection algorithm on
an n-element input by T (n). As shown in Figure 1, at least (n/5)/2 ∗ 3 = 3n/10
elements are discarded at each iteration, which yields the recurrence

T (n) ≤ T (n/5) + T (7n/10) + O(n).

Since the coefficients sum to 1/5 + 7/10 = 9/10 < 1, the recursion solves to
T (n) = Θ(n) (as it is well-known).

m

3n/10 elements greater or equal to m

3n/10 elements smaller or equal to m

Fig. 1. One iteration of the select algorithm with group size 5. At least 3n/10 ele-
ments can be discarded.
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3 The Repeated Step Algorithm

Using group size 3 directly in the select algorithm in [6] yields

T (n) ≤ T (n/3) + T (2n/3) + O(n), (1)

which solves to T (n) = O(n log n). Here a large portion (at least one third) of
A is discarded in each iteration but the cost of finding such a good pivot is too
high, namely T (n/3). The idea of our repeated step algorithm, inspired by the
algorithm in [4], is to find a weaker pivot in a faster manner by performing the
operation “group by 3 and find the medians” twice in a row (as illustrated in
Figure 2).

Algorithm

1. If n ≤ 3, sort A and return the it smallest number.
2. Arrange A into groups of size 3. Let M be the sequence of medians of these

n/3 groups.
3. Arrange M into groups of size 3. Let M ′ be the sequence of medians of these

n/9 groups.
4. Select the median of M ′ recursively, let it be m.
5. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If

i = |A1|+1, return m. If i < |A1|+1, go to step 1 with A ← A1 and n ← |A1|.
If i > |A1| + 1, go to step 1 with A ← A2, n ← |A2| and i ← i − |A1| − 1.

m

M

M

Fig. 2. One iteration of the repeated step algorithm with groups of 3. Empty disks
represent elements that are guaranteed to be smaller or equal to m.

Analysis. Since elements are discarded if and only if they are too large or too
small to be the ith smallest element, the correctness of the algorithm follows.
Regarding the time complexity of this algorithm, we have the following lemma:

Lemma 1. The repeated step algorithm with groups of 3 runs in Θ(n) time on
an n-element input.
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Proof. By finding the median of medians of medians instead of the median
of medians, the cost of selecting the pivot m reduces from T (n/3) + O(n) to
T (n/9) + O(n). We need to determine how well m partitions A in the worst
case. In step 4, m is guaranteed to be greater or equal to (n/9)/2 ∗ 2 = n/9
elements in M . Each element in M is a median of a group of size 3 in A, so it
is greater or equal to 2 elements in its group. All the groups of A are disjoint,
thus m is at least greater or equal to 2n/9 elements in A. Similarly, m is at least
smaller or equal to 2n/9 elements in A. Thus, in the last step, at least 2n/9
elements can be discarded. The recursive call in step 4 takes T (n/9) time. So
the resulting recurrence is

T (n) ≤ T (n/9) + T (7n/9) + O(n),

and since the coefficients on the right side sum to 8/9 < 1, we have T (n) = Θ(n),
as required.

Note that grouping by 3 twice and finding the median of medians of medians is
different from grouping by 9 and finding the median of medians. The number of
comparisons required for grouping by 3 twice is 3n/3 + 3n/9 = 12n/9 while for
grouping by 9 the number is 14n/9 (14 comparisons for selecting 5th out of 9).
The number of elements guaranteed to be discard is also different. For grouping
by 3 twice, at least 2n/9 elements can be discarded. For grouping by 9, this
number is 5n/18.

4 The Shifting Target Algorithm

In the select algorithm introduced in [6], the group size is restricted to odd
numbers in order to avoid the calculation of the average of the upper and lower
median. For group size of 4, depending on the choice of upper, lower or average
median, there are three possible partial orders to be considered (see Figure 3).

Fig. 3. Three partial orders of 4 elements based on the upper (left), lower (middle)
and average (right) medians. The empty square represents the average of the upper
and lower median which is not necessarily part of the 4-element sequence.

If the upper (or lower) median is always used, only (n/4)/2∗2 = n/4 elements
are guaranteed to be discarded in each iteration (see Figure 4) which gives the
recurrence

T (n) ≤ T (n/4) + T (3n/4) + O(n). (2)

The term T (n/4) is for the recursive call to find the median of all n/4 medians.
This recursion solves to T (n) = O(n log n). Even if we use the average of the
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two medians, the recursion remains the same since only 2 elements from each of
the (n/4)/2 = n/8 groups are guaranteed to be discarded.

Observe that if the target parameter satisfies i ≤ n/2 (resp., i ≥ n/2), using
the lower (resp., upper) median gives a better chance to discard more elements
and thus obtain a better recurrence; detailed calculations are given in the proof
of Lemma 2. Inspired by this idea, we propose the shifting target algorithm as
follows:

Algorithm

1. If n ≤ 4, sort A and return the ith smallest number.
2. Arrange A into groups of size 4. Let M be the sequence of medians of these

n/4 groups. If i ≤ n/2, the lower medians are used; otherwise the upper
medians are used. Select the median of M recursively, let it be m.

3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If
i = |A1|+1, return m. If i < |A1|+1, go to step 1 with A ← A1 and n ← |A1|.
If i > |A1| + 1, go to step 1 with A ← A2, n ← |A2| and i ← i − |A1| − 1.

m

n/4 elements smaller or equal to m

3n/8 elements greater or equal to m

Fig. 4. Group size 4 with lower medians used

Analysis. Regarding the time complexity, we have the following lemma:

Lemma 2. The shifting target algorithm with group size 4 runs in Θ(n) time
on an n-element input.

Proof. Assume first that i ≤ n/4 in some iteration so the lower medians are used.
Recall that m is guaranteed to be greater or equal to (n/4)/2∗2 = n/4 numbers
in A. So either m is the ith smallest element in A or at least (n/4)/2 ∗ 3 = 3n/8
largest numbers are discarded (see Figure 4), hence the worst-case running time
recurrence is

T (n) ≤ T (n/4) + T (5n/8) + O(n). (3)

Observe that in this case the coefficients on the right side sum to 7/8 < 1,
yielding a linear solution, as required.

Now consider the case n/4 < i ≤ n/2, so the lower medians are used. If
|A1| ≥ i, i.e., the rank of m is higher than i, again at least (n/4)/2 ∗ 3 = 3n/8
largest numbers are discarded and (3) applies. Otherwise, suppose that only
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t = |A1| ≥ (n/4)/2 ∗ 2 = n/4 smallest numbers are discarded. Then in the next
iteration, i′ = i − t, n′ = n − t.

If i′ ≤ n′/4, at least 3n′/8 numbers are discarded. The first iteration satisfies
recurrence (2) and we can use recurrence (3) to bound the term T (3n/4) from
above. We deduce that in two iterations the worst case running time satisfies
the recurrence:

T (n) ≤ T (n/4) + T (3n/4) + O(n)
≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 5/8) + O(n)
= T (n/4) + T (3n/16) + T (15n/32) + O(n). (4)

Observe that the coefficients on the right side sum to 29/32 < 1, yielding a linear
solution, as required. Subsequently, we can therefore assume that i′ ≥ n′/4. We
have

i′/n′ = (i − t)/(n − t)
≤ (i − n/4)/(n − n/4)
≤ (n/2 − n/4)/(n − n/4)
= 1/3.

Since 1/4 < i′/n′ ≤ 1/3 ≤ 1/2, the lower medians will be used. As described
above, if at least 3n′/8 largest numbers are discarded, in two iterations, the worst
case running time satisfies the same recurrence (4).

So suppose that only t′ ≥ (n′/4)/2∗2 = n′/4 smallest numbers are discarded.
Let i′′ = i′ − t′, n′′ = n′ − t′. We have

i′′/n′′ = (i′ − t′)/(n′ − t′)
≤ (i′ − n′/4)/(n′ − n′/4)
≤ (n′/3 − n′/4)/(n′ − n′/4)
= 1/9.

Since i′′/n′′ < 1/4, in the next iteration, at least 3n′′/8 numbers will be dis-
carded. The first two iterations satisfy recurrence (2) and we can use recur-
rence (3) to bound the term T (9n/16) from above. We deduce that in three
iterations the worst case running time satisfies the recurrence:

T (n) ≤ T (n/4) + T (3n/4) + O(n)
≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 3/4) + O(n)
= T (n/4) + T (3n/16) + T (9n/16) + O(n)
≤ T (n/4) + T (3n/16) + T ((9n/16)/4) + T ((9n/16) ∗ 5/8) + O(n)
= T (n/4) + T (3n/16) + T (9n/64) + T (45n/128) + O(n).

The sum of the coefficients on the right side is 119/128 < 1, so again the solution
is T (n) = Θ(n).

By symmetry, the analysis also holds for the case i ≥ n/2, and the proof of
Lemma 2 is complete.
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5 Other Variants

A similar idea of repeating the group step (from Section 3) also applies to the
case of groups of 4 and yields

T (n) ≤ T (n/16) + T (7n/8) + O(n),

and thereby another linear time selection algorithm with group size 4.
Yet another variant of select with group size 4 (we refer to it as the hybrid

algorithm), can be obtained by using the ideas of both algorithms together, i.e.,
repeat the grouping by 4 step twice in a row while M contains the lower medians
and M ′ contains the upper medians (or vice versa). Recursively selecting the
median m of M ′ takes time T (n/16). Notice that m is greater or equal to at
least (n/16)/2 ∗ 3 = 3n/32 elements in M of which each is greater or equal to 2
elements in its group in A. So m is greater or equal to at least 3n/16 elements of
A. Also, m is smaller or equal to at least (n/16)/2 ∗ 2 = n/16 elements in M of
which each is smaller or equal to 3 elements in its group of A. So m is smaller
or equal to at least 3n/16 elements of A, thus the resulting recurrence is

T (n) ≤ T (n/16) + T (13n/16) + O(n),

again with a linear solution, as desired.

Zwick’s variant. The fact that the select algorithm can be modified so that
it works with groups of 4 in linear time was observed prior to this writing. The
following variant, from 2010, is due to Zwick [30]. Split the elements in A into
quartets. Find the 2nd smallest element of each quartet (i.e., the lower median),
and let M be this subset of n/4 elements. Recursively find the (3/5)(n/4)th
smallest element m of M . Now (3/5)(n/4) groups of A have 2 elements smaller
or equal to m, so m is greater or equal to at least 2(3/5)(n/4) = 3n/10 elements
in A. Similarly, (2/5)(n/4) groups of A have 3 elements greater or equal to m,
so m is smaller or equal to at least 3(2/5)(n/4) = 3n/10 elements in A. Thus,
the remaining recursive call involves at most 7n/10 elements, and the resulting
recurrence is

T (n) ≤ T (n/4) + T (7n/10) + O(n).

Since 1/4 + 7/10 < 1, the solution is linear.

Comment. The question whether the original selection algorithm introduced
in [6] (outlined in Section 2) runs in linear time with group size 3 and 4 remains
open. Although the recurrences

T (n) ≤ T (n/3) + T (2n/3) + O(n), and
T (n) ≤ T (n/4) + T (3n/4) + O(n)

(see (1) and (2)) for its worst-case running time with these group sizes both solve
to T (n) = O(n log n), we believe that they only give non-tight upper bounds on
the worst case scenarios. In any case, and against popular belief we think that
Θ(n log n) is not the answer:
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Conjecture 1. The select algorithm introduced by Blum et al. [6] runs in
o(n log n) time with groups of 3 or 4.

6 Experimental Results

To compare our algorithms with the original select algorithm, we first derive
upper bounds on the exact numbers of comparisons for each variant in the same
manner as in Section 2 of [6]. Sharper upper bounds are possible by taking extra
care in avoiding comparisons with known outcomes against the pivot; however,
for simplicity of implementation we opted to forego this saving. In order to avoid
the overhead of repeated array copying, all the five algorithms were implemented
in-place, in the sense that, with the exception of the recursion, only O(1) extra
space is used in addition to the input array. This requires minor modifications
of the algorithms; however, their running time analyses remain unchanged.

Let now T (n) denote the total number of comparisons performed. For the
original select algorithm with group size 5, we have

T (n) ≤ T (n/5) + T (7n/10) + 6n/5 + n,

in which 6n/5 is for computing the n/5 medians (recall that each takes at most
6 comparisons) and n is for partitioning the sequence using the selected pivot.
Solving the recurrence yields T (n) ≤ 22n. Similarly, for the repeated step algo-
rithm, we have

T (n) ≤ T (n/9) + T (7n/9) + 3n/3 + 3n/9 + n,

and consequently, T (n) ≤ 21n. For the hybrid algorithm, we have

T (n) ≤ T (n/16) + T (13n/16) + 4n/4 + 4n/16 + n,

and consequently, T (n) ≤ 18n. For Zwick’s algorithm, we have

T (n) ≤ T (n/4) + T (7n/10) + 4n/4 + n,

and consequently, T (n) ≤ 40n. For the shifting target algorithm, the analysis is
more involved; it yields T (n) ≤ 66n.

We carried out 1000 experiments1 on selecting medians in arrays of 10 million
randomly permuted distinct integers. The results are summarized in the following
table:

Algorithm Number of Comparisons Average Running Time
Hybrid algorithm ≤ 18n 434.4ms

Repeated step algorithm ≤ 21n 442.8ms
Original algorithm ≤ 22n 523.7ms
Zwick’s algorithm ≤ 40n 620.7ms

Shifting target algorithm ≤ 66n 619.5ms

1 The experiments were performed on a laptop with 64bits operating system, 4GB
memory and Intel� Coretm i5-2410M 2.3GHz processor.
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The C code used can be downloaded at https://pantherfile.uwm.edu/kechen/
linear selection small group/small group experiment/src/.
We observed that the experimental results agree with the worst-case estimates
in the number of comparisons, i.e., showing roughly the same speed ranking.
Note also that the optimizations introduced in Section 3 of [6] are applicable
to reduce the constant factors computed here. However, as the authors of [6]
stated, “The optimized algorithm is full of red tape, and could not in practice
be implemented efficiently,...”.
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Abstract. Several researchers proposed using non-Euclidean metrics on
point sets in Euclidean space for clustering noisy data. Almost always, a
distance function is desired that recognizes the closeness of the points in
the same cluster, even if the Euclidean cluster diameter is large. There-
fore, it is preferred to assign smaller costs to the paths that stay close to
the input points.

In this paper, we consider a natural metric with this property, which
we call the nearest neighbor metric. Given a point set P and a path γ, this
metric is the integral of the distance to P along γ. We describe a (3+ε)-
approximation algorithm and a more intricate (1 + ε)-approximation
algorithm to compute the nearest neighbor metric. Both approximation
algorithms work in near-linear time. The former uses shortest paths on
a sparse graph defined over the input points. The latter uses a sparse
sample of the ambient space, to find good approximate geodesic paths.

1 Introduction

Many problems lie at the interface of computational geometry, machine learning,
and data analysis, including, but not limited to: clustering, manifold learning,
geometric inference, and nonlinear dimensionality reduction. Although the input
to these problems is often a Euclidean point cloud, a different distance measure
may be more intrinsic to the data, other than the metric inherited from the
Euclidean space. In particular, we are interested in a distance that recognizes
the closeness of two points in the same cluster, even if their Euclidean distance
is large, and, conversely, recognizes a large distance between points in different
clusters, even if the Euclidean distance is small. For example, in Figure 1, the
distance between a and b must be larger than the distance between b and c.

There are at least two seemingly different approaches to define a non-
Euclidean metric on a finite set of points in R

d. The first approach is to form a
graph metric on the point set. An example of a potential graph is the kth nearest
neighbor graph, where an edge between two points exists if and only if they are
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Fig. 1. The intrinsic density-based distance should recognize two points within the
same cluster as cloesr than two points in different clusters, regardless of the actual
Euclidean distance

both in the k nearest neighbor set of the other. In this graph, the edge weights
may be a constant or the Euclidean distances. In this paper, we consider the
complete graph, where the edge lengths are a power of their Euclidean lengths.
We are particularly interested in the squared length, which we refer to as the
edge-squared metric.

The second approach is to endow all of Rd with a new metric. We start with
a cost function c : Rd → R that takes the point cloud into account. Then, the
length of a path γ : [0, 1] → R

d is the integral of the cost function along the
path.

�c(γ) =
∫

γ

c(s)ds =
∫ 1

0

c(γ(t))
∣
∣
∣
∣
dγ

dt
(t)

∣
∣
∣
∣ dt. (1)

The distance between two points x, y ∈ R
d is then the length of the shortest

path between them:

dc(x, y) = inf
γ

�c(γ), (2)

where the infimum is over paths that start at x and end at y. Note that the
constant function, c(x) = 1 for all x ∈ R

d, gives the Euclidean metric; whereas,
other functions allow space to be stretched in various ways.

In order to reinforce paths within clusters, one would like to assign smaller
lengths to paths that stay close to the point cloud. Therefore, the simplest nat-
ural cost function on R

d is the distance to the point cloud. More precisely, given
a finite point set P the cost c(x) for x ∈ R

d is chosen to be N(x), the Euclidean
distance from x to NN(x), where NN(x) denotes the nearest point to x in P .
The nearest neighbor length (N-length) �N(γ) of a curve is given by (1), where
we set c(x) = N(x) for all points x ∈ C. We refer to the corresponding metric
given by (2) as the nearest neighbor metric or simply the N-distance.

In this paper, we investigate approximation algorithms for N-distance
computation. We describe a (3 + ε)-approximation algorithm and a (1 + ε)-
approximation algorithm. The former comes from comparing the nearest neigh-
bor metric with the edge-squared metric. The latter is a tighter approximation
that samples the ambient space to find good approximate geodesics.
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1.1 Overview

In Section 3, we describe a constant factor approximation algorithm obtained
via an elegant reduction into the edge-squared metric introduced by [BRS11]
and [VB03]. This metric is defined between pairs of points in P by considering
the graph distance on a complete weighted graph, where the weight of each
edge is the square of its Euclidean length. We show that the N-distance and
edge-squared metric are equivalent up to a factor of three (after a scaling by a
factor of four). As a result, because spanners for the edge-squared metric can
be computed in nearly linear time [LSV06], we obtain a (3 + ε)-approximation
algorithm for computing N-distance.

Theorem 1. Let P be a set of points in R
d, and let x, y ∈ P . The nearest

neighbor distance between x and y can be approximated within a (3 + ε) factor
in O(n log n + nε−d) time, for any 0 < ε ≤ 1.

In Section 4, we describe a (1+ε)-approximation algorithm for the N-distance
that works in time ε−O(d)n log n. Our algorithm computes a discretization of the
space for points that are sufficiently far from P . Nevertheless, the sub-paths that
are close to P are computed exactly. We can adapt our algorithm to work for
any Lipschitz cost function that is bounded away from zero; thus, the algorithm
can be applied to many different scenarios.

Theorem 2. For any finite set of points P ⊂ R
d and any fixed number 0 <

ε < 1, the shortest N-distance between any pair of points of the space can be
(1 + ε)-approximated in time O(ε−O(d)n log n).

1.2 Related Work

Computing the distance between a pair of points with respect to a cost function
encompasses several significant problems that have been considered by differ-
ent research communities for at least a few centuries. As early as 1696, Johann
Bernoulli introduced the brachistochrone curve, the shortest path in the pres-
ence of gravity, as “an honest, challenging problem, whose possible solution will
bestow fame and remain as a lasting monument” [Ber96]. With six solutions to
his problem published just one year after it was posed, this event marked the
birth of the field of calculus of variations.

Rowe and Ross [RR90] as well as Kime and Hespanha [KH03] consider the
problem of computing anisotropic shortest paths on a terrain. An anisotropic
path cost takes into account the (possibly weighted) length of the path and the
direction of travel. Note that this problem can be translated into the problem of
computing a shortest path between two compact subspaces of R6 under a certain
cost function

When c is a piecewise constant function, the problem is known as the
weighted region problem [MP91]. Mitchell and Papadimitriou [MP91] gave a
linear-time approximation scheme in the plane and list the problem for more
general cost functions as an open problem (See Section 10, problem number
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(3)). Further work on this problem has led to fast approximations for shortest
paths on terrains [AMS05].

Similar distances have been used in semi-supervised machine learning under
the name density-based distance (DBDs) [SO05]. The goal here is to place
points that can be connected through dense regions in the same cluster. Sev-
eral approaches [VB03,BCH04] have been suggested that first estimate the den-
sity and then discretize space in a similar manner to that of Tsitsiklis [Tsi95],
however, they do not provide any analysis on the complexity of the discretized
space. Another approach is to search for shortest paths among a sample [BRS11]
and this approach was shown to give good approximations to sufficiently long
paths [HDI14]. The nearest neighbor metric can be viewed as a special case
of density-based distance when the underlying density is the nearest neighbor
density estimator.

2 Preliminaries

2.1 Metrics

In this paper, we consider three metrics. Each metric is defined by a length
function on a set of paths between two points of the space. The distance between
two points is the length of the shortest path between them.

Euclidean metric. This is the most natural metric defined by the Euclidean
length. We use �(γ) to denote the Euclidean length of a curve γ; �(γ) can also
be defined by setting c(x) = 1 for all x ∈ R

d in (1). We use d(x, y) to denote the
distance between two points x, y ∈ R

d based on the Euclidean metric.

Nearest neighbor metric. As mentioned above, the nearest neighbor length of a
curve with respect to a set of points P , is defined by setting c(·) to be N(·) in (1).
The nearest neighbor length of a curve γ is denoted by �N(γ), and the distance
between two points x, y ∈ R

d with respect to the nearest neighbor metric is
denoted by dN(x, y).

Edge-squared metric. Finally, the edge-squared metric is defined as the shortest
path metric on a complete graph on a point set P , where the length of each
edge is its Euclidean length squared. The length of a path γ in this graph is
naturally the total length of its edges and it is denoted by �sq(γ). The edge-
squared distance between two points x, y ∈ P is the length of the shortest path
and is denoted by dsq(x, y).

2.2 Voronoi Diagrams and Delaunay Triangulations

Let P be a finite set of points, called sites, in R
d, for some d ≥ 1. The Delaunay

triangulation Del(P ) is a decomposition of the convex closure of P into simplices
such that for each simplex σ ∈ Del(P ), the Delaunay empty circle property is
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satisfied; that is, there exists a sphere C such that the vertices of σ are on the
boundary of C and int(C) ∩ P is empty. The Voronoi diagram, denoted Vor(P ),
is the dual to Del(P ). We define the in-ball of a Voronoi cell with site p to be
the maximal ball centered at p that is contained in the cell. The inradius of a
Voronoi cell is the radius of its in-ball. We refer the reader to [DBVKOS00] for
more details.

3 N -Distance Versus Edge-Squared Distance

In this section, we show that the nearest neighbor distance of two points x, y ∈ P
can be approximated within a factor of three by looking at their edge-squared
distance. More precisely, dsq(x, y)/4 ≥ dN(x, y) ≥ dsq(x, y)/12 (see Lemma 1
and Lemma 3).

As a consequence, a constant factor approximation of the N-distance can be
obtained via computing shortest paths on a weighted graph, in nearly-quadratic
time. This approximation algorithm becomes more efficient, if the shortest paths
are computed on a Euclidean spanner of the points, which is computable in nearly
linear time [Hp11]. A result of Lukovszki et al. (Theorem 16(ii) of [LSV06])
confirms that a (1 + ε)-Euclidean spanner is a (1 + ε)2-spanner for the edge
squared metric. Therefore, we obtain Theorem 1.

3.1 The Upper Bound

We show that the edge-squared distance between any pair of points x, y ∈ P
(with respect to the point set P ) is always larger than four times the N-distance
between x and y (with respect to P ). To this end, we consider any shortest path
with respect to the edge-squared measure and observe that its N-length is an
upper bound on the N-distance between its endpoints.

Lemma 1. Let P = {p1, p2, . . . , pn} be a set of points in R
d, and let dN and

dsq be the associated nearest neighbor and edge-squared distances, respectively.
Then, for any distinct points x, y ∈ P , we have that dN(x, y) ≤ 1

4dsq(x, y).

3.2 The Lower Bound

Next, we show that the edge-squared distance between any pair of points from
P cannot be larger than twelve times their N-distance. To this end, we break a
shortest path of the N-distance into segments in a certain manner, and shadow
the endpoints of each segment into their closest point of P to obtain a short
edge-squared path. The following definition formalizes our method of discretizing
paths.

Definition 1. Let P = {p1, p2, · · · , pn} be a set of points in R
d, and let x, y ∈ P .

Let γ : [0, 1] → R
d be an (x, y)-path that is internally disjoint from P . A sequence

0 < t0 ≤ t1 ≤ · · · ≤ tk < 1 is a proper breaking sequence of γ if it has the
following properties:
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1. The nearest neighbors of γ(t0) and γ(tk) in P are x and y, respectively.
2. For all 1 ≤ i ≤ k, we have �(γ[ti−1, ti]) = 1

2 (N(γ(ti−1)) + N(γ(ti)))

The following lemma guarantees the existence of breaking sequences.

Lemma 2. Let P = {p1, p2, · · · , pn} be a set of points in R
d, and let x, y ∈ P .

Let γ be a path from x to y that is internally disjoint from P . There exists a
proper breaking sequence of γ.

Given a path γ that realizes the nearest neighbor distance between two points
x and y, in the proof of the following lemma we show how to obtain another
(x, y)-path with bounded edge-squared length. The proof heavily relies on the
idea of breaking sequences.

Lemma 3. Let P = {p1, p2, · · · , pn} be a set of points in R
d, and let dN and

dsq be the associated nearest neighbor and edge-squared distances, respectively.
Then, for any distinct points x, y ∈ P , dN(x, y) ≥ 1

12dsq(x, y).

4 A (1 + ε)-Approximation of the N -Metric

In this section, we describe a polynomial time approximation scheme to compute
the N-distance between a pair of points from a finite set P ⊂ R

d. The running
time of our algorithm is ε−O(d)n log n for n points in d-dimensional space. We
start with Section 4.1, which describes an exact algorithm for the simple case in
which P consists of just one site. Section 4.2 describes how to obtain a piecewise
linear path using infinitely many Steiner points, the technical details of which
may be found in the full version [CFM+15]. Section 4.3 combines ideas from
4.2 and 4.1 to cut down the required Steiner points to a finite number. Finally,
Section 4.4 describes how to generate the necessary Steiner points.

4.1 Nearest Neighbor Distance with One Site

We describe a method for computing dN for the special case that P is a single
point using complex analysis. This case will be important since distances will go
to zero at an input point and thus we must be more careful at input points. Far
from input points, we use a piecewise constant approximation for the nearest
neighbor function, and near input points, we use exact distances. More than
likely this case has been solved by others since the solution is so elegant. We
refer the interested reader to [Str] for more general methods to solve similar
problems in the field of calculus of variations.

Suppose we want to compute dN(x, y) where P = {(0, 0)}. Writing (x, y) ∈ C

in polar coordinates as z = reiθ, we define the quadratic transformation f : C →
R by

f(z) = z2/2 = (r2/2)ei2θ,

where R is the two-fold Riemann surface; see Figure 2. The important point here
is that the image is a double covering of C. For example, the points 1 and −1
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Fig. 2. To make the complex function one-to-one, one needs to extend the complex
plane to the two-fold cover called the two-fold Riemann Surface

are mapped to different copies of 1/2. Therefore, on the Riemann surface, the
distance between 1 and −1 is one and the shortest path goes through the origin.
More generally, given any two nonzero points p and q on the surface, the mini-
mum angle between them (measured with respect to the origin) will be between
0 and 2π. Moreover, if this angle is ≥ π, then the shortest path between them
will consist of the two straight lines [p, 0] and [0, q]. Otherwise, the line [p, q] will
be a line on the surface and, thus, the geodesic from p to q.

Let dR denote the distance on the Riemann surface. We next show that for
a single point, the nearest neighbor geodesic is identical to the geodesic on the
Riemann surface.

Lemma 4. Let γ : [0, 1] → C be a curve. Then, the image of γ under f , denoted
by f ◦ γ satisfies the following property:

dR(f ◦ γ) = �N(γ).

Proof. Suppose γ : [0, 1] → C is any piecewise differentiable curve, and let α :=
f ◦γ. The N-length �N(γ) of γ is the finite sum of the N-length of all differentiable
pieces of γ. If the path γ goes through the origin, we further break the path at the
origin so that α is also differentiable. Thus, it suffices to consider (a, b) ⊂ [0, 1]
so that γ[a, b] is a differentiable piece of γ. Then, we have

�N(γ[a, b]) =
∫ b

a

|γ(t)||γ′(t)| dt | · | is modulus.

=
∫ b

a

|γ(t)γ′(t)| dt Modulus commutes with product.

=
∫ b

a

|α′(t)| dt Chain rule.

= �R(α[f(a), f(b)]).

Corollary 1 (Reduction to Euclidean Distances on a Riemann Sur-
face). Given three points x, y, and p in R

d such that p = NN(x) = NN(y), the
nearest neighbor geodesic G from x to y satisfies the following properties:

1. G is in the plane determined by x, y, p.
2. (a) If the angle formed by x, p, y is π/2 or more, then G consists of the two

straight segments xp and py.
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(b) Otherwise, G is the preimage of the straight line from f(x) to f(y),
where f is the quadratic map in the plane given by x, y, p to the Riemann
Surface.

4.2 Approximating with Steiner Points

Assume P ⊂ R
d, x, y ∈ P , and let γ be an arbitrary (x, y)-path. We show how

to approximate γ with a piecewise linear path through a collection of Steiner
points in R

d. To obtain an accurate estimation of γ, we require the Steiner points
to be sufficiently dense. The following definition formalizes this density with a
parameter δ.

Definition 2 (δ-sample). Let P = {p1, p2, · · · , pn} be a set of points in R
d,

and let D ⊆ R
d. For a real number 0 < δ < 1, a δ-sample is a (possibly infinite)

set of points T ⊆ D such that if z ∈ D \ P , then d(z, T ) ≤ δ · N(z).

The following lemma guarantees that an accurate estimation of γ can be
computed using a δ-sample. Its proof may be found in the full paper [CFM+15].

Lemma 5. Let P = {p1, p2, · · · , pn} be a set of points in R
d, and let S be a

δ-sample, and let 0 < δ < 1/10. Then, for any pair of points x, y ∈ P , there is
a piecewise linear path η = (x, s1, . . . , sk, y), where s1, . . . , sk ∈ S, such that:

�N(η) ≤ (1 + C1δ
2/3)dN(x, y),

and, for all 1 ≤ i ≤ k − 1,

�N((si, si+1)) ≤ C2 · δ2/3 · N(si).

C1 and C2 are universal constants.

4.3 The Approximation Graph

So far we have shown that any shortest path can be approximated using a δ-
sample that is composed of infinitely many points. In addition, we know how to
compute the exact N-distance between any pair of points if they reside in the
same Voronoi cell of Vor(P ). Here, we combine these two ideas to be able to
approximate any shortest path using only a finite number of Steiner points. The
high-level idea is to use the Steiner point approximation while γ passes through
regions that are far from P and switch to the exact distance computation as
soon as γ is sufficiently close to one of the points in P .

Let P = {p1, p2, · · · , pn} be a set of points in R
d, and let B be any convex

body that contains P . Fix δ ∈ (0, 1), and for any 1 ≤ i ≤ n, let ri = rP (pi) be
the inradius of the Voronoi cell with site pi. Also, let ui = (1 − δ2/3)ri. Finally,
let S be a δ-sample on the domain B \ ⋃

1≤i≤n B(pi, ui).
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Definition 3 (Approximation Graph). The approximation graph A =
A(P, {u1, . . . , un}, S, δ) = (VA, EA) is a weighted undirected graph, with weight
function w : EA → R

+. The vertices in VA are in one to one correspondence
with the points in S ∪ P ; for simplicity we use the same notation to refer to
corresponding elements in S ∪ P and VA. The set EA is composed of three types
of edges:

1. If s1, s2 ∈ S and s1, s2 ∈ B(pi, ri) for any pi, then (s1, s2) ∈ EA and
w(s1, s2) = dN(s1, s2). We compute this distance using Corollary 1.

2. Otherwise, if s1, s2 ∈ S and �(s1, s2) ≤ C2δ
2/3 max(N(s1),N(s2)), where

C2 is the constant of Lemma 5, then (s1, s2) ∈ EA and w(s1, s2) =
max(N(s1),N(s2)) · �(s1, s2).

3. If s1 ∈ S and s1 ∈ B(pi, ri) then (pi, s1) ∈ EA and w(pi, s1) = dN(pi, s1) =
(d(pi, s1))2/2; see Corollary 1.

For x, y ∈ VA let dA(x, y) denote the length of the shortest path from x to y in
the graph A.

The following lemma guarantees that the shortest paths in the approximation
graph are sufficiently accurate estimations. Its proof my be found in the full
paper [CFM+15].

Lemma 6. Let {u1, . . . , un}, S and δ be defined as above. Let A(P, {u1, . . . ,
un}, S, δ) be the approximation graph for P . For any pair of points x, y ∈ P we
have:

(1 − C2δ
2/3) · dN(x, y) ≤ dA(x, y) ≤ (1 + C4δ

2/3) · dN(x, y),

where C2 and C4 are constants computable in O(1) time.

4.4 Construction of Steiner Points

The only remaining piece that we need to obtain an approximation scheme is an
algorithm for computing a δ-sample. For this section, given a point set T and
x ∈ T , let rT (x) denote the inradius of the Voronoi cell of Vor(T ) that contains
x. Also, given a set T and an arbitrary point x (not necessarily in T ), let fT (x)
denote the distance from x to its second nearest neighbor in T .

We can apply existing algorithms for generating meshes and well-spaced
points to compute a δ-sample on D \ ⋃

i B(pi, ui), where D ⊆ R
d is a domain,

and ui = (1 − δ2/3)rP (pi). The procedure consists of two steps:

1. Use the algorithm of [MSV13] to construct a well-spaced point set M (along
with its associated approximate Delaunay graph) with aspect ratio τ in time
2O(d)(n log n + |M |).

2. Then over-refine M to S for the sizing function g(x) = 2δ
11τ fP (x) (while

maintaining aspect ratio τ) in time 2O(d)|S| by using the algorithm of Section
3.7 in [She11]. (see also [HOMS10] for an earlier use of this technique)
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In the above algorithm, we will choose τ to be a fixed constant, say, τ = 6. Both
of the meshing algorithms listed above are chosen for their theoretical guaran-
tees on running time. In practice, one could use any quality Delaunay meshing
algorithm, popular choices include Triangle [She96] in R

2 and Tetgen [Si11] or
CGAL [ART+12] in R

3.
From the guarantees in ([She11]), we know that

|S| = O

(∫

D

dx

g(x)d

)

= δ−O(d)n log Δ, (3)

where Δ is the spread of P , i.e., the ratio of the largest distance between two
points in P to the smallest distance between two points in P .

Now, it remains to show that the point set S is indeed a δ-sample on D \⋃
i B(pi, ui). This is provided by the following lemma, whose proof may be found

in the full paper [CFM+15].

Lemma 7. S is a δ-sample on D \ ⋃
i B(pi, ui).

Now, we calculate the number of edges that will be present in the approxi-
mation graph defined in the previous section. For this, we require a few lemmas.

Lemma 8. Let A = B(pi, rP (pi)) \ B(pi, ui) be an annulus around pi. Then,
|A ∩ S| = δ−O(d).

Proof. By the meshing guarantees of [She11], we know that for any point s ∈
A∩S, B(s, t) does not contain a point from S\{s} for t = Ω(rS(s)) = Ω(δ·rP (p)).
Thus, the desired result follows using a simple sphere packing argument.

Lemma 9. If s ∈ S, then |B(s, C2δ
2/3N(s)) ∩ S| = δ−O(d), where C2 is the

constant in Lemma 5.

Proof. As in the previous lemma, meshing guarantees tell us that for any s′ ∈
B(s, C2δ

2/3N(s)), we have that B(s′, t) does not contain a point from S \ {s′}
for t = Ω(δ · N(s′)) = Ω(δ · N(s)). Thus, we again obtain the desired result from
a sphere packing argument.

From the above lemmas, we see that A is composed of |S| = δ−O(d)n log Δ
vertices and nδ−O(d) + |S| · δ−O(d) = |S| · δ−O(d) edges.

Remark. Note that the right hand side of (3) is in terms of the spread, a non-
combinatorial quantity. Indeed, one can construct examples of P for which the
integral in (3) is not bounded from above by any function of n. However, for
many classes of inputs, one can obtain a tighter analysis. In particular, if P
satisfies a property known as well-paced, one can show that the resulting set S
will satisfy |S| = 2O(d)n (see [MPS08,She12]).

In a more general setting (without requiring that P is well-paced), one
can modify the algorithms to produce output in the form of a hierarchical
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mesh [MPS11]. This then produces an output of size 2O(d)n, and (1 + ε)-
approximation algorithm for the nearest neighbor metric can be suitably modi-
fied so that the underlying approximation graph uses a hierarchical set of points
instead of a full δ-sample. However, we ignore the details here for the sake of
simplicity of exposition.

The above remark, along with the edge count of A and the running time
guarantees from [MSV13], yields Theorem 2, the main theorem of this section.

5 Discussion

Motivated by estimating geodesic distances within subsets of Rn, we consider two
distance metrics in this paper: the N -distance and the edge-squared distance.
The main focus of this paper is to find an approximation of the N -distance.
One possible drawback of our (1+ ε)-approximation algorithm is its exponential
dependency on d. To alleviate this dependency a natural approach is using a
Johnson-Lindenstrauss type projection. Thereby, we would like to ask which
properties are preserved under random projections such as those in Johnson-
Lindenstrauss transforms.

We are currently working on implementing the approximation algorithm pre-
sented in Section 3. We hope to show that this approximation is fast in practice
as well as in theory.

Acknowledgement. The authors would like to thank Larry Wasserman for helpful
discussions.
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Abstract. Linearity and contiguity are two parameters devoted to
graph encoding. Linearity is a generalisation of contiguity in the sense
that every encoding achieving contiguity k induces an encoding achiev-
ing linearity k, both encoding having size Θ(k.n), where n is the number
of vertices of G. In this paper, we prove that linearity is a strictly more
powerful encoding than contiguity, i.e. there exists some graph family
such that the linearity is asymptotically negligible in front of the conti-
guity. We prove this by answering an open question asking for the worst
case linearity of a cograph on n vertices: we provide an O(log n/ log log n)
upper bound which matches the previously known lower bound.

1 Introduction

One of the most widely used operation in graph algorithms is the neighbourhood
query : given a vertex x of a graph G, one wants to obtain the list of neighbours
of x in G. The classical data structure that allows to do so is the adjacency
lists. It stores a graph G in O(n + m) space, where n is the number of vertices
of G and m its number of edges, and answers a neighbourhood query on any
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vertex x in O(d) time, where d is the degree of vertex x. This time complexity
is optimal, as long as one wants to produce the list of neighbours of x. On the
other hand, in the last decades, huge amounts of data organized in the form of
graphs or networks have appeared in many contexts such as genomic, biology,
physics, linguistics, computer science, transportation and industry. In the same
time, the need, for industrials and academics, to algorithmically treat this data
in order to extract relevant information has grown in the same proportions.
For these applications dealing with very large graphs, a space complexity of
O(n+m) is often very limiting. Therefore, as pointed out by [13], finding compact
representations of a graph providing optimal time neighbourhood queries is a
crucial issue in practice. Such representations allow to store the graph entirely
in memory while preserving the complexity of algorithms using neighbourhood
queries. The conjunction of these two advantages has great impact on the running
time of algorithms managing large amount of data.

One possible way to store a graph G in a very compact way and preserve
the complexity of neighbourhood queries is to find an order σ on the vertices
of G such that the neighbourhood of each vertex x of G is an interval in σ.
In this way, one can store the order σ on the vertices of G and assign two
pointers to each vertex: one toward its first neighbour in σ and one toward its
last neighbour in σ. Therefore, one can answer adjacency queries on vertex x
simply by listing the vertices appearing in σ between its first and last pointer. It
must be clear that such an order on the vertices of G does not exist for all graphs
G. Nevertheless, this idea turns out to be quite efficient in practice and some
compression techniques are precisely based on it [1–4,11]: they try to find orders
of the vertices that group the neighbourhoods together, as much as possible.

Then, a natural way to relax the constraints of the problem so that it admits
a solution for a larger class of graphs is to allow the neighbourhood of each vertex
to be split in at most k intervals in order σ. The minimum value of k which makes
possible to encode the graph G in this way is a parameter called contiguity [9] and
denoted by cont(G). Another natural way of generalization is to use at most k
orders σ1, . . . , σk on the vertices of G such that the neighbourhood of each vertex
is the union of exactly one interval taken in each of the k orders. This defines a
parameter called the linearity of G [6], denoted lin(G). The additional flexibility
offered by linearity (using k orders instead of just 1) results in a greater power of
encoding, in the sense that if a graph G admits an encoding by contiguity k, using
one linear order σ and at most k intervals for each vertex, it is straightforward
to obtain an encoding of G by linearity k: take k copies of σ and assign to each
vertex one of its k intervals in each of the k copies of σ.

As one can expect, this greater power of encoding requires an extra cost:
the size of an encoding by linearity k, which uses k orders, is greater than the
size of an encoding by contiguity k, which uses only 1 order. Nevertheless, very
interestingly, the sizes of these two encodings are equivalent up to a multiplicative
constant. Indeed, storing an encoding by contiguity k requires to store a linear
ordering of the n vertices of G, i.e. a list of n integers, and the bounds of each
of the k intervals for each vertex, i.e. 2kn integers, the total size of the encoding
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being (2k +1)n integers. On the other hand, the linearity encoding also requires
to store 2kn integers for the bounds of the k intervals of each vertex, but it needs
k linear orderings of the vertices instead of just one, that is kn integers. Thus,
the total size of an encoding by linearity k is 3kn integers instead of (2k + 1)n
for contiguity k and therefore the two encodings have equivalent sizes.

Then the question naturally arises to know whether there are some graphs
for which the linearity is significantly less than the contiguity. More formally,
does there exist some graph family for which the linearity is asymptotically
negligible in front of the contiguity? Or are these two parameters equivalent up
to a multiplicative constant? This is the question we address here. Our results
show that linearity is strictly more powerful than contiguity.

Related Work. Only little is known about contiguity and linearity of graphs.
In the context of 0 − 1 matrices, [9,14] studied closed contiguity and showed
that deciding whether an arbitrary graph has closed contiguity at most k is NP-
complete for any fixed k ≥ 2. For arbitrary graphs again, [8] (Corollary 3.4) gave
an upper bound on the value of closed contiguity which is n/4 + O(

√
n log n).

Regarding graphs with bounded contiguity or linearity, only the class of graphs
having contiguity 1, or equivalently linearity 1, has been characterized, as being
the class of proper (or unit) interval graphs [12]. For interval graphs and per-
mutation graphs, [6] showed that both contiguity and linearity can be up to
Ω(log n/ log log n). For cographs, a subclass of permutation graphs, [7] showed
that the contiguity can even been up to Ω(log n) and is always O(log n), imply-
ing that both bounds are tight. The O(log n) upper bound consequently applies
for the linearity (of cographs) as well, but [7] only provides an Ω(log n/ log log n)
lower bound.

Our Results. Our main result (Corollary 1) is to exhibit a family of graphs
Gh, h ≥ 1, such that the linearity of Gh is asymptotically negligible in front of
the contiguity of Gh. In order to do so, we prove (Theorem 1) that the linearity
of a cograph G on n vertices is always O(log n/ log log n). It turns out that this
bound is tight, as it matches the previously known lower bound on the worst-case
linearity of a cograph [7].

2 Preliminaries

All graphs considered here are finite, undirected, simple and loopless. In the
following, G is a graph, V (or V (G)) is its vertex set and E (or E(G)) is its
edge set. We use the notation G = (V,E) and n stands for the cardinality |V | of
V (G).An edge between vertices x and y will be arbitrarily denoted by xy or yx.
The (open) neighbourhood of x is denoted by N(x) (or NG(x)) and its closed
neighbourhood by N [x] = N(x) ∪ {x}. The subgraph of G induced by the set of
vertices X ⊆ V is denoted by G[X] = (X, {xy ∈ E | x, y ∈ X}).

For a rooted tree T and a node u ∈ T , the depth of u in T is the number
of edges in the path from the root of T to u (the root has depth 0). The height
of T , denoted by h(T ), is the greatest depth of its leaves. We employ the usual
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terminology for children, father, ancestors and descendants of a node u in T (the
two later notions including u itself), and denote by C(u) the set of children of
u. The subtree of T rooted at u, denoted by Tu, is the tree induced by node u
and all its descendants in T . A monotonic path C of a rooted tree T is a path
such that there exists some node u ∈ C such that all nodes of C are ancestors
of u. The unique node of C which has no parent in C is called the root of the
monotonic path.

In the following, the notion of minors of rooted trees is central. This is a
special case of minors of graphs (see e.g. [10]), for which we give a simplified
definition in the context of rooted trees. The contraction of edge uv in a rooted
tree T , where u is the parent of v, consists in removing v from T and assigning
its children (if any) to node u.

Definition 1 (Minor). A rooted tree T ′ is a minor of a rooted tree T if it can
be obtained from T by a sequence of edge contractions.

There are actually two notions of linearity depending on whether one uses
the open neighbourhood N(x) or closed neighbourhood N [x].

Definition 2 (p-line-model). A closed p-line-model (resp. open p-line-model)
of a graph G = (V,E) is a tuple (σ1, . . . , σp) of linear orders on V such that
∀v ∈ V,∃(I1, . . . , Ip) such that ∀i ∈ �1, p�, Ii is an interval of σi and N [x] =⋃

1≤i≤p Ii (resp. N(x) =
⋃

1≤i≤p Ii).
The closed linearity (resp. open linearity) of G, denoted by cl(G) (resp. ol(G)),
is the minimum integer p such that there exists a closed p-line-model (resp. open
p-line-model) of G.

Remark 1. In the definition of a p-line-model, the set of vertices of the intervals
Ii assigned to a vertex x are not necessarily disjoint. They are only required to
cover the neighbourhood of x while being included in it.

In all the paper, we abusively extend the notion of linearity to cotrees, refer-
ring to the linearity of their associated cograph. Moreover, we consider only
closed linearity but, from the inequalities below, the bounds we obtain (which
hold up to multiplicative constants) also hold for the open linearity. Then, for
the sake of clarity, as we will not use the open notion, in the following, we denote
lin(G) instead of cl(G).

Lemma 1. For an arbitrary graph G, we have the following inequalities: cl(G)−
1 ≤ ol(G) ≤ 2cl(G).

There are several characterizations of the class of cographs. They are often
defined as the graphs that do not admit the P4 (path on 4 vertices) as induced
subgraph. Equivalently, they are the graphs obtained from a single vertex under
the closure of the parallel composition and the series composition. The parallel
composition of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the disjoint union
of G1 and G2, i.e., the graph Gpar =

(
V1∪V2, E1∪E2

)
. The series composition of

two graphs G1 and G2 is the disjoint union of G1 and G2 plus all possible edges
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from a vertex of G1 to one of G2, i.e., the graph Gser

(
V1 ∪ V2, E1 ∪ E2 ∪ {xy |

x ∈ V1, y ∈ V2}
)
. These operations can naturally be extended to a finite number

of graphs.
This gives a very nice representation of a cograph G by a tree whose leaves

are the vertices of the graph and whose internal nodes (non-leaf nodes) are
labelled P , for parallel, or S, for series, corresponding to the operations used
in the construction of G. It is always possible to find such a labelled tree T
representing G such that every internal node has at least two children, no two
parallel nodes are adjacent in T and no two series nodes are adjacent. This tree
T is unique [5] and is called the cotree of G. Note that the subtree Tu rooted at
some node u of cotree T also defines a cograph, denoted Gu, and then V (Gu) is
the set of leaves of Tu. The adjacencies between vertices of a cograph can easily
be read on its cotree, in the following way.

Remark 2. Two vertices x and y of a cograph G having cotree T are adjacent iff
the least common ancestor u of leaves x and y in T is a series node. Otherwise,
if u is a parallel node, x and y are not adjacent.

For a graph encoding scheme Enc and a graph G, we denote |Enc(G)| the
minimum size of an encoding of G based on Enc. We now give a formal definition
for an encoding scheme to be strictly more powerful than another one.

Definition 3 (Strictly more powerful encoding). Let Enc1 and Enc2 be
two graph encoding schemes. We say that Enc2 is at least as powerful as Enc1
iff there exists α > 0 such that for all graphs G, |Enc2(G)| ≤ α|Enc1(G)|.
Moreover, we say that Enc2 is strictly more powerful than Enc1 iff Enc2 is at
least as powerful as Enc1 and the converse is not true.

Note that, Enc1 is not at least as powerful as Enc2 iff there exists a series
of graphs Gh, h ≥ 1, such that |Enc1(Gh)|/|Enc2(Gh)| tends to infinity when
h tends to infinity. In the introduction, we showed that the encoding schemes
LinEnc and ContEnc based on linearity and contiguity respectively are such
that, for any graph G on n vertices, we have 2 n cont(G) ≤ |ContEnc(G)| ≤
3n cont(G) and |LinEnc(G)| = 3n lin(G). Since lin(G) ≤ cont(G), this gives
|LinEnc(G)| ≤ 3

2 |ContEnc(G)|. In addition, the previous inequalities also imply
that 2

3cont(G)/lin(G) ≤ |ContEnc(G)|/|LinEnc(G)| ≤ cont(G)/lin(G). Alto-
gether, we obtain the following remark.

Remark 3. Linearity is an encoding at least as powerful as contiguity according
to Definition 3. Moreover, it is strictly more powerful iff there exists a series of
graphs Gh, h ≥ 1, such that |cont(Gh)|/|lin(Gh)| tends to infinity when h tends
to infinity.

3 Linearity of a Cograph and Factorial Rank of Its Cotree

In this section, we show that the linearity of a cograph is upper bounded by
the size of some maximal structure contained in its cotree, more precisely by
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the height of a maximal double factorial tree (defined below), which we call
the factorial rank of a cotree. This result is interesting by itself as it provides
a structural explanation of the difficulty of encoding a cograph by linearity.
For our concern, the interesting point is that the number of leaves of a double
factorial tree of height h is Ω(h!). Combined with this fact, the result presented
in this section (Lemma 2) will allow us to derive in next section the desired
O(log n/ log log n) upper bound on the linearity of cographs. We start by some
necessary definitions.

Definition 4 (Double factorial tree). The double factorial tree Fh of height
h is defined inductively as the tree whose root has 2h + 1 children u, whose
subtrees Fu are precisely Fh−1, F 0 being the unique tree of height 0 (i.e., made
of a single leaf node).

Definition 5 (Factorial rank). The factorial rank of a rooted tree T denoted
factrank(T ), is the maximum height of a double factorial tree being a minor of
T , that is:
factrank(T ) = max{h(T ′) | T ′ is a double factorial tree and a minor of T}.

We extend the notion of factorial rank to a node, referring to the factorial
rank of its subtree. The case where the children of node u all have factorial rank
strictly less than the one of u will play a key role.

Definition 6 (Minimally of factorial rank k). Let u be a node of a tree T .
If u has factorial rank k and if all the children of u have factorial rank at most
k − 1, we say that u is minimally of factorial rank k.

We are now ready to state the result of this section, which claims that the
linearity of a cograph is linearly bounded by the factorial rank of its cotree.

Lemma 2. Let T be a cotree and let u ∈ T of factorial rank k ≥ 0. Then,
lin(Gu) ≤ 2k + 1. Moreover, if k ≥ 1 and u is minimally of factorial rank k,
then lin(Gu) ≤ 2k.

Sketch of Proof. We prove the result by induction. We consider an integer
k ≥ 1 such that: all nodes of factorial rank j ≤ k − 1 have linearity at most
2j +1; and all nodes which are minimally of factorial rank k (i.e., whose children
have factorial rank at most k −1) have linearity at most 2k. Then, we show that
any node u of factorial rank k (not necessarily minimally) can be encoded using
one more order (i.e. 2k + 1) and that adding again one more order (i.e. using
2k + 2 orders), we can also encode any node v which is minimally of factorial
rank k + 1.

Node u of Factorial Rank k. In order to describe a 2k + 1-line-model of Gu

we need to distinguish different parts of Tu. Let Uk be the subset of nodes of Tu

having factorial rank k and consider the set Ukmin = {u1, u2, . . . , ul} � Uk of
its minimal elements for the ancestor relationship (i.e. the lowest in the cotree).
Note that |Ukmin| = l ≤ 2k, as otherwise u would be of factorial rank k + 1



218 C. Crespelle et al.

u1u2

u3

u4u5 u6u7 u8

u9

C1

C2

C3 C4

C5

C6

C7

C8

C9

Fig. 1. Example of partition into monotonic paths in the case where u is of factorial
rank k. The three dot circled nodes of U≤k−1 form the set U1

≤k−1.

(since it would have 2k + 1 independent descendants of rank 2k). By definition,
all the children of the nodes of Ukmin have factorial rank at most k−1, and then
the nodes of Ukmin are minimally of rank k. By induction hypothesis, it follows
that for all i ∈ �1, l�, ui admits a 2k-line-model for which we denote σj(ui), with
1 ≤ j ≤ 2k, its 2k orders. We denote T ′

u the subtree of Tu induced by the set of
nodes Uk (by definition, Ukmin ⊆ T ′

u). We also denote U≤k−1 the set of nodes of
Tu \ T ′

u whose parent is in T ′
u \ Ukmin. Nodes of U≤k−1 have, by definition, rank

at most k − 1 and it follows from the induction hypothesis that they admit a
(2k − 1)-line-model. Then, for a node w ∈ U≤k−1, we again denote σj(w), with
1 ≤ j ≤ 2k−1, the 2k−1 orders of such a model. In addition , we use a partition
P of the nodes of T ′

u into l monotonic paths Ci such that for all i ∈ �1, l�, ui ∈ Ci

(see Figure 1). Partition P naturally induces a generalised partition (some parts
may be empty) of U≤k−1 whose parts are the subset of nodes U i

≤k−1 of U≤k−1

whose parent belongs to Ci \ {ui}.
We can now describe the 2k+1 orders (σj)1≤j≤2k+1 of the model we build for

Gu. Importantly, note that V (Gw), w ∈ Ukmin ∪U≤k−1, is a partition of V (Gu).
In our construction, V (Gw) will always be an interval of σj for all w ∈ Ukmin ∪
U≤k−1 and all j ∈ �1, 2k+1�. Then, the description of σj is in two steps: we first
give the order, denoted πj , in which the intervals of nodes w ∈ Ukmin ∪ U≤k−1

appear in σj and then, for each w, we give the order, denoted σw
j , in which the

vertices of Gw appear in this interval. The description of orders πj will be done
by choosing a local order on the children of each node of Uk \ Ukmin. Then πj

is defined as the unique order on Ukmin ∪ U≤k−1 respecting all the chosen local
orders, i.e. such that for any v, v′ ∈ Ukmin ∪ U≤k−1, if v and v′ has the same
parent z and if v comes before v′ in the order chosen on children of z, then all
descendants of v comes before all descendants of v′ in πj .

To fully describe the 2k + 1-line-model of u, we must also assign to each
vertex x one interval of its neighbours in each of the orders of the model,
in such a way that these intervals entirely cover the neighbourhood of x. In
order to help our analysis, we distinguish between the external neighbourhood of
node x, which is N [x] \ V (Gw), where w is the unique node of Ukmin ∪ U≤k−1

being an ancestor of leaf x in Tu, and its internal neighbourhood N [x] ∩ V (Gw).
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Our construction mainly focusses on the 2k first orders of the model, which
we use to encode the majority of adjacencies of Gu, order σ2k+1 being used to
encode the remaining ones.

For j ∈ �1, 2k�, the purpose of order σj is to satisfy the external neigh-
bourhoods of vertices of Gw for w ∈ {uj} ∪ U j

≤k−1. It entirely succeeds to
do so for uj and encodes only half of the external neighbourhoods of V (Gw)
for nodes w ∈ U j

≤k−1, the other half being encoded in σ2k+1. Then, for each
w ∈ {uj} ∪ U j

≤k−1, the internal neighbourhoods of vertices of Gw are encoded
in the remaining 2k − 1 orders of (σj)1≤j≤2k. It is enough for w ∈ U j

≤k−1, since
they admit a 2k −1-line-model by recursion hypothesis, but one order is missing
for uj which is minimally of linearity k and is then only guaranteed to admit a
2k-line model by recursion hypothesis. Again, the missing order will be found in
σ2k+1.

External Neighbourhoods and Choice of πj’s. Let us now show how to
choose the order πj used for defining σj such that, as claimed above, most of the
external adjacencies of vertices of Gw, for w ∈ {uj} ∪ U j

≤k−1, will be satisfied in
σj . We choose πj the order induced by the following local orders on the children
of nodes u′ ∈ Uk \ Ukmin: if u′ is a series node (resp. parallel node) and a strict
ancestor of ui, then the child of u′ which is an ancestor of uj is placed first (resp.
last) in the order on the children of u′ (the order on the other children of u′ does
not matter), in all other cases, the order on the children of u′ does not matter.
This way, the external neighbourhood of vertices of Guj

is an interval at the end
of σj (the interval following Guj

) and this is the interval assigned to vertices
of Guj

in σj . For nodes w ∈ U j
≤k−1 whose parent (which is a strict ancestor

of uj by definition) is a parallel node, the situation is the same. But for nodes
w ∈ U j

≤k−1 whose parent w′ is series, their external neighbourhood is split into
two intervals of σj : one following V (Gw), which is the one we assign to vertices
of Gw in σj , and one preceding V (Gw), denoted I<w, which is constituted by
the leaves of Tu descending from the children of w′ that precede w in the order
chosen for πj .
This is where we need order σ2k+1 and the partition of T ′

u into paths Ci intro-
duced earlier. To define order π2k+1, for any node u′ ∈ Uk \ Ukmin, we use the
same order on the children of u′ as the one used for πi, with i ∈ �1, l� such that
u′ ∈ Ci. This ensures that for any node w ∈ U≤k−1 whose parent w′ is a series
node of Ci, the interval I<w of external neighbours which was not covered in
order σi (note that since w′ ∈ Ci then w ∈ U i

≤k−1) will also be an interval of
σ2k+1. This is precisely the interval we assign to vertices of Gw in σ2k+1, which
is possible as their internal neighbourhood will be entirely satisfied in the 2k
first orders, as described below.

Internal Neighbourhoods and Choice of σw
j ’s. The orders σw

j used for the
vertices of Gw, with w ∈ Ukmin ∪U≤k−1, in order σj , with j ∈ �1, 2k� are chosen
as follows. For a node w ∈ U≤k−1 whose parent belong to path Ci of the partition,
if j < i (resp. if j > i) then we use the order σj(w) (resp. σj−1(w)), and the
interval of σj associated to the vertices of Gw is the same as the one associated to
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them in σj(w) (resp. σj−1(w)). Otherwise, if j = i the order chosen for vertices of
Gw does not matter as σj is used only for satisfying their external neighbourhood,
see above. Proceeding this way, the internal neighbourhoods of vertices of Gw are
entirely satisfied in orders (σj)j∈�1,2k�. For a node ui ∈ Ukmin, if j �= i, the order
chosen on the vertices of Gui

is σj(ui) and the interval associated to vertices
of Gui

in σj is the same as the one associated to them in σj(ui). Otherwise, if
j = i, the order chosen for vertices of Gui

does not matter again as σj is used
only for satisfying their external neighbourhood. Then, only 2k−1 orders among
the 2k first ones are used to encode the internal neighbourhoods of Gui

, while
the recursion hypothesis only guarantees that lin(Gui

) ≤ 2k. For this reason, we
chose the order on the vertices of Gui

in σ2k+1 as being σi(ui), the one which
was not used until now, and the interval associated to vertices of Gui

in σ2k+1 is
the same as the one associated to them in σi(ui). This is possible as the external
neighbourhood of vertices of Gui

has already been entirely satisfied before, in
order σi. Then, all adjacencies are satisfied and lin(Gu) ≤ 2k + 1.

Node v Minimally of Factorial Rank k+1. The only interesting case is when
v is a series node (the result is straightforward when v is parallel), then we denote
v1, v2, . . . , vl, with l ∈ N, the children of v, which have factorial rank at most k
by definition. From what precedes, each of them vi admit a (2k + 1)-line-model
denoted (σj(vi))j∈�1,2k+1�. A remarkable property of this (2k + 1)-line-model,
which we have constructed above, is that for any vertex x, there exists an index
j, later denoted ind(x), such that the interval associated to x in σj(vi) contains
the last vertex of σj(vi). Based on this, the model (σj)1≤j≤2k+2 we build for Gv

is as follows. For j ∈ �1, 2k + 1�, order σj is the concatenation of orders σj(vi)
in the order from i = 1 to i = l. For any vertex x of Gvi

, if j �= ind(x), the
interval associated to x in σj is the same as the one associated to x in σj(vi);
and if j = ind(x), as the interval associated to x in σind(x)(vi) contains the last
vertex of σind(x)(vi), in the order σind(x) of the model of Gv, we extend this
interval on the right by including the vertices of Gvi′ for all i′ > i. As v is a
series node, all these vertices are indeed adjacent to x, as well as all the vertices
of Gvi′ for all i′ < i, which are the only adjacencies of x that are not covered in
the orders (σj)1≤j≤2k+1. We use order σ2k+2 to cover these adjacencies in the
following way. For each node vi, we choose an arbitrary order on the vertices of
Gvi

and concatenate them in the order from i = 1 to i = l. Then, to any vertex
x of Gvi

, we associate the interval made by all the vertices of Gvi′ for all i′ < i.
This completes the 2k + 2-model of v and the proof of the lemma. �

4 Main Results

The first result we derive from Lemma 2 is a tight upper bound on the worst-case
linearity of cographs on n vertices. Until now, the best known upper bound [7]
was O(log n), and [7] also exhibits some cograph families having a linearity up
to Ω(log n/ log log n). Here, we show a new upper bound of O(log n/ log log n)
that matches the lower bound of [7]. This is a direct consequence of Lemma 2
and of the fact that a double factorial tree of height h has Ω(h!) vertices.
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Theorem 1. For any cograph G on n vertices, we have lin(G) =
O(log n/ log log n), and this upper bound is tight.

Proof. Let T denote the cotree of G and k = factrank(T ). From Lemma 2, the
linearity of G is in O(k). Let us now show that k = O(log n/ log log n), which will
conclude this proof. According to the definition of factorial rank, G has at least
as many vertices as the double factorial tree of height k, which has

∏k
i=0(2i+1)

vertices. It follows from Stirling’s approximation of factorial that

n ≥
k∏

i=0

(2i + 1) =
(2(k + 1))!

2k+1(k + 1)!
≥ 2

√
π

e

(
2(k + 1)

e

)k+1

and consequently

log n ≥ (k +1)
(

log(k + 1) + log
(

2
e

))

+log
(

2
√

π

e

)

≥ (k +1)
(
log(k +1)−1

)
.

As x ≥ y > 1 implies x
log x ≥ y

log y , we have

log n

log log n
≥ (k + 1)

(
log(k + 1) − 1

)

log(k + 1) + log
(
log(k + 1) − 1

)

and it follows that k = O(log n/ log log n).
And finally, as [7] exhibits some cographs having linearity Ω(log n/ log log n),
consequently, the upper bound provided by the lemma is tight. �

We now prove the main result aimed by this paper: linearity is a strictly more
powerful encoding than contiguity, which means, from Remark 3, that there
exists some graph families for which the linearity is asymptotically negligible in
front of the contiguity (hereafter denoted cont(G) for a graph G).

Corollary 1. There exists a series of graphs Gh, h ≥ 1, such that
cont(Gh)/lin(Gh) tends to infnity when h tends to infinity.

Proof. For h ≥ 1, let Gh be the connected cograph whose cotree is a complete
binary tree of height h and let n = 2h denote the number of vertices of Gh. It is
proven in [7] that cont(Gh) = Θ(log n) and that lin(Gh) = Ω(log n/ log log n).
Then, Theorem 1 above implies that lin(Gh) = Θ(log n/ log log n) and therefore
cont(Gh)/lin(Gh) = Θ(log log n), which achieves the proof. �

5 Perspectives

In this paper, we showed that linearity provides a strictly more powerful encoding
for graphs than contiguity does, meaning that the ratio between the contiguity
and the linearity of a graph is not bounded by a constant. From a practical point
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of view, the meaning of our result is that using several orders, instead of just
one, for grouping neighbourhoods of vertices can greatly enhance compression
rates in some cases.

We obtained this result by exhibiting a graph family, namely a subfamily of
cographs, for which the ratio between the contiguity and the linearity tends to
infinity as fast as Ω(log log n), with n the number of vertices in the graph. As a
by-product of our proof, but meaningful in itself, we also showed tight bounds for
the worst-case linearity of cographs on n vertices; tight bounds were previously
known for contiguity. Several questions naturally arises from these results and
others.

Open Question 1. What is the worst case contiguity and the worst-case lin-
earity of arbitrary graphs?

It is straightforward to see that both of these values are bounded by n/2.
Conversely, since there are 2n(n−1)/2 graphs on n labelled vertices and since
contiguity and linearity do not depend on the labels of the vertices, then both
encodings must use at least n2 bits for graphs on n vertices. Moreover, when
the value of the parameter is k, the size of the corresponding encoding is O(k n)
integers, that is O(k n log n) bits. Consequently, both parameters must be at
least Ω(n/ log n) in the worst case. For contiguity, [8] gave an upper bound
asymptotically equivalent to n/4. Is Ω(n) indeed the worst-case contiguity of a
graph? Is the worst-case for linearity the same as the one for contiguity? Another
appealing question which is closely related is the following.

Open Question 2. For arbitrary graphs, what is the maximum gap between
contiguity and linearity?

In other words, let (Gn)n≥1 be a family of graphs on n vertices and let
f(n) = cont(Gn)/lin(Gn). Can f(n) tends to infinity faster than Ω(log log n)?
What is the maximum asymptotic growth possible for f(n)? Answering those
questions would be both theoretically and practically of key interest for the field
of graph encoding.
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Abstract. One of the most challenging aspects of traffic coordination
involves traffic intersections. In this paper we consider two formulations
of a simple and fundamental geometric optimization problem involving
coordinating the motion of vehicles through an intersection.

We are given a set of n vehicles in the plane, each modeled as a unit
length line segment that moves monotonically, either horizontally or ver-
tically, subject to a maximum speed limit. Each vehicle is described by
a start and goal position and a start time and deadline. The question is
whether, subject to the speed limit, there exists a collision-free motion
plan so that each vehicle travels from its start position to its goal posi-
tion prior to its deadline.

We present three results. We begin by showing that this problem is
NP-complete with a reduction from 3-SAT. Second, we consider a con-
strained version in which cars traveling horizontally can alter their speeds
while cars traveling vertically cannot. We present a simple algorithm that
solves this problem in O(n log n) time. Finally, we provide a solution to
the discrete version of the problem and prove its asymptotic optimality
in terms of the maximum delay of a vehicle.

1 Introduction

As autonomous and semi-autonomous vehicles become more prevalent, there is
an emerging interest in algorithms for controlling and coordinating their motions
to improve traffic flow. The steady development of motor vehicle technology will
enable cars of the near future to assume an ever increasing role in the decision
making and control of the vehicle itself. In the foreseeable future, cars will have
the ability to communicate with one another in order to better coordinate their
motion. This motivates a number of interesting algorithmic problems. One of the
most challenging aspects of traffic coordination involves traffic intersections. In
this paper we consider two formulations of a simple and fundamental geometric
optimization problem involving coordinating the motion of vehicles through an
intersection.
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Traffic congestion is a complex and pervasive problem with significant eco-
nomic ramifications. Practical engineering solutions will require consideration of
myriad issues, including the physical limitations of vehicle motion and road con-
ditions, the complexities and dynamics of traffic and urban navigation, external
issues such as accidents and break-downs, and human factors. We are motivated
by the question of whether the field of algorithm design can contribute positively
to such solutions. We aim to identify fundamental optimization problems that
are simple enough to be analyzed formally, but realistic enough to contribute to
the eventual design of actual traffic management systems. In this paper, we focus
on a problem, the traffic crossing problem, that involves coordinating the motions
of a set of vehicles moving through a system of intersections. In urban settings,
road intersections are regulated by traffic lights or stop/yield signs. Much like an
asynchronous semaphore, a traffic light locks the entire intersection preventing
cross traffic from entering it, even when there is adequate space to do so. Some
studies have proposed a less exclusive approach in which vehicles communicate
either with one another or with a local controller that allows vehicles, possibly
moving in different directions, to pass through the intersection simultaneously
if it can be ascertained (perhaps with a small adjustment in velocities) that
the motion is collision-free (see, e.g., [9]). Even though such systems may be
beyond the present-day automotive technology, the approach can be applied to
controlling the motion of parcels and vehicles in automated warehouses [17].

Prior work on autonomous vehicle control has generally taken a high-level
view (e.g., traffic routing [5,6,15,18]) or a low-level view (e.g., control theory,
kinematics, etc. [10,14]). We propose a mid-level view, focusing on the con-
trol of vehicles over the course of minutes rather than hours or microseconds,
respectively. The work by Fiorini and Shiller on velocity obstacles [11] consid-
ers motion coordination in a decentralized context, in which a single agent is
attempting to avoid other moving objects. Much closer to our approach is work
on autonomous intersection management (AIM) [2,4,7–9,16]. This work, how-
ever, largely focuses on the application of multi-agent techniques and deals with
many real-world issues. As a consequence, formal complexity bounds are not
proved. Berger and Klein consider a dynamic motion-panning problem in a sim-
ilar vein to ours, which is loosely based on the video game Frogger [3]. Their
work is based, at least in part, on the work of Arkin, Mitchell, and Polishchuk
[1] in which a group of circular agents must cross a field of polygonal obstacles.
These obstacles are dynamic, but their motion is fixed and known a priori.

We consider a simple problem formulation of the traffic crossing problem,
but one that we feel captures the essential computational challenges of coordi-
nating crosswise motion through an intersection. Vehicles are modeled as line
segments moving monotonically along axis-parallel lines (traffic lanes) in the
plane. Vehicles can alter their speed, subject to a maximum speed limit, but
they cannot reverse direction. The objective is to plan the collision-free motion
of these segments as they move to their goal positions.

After a formal definition of our traffic crossing problem in Section 2, we present
three results. First, we show in Section 3 that this problem is NP-complete.
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(While this is a negative result, it shows that this problem is of a lower complexity
class than similar PSPACE-complete motion-planning problems, like sliding-block
problems [12].) Second, in Section 4 we consider a constrained version in which cars
traveling vertically travel at a fixed speed. This variant is motivated by a scenario
in which traffic moving in one direction (e.g., a major highway) has priority over
crossing traffic (e.g., a small road). We present a simple algorithm that solves this
problem in O(n log n) time.

Finally, we consider the problem in a discrete setting in Section 5, which
simplifies the description of the algorithms while still capturing many of the
interesting scheduling elements of the problem. As part of this consideration, we
provide a solution to the problem that limits the maximum delay of any vehicle
and prove that this solution is asymptotically optimal.

2 Problem Definition

The Traffic Crossing Problem is one in which several vehicles must cross an
intersection simultaneously. For a successful crossing, all vehicles must reach
the opposite side of the intersection without colliding, and they must do so in
a reasonable amount of time. Formally, a traffic crossing is defined as a tuple
C = (V, δmax). This tuple is comprised of a set of n vehicles V which exist in R

2

and a global speed limit δmax ∈ R
+, where R

+ denotes the set of nonnegative
reals. Each vehicle is modeled as a vertical or horizontal open line segment
that moves parallel to its orientation. Like a car on a road, each vehicle moves
monotonically, but its speed may vary between zero and the speed limit. A
vehicle’s position is specified by its leading point (relative to its direction).

Each vehicle vi ∈ V is defined as a set of properties, vi = {li, p
�
i , p�

i , t�i , t�i }1,
where li is the vehicle’s length, p�

i and p�
i are its initial and goal positions,

respectively, and t�i and t�i are its start time and deadline for reaching its goal
position.

The set V and the global speed limit δmax define the problem and remain
invariant throughout. Our objective is to determine whether there exists a
collision-free motion of the vehicles that respects the speed limit and satisfies
the goal deadlines. Such a motion is described by a set of functions, called speed
profiles, that define the instantaneous speed of the vehicles at time t.

This set of functions is defined as D = {δi(t) | i ∈ [1, n],∀t, 0 ≤ δi(t) ≤
δmax}. A set D of speed profiles is valid if no vehicle (1) moves prior to its start
time or after its deadline, (2) violates the speed limit or travels in reverse (3)
collides with another vehicle or (4) fails to reach its goal prior to its deadline.

A traffic crossing C is solvable if there exists a valid set of speed profiles D.

3 Hardness of Traffic Crossing

Determining whether a given instance of the traffic crossing problem is solvable
is NP-complete. We show its NP-hardness by proving the following theorem:
1 The notational use of � and � set above a variable (e.g., α�) represents the beginning

and end of a closed interval, respectively (e.g., start and end times).
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Theorem 1. Given a Boolean formula F in 3-CNF, there exists a traffic cross-
ing C = (V, δ), computable in polynomial time, such that F is satisfiable if and
only if there exists a valid set of speed profiles D for C.

The input to the reduction is a boolean formula F in 3-CNF (i.e., an instance
of 3-SAT). Let {z1, . . . , zn} denote its variables and {c1, . . . , cm} denote its
clauses. Each variable zi in F is represented by a pair of vehicles whose motion
is constrained to one of two possible states by intersecting their paths with a
perpendicular pair of vehicles. This constraining mechanism (seen in Fig. 1) is
the core concept around which all mechanisms in the reduction are built. It
allows us to represent logical values, to transmit these values throughout the
construction, and to check these values for clause satisfaction.

(a) (b) (c)

v1

v′
1

Fig. 1. (a) An example of transferring values at t�
i . v1 and v′

1 are true and false,
respectively. (b) At time t�

i + 1, the upper horizontal vehicle will take on the value of
v′
1 while the lower takes the value of v1. (c) = t�

i + 2.

All vehicles in the reduction are of unit length and (barring a few special
cases) their deadlines are set so that they can reach their goal position with at
most one unit time delay. More formally, t�i − t�i −1 = (‖p�

i −p�
i ‖)

δmax
. In general, the

delay may take multiple forms (e.g., the vehicle could take a delay of 1 at any
point during its travel or spread the delay out by traveling slower than δmax), but
the mechanism described above constrains the delay to only one of two types: a
delay of exactly 0 or 1 taken immediately at the vehicle’s start time.

For each clause ci ∈ F , a mechanism is created that forces a collision if, and
only if, all three literals are false. This mechanism checks the positive and nega-
tive literals separately, then combines the results in order to determine whether
the clause is satisfied.

These mechanisms each require only a constant number of vehicles, resulting
in a reduction complexity on the order of O(n + m), where n and m are the
number of variables and clauses, respectively2.

3.1 Membership in NP

Lemma 1. The Traffic Crossing Problem is in NP.

2 Detailed descriptions of these mechanisms have been omitted due to space con-
straints, but can be found in the arXiv version of this paper.

http://arxiv.org/abs/1505.00874
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First, observe that for each pair of orthogonal vehicles, vi, vj , their paths
cross at a single intersection. The certificate provides a priority for each such
pair, specifying which vehicle crosses through the intersection first. Next, it can
be shown that if there exists a valid set of speed profiles for an instance of the
problem, then there exists another valid set where vehicles move at the maximum
speed and are subject to the constraints in the certificate. Finally, when proving
the validity of a solution provided by the certificate, only a number of events
polynomial in n must be processed and the number of bits of precision required
is polynomial in the number of bits in the input plus log n. For the sake of space,
the formal proof has been omitted.

4 A Solution to the One-Sided Problem

While the generalized Traffic Crossing Problem is NP-complete, it is possible to
solve a constrained version of the problem more efficiently. The complexity of the
generalized Traffic Crossing Problem arises from the interplay between horizon-
tal and vertical vehicles, which results in a complex cascade of constraints. To
break this interdependency, the vertically traveling vehicles are given priority,
allowing them to continue through the intersection at a fixed speed. In this vari-
ant, called the one-sided problem, the horizontal vehicles can plan their motion
with complete information and without fear of complex constraint chains.

First, we assume that the vertically traveling vehicles are invariant and are all
traveling at the same speed, sn. With vertical vehicle motion now fixed, there is
no way for horizontal vehicles to affect each other and movement profiles for each
can be found in isolation from the others. Finally, we assume that all vehicles
are of length l and in general position.

For the purpose of illustration we begin with a simplified version of the
problem and then, over the course of three cases, relax the restrictions until we
are left with a solution to the original problem under the fixed, one-sided policy
described above. These three cases are:

Intersection Between One-Way Highways
– Vertical vehicles approach from the North only.
– Horizontal vehicles approach from the West only.
– Each vehicle is in its own lane (i.e., no two vehicles are collinear).

Intersection Between a One-Way Street and a Two-Way Highway
– Vertical vehicles approach from the North and the South.
– Horizontal vehicles approach from the West only.
– There is a single horizontal lane (i.e., all horizontal vehicles are collinear)

and one or more vertical lanes.
Intersection Between Two-Way Highways

– Vertical vehicles approach from the North and the South.
– Horizontal vehicles approach from the West and the East.
– There are k horizontal lanes, one or more vertical lanes, and vehicles

may share lanes.
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4.1 Intersection Between One-Way Highways

Formally, vehicles from the North are in the subset N ⊂ V and their direction of
travel is dn = (0,−1), where as vehicles from the West are in the subset W ⊂ V
with a direction of travel of dw = (1, 0). Again, our only task is to find valid
speed profiles for vehicles coming from the West.

To begin, the problem space is transformed so that the vehicles in W are
represented as points rather than line segments. This makes movement planning
simpler while maintaining the geometric properties of the original space. Every
vehicle in W is contracted from left to right, until it is reduced to its leading
point. In response, the vehicles in N are expanded, transforming each into a
square obstacle with sides of length l and with their left edges coincident with
the original line segments.

Given the global speed limit δmax, there are regions in front of each obstacle
in which a collision is inevitable (this concept is similar to the obstacle avoidance
work done in [13]). These triangular zones (referred to as collision zones) are
based on the speed constraints of the vehicles and are formed by a downward
extension of the leading edge of each obstacle. The leftmost point of this edge is
extended vertically and the rightmost point is extended at a slope derived from
the ratio between δmax and the obstacle speed. As one last concession to clarity,
we scale the axes of our problem space so that this ratio becomes 1. Formally, a
collision zone ZO for the obstacle O is the set of all points p, such that there is
no path originating at p with a piecewise slope in the interval [1,∞] that does
not intersect O.

Expanding the vehicles in N into rectangular obstacles may cause some to
overlap, producing larger obstacles and, consequently, larger collision zones. This
merger and generation of collision zones is done through a standard sweep line
algorithm and occurs in O(n log n) steps, where n is the number of obstacles, as
described below.

Merging Obstacles and Growing Collision Zones. This process is done
using a horizontal sweep line moving from top to bottom. While the following
is a relatively standard application of a sweep line algorithm, it is included for
the sake of completeness. First, the event list is populated with the horizontal
edges of every obstacle, in top-to-bottom order, requiring O(n log n) time for
O(n) obstacles. The sweep line status stores a set of intervals representing the
interiors of disallowed regions (e.g., the inside of an obstacle or collision zone).
Each interval holds three pieces of information: the location of its left edge, a
sorted list of the right edges of any obstacles within the interval, and the slopes of
these right edges. These slopes will be either infinite (i.e., the edges are vertical)
or will have a slope of 1.

In addition to horizontal edge positions, the event list must keep track of
three other events which deal with the termination of the sloped edges of the
collision zones. These edges begin at the bottom right edge of an obstacle and
terminate in one of three ways: against the top of another obstacle, against the
right edge of another obstacle, or by reaching the left edge of an interval. The
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first case is already in the event list as the top edges were added at the start
of this process. The remaining two cases are added as the sweep line progresses
through the obstacles.

The initial population of the event list occurs in O(n log n). As the sweep line
progresses through the obstacle space, it adds and removes the right edges of
obstacles to the appropriate intervals. These lists of edges are built incrementally
in sorted order, requiring only O(log n) time. Finally, as there is a constant
number of possible events per obstacle (a single top edge, a single bottom edge,
and a single termination of its sloped edge), there are at most O(n) events to be
processed. Thus, the sweep line processes the obstacle space in O(n log n) time.

Movement Planning. Currently, vehicles only move horizontally and obstacles
only move vertically. Instead, we will treat the obstacles as static objects and add
a corresponding vertical component to the vehicles’ motion. To find a movement
plan, a vehicle moves through the obstacle space at maximum speed (giving it a
slope of 1 under our scaled axes) until either reaching its goal or encountering an
obstacle. If the goal is reached, the plan is complete. If an obstacle is encountered,
the vehicle travels vertically until it is no longer blocked (this vertical motion
corresponds to stopping and waiting for the obstacle to pass). Once the path is
clear, the vehicle continues at maximum speed.

The path created by the above behavior can be found with another line sweep.
The sweep line in this case is perpendicular to the vehicles’ trajectories (giving
it a slope of -1), moves from the upper right to the lower left, and determines
how obstacles occlude one another, as seen from the vehicles’ perspective. These
occlusions reveal which obstacles are encountered and how the vehicle must move
in order to follow the strategy laid out above.

4.2 Intersection Between a One-Way Street and a Two-Way
Highway

In this case, vertical vehicles approach from the North and the South while
horizontal vehicles travel in a single lane.

To account for the bidirectional vertical vehicles we fold the space along the
horizontal lane. This rotates the northbound traffic to an equivalent southbound
set of vehicles (see Fig. 2). This only requires a O(n) transformation. Using the
plane sweep algorithm above yields a combined obstacle space.

Finally, we must prevent the vehicles from rear-ending each other. Once the
lead vehicle has found a motion plan through the obstacles, it creates a new
set of constraints for the vehicles behind it. The monotonic path of the lead
vehicle is stored in a binary search tree, allowing for easy collision queries. As
each vehicle finds its own path through the obstacles, this search tree is updated
to appropriately constrain subsequent vehicles 3.

In the end, we can still account for shared lanes without a running time
greater than O(n log n).

3 Details of how this is done can be found in the arXiv version of this paper.

http://arxiv.org/abs/1505.00874
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(a) (b) (c)

Fig. 2. (a) An example of bidirectional cross-traffic. (b) To account for how these
vehicles interact when they reach a horizontal lane, we can fold the space along the lane,
rotating one set of vehicles about it. (c) Then, we run the same space transformation
and obstacle merger detailed above.

4.3 Intersection Between Two-Way Highways

Finally, this case combines the two above, allowing for bidirectional movement
horizontally and vertically, with multiple lanes along each axis, and the possi-
bility of collinear vehicles.

The vehicles approaching from the East are independent of those approaching
from the West, presenting a symmetric problem that can be solved with the
techniques discussed above. The addition of horizontal lanes, however, impacts
the running time of the algorithm. Previously, the bidirectional vertical traffic
was accounted for by folding the obstacle space along a single horizontal lane,
but in this case, because the position of the vertical vehicles relative to each
other is different at any given lane, the folding must occur individually for each
lane. Thus, the algorithm runs in O(kn log n), for k horizontal lanes. In general,
we assume that k is a relatively small constant.

5 Traffic Crossing in the Discrete Setting

In this section we consider the problem in a simple discrete setting, significantly
simplifying the description of the algorithms and freeing us from a number of cum-
bersome continuous issues while still capturing the most salient elements of the
original traffic-crossing problem. We assume that each vehicle occupies a point on
the integer grid in the plane, Z2. Time advances discretely in unit increments, and
at each time step a vehicle may either advance to the next grid point or remain
where it is. A collision occurs if two vehicles occupy the same grid point.

The discrete traffic crossing problem is defined in much the same manner as
in the continuous case. The problem is presented as a set V of n vehicles on the
integer grid. Each vehicle vi is represented by its initial and goal positions p�

i

and p�
i , respectively, both in Z

2. Also given are a starting time t�i and deadline
t�i , both in Z

+ (where Z
+ denotes the set of nonnegative integers). A vehicle’s

direction di is a unit length vector directed from its initial position to its goal,
which is either horizontal or vertical. Time proceeds in unit increments starting
at zero. The motion of vi is specified as a function of time, δi(t) ∈ {0, 1}. Setting
δi(t) = 0 means that at time t vehicle i remains stationary, and δi(t) = 1 means
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that it moves one unit in direction di. Thus, vi’s position at time t ≥ 0 is
pi(t) = p�

i + di

∑t
x=0 δi(x).

Generalizing the problem definition from Section 2, the objective is to com-
pute a speed profile D = 〈δ1, . . . , δn〉 involving all the vehicles that specifies a
collision-free motion of the vehicles in such a manner that each vehicle starts at
its initial position and moves monotonically towards its goal, arriving there at
or before its given deadline. Similar to road networks, we assume that along any
horizontal or vertical grid line, the vehicle direction vectors are all the same.

5.1 Maximum Delay

Because we will be largely interested in establishing approximation bounds in
this section, we will depart from the decision problem and consider a natural
optimization problem instead, namely, minimizing the maximum delay experi-
enced by any vehicle, defined formally as follows. For each vehicle we consider
only its initial and goal positions, and let us assume that all vehicles share the
same starting time at t = 0. A vehicle vi experiences a delay at time t if it
does not move at this time (that is, δi(t) = 0). The total delay experienced
by a vehicle is the total number of time instances where it experiences a delay
until the end of the motion simulation. The maximum delay of the system is the
maximum total delay experienced by any vehicle.

While we will omit a formal proof, it is not hard to demonstrate that the
NP-hardness reduction of Section 3 can be transformed to one showing that it
is NP-hard to minimize maximum delay in the discrete setting. (Intuitively, the
reason is that the reduction involves purely discrete quantities: integer vehicle
coordinates and starting times, vehicles of unit length, and unit speed limit. The
system described in the reduction is feasible if and only if the maximum delay is
at most five time units.) However, it is interesting to note that the question of
whether there exists a solution involving at most single unit delay can be solved
efficiently. This is stated in the following result.

Theorem 2. There exists an O(nm) time algorithm that, given an instance of
the discrete traffic crossing problem with n vehicles where each vehicle encoun-
ters at most m intersections, determines whether there exists a solution with
maximum delay of at most one time unit.

Due to space limitations, we have omitted the proof, but the algorithm
involves a straightforward reduction to 2-SAT. The key insight is that each
vehicle can be in one of two states, not-delayed or delayed. Since all potential
collisions involve pairs of vehicles, we can express the feasibility of a single unit
delay solution through an instance of 2-SAT.

5.2 The Parity Heuristic

In the discrete setting it is possible to describe a simple common-sense heuristic.
Intuitively, each intersection will alternate in allowing horizontal and vertical
traffic to pass. Such a strategy might be far from optimal because each time
a vehicle arrives at an intersection, it might suffer one more unit of delay. To
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address this, whenever a delay is imminent, we will choose which vehicle to delay
in a manner that will avoid cross traffic at all future intersections. Define the
parity of a grid point p = (px, py) to be (px + py) mod 2. Given a horizontally
moving vehicle vi and a time t, we say that vi is on-parity at t if the parity of its
position at time t equals t mod 2. Otherwise, it is off-parity. Vertically moving
vehicles are just the opposite, being on-parity if the parity of their position is
not equal to t mod 2. Observe that if two vehicles arrive at an intersection at
the same time, one moving vertically and one horizontally, exactly one of them
is on-parity. This vehicle is given the right of way, as summarized below.

Parity Heuristic: If two vehicles are about to arrive at the same intersection at
the same time t, the vehicle that is on-parity proceeds, and the other vehicle
waits one time unit (after which it will be on-parity, and will proceed).

The parity heuristic has a number of appealing properties. First, once all
the vehicles in the system are on-parity, every vehicle may proceed at full speed
without the possibility of further collisions. Second, the heuristic is not (locally)
wasteful in the sense that it does not introduce a delay into the system unless a
collision is imminent. Finally, the rule is scalable to large traffic systems, since
a traffic controller at an intersection need only know the current time and the
vehicles that are about to enter the intersection.

5.3 Steady-State Analysis of the Parity Heuristic

Delays may be much larger than a single time unit under the parity heuristic. (For
example, a sequenceofk consecutivevehicles travelinghorizontally that encounters
a similar sequence of k vertical vehicles will result in a cascade of delays, spreading
each into an alternating sequence of length 2k.) This is not surprising given the
very simple nature of the heuristic. It is not difficult to construct counterexamples
in which the maximum delay of the parity heuristic is arbitrarily large relative to an
optimal solution. We will show, however, that the parity heuristic is asymptotically
optimal in a uniform, steady-state scenario (to be made precise below).

Consider a traffic crossing pattern on the grid. Let mx and my denote the
numbers of vertical and horizontal lanes, respectively. Each lane is assigned a
direction arbitrarily (up or down for vertical lanes and left or right for hori-
zontal). Let R denote a W × W square region of the grid containing all the
intersections (see Fig. 3(a)). In order to study the behavior of the system in
steady-state, we will imagine that R is embedded on a torus, so that vehicles
that leave R on one side reappear instantly in the same lane on the other side
(see Fig. 3(b)). Equivalently, we can think of this as a system of infinite size by
tiling the plane with identical copies (see Fig. 3(c)). We assume that W is even.

If the system is sufficiently dense, the maximum delay of the system will gener-
ally grow as a function of time. Given a scheduling algorithm and a discrete traffic
crossing, define its delay rate to be the maximum delay after t time units divided
by t. Define the asymptotic delay rate to be the limit supremum of the delay rate
for t → ∞. Our objective is to show that, given a suitably uniform traffic crossing
instance on the torus, the asymptotic delay rate of the parity algorithm is optimal.
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Fig. 3. Analysis of the Parity Heuristic

We say that a traffic crossing on the torus is uniform if every lane (within
the square R) has an equal number of vehicles traveling on this lane. Letting n′

denote this quantity, the total number of vehicles in the system is n = n′(mx +
my). (The total number of positions possible is W (mx + my) − mxmy, and so
n′ ≤ W −mxmy/(mx +my).) The initial positions of the vehicles within each of
the lanes is arbitrary. Let p = n′/W denote the density of vehicles within each
lane. Let ρpar∞ = ρpar∞ (W,p,mx,my) denote the worst-case asymptotic delay rate
of the parity heuristic on any uniform discrete traffic crossing instance of the
form described above, and let ρopt∞ = ρopt∞ (W,p,mx,my) denote the worst-case
asymptotic delay for an optimum scheduler.

Our approach will be to relate the asymptotic performance of parity and the
optimum to a parameter that describes the inherent denseness of the system.
Define χ = max(0, 2p − 1) to be the congestion of the system. Observe that
0 ≤ χ ≤ 1, where χ = 0 means that the density is at most 1/2 and χ = 1
corresponds to placing vehicles at every available point on every lane (which is
not really possible given that n′ < W ). To demonstrate that the parity heuristic
is asymptotically optimal in this setting, it can be shown that ρpar∞ ≤ χ/(1+χ) ≤
ρopt∞ . This is a consequence of the following two lemmas, whose proofs are omitted
due to space constraints.

Lemma 2. Given any uniform traffic crossing instance on the torus with con-
gestion χ, ρpar∞ ≤ χ/(1 + χ).

Lemma 3. Given any uniform traffic crossing instance on the torus with con-
gestion χ, ρopt∞ ≥ χ/(1 + χ).

While the proofs are somewhat technical, the intuition behind them is rel-
atively straightforward. If χ = 0, then while local delays may occur, there is
sufficient capacity in the system for them to dissipate over time, and hence the
asymptotic delay rate tends to zero as well. On the other hand, if χ > 0, then
due to uniformity and the cyclic nature of the system, delays will and must grow
at a predictable rate. As an immediate consequence of the above lemmas, we
have the following main result of this section.
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Theorem 3. Given a uniform traffic crossing instance on the torus, the asymp-
totic delay rate of the parity heuristic is optimal.
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Abstract. We study the following problem: preprocess a set O of
objects into a data structure that allows us to efficiently report all pairs
of objects from O that intersect inside an axis-aligned query range Q.
We present data structures of size O(n polylog n) and with query time
O((k + 1) polylog n), where k is the number of reported pairs, for two
classes of objects in the plane: axis-aligned rectangles and objects with
small union complexity. For the 3-dimensional case where the objects and
the query range are axis-aligned boxes in R

3, we present a data structure
of size O(n

√
n polylog n) and query time O((

√
n + k) polylog n). When

the objects and query are fat, we obtain O((k+ 1) polylog n) query time
using O(n polylog n) storage.

1 Introduction

The study of geometric data structures is an important subarea within compu-
tational geometry, and range searching forms one of the most widely studied
topics within this area [1,11]. In a range-searching query, the goal is to report
or count all points from a given set O that lie inside a query range Q. The
more general version, where O contains other objects than just points and the
goal is to report all objects intersecting Q, is often called intersection searching
and it has been studied extensively as well. A common characteristic of almost
all range-searching and intersection-searching problems studied so far, is that
whether an object oi ∈ O should be reported (or counted) depends only on oi

and Q. In this paper we study a range-searching variant where we are interested
in reporting pairs of objects that satisfy a certain criterion. In particular, we
want to preprocess a set O = {o1, . . . , on} of n objects in the plane such that,
given a query range Q, we can efficiently report all pairs of objects oi, oj that
intersect inside Q.

Our motivation for studying these problems is the following. Suppose we are
given a collection of n discrete trajectories representing the movements of, say,
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people. Each trajectory is a sequence of locations (points in the plane) with a
corresponding time stamp; for discrete trajectories the movement in between
consecutive locations is not considered. The query we are interested in is: which
pairs of people met inside a given rectangular query region Q? A natural way to
define that two people meet is to require that they are within a given distance D
from each other. When we restrict our attention to a fixed time instance, we can
place a disk of radius D/2 around the location of each person and the question
becomes: which pairs of disks intersect within Q? When we consider the �∞
metric, we get the same problem but now for squares instead of disks. A more
general version of the query also specifies a time interval I: which pairs of people
met within a region Q′ during time interval I? To deal with the fact that the
time stamps may not be synchronized for the different trajectories, we assume
that each location is valid for some interval of time. If we then model time as the
third dimension and consider distances in the �∞ metric, we get the question:
which pairs of boxes (which are the product of a square around a location and
a time interval) intersect with the query box Q := Q′ × I?

An obvious approach to our problem is to precompute all intersections between
the objects and store the intersections in a suitable intersection-searching data
structure. This may give fast query times, but in the worst case any two objects
intersect, so Ω(n2) is a lower bound on the storage for this approach. The main
question is thus: can we achieve fast query times with a data structure that uses
subquadratic (and preferably near-linear) storage in the worst case?

Rahul et al. [13] answered this question affirmatively when Q is an axis-
aligned rectangle in the plane and the objects are axis-aligned line segments.
Their data structure uses O(n log n) storage and answers queries in time O(log n+
k), where k is the number of answers. Our contribution is to obtain similar
results for a broader class of objects than those of [13], namely axis-aligned
rectangles and objects with small union complexity. For axis-aligned rectangles
our data structure uses O(n log n) storage and has O(log n log∗ n+k log n) query
time,1 where k is the number of reported pairs of objects. Our data structure
for classes of objects with small union complexity—disks and other types of
fat objects are examples—uses O(U(n) log n) storage, where U(n) is maximum
union complexity of n objects from the given class, and it has O((k + 1) log2 n)
query time. We also consider a 3-dimensional version of the problem, where the
range Q and the objects in O are axis-aligned boxes. Here our data structure
uses O(n

√
n log n) storage and O((

√
n + k) log2 n) query time. When the query

range and the objects are fat, we improve this to O(n log2 n) storage and O((k +
1) log2 n) query time.

2 Axis-Aligned Objects

In this section we study the case where the set O is a set of n axis-aligned
rectangles in the plane or boxes in R

3. Our approach for these cases is the same
and uses the following two-step query process.
1 Here log∗ n denotes the iterated logarithm.
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ri

Fig. 1. Gray areas are intersections of
other rectangles with ri, black segments
indicate witness segments

Q

e1 e2

rj

Fig. 2. Example of Case B-3-I

1. Compute a seed set O∗(Q) ⊆ O of objects such that the following holds: for
any two objects oi, oj in O such that oi and oj intersect inside Q, at least
one of oi, oj is in O∗(Q).

2. For each seed object oi ∈ O∗(Q), perform an intersection query with the
range oi ∩ Q in the set O, to find all objects oj �= oi intersecting oi inside Q.

For this approach to be efficient, O∗(Q) should not contain too many objects that
do not give an answer in Step 2. For the planar case we will ensure |O∗(Q)| =
O(1 + k), where k is the number of pairs of objects intersecting inside Q, while
for the 3-dimensional case we will have |O∗(Q)| = O(

√
n + k).

2.1 The Planar Case

Let O = {r1, . . . , rn} be a set of axis-aligned rectangles in the plane. The key
to our approach is to be able to efficiently find the seed set O∗(Q). To this end,
during the preprocessing we compute a set W of axis-aligned witness segments.
For each rectangle ri ∈ O we define at most ten witness segments, two for each
edge of ri and two in the interior of ri, as follows—see also Fig. 1.

Let e be an edge of ri, and consider the set S(e) := e ∩ (∪j �=irj), that is, the
part of e covered by the other rectangles. The set S(e) consists of a number of
sub-edges of e. If e is vertical then we add the topmost and bottommost sub-edge
from S(e) (if any) to W ; if e is horizontal we add the leftmost and rightmost sub-
edge to W . The two witness segments in the interior of ri are defined as follows.
Suppose there are vertical edges (belonging to other rectangles rj) completely
crossing ri from top to bottom. Then we put e′ ∩ ri into W , where e′ is the
rightmost such crossing edge. Similarly, we put into W the topmost horizontal
edge e′′ completely crossing ri from left to right. Our data structure to find the
seed set O∗(Q) now consists of the following components.

– We store the witness set W in a data structure D1 that allows us to report
the witness segments that intersect the query rectangle Q.

– We store the vertical edges of the rectangles in O in a data structure D2 that
allows us to decide if the set V(Q) of edges that completely cross a query
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rectangle Q from top to bottom, is non-empty. The data structure should
also be able to report all (rectangles corresponding to) the edges in V(Q).

– We store the horizontal edges of the rectangles in O in a data structure D3

that allows us to decide if the set H(Q) of edges that completely cross a
query rectangle Q from left to right, is non-empty.

– We store the set O in a data structure D4 that allows us to report the
rectangles that contain a query point q.

Step 1 of the query procedure, where we compute O∗(Q), proceeds as follows.

1(i) Perform a query in D1 to find all witness segments intersecting Q. For
each reported witness segment, insert the corresponding rectangle into
O∗(Q).

1(ii) Perform queries in D2 and D3 to decide if the sets V(Q) and H(Q) are
both non-empty. If so, report all rectangles corresponding to edges in V(Q)
and put them into O∗(Q).

1(iii) For each corner point q of Q, perform a query in D4 to report all rectangles
in O that contain q, and put them into O∗(Q).

Lemma 1. Let ri, rj be two rectangles in O such that (ri ∩ rj) ∩ Q �= ∅. Then
at least one of ri, rj is put into O∗(Q) by the above query procedure.

Proof. Let I := (ri ∩ rj) ∩ Q. Each edge of I is either contributed by ri or rj ,
or by Q. Let E(I) denote the (possibly empty) set of edges of ri and rj that
contribute an edge to I. We distinguish two cases, with various subcases.

Case A: At least one edge e ∈ E(I) has an endpoint, v, inside Q. Now the
witness sub-edge on e closest to v must intersect Q and, hence, the corresponding
rectangle will be put into O∗(Q) in Step 1(i).

Case B: All edges in E(I) cross Q completely. We now have several subcases.
Case B-1: |E(I)| � 1. Now Q contributes at least three edges to I, so at

least one corner of I is a corner of Q. Hence, both ri and rj are put into O∗(Q)
in Step 1(iii).

Case B-2: |E(I)| � 3. Since each edge of E(I) crosses Q completely and
|E(I)| � 3, both V(Q) and H(Q) are non-empty. Thus at least one of ri and rj

is put into O∗(Q) in Step 1(ii).
Case B-3: |E(I)| = 2. Let e1 and e2 denote the segments in E(I). If one of

e1, e2 is vertical and the other is horizontal, we can use the argument from Case B-
2. It remains to handle the case where e1 and e2 have the same orientation, say
vertical.

Case B-3-i: Edges e1 and e2 belong to the same rectangle, say ri, as in Fig. 2.
If e1 has an endpoint, v, inside rj , then e1 has a witness sub-edge starting at v
that intersects Q, so ri is put into O∗(Q) in Step 1(i). If rj contains a corner of
Q then rj will be put into O∗(Q) in Step 1(iii). In the remaining case the right
edge of rj crosses Q and there are vertical edges completely crossing rj (namely
e1 and e2). Hence, the rightmost edge completely crossing rj , which is a witness
for rj , intersects Q. Thus rj is put into O∗(Q) in Step 1(i).
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Case B-3-ii: Edge e1 is an edge of ri and e2 is an edge of rj (or vice versa).
Assume without loss of generality that the y-coordinate of the top endpoint of
e1 is less than or equal to the y-coordinate of the top endpoint of e2. Then the
top endpoint, v, of e1 must lie in rj , and so e1 has a witness sub-edge starting
at v that intersects Q. Hence, ri is put into O∗(Q) in Step 1(i). �
In the second part of the query procedure we need to report, for each rectangle ri

in the seed set O∗(Q), the rectangles rj ∈ O intersecting ri ∩ Q. Thus we store
O in a data structure D5 that can report all rectangles intersecting a query
rectangle. Putting everything together we obtain the following theorem.

Theorem 1. Let O be a set of n axis-aligned rectangles in the plane. There is a
data structure that uses O(n log n) storage and can report, for any axis-aligned
query rectangle Q, all pairs of rectangles ri, rj in O such that ri intersects rj

inside Q in O(log n log∗ n+k log n) time, where k denotes the number of answers.

Proof. For the data structure D1 on the set W we use the data structure
developed by Edelsbrunner et al. [9], which uses O(n log n) preprocessing time
and storage, and has O(log n + #answers) query time. For data structure
D2 (and, similarly, D3) we note that a vertical segment si := xi × [yi, y

′
i]

crosses Q := [xQ, x′
Q] × [yQ, y′

Q] if and only if the point (xi, yi, y
′
i) lies in the

range [xQ, x′
Q] × [−∞, yQ] × [y′

Q,∞]. Hence, we can use the data structure
of Subramanian and Ramaswamy [14], which uses O(n log n) storage and has
O(log n log∗ n + #answers) query time. For data structure D4 we use the point-
enclosure data structure developed by Chazelle [4], which uses O(n) storage
and can be used to report all rectangles in O containing a query point in
O(log n + #answers) time.

Note that |O∗(Q)| � 2k + 4 where k is the total number of reported pairs.
Indeed, each rectangle in O∗(Q) intersects at least one other rectangle inside Q
and for every reported pair we put at most two rectangles into the seed set; the
extra term “+4” is because in Step 1(iii) we may report at most one rectangle
per corner of Q that does not have an intersection inside Q. Hence, the time for
Step 1 is O(log n log∗ n + |O∗(Q)|) = O(log n log∗ n + k).

It remains to analyze Step 2 of the query procedure, where we need to find
for a given ri ∈ O∗(Q) all rj ∈ O such that ri ∩Q intersects rj . First notice that
a rectangle rj intersects a rectangle r′

i := ri ∩Q if and only if (i) a corner of rj is
inside r′

i, or (ii) a corner of r′
i is inside rj , or (iii) an edge of rj intersects an edge

of r′
i. Thus D5 consists of three components: All rj satisfying (i) can be found in

O(log n+#answers) time using a range tree with fractional cascading [3], which
uses O(n log n) storage. All rj satisfying (ii) and (iii) can be found using, respec-
tively, the data structure by Chazelle [4] and the one by Edelsbrunner et al. [9].
Thus the running time of Step 2 is

∑
ri∈O∗(Q) O(log n + ki), where ki denotes

the number of rectangles in O that intersect ri inside Q, and so the total time
for Step 2 is O((k + 1) log n). �



Finding Pairwise Intersections Inside a Query Range 241

2.2 The 3-Dimensional Case

We now study the case where the set O of objects and the query range Q are
axis-aligned boxes in R

3. We first present a solution for the general case, and
then an improved solution for the special case where the input as well as the
query are cubes. Both solutions use the same query strategy as above: we first
find a seed set O∗(Q) that contains at least one object oi from every pair that
intersects inside Q and then we find all other objects intersecting oi inside Q.

The General Case. Let O := {b1, . . . , bn} be a set of axis-aligned boxes. The
pairs of boxes bi, bj intersecting inside Q come in three types: (i) bi ∩ bj fully
contains Q, (ii) bi ∩ bj lies completely inside Q, (iii) bi ∩ bj intersects a face of Q.

Type (i) is easy to handle without using seeds sets: we simply store O in a
data structure for 3-dimensional point-enclosure queries [4], which allows us to
report all boxes bi ∈ O containing a query point in O(log2 n + #answers) time.
If we query this structure with a corner q of Q and report all pairs of boxes
containing q then we have found all intersecting pairs of Type (i).

Lemma 2. We can find all intersecting pairs of boxes of Type (i) in O(log2 n+k)
time, where k is the number of such pairs, with a structure of size O(n log n).

For Type (ii) we proceed as follows. Note that a vertex of bi ∩ bj is either a
vertex of bi or bj , or it is the intersection of an edge e of one of these two boxes
and a face f of the other box. To handle the first case we create a set W of
witness points, which contains for each box bi all its vertices that are contained
in at least one other box. We store W in a data structure for 3-dimensional
orthogonal range reporting [14]. In the query phase we then query this data
structure with Q, and put all boxes corresponding to the witness vertices inside Q
into the seed set O∗(Q). For the second case we show next how to find the
intersecting pairs e, f where e is a vertical edge (that is, parallel to the z-axis)
and f is a horizontal face (that is, parallel to the xy-plane); the intersecting
pairs with other orientations can be found in a similar way.

Let E be the set of vertical edges of the boxes in O and let F be the set of
horizontal faces. We sort F by z-coordinate—we assume for simplicity that all
z-coordinates of the faces are distinct—and partition F into O(

√
n) clusters: the

cluster F1 contains the first
√

n faces in the sorted order, the second cluster F2

contains the next
√

n faces, and so on. We call the range between the minimum
and maximum z-coordinate in a cluster its z-range. For each cluster Fi we store,
besides its z-range and the set Fi itself, the following information. Let Ei ⊆ E
be the subset of edges that intersect at least one face in Fi, and let Ei denote
the set of points obtained by projecting the edges in Ei onto the xy-plane. We
store Ei in a data structure D(Ei) for 2-dimensional orthogonal range reporting.
Note that for a query box Q whose z-range contains the z-range of Fi we have:
an edge e ∈ E intersects at least one face f ∈ Fi inside Q if and only if e ∈ Ei

and e lies in Q, the projection of Q onto the xy-plane.
A query with a box Q = [x1 : x2] × [y1 : y2] × [z1 : z2] is now answered as

follows. We first find the clusters Fi and Fj whose z-range contains z1 and z2,
respectively, and we put (the boxes corresponding to) the faces in these clusters
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into the seed set O∗(Q). Next we perform, for each i < t < j, a query with the
projected range Q in the data structure D(Et). For each of the reported points
e we put the box corresponding to the edge e into the seed set O∗(Q). Finally,
we remove any duplicates from the seed set. This leads to the following lemma.

Lemma 3. Using a data structure of size O(n
√

n log n) we can find in time
O(

√
n log n+k) a seed set O∗(Q) of O(

√
n+k) boxes containing at least one box

from every intersecting pair of Type (ii), where k is the number of such pairs.

It remains to handle the Type (iii) pairs, in which bi ∩ bj intersects a face of Q.
We describe how to find the pairs such that bi ∩ bj intersects the bottom face
of Q; the pairs intersecting the other faces can be found in a similar way.

We first sort the z-coordinates of the horizontal faces of the boxes in O. For
1 � i � 2

√
n, let hi be a horizontal plane containing the (i

√
n)-th horizontal face.

These planes partition R
3 into O(

√
n) horizontal slabs Σ0, . . . , Σ2

√
n+1. We call

a box b ∈ O short at Σi if it has a horizontal face inside Σi, and we call it long if
it completely crosses Σi. For each Σi, we store the short boxes in a list. We store
the projections of the long boxes onto the xy-plane in a data structure D(Σi) for
the 2-dimensional version of the problem, namely the structure of Theorem 1.

A query with the bottom face of Q is now answered as follows. We first find
the slab Σi containing the face. We put all short boxes of Σi into our seed set
O∗(Q). We then perform a query with Q, the projection of Q onto the xy-plane,
in the data structure D(Σi). For each answer we get from this 2-dimensional
query—that is, each pair of projections intersecting inside Q—we directly report
the corresponding pair of long boxes. (There is no need to go through the seed
set for these pairs.) This leads to the following lemma for the Type (iii) pairs.

Lemma 4. Using a data structure of size O(n
√

n log n) we can find in time
O(

√
n + k log n log∗ n) a seed set O∗(Q) of O(

√
n) boxes plus a collection B(Q)

of pairs of boxes intersecting inside Q such that, for each pair of Type (iii) boxes,
either at least one of these boxes is in O∗(Q) or bi, bj is a pair in B(Q).

In Step 2 of our query procedure we need to report all boxes bj ∈ O inter-
secting a query box B := Q ∩ bi, where bi ∈ O∗(Q). Note that B intersects
bj if (i) B contains a vertex of bj , or (ii) a vertex of B is contained in bj , or
(iii) an edge e of B intersects a face of bj , or (iv) a face f of B intersects an
edge of bj . All rj satisfying (i) and (ii) can be found using a 3D range tree with
fractional cascading [3] and the 3D point-enclosure data structure of [4], respec-
tively. For (iii), assume e is parallel to the z-axis and consider the faces of bj

parallel to the xy-plane. Then we can use a 2-level structure whose first level is
a tree on the z-coordinates of the faces, and whose second-level structures are
2D point-enclosure structures [4] on the projections onto the xy-plane. For (iv),
assume f is parallel to the xy-plane and consider the edges of bj parallel to the
z-axis. Then we can use 2-level structure whose first level is a segment tree on
the z-ranges of the edges, and whose second-level structures are 2D range trees
(with fractional cascading). The components that we need for Step 2 together
need O(n log2 n) storage and querying takes O(log2 n + #answers) time.

Putting everything together we obtain the following theorem.
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Theorem 2. Let O be a set of n axis-aligned boxes in R
3. Then there is a data

structure that uses O(n
√

n log n) storage and that allows us to report, for any
axis-aligned query box Q, all pairs of boxes bi, bj in O such that bi intersects bj

inside Q in O((
√

n + k) log2 n) time, where k denotes the number of answers.

Fat Boxes. Next we obtain better bounds when the boxes in O and the query
box Q are fat, that is, when their aspect ratio—the ratio between the length of
the longest edge and the length of the shortest edge—is bounded by a constant α.
First we consider the case of cubes.

Let O := {c1, · · · , cn} be a set of n cubes in R
3 and let Q be the query cube.

We compute a set W of witness points for each cube ci, as follows. Let e be an
edge of ci, and consider the set S(e) := e∩(∪j �=icj), that is, the part of e covered
by the other cubes. We put the two extreme points from S(e)—in other words,
the two points closest to the endpoints of e—into W . Similarly, we assign each
face f of ci at most four witness points, namely points from S(f) := f ∩ (∪j �=icj)
that are extreme in the axis-aligned directions parallel to f . For example, if f
is parallel to the xy-plane, then we take points of maximum and minimum x-
coordinate in S(f) and points of maximum and minimum y-coordinate in S(f)
as witnesses. We store W in a data structure D1 for orthogonal range queries,
and we store O in a data structure D2 for point-enclosure queries.

To compute O∗(Q) in the first phase of the query procedure, we query D1

to find all witness points inside Q and for each reported witness point, we insert
the corresponding cube into O∗(Q). Furthermore, for each corner point q of Q,
we query D2 to find the cubes in O that contain q, and we put them into O∗(Q).

Lemma 5. Let ci, cj be two cubes in O such that (ci ∩cj)∩Q �= ∅. Then at least
one of ci, cj is put into O∗(Q) by the above query procedure.

Proof. Suppose ci ∩cj intersects Q, and assume without loss of generality that ci

is not larger than cj . If ci or cj contains a corner q of Q then the corresponding
cube will be put into the seed set when we perform a point-enclosure query
with q, so assume ci and cj do not contain a corner. We have two cases.

Case A: ci does not intersect any edge of Q. Because ci and Q are cubes, this
implies that ci is contained in Q or ci intersects exactly one face of Q. Assume
that ci intersects the bottom face of Q; the cases where ci intersects another face
and where ci is contained in Q can be handled similarly. We claim that at least
one of the vertical faces of ci contributes a witness point inside Q. To see this,
observe that cj will intersect at least one vertical face, f , of ci inside Q, since cj

intersects ci inside Q and ci is not larger than cj . Hence, the witness point on f
with maximum z-coordinate will be inside Q. Thus ci will be put into O∗(Q).

Case B: ci intersects one edge of Q. (If ci intersects more than one edge of
Q then it would contain a corner of Q.) Assume without loss of generality that
ci intersects the bottom edge of the front face of Q; see Fig. 3. Observe that if
cj intersects the top face of ci then the witness point of the face with minimum
x-coordinate is inside Q. Similarly, if cj intersects the back face of ci (the face
parallel to the yz-plane and with minimum x-coordinate) then the witness point



244 M. de Berg et al.

x-axis

y-axis

z-axis

ci

Q

Fig. 3. Case B in the proof of Lemma 5;
cj is not shown

Q
ci cj

e

Fig. 4. Cross-section of Q, ci, and cj
with a plane parallel to the xz-plane.
The gray area indicates Q ∩ ci in the
cross-section.

of the face with maximum z-coordinate is inside Q. Otherwise, as illustrated in
Fig 4, cj must have an edge e parallel to the y-axis that intersects ci inside Q,
and one of the witness points on e will be inside Q—note that e lies fully inside
Q because cj does not contain a corner of Q. �

To adapt the above solution to boxes of aspect ratio at most α, we cover
each box bi ∈ O by O(α2) cubes, and preprocess the resulting collection Õ of
cubes as described above, making sure we do not introduce witness points for
pairs of cubes used in the covering of the same box bi. To perform a query, we
cover Q by O(α2) query cubes and compute a seed set for each query cube. We
take the union of these seed sets, replace the cubes from Õ in the seed set by
the corresponding boxes in O, and filter out duplicates. This gives us our seed
set O∗(Q) for the second phase of the query procedure.

In the second phase we take each bi ∈ O∗(Q) and report all bj ∈ O inter-
secting bi ∩Q, using the data structure D∗ described just before Theorem 2. We
obtain the following theorem.

Theorem 3. Let O be a set of n axis-aligned boxes in R
3 of aspect ratio at

most α. Then there is a data structure that uses O(α2n log2 n) storage and that
allows us to report, for any axis-aligned query box Q of aspect ratio at most α, all
pairs of cubes ci, cj in O such that ci intersects cj inside Q in O(α2(k+1) log2 n)
time, where k denotes the number of answers.

Proof. The data structures D1 and D2 can be implemented such that they use
O(n log n) storage, and have O(log n log∗ n+#answers) and O(log2 n+#answers)
query time, respectively [4,14]. Since Step 2 of the query procedure is the same
as the second step of query procedure of Subsection 2.2 we can use the data
structures that we designed there, which need O(n log2 n) storage and have
O(log2 n + #answers) query time. The conversion of boxes of aspect ratio α
to cubes give an additional factor O(α2). �
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3 Objects with Small Union Complexity in the Plane

In the previous section we presented efficient solutions for the case where O
consists of axis-aligned rectangles. In this section we obtain results for classes
of constant-complexity objects (which may have curved boundaries) with small
union complexity. More precisely, we need that U(n), the maximum union com-
plexity of any set of n objects from the class, is small. This is for instance the
case for disks (where U(m) = O(m) [12]) and for locally fat objects (where
U(m) = m2O(log∗ m) [2]).

In Step 2 of the query algorithm of the previous section, we performed a
range query with oi∩Q for each oi ∈ O∗(Q). When we are dealing with arbitrary
objects, this will be expensive, so we modify our query procedure.

1. Compute a seed set O∗(Q) ⊆ O of objects such that, for any two objects
oi, oj in O intersecting inside Q, both oi and oj are in O∗(Q).

2. Compute all intersecting pairs of objects in the set {oi ∩ Q : oi ∈ O∗(Q)} by
a plane-sweep algorithm.

Next we describe how to efficiently find O∗(Q), which should contain all objects
intersecting at least one other object inside Q, when the union complexity U(n)
is small. For each object oi ∈ O we define o∗

i :=
⋃

oj∈O,j �=i(oi ∩ oj) as the union
of all intersections between oi and all other objects in O. Let |o∗

i | denote the
complexity (that is, number of vertices and edges) of o∗

i .

Lemma 6.
∑n

i=1 |o∗
i | = O(U(n)).

Proof. Consider the arrangement induced by the objects in O. We define the
level of a vertex v in this arrangement as the number of objects from O that
contain v in their interior. We claim that every vertex of any o∗

i is a level-0 or
level-1 vertex. Indeed, a level-k vertex for k > 1 is in the interior of more than
one object, which implies it cannot be a vertex of any o∗

i .
Since the level-0 vertices are exactly the vertices of the union of O, the

total number of level-0 vertices is U(n). It follows from the Clarkson-Shor tech-
nique [7] that the number of level-1 vertices is O(U(n)) as well. The lemma
now follows, because each level-0 or level-1 vertex contributes to at most two
different o∗

i ’s. �
Our goal in Step 1 is to find all objects oi such that o∗

i intersects Q. To this end
consider the connected components of o∗

i . If o∗
i intersects Q then one of these

components lies completely inside Q or an edge of Q intersects o∗
i .

Lemma 7. We can find all o∗
i that have a component completely inside Q in

O(log n+k) time, where k is the number of pairs of objects that intersect inside Q,
with a data structure that uses O(U(n) log n) storage.

Proof. For each oi, take an arbitrary representative point inside each compo-
nent of o∗

i , and store all the representative points in a structure for orthogonal
range reporting. By Lemma 6 we store O(U(n)) points, and so the structure for
orthogonal range reporting uses O(U(n) log n) storage.
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The query time is O(log n+t), where t is the number of representative points
inside Q. This implies the query time is O(log n + k), because if o∗

i has ti repre-
sentative points inside Q then oi intersects Ω(ti) other objects inside Q. This is
true because the objects have constant complexity, so a single object oj cannot
generate more than a constant number of components of o∗

i . �
Next we describe a data structure for reporting all o∗

i intersecting a vertical edge
of Q; the horizontal edges of Q can be handled similarly. The data structure is
a balanced binary tree T , whose leaves are in one-to-one correspondence to the
objects in O. For an (internal or leaf) node ν in T , let T (ν) denote the subtree
rooted at ν and let O(ν) denote the set of objects corresponding to the leaves
of T (ν). Define U(ν) := ∪oi∈O(ν)o

∗
i . At node ν, we store a point-location data

structure [8] on the trapezoidal map of U(ν). (If the objects are curved, then the
“trapezoids” may have curved top and bottom edges.)

Lemma 8. The tree T uses O(U(n) log n) storage and allows us to report all
o∗

i intersecting a vertical edge s of Q in O((t + 1) log2 n) time, where t is the
number of answers.

Proof. To report all o∗
i intersecting s we walk down T , only visiting the nodes ν

such that s intersects U(ν). This way we end up in the leaves corresponding to
the o∗

i intersecting s. To decide if we have to visit a child ν of an already visited
node, we do a point location with both endpoints of s in the trapezoidal map
of U(ν). Now s intersects U(ν) if and only if one of these endpoints lies in a
trapezoid inside U(ν) and/or the two endpoints lie in different trapezoids. Thus
we spend O(log n) time for the decision. Since we visit O(t log n) nodes, the total
query time is as claimed.

To analyze the storage we claim that the sum of the complexities of U(ν)
over all nodes ν at any fixed height of T is O(U(n)). The bound on the storage
then follows because the point-location data structures take linear space [8] and
the height of T is O(log n). It remains to prove the claim. Consider a node ν at a
given height h in T . It can be argued that each vertex in U(ν) is either a level-0
or level-1 vertex of the arrangement induced by the objects in O(ν), or a vertex
of o∗

i , for some oi in O(ν). The proof of the claim then follows from the following
two facts. First, the number of vertices of the former type is O(U(|O(ν)|)), which
sums to O(U(n)) over all nodes at height h. Second, by Lemma 6 the number
of vertices of the latter type over all nodes at height h sums to O(U(n)). �

Theorem 4. Let O be a set of n constant-complexity objects in the plane from
a class of objects such that the maximum union complexity of any m objects
from the class is U(m). Then there is a data structure that uses O(U(n) log n)
storage and that allows us to report for any axis-aligned query rectangle Q, in
O((k + 1) log2 n) time all pairs of objects oi, oj in O such that oi intersects oj

inside Q, where k denotes the number of answers.
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4 Concluding Remarks

We presented data structures for finding intersecting pairs of objects inside
a query rectangle. An obvious open problem is whether our bounds can
be improved. In particular, one would hope that better solutions are possi-
ble for 3-dimensional boxes, where we obtained O((k +

√
n) polylog n) query

time with O(n
√

n log n) storage. (We can reduce the query time to O((k +
m) polylog n), for any 1 � m � √

n, but at the cost of increasing the storage to
O((n2/m) polylog n).)

Two settings where we have not been able to obtain efficient solutions are
when the objects are balls in R

3, and when they are arbitrary segments in the
plane. Especially the latter case is challenging. Indeed, suppose O consists of
n/2 horizontal lines and n/2 lines of slope 1. Suppose furthermore that the
query is a vertical line � and that we only want to check if � contains at least
one intersection. A data structure for this can be used to solve the following
3Sum-hard problem: given three sets of parallel lines, decide if there is a triple
intersection [10]. Thus it is unlikely that we can obtain a solution with sublinear
query time and subquadratic preprocessing time. However, storage is not the
same as preprocessing time. This raises the following question: is it possible to
obtain sublinear query time with subquadratic storage?
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Abstract. In this paper we develop an optimal cache-oblivious data
structure that solves the iterated predecessor problem. Given k static
sorted lists L1, L2, . . . , Lk of average length n and a query value q, the
iterated predecessor problem is to find the largest element in each list
which is less than q. Our solution to this problem, called “range coa-
lescing”, requires O(logB+1 n + k/B) memory transfers for a query on
a cache of block size B, which is information-theoretically optimal. The
range-coalescing data structure consumes O(kn) space, and preprocess-
ing requires only O(kn/B) memory transfers with high probability, given
a tall cache of size M = Ω

(
B2
)
.

1 Introduction

The predecessor problem is to find the largest item in a given sorted list L that
is less than a query value q ∈ R. The iterated predecessor problem is to find
the predecessor for a query q in each of a set of k static lists L1, L2, . . . , Lk, each
of average size n. A naive solution involves individual binary searches over all
k lists, which would require O(k lg n) time in the worst-case. However, Chazelle
and Guibas [6] showed that the lists can be preprocessed to support iterated
predecessor queries in O(lg n+k) time, with linear preprocessing time and linear
space via their technique fractional cascading.

In this project, we will demonstrate that the iterated predecessor problem
can also be solved using a technique called range coalescing in O(lg n+k) time.
Range coalescing is cache-oblivious [7], using only O(logB+1 n+k/B) memory
transfers per query in the worst case.1 Furthermore, range coalescing requires
only linear space and the preprocessing requires O(kn) time and O(kn/B) mem-
ory transfers.

The essence of range coalescing, as the name suggests, is to coalesce ranges of
the query space into n “bins”, each of which could generate O(k) different results
depending on the specific value of q within that range. Figure 1 illustrates how
the smallest element in each bin is the “splitter” for the bin, so named because
they collectively “split” all of the elements into bins of contiguous value ranges.
1 Throughout this paper we will use the notation lg n to mean log2 n and lnn to mean
the natural logarithm.

c© Springer International Publishing Switzerland 2015
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value

O(k) elements splitters

L1

Lk

L2

Fig. 1. Range coalescing data structure for the iterated predecessor problem with the
value of the element on the x-axis and each row representing a list in {L1, L2, . . . , Lk}.
Each vertical line delineates the O(k) elements in each bin. The elements with a heavy
black border are the splitters for each bin — the smallest item in the bin is the splitter.
An example bin is highlighted by the blue vertical bar. The elements to the left of the
bar with rightward arrows are the predecessors of the splitter from the blue bin in each
list.

In addition, the predecessor of the splitter from each list is included in order to
service predecessor requests that are smaller in value than the smallest element
in the bin from each list. Figure 2 gives an example of how the data in a bin is
stored. The elements from each list are stored in sorted subsequences of varying
lengths, but of total length O(k). Each bin stores O(k) different values and thus
the total data structure is linear space.

A query q on a bin D walks through the O(k) elements in D in a single pass.
Within D are k subsequences of each list in sorted order as depicted in Figure 2,
so we merely take the largest element from the ith subsequence which is less
than q as our predecessor answer from the ith list. A more detailed description
of the query process can be found in Section 4.

Throughout this paper we will let M be the size of the cache and B be the
size of the cache blocks on a hypothetical external-memory machine. We will
consider solutions to the iterated predecessor problem, in which we are given k
n-length lists L1, L2, . . . , Lk and we preprocess them to improve the query time.

In Section 2 we discuss some simple known results from the study of cache-
oblivious algorithms and data structures which are useful in subsequent analysis.
Section 3 gives an overview of solutions to the iterated predecessor problem which
are not cache-oblivious, but nonetheless serve as a reasonable baseline for our
work. We present range coalescing in Section 4 and show that they answer queries
cache-obliviously using O(logB+1 n + k/B) memory transfers. Section 5 demon-
strates that the preprocessing for a range coalescing data structure requires
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Fig. 2. An example of how a bin is constructed in a range coalescing data structure.
The elements that fall in the range of the blue bar and the predecessor of the splitter
(with heavy black border) from each list is represented in the bin. In particular, the
subsequences of those elements from each list are stored together and concatenated so
that the subsequence from L1 comes first and so on until the subsequence from Lk.

only O(kn/B) with high probability. Section 6 describes our implementations
of each solution described herein and an experimental methodology for testing
the performance of each. Finally, Section 7 describes some limitations of range
coalescing, providing opportunities for future work.

2 Cache-Oblivious Tools

This section describes some cache-oblivious primitive operations that are known
in the literature and useful to build up solutions to the iterated predecessor
problem in this paper.

Array Scanning

Accessing a random element in an length n array requires O(1) memory transfers.
However, if we access the entire array in order, we can achieve O(n/B) memory
transfers, where B is the size of a block in cache. Each memory transfer brings
B elements into cache, so we must make at most O(n/B) transfers.
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N

N N

Fig. 3. vEB trees are recursively divided into triangles of size
√

N . Each of these
triangles is stores contiguously in memory.

vEB Layout

Traditional binary search on an array requires O(lg(n/B)) memory transfers.
Every access to the array is a random access, and could be located in a different
cache block, except for the last O(lg B) elements which are located on the same
block.

The vEB layout as depicted in Figure 3 tries to optimize memory transfers
by rearranging the array. It works by recursively dividing the tree into triangles,
and storing each triangle contiguously in memory. This means that children and
parent nodes are likely to be stored together in memory, reducing the number
of memory transfers required.

Lemma 1. A query on an binary tree in the vEB layout requires O(logB+1 n)
memory transfers.

Proof. Triangles of size S are recursively divided into smaller triangles of size√
S. Lets examine the largest triangle that has at most B elements. This triangle

must have at least
√

B + 1 elements, so its height must be at least 1
2 lg(B + 1).

This entire triangle can be loaded into one cache block. There are at most
lg n/ 1

2 lg(B + 1) = 2 logB+1 n of these triangles along a root to leaf path, so
we only need to make O(logB+1 n) memory transfers to find an element. �

The vEB layout has been the basis for several known cache-oblivious algo-
rithms, including B-trees [2], funnel sort [7], and priority queues [1,5]. It is also
used in our solution for range coalescing.

3 Known Solutions

We examine several simple solutions to the iterated predecessor problem. These
solutions provide a good background for understanding range coalescing and
serve as our implementation baselines in Section 6.

Sequential Binary Search

The simplest solution to the iterative predecessor problem is to do a binary search
on each of the k unmodified lists L1, L2, . . . , Lk, and write down the output
from each. Since each binary search requires O(lg(n/B)) memory transfers, this
solution requires a total of O(k lg(n/B)) memory transfers. The total space usage
is optimal, O(kn).
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Sequential vEB Binary Search

Using the vEB layout described previously, we can do binary searches using only
O(logB+1 n). If we use a vEB layout for each of the k lists, we can perform the
searches in O(k logB+1 n). The total space usage is optimal, O(kn).

Fractional Cascading

Fractional cascading [6] is the incumbent solution for the in-memory iterated
predecessor problem. An external memory-oriented extension of fractional cas-
cading described below achieves a runtime of O(logB+1 n + k).

The main idea behind fractional cascading is to use the query result from
each list to perform a search on the next list in constant time. One needs only
to do a binary search on the first list to prime the pipeline. To do this, we store
pointers in each list to its predecessor and successor in the next list. This gives
us a constant-sized range to search through in the next list.

If we did this naively, this would be of no benefit — the predecessor and
successor of the ith list could span the entirety of the i + 1st list. However, by
altering the lists slightly, we can achieve constant time per remaining search.
Starting with the last list, we insert every other element into the previous list.
We do this for each list. This ensures that the range between predecessor and
successor is at most a constant value.

We store the initial list in the vEB layout to minimize memory transfers for
the initial binary searches. Using this method, we can perform a query using
O(logB+1 n + k) memory transfers. The total space usage is optimal, O(kn).

Quadratic Storage

A brute-force fast solution involves storing one sorted kn-length list of all ele-
ments from all lists using the vEB layout. Accompanying each element in the
list is a k-length sublist with a copy of its k predecessors, one from each list in
{L1, L2, . . . , Lk}. We can iterate over this contiguous sublist using O(k/B) mem-
ory transfers, so the total number of memory transfers is O(logB+1(kn) + k/B).
However, the total space usage is O(nk2), since we must store a k-length sublist
for each element.

4 Range Coalescing

In this section we describe how an iterated predecessor query can be satisfied
cache-obliviously using O(logB+1 n+k/B) memory transfers using a range coa-
lescing data structure. We describe how a range coalescing data structure is
built cache-obliviously from a set of sorted lists L1, L2, . . . , Lk each of size n
using only O(kn/B) memory transfers with high probability in Section 5.

Let H be a range coalescing data structure built from a set of n-length sorted
lists L1, L2, . . . , Lk. H is composed of n bins, each of size O(k), which partition
the space of possible query values using a sorted list of n splitters S, as depicted
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query(H, q)

1 〈D, s〉 = vEB(H.S , q)
2 j = 1
3 for i = 1 to D.size − 1
4 if Di < q
5 Zj = Di

6 if Di+1 < s
7 j = j + 1
8 return Z

Fig. 4. Pseudocode of the query method for a range coalescing data structure H. H
contains a sorted array S of splitters organized using a van Emde Boas layout [3]. The
function vEB returns a bin D, organized as an array, and a splitter s, which is the
predecessor of q in S. The bin D is walked in a linear fashion, overwriting potential
predecessors in the output array Z and incrementing the output position whenever the
subsequence of the next list begins. The jth subsequence begins with the one and only
element from Lj that is smaller than the splitter s and each bin is appended with −∞
to handle the boundary condition when Di+1 is compared with the splitter s.

in Figure 1. Figure 2 illustrates how a bin concatenates k sequences of elements,
each of which is a subsequence of each constituent list from {L1, L2, . . . , Lk}.
The first element of the ith subsequence in the jth bin is the predecessor of the
splitter Sj in Li and is strictly smaller than Sj by construction, a fact that we
will exploit to implicitly denote the beginning of each subsequence.

Lemma 2. A range coalescing data structure H built from a set of n-length
sorted lists L1, L2, . . . , Lk consumes O(kn) space.

Proof. The elements from all n-length lists L1, L2, . . . , Lk are partitioned into n
bins. In addition, each bin has exactly one element for each of the k lists which
is smaller in value than the splitter for the bin. Thus, each of the n bins has
O(k) elements and the data structure has O(kn) space. �

Iterated predecessor queries

This section describes the process by which a range coalescing data structure
answers iterated predecessor queries and demonstrates that the process incurs
O(logB+1 n+k/B) memory transfers with high probability. Figure 4 gives pseu-
docode for the procedure query, which takes a range coalescing data structure
H and a query q and returns an ordered list of results which correspond to the
predecessors of q for each constituent list in {L1, L2, . . . , Lk}.

While it may be that the function query is correct by inspection, we leave
nothing to chance and prove it here.

Lemma 3. Given a range coalescing data structure H and a query value q, the
function query(H,q) returns the correct answer.
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Proof. Consider the jth bin, with corresponding splitter Sj , which is used to
satisfy all queries q ∈ [Sj , Sj+1). By construction, the jth bin contains all ele-
ments {l ∈ ∪k

i=1Li s.t. l ∈ [Sj , Sj+1)} in addition to the predecessor of Sj from
each list in {L1, L2, . . . , Lk}. Thus, the jth bin contains the k correct answers
— the predecessors of q in each constituent list in {L1, L2, . . . , Lk}. We also see
that each subsequence has exactly one element that is less than the splitter Sj ,
which allows us to know which subsequence we are in during the course of the
scan — each element falling below the splitter denotes the beginning of a new
subsequence. Furthermore, since the subsequences are stored in sorted order,
we know that the predecessor result for a particular list Li corresponds to the
largest element less than q in Li’s subsequence. �

Now we bound the number of memory transfers incurred by query by walk-
ing through the pseudocode in Figure 4.

Theorem 1. An iterated predecessor query query(H, q) on a range coalescing
data structure H built from a set of n-length sorted lists L1, L2, . . . , Lk incurs
O(logB+1 n+k/B) memory transfers on a processor with cache blocks of size B.

Proof. We use the cache-oblivious search tree structure described by Bender,
Demaine and Farach-Colton [3] on line 1 of Figure 4 to find the bin correspond-
ing to the predecessor in the sorted n-length splitter list S using O(logB+1 n)
memory transfers. After we find the splitter and the corresponding bin D, we
merely scan through D once and write out the answers in a continuous stream
to the array output . Thus, we incur a read stream and a write stream, each of
which is O(k) elements and O(k/B) memory transfers. �

5 Preprocessing

This section describes how a range coalescing data structure is built cache-
obliviously from a set of k n-length sorted lists L1, L2, . . . , Lk and bounds the
number of memory transfers incurred by the process. We do this in four steps.
First, we give a suboptimal deterministic strategy for finding the “splitters” —
the values that partition the query space such that each partition has O(k) ele-
ments from the constituent lists in {L1, L2, . . . , Lk}. Second, we demonstrate
that the elements from each list can be assembled in the bin corresponding to
each splitter using O(kn/B) memory transfers. Finally, we give two randomized
algorithm for finding the splitters when k < ln2 n and k ≥ ln2 n, respectively,
each of which incurs O(kn/B) memory transfers.

Preprocessing suboptimally

In this section, we show how to find an n-length sorted splitter array S,
such that O(k) elements from L = ∪k

i=1Li fall in each range [Sj , Sj+1) ∀
1 ≤ j ≤ n. If we assume that all elements in L are unique, we can merely
merge all the elements and take every kth element in the merged list as
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the splitters.2 We can use a cache-oblivious k-merger [7] to merge the ele-
ments using O((kn/B) logM/B(k/B) + k) memory transfers if k ≤ 3

√
n and

O((kn/B) logM/B(kn/B)) memory transfers otherwise.

Bin construction

This section demonstrates how we can build the O(k)-sized bin corresponding to
each splitter in the array S using O(kn/B) memory transfers in the worst case.
If we were to merely build each of the n bins in sequence, each of which could
incur as many as 2k memory transfers since k may be larger than M , we could
incur as many as O(kn) memory transfers overall. This is unacceptable. Instead,
we will build the bins using a Z-order traversal [8] of the 2D space spanned by
the cross-product of bin number and list number, notated as the bin number ×
list number iteration space.

bins

lists

L9

L10

L16

...

D25 D26 D32...

Fig. 5. Example 2r by 2r (for r = 3) region of a Z-order traversal of the bin number ×
list number iteration space. During the course of the execution of this example region
there are 8 lists and 8 bins active. The blue regions represent cache blocks which are
partially read (lists L9, L10, . . . , L16) and partially written (bins D25, D26, . . . , D32).
The orange blocks are those which are fully read or written, respectively.

Theorem 2. Given a sorted list of O(n) splitters S and k sorted n-length lists
L1, L2, . . . , Lk, the bins for a range coalescing data structure can be constructed
2 We can extend the value of each element with the list number in order to make them
unique, since the elements from any particular list Li are unique. Note that if each
list contained a value l and the value l from the Li was chosen as the jth splitter
Sj , we do not compromise the correctness of the query, since the next smaller value
than Sj from each list in {L1, L2, . . . , Lk} is contained in the jth bin.
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deterministically and cache-obliviously using O(kn/B) memory transfers on a
processor with a cache of size M = Ω

(
B2

)
and cache blocks of size B.

Proof. Please see Appendix. �

Finding splitters for small k

In this section, we show how to find the splitters which partition all of the
elements into bins, each of which stores the answers to any query which falls in
the range of values between the associated splitter and the splitter for the next
bin of larger value. When k is less than ln2 n, we can randomly select elements to
be splitters with probability 1/k using O(kn/B) memory transfers by streaming
the lists and writing out the samples to separate lists. Next, we subdivide bins
that are too large, potentially generating extra splitters. We will show that this
process generates O(kn/B) memory transfers with high probability.3 First, we
establish two straightforward yet useful lemmas.

Lemma 4. Consider a coin with heads probability 1/k. In kn flips we will see
between n/2 and 2n heads with probability at least 1 − (kn)−c for some c > 1.

Proof. The proof follows from an application of Hoeffding’s inequality, for suffi-
ciently large n and the assumption that k < ln2 n. �

Lemma 5. The largest number of elements with value between two splitters
selected randomly with probability 1/k is (1 + ε)k ln(kn) with probability at least
1 − (kn)−ε for any ε > 0.

Proof. We can think of a bin as being created by successive coin flips with
probability of heads equal to 1/k: every time tails comes up, the bin grows
by one. Thus, the probability that a bin is of a particular size R is at most
(1 − 1/k)R/k. Summing from R = R′ to ∞, we can bound the probability that
a particular bin has size at least R′,

∑∞
R=R′(1 − 1/k)R/k = (1 − 1/k)R′

. Letting
R′ = (1 + ε)k ln(kn) and taking the union bound across at most kn different
bins, the proof follows. �

Consider the process of splitting a bin which exceeds 2(1 + ε)k elements.
We use 	R/2(1 + ε)k
 applications of a cache-oblivious selection algorithm [7]
to subdivide large bins of size R into bins of size at most 2(1 + ε)k elements
using O(	R/2(1 + ε)k
R/B) memory transfers.4

Theorem 3. The total number of memory transfers S required to subdivide all
m bins to be less than 2(1 + ε)k elements each is O(kn/B), assuming that the
largest bin is at most (1 + ε)k ln(kn) elements and n/2 ≤ m ≤ 2n.

3 In this context, with high probability means with probability greater than 1−N−c

where N is the total number of elements in the problem and c > 1 is some constant.
4 For convenience, we assume R > B. There is no need to make the bins smaller than

B elements, since processing a bin incurs at least one memory reference.
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Proof. Please see Appendix. �

We need to verify that the process of subdivision does not unduly increase
the number of bins.

Lemma 6. After subdivision, we will have O(n) bins.

Proof. Initially, there are O(n) splitters with high probability by Lemma 4. The
process of subdividing bins generates bins with size at least k, thus we can create
at most n extra bins through subdivision. �

Finding splitters for large k

When k is at least ln2 n, we use an oversampling technique as used in sam-
ple sort [4] to find a set of splitters and bound the size of all bins. In par-
ticular, we start by randomly sampling elements as candidate splitters with
probability 1/ ln k, which can be accomplished by streaming each list and writ-
ing out the samples to a separate candidate list with O(kn/B) memory trans-
fers. Then, we merge these candidates using and a cache-oblivious k-merger [7]
using O((kn/B ln k) logM/B(k/B) + k) = O(kn/B) memory transfers, assuming
M = Ω

(
B2

)
and n = Ω(B). Finally, we take every n evenly space elements from

this sorted list as our set of splitters.

Theorem 4. Given an oversampling rate of k/ ln k, the largest resulting bin has
at least 2(1 + ε)k elements with probability less than (kn)−ε.

Proof. Please see Appendix. �

6 Implementation and Experimentation

We implemented each of the simple solutions described in Section 3, and com-
pared their performance to range coalescing on a variety of data sets.

Each solution was implemented in C++, and compiled and tested on an
Intel i7 processor with 3MB of L3 cache. We implemented the full merge range
coalescing solution described in Section 5, instead of the randomized solution.
Before each test, k lists each of length n were generated using a uniform dis-
tribution of integers from 0 to 1 million. These lists were passed in as input to
each of the solutions. The initialization times and average query times of each
solution were recorded.

Range coalescing performed significantly better in practice than other linear-
storage solutions. It performed better on both small and large datasets. Average
query times are shown in Figure 6 and Figure 7. As the datasets got larger, the
effects of range coalescing became more evident. For n = 50 and k = 1000, range
coalescing did 5 times better than a simple binary search, whereas for n = 5000
and k = 1000, range coalescing performed 18 times better.

However, range coalescing requires much more time for preprocessing. It takes
about 20 times longer to initialize than the vEB search, and 3 times longer than
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fractional cascading. We believe these results could be improved upon - we did
not implement the linear time randomized preprocessing method described in
Section 5, leaving it instead to future work.

The average query time for the quadratic storage solution is better than
all linear storage solutions. However, it requires O(nk2) time to initialize. For
k = 1000, n = 100, this is 42 times longer than the preprocessing for the range
coalescing solution.

500 1,000 1,500 2,000
0

100

200

300

400

k

Q
ue

ry
ti

m
e

(μ
s)

Binary Search
vEB Search

Fractional Cascading
Range Coalescing
Quadratic Storage

Fig. 6. Query times vs k (for fixed n=1000)
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Fig. 7. Query times vs n (for fixed k=1000)
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7 Future Work

We have presented an optimal cache oblivious solution for the static iterated
predecessor query. There are several areas in which this can be extended. Range
coalescing does not currently support dynamic operations like insert or delete.
For instance, it is not obvious how one would avoid the adversarial behavior of
repeatedly adding and deleting an element. An element can appear in many bins
if the corresponding list does not have other elements in those bins. Repeatedly
adding and deleting such an element could cost Ω(n) work per operation given
a naive extension to dynamic range coalescing.

Range coalescing specifically solves the iterated predecessor problem on k
lists, but this does not generalize easily to a graph of lists. Fractional cascading
achieves a running time of O(lg n + k) on a graph query, where k is the length
of the traversed path in the graph. Applying range coalescing directly to this
problem results in O(logB+1 n + K), where K is the total size of the graph. The
concepts of range coalescing could hopefully be developed to be used as a black
box for such problems.

Omitted Proofs

Theorem 2. Given a sorted list of O(n) splitters S and k sorted n-length lists
L1, L2, . . . , Lk, the bins for a range coalescing data structure can be constructed
deterministically and cache-obliviously using O(kn/B) memory transfers on a
processor with a cache of size M = Ω

(
B2

)
and cache blocks of size B.

Proof. Consider a 2r by 2r naturally aligned region in the bin number × list
number iteration space, like the one depicted in Figure 5.5 The cache need only
keep the head of each of the 2r constituent lists Li2r+1, Li2r+2, . . . , L(i+1)2r for
some i > 0 and the head of the 2r bins Dj2r+1,Dj2r+2, . . . , D(j+1)2r for some
j > 0. The “head” of a list is the current location in the list as the list is streamed
linearly to transfer the elements to various bins. For the head of each list, there
can be as many as two non-full memory transfers (i.e., not all of the elements
on the cache block were written or read). Consider the largest r for which these
2 · 2r list heads fit in cache, so that a2rB = M for some constant a. In total,
there will be kn/22r cache flushes for a total of (M/B) ·kn(aB/M)2 = O(kn/B)
cache blocks, assuming M = Ω(B2). There may also be additional full memory
transfers in the course of processing each 2r by 2r region, though each element
may appear in at most one full memory transfer, thus there are at most kn/B
full memory transfers. �

Theorem 3. The total number of memory transfers S required to subdivide all
m bins to be less than 2(1 + ε)k elements each is O(kn/B), assuming that the
largest bin is at most (1 + ε)k ln(kn) elements and n/2 ≤ m ≤ 2n.

Proof. Let xi be the number of memory transfers incurred by the ith bin and
thus S =

∑m
i=1 Xi. Then, we have

5 A naturally aligned region of size c by c is one which begins with some index i ≡ 1
(mod c) in one dimension and j ≡ 1 (mod c) in the other.
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E[xi] ≤ a

∞∑

R=0

1
k

(

1 − 1
k

)R⌊
R

2(1 + ε)k

⌋
R

B

≤ a

∞∑

R=0

(

1 − 1
k

)R
R2

2(1 + ε)k2B

≤ a
k

B

for some constant a > 0. Also, we see that

xi ≤
⌊

(1 + ε)k ln(kn)
2(1 + ε)k

⌋
(1 + ε)k ln(kn)

B

≤ k

2B
(1 + ε) ln2(kn)

for all i since the largest bin is assumed to have at most (1 + ε)k ln(kn) ele-
ments. Let t = (k/2B)(1 + ε) ln2(kn) and note that each random variable in
{x1, x2, . . . , xm} has support in the range [0, t]. A Hoeffding bound on S gives
us Pr

{
S − E[S] ≥ t

√
εm ln(kn)

}

≤ exp
(

−2
εm ln(kn)t2

mt2

)

≤ exp(−2ε ln(kn))

≤ (kn)−ε
.

Then, for sufficiently large kn, S = O(kn/B) with high probability. �

Theorem 4. Given an oversampling rate of k/ ln k, the largest resulting bin has
at least 2(1 + ε)k elements with probability less than (kn)−ε.

Proof. Let R be the size of the largest bin. By Theorem B.3 of [4], for sufficiently
large kn, we have that

Pr{R > 2(1 + ε)k} ≤ kn exp

(

−(1 + ε)
(

1 + 2ε

2(1 + ε)

)2
k

ln k

)

≤ kn exp
(

−(1 + ε)
k

4 ln k

)

≤ kn exp

(

−(1 + ε)
ln2 kn

ln2 n

4 ln ln2 n

)

≤ kn exp

(

−(1 + ε)
ln2(kn) − o

(
ln2(kn)

)

8 ln lnn

)

≤ kn exp(−(1 + ε) ln(kn))

≤ (kn)−ε
.

�
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Abstract. Since the introduction of retroactive data structures at
SODA 2004 [1], a major open question has been the difference between
partial retroactivity (where updates can be made in the past) and full
retroactivity (where queries can also be made in the past). In particular,
for priority queues, partial retroactivity is possible in O(log m) time per
operation on a m-operation timeline, but the best previously known fully
retroactive priority queue has cost Θ(

√
m log m) time per operation.

We address this open problem by providing a general logarithmic-
overhead transformation from partial to full retroactivity called
“hierarchical checkpointing,” provided that the given data structure is
“time-fusible” (multiple structures with disjoint timespans can be fused
into a timeline supporting queries of the present). As an application, we
construct a fully retroactive priority queue which can insert an element,
delete the minimum element, and find the minimum element, at any point
in time, in O(log2 m) amortized time per update and O(log2 m log log m)
time per query, using O(m log m) space. Our data structure also supports
the operation of determining the time at which an element was deleted
in O(log2 m) time.

1 Introduction

Retroactivity. We can think of a data structure as being defined by a sequence of
updates u1, u2, . . . , um applied to its initial (empty) state. Traditional data struc-
tures “live in the present” in the sense that the user can only append updates to
this sequence, and ask queries about the final state of the data structure result-
ing from the entire update sequence. Retroactive data structures, introduced
at SODA 2004 [1], allow for updates to be inserted or deleted in the middle of
the sequence, instead of just the end. Effectively, this feature enables the user to
travel back in time and make a retroactive change to the data structure (similar
to the movie Back to the Future). Thus we refer to the mutable update sequence
as the timeline .

We distinguish two forms of retroactivity. In partial retroactivity , queries
can be made only of the final version resulting from all of the updates in the
timeline; effectively, retroactive updates must be propagated all the way through
the timeline in order to answer such queries correctly. In full retroactivity ,
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 263–275, 2015.
DOI: 10.1007/978-3-319-21840-3 22
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queries can be made about the data structure at any time, corresponding to the
result from a prefix of the timeline. In short, both forms of retroactivity enable
modifying the past, and full retroactivity enables querying the past.

Known Results. In some settings, retroactivity is easy to achieve. If updates
commute with each other and have inverses, then retroactive updates can be
moved to the end of the timeline, making partial (but not full) retroactivity
easy. If updates are inserts and deletes, and the queries fall under Bentley and
Saxe’s decomposable search problems, then full retroactivity is possible with an
O(log m) factor overhead [1].

Retroactivity becomes challenging when updates can have non-trival inter-
actions. Here one retroactive update can have a propagated effect on potentially
all later updates. In the extreme, when the data structure is a general-purpose
computer, a retroactive update can require an Ω(m) factor overhead [1].

The more interesting middle ground is when the updates have some but lim-
ited influence on each other—a common scenario in many classic data structures.
For example, logarithmic fully retroactive stacks (with push/pop), queues (with
enqueue/dequeue), deques (with all four), union-find, dictionaries, and prede-
cessor/successor structures all have logarithmic fully retroactive data structures
[1,2]. Of these results, predecessor/successor was the most challenging; the orig-
inal paper [1] solved partial retroactivity in O(log m) but full retroactivity in
O(log2 m), which was later improved to O(log m) by Giora and Kaplan [2]. This
problem is equivalent to dynamic rectilinear ray shooting, which was in fact the
original motivation for defining retroactivity.

Challenges. A key open problem in retroactivity, posed at SODA 2004, is
whether there is a difference in difficulty between obtaining partial versus full
retroactivity. The only known upper bound on the separation is a conversion
from partial to full retroactivity with O(

√
m) factor overhead [1]. Essentially,

this conversion maintains Θ(
√

m) checkpoints of the timeline using a partially
retroactive data structure, and to query in between, replays the necessary O(

√
m)

intervening updates. On the other hand, the only known data structural prob-
lem with a polynomial separation between the best partially retroactive and best
fully retroactive data structures is priority queues (with insert and delete-min
operations). The logarithmic partially retroactive priority queue [1] is one of the
most sophisticated retroactive data structures, propagating potentially linear-
length chain reactions in just logarithmic time. However, the existing approach
appeared limited to partial retroactivity. Until now, the fastest known fully
retroactive priority queue was the O(

√
m log m) bound that follows from the

general conversion.

Our Results. In this paper, we solve this 11-year-old open problem by construct-
ing the first polylogarithmic fully retroactive priority queue. Specifically, our data
structure supports inserting an element, deleting the minimum element, and find-
ing the minimum element, at any time in the timeline, in O(log2 m) amortized
time per update and O(log2 m log log m) time per query, using O(m log m) space.
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We also show how to support another natural query over the timeline: finding
the time at which a given element gets deleted as the minimum (or finding that
it remains in the structure in the present).

More importantly, we present a new general transformation from partial to
full retroactivity with only a logarithmic factor overhead. This result shows a
strong upper bound on the separation between partial versus full retroactiv-
ity, but it requires one additional assumption. Specifically, we call a (partially
retroactive) data structure time-fusible if, given two such data structures repre-
senting two different timelines (contained in disjoint time intervals), it is possible
to form a new (read-only) data structure representing the concatenation of those
timelines. Roughly speaking, this assumption lets us apply the O(

√
m) check-

pointing idea recursively in a binary tree structure built over the timeline, storing
a partially retroactive data structure for the sub-timeline represented by each
rooted subtree. Hence we call the transformation hierarchical checkpointing .
A retroactive query can then be answered by fusing O(log m) structures and
asking a query about the present.

Our fully retroactive priority queue data structure is an application of this
general technique. With some modifications, we show how to fuse two of the log-
arithmic partially retroactive priority queues from [1] in polylogarithmic time.
Applying the general technique gives us a polylogarithmic bound on fully retroac-
tive priority queues, but with worse bounds than those stated above. By a more
careful analysis tailored to priority queues, we show how to further tune the
hierarchical checkpointing analysis to improve the running time by a logarith-
mic factor and get the claimed bounds of Õ(log2 m).

Organization. We organize the sections of this paper as follows. Section 2
introduces our hierarchical checkpointing framework in greater detail. Section 3
describes time-fusible partially retroactive priority queues whose timelines may
be fused together in polylogarthmic time. Section 4 applies the technique of
hierarchical checkpointing to obtain a fully retroactive priority queue with poly-
logarthmic overheads.

2 Hierarchical Checkpointing

In this section, we present our hierarchical checkpointing technique for trans-
forming a time-fusible partially retroactive data structure into one that is fully
retroactive while incurring only polylogarithmic overheads. In later sections,
these results will be employed to design a fully retroactive priority queue with
polylogarithmic overheads.

We begin by defining in Section 2.1 the notion of time fusibility for retroactive
data structures. Then in Section 2.2 we describe the hierarchical checkpoint
procedure and prove its correctness.
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2.1 Definitions

Here we discuss the properties of partially retroactive data structures and the
conditions necessary to use hierarchical checkpointing to obtain full retroactivity.

We define a retroactive update operation to be the insertion or deletion of
a data structure operation at a particular time. These operations are:

– Insert-Op(o, t): insert a data structure update operation o into the retroac-
tive structure’s timeline at time t.

– Delete-Op(o, t): delete a data structure update operation o from the
retroactive structure’s timeline at time t.

We define a retroactive query operation to be one that can determine
some aspect of the state of the retroactive data structure at some point in time.
We use Get-View(t) as the canonical query procedure when we describe our
transformation.

– Get-View(t): returns some aspect of the state of the retroactive data struc-
ture at time t.

For partially retroactive structures, query operations can only be performed
in the present (i.e. t = ∞). Fully retroactive data structures, however, may be
queried at any time t. It turns out, that a collection of partially retroactive data
structures can be used to support fully retroactive query operations when it is
possible to “fuse” their timelines. Formally, we say a partially retroactive data
structure is time fusible if it has the following properties:

1. It supports a function, Fuse(d1, d2), that fuses the timelines of two instances
d1 and d2 of the partially retroactive data structure, producing a version of
the data structure that allows read-only queries and reflects the updates in
both d1 and d2. Fuse(d1, d2) need only support fusion between structures
containing updates that span disjoint and adjacent intervals of the timeline.

2. Sequences of operations made on it exhibit substring closure; in other words,
given a valid sequence of operations, any contiguous subsequence of opera-
tions on the structure is also valid.

2.2 The Data Structure

In this section we describe how to transform a time-fusible partially retroactive
data structure into one that is fully retroactive using our hierarchical check-
pointing framework. Specifically, we obtain a fully retroactive data structure
with O(T (m) log m+Q(m, k)) query time and O(A(m) log2 m) amortized update
time, where T (m) and A(m) represent the merge and update time, respectively,
in the original partially retroactive data structure, and Q(m, k) is the query time
of a time-fused structure consisting of k fusions and containing m updates.

The first step of our transformation is to build a checkpoint tree — a
balanced binary search tree in which each node of the tree contains a partially
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retroactive data structure consisting of all the updates in the subtree rooted
at that node. Our checkpoint tree is similar to a segment tree [3] in that each
partially retroactive data structure can be viewed as a segment with endpoints
given by the first and last chronological update in the structure. The structures in
the leaves of our checkpoint tree each contain only one update, and the leaves are
sorted by the time of their one update. The update operations Insert-Op(o, t) or
Delete-Op(o, t) can be performed on the fully retroactive structure by inserting
into or deleting the update, o, from all of the partially retroactive structures in
the search path. A query can be performed at time t by merging O(log n) disjoint
partially retroactive structures obtained from the balanced binary tree such that
the fused structure contains all updates in the time span (−∞, t].

Theorem 1. Given a partially retroactive data structure that is time fusible, we
may construct a fully retroactive version of the data structure using hierarchical
checkpointing. This data structure will have an O(A(m) log2 m) amortized update
time and O(T (m) log m + Q(m, k)) query time.

We prove Theorem 1 in two parts below.

Lemma 1. Our hierarchical checkpointing method produces a fully retroactive
data structure with O(A(m) log2 m) amortized update time.

Proof. Let F be a fully retroactive data structure based on a time-fusible par-
tially retroactive data structure P . Suppose that m updates have been inserted
into F and that the update operation for P runs in O(A(m)) time.

We utilize a scapegoat tree [4] to represent the checkpoint tree for F . The
checkpoint tree contains all updates to the fully retroactive structure at its leaves
ordered by time. Each internal node, x, is associated with an instance of P that
reflects the application of all updates in its subtree. To perform Insert-Op(o, t)
or Delete-Op(o, t), we insert the update as a leaf in the checkpoint tree, and
apply the update to the instances of P associated with nodes along the roof to
leaf path in O(A(m) log m) time.

To rebalance the checkpoint tree, the tree rooted at the scapegoat node is
rebuilt. We begin by obtaining a sorted list of the k updates ordered by time
by performing an in-order walk of the subtree. We create a balanced binary tree
with these k updates at the leaves, and initialize an empty instance of P for each
internal node of the subtree. Then, we insert the update at each leaf into each
of its O(log k) ancestors. Because applying an update to an instance of P takes
O(A(k)) time, the total time required to rebuild a subtree containing k updates
is O(A(k) log k). The total cost of an Insert-Op or Delete-Op operation for
the fully retroactive structures is then the sum of the cost of an insertion or
deletion and the amortized cost of rebuilding, O(A(m) log2 m) amortized.

Lemma 2. Our hierarchical checkpointing method produces a fully retroactive
data structure with O(T (m) log m + Q(m, k)) query time.

Proof. Suppose that T (m) is the time it takes to fuse any two instances of P ,
and Q(m, k) is the time it takes to query an instance of P , where m is the total
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number of updates in P , and k is the number of components that were used to
create the fused structure.

To perform Get-View(t), we first traverse the checkpoint tree to identify the
O(log m) disjoint subtrees that represent the time interval (−∞, t]. The time-
fusible partially retroactive structures associated with these subtrees are then
fused in-order, resulting in a single structure representing the interval (−∞, t].
We can fuse O(log m) P structures in O(T (m) log m) time. Querying this struc-
ture then takes O(Q(m, k)) time. Therefore, the total runtime of Get-View(t)
is O(T log m + Q(m, k)).

3 Time-Fusible Partially Retroactive Priority Queue

In this section we present a partially retroactive priority queue that supports
a polylogarithmic fusion operation. Specifically, we describe an algorithm that
fuses k = O(log m) partially retroactive priority queues containing m updates
in O(k log k log m) time. This time-fusible partially retroactive priority queue
enables the use of hierarchical checkpointing to obtain a fully retroactive priority
queue with polylogarithmic overheads.

3.1 Partially Retroactive Priority Queues

We begin with an informal review of a partially retroactive priority queue data
structure. To simplify our exposition, we treat the partially retroactive priority
queue from [1] as a black box and maintain 2 auxillary data structures: Qnow

containing the set of all keys remaining in the priority queue at time t = ∞,
and Qdel containing all keys that were removed from the priority queue at some
point in the past.

We assume that the partially retroactive priority queue returns, following
each retroactive update, the keys which should be inserted or deleted from Qnow

and Qdel. If a priority queue is empty at time t, then a delete-min operation will,
by convention, insert a placeholder key of infinite weight into Qdel. It is known
that, following a retroactive update at time t, it is only necessary to insert or
delete a single key into Qnow and Qdel [1]. We can, therefore, synchronize our
auxillary data structures Qnow and Qdel with the partially retroactive priority
queue in O(log m) time. A proof of this claim and an in-depth description of the
partially retroactive priority queue data structure can be found in [1, 5.4].

The auxillary Qnow and Qdel structures are maintained using weight-
balanced B-trees [5–7] which for a balance factor d > 4 have the following
properties:

– Insertion and deletion operations on a B-tree containing m elements take
O(log m) time.

– For all non-root nodes u at height h the weight w(u) of the subtree rooted
at u is bounded as follows: dh/2 ≤ w(u) ≤ 2dh.

– The root r of a height-h tree has bounded weight w(r): dh−1 ≤ w(r) ≤ 2dh.
– Tree-split and concatenate operations on a size-m tree take O(log m) time.
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– A height-h′ subtree T ′ of a height-h weight-balanced B-tree T can be deleted
to form the weight-balanced B-tree T − T ′ in O(d(h − h′)) time.

A weight-balanced B-tree data structure possessing these properties is described
in [6,7]. Specifically, we apply the result of [6] with balance factor d = 8 to
maintain Qnow and Qdel.

3.2 Fusion Algorithm

Before describing our algorithm for fusion, let us better understand the structure
of the problem by proving a mathematical relationship between two partially
retroactive priority queues that represent two fusible (i.e. disjoint and adjacent)
intervals of time.

Lemma 3. Consider two partially retroactive priority queues Q1 and Q2 whose
update times lie in the intervals [a, b) and [b, c) respectively. Then, the partially
retroactive priority queue Q3 containing all updates in Q1 and Q2 in the interval
[a, c) has the property that

Q3,now = Q2,now ∪ max-A {Q1,now ∪ Q2,del} (1)

Q3,del = Q1,del ∪ min-D {Q1,now ∪ Q2,del} (2)

where A = |Q1,now|−|Q2,del|, D = |Q2,del| and max-C {S} denotes the C largest
elements in the set S.

Using Lemma 3 we can construct a time-fused representation of Q3 from Q1

and Q2 in polylogarithmic time. We will represent each of Q3,now and Q3,del as
a list of trees obtained via tree-split operations consistent with the application
of Equation 1 and Equation 2. We say that a time-fusible partially retroactive
priority queue has order k, and use the superscript notation Qk, if Qk

now and
Qk

del are represented as lists of at most k trees.
In Figure 1 we provide the pseudocode for Fuse which fuses two partially

retroactive priority queues Qk
1 , Q

k
2 to obtain Q3k

3 . Step 1 computes the value of A
from Lemma 3, and step 2 concatenates the list of trees representing Qk

1,now and
and Qk

2,del to form a list L containing 2k trees. Step 3 computes a “split-key” x
that is greater than A elements contained in trees of L. Next each tree in L is
split in step 4 by performing a tree-split operation to divide each tree Ti into a
tree Ti,< containing all keys in Ti that are less than x and Ti,> containing all
keys in Ti that are greater than x . The trees Ti,> for i = 1, 2, . . . , 2k combined
with the trees in Q2,now contain the elements satisfying the relation of Equation
(1) in Lemma 3, and similarly the trees in Q1,del and in Ti,< for i = 1, 2, . . . , 2k
contain the elements satisfying the relation of Equation (2).

The following theorem proves that Fuse fuses two partially retroactive pri-
ority queues of order k in O(k log m) time.

Theorem 2. Consider two partially retroactive priority queues Qk
1 and Qk

2 with
order k containing m operations. Then Fuse(Qk

1 , Q
k
2) runs in O(k log m) time.
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GetSplitKey(s, T1, . . . , Tk)

1. If N =
∑

i |Ti| < C (for constant C), sort⋃
i Ti and return the sth element.

2. If s < N/2, set s = N − s and “invert”
the order of each Ti.

3. For each Ti, pick a leftmost subtree Tmi

containing keys in the range (−∞, mi)
where mi has an order statistic in Ti con-
tained in the range (|Ti|/256, |Ti|/4).

4. Assign each mi the weight wi = |Ti|.
Using weighted selection, select
the N/4th element mj among
m1, m2, . . . , mk

5. For mi ≤ mj , let T ′
i = Ti − Tmi . For

mi > mj , let T ′
i = Ti.

6. Set snew = s−∑i(|Ti| − |T ′
i |) and return

GetSplitKey(snew , T ′
1, . . . , T

′
k).

(a)

Fuse(Qk
1 , Qk

2)

1. A = |Q1,now| − |Q2,del|
2. Form a list of 2k trees L =

T1, . . . , T2k by concatenating the
list of k trees representing
Q1,now with the k trees repre-
senting Q2,del.

3. x =
GetSplitKey(A, T1, . . . , T2k)

4. For i = 1, 2, . . . 2k, split the tree
Ti on the key x to obtain 2 trees
Ti,> and Ti,<.

5. Q3,now = Q2,now +
T1,>, . . . , T2k,>

6. Q3,del = Q1,del +T1,<, . . . , T2k,<

7. Return Q3

(b)

Fig. 1. Pseudocode for (a) the GetSplitKey operation; and (b) the Fuse operation.
GetSplitKey takes a key s and a list of k binary trees, and returns a key x such that
s keys in T1, T2, . . . , Tk are less than x

Proof. We first show that GetSplitKey runs in O(k log m) time. Our algorithm
for finding the split key is an adaptation of the approach of Frederickson and
Johnson to compute order statistics for sorted arrays [8].

Steps 1, 2, and 4 of GetSplitKey run in O(k) time (step 4 uses linear-time
weighted selection from [9]).

Step 3 finds a leftmost subtree Tmi
whose contents are contained in the range

(−∞,mi) and where the order statistic of mi is in the range (|Ti|/256, |Ti|/4).
We show that step 3 runs in O(k) time by showing that for each Ti such a
subtree exists at a distance of at most 2 from the root. Consider a height-h
weight-balanced B-tree with balance factor d, root node r, and an internal node
u at height h−2. The weight-balance criteria for B-trees provided in Section 3.1
implies that the ratio w(u)/w(r) is bounded in the range (1/256, 1/4). The key
mi can, therefore, be found in O(1) time by selecting the maximum key from
the leftmost height-(h − 2) subtree of Ti.

Step 5 deletes the subtree Tmi
from Ti if mi ≤ mj . The difference in the

heights of Tmi
and Ti is at most 2, which allows T −Tmi

to be obtained in O(d)
time while preserving weight-balance. For d = 8, this step runs in O(k) time.
Note that the subtrees deleted in this step contain elements whose order statistic
is strictly less than N/2 and thus these subtrees can not contain the sth order
statistic. To prove this we show that the order statistic of mj , computed in step
4, is less than N/2. The key mj is selected in step 4 such that 3N/4 elements are
contained in trees Ti for which mi > mj . For each such i, the key mi is smaller
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than at least 3|Ti|/4 of the elements in Ti. The key mj is, therefore, smaller than
at least 9N/16 elements, and thus has an order statistic less than N/2.

Step 6 updates the value of s to reflect the reduced problem size, and recur-
sively calls GetSplitKey. To bound the depth of the recursion, it is sufficient
to show that step 5 eliminates a constant fraction of the elements. Since a total of
N/4 elements are contained in trees Ti for which mi ≤ mj , and at least |Ti|/256
elements in Ti are smaller than mi, step 5 eliminates at least N/1024 elements.
The recursion depth is, therefore, bounded by O(log N). Since N = O(m), the
total runtime of GetSplitKey is O(k log m).

Next let us analyze the Fuse operation. Steps 1-2 and 5-6 of Fuse can be
performed in O(k) time. Step 3 to compute the split key runs in O(k log m) time,
and step 4 may be performed in O(k log m) time by performing an O(log m) time
tree split operation on each of k trees. The runtime of Fuse is bounded by the
time to compute the split key, and therefore is O(k log m).

The bound proved in Theorem 2 depends on the order k of the two time-
fusible partially retroactive priority queues Qk

1 , Qk
2 being merged. It turns out,

that the fusion of k partially retroactive priority queues can be constructed
efficiently while being represented using only O(k) trees by combining trees in
Qnow and Qdel that originated from a split operation on a common tree. The
ability to perform such a reduction relies on the following lemma.

Lemma 4. Let Q1, . . . , Qk denote k partially retroactive priority queues each
with disjoint time intervals that increase monotonically with k. Let Q∗ be a
priority queue containing the updates in Q1, . . . , Qk applied consecutively. Then
Q∗,now and Q∗,del consist of contiguous intervals of Qi,now and Qi,del, i.e.

Q∗,now = ∪i∈Snow
Qi,now[ai, bi] ∪i∈Sdel

Qi,del[a′
i, b

′
i] (3)

Q∗,del = ∪i∈Tnow
Qi,now[ci, di] ∪i∈Tdel

Qi,del[c′
i, d

′
i] (4)

for some sets Snow, Sdel, Tnow, Tdel ⊆ {1, . . . , k} and elements ai,a′
i,

bi,b′
i,ci,c

′
i,di,d

′
i where for a set S and a, b ∈ S we let S[a, b] = {x ∈ S : a ≤

x ≤ b}.
The preceding lemma allows us to tweak the fusion algorithm to guarantee

that the order of the fusion of k time-fusible partially retroactive priority queues
is bounded by 2k. This is accomplished by adding a post-processing step Post-
Fuse immediately after the fusion procedure Fuse. After obtaining the fusion
Q3 of Q1 and Q2, the trees representing Q3,now are checked in PostFuse to
identify pairs of split-trees that were obtained by splitting a common tree. By
Lemma 4 the union of these intervals span disjoint intervals and these pairs of
trees can, therefore, be concatenated in logarithmic time.

Lemma 5. The fusion of k time-fusible partially retroactive priority queues has
order bounded by 2k and runs in O(k log m) time when using the PostFuse
procedure.

To combine the results of this section, we prove the following theorem.
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Theorem 3. Consider k = O(log m) time-fusible partially retroactive priority
queues. The time to fuse these k data structures is bounded by O(k log k log m),
and the time required to query this structure is O(log2 m).

Proof. We arrange the k time-fusible structures at the leaves of a balanced
height-log k merge tree. By Lemma 5 the sum of the orders of time-fusible
partially retroactive priority queues at level i in the merge tree is O(k). The
total work to perform fusions at level i is, therefore, O(k log m) Since there are
log log m levels in the merge tree the total time is O(k log m log log m). To query
the fused structure we perform a query on each of the O(log m) trees representing
Qnow which can be done in O(log2 m) time.

4 Fully Retroactive Priority Queue

In this section we describe the design of a fully retroactive priority queue that
uses hierarchical checkpointing. We begin in Section 4.1 by showing how to
apply our technique of hierachical checkpointing using the time-fusible par-
tially retroactive priority queue of Section 3. This yields a fully retroactive
priority queue that supports retroactive updates in O(log3 m) amortized time,
retroactive queries in O(log2 m log log m) time, and Find-Deletion-Time in
O(log3 m log log m) time. Next, in Section 4.2, we optimize our application of
hierarchical checkpointing for priority queues to obtain O(log2 m) amortized
time updates, and O(log2 m) time Find-Deletion-Time queries.

4.1 Obtaining Full Retroactivity Using Hierarchical Checkpointing

Here we analyze the fully retroactive priority queue obtained by a straightforward
application of hierarchical checkpointing. The time-fusible partially retroactive
priority queue described in Section 3 meets the prerequisites of Theorem 1 needed
to perform the partial-to-full transformation. Consequently we can directly apply
this theorem to obtain a fully retroactive priority queue which follows the struc-
ture laid out in Section 2. A checkpoint tree contains all retroactive updates
ordered by time, and each internal node maintains a time-fusible partially retroac-
tive priority queue that contains the updates within its subtree.

The checkpoint-tree data structure used in this fully retroactive priority
queue is shown in Figure 2(a) after 16 retroactive operations have been per-
formed. In this example, the checkpoint tree has 16 leaves each corresponding to
a retroactive operation on the priority queue. The time-fusible partially retroac-
tive priority queue data structure described in Section 3 is used to represent the
partial checkpoints in a checkpoint tree. Each internal node, Q[a,b), maintains
a time-fusible partially retroactive priority queue that contains all retroactive
operations in its subtree (i.e. all operations occurring at times t ∈ [a, b)).

The Get-View(t) operation is illustrated in Figure 2(b). A checkpoint rep-
resenting the priority queue at time t = 10 is constructed by combining 3 partial
checkpoints from the checkpoint tree. The time-fusible partially retroactive pri-
ority queues Q[0,8), Q[8,10), and Q[10,11) that are highlighted in Figure 2 are
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(a)

(b)

Fig. 2. Hierarchical checkpointing for fully retroactive priority queue. Illustration of
the checkpoint tree for a fully retroactive priority queue with 16 operations.

collected and then merged to obtain obtain a partially retroactive priority queue
containing all updates in in the interval [−∞, 10].

Theorem 4. There exists a fully retroactive priority queue that supports
retroactive updates in O(log3 m) amortized time, queries in O(log2 m log log m),
and the operation, Find-Deletion-Time, in O(log3 m log log m) time.

Proof. The time-fusible partially retroactive priority queue described in Section 3
supports retroactive updates in O(log m) time. Applying Lemma 1 with A(m) =
log m shows that retroactive updates run in O(log3 m) amortized time. By The-
orem 3, the time to merge O(log m) time-fusible partially retroactive prior-
ity queues is bounded by O(log2 m log log m). Similarly, the time to query this
merged structure is bounded by O(log2 m) since the merged priority queue has
order O(log m). Applying Lemma 2 with T (m) = O(log2 m) and Q(m) =
O(log2 m log log m) shows that retroactive queries run in O(log2 m log log m) time.
Finally, the Find-Deletion-Time(x) operation can be performed via binary
search to identify the first time t for which the key x is not in the queue. This
involves O(log m) retroactive queries showing that Find-Deletion-Time runs
in O(log3 m log log m) time.
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4.2 Faster Retroactive Updates and Find-Deletion-Time Queries

The general transformation described in Section 2 maintains balance in the
checkpoint tree by reapplying all updates in rebuilt subtrees. As shown in
Lemma 6 a checkpoint tree for priority queues can be rebuilt more efficiently.

Lemma 6. A subtree of the fully retroactive priority queue’s checkpoint tree
containing m updates can be rebuilt in O(m log m) time.

Proof. Consider a node u in the checkpoint tree with children v and w whose sub-
tree contains m updates. The time-fusible priority queue containing all updates
in u’s subtree can be computed in O(m) time from the 2 time-fusible priority
queues associated with v and w. First the Fuse operation outlined in Section 2
is performed to merge v and w. The resulting time-fusible priority queue may
represent Qnow and Qdel using multiple trees, but these trees can be merged
in O(m) time. Using this merge procedure, a subtree of the checkpoint tree is
rebuilt by first placing all m updates at the leaves of a balanced tree, and then
performing merges from the leaves upward. Each update is involved in O(log m)
merges, so the total time to rebuild the subtree is O(m log m).

A more efficient implementation of the Find-Deletion-Time(k) operation
can be obtained by performing a binary search directly on the checkpoint tree.
The high-level idea is to perform a binary search for the time of deletion by
keeping track of the current number of surviving keys that are less than or equal
to k at any particular time. Due to space limitations, this result is stated in
Lemma 7 without proof.

Lemma 7. The Find-Deletion-Time operation which performs a binary
search directly on the checkpoint tree data structure runs in O(log2 m) time.

Theorem 5. The fully retroactive priority queue performs updates in O(log2 m)
amortized time when using a checkpoint tree with the memoized subtree rebuilding
procedure, and performs Find-Deletion-Time operations in O(log2 m) time.
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Abstract. In this paper, we introduce and investigate the Minimum
Eccentricity Shortest Path (MESP) problem in unweighted graphs. It
asks for a given graph to find a shortest path with minimum eccentricity.
We demonstrate that:

– a minimum eccentricity shortest path plays a crucial role in obtaining
the best to date approximation algorithm for a minimum distortion
embedding of a graph into the line;

– the MESP-problem is NP-hard on general graphs;
– a 2-approximation, a 3-approximation, and an 8-approximation for

the MESP-problem can be computed in O(n3) time, in O(nm) time,
and in linear time, respectively;

– a shortest path of minimum eccentricity k in general graphs can be
computed in O(n2k+2m) time;

– the MESP-problem can be solved in linear time for trees.

1 Introduction

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. For a graph G = (V,E), we use n = |V |
and m = |E| to denote the cardinality of the vertex set and the edge set of G.
For a vertex v of G, NG(v) = {u ∈ V | uv ∈ E} is called the open neighborhood,
and NG[v] = NG(v) ∪ {v} the closed neighborhood of v.

The length of a path from a vertex v to a vertex u is the number of edges
in the path. The distance dG(u, v) of two vertices u and v is the length of
a shortest path connecting u and v. The distance between a vertex v and a
set S ⊆ V is defined as dG(v, S) = minu∈S dG(u, v). The eccentricity eccG(v) of
a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its eccentricity is eccG(S) =
maxu∈V dG(u, S).

In this paper, we investigate the following problem.

Definition 1 (Minimum Eccentricity Shortest Path Problem). For a
given a graph G, find a shortest path P such that for each shortest path Q,
eccG(P ) ≤ eccG(Q).

c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 276–288, 2015.
DOI: 10.1007/978-3-319-21840-3 23



On the Minimum Eccentricity Shortest Path Problem 277

Although this problem might be of an independent interest (it may arise
in determining a “most accessible” speedy linear route in a network and can
find applications in communication networks, transportation planning, water
resource management and fluid transportation), our interest in this problem
stems from the role it plays in obtaining the best to date approximation algo-
rithm for a minimum distortion embedding of a graph into the line. In Section 2,
we demonstrate that every graph G with a shortest path of eccentricity k admits
an embedding f of G into the line with distortion at most (8k + 2) ld(G), where
ld(G) is the minimum line-distortion of G. Furthermore, if a shortest path of G
of eccentricity k is given in advance, then such an embedding f can be found in
linear time.

This fact augments the importance of investigating the Minimum Eccentricity
Shortest Path problem (MESP-problem) in graphs. Fast algorithms for it will
imply fast approximation algorithms for the minimum line distortion problem.
Existence of low eccentricity shortest paths in special graph classes will imply
low approximation bounds for those classes. For example, all AT-free graphs
(and hence all interval, permutation, cocomparability graphs) enjoy a shortest
path of eccentricity at most 1 [3], all convex bipartite graphs enjoy a shortest
path of eccentricity at most 2 [5].

We prove also that for every graph G with ld(G) = λ, the minimum eccentric-
ity of a shortest path of G is at most

⌊
λ
2

⌋
. Hence, one gets an efficient embedding

of G into the line with distortion at most O(λ2).
In Section 3, we show that the MESP-problem is NP-hard on general graphs

and that a shortest path of minimum eccentricity k in general graphs, can be
computed in O(n2k+2m) time. In Section 4, we design for the MESP-problem
on general graphs a 2-approximation algorithm that runs in O(n3) time, a
3-approximation algorithm that runs in O(nm) time and an 8-approximation
algorithm that runs in linear time. In Section 5, we demonstrate that the MESP-
problem can be solved in linear time for trees and distance-hereditary graphs,
and in polynomial time for chordal graphs and dually chordal graphs.

Note that our Minimum Eccentricity Shortest Path problem is close but
different from the Central Path problem in graphs introduced in [16]. It asks
for a given graph G to find a path P (not necessarily shortest) such that any
other path of G has eccentricity at least eccG(P ). The Central Path problem
generalizes the Hamiltonian Path problem and therefore is NP-hard even for
chordal graphs [15]. Our problem is polynomial time solvable for chordal graphs.

In what follows we will need the following additional notions and notations.
The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diame-

ter diamG(S) of a set S ⊆ V is defined as maxu,v∈S dG(u, v). A pair of vertices
x, y of G is called a diametral pair if dG(u, v) = diam(G). In this case, every
shortest path connecting x and y is called a diametral path.

A path P of a graph G is called a k-dominating path of G if eccG(P ) ≤
k. In this case, we say also that P k-dominates each vertex of G. A pair of
vertices x, y of G is called a k-dominating pair if every path connecting x and y
has eccentricity at most k.
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For a vertex s, let L
(s)
i = {v | dG(s, v) = i} denote the vertices with distance i

from s. We will also refer to L
(s)
i as the i-th layer.

2 Motivation Through the Line-Distortion of a Graph

Computing a minimum distortion embedding of a given n-vertex graph G into
the line � was recently identified as a fundamental algorithmic problem with
important applications in various areas of computer science, like computer
vision [17], as well as in computational chemistry and biology (see [12,13]). The
minimum line distortion problem asks, for a given graph G = (V,E), to find a
mapping f of vertices V of G into points of � with minimum number λ such that
dG(x, y) ≤ |f(x) − f(y)| ≤ λ dG(x, y) for every x, y ∈ V . The parameter λ is
called the minimum line-distortion of G and denoted by ld(G). The embedding f
is called non-contractive since dG(x, y) ≤ |f(x) − f(y)| for every x, y ∈ V .

In [2], Bǎdoiu et al. showed that this problem is hard to approximate
within a constant factor. They gave an exponential-time exact algorithm and
a polynomial-time O(n1/2)-approximation algorithm for arbitrary unweighted
input graphs, along with a polynomial-time O(n1/3)-approximation algorithm
for unweighted trees. In another paper [1], Bǎdoiu et al. showed that the prob-
lem is hard to approximate by a factor O(n1/12), even for weighted trees. They
also gave a better polynomial-time approximation algorithm for general weighted
graphs, along with a polynomial-time algorithm that approximates the minimum
line-distortion λ embedding of a weighted tree by a factor that is polynomial in λ.

Fast exponential-time exact algorithms for computing the line-distortion of a
graph were proposed in [7,8]. Fomin et al. [8] showed that a minimum distortion
embedding of an unweighted graph into the line can be found in time 5n+o(n).
Fellows et al. [7] gave an O(nλ4(2λ+1)2λ) time algorithm that for an unweighted
graph G and integer λ either constructs an embedding of G into the line with
distortion at most λ, or concludes that no such embedding exists. They extended
their approach also to weighted graphs obtaining an O(nλ4W (2λ + 1)2λW ) time
algorithm, where W is the largest edge weight. Thus, the problem of minimum
distortion embedding of a given n-vertex graph G into the line � is Fixed Param-
eter Tractable.

Heggernes et al. [10,11] initiated the study of minimum distortion embeddings
into the line of specific graph classes. In particular, they gave polynomial-time
algorithms for the problem on bipartite permutation graphs and on threshold
graphs [11]. Furthermore, in [10], Heggernes et al. showed that the problem
of computing a minimum distortion embedding of a given graph into the line
remains NP-hard even when the input graph is restricted to a bipartite, cobipar-
tite, or split graph, implying that it is NP-hard also on chordal, cocomparability,
and AT-free graphs. They also gave polynomial-time constant-factor approxima-
tion algorithms for split and cocomparability graphs.

Recently, in [5], a more general result for unweighted graphs was proven: for
every class of graphs with path-length bounded by a constant, there exists an effi-
cient constant-factor approximation algorithm for the minimum line-distortion



On the Minimum Eccentricity Shortest Path Problem 279

problem. As a byproduct, an efficient algorithm was obtained which for each
unweighted graph G with ld(G) = λ constructs an embedding with distortion
at most O(λ2). Furthermore, for AT-free graphs, a linear time 8-approximation
algorithm for the minimum line-distortion problem was obtained. Note that AT-
free graphs contain all cocomparability graphs and hence all interval, permuta-
tion and trapezoid graphs.

In this section we simplify and improve the result of [5]. We show that a
minimum eccentricity shortest path plays a crucial role in obtaining the best to
date approximation algorithm for the minimum line-distortion problem.

We will need the following simple “local density” lemma.

Lemma 1. For every vertex set S ⊆ V of an arbitrary graph G = (V,E),

|S| − 1 ≤ diamG(S) ld(G).

Proof. Consider an embedding f∗ of G into the line � with distortion ld(G).
Let a and b be the leftmost and the rightmost, respectively, in � vertices of S,
i. e., f∗(a) = min{f∗(v) | v ∈ S} and f∗(b) = max{f∗(v) | v ∈ S}. Consider a
shortest path P in G between a and b. Since for each edge xy of G (and hence
of P ) |f∗(x) − f∗(y)| ≤ ld(G) holds, we get f∗(b) − f∗(a) ≤ dG(a, b) ld(G) ≤
diamG(S) ld(G). On the other hand, since all vertices of S are mapped to points
of � between f∗(a) and f∗(b), we have f∗(b) − f∗(a) ≥ |S| − 1. ��

The main result of this section is the following.

Theorem 1. Every graph G with a shortest path of eccentricity k admits an
embedding f of G into the line with distortion at most (8k+2) ld(G). If a shortest
path of G of eccentricity k is given in advance, then such an embedding f can be
found in linear time.

Proof. Let P = (x0, x1, . . . , xi, . . . , xj , . . . , xq) be a shortest path of G of eccen-
tricity k. Build a BFS(P,G)-tree T of G (i. e., a Breadth-First-Search tree of G
started at path P ). Denote by {X0,X1, . . . , Xq} the decomposition of the vertex
set V of G obtained from T by removing the edges of P . That is, Xi is the
vertex set of a subtree (branch) of T growing from vertex xi of P . See Fig. 1(a)
for an illustration. Since eccentricity of P is k, we have dG(v, xi) ≤ k for every
i ∈ {1, . . . , q} and every v ∈ Xi.

We define an embedding f of G into the line � by performing a preorder
traversal of the vertices of T starting at vertex x0 and visiting first vertices of
Xi and then vertices of Xi+1, i = 0, . . . , q − 1. We place vertices of G on the line
in that order, and also, for each i ∈ {0, . . . , q − 1}, we leave a space of length
dT (vi, vi+1) between any two vertices vi and vi+1 placed next to each other (this
can be done during the preorder traversal). Alternatively, f can be defined by
creating a twice around tour of the tree T , which visits vertices of Xi prior to
vertices of Xi+1, i = 0, . . . , q − 1, and then returns to x0 from xq along edges
of P . Following vertices of T from x0 to xq as shown in Fig. 1(b) (i. e., using
upper part of the twice around tour), f(v) can be defined as the first appearance
of vertex v in that subtour (see Fig. 1(c)).
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Fig. 1. Illustration to the proof of Theorem 1. (a) The decomposition {X0, X1, . . . , Xq}
of the vertex set V of G. (b) The upper part of the twice around tour. (c) An embed-
ding f obtained from following the upper part of the twice around tour.

We claim that f is a (non-contractive) embedding with distortion at most
(8k +2) ld(G). It is sufficient to show that dG(x, y) ≤ |f(x)−f(y)| for every two
vertices of G that are placed by f next to each other in � and that |f(v)−f(u)| ≤
(8k + 2) ld(G) for every edge uv of G (see, e. g., [2,11]).

Let x, y be arbitrary two vertices of G that are placed by f next to each other
in �. By construction, we know that |f(x) − f(y)| = dT (x, y). Since dG(x, y) ≤
dT (x, y), we get also dG(x, y) ≤ |f(x) − f(y)|, i. e., f is non-contractive.

Consider now an arbitrary edge uv of G and assume u ∈ Xi and v ∈ Xj

(i ≤ j). Note that dP (xi, xj) = j−i ≤ 2k+1, since P is a shortest path of G and
dP (xi, xj) = dG(xi, xj) ≤ dG(xi, u)+1+dG(xj , v) ≤ 2k+1. Set S =

⋃j
h=i Xh. For

any two vertices x, y ∈ S, dG(x, y) ≤ dG(x, P )+2k+1+dG(y, P ) ≤ k+2k+1+k =
4k+1 holds. Hence, diamG(S) ≤ 4k+1. Consider subtree TS of T induced by S.
Clearly, TS is connected and has |S|−1 edges. Therefore, f(v)−f(u) ≤ 2(|S|−1)
since each edge of TS contributes to f(v) − f(u) at most 2 units. Now, by
Lemma 1, f(v) − f(u) ≤ 2(|S| − 1) ≤ 2 diamG(S) ld(G) ≤ (8k + 2) ld(G). ��

Recall that a pair x, y of vertices of a graph G forms a k-dominating pair if
every path connecting x and y in G has eccentricity at most k. It turns out that
the following result is true.
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Proposition 1. If the minimum line-distortion of a graph G is λ, then G has
a

⌊
λ
2

⌋
-dominating pair.

Proof. Let f be an optimal line embedding for G. This embedding has a first
vertex v1 and a last vertex vn. Let u be an arbitrary vertex and P an arbitrary
path from v1 to vn. If u is not on this path, there is an edge vivj of P with
f(vi) < f(u) < f(vj). Without loss of generality, we can say that f(u)− f(vi) ≤
	(f(vj) − f(vi))/2
 ≤ ⌊

λ
2

⌋
. Thus, each vertex is

⌊
λ
2

⌋
-dominated by each path

from v1 to vn, i. e., v1, vn is a
⌊

λ
2

⌋
-dominating pair. ��

Corollary 1. For every graph G with ld(G) = λ, the minimum eccentricity of
a shortest path of G is at most

⌊
λ
2

⌋
.

Theorem 1 and Corollary 1 stress the importance of investigating the Mini-
mum Eccentricity Shortest Path problem (MESP-problem) in graphs. As we will
show later, although the MESP-problem is NP-hard on general graphs, there
are much better (than for the minimum line distortion problem) approxima-
tion algorithms for it. We design for the MESP-problem on general graphs a
2-approximation algorithm that runs in O(n3) time, a 3-approximation algo-
rithm that runs in O(nm) time and an 8-approximation algorithm that runs in
linear time.

Combining Theorem 1 and Corollary 1 with those approximation results, we
reproduce a result of [2] and [5].

Corollary 2 ([2,5]). For every graph G with ld(G) = λ, an embedding into the
line with distortion at most O(λ2) can be found in polynomial time.

It should be noted that, since the difference between the minimum eccentric-
ity of a shortest path and the line-distortion of a graph can be very large (close
to n), the result in Theorem 1 seems to be stronger. Furthermore, one version of
our algorithm (that uses an 8-approximation algorithm for the MESP-problem)
runs in total linear time.

3 NP-Completeness Result

In this section, we will show that in general it is NP-complete to find a minimum
eccentricity shortest path. For this, we define the decision version of this problem
(k-ESP) as follows: Given a graph G and an integer k, does G contain a shortest
path P with eccentricity at most k?

Theorem 2. The decision version of the minimum eccentricity shortest path
problem is NP-complete.

Proof. We will proof this by reducing SAT to k-ESP.
Let I be an instance of SAT with the variables P = {p1, . . . , pn} and the

clauses C = {c1, . . . , cm}. We assume I is a formula given in CNF. Also, let
k = max{n,m}. We create a graph G as shown in Figure 2. For each variable pi
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create two vertices, one representing pi and one representing ¬pi. Create one
vertex ci for every clause ci. Additionally, create two vertices u0, un and, for
each i with 0 ≤ i ≤ n, a vertex vi.

Connect each variable vertex pi and ¬pi with vi−1 and vi directly with an
edge. Connect each clause with the variables containing it with a path of length k.
Also connect v0 with u0 and vn with un with a path of length k.

u0 v0

p1

¬p1
v1

. . .
vn−1

pn

¬pn
vn un

c1 cm

k k

Fig. 2. Reduction from SAT to k-DSP. Illustration to the proof of Theorem 2.

Note that every shortest path in G not containing v0 and vn has an eccen-
tricity larger than k. Also, a shortest path from v0 to vn has length 2n
(dG(vi−1, vi) = 2, passing pi or ¬pi). Since k ≥ n, no shortest path from v0
to vn is passing a vertex ci; in this case the minimal length would be 2k + 2.
Additionally, note that for all vertices in G except the vertices which represent
clauses, the distance to a vertex vi with 0 ≤ i ≤ n is at most k.

We will now show that I is satisfiable if and only if G has a shortest path
with eccentricity k.

First assume I is satisfiable. Let f : P → {T, F} be a satisfying assignment
for the variables. As shortest path P we choose a shortest path from v0 to vn.
Thus, we have to chose between pi and ¬pi. We will chose pi if and only if
f(pi) = T . Because I is satisfiable, there is a pi for each cj such that either
f(pi) = T and dG(cj , pi) = k, or f(pi) = F and dG(cj ,¬pi) = k. Thus, P has
eccentricity k.

Next consider a shortest path P in G of eccentricity k. As mentioned above,
P contains either pi or ¬pi. Now we define f : P → {T, F} as follows:

f(pi) =

{
T if pi ∈ P ,
F else, i. e. ¬pi ∈ P .

Because P has eccentricity k and only vertices representing a variable in the
clause cj are at distance k to vertex cj , f is a satisfying assignment for I. ��

V.B. Le1 pointed out that, by slightly modifying the created graph, it can be
shown that the problem remains NP-complete even if the graph has a bounded
vertex-degree of 3.
1 University of Rostock, Germany.
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Note that the factor k in this reduction depends on the input size. In [14]
it was already mentioned that for k = 1 the problem can be solved in O(n3m)
time by modifying an algorithm given in [4]. There, the problem was called
Dominating Shortest Path problem. In the full version of this paper, we show
that the k-ESP problem can be solved in O(n2k+2m) time for every fixed k ≥ 0.

We can slightly modify the MESP problem such that a start vertex s and an
end vertex t of the path are given. This is, for a given a graph G and two vertices s
and t, find a shortest (s, t)-path P such that for each shortest (s, t)-path Q,
eccG(P ) ≤ eccG(Q). We call this the (s, t)-MESP problem. From the reduction
above, it follows that the decision version of this problem is NP-complete, too.

Corollary 3. The decision version of the (s, t)-MESP problem is NP-complete.

4 Approximation Algorithms

In this section we will present different approximation algorithms. The algo-
rithms differ in their approximation factor and runtime. Base for them are the
following two lemmas.

Lemma 2. In a graph G, let P be a shortest path from s to t of eccentricity at
most k. For each layer L

(s)
i there is a vertex pi ∈ P such that the distance from

pi to each vertex v ∈ L
(s)
i is at most 2k. Additionally, pi ∈ L

(s)
i if i ≤ dG(s, t),

and pi = t if i ≥ dG(s, t).

Proof. For each vertex v, let p(v) ∈ P be a vertex with dG(p(v), v) ≤ k.
For each i ≤ dG(s, t), let pi ∈ P ∩L

(s)
i be the vertex in P with distance i to s.

For an arbitrary vertex v ∈ L
(s)
i , let j = dG(s, p(v)). Because eccG(P ) ≤ k and P

is a shortest path, |i − j| ≤ k. Thus, dG(pi, v) ≤ dG(pi, p(v)) + dG(p(v), v) ≤ 2k.
Let L′ = {v | dG(s, v) ≥ dG(s, t)}. Because P has eccentricity at most k,

dG(p, t) ≤ k for all p ∈ {p(v) | v ∈ L′}. Therefore, dG(t, v) ≤ 2k for all v ∈ L′. ��
Lemma 3. If G has a shortest path of eccentricity at most k from s to t, then
every path Q with s ∈ Q and dG(s, t) ≤ maxv∈Q dG(s, v) has eccentricity at
most 3k.

Proof. Let P be a shortest path from s to t with eccG(P ) ≤ k and Q an arbitrary
path with s ∈ Q and dG(s, t) ≤ maxv∈Q dG(s, v). Without loss of generality, we
can assume that Q starts at s. Also let u be an arbitrary vertex. Since eccG(P ) ≤
k, there is a vertex p ∈ P with dG(u, p) ≤ k. Because dG(s, t) ≤ maxv∈Q dG(s, v),
there is a vertex q ∈ Q with dG(s, p) = dG(s, q). By Lemma 2, the distance
between p and q is at most 2k. Thus, the distance from q to u is at most 3k. ��
Corollary 4. For a given graph G and two vertices s and t, each shortest (s, t)-
path is a 3-approximation for the (s, t)-MESP problem.

Theorem 3. Algorithm 1 calculates a 3-approximation for the MESP problem
in O(nm) time.
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Algorithm 1. A 3-approximation for the MESP problem.
Input: A graph G = (V, E).
Output: A shortest path with eccentricity at most 3k, where k is the

minimum eccentricity of all paths in G.
1 foreach s ∈ V do
2 Find a vertex v for which the distance to s is maximal. Also find a shortest

path P (s) from s to v.
3 Calculate k(s) = eccG(P (s)).

4 Among all computed paths P (s), select one for which k(s) is minimal.

Proof. Assume a given graph G has a shortest path P from s to t with eccG(P ) =
k and s is the vertex selected by the loop in line 1. Let v be a vertex such that
dG(s, v) is maximal (line 2). Because dG(s, v) is maximal, dG(s, t) ≤ dG(s, v).
Thus, by Lemma 3, each path from s to v has eccentricity at most 3k, i. e. k(s) ≤
3k (line 3). Therefore, the eccentricity of the path selected in line 4 is also at
most 3k.

It is easy to see that line 2 and line 3 run in O(m) time for a given s.
Therefore, the overall runtime for the algorithm is O(nm). ��
Theorem 4. Algorithm 2 calculates a 2-approximation for the MESP problem
in O(n3) time.

Proof (Correctness). Assume a given graph G has a shortest path P from s to t
with eccG(P ) = k and s is the vertex selected by the loop in line 2. Let Q be a
shortest path from s to v. We say the layer-wise eccentricity of Q is φ if for each
layer L

(s)
i (i ≤ dG(s, v)) there is a vertex qi ∈ Q ∩ L

(s)
i with max{dG(qi, u) | u ∈

L
(s)
i } ≤ φ.

We will now show that lines 4 to 8 calculate for each v the minimal φ(v) such
that there is a shortest path Q from s to v with a layer-wise eccentricity φ(v).

By induction assume this is true for all vertices u ∈ L
(s)
j with j ≤ i − 1. Now

let v be an arbitrary vertex in L
(s)
i . Line 6 calculates the maximal distance φ(v)

from v to all other vertices in L
(s)
i . Since v is the only vertex in Q ∩ L

(s)
i for

every shortest path Q from s to v, the layer-wise eccentricity of each Q is at
least φ(v). Let u be a neighbour of v in the previous layer. By induction φ(u) is
optimal. Therefore, φ(v) := max{minu∈N−

G [v] φ(u), φ(v)} (line 7) is optimal for
v.

Since line 9 selects the vertex u with the smallest φ(u) as parent for v, each
path Q from s to v in T (s) has an optimal layer-wise eccentricity of φ(v). Line 8
calculates the maximal distance from v to all vertices in {u | dG(s, u) ≥ dG(s, v)}.
Thus, eccG(Q) ≤ φ′(v) and line 10 and 11 select a shortest path which has an
eccentricity at most φ′(v).

By Lemma 2, we know that P has a layer-wise eccentricity of at most 2k.
Thus, the path Q from s to t in T (s) has a layer-wise eccentricity of at most 2k.
Additionally, Lemma 2 says that t 2k-dominates all vertices in {v | dG(s, v) ≥
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dG(s, t)}. Therefore, eccG(Q) ≤ 2k. Thus, the path selected in line 11 is a shortest
path with eccentricity at most 2k. ��
Proof (Complexity). Line 1 runs in O(nm) time. If the distances are stored in
an array, they can be later accessed in constant time. Therefore, line 6 and line 8
run in O(n) time for a given s and v or in O(n3) time overall. For a given s,
line 7 runs in O(m) time and therefore has an overall runtime of O(nm). Line 9
has an overall runtime of O(nm), line 11 takes O(n2) time, and line 10 runs in
O(n) time. Adding all together, the total runtime is O(n3). ��

Algorithm 2. A 2-approximation for the MESP problem.
Input: A graph G = (V, E).
Output: A shortest path with eccentricity at most 2k, where k is the

minimum eccentricity of all paths in G.
1 Calculate the distances dG(u, v) for all vertex pairs u and v, including

L
(u)
i = {v ∈ V | dG(u, v) = i} with 0 ≤ i ≤ eccG(u) for each u.

2 foreach s ∈ V do
3 Set φ(s) := 0.
4 for i := 1 to eccG(s) do

5 foreach v ∈ L
(s)
i do

6 Set φ(v) := max
u∈L

(s)
i

dG(u, v).

7 Let N−
G (v) = L

(s)
i−1 ∩ NG(v) denote the neighbours of v in the

previous layer. Set φ(v) := max{min
u∈N−

G
(v)

φ(u), φ(v)}.
8 Set φ+(v) := max{dG(u, v) | dG(s, u) ≥ i}.
9 Calculate a BFS-tree T (s) starting from s. If multiple vertices u are possible

as parent for a vertex v, select one with the smallest φ(u).
10 Let t be the vertex for which φ′(t) := max{φ(t), φ+(t)} is minimal. Set

k(s) := φ′(t).

11 Among all computed pairs s and t, select a pair (and corresponding path in
T (s)) for which k(s) is minimal.

Algorithm 1 and 2 both iterate over all vertices of the graph to find the best
start vertex. Lemma 4 will show that a constant factor approximation can be
found with a simple algorithm which starts at an arbitrary vertex. However, the
approximation factor will be much higher.

Lemma 4. Let G be a graph having a shortest path of eccentricity k. Let x be a
vertex most distant from some arbitrary vertex, and y be a vertex most distant
from x. Then, x, y is a 8k-dominating pair of G.

Proof. Let p be an end vertex of a shortest path of eccentricity k in a given
graph G. By Lemma 2, the diameter in G of each layer L

(p)
i is at most 4k.

Assume, x is most distant from an arbitrary vertex s.



286 F.F. Dragan and A. Leitert

If there is a layer containing both s and x, then dG(s, x) ≤ 4k. By the choice
of x, each vertex of G is within distance at most 4k from s, hence, within distance
at most 8k from x. Evidently, in this case, x, y is a 8k-dominating pair of G.

Assume now, without loss of generality, that x ∈ L
(p)
i and s ∈ L

(p)
l with

i < l. Consider an arbitrary vertex v of G which belongs to a layer with an
index smaller than i. We show that dG(x, v) ≤ 8k. As L

(p)
i separates v from s,

a shortest path P (s, v) of G between s and v must have a vertex u in L
(p)
i . We

have dG(s, x) ≥ dG(s, v) = dG(s, u) + dG(u, v) and, by the triangle inequality,
dG(s, x) ≤ dG(s, u) + dG(u, x). Hence, dG(u, v) ≤ dG(u, x) and, since both u

and x belong to same layer L
(p)
i , dG(u, x) ≤ 4k. That is, dG(x, v) ≤ dG(x, u) +

dG(u, v) ≤ 2dG(u, x) ≤ 8k.
If dG(x, y) ≤ 8k then, by the choice of y, each vertex of G is within distance

at most 8k from x. Hence, x, y is a 8k-dominating pair of G. So, assume that
dG(x, y) > 8k, i. e., the layer L

(p)
j with i < j contains y. Repeating the arguments

of the previous paragraph, we can show that dG(y, v) ≤ 8k for every vertex v
that belongs to a layer with an index greater than j.

Consider now an arbitrary path P of G connecting vertices x and y. P has
a vertex in every layer L

(p)
h with i ≤ h ≤ j. Hence, for each vertex v of G

that belongs to layer L
(p)
h (i ≤ h ≤ j), there is a vertex u ∈ P ∩ L

(p)
h such

that dG(v, u) ≤ 4k. As dG(v, x) ≤ 8k for each vertex v from L
(p)
i′ with i′ < i

and dG(v, y) ≤ 8k for each vertex v from L
(p)
j′ with j′ > j, we conclude that

eccG(P ) ≤ 8k. ��
Corollary 5. An 8-approximation for the MESP problem can be calculated in
linear time.

5 MESP for Certain Graph Classes

So far, we investigated the MESP problem in general graphs. Next, we will show
that the problem is solvable in linear or polynomial time for certain graph classes.

Lemma 5. If a tree has a shortest path of eccentricity k, then any diametral
path has eccentricity at most k.

Proof. In a tree T , let P be a shortest path from s to t with eccG(P ) = k and
D be a diametral path from x to y. Assume P and D do not intersect. Then
there is a vertex u ∈ P with minimal distance to D and a vertex z ∈ D with
minimal distance to P . Thus, the paths from u to x and from u to y contain z.
Because dT (x, P ) ≤ k, dT (y, P ) ≤ k, and dT (u, z) > 0, we have dT (z, x) < k
and dT (z, y) < k. Therefore, dT (x, y) < 2k. Each diametral path of length l in a
tree contains a vertex c with eccT (c) = l/2� [9]. Thus, eccG(D) ≤ k.

Next, assume P and D intersect. Then there is a vertex x′ ∈ P ∩ D with
dT (x, x′) = dT (x, P ) ≤ k and y′ ∈ P ∩D with dT (y, y′) = dT (y, P ) ≤ k. Assume
there is a vertex v with dT (v,D) > k. Thus, there is a vertex v′ ∈ P \ D with
dT (v, v′) ≤ k and, without loss of generality, dT (s, v′) < dT (s, x′). Therefore,
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x′ is the vertex in D with minimal distance to v. It follows that dT (y, v) =
dT (y, x′) + dT (x′, v) > dT (y, x′) + dT (x′, x) = dT (y, x). This contradicts with D
being a diametral path. ��

Recall that a diametral path in a tree can be found as follows: Select an
arbitrary vertex v. Find a most distant vertex x from v and then a most distant
vertex y from x. The path from x to y is a diametral path. Thus, it follows from
Lemma 5:

Theorem 5. The MESP problem can be solved for trees in linear time.

In [6] we show that the MESP problem can be solved in linear time for
distance-hereditary graphs and in polynomial time for chordal graphs and dually
chordal graphs.
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Abstract. We show that the maximum number of convex polygons in
a triangulation of n points in the plane is O(1.5029n). This improves an
earlier bound of O(1.6181n) established by van Kreveld, Löffler, and Pach
(2012) and almost matches the current best lower bound of Ω(1.5028n)
due to the same authors. We show how to compute efficiently the number
of convex polygons in a given a planar straight-line graph with n vertices.

1 Introduction

Convex polygons. According to the celebrated Erdős-Szekeres theorem [13], every
set of n points in the plane, no three on a line, contains Ω(log n) points in convex
position, and, apart from the constant factor, this bound is the best possible.
The minimum and maximum number of subsets in convex position contained
in an n-element point set have also been investigated [17]. When the n points
are in convex position, then trivially all the 2n − 1 nonempty subsets are also
in convex position. Erdős [12] proved that the minimum number of subsets in
convex position is exp(Θ(log2 n)).

Fig. 1. Left: A (geometric) triangulation on 19 points; the two shaded convex polygons
are subgraphs of the triangulation. Right: A triangulation on 24 + 1 = 17 points in
convex position, whose dual graph is a full binary tree with 8 leaves.

Recently, van Kreveld et al. [15] posed analogous problems concerning the
number of convex polygons in a triangulation of n points in the plane; see
Fig. 1 (left). They proved that the maximum number of convex polygons in a tri-
angulation of n points, no three on a line, is between Ω(1.5028n) and O(1.6181n).
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Their lower bound comes from a balanced binary triangulations on 24 + 1 = 17
points shown in Fig. 1 (right). At the other end of the spectrum, Löffler et al. [16]
showed that the minimum number of convex polygons in an n-vertex triangula-
tion is Θ(n). Here we study the maximum number of convex polygons contained
in an n-vertex triangulation. This number is known [15] to be exponential in n,
and our interest is in the base of the exponent: what is the infimum of a > 0
such that every n-vertex triangulation contains O(an) convex polygons?

Throughout this paper we consider planar point sets S ⊂ R
2 with no 3 points

collinear. A (geometric) triangulation of a set S ⊂ R
2 is a plane straight-line

graph with vertex set S such that all bounded faces are triangles that jointly
tile the convex hull of S.

Our results. We first prove that the maximum number of convex polygons in an
n-vertex triangulation is attained, up to an O(n)-factor, for point sets in convex
position. Consequently, determining the maximum becomes a purely combina-
torial problem. We then show that the maximum number of convex polygons
in a triangulation of n points in the plane is O(1.5029n). This improves an ear-
lier bound of O(1.6181n) established by van Kreveld, Löffler, and Pach [15] and
almost matches the current best lower bound of Ω(1.5028n) due to the same
authors (Theorem 3 and Corollary 1 in Subsection 2.4). In deriving the new
upper bound, we start with a careful analysis of a balanced binary triangulation
indicated in Fig. 1 (right), and then extend the analysis to all triangulations on
n points in convex position. Given a planar straight-line graph G with n ver-
tices, we show how to compute efficiently the number of convex polygons in G
(Theorem 4 in Section 3). Most proofs are omitted from this extended abstract
due to space limitations, and are available in the full paper [10].

Related work. We derive new upper and lower bounds on the maximum and
minimum number of convex cycles in straight-line triangulations with n points
in the plane. Both subgraphs we consider can be defined geometrically (in terms
of angles or inner products, respectively). Previously, analogous problems have
been studied only for cycles, spanning cycles, spanning trees, and matchings [7]
in n-vertex edge-maximal planar graphs—which are defined in purely graph
theoretic terms. For geometric graphs, where the vertices are points in the plane,
previous research focused on the maximum number of noncrossing configurations
(plane graphs, spanning trees, spanning cycles, triangulations, etc.) over all n-
element point configurations in the plane (i.e., over all mappings of Kn into
R

2) [1,2,8,14,18,20–23]; see also [9,24]. Early upper bounds in this area were
obtained by multiplying the maximum number of triangulations on n point in
the plane with the maximum number of desired configurations in an n-vertex
triangulation, since every planar straight-line graph can be augmented into a
triangulation.
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2 Convex Polygons

Section outline. We reduce the problem of determining the maximum number of
convex polygons in an n-vertex triangulation (up to polynomial factors) to tri-
angulations of n points in convex position (Theorem 1, Section 2.1). We further
reduce the problem to counting convex paths between two adjacent vertices in
a triangulation (Lemma 2, Subsection 2.2). We first analyze the number of con-
vex paths in a balanced binary triangulation, which gives the current best lower
bound [15] (Theorem 2, Subsection 2.3). The new insight gained from this anal-
ysis is then generalized to derive an upper bound for all n-vertex triangulations
(Theorem 3 and Corollary 1, Subsection 2.4).

2.1 Reduction to Convex Position

For a triangulation T of n points in the plane, let C(T ) denote the number of
convex polygons in T . For an integer n ≥ 3, let C(n) be the maximum of C(T )
over all triangulations T of n points in the plane; and let Cx(n) be the maximum
of C(T ) over all triangulations T of n points in convex position. It is clear that
Cx(n) ≤ C(n) for every integer n ≥ 3. The main result of this section is the
following.

Theorem 1. For every integer n ≥ 3, we have C(n) ≤ (2n − 5)Cx(n).

Theorem 1 is an immediate consequence of the following lemma.

Lemma 1. Let T be a triangulation on a set S of n points in the plane, and let
f be a bounded face of T . Then there exists a triangulation T ′ on a set S′ of n
points in convex position such that the number of convex polygons in T whose
interior contains the face f is at most C(T ′).

Proof. We construct a point set S′ in convex position, a triangulation T ′ on S′,
and then give an injective map from the set of convex polygons in T that contain
f into the set of convex polygons of T ′.

Let o be a point in the interior of the face f , and let O be a circle centered
at o that contains all points in S. Refer to Fig. 2. For each point p ∈ S, let p′

be the intersection point of the ray −→op with O. Let S′ = {p′ : p ∈ S}.
We now construct a plane graph T ′ on the point set S′. For two points

p′, q′ ∈ S′, there is an edge p′q′ in T ′ iff there is an empty triangle Δoab such
that ab is contained in an edge of T , point p lies on segment oa, and q lies on ob.
Note that no two edges in T ′ cross each other. Indeed, suppose to the contrary
that edges p′

1q
′
1 and p′

2q
′
2 cross in T ′. By construction, there are empty triangles

Δoa1b1 and Δoa2b2 that induce p′
1q

′
1 and p′

2q
′
2, respectively. We may assume

w.l.o.g. that both Δoa1b1 and Δoa2b2 are oriented counterclockwise. Since a1b1
and a2b2 do not cross (they may be collinear), either segment ob2 lies in Δoa1b1
or segment oa1 lies in Δoa2b2. That is, one of Δoa1b1 and Δoa2b2 contains a
point from S, contradicting our assumption that both triangles are empty.
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Fig. 2. A triangulation on the point set {p1, . . . , p8} (left) is mapped to a triangulation
on the point set {p′

1, . . . , p
′
8} in convex position (right)

Finally, we define an injective map from the convex polygons of T that con-
tain o into the convex polygons of T ′. To define this map, we first map every
edge of T to a path in T ′. Let pq be an edge in T induced by a triangle Δopq
oriented counterclockwise. We map the edge pq to the path (p′, r′

1, . . . , r
′
k, q′),

where (r1, . . . , rk) is the sequence of all points in S lying in the interior of Δopq
in counterclockwise order around o. A convex polygon A = (p1, . . . , pk) contain-
ing o in T is mapped to the convex polygon A′ in T ′ obtained by concatenating
the images of the edges p1p2, . . . , pk−1pk, and pkp1.

It remains to show that the above mapping is injective on the convex polygons
of T that contain o. Consider a convex polygon A′ = (p′

1, . . . , p
′
k) in T ′ that is

the image of some convex polygon in T . Then its preimage A must be a convex
polygon in T that contains {p1, . . . , pk} on its boundary or in its interior. Hence
A must be the boundary of the convex hull of {p1, . . . , pk}, that is, A′ has a
unique preimage. �

Proof of Theorem 1. Let T be a triangulation with n vertices. Every n-vertex
triangulation has 2n−4 faces (including the outer face), and hence at most 2n−5
bounded faces. By Lemma 1, each bounded face f of T lies in the interior of at
most Cx(n) convex polygons contained in T . Summing over all bounded faces f ,
the number of convex polygons in T is bounded by C(T ) ≤ (2n − 5)Cx(n), as
required. �

2.2 Reduction to Convex Paths

A convex path is a polygonal chain (p1, . . . , pm) that makes a right turn at each
interior vertex p2, . . . , pm−1. Let P (n) denote the maximum number of convex
paths between two adjacent vertices in a triangulation of n points in convex
position. A convex path from a to b is either a direct path consisting of a single
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cc

aa bb

Fig. 3. Convex paths in a triangulation. Left: P (4) = P (2) P (3) + 1 = 3. Right:
P (5) = P (3) P (3) + 1 = 5.

segment ab, or a path that can be decomposed into two convex subpaths sharing
a common endpoint c, where Δabc is a counterclockwise triangle incident to ab;
see Fig. 3.

Thus P (n) satisfies the following recurrence for n ≥ 3, with initial values
P (2) = 1 and P (3) = 2.

P (n) = max
n1+n2=n+1

n1,n2≥2

{P (n1)P (n2) + 1} (1)

Remark. The values of P (n) for 2 ≤ n ≤ 18 are shown in Table 1. It is worth
noting that P (n) need not be equal to P (�n+1

2 �)P (	n+1
2 
) + 1; for instance,

P (7) = P (3)P (5) + 1 > P (4)P (4) + 1. That is, the balanced partition of a
convex n-gon into two subpolygons does not always maximize P (n). However,
we have P (n) = P (n+1

2 )P (n+1
2 ) + 1 for n = 2k + 1 and k = 1, 2, 3, 4; these are

the values relevant for the (perfectly) balanced binary triangulation discussed in
Subsection 2.3.

Let ab be a hull edge of a triangulation T on n points in convex position.
Suppose that ab is incident to counterclockwise triangle Δabc. The edges ac and
bc decompose T into three triangulations T1, Δabc and T2, of size n1, 3 and n2,
where n1 + n2 = n + 1. A convex polygon in T is either (i) contained in T1;
or (ii) contained in T2; or (iii) the union of ab and a convex path from a to b
that passes through c; see Fig. 3. Consequently, Cx(n), the maximum number
of convex polygons contained in a triangulation of n points in convex position,
satisfies the following recurrence:

Cx(n) = max
n1+n2=n+1

n1,n2≥2

{P (n1)P (n2) + Cx(n1) + Cx(n2)} (2)

for n ≥ 3, with initial values Cx(2) = 0 and Cx(3) = 1. The values of Cx(n) for
2 ≤ n ≤ 9 are displayed in Table 1.

Table 1. P (n) and Cx(n) for small n

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P (n) 1 2 3 5 7 11 16 26 36 56 81 131 183 287 417 677 937

Cx(n) 0 1 3 6 11 18 29 45
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Lemma 2. We have Cx(n) ≤ ∑n−1
k=2 P (k). Consequently, Cx(n) ≤ nP (n).

Proof. We first prove the inductive inequality:

Cx(n) ≤ P (n − 1) + Cx(n − 1). (3)

Let T be an arbitrary triangulation of a set S of n points in the plane. Consider
the dual graph T ∗ of T , with a vertex for each triangle in T and an edge for
every pair of triangles sharing an edge. It is well known that if the n points are
in convex position, then T ∗ is a tree. Let Δabc be a triangle corresponding to a
leaf in T ∗, sharing a unique edge, say e = ab, with other triangles in T .

ba

c

Fig. 4. Proof of Lemma 2

Wedistinguish two types of convexpolygons contained inT : (i) those containing
both edges ac and cb, and (ii) those containing neither ac nor cb. Observe that the
number of convex polygons of type (i) is at most P (n − 1), since any such polygon
can be decomposed into the path (b, c, a) and another path connecting a and b in
the subgraph of T induced by S \ {c}. Similarly, the number of convex polygons of
type (ii) is at most Cx(n−1), since they are contained in the subgraph of T induced
by S \{c}. Altogether we have Cx(n) ≤ P (n−1)+Cx(n−1) and (3) is established.

Summing up inequality (3) for n, n − 1, . . . , 3 yields Cx(n) ≤ ∑n−1
k=2 P (k), as

required. Since P (k) ≤ P (k + 1), for every k ≥ 2, it immediately follows that
Cx(n) ≤ nP (n), for every n ≥ 3, as desired. �

2.3 Analysis of Balanced Binary Triangulations

Webriefly reviewthe lowerboundconstructionof vanKreveld,LöfflerandPach [15,
Sec. 3.1]. For a constant k ∈ N, let Tk be the triangulation on n = 2k + 1 points,
say, on a circular arc, such that the dual graph T ∗

k is a balanced binary tree; see
Fig. 1 (right). The authors constructed a triangulation of n = m2k + 1 points,
for m ∈ N, by concatenating m copies of Tk along a common circular arc, where
consecutive copies share a vertex, and by triangulating the convex hull of the m
chords arbitrarily to obtain a triangulation of the n points. They settled on k = 4.

Denote by λk the number of convex paths between the diametrical pair of
vertices in Tk. As noted in [15], λk satisfies the following recurrence:

λk+1 = λ2
k + 1, for k ≥ 0, λ0 = 1. (4)
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The values of λk for 0 ≤ k ≤ 5 are shown in Table 2. Note that λk = P (2k+1) for
these values. Obviously (4) implies that the sequence (λk)1/2k is strictly increas-
ing. Van Kreveld et al. [15] proved that λ4 ≥ 1.50282

4
. By the product rule, this

gives C(n) ≥ Cx(n) ≥ (λ4)
n/16 =

(
λ
1/16
4

)n

≥ 1.5028n, for every n = 24m + 1:
a lower bound construction is obtained by concatenating m triangulations, each
with 17 vertices with P (17) convex a-to-b paths, where consecutive copies share
a vertex, and triangulating the convex hull of the m chords ab arbitrarily.

Table 2. The values of λk for small k

k 0 1 2 3 4 5

λk 1 2 5 26 677 458330

As noted above, λk ≥ 1.50282
k

for every k ≥ 4. In this section (Theorem 2),
we establish an almost matching upper bound λk ≤ 1.502842

k

, or equivalently,
(λk)1/2k ≤ 1.50284 for every k ≥ 0. We start by bounding λk from above by a
product. To this end we frequently use the standard inequality 1+x ≤ ex, where
e is the base of the natural logarithm.

Lemma 3. For k ∈ N, we have

λk ≤ 22
k−1

k−1∏

i=1

(

1 +
1

22i

)2k−1−i

. (5)

The following sequence is instrumental for manipulating the exponents in (5).
Let

αk = 2k + k + 1 for k ≥ 1. (6)
That is, α1 = 4, α2 = 7, α3 = 12, α4 = 21, α5 = 38, etc. The way this sequence
appears will be evident in Lemma 4, and subsequently, in the proof of Theorem 3.
The following lemma is proved by induction.

Lemma 4. For k ∈ N, we have

λk ≤ 22
k−1

exp

(

2k
k−1∑

i=1

2−αi

)

. (7)

Taking roots (i.e., the 1/2k root) in (7) yields a first rough approximation:

(λk)1/2k ≤ 22
k−1/2k exp

(

2k/2k
k−1∑

i=1

2−αi

)

≤ 21/2 exp

( ∞∑

i=1

2−αi

)

≤ 1.5180,

To obtain a sharper estimate, we keep the first few terms in the sequence as they
are, and only introduce approximations for latter terms.

Theorem 2. For every k ∈ N, we have λk ≤ 1.502842
k

. Consequently, for
every n = m2k + 1 points, the triangulation obtained by extending (via concate-
nation) the balanced triangulation on 2k +1 points in convex position has at most
O(1.50284n) convex polygons.
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2.4 Upper Bound for Triangulations of Convex Polygons

In this section we show that the maximum number of convex polygons present
in a triangulation on n points in convex position, C(n), is O(1.50285n). In the
main step, a complex proof by induction yields the following.

Theorem 3. Let n ≥ 2 where 2k + 1 ≤ n ≤ 2k+1. Then

P (n)
1

n−1 ≤ (P (17))1/16 exp

(
k−1∑

i=4

2−αi

)

= 6771/16 exp

(
k−1∑

i=4

2−αi

)

. (8)

Proof. We prove the inequality by induction on n. The base cases 2 ≤ n ≤ 32
are verified by direct calculation:

max
2≤n≤16

P (n)
1

n−1 = P (9)1/8 = 261/8 = 1.50269 . . . .

max
17≤n≤32

P (n)
1

n−1 = P (17)1/16 = 6771/16 = 1.50283 . . . .

Assume now that n ≥ 33, hence k ≥ 5, and that the required inequality holds for
all smaller n. We will show that for all pairs n1, n2 ≥ 2 with n1 +n2 = n+1, the
expression P (n1)P (n2) + 1 is bounded from above as required. Since n1 + n2 =
n+1, we have n1, n2 ≤ n− 1, thus using the induction hypothesis for n1 and n2

is justified. It suffices to consider pairs with n1 ≤ n2. We distinguish two cases:

Case 1: 2 ≤ n1 ≤ 16. Since n ≥ 33, we have 18 ≤ n2 ≤ n − 1. By the induction
hypothesis we have

P (n2)1/(n2−1) ≤ 6771/16 exp

(
k−1∑

i=4

2−αi

)

.

Further,

P (n) ≤ P (n1)P (n2) + 1

≤ P (n1) 677
n2−1

16 exp

(

(n2 − 1)
k−1∑

i=4

2−αi

)

+ 1

≤ P (n1) 677
n2−1

16 exp

(

(n2 − 1)
k−1∑

i=4

2−αi

)
(
1 + (P (n1))−1 677− n2−1

16

)

≤ P (n1) 677
n2−1

16 exp

(

(n2 − 1)
k−1∑

i=4

2−αi

)

exp
(
(P (n1))−1 677− n2−1

16

)
.

To settle Case 1, it suffices to show that

P (n1) 677
n2−1

16 exp

(

(n2 − 1)
k−1∑

i=4

2−αi

)

exp
(
(P (n1))−1 677− n2−1

16

)
≤
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≤ 677
n−1
16 exp

(

(n − 1)
k−1∑

i=4

2−αi

)

,

or equivalently,

P (n1) exp
(
(P (n1))−1 677− n2−1

16

)
≤ 677

n1−1
16 exp

(

(n1 − 1)
k−1∑

i=4

2−αi

)

. (9)

We have n1 + n2 = n + 1, hence n2 − 1 = n − n1 ≥ 33 − n1. To verify (9) it
suffices to verify that the following inequality holds for 2 ≤ n1 ≤ 16.

P (n1) exp
(
(P (n1))−1 677− 33−n1

16

)
≤ 677

n1−1
16 . (10)

Indeed, (10) would imply

P (n1) exp
(
(P (n1))−1 677− n2−1

16

)
≤ P (n1) exp

(
(P (n1))−1 677− 33−n1

16

)

≤ 677
n1−1

16 ≤ 677
n1−1

16 exp

(

(n1 − 1)
k−1∑

i=4

2−αi

)

,

as required by (9). Finally, (10) can be deduced via the following fact: For 2 ≤
n ≤ 16, we have

P (n) exp
(
(P (n))−1 677− 33−n

16

)
≤ 677

n−1
16 . (11)

Case 2: n1 ≥ 17. We distinguish two subcases, n ≤ 2k + 2 and n ≥ 2k + 3. Due
to space constraints, the proofs of the two subcases are omitted (the reader is
referred to [10]). �

Corollary 1. C(n) = O(1.50285n).

Proof. Note that

6771/16 exp

( ∞∑

i=4

2−αi

)

≤ 1.50284.

By Theorem 3 and the above inequality we obtain

P (n)
1
n ≤ P (n)

1
n−1 ≤ 677

1
16 exp

(
k−1∑

i=4

2−αi

)

≤ 677
1
16 exp

( ∞∑

i=4

2−αi

)

≤ 1.50284.

Further, by Lemma 2, we have Cx(n) ≤ nP (n). Consequently, Theorem 1
yields

C(n) ≤ (2n − 5)Cx(n) ≤ 2n2 P (n) ≤ 2n2 · 1.50284n = O(1.50285n),

as required. �
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3 Algorithmic Aspects

The number of crossing-free structures (matchings, spanning trees, spanning
cycles, triangulations) on a set of n points in the plane is known to be exponen-
tial in n [8,14,18,21–23]. It is a challenging problem to determine the number
of configurations faster than listing all such configurations (i.e., count faster
than enumerate). Exponential-time algorithms have been recently developed for
triangulations [4], planar graphs [19], and matchings [25] that count these struc-
tures exponentially faster than the number of structures. It is worth pointing
out that counting (exactly) matchings, spanning trees, spanning cycles, and tri-
angulations, can be done in polynomial time in non-trivial cases by a result of
Alvarez et al. [3].

Given a planar straight-line graph G with n vertices, we show how to compute
in polynomial time the number of convex polygons in G. In particular, convex
polygons can be counted in polynomial time in a given triangulation.

Theorem 4. Given a planar straight-line graph G with n vertices, the number
of convex polygons in G can be computed in O(n4) time. The convex polygons
can be enumerated in an additional O(1)-time per edge.

Computing the number of convex polygons in a given graph. Let G = (V,E) be
a planar straight line graph. For counting and enumerating convex cycles in G,
we adapt a dynamic programming approach by Eppstein et al. [11], originally
developed for finding the subsets of an n-element point set in the plane in convex
position optimizing various parameters, e.g., the area or the perimeter of the
convex hull. The dynamic program relies on the following two observations:

1. Introduce a canonical notation for the convex polygons in G. Assume,
by rotating G if necessary, that no two vertices have the same x- or y-
coordinates. Order the vertices of G by their x-coordinates. Now every con-
vex polygon ξ = (v1, v2, . . . , vt) can be labeled such that v1 is the leftmost
vertex, and the vertices are in counterclockwise order.

2. Consider the triangle (v1, vi, vi+1), for 1 < i < t, in the convex polygon
ξ = (v1, v2, . . . , vt). The triangle Δv1vivi+1 decomposes ξ into two convex
arcs1 (v1, . . . , vi) and (vi+1, . . . , vt, v1). The convex arc (v1, . . . , vi) lies in the
closed region R(v1, vi, vi+1) on the right of the vertical line through v1, and
right of both directed lines −−→v1vi and −−−→vi+1vi (Fig. 5). Importantly, the region
R(v1, vi, vi+1) is defined in terms of only three vertices, irrespective of any
interior vertices of the arc (v1, . . . , vi).

For every ordered triple of vertices (a, b, c) ∈ V 3 and every integer 3 ≤ k ≤
n, we compute the following function by dynamic programming. Let fk(a, b, c)
denote the number of counterclockwise convex arcs (v1, . . . , vk) with k vertices
such that a = v1 is the leftmost vertex, b = vk−1 and c = vk.

1 A convex arc is a polygonal arc that lies on the boundary of a convex polygon.
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v1

v2
v3

v4

v5

v6

v7v8
v9

R(v1, v5, v6)

Δ(v1, v5, v6)

Fig. 5. A convex polygon ξ = (v1, . . . , v9) where v1 is the leftmost vertex. Region
R(v1, v5, v6) is shaded.

Observe that if v1vk is an edge of G, then this edge completes all fk(a, b, c)
convex arcs into a convex polygon in G. The initial values f3(a, b, c) can be com-
puted in O(n3) time by examining all triples (a, b, c) ∈ V 3. If (a, b, c) is a counter-
clockwise 2-edge path in G, where a is the leftmost vertex, then f3(a, b, c) = 1,
otherwise f3(a, b, c) = 0. In the induction step, we compute fk(a, b, c) for all
(a, b, c) ∈ V 3 based on the values fk−1(a, b, c). It is enough to consider counter-
clockwise triples (a, b, c), where a is the leftmost vertex and bc ∈ E. For such
a triple (a, b, c) we have fk(a, b, c) =

∑
v fk−1(a, v, b) where the sum is over all

vertices v ∈ V that lie in the region R(a, b, c). For any other triple (a, b, c), we
have fk(a, b, c) = 0.

Note that for k = 4, . . . , n, the value of fk(a, b, c) is the sum of at most
deg(b) − 1 terms. Consequently for every k = 4, . . . , n, all nonzero values of
fk(a, b, c) can be computed in

O

(

n ·
∑

v∈V

deg2(v)

)

= O(n3)

time. The total running time over all k is O(n4). Finally, the total number of
convex polygons is obtained by summing all values fk(a, b, c) for which ac ∈ E,
again in O(n4) time. Note that fk(a, b, c) counts the number of convex polygons
in T with k vertices, leftmost vertex a, and containing a counterclockwise convex
arc (b, c, a), hence each convex polygon is counted precisely once.
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Abstract. We investigate straight-line drawings of topological graphs
that consist of a planar graph plus one edge, also called almost-planar
graphs. We present a characterization of such graphs that admit a
straight-line drawing. The characterization enables a linear-time test-
ing algorithm to determine whether an almost-planar graph admits a
straight-line drawing, and a linear-time drawing algorithm that con-
structs such a drawing, if it exists. We also show that some almost-planar
graphs require exponential area for a straight-line drawing.

1 Introduction

This paper investigates straight-line drawings of almost-planar graphs, that is,
graphs that become planar after the deletion of just one edge. Our work is
partly motivated by the classical planarization approach [1] to graph drawing.
This method takes as input a graph G, deletes a small number of edges to
give a planar subgraph G−, and then constructs a planar topological embedding
(i.e., a plane graph) of G−. Then the deleted edges are re-inserted, one by one,
to give a topological embedding of the original graph G. Finally, a drawing
algorithm is applied to the topological embedding. A number of variations on this
basic approach give a number of graph drawing algorithms (see, e.g., [1]). This
paper is concerned with the final step of creating a drawing from the topological
embedding.
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Fig. 1. (a) An almost-planar topological graph G; (b) a straight-line drawing of G
that preserves its embedding on the sphere but not on the plane; (c) An almost-planar
topological graph for which an embedding preserving straight-line drawing does not
exist

Minimizing the number of edge crossings is an NP-hard problem even when
the given graph is almost-planar [3]. However, Gutwenger et al. [8] present an
elegant polynomial-time solution to the following simpler problem: Given a graph
G and an edge e such that G− = G − e is planar, find a planar topological
embedding of G− that minimizes the number of edge crossings when re-inserting
e in G.

While the output of the algorithm of Gutwenger et al. [8] has the minimum
number of edge crossings, it may not give rise to a straight-line planar drawing.
In this paper we study the following problem: Let G be a topological graph
consisting of a planar graph plus an edge e. We want to test whether G admits
a straight-line drawing that preserves the given embedding.

It is important to remark that by “preserving the embedding” we mean that
the straight-line drawing must preserve the cyclic order of the edges around each
vertex and around each crossing. In other words, we want to preserve a given
embedding on the sphere. Note that the problem is different if, in addition to
preserving the cyclic order of the edges around the vertices and the crossings,
we also want the preservation of a given external boundary; in other words the
problem is different if we want to maintain a given embedding on the plane
instead of on the sphere. For example, consider the graph of Fig. 1(a). If we
regard this as a topological graph on the sphere, then it has an embedding
preserving straight-line drawing, as shown in Fig. 1(b). However, the drawing
in Fig. 1(a) has a different external face to Fig. 1(b). It is easy to show that
there is no straight-line drawing with the same external face as in Fig. 1(a). For
a contrast, Fig. 1(c) shows a topological graph G that does not have a straight-
line drawing that preserves the embedding on the sphere.

In this paper we mostly focus on spherical topologies but, as a byproduct, we
obtain a result for topologies on the plane that may be of independent interest.
Namely, the main results of this paper are as follows.

– We characterize those almost-planar topological graphs that admit a
straight-line drawing that preserves a given embedding on the sphere. The
characterization gives rise to a linear-time testing algorithm.
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– We characterize those almost-planar topological graphs that admit a
straight-line drawing that preserves a given embedding on the plane.

– We present a drawing algorithm that constructs straight-line drawings when
such drawings exist. This drawing algorithm runs in linear time; however,
the model of computation used is the real RAM, and the drawings that are
produced have exponentially bad resolution. We show that, in the worst case,
the exponentially bad resolution is inevitable.

Our results also contribute to the rapidly increasing literature about topolog-
ical graphs that are “nearly” plane, in some sense. An interesting example is the
class of 1-plane graphs, that is, topological graphs with at most one crossing per
edge. Thomassen [13] gives a “Fáry-type theorem” for 1-plane graphs, that is, a
characterization of 1-plane topological graphs that admit a straight-line draw-
ing. Hong et al. [9] present a linear-time algorithm that constructs a straight-line
1-planar drawing of 1-plane graph, if it exists. More generally, Nagamochi [12]
investigates straight-line drawability of a wide class of topological non-planar
topological graphs. He presents Fáry-type theorems as well as polynomial-time
testing and drawing algorithms. This paper considers graphs that are “nearly
plane” in the sense that deletion of a single edge yields a planar graph. Such
graphs are variously called “1-skew graphs” or “almost-planar” graphs in the
literature. Our characterization can be regarded as a Fáry-type theorem for
almost-planar graphs.

Section 2 gives notation and terminology. The characterization of almost-
planar topological graphs on the sphere that admit an embedding preserving
straight-line drawing is given in Section 3. The extension of this characterization
to topological graphs on the plane and the exponential area lower bound are
described in Section 4. Open problems can be found in Section 5. Because of
page limits, we omit many proofs; the omitted proofs can be found in [6].

2 Preliminaries

A topological graph G = (V,E) is a representation of a simple graph on a given
surface, where each vertex is represented by a point and each edge is represented
by a simple Jordan arc between the points representing its endpoints. If the
given surface is the sphere, then we say that G is an S

2-topological graph; if the
given surface is the plane, then we say that G is an R

2-topological graph. Two
edges of a topological graph cross if they have a point in common, other than
their endpoints. The point in common is called a crossing. We assume that a
topological graph satisfies the following non-degeneracy conditions: (i) an edge
does not contain a vertex other than its endpoints; (ii) edges must not meet
tangentially; (iii) no three edges share a crossing; and (iv) an edge does not
cross an incident edge.

An S
2-embedding of a graph is an equivalence class of S

2-topological
graphs under homeomorphisms of the sphere. An S

2-topological graph has no
unbounded face; in fact an S

2-embedding is uniquely determined merely by the
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clockwise order of edges around each vertex and each edge crossing. An R
2-

embedding of a graph is an equivalence class of R
2-topological graphs under

homeomorphisms of the plane. Note that one face of an R
2-topological graph in

the plane is unbounded; this is the external face.
The concepts of R

2-embedding and S
2-embedding are very closely related.

Each S
2-topological graph gives rise to a representation of the same graph on

the plane, by a stereographic projection about an interior point of a chosen face.
This chosen face becomes the external face of the R

2-topological graph. Thus we
can regard an R

2-embedding to be an S
2-embedding in which one specific face

is chosen to be the external face. Further, each R
2-topological graph gives rise

to a representation of the same graph on the sphere, by a simple projection.
A topological graph (either on the plane or on the sphere) is planar if no

two edges cross. A topological graph is almost-planar if it has an edge (s, t)
whose removal makes it planar. An almost-planar R2-embedding (S2-embedding)
of a graph is an equivalence class of almost-planar R

2-topological graphs (S2-
topological graphs) under homeomorphisms of the plane (sphere).

Throughout this paper, G = (V,E) denotes an almost-planar topological
graph (S2 or R2) and (s, t) denotes an edge of G whose deletion makes G planar.
The embedding obtained by deleting the edge (s, t) is denoted by Ĝ. More gen-
erally, we use the convention that the notation X̂ normally denotes X without
the edge (s, t).

Let G be an S
2-topological graph and let G′ be an R

2-topological graph with
the same underlying simple graph. We say that G′ preserves the S

2-embedding
of G if for each vertex and for each crossing they have the same cyclic order
of incident edges. Further, let G be an R

2-topological graph and let G′ be an
R

2-topological graph with the same underlying simple graph. We say that G′

preserves the R2-embedding of G if for each vertex and for each crossing they have
the same cyclic order of incident edges and the same external face. A straight-
line drawing of a graph is an R

2-topological graph whose edges are represented
by straight-line segments.

3 Straight-Line Drawability of an Almost-Planar
S
2-Embedding

In this section we state our main theorem. Let G be a topological graph with a
given almost-planar S

2-embedding. Suppose that α is a crossing between edges
(s, t) and (u, v) in G. If the clockwise order of vertices around α is 〈s, u, t, v〉,
then u is a left vertex and v is a right vertex (with respect to the ordered pair
(s, t) and the crossing α). We say that a vertex of G is inconsistent if it is both
left and right, and consistent otherwise. For example, vertex v in Fig. 1(c) is
inconsistent: it is a left vertex with respect the first crossing along (s, t), and it
is a right vertex with respect to the final crossing along (s, t).

Theorem 1. An almost-planar S
2-topological graph G with n vertices admits

an S
2-embedding preserving straight-line drawing if and only if every vertex of

G is consistent. This condition can be tested in O(n) time.
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The necessity of every vertex being consistent is straightforward. The proof
of sufficiency involves many technicalities and it occupies most of the remainder
of this paper. Namely, we prove the sufficiency of the condition in Theorem 1 by
the following steps.

Augmentation: We show that we can add edges to an almost-planar S
2-

topological graph to form a maximal almost-planar graph, without changing
the property that every vertex is consistent. Let G′ be the augmented S

2-
topological graph (subsection 3.1).

Choice of an external face: We find a face fo of G′ such that if the S
2-

embedding of G′ is projected on the plane with f0 as the external face, G′

satisfies an additional property that we call face consistency (subsection 3.2).
Split the augmented graph: After having projected G′ on the plane with fo

as the external face, we split the R
2-embedding of G′ into the “inner graph”

and the “outer graph”. The inner graph and outer graph share a cycle called
the “separating cycle” (subsection 3.3).

Straight-line drawing computation: We draw the outer graph leaving a
convex shaped “hole” for the inner graph; the boundary of this hole is the
separating cycle. Then we draw the “inner graph”, whose external face is
the separating cycle, such that it fits exactly into the convex shaped “hole”
(subsections 3.4 and 3.5).

Before presenting more details of the proof of sufficiency, we observe that
the condition stated in Theorem 1 can be tested in linear time. By regarding
crossing points as dummy vertices, we can apply the usual data structures for
plane graphs to almost-planar graphs (see [5], for example). A simple traversal
of the crossing points along the edge (s, t) can be used to compute the left and
the right vertices. Since the number of crossing points in an almost-planar graph
is linear, these data structures can be applied without asymptotically increasing
total time complexity.

3.1 Augmentation

Let G be an S
2-topological graph. An S

2-embedding preserving augmentation of
G is an S

2-topological graph G′ obtained by adding edges (and no vertices) to G
such that for each vertex (for each crossing) of G′, the cyclic order of the edges
of G′ ∩G around the vertex (around the crossing) is the same in G′ and in G. An
almost-planar topological graph is maximal if the addition of any edge would
result in a topological graph that is not almost planar. The following lemma
describes a technique to compute an S

2-embedding preserving augmentation of
an almost-planar S2-topological graph that gives rise to a maximal almost-planar
graph. The proof is reported in [6].

Lemma 1. Let G be an almost-planar S
2-topological graph with n vertices. If

G satisfies the vertex consistency condition, then there exists a maximal almost-
planar S

2-embedding preserving augmentation G′ of G such that G′ satisfies the
vertex consistency condition. Also, such augmentation can be computed in O(n)
time.
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Some remarks about maximal almost-planar graphs are in [6].

Lemma 2. If G is a maximal almost-planar topological graph, then either Ĝ is
a maximal planar graph (that is, every face of Ĝ has size 3); or every face of Ĝ
has size 3, except exactly one face f4 which has the following properties: (i)f4
has size 4; (ii)f4 induces a clique in G; and (iii) both s and t are on f4.

3.2 Choice of an External Face

The augmentation step results in a maximal almost-planar S2-topological graph
G′ in which every vertex is consistent. Next, we want to identify a face fo of
G′ such that if we choose f0 to be the external face, then G′ becomes an R

2-
topological graph that has an embedding preserving straight-line drawing in the
plane. To identify such a face, we need some further terminology.

Let G be an almost-planar topological graph. Let Ĝ denote G − (s, t). We
denote the set of left (resp. right) vertices of G by VL (resp. VR). We denote the
subgraph of Ĝ induced by VL ∪ {s, t} (resp. VR ∪ {s, t}) by ĜL (resp. ĜR). The
union of ĜL and ĜR is ĜLR, and GLR denotes the topological subgraph of G
formed from ĜLR by adding the edge (s, t). Note that GLR and ĜLR are not
necessarily induced subgraphs of Ĝ. A face of GLR is inconsistent if it contains a
left vertex and a right vertex, and consistent otherwise. In fact GLR has exactly
one inconsistent face, as stated in the next Lemma.

Lemma 3. Let G be an S
2-topological graph in which every vertex is consistent.

Then GLR has exactly one inconsistent face.

We now proceed as follows. Let G be an S
2-topological graph in which every

vertex is consistent and let G′ be a maximal almost-planar S
2-embedding pre-

serving augmentation of G constructed by using Lemma 1. We project G on
the plane such that the only inconsistent face of GLR is its external face. The
following lemma is a consequence of the discussion above and of Lemma 3.

Lemma 4. Let G be a maximal almost-planar S
2-topological graph in which

every vertex is consistent. There exists an R
2-topological graph G′ that preserves

the S
2-embedding of G and such that: (i) every internal face of Ĝ′ consists of

three vertices (i.e. it is a triangle); (ii) every internal face of G′
LR is consistent.

Examples of an almost-planar R
2-topological graph G and of its subgraphs

ĜL, ĜR, and GLR are given in [6].

3.3 Splitting the Augmented Graph

For the remainder of Section 3, we assume that G is a maximal almost-planar
R

2-topological graph; that is, that the augmentation and choice of an outer face
have been done. Next we divide G into the “inner graph” and the “outer graph”.

Denote the induced subgraph of Ĝ on the vertex set VL ∪VR ∪{s, t} by Ĝ+
LR.

Note that ĜLR is a subgraph of Ĝ+
LR, but these graphs may not be the same; in
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particular, Ĝ+
LR may have edges with a left endpoint and a right endpoint that

do not cross (s, t); such an edge is called a cap edge. Although Ĝ is internally tri-
angulated by Lemma 4, Ĝ+

LR may have non-triangular inner faces. Nevertheless,
the outside face of Ĝ+

LR is a simple cycle. (See [6] for proof and an illustration.)

Lemma 5. If G is a maximal almost-planar R2-topological graph such that every
internal face of GLR is consistent, then the external face of Ĝ+

LR is a simple cycle.

We call the external face of Ĝ+
LR the separating cycle of the graph G. The

topological subgraph consisting of the separating cycle as well as all vertices and
edges that lie outside the separating cycle is the outer graph Gout. (An example
of an outer graph is in [6].) The inner graph consists of Ĝ+

LR with the addition
of some dummy edges. Namely, for every face f of Ĝ+

LR that is not a triangle,
we perform a fan triangulation; that is, we choose a vertex u in f with degree 2
in f , and add dummy edges incident with u to triangulate f . The graph formed
by fan triangulating every non-triangular internal face of Ĝ+

LR is the inner graph
Ĝin.

Note that the vertices of G that are neither left vertices nor right vertices
and that are inside the separating cycle belong to neither the inner nor the outer
graph. At the end of next section we show how to reinsert these vertices and
their incident edges into the drawing.

3.4 Drawing the Outer Graph

Since G is maximal almost-planar, by using Lemma 2 we can show that Gout is
triconnected as long as the separating cycle has no chord. But since Gin contains
the subgraph of Ĝ induced by the separating cycle, every chord on the separating
cycle is in Gin and not in Gout. Thus Gout is triconnected. We use the linear-time
convex drawing algorithm of Chiba et al. [4] to draw Gout such that every face in
the drawing is a convex polygon. This drawing of the outer graph has a convex
polygonal drawing of the separating cycle, which we shall call the separating
polygon. In the next section we show how to draw the inner graph such that its
outside face (i.e. the separating cycle) is the separating polygon.

3.5 Drawing the Inner Graph

The overall approach for drawing the inner graph is described as follows. For
each edge e of the separating cycle, we define a “side graph” Se; intuitively, Se

consists on vertices and edges that are “close” to e. There may be two special
side graphs, that contain cap edges (that is, edges that join a left vertex and a
right vertex but do not cross (s, t)); these side graphs are “cap graphs”. Each
side graph has a block-cutvertex tree Te. We root Te at the block (biconnected
component) that contains the edge e. The algorithm first draws the root block
for each side graph, then proceeds from the root to the leaves of these trees,
drawing the blocks one by one. Cap graphs are drawn with a different algorithm
from that used for other side graphs.
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Each non-root block B with parent cutverex c in Te is associated with circular
arc γ(B), and two regions, called a “safe wedge” ω(B) and a “safe moon” μ(c);
these are defined precisely below. We draw all the vertices of B and its descen-
dants in μ(c), with all vertices except the parent cutvertex lying on γ(B) inside
μ(c)∩ω(B). Every edge with exactly one endpoint in B and its descendants lies
inside ω(B).

First the root blocks are drawn, and then the algorithm proceeds by repeating
the following steps until every vertex of every side graph is drawn. (1) Choose a
“safe block” B from the child blocks of drawn vertices; (2) Compute the “safe
moon” μ(c), the “safe wedge” ω(B), and the circular arc γ(B); (3) Draw each
vertex of B except c on γ(B).
Side Graphs and Cap Graphs. To define “side graphs” and “cap graphs”,
we need to first define a certain closed walk in the inner graph. Denote the edges
that cross (s, t) by e0, e1, . . . , ep−1, ordered from s to t by their crossing points
along (s, t). Suppose that ei = (�i, ri) for 0 ≤ i ≤ p − 1, where �i is a left vertex
and ri is a right vertex. Note that cyclic list (s, �0, �1, . . . , �p−1, t, rp−1, . . . , r1, r0)
may contain repeated vertices.

Now let W be the sublist of (s, �0, �1, . . . , �p−1, t, rp−1, . . . , r1, r0) obtained by
replacing each contiguous subsequence of the same vertex by a single occurrence
of that vertex. Note that W may contain repeated vertices, but these repeats
are not contiguous. Namely, W is a closed spanning walk of ĜLR.

Now let e = (u, v) be an edge of the separating cycle, with u before v in clock-
wise order around the separating cycle. Note that both u and v are elements of
the closed walk W . Suppose that the clockwise sequence of vertices in W between
u and v is (u = u1, u2, . . . , uk = v). If u occurs more than once in W , then we
choose u1 to be the first occurrence of u in clockwise order after s; similarly
choose uk. The side graph Se is the induced subgraph of G on {u1, u2, . . . , uk}.

If Se contains both left and right vertices then it is a cap graph. Note that a
cap graph contains either s or t; one can show that s and t are not in the same
cap graph. An example of the closed walk W with side graphs and cap graphs
in [6].
Drawing the Root Blocks of Side Graphs. Next we show how to draw the
root block B∗

e of the side graph Se. The edge e is drawn as a side λe of the
separating polygon. We define a circular arc γ(B∗

e ) through the endpoints of λe,
with radius chosen such that the maximum distance from λe to γ(B∗

e ) is ε1. We
will show how to choose ε1 later; for the moment, we assume that ε1 is very small
in comparison to the length of the smallest edge of the separating polygon. The
convex region bounded by λe and γ(B∗

e ) is called the pillow of e.
Suppose that B∗

e of Se has a + 1 vertices, which occur in clockwise
order on the closed walk W as w0, w1, . . . , wa. Since B∗

e is biconnected, this
sequence is a Hamilton path of Se. We compute a + 1 equally spaced points
α(w0), α(w1), . . . , α(wa) on λe as in Fig. 2(a). Let ζ(wi) denote the line through
α(wi) orthogonal to λe, as in Fig. 2(a).

If Se is not a cap graph, then we simply place vertex wi in B∗
e at the point

β(wi) where ζ(wi) intersects the circular arc γ(B∗
e ) (0 ≤ i ≤ a). Note that the
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Fig. 2. (a) A pillow. (b) Defining ε1

edges of Se (which are chords on the Hamilton path (w0, w1, . . . , wa)) lie within
the pillow of e.

If Se is a cap graph, then we place vertex wi on the line ζ(wi), but not
necessarily at β(wi). First we define an acyclic directed graph as follows. We
direct edges along the Hamilton path (w0, w1, . . . , wa) from w0 to wa, and direct
other edges so that the result is a directed acyclic graph

−→
B∗

e with a source at
w0 and a sink at wa. Note that

−→
B∗

e is a leveled planar graph with one vertex on
each level [11]. One can use the algorithm in [7] to draw

−→
B∗

e so that there are no
edge crossings, vertex wi lies on the line ζ(wi), and the external face is a given
polygon. We choose the external face to be the convex hull of λe and the points
β(wi), 0 ≤ i ≤ a. Note that the vertices w0, w1, . . . , wa are in monotonic order
in the direction of the edge (w0, wk). The general picture after the drawing of
the root blocks is illustrated in Fig. 3.

 

 

Fig. 3. The general picture with pillows

Next we show how to choose ε1. Let δ denote d/n, where d is the minimum
length of a side of the separating polygon, and n is the number of vertices in the
graph. Suppose that λe′ , λe, and λe′′ are three consecutive sides of the separating
polygon, as in Fig. 2(b); we show how to choose ε1 for the edge e. Suppose that
the endpoints of e are u′ and u′′, and α′ and α′′ are points on λe′ and λe′′

distant δ from u′ and u′′ respectively. Suppose that the line from u′ to α′′ meets
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the line from u′′ to α′ at β. Convexity ensures that β is inside the separating
polygon, and thus (u′, β, u′′) forms a triangle inside the separating polygon. We
choose ε1 so that the circular arc γ(B∗

e ) through u′ and u′′ lies inside this triangle
(meeting the triangle only on the line segment λe). The reason for this choice of
ε1 is to ensure that all vertices in B∗

e are so close to the side λe of the separating
polygon that it is impossible for an edge between different pillows to intersect
with pillows other than those at its endpoints.
Safe Blocks. To describe the algorithm for drawing the non-root blocks, we
need some terminology. Suppose that c is a cutvertex in the side graph Se, and
B = (VB , EB) is a child block of c. Suppose that c is a left vertex. In the clockwise
order of edges in G around c, there is an edge e1 �∈ EB , followed by a number
of edges in EB , followed by an edge e2 �∈ EB , as illustrated in Fig. 4(a). We say
that e1 and e2 are the bounding edges of B. Note that a bounding edge either
crosses (s, t), or has s or t as an endpoint.

Fig. 4. (a) Bounding edges of a block. (b)The safe moon μ(u) at u
.

At any stage of the drawing algorithm, a block may be safe or unsafe. A block
B is safe if the following properties hold: (i) The parent cutvertex c (that is, the
parent of B in the block-cutvertex tree) has been drawn, and the other vertices
in B are not drawn; (ii) Suppose that the boundary edges of B are e1 = (c, u1)
and e2 = (c, u2); let u′

1 and u′
2 be the vertices which are the least already-drawn

ancestors of u1 and u2 respectively in their respective block-cutvertex trees. Then
we require that u′

1 �= u′
2.

Lemma 6. If there is an undrawn vertex, then there is a safe block.

Safe Moon. Suppose that w is a parent cutvertex for a safe block B; for the
moment we assume that w is not on the separating cycle. Suppose that the
parent block of w is B′; then w has been drawn on the circular arc γ(B′); denote
the circular disc defined by γ(B′) by φ′. Let φ be a circular disc of radius ε2 with
centre at w. We show how to choose ε2 later; for the moment we can assume
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that ε2 is very small in comparison to the radius of γ(B′). The safe moon μ(w)
for w is the interior of φ − φ′; see Fig.4(b).

Now we show how to choose ε2. Again let δ denote d/n, where d denotes
the minimum length of a side of the separating polygon, and n is the number of
vertices in the graph. Now consider two points α and α′ at distance δ

2 from u.
We choose ε2 small enough that: (i) μ(w) at u does not intersect the tangents to
γ(B′) at α and α′; (ii) μ(w) does not intersect the line through s and t. Small
adjustments to this choice of μ(w) are required for the cases where w is on the
separating cycle, and where w is an endpoint of γ(B′).

A consequence of the definition of safe moon is the following: Let w1 and w2

be vertices on the circular arcs γ(B1) and γ(B2) for two blocks B1 and B2 that
have been drawn. Let α1 be a point in μ(w1) and α2 be a point in μ(w2); the
line segment between α1 and α2 does not intersect any safe moon other than
μ(w1) and μ(w2).
Safe Wedges. Suppose that the boundary edges of a non-root block B are
e1 = (c, u1) and e2 = (c, u2); let u′

1 and u′
2 be the vertices which are the least

drawn ancestors of u1 and u2 respectively in their respective block-cutvertex
trees. Since B is safe, u′

1 �= u′
2. For each point α1 (resp. α2) in μ(u′

1) (resp.
μ(u′

2)), consider the wedge ω(α1, α2) formed by the rays from c through α1 and
α2. The safe wedge ω(B) of B is the intersection of all such wedges ω(α1, α2)
with the safe moon of c. This is illustrated in Fig. 5(a).

 

 

 

 

 

 

 

 

 

 

Fig. 5. (a) A safe wedge. (b) The circular arc γ(B).

The Circular Arc γ(B). Suppose that B is a non-root block. We give a location
to each vertex in B except the parent cutvertex c (which is already drawn). These
vertices are drawn on a circular arc γ(B), defined as follows. Suppose that the
boundaries of μ(c) and ω(B) intersect at points α and α′ as shown in Fig 5(b).
Then γ(B) is a circular arc that passes through α and α′. The radius of γ(B) is
chosen so that it lies inside μ(c), and it is distant at most ε1 from the straight
line between α and α′. Here ε1 is chosen in exactly the same way as for the root
block.
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Putting it All Together. In the construction of the inner graph in subsec-
tion 3.3, all vertices that are neither left nor right are removed, and the result-
ing non-triangular faces are fan-triangulated. These vertices can be drawn as
follows. Each fan-triangulated face, after removal of the dummy edges, is star-
shaped. The non-aligned vertices (neither left nor right) that came from this face
form a triangulation inside the face. Thus we can use the linear-time algorithm
of Hong and Nagamochi [10] to construct a straight-line drawing replacing the
non-aligned vertices. This concludes the proof of sufficiency of Theorem 1.

4 Concluding Remarks

Assuming the real RAM model of computation, it can be proved that all algo-
rithmic steps presented in the previous section can be executed in O(n) time,
where n is the number of vertices of G.

Theorem 2. Let G be an almost-planar S
2-topological graph with n vertices

such that every vertex of G is consistent. There exists an O(n) time algorithm
that computes an S

2-embedding preserving straight-line drawing of G.

The real RAM model of computation allows for exponentially bad resolution
in the drawing. The next theorem shows that such exponentially bad resolu-
tion is inevitable in the worst case. The construction of the family of almost-
planar graphs for Theorem 3 is based on a family of upward planar digraphs
first described by Di Battista et al. [2]. (See [6] for details.)

Theorem 3. For each k ≥ 1, there is an almost-planar S2-topological graph Gk

with 2k+1 vertices, such that any S
2-embedding preserving straight-line drawing

of Gk requires area Ω(2k) under any resolution rule.

We conclude this section by observing that the arguments used to prove The-
orem 1 lead to a characterization of the maximal almost-planar R

2-topological
graphs that have R

2-embedding preserving straight-line drawings.

Theorem 4. A maximal almost-planar R
2-topological graph G admits an R

2-
embedding preserving straight-line drawing of G if and only if every vertex of G
is consistent, and every internal face of GLR is consistent.

Namely, the sufficiency of Theorem 4 is proved in Sections 3.3, 3.4, and 3.5.
The proof that the conditions of Theorem 4 are also necessary is in [6].

5 Open Problems

We mention two open problems that are naturally suggested by the research in
this paper. The first open problem is about characterizing those almost-planar
R

2-topological graphs that admit an embedding preserving straight-line drawing.
Theorem 4 provides such a characterization for the family of maximal almost-
planar graphs.
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The second open problem is about extending Theorem 1 to k-skew graphs
with k > 1. A topological graph G = (V,E) is k-skew if there is a set E′ ⊂ E of
edges such that G− = (V,E −E′) has no crossings where |E′| ≤ k. Many graphs
that arise in practice are k-skew for small values of k; this paper gives drawing
algorithms for the case k = 1. For each edge e ∈ E′, one could define “left vertex
relative to e” and “right vertex relative to e”, extending the definitions of left
and right in this paper. However, it is not difficult to find a topological 2-skew
graph in which all vertices are consistent with respect to the 2 “crossing” edges,
but do not admit a straight-line drawing. It would be interesting to characterize
k-skew graphs that admit a straight-line drawing for k > 1.
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Abstract. A modulator of a graph G to a specified graph class H is a set
of vertices whose deletion puts G into H. The cardinality of a modulator
to various graph classes has long been used as a structural parameter
which can be exploited to obtain FPT algorithms for a range of hard
problems. Here we investigate what happens when a graph contains a
modulator which is large but “well-structured” (in the sense of having
bounded rank-width). Can such modulators still be exploited to obtain
efficient algorithms? And is it even possible to find such modulators
efficiently?

We first show that the parameters derived from such well-structured
modulators are strictly more general than the cardinality of modulators
and rank-width itself. Then, we develop an FPT algorithm for finding
such well-structured modulators to any graph class which can be char-
acterized by a finite set of forbidden induced subgraphs. We proceed by
showing how well-structured modulators can be used to obtain efficient
parameterized algorithms for Minimum Vertex Cover and Maximum

Clique. Finally, we use the concept of well-structured modulators to
develop an algorithmic meta-theorem for efficiently deciding problems
expressible in Monadic Second Order (MSO) logic, and prove that this
result is tight in the sense that it cannot be generalized to LinEMSO
problems.

1 Introduction

Many important graph problems are known to be NP-hard, and yet admit
efficient solutions in practice due to the inherent structure of instances. The
parameterized complexity paradigm [9,22] allows a more refined analysis of the
complexity of various problems and hence enables the design of more efficient
algorithms. In particular, given an instance of size n and a numerical parameter
k which captures some property of the instance, one asks whether the instance
can be solved in time f(k) · nO(1). Parameterized problems which admit such
an algorithm are called fixed parameter tractable (FPT), and the algorithms
themselves are often called FPT algorithms.

Given the above, it is natural to ask what kind of structure can be exploited
to obtain FPT algorithms for a wide range of natural graph problems. There
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are two very successful, mutually incomparable approaches which tackle this
question.

A. Width measures. Treewidth has become an extremely successful structural
parameter with a wide range of applications in many fields of computer sci-
ence. However, treewidth is not suitable for use in dense graphs. This led
to the development of algorithms that use the parameter clique-width [6],
which can be viewed as a relaxation of treewidth towards dense graphs.
However, while there are efficient theoretical algorithms for computing tree-
decompositions, this is not the case for decompositions for clique-width. This
shortcoming has later been overcome by the notion of rank-width [23], which
improves upon clique-width by allowing the efficient computation of rank-
decompositions while retaining all of the positive algorithmic results previ-
ously obtained for clique-width.

B. Modulators. A modulator is a vertex set whose deletion places the considered
graph into some specified graph class. A substantial amount of research has
been placed into finding as well as exploiting small modulators to various
graph classes [2,10]. Popular notions such as vertex cover and feedback vertex
set are also special cases of modulators (to the classes of edgeless graphs and
forests, respectively). One advantage of parameterizing by the size of modu-
lators is that it allows us to build on the vast array of research of polynomial-
time algorithms on specific graph classes (see, for instance, [5,21]). In other
fields of computer science, modulators are often called backdoors and have
been successfully used to obtain efficient algorithms for, e.g., Satisfiability
and Constraint Satisfaction [12].

Our primary goal in this paper is to push the boundaries of tractability for a
wide range of problems above the state of the art for both of these approaches.
We summarize our contributions below.
1. We introduce a family of “hybrid” parameters that combine approaches A

and B.
Given a graph G and a fixed graph class H, the new parameters capture (roughly
speaking) the minimum rank-width of any modulator of G into H. We call
this the well-structure number of G or wsnH(G). The formal definition of the
parameter also relies on the notion of split decompositions [7] and is provided in
Section 3, where we also prove that for any graph class H of unbounded rank-
width, wsnH is not larger and in many cases much smaller than both rank-width
and the size of a modulator to H.
2. We develop an FPT algorithm for computing wsnH.
As with most structural parameters, virtually all algorithmic applications of the
well-structure number rely on having access to an appropriate decomposition.
In Section 4 we provide an FPT algorithm for computing wsnH along with the
corresponding decomposition for any graph class H which can be characterized
by a finite set of forbidden induced subgraphs (obstructions). This is achieved by
building on the polynomial algorithm for computing split-decompositions [16] in
combination with the FPT algorithm for computing rank-width [18].
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3. We design FPT algorithms for Minimum Vertex Cover (MinVC) and Maxi-
mum Clique (MaxClq) parameterized by wsnH.

Specifically, in Section 5 we show that for any graph class H (which can be char-
acterized by a finite set of obstructions) such that the problem is polynomial-time
tractable on H, the problem becomes fixed parameter tractable when parame-
terized by wsnH. We also give an overview of possible choices of H for MinVC
and MaxClq.
4. We develop a meta-theorem to obtain FPT algorithms for problems definable

in Monadic Second Order (MSO) logic [6] parameterized by wsnH.
The meta-theorem requires that the problem is FPT when parameterized by
the cardinality of a modulator to H. We prove that this condition is not only
sufficient but also necessary, in the sense that the weaker condition of polynomial-
time tractability on H used for MinVC and MaxClq is not sufficient for
FPT-time MSO model checking. Formal statements and proofs can be found
in Section 6.
5. We show that, in general, solving LinEMSO problems [6,11] is not FPT when

parameterized by wsnH.
In particular, in the concluding Section 7 we give a proof that these problems are
in general paraNP-hard when parameterized by wsnH under the same conditions
as those used for MSO model checking.

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by N. For
i ∈ N we write [i] to denote the set {1, . . . , i}. If ∼ is an equivalence relation over
a set A, then for a ∈ A we use [a]∼ to denote the equivalence class containing a.

Graphs We will use standard graph theoretic terminology and notation (cf. [8]).
All graphs considered in this document are simple and undirected.

Given a graph G = (V (G), E(G)) and A ⊆ V (G), we denote by N(A) the set
of neighbors of A in V (G)\A; if A contains a single vertex v, we use N(v) instead
of N({v}). We use V and E as shorthand for V (G) and E(G), respectively,
when the graph is clear from context. Two vertex sets A,B are overlapping if
A∩B,A \B,B \A are all nonempty. G−A denotes the subgraph of G obtained
by deleting A.

Given a graph G = (V,E) and a graph class H, a set X ⊆ V is called a
modulator to H if G − X ∈ H. A graph class is called hereditary if it is closed
under vertex deletion. A graph H is an induced subgraph of G if H can be
obtained by deleting vertices (along with all of their incident edges) from G.
For A ⊆ V (G) we use G[A] to denote the subgraph of G obtained by deleting
V (G) \ A. Let F be a finite set of graphs; then the class of F-free graphs is the
class of all graphs which do not contain any graph in F as an induced subgraph.
We will often refer to elements of F as obstructions, and we say that the class
of F-free graphs is characterized by F .
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Fixed-Parameter Tractability. We refer the reader to [9,22] for an introduction
to parameterized complexity. A parameterized problem P is a subset of Σ∗ × N

for some finite alphabet Σ. For a problem instance (x, k) ∈ Σ∗ × N we call
x the main part and k the parameter. A parameterized problem P is fixed-
parameter tractable (FPT in short) if a given instance (x, k) can be solved in
time O(f(k) · p(|x|)) where f is an arbitrary computable function of k and p is
a polynomial function.

Splits. A split of a connected graph G = (V,E) is a vertex bipartition {A,B} of V
such that every vertex of A′ = N(B) has the same neighborhood in B′ = N(A).
The sets A′ and B′ are called frontiers of the split.

Let G = (V,E) be a graph. To simplify our exposition, we will use the notion
of split-modules instead of splits where suitable. A set A ⊆ V is called a split-
module of G if there exists a connected component G′ = (V ′, E′) of G such that
{A, V ′ \ A} forms a split of G′. Notice that if A is a split-module then A can
be partitioned into A1 and A2 such that N(A2) ⊆ A and for each v1, v2 ∈ A1 it
holds that N(v1)∩(V ′ \A) = N(v2)∩(V ′\A). For technical reasons, V and ∅ are
also considered split-modules. We say that two disjoint split-modules X,Y ⊆ V
are adjacent if there exist x ∈ X and y ∈ Y such that x and y are adjacent.

Rank-width For a graph G and U,W ⊆ V (G), let AG[U,W ] denote the U × W -
submatrix of the adjacency matrix over the two-element field GF(2), i.e., the
entry au,w, u ∈ U and w ∈ W , of AG[U,W ] is 1 if and only if {u,w} is an
edge of G. The cut-rank function ρG of a graph G is defined as follows: For a
bipartition (U,W ) of the vertex set V (G), ρG(U) = ρG(W ) equals the rank of
AG[U,W ] over GF(2).

A rank-decomposition of a graph G is a pair (T, μ) where T is a tree of
maximum degree 3 and μ : V (G) → {t : t is a leaf of T} is a bijective function.
For an edge e of T , the connected components of T − e induce a bipartition
(X,Y ) of the set of leaves of T . The width of an edge e of a rank-decomposition
(T, μ) is ρG(μ−1(X)). The width of (T, μ) is the maximum width over all edges
of T . The rank-width of G, rw(G) in short, is the minimum width over all rank-
decompositions of G. We denote by Ri the class of all graphs of rank-width at
most i, and say that a graph class H is of unbounded rank-width if H �⊆ Ri for
any i ∈ N.

Theorem 1 ([18]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph
G, we can output a rank-decomposition of width at most k or confirm that the
rank-width of G is larger than k in time f(k) · n3, where f is a computable
function.

Monadic Second Order Logic on Graphs. We assume that we have an infi-
nite supply of individual variables, denoted by lowercase letters x, y, z, and an
infinite supply of set variables, denoted by uppercase letters X,Y,Z. Formu-
las of monadic second-order logic (MSO) are constructed from atomic formulas
E(x, y), X(x), and x = y using the connectives ¬ (negation), ∧ (conjunction)
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Fig. 1. A rank-decomposition of the cycle C5

and existential quantification ∃x over individual variables as well as existential
quantification ∃X over set variables. Individual variables range over vertices, and
set variables range over sets of vertices. The atomic formula E(x, y) expresses
adjacency, x = y expresses equality, and X(x) expresses that vertex x in the
set X. From this, we define the semantics of monadic second-order logic in the
standard way (this logic is sometimes called MSO1).

Free and bound variables of a formula are defined in the usual way. A sentence
is a formula without free variables. We write ϕ(X1, . . . , Xn) to indicate that the
set of free variables of formula ϕ is {X1, . . . , Xn}. If G = (V,E) is a graph and
S1, . . . , Sn ⊆ V we write G |= ϕ(S1, . . . , Sn) to denote that ϕ holds in G if the
variables Xi are interpreted by the sets Si, for i ∈ [n]. For a fixed MSO sentence
ϕ, the MSO Model Checking problem (MSO-MCϕ) asks whether an input graph
G satisfies G |= ϕ.

It is known that MSO formulas can be checked efficiently as long as the graph
has bounded rank-width.

Theorem 2 ([11]). Let ϕ and ψ = ψ(X) be fixed MSO formulas. Given an
n-vertex graph G and a set S ⊆ V (G), there exists a computable function f such
that we can decide whether G |= ϕ and whether G |= ψ(S) in time f(rw(G)) ·n3.

We review MSO types roughly following the presentation in [20]. The quan-
tifier rank of an MSO formula ϕ is defined as the nesting depth of quantifiers in
ϕ. For non-negative integers q and l, let MSOq,l consist of all MSO formulas of
quantifier rank at most q with free set variables in {X1, . . . , Xl}.

Let ϕ = ϕ(X1, . . . , Xl) and ψ = ψ(X1, . . . , Xl) be MSO formulas. We say
ϕ and ψ are equivalent, written ϕ ≡ ψ, if for all graphs G and U1, . . . , Ul ⊆
V (G), G |= ϕ(U1, . . . , Ul) if and only if G |= ψ(U1, . . . , Ul). Given a set F of
formulas, let F/≡ denote the set of equivalence classes of F with respect to ≡.
A system of representatives of F/≡ is a set R ⊆ F such that R ∩ C �= ∅ for each
equivalence class C ∈ F/≡. The following statement has a straightforward proof
using normal forms (see [20, Proposition 7.5] for details).

Fact 1. Let q and l be fixed non-negative integers. The set MSOq,l/≡ is finite,
and one can compute a system of representatives of MSOq,l/≡.

We will assume that for any pair of non-negative integers q and l the system of
representatives of MSOq,l/≡ given by Fact 1 is fixed.
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Definition 1 (MSO Type). Let q, l be non-negative integers. For a graph G
and an l-tuple U of sets of vertices of G, we define typeq(G,U ) as the set of
formulas ϕ ∈ MSOq,l such that G |= ϕ(U). We call typeq(G,U) the MSO q-type
of U in G.

It follows from Fact 1 that up to logical equivalence, every type contains only
finitely many formulas.

3 Well-Structured Modulators

Definition 2. Let H be a hereditary graph class and let G be a graph. A set X
of pairwise-disjoint split-modules of G is called a k-well-structured modulator to
H if

1. |X| ≤ k, and
2.

⋃
Xi∈X Xi is a modulator to H, and

3. rw(G[Xi]) ≤ k for each Xi ∈ X.

Fig. 2. A graph with a 2-well-structured modulator to K3-free graphs (in the two
shaded areas)

For the sake of brevity and when clear from context, we will sometimes
identify X with

⋃
Xi∈X Xi (for instance G−X is shorthand for G−⋃

Xi∈X Xi).
To allow a concise description of our parameters, for any hereditary graph class
H we let the well-structure number (wsnH in short) denote the minimum k
such that G has a k-well-structured modulator to H. Similarly, we let modH(G)
denote the minimum k such that G has a modulator of cardinality k to H.

Proposition 1. Let H be any hereditary graph class of unbounded rank-width.

1. rw(G) ≥ wsnH(G) for any graph G. Furthermore, for every i ∈ N there
exists a graph Gi such that rw(Gi) ≥ wsnH(Gi) + i, and

2. modH(G) ≥ wsnH(G) for any graph G. Furthermore, for every i ∈ N there
exists a graph Gi such that modH(Gi) ≥ wsnH(Gi) + i.
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4 Finding Well-Structured Modulators

The objective of this subsection is to prove the following theorem. Interestingly,
our approach only allows us to find well-structured modulators if the rank-width
of the graph is sufficiently large. This never becomes a problem though, since
on graphs with small rank-width we can always directly use rank-width as our
parameter.

Theorem 3. Let H be a graph class characterized by a finite obstruction set.
There exists an FPT algorithm parameterized by k which for any graph G of
rank-width at least k + 2 either finds a k-well-structured modulator to H or
correctly detects that it does not exist.

Our starting point on the path to a proof of Theorem 3 is a theorem by
Cunningham.

Theorem 4 ([7]). Let {A,C}, {B,D} be splits of a connected graph G such
that |A ∩ B| ≥ 2 and A ∪ B �= V (G). Then {A ∩ B,C ∪ D} is a split of G.

The following lemma in essence shows that the relation of being in a split-
module of small rank-width is transitive (assuming sufficiently high rank-width).
The significance of this will become clear later on.
Lemma 1. Let k ∈ N be a constant. Let G = (V,E) be a connected graph
with rank-width at least k + 2 and let M1,M2 be split-modules of G such that
M1 ∩ M2 �= ∅ and max(rw(G[M1]), rw(G[M2])) ≤ k. Then M1 ∪ M2 is a split-
module of G and rw(G[M1 ∪ M2]) ≤ k.

Proof (Sketch). The proof relies on a series of lemmas building on Theorem 4.
If M1 ⊆ M2 or M2 ⊆ M1 the result is immediate, hence we may assume

that they are overlapping. rw(G) ≥ k + 2 implies that M1 ∪ M2 �= V . The
fact that M1 ∪ M2 is a split-module of G then follows from Theorem 4. Let
M11 = M1 \M2,M22 = M2 \M1, and M12 = M1 ∩M2. These sets can be shown
to be split-modules of G. Let v11 ∈ N(V \ M11), v22 ∈ N(V \ M22), and v12 ∈
N(V \ M12). We show that rw(G[M1 ∪ M2]) ≤ k. By assumption, both G[M1]
and G[M2] have rank-width at most k. Since rank-width is preserved by taking
induced subgraphs, the graphs G11 = G[M11 ∪ {v12}], G12 = G[M12 ∪ {v22}],
and G22 = G[M22 ∪ {v12}] also have rank-width at most k. The proof can be
completed by showing how the rank-decompositions of these three graphs can
be combined into a rank-decomposition for G[M1 ∪ M2]. ��
Definition 3. Let G be a graph and k ∈ N. We define a relation ∼G

k on V (G)
by letting v ∼G

k w if and only if there is a split-module M of G with v, w ∈ M
and rw(G[M ]) ≤ k. We drop the superscript from ∼G

k if the graph G is clear
from context.

Using Lemma 1 to deal with transitivity, we prove the following.
Proposition 2. For every k ∈ N and graph G = (V,E) with rank-width at least
k + 2, the relation ∼k is an equivalence relation, and each equivalence class U
of ∼k is a split-module of G with rw(G[U ]) ≤ k.
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Corollary 1. Any graph G of rank-width at least k+2 has its vertex set uniquely
partitioned by the equivalence classes of ∼k into inclusion-maximal split-modules
of rank-width at most k.

Now that we know ∼k is an equivalence, we show how to compute it in FPT
time.

Proposition 3. Let k ∈ N be a constant. Given an n-vertex graph G of rank-
width at least k +2 and two vertices v, w, we can decide whether v ∼k w in time
O(n3).

Proof (Sketch). The definition of split-modules allows us to consider each con-
nected component of a graph separately. We then compute the so-called split-
tree [7,14–16] of G and use it to list all minimal split-modules containing v and
w. Finally, we check whether any of these split-modules has rank-width at most
k by using Theorem 1. ��

We are now ready to present an algorithm for finding a k-well-structured
modulator to any graph class H characterized by a finite obstruction set F .

Algorithm 1. FindWSMF
Input : k ∈ N0, n-vertex graph G, equivalence ∼ over a superset of

V (G)
Output : A k-cardinality set X of subsets of V (G), or False

1 if G does not contain any D ∈ F as an induced subgraph then
2 return ∅
3 else
4 D′ := an induced subgraph of G isomorphic to an arbitrary D ∈ F ;
5 end
6 if k = 0 then return False;
7 foreach [a]∼ of G which intersects with V (D′) do
8 X = FindWSMF (k − 1, G − [a]∼,∼);
9 if X �= False then

10 return X ∪ {[a]∼}
11 end

12 end
13 return False

We will use ∼k as the input for FindWSMF , however considering general
equivalences as inputs is useful for proving correctness.

Lemma 2. There exists a constant c such that FindWSMF runs in time ck ·
nO(1). Furthermore, if G is a graph of rank-width at least k + 2 and ∼k is the
equivalence computed by Proposition 3, then FindWSMF (k,G,∼k) outputs a k-
wsm to H or correctly detects that no such k-wsm exists in G.

Proof (of Theorem 3). The theorem follows by using Proposition 3 and then
Algorithm 1 in conjunction with Lemma 2. ��
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5 Examples of Algorithmic Applications

In this section, we show how to use the notion of k-well-structured modulators to
design efficient parameterized algorithms for two classical NP-hard graph prob-
lems, specifically Minimum Vertex Cover (MinVC) and Maximum Clique
(MaxClq). Given a graph G, we call a set X ⊆ V (G) a vertex cover if every
edge is incident to at least one v ∈ X and a clique if G[X] is a complete graph.

MinVC, MaxClq
Instance: A graph G and an integer m.
Task (MinVC): Find a vertex cover in G of cardinality at most m, or
determine that it does not exist.
Task (MaxClq): Find a clique in G of cardinality at least m, or
determine that it does not exist.

Establishing the following theorem is the main objective of this section.

Theorem 5. Let P ∈ {MinVC,MaxClq} and H be a graph class characterized
by a finite obstruction set. Then P is FPT parameterized by wsnH if and only
if P is polynomial-time tractable on H.

Since wsnH(G) = 0 for any F-free graph G, the “only if” direction is immedi-
ate; in other words, being polynomial-time tractable on H is clearly a necessary
condition for being fixed parameter tractable when parameterized by wsnH(G).
Below we prove that for the selected problems this condition is also sufficient.

Lemma 3. If MinVC is polynomial-time tractable on a graph class H charac-
terized by a finite obstruction set, then MinVC[wsnH] is FPT.

Proof (Sketch). We compute a k-well-structured modulator X to H in G by
Theorem 3. For each element Xi ∈ X, it holds that either the frontier of Xi or
its neighborhood in G−Xi must be in any vertex cover of G. Branching on these
at most 2k options allows us to reduce the instance to at most 2k disconnected
instances such that each connected component has either rank-width bounded
by k or is in H; these connected components can then be solved independently.

��
Lemma 4. If MaxClq is polynomial-time tractable on a graph class H char-
acterized by a finite obstruction set, then MaxClq[wsnH] is FPT.

Finally, let us review some concrete graph classes for use in Theorem 5.

Fact 2. MinVC is polynomial-time tractable on the following graph classes:

1. (2K2, C4, C5)-free graphs (split graphs);
2. P5-free graphs [21];
3. fork-free graphs [1];
4. (banner, T2,2,2)-free graphs and (banner,K3,3-e, twin-house)-free graphs [3,

13].
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Fact 3. MaxClq is polynomial-time tractable on the following graph classes:

1. Any complementary graph class to the classes listed in Fact 2 (such as cofork-
free graphs and split graphs);

2. Graphs of bounded degree.

6 MSO Model Checking with Well-Structured
Modulators

Here we show how well-structured modulators can be used to solve the MSO
Model Checking problem, as formalized in Theorem 6 below. Note that our meta-
theorem captures not only the generality of MSO model checking problems, but
also applies to a potentially unbounded number of choices of the graph class H.
Thus, the meta-theorem supports two dimensions of generality.

Theorem 6. For every MSO sentence φ and every graph class H character-
ized by a finite obstruction set such that MSO-MCφ is FPT parameterized by
modH(G), the problem MSO-MCφ is FPT parameterized by wsnH(G).

The condition that MSO-MCφ is FPT parameterized by modH(G) is a necessary
condition for the theorem to hold by Proposition 1. However, it is natural to ask
whether it is possible to use a weaker necessary condition instead, specifically
that MSO-MCφ is polynomial-time tractable in the class of F-free graphs (as
was done for specific problems in Section 5). Before proceeding towards a proof
of Theorem 6, we make a digression and show that the weaker condition used in
Theorem 5 is in fact not sufficient for the general case of MSO model checking.

Lemma 5. There exists an MSO sentence φ and a graph class H characterized
by a finite obstruction set such that MSO-MCφ is polynomial-time tractable on
H but NP-hard on the class of graphs with wsnH(G) ≤ 2 or even modH(G) ≤ 2.

Proof (Sketch). Let φ describe vertex 5-colorability and let H be the class of
graphs of degree at most 4. Now consider the class of graphs obtained from H
by adding two adjacent vertices y, z which are adjacent to every other vertex.
Hardness follows from hardness of 3-colorability on graphs of degree at most
4 [19]. ��

Our strategy for proving Theorem 6 relies on a replacement technique, where
each split-module in the well-structured modulator is replaced by a small rep-
resentative. We use the notion of similarity defined below to prove that this
procedure does not change the outcome of MSO-MCϕ.

Definition 4 (Similarity). Let q and k be non-negative integers, H be a
graph class, and let G and G′ be graphs with k-well-structured modulators
X = {X1, . . . , Xk} and X′ = {X ′

1, . . . , X
′
k} to H, respectively. For 1 ≤ i ≤ k,

let Si contain the frontier of split module Xi and similarly let S′
i contain the

frontier of split module X ′
i. We say that (G,X) and (G′,X ′) are q-similar if all

of the following conditions are met:
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1. There exists an isomorphism τ between G − X and G′ − X ′.
2. For every v ∈ V (G) \ X and i ∈ [k], it holds that v is adjacent to Si if and

only if τ(v) is adjacent to S′
i.

3. if k ≥ 2, then for every 1 ≤ i < j ≤ k it holds that Si and Sj are adjacent if
and only if S′

i and S′
j are adjacent.

4. For each i ∈ [k], it holds that typeq(G[Xi], Si) = typeq(G′[X ′
i], S

′
i).

Lemma 6. Let q and k be non-negative integers, H be a graph class, and let
G and G′ be graphs with k-well-structured modulators X = {X1, . . . , Xk} and
X′ = {X ′

1, . . . , X
′
k} to H, respectively. If (G,X) and (G′,X ′) are q-similar,

then typeq(G, ∅) = typeq(G′, ∅).

Proof (Sketch). The proof argument uses the q-round MSO game defined, e.g.,
in [20]. The notion of q-similarity ensures that the Duplicator has a winning
strategy on G′, which translates to G and G′ having the same typeq. If the
Spoiler moves in X, then the Duplicator can follow the winning strategies for
each (G[Xi], Si). On the other hand, if the Spoiler moves in G − X, then the
Duplicator can copy this move in G′. ��

The next lemma deals with actually computing small q-similar “representa-
tives” for our split-modules.

Lemma 7. Let q be a non-negative integer constant and H be a graph class.
Then given a graph G and a k-well-structured modulator X = {X1, . . . Xk} of
G into H, there exists a function f such that one can in time f(k) · |V (G)|O(1)

compute a graph G′ with a k-well-structured modulator X′ = {X ′
1, . . . X

′
k} into

H such that (G,X) and (G′,X′) are q-similar and for each i ∈ [k] it holds that
|X ′

i| is bounded by a constant.

Proof (Sketch). The idea here is to exploit the fact that each split-module has
bounded rank-width. In particular, this allows us to determine the MSO type
of each G[Xi] and its frontier Si in the specified time. The size of a minimum
representative for each type does not depend on the actual size of G or k. ��
Proof (of Theorem 6). Let G be a graph, k = wsnH(G) and q be the nesting
depth of quantifiers in φ. By Theorem 3 it is possible to find a k-well-structured
modulator to H in time f(k) · |V |O(1). We proceed by constructing (G′,X ′) by
Lemma 7. Since each X ′

i ∈ X ′ has size bounded by a constant and |X ′| ≤ k,
it follows that

⋃
X ′ is a modulator to the class of F-free graphs of cardinality

O(k). Hence MSO-MCφ can be decided in FPT time on G′. Finally, since G and
G′ are q-similar, it follows from Lemma 6 that G |= φ if and only if G′ |= φ. ��

We conclude the section by showcasing an example application of Theorem 6.
c-Coloring asks whether the vertices of an input graph G can be colored by c
colors so that each pair of neighbors have distinct colors. From the connection
between c-Coloring, its generalization List c-Coloring and modulators [4,
Theorem3.3] and tractability results for List-c-Coloring [17, Page5], we obtain
the following.

Corollary 2. c-Coloring parameterized by wsnP5-free is FPT for each c ∈ N.
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7 Conclusion

We have introduced a family of structural parameters which push the frontiers
of fixed parameter tractability beyond rank-width and modulator size for a wide
range of problems. In particular, the well-structure number can be computed
efficiently (Theorem 3) and used to design FPT algorithms for Minimum Ver-
tex Cover, Maximum Clique (Theorem 5) as well as any problem which can
be described by a sentence in MSO logic (Theorem 6).

In the wake of Theorem 6 and the positive results for the two problems in
Section 5, one would expect that it should be possible to strengthen Theorem 6
to also cover LinEMSO problems [6,11] (which extend MSO Model Checking
by allowing the minimization/maximization of linear expressions over free set
variables). Surprisingly, as our last result we will show that this is in fact not
possible if we wish to retain the same conditions. For our hardness proof, it
suffices to consider a simplified variant of LinEMSO, defined below. Let ϕ be an
MSO formula with one free set variable.

MSO-Opt≤
ϕ

Instance: A graph G and an integer r ∈ N.
Question: Is there a set S ⊆ V (G) such that G |= ϕ(S) and |S| ≤ r?

Theorem 7. There exists an MSO formula ϕ and a graph class H characterized
by a finite obstruction set such that MSO-Opt≤

ϕ is FPT parameterized by modH

but paraNP-hard parameterized by wsnH.

To prove Theorem 7, we let dom(S) express that S is a dominating set in G,
and let cyc(S) express that S intersects every C4 (cycle of length 4). Then we
set ϕ(S) = dom(S) ∨ cyc(S) and let H be the class of C4-free graphs of degree
at most 3 (obtained by letting the obstrucion set F contain C4 and all 5-vertex
supergraphs of K1,4).

We conclude with two remarks on Theorem 7. On one hand, the fixed parame-
ter tractability of LinEMSO traditionally follows from the methods used for FPT
MSO model checking, and in this respect the theorem is surprising. But on the
other hand, our parameters are strictly more general than rank-width and hence
one should expect that some results simply cannot be lifted to this more general
setting.
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Abstract. We define the parametric closure problem, in which the
input is a partially ordered set whose elements have linearly varying
weights and the goal is to compute the sequence of minimum-weight
lower sets of the partial order as the weights vary. We give polynomial
time solutions to many important special cases of this problem includ-
ing semiorders, reachability orders of bounded-treewidth graphs, partial
orders of bounded width, and series-parallel partial orders. Our result for
series-parallel orders provides a significant generalization of a previous
result of Carlson and Eppstein on bicriterion subtree problems.

1 Introduction

Parametric optimization problems are a variation on classical combinatorial opti-
mization problems such as shortest paths or minimum spanning trees, in which
the input weights are not fixed numbers, but vary as functions of a parame-
ter. Different parameter settings will give different weights and different optimal
solutions; the goal is to list these solutions and the intervals of parameter val-
ues within which they are optimal. As a simple example, consider maintaining
the minimum of n input values as a parameter controlling these values changes.
This parametric minimum problem asks for the lower envelope of a collection of
input functions; for linear functions this is equivalent by projective duality to a
planar convex hull [1], and can be constructed in time O(n log n); more general
function classes such as piecewise-polynomial functions also have efficient lower-
envelope algorithms [2]. The parametric minimum spanning tree problem (with
linear edge weights) has polynomially many solutions that can be constructed
in polynomial time [3–5]; the parametric shortest path problem has a number of
solutions and running time that are exponential in log2 n on n-vertex graphs [6].

As well as the obvious applications of this formulation to real-world problems
with time-varying but predictable data (such as rush-hour route planning), para-
metric optimization problems have another class of applications, to bicriterion
optimization. In bicriterion problems, each input has two numbers associated
with it, that can be summed over the elements of a candidate solution. For
instance, these two numbers might be the x and y coordinates of points in the
plane, the mean and variance of a normal distribution, an initial investment cost
and expected profit of a business opportunity, or the cost and log-likelihood of
failure of a communications link. The goal is to find a solution that optimizes a
nonlinear combination of these two sums of values, such as the distance from the
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 327–338, 2015.
DOI: 10.1007/978-3-319-21840-3 27
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a: 8p – 6
a

b: –7p – 10
b

c: –7p + 10 d: 8p + 6

±

ab bd

abc abd

abcd ±: 0,0

a: 8,–6

ab: 1,–16

abc: –6,–6

abcd: 2,0

abd: 9,–10

bd: 1,–4

b: –7,–10

Fig. 1. An instance of the parametric closure problem. Left: The Hasse diagram of a
partially ordered set N of four elements, each with a weight that varies linearly with a
parameter p. Center: The distributive lattice lower(N) of lower sets of N . Right: The
point set project(lower(N)) and its convex hull. The upper hull (dashed) gives in left-
to-right order the sequence of six distinct maximum-weight closures as the parameter
p varies continuously from −∞ to +∞.

origin, probability of exceeding a given threshold, percentage return on invest-
ment (the ratio of total profit to total investment cost), or cost-reliability ratio.
Many natural bicriterion problems can be expressed as finding the maximum of
a quasiconvex function of the two sums (a function whose lower level sets are
convex sets) or equivalently as finding the minimum of a quasiconcave function of
the two sums. When this is the case, the optimal solution can always be obtained
as one of the solutions of a parametric problem, defined by re-interpreting the
two numbers associated with each input element as the slope and y-intercept
of a linear parametric function [7,8]. In this way, any algorithm for solving a
parametric optimization problem can also be used to solve bicriterion versions
of the same type of optimization problem.

In this paper we formulate and provide the first study of the parametric
closure problem, the natural parametric variant of a classical optimization prob-
lem, the maximum closure problem [9,10]. A closure in a directed graph is a
subset of vertices such that all edges from a vertex in the subset go to another
vertex in the subset; the maximum closure problem is the problem of finding
the highest-weight closure in a vertex-weighted graph. Equivalently we seek the
highest-weight lower set of a weighted partial order, where a lower set is a subset
of the elements of a partial order such that if x < y in the order, and y belongs
to the subset, then x also belongs to the subset. Applications of this prob-
lem include open pit mining [11], military attack planning [12], freight depot
placement [13,14], scheduling with precedence constraints [15,16], image seg-
mentation [17,18], stable marriage with maximum satisfaction [19], and treemap
construction in information visualization [20]. Maximum closures can be found
in polynomial time by a reduction to maximum flow [9,21] or by direct algo-
rithms [22].

In the parametric closure problem, we assign weights to the vertices of a
directed graph (or the elements of a partial order) that vary linearly as functions
of a parameter, and we seek the closures (or lower sets) that have maximum
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weight as the parameter varies. As described above, an algorithm for this problem
can also solve bicriterion closure problems of maximizing a quasiconvex function
(or minimizing a quasiconcave function) of two sums of values. Although we have
not been able to resolve the complexity of this problem in the general case, we
prove near-linear or polynomial complexity for several important special cases
of the parametric closure problem.

We do not know of previous work on the general parametric closure prob-
lem, but two previous papers can be seen in retrospect as solving special cases.
Lawler [15] studied scheduling to minimize weighted completion time with prece-
dence constraints. He used the closure that maximizes the ratio x/y of the pri-
ority x and processing time y of a job or set of jobs to decompose instances of
this problem into smaller subproblems. As Lawler showed, the optimal closure
can be found in polynomial time by a binary search where each step involves
the solution of a weighted closure problem. Replacing the binary search by para-
metric search [23] would make this algorithm strongly polynomial; however, both
search methods depend on the specific properties of the ratio function and would
not work for other bicriterion problems. A second paper, by Carlson and Epp-
stein [8], considers bicriterion versions of the problem of finding the best subtree
(containing the root) of a given rooted tree with weighted edges. These sub-
trees can be modeled as lower sets for a partial order on the tree edges in which
two edges are comparable when they both belong to a path from the root; this
partial order is series-parallel, and we greatly generalize the results of Carlson
and Eppstein in our new results on parametric closures for series-parallel partial
orders.

Parametric Optimization as an Implicit ConvexHull Problem. Paramet-
ric optimization problems can be formulated dually, as problems of computing
convex hulls of implicitly defined two-dimensional point sets. Suppose we are given
a parametric optimization problem in which weight of element i is a linear func-
tion aiλ+bi of a parameter λ, and in which the weight of a candidate solution S (a
subset of elements, constrained by the specific optimization problem in question)
is the sum of these functions. Then the solution value is also a linear function,
whose coefficients are the sums of the element coefficients:

∑

i∈S

aiλ + bi =

(
∑

i∈S

ai

)

λ +

(
∑

i∈S

bi

)

.

Instead of interpreting the numbers ai and bi as coefficients of linear functions, we
may re-interpret the same two numbers as the x and y coordinates (respectively)
of points in the Euclidean plane. In this way any family F of candidate solutions
determines a planar point set, in which each set in F corresponds to the point
given by the sum of its elements’ coefficients. We call this point set project(F),
because the sets in F can be thought of as vertices of a hypercube Qn = {0, 1}n
whose dimension is the number of input elements, and project determines a linear
projection from these vertices to the Euclidean plane.

Let hull(project(F)) denote the convex hull of this projected planar point
set. Then for each parameter value the set in F minimizing or maximizing the
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parameterized weight corresponds by projective duality to a vertex of the hull,
and the same is true for the maximizer of any quasiconvex function of the two
sums of coefficients ai and bi. Thus, parametric optimization can be reformulated
as the problem of constructing this convex hull, and bicriterion optimization can
be solved by choosing the best hull vertex.

New Results. For an arbitrary partially ordered set P , define lower(P ) to be the
family of lower sets of P . As a convenient abbreviation, we define polygon(P ) =
hull(project(lower(P ))). We consider the following classes of partially ordered set.
For each partial order P in one of these classes, we prove polynomial bounds on
the complexity of polygon(P ) and on the time for constructing the hull. These
results imply the same time bounds for parametric optimization over P and for
maximizing a quasiconvex function over P .

Semiorders. This class of partial orders was introduced to model human pref-
erences [24] in which each element can be associated with a numerical value,
pairs of elements whose values are within a fixed margin of error are incompa-
rable, and farther-apart pairs are ordered by their numerical values. For such
orderings, we give a bound of O(n log n) on the complexity of polygon(P ) and
we show that it can be constructed in time O(n log2 n) using an algorithm
based on the quadtree data structure.

Series-parallel partial orders. These are orders formed recursively from
smaller orders of the same type by two operations: series compositions (in
which all elements from one order are placed earlier in the combined order-
ing than all elements of the other order) and parallel compositions (in which
pairs of one element from each ordering are incomparable). These orderings
have been applied for instance in scheduling applications by Lawler [15].
For such orderings, the sets of the form polygon(P ) have a corresponding
recursive construction by two operations: the convex hull of the union of two
convex polygons, and the Minkowski sum of two convex polygons. It follows
that polygon(P ) has complexity O(n). This construction does not immedi-
ately lead to a fast construction algorithm, but we adapt a splay tree data
structure to construct polygon(P ) in time O(n log n). Our previous results
for optimal subtrees [8] follow as a special case of this result.

Bounded treewidth. Suppose that partial order P has n elements and its
transitive reduction forms a directed acyclic graph whose underlying undi-
rected graph has treewidth w. (For prior work on treewidth of partial orders,
see [25].) Then we show that polygon(P ) has polynomially many vertices,
with exponent O(w), and that it can be constructed in polynomial time.

Incidence posets. The incidence poset of a graph G has the vertices and edges
as elements, with an order relation x ≤ y whenever x is an endpoint of y.
One of the initial applications for the closure problem concerned the design
of freight delivery systems in which a certain profit could be expected from
each of a set of point-to-point routes in the system, but at the cost of setting
up depots at each endpoint of the routes [13,14]; this can be modeled with
an incidence poset for a graph with a vertex at each depot location and
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an edge for each potential route. Since the profits and costs have different
timeframes, it is reasonable to combine them in a nonlinear way, giving a
bicriterion closure problem. The transitive reduction of an incidence poset
is a subdivision of G with the same treewidth, so our technique for partial
orders of bounded treewidth also applies to incidence posets of graphs of
bounded treewidth.

Bounded width. The width of a partial order is the maximum number of ele-
ments in an antichain, a set of mutually-incomparable elements. Low-width
partial orders arise, for instance, in the edit histories of version control repos-
itories [26]. The treewidth of a partial order is at most equal to its width,
but partial orders of width w have O(nw) lower sets, tighter than the bound
that would be obtained by using treewidth. We show more strongly using
quadtrees that in this case polygon(P ) has O(nw−1 + n log n) vertices and
can be constructed in time within a logarithmic factor of this bound.

We have been unable to obtain an example of a family of partial orders with
a nonlinear lower bound on the complexity of polygon(P ), nor have we been
able to obtain a nontrivial upper bound on the hull complexity for unrestricted
partial orders. Additionally, we have been unable to obtain polynomial bounds
on the hull complexity of the above types of partial orders for dimensions higher
than two. We also do not know of any computational complexity bounds (such as
NP-hardness) for the parametric closure problem for any class of partial orders
in any finite dimension. We leave these problems open for future research.

For space reasons we describe only the semiorder and series-parallel results
in the main text of our paper, deferring the remaining results to appendices.

2 Minkowski Sums and Hulls of Unions

Our results on the complexity of the convex polygons polygon(P ) associated with
a partial order hinge on decomposing these polygons recursively into combina-
tions of simpler polygons. To do this, we use two natural geometric operations
that combine pairs of convex polygons to produce more complex convex poly-
gons.

Definition 1. For any two convex polygons P and Q, let P ⊕ Q denote the
Minkowski sum of P and Q (the set of points that are the vector sum of a point
in P and a point in Q), and let P � Q denote the convex hull of the union of P
and Q.

Lemma 1 (folklore). If convex polygons P and Q have p and q vertices respec-
tively, then P ⊕Q and P �Q have at most p+ q vertices, and can be constructed
from P and Q in time O(p + q).

We omit the (easy) proof for space reasons.
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Corollary 1. Suppose that P is a convex polygon, described as a formula that
combines a set of n points in the plane into a single polygon using a sequence
of ⊕ and � operations. Suppose in addition that, when written as an expression
tree, this formula has height h. Then P has at most n vertices and it may be
constructed from the formula in time O(nh).

More complex data structures can reduce this time to O(n log n); see
Section 4.

In higher dimensions, the convex hull of n points and Minkowski sum of n
line segments both have polynomial complexity with an exponent that depends
linearly on the dimension. However, we do not know of an analogous bound on
the complexity of convex sets formed by combining Minkowski sum and hull-of-
union operations. If such a bound held, we could extend our results on parametric
closures to the corresponding higher dimensional problems.

3 Semiorders

A semiorder is a type of partial order defined by Luce [24] to model human
preferences. Each element of the order has an associated numerical value (its
utility to the person whose preferences are being modeled). For items whose
utilities are sufficiently far from each other, the ordering of the two items in
the semiorder is the same as the numerical ordering of their utilities. However,
items whose utilities are within some (global) margin of error of each other are
incomparable in the semiorder. Similar concepts of comparisons of numerical
values with margins of error give rise to semiorders in many other areas of science
and statistics [27]. For efficient computations on semiorders we will assume that
the utility values of each element are part of the input to an algorithm, and that
the margin of error has been normalized to one. For instance, the semiorder N
of Figure 1 can be represented as a semiorder with utilities 2/3, 0, 2, and 4/3
for a, b, c, and d respectively. With this information in hand, the comparison
between any two elements can be determined in constant time.

The concept of a lower set is particularly natural for a semiorder: it is a set
of elements whose utility values could lie below a sharp numerical threshold,
after perturbing each utility value by at most half the margin of error. In this
way, the closure problem (the problem of finding a maximum weight lower set)
can alternatively be interpreted as the problem of finding the maximum possible
discrepancy of a one-dimensional weighted point set in which the location of each
point is known imprecisely. Semiorders may have exponentially many lower sets;
for instance, if all items have utilities that are within one unit of each other, all
sets are lower sets. Nevertheless, as we show in this section, if S is a semiorder,
then the complexity of polygon(S) is near-linear.

If S is any parametrically weighted semi-order, we may write the sorted order
of the utility values of elements of S as u0, u1, . . . , un−1 where n = |S|, and the
elements themselves (in the same order) as x0, x1, . . . , xn−1. By padding S with
items that have a fixed zero weight and a utility that is smaller than that of
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Fig. 2. The grid [0, n − 1]2, with the two regions that cannot be part of the image
of extremes. The left image shows a square subproblem s and free(s); the right image
shows the quadtree decomposition of the grid used to prove Theorem 1.

the elements by more than the margin of error, we may assume without loss of
generality that n is a power of two without changing the values of the parametric
closure problem on S.

Definition 2. Let L be an arbitrary lower set in lower(S). Let j be the largest
index of an element xi of L. Let i be the smallest index of an element xi such
that xi does not belong to L and i < j, or −1 if no such element exists. Define
extremes(L) to be the pair of integers (i + 1, j).

Thus, extremes maps the family lower(S) to the integer grid [0, n − 1]2, with
potentially many lower sets mapped to each grid point. However, not every grid
point is in the image of lower(S): a point (i, j) with i > j cannot be the image of
a lower set, because the element defining the first coordinate of extremes must
have an index smaller than the element defining the second coordinate. And when
i > 0, a point (i, j) with ui−1 < uj − 1 (i.e. with utility values that are beyond
the margin of error for the semiorder) also cannot be the image of a lower set,
because in this case xi−1 ≤ xj in the semiorder, so every lower set that includes
xj also includes xi−1. Thus, the image of extremes lies in an orthogonally convex
subset of the grid, bounded below by its main diagonal and above by a monotone
curve ( Figure 2).

Definition 3. Let s be any square subset of the integer grid [0, n−1]2, and define
subproblem(s) to be the partially-ordered subset of the semiorder S consisting of
the elements whose indices are among the rows and columns of s. Define free(s)
to be the (unordered) set of elements of S that do not belong to subproblem(s),
but whose indices are between pairs of indices that belong to subproblem(s). (See
Figure 2, left, for an example.)

Observation 1. Given a square s, suppose that the subfamily F of lower(S)
that is mapped by extremes to s is nonempty. Then each set in F is the disjoint
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union of a lower set of subproblem(s) and an arbitrary subset of free(s), and all
such disjoint unions belong to F .

Observation 2. For any square s, let powerset(free(s)) be the family of all
subsets of free(s). Let weight function w : S → R

2 define a projection project
from families of sets to point sets in R

2. Then project(powerset(free(s))) is the
Minkowski sum of the sets {(0, 0), w(xi)} for xi ∈ free(s). Its convex hull is a cen-
trally symmetric convex polygon hull(project(powerset(free(s)))) (the Minkowski
sum of the corresponding line segments) with at most k = 2| free(s)| sides, and
can be constructed in time O(k log k).

Corollary 2. Given a square s, let F be the sub-family of lower(S) that
is mapped by extremes into s, and assume a weight function w defin-
ing a projection project. Then hull(project(F)) = polygon(subproblem(s)) ⊕
hull(project(powerset(free(s)))).

Lemma 2. Let s be a square in the grid [0, n − 1]2, and subdivide s into four
congruent smaller squares si (0 ≤ i < 4). Let polygon(subproblem(s)) have c
vertices, define ci in the same way for each si, and let � be the side length of s.
Then c ≤ ∑

ci + O(�), and polygon(subproblem(s)) can be constructed from the
corresponding hulls for the smaller squares in time O(

∑
ci + � log �).

Proof. For each smaller square si, define Fi to be the subset of subproblem(s)
mapped to si, and define Hi = hull(project(Fi)). Then by Corollary 2 (viewing
si as a subproblem of subproblem(s)),

Hi = polygon(subproblem(s)) ⊕ hull(project(powerset(free(s) \ free(si))).

The set free(s)\ free(si) has cardinality O(�), so by Lemma 1 and Observation 2,
Hi has complexity ci + O(�) and can be constructed in time O(ci + � log �).
Applying Lemma 1 again, polygon(subproblem(s)) = H0 � H1 � H2 � H2 has
complexity at most

∑
ci + O(�) and can be constructed from the polygons Hi

in time O(
∑

ci + � log �). ��
Theorem 1. If S is a semiorder with n elements xi, specified with their utility
values ui and a system of two-dimensional weights w(xi), then polygon(S) has
complexity O(n log n) and can be constructed in time O(n log2 n).

Proof. We sort the utility values, pad n to the next larger power of two if nec-
essary and form a quadtree decomposition of the grid [0, n − 1]2 (as shown in
Figure 2, right). For each square s of this quadtree, we associate a convex poly-
gon (or empty set) polygon(subproblem(s)) computed according to the following
cases:

– If s is a subset of the grid points for which i > j, or for which ui−1 < uj − 1,
then no lower sets are mapped into s by extremes. We associate square s
with the empty set.
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– If s is a subset of the grid points for which i ≤ j and ui−1 ≥ uj−1, then every
two elements of subproblem(s) are incomparable. In this case, we associate
square s with the polygon hull(project(powerset(subproblem(s)))) computed
according to Observation 2.

– Otherwise, we split s into four smaller squares. We construct the polygon
associated with s by using Lemma 2 to combine the polygons associated
with its children.

It follows by induction that the total complexity of the polygon constructed at
any square s of the quadtree is O(

∑
�i), and the total time for constructing it

is O(
∑

�i log �i), where �i is the side length of the ith square of the quadtree
and the sum ranges over all descendants of s. As a base case for the induction,
a square containing only a single grid point is associated with a subproblem
with one element, with only one lower set that maps to that grid point, and a
degenerate convex polygon with a single vertex. The polygon constructed at the
root of the quadtree is the desired output, and it follows that it has combinatorial
complexity and time complexity of the same form, with a sum ranging over all
quadtree squares.

The conditions i > j and ui−1 < uj − 1 define two monotone curves through
the grid, and we split a quadtree square only when it is crossed by one of these
two curves. It follows that the squares of side length � that are subdivided as part
of this algorithm themselves form two monotone chains, and that the number
of all squares of side length � is O(n/�). The results of the theorem follow by
summing up the contributions to the polygon complexity and time complexity
for the O(log n) different possible values of �. ��

4 Series-Parallel Partial Orders

Series-parallel partial orders were considered in the context of a scheduling prob-
lem by Lawler [15], and include as a special case the tree orderings previously
studied in our work on bicriterion optimization [8]. They are the partial orders
that can be constructed from single-element partial orders by repeatedly apply-
ing the following two operations:

Series composition. Given two series-parallel partial orders P1 and P2, form
an order from their disjoint union in which every element of P1 is less than
every element of P2.

Parallel composition. Given two series-parallel partial orders P1 and P2, form
an order from their disjoint union in which there are no order relations
between P1 and P2.

Observation 3. If P is the series composition of P1 and P2, then polygon(P )
is the convex hull of the union of polygon(P1) and a translate (by the sum of
the weights of the elements of P1) of polygon(P2). If P is the parallel composi-
tion of P1 and P2, then polygon(P ) is the Minkowski sum of polygon(P1) and
polygon(P2).
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Recursively continuing this decomposition gives us a formula for polygon(P )
in terms of the � and oplus operations. By Lemma 1 we immediately obtain:

Corollary 3. If P is a series-parallel partial order with n elements, then
polygon(P ) has at most 2n vertices.

However, the depth of the formula for polygon(P ) may be linear, so using
Lemma 1 to construct polygon(P ) could be inefficient. We now describe a faster
algorithm. The key idea is to follow the same formula to build polygon(P ), but
to represent each intermediate result (a convex polygon) by a data structure
that allows the � and ⊕ operations to be performed more quickly for pairs of
polygons of unbalanced sizes. Note that a Minkowski sum operation between a
polygon of high complexity and a polygon of bounded complexity can change a
constant fraction of the vertex coordinates, so to allow fast Minkowski sums our
representation cannot store these coordinates explicitly.

Lemma 3. It is possible to store convex polygons in a data structure such that
destructively merging the representations of two polygons of m and n vertices
respectively by a � or ⊕ operation (with m < n) can be performed in time
O(m log((m + n)/m)).

Proof. We store the lower and upper hulls separately in a binary search tree
data structure, in which each node represents a vertex of the polygon, and the
inorder traversal of the tree gives the left-to-right order of the vertices. The node
at the root of the tree stores the Cartesian coordinates of its vertex; each non-
root node stores the vector difference between its coordinates and its parents’
coordinates. Additionally, each node stores the vector difference to its clockwise
neighbor around the polygon boundary. In this way, we can traverse any path in
this tree and (by adding the stored vector difference) determine the coordinates
of any vertex encountered along the path. We may also perform a rotation in
the tree, and update the stored vector differences, in constant time per rotation.

We will keep this tree balanced (in an amortized sense) by using the splay
tree balancing strategy [28]: whenever we follow a search path in the tree, we
will immediately perform a splay operation that through a sequence of double
rotations moves the endpoint of the path to the root of the tree. By the dynamic
finger property for splay trees [29,30], a sequence of m accesses in sequential
order into a splay tree of size n will take time O(m log((m + n)/m)).

To compute the hull of the union (the � operation) we insert each vertex
of the smaller polygon (by number of vertices), in left-to-right order, into the
larger polygon. To insert a vertex v, we search the larger polygon to find the
edges with the same x-coordinate as v and use these edges to check whether
v belongs to the lower hull, the upper hull, or neither. If it belongs to one of
the two hulls, we search the larger polygon again to find its two neighbors on
the hull. By performing a splay so that these neighbors are rotated to the root
of the binary tree, and then cutting the tree at these points, we may remove
the vertices between v and its new neighbors from the tree without having to
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consider those vertices one-by-one. We then create a new node for v and add its
two neighbors as the left and right child.

To compute the Minkowski sum (the ⊕ operation) we must simply merge
the two sequences of edges of the two polygons by their slopes. We search for
each edge slope in the smaller polygon. When its position is found, we splay the
vertex node at the split position to the root of the tree, and then split the tree
into its left and right subtrees, each with a copy of the root node. We translate
all vertices on one side of the split by the vector difference for the inserted edge
(by adding that vector only to the root of its tree), and rejoin the trees. ��
Theorem 2. If P is a series-parallel partial order, represented by its series-
parallel decomposition tree, then polygon(P ) has complexity O(n) and may be
constructed in time O(n log n).

Proof. We follow the formula for constructing polygon(P ) by � and ⊕ opera-
tions, using the data structure of Lemma 3. We charge each merge operation to
the partial order elements on the smaller side of each merge. If a partial order
element belongs to subproblems of sizes n0 = 1, n1, . . . , nh = n where h is
the height of the element, then the time charged to it is

∑
i O(log(ni/ni−1)) =

O(log
∏

i(ni/ni−1)) = O(log n). ��
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Abstract. A cycle basis in an undirected graph is a minimal set of
simple cycles whose symmetric differences include all Eulerian subgraphs
of the given graph. We define a rooted cycle basis to be a cycle basis in
which all cycles contain a specified root edge, and we investigate the
algorithmic problem of constructing rooted cycle bases. We show that a
given graph has a rooted cycle basis if and only if the root edge belongs
to its 2-core and the 2-core is 2-vertex-connected, and that constructing
such a basis can be performed efficiently. We show that in an unweighted
or positively weighted graph, it is possible to find the minimum weight
rooted cycle basis in polynomial time. Additionally, we show that it is NP-
complete to find a fundamental rooted cycle basis (a rooted cycle basis
in which each cycle is formed by combining paths in a fixed spanning
tree with a single additional edge) but that the problem can be solved
by a fixed-parameter-tractable algorithm when parameterized by clique-
width.

1 Introduction

A cycle basis of an undirected graph is a set of cycles such that all cycles in the
graph have a unique representation as an algebraic sum of basis cycles. In this
paper we study algorithms for finding a special type of cycle basis which we call
a rooted cycle basis, in which all cycles in the basis contain a specified root edge.

Cycle bases have diverse applications including subway system scheduling [1],
the analysis of distributed algorithms [2], and bioinformatics [3,4]. The specific
motivation for our rooted variant of the problem comes from mechanical engi-
neering, where cycle bases have long been used in static analysis of structures
such as truss bridges [5] and in the kinematics of moving bodies [6]. We recently
used this method as part of a system for constructing the configuration space
of moving linkages [7], systems that include automobile suspensions, fold-out
sofa-beds, and legs for walking robots.

In this configuration space construction problem, systems of rigid two-dim-
ensional links are connected at joints where one link can rotate around a point
of another with one degree of freedom. A system of links and joints is called a
kinematic chain; fixing the position of one ground link results in a system called
a mechanism or inversion, and distinguishing a second input link (connected to

c© Springer International Publishing Switzerland 2015
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Fig. 1. A linkage and its linkage graph (a subdivision of K3,3)

the ground by a joint and to which force is applied to control the rest of the
system) results in a system called a linkage [7]. The structure of a linkage can be
expressed combinatorially by a linkage graph, an undirected graph with a vertex
for each link and an edge for each joint, including a distinguished ground-input
edge. The requirement that the combined motion of the linkage have one degree
of freedom can be expressed combinatorially by the property that the linkage
graph is (32 , 2)-tight [8]: every k-vertex induced subgraph must have at most
3
2k − 2 edges, and the whole graph must have exactly 3

2n − 2 edges, where n is
the number of vertices in the graph and links in the linkage. Links may cross
each other in the plane, resulting in a non-planar linkage graph (Figure 1).

Given a linkage with its linkage graph, each input-to-ground path has an asso-
ciated equation representing the requirement that the joints along the path have
angles consistent with the fixed ground position at both ends of the path. Our
system for constructing the configuration space of a linkage chooses a complete
and non-redundant subset of these path equations and uses Dixon determinants
to solve this system of equations [7]. Each path determining one of these equa-
tions can be turned into a cycle by adding the input-ground edge, and a set of
equations chosen in this way is complete and non-redundant if and only if the
corresponding set of cycles forms a cycle basis of the linkage graph. However, all
of these cycles contain the input-ground edge, so the system of equations that we
seek comes from a rooted cycle basis. Additionally, because the equation solver
forms the computational bottleneck of our system, we would like the system of
equations that we construct to be as simple as possible, corresponding to the
problem of finding a minimum rooted cycle basis.

New Results. We provide the first algorithmic study of the problem of construct-
ing rooted cycle bases. We have the following new results:

– As a warm-up to our main result, we show that an arbitrary graph G with
designated root edge e has a rooted cycle basis in which all cycles contain e
if and only if the 2-core of G is 2-vertex-connected and contains e. When a
rooted cycle basis exists, it can be constructed in time O(mn). This is tight:
there exist graphs for which every rooted cycle basis has total size Θ(mn).

– Our main result is that, in an unweighted or positively weighted graph with
a designated root edge, we can find the minimum weight rooted cycle basis
by a randomized algorithm with nearly-optimal O(mn + n2 log n) expected
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time or by a polylogarithmically slower deterministic algorithm. This basis
is always weakly fundamental : its cycles can be ordered so that each cycle
contains an edge that is not in any earlier cycle. Our algorithm uses a greedy
method for finding each cycle, with a tie-breaking rule that avoids greedy
choices that do not lead to a valid cycle basis.

– In the full version of this paper we show that it is NP-complete to determine
whether a graph G with root edge e has a fundamental rooted cycle basis, a
rooted cycle basis determined from a spanning tree T by choosing all cycles
formed by an edge not in T and a path in T . It remains NP-complete even
when G is planar. Our proof is based on the observation that, in planar
graphs, fundamental rooted cycle bases are dual to a form of Hamiltonian
cycle. Additionally, we use Courcelle’s theorem to show that finding a fun-
damental rooted cycle basis is fixed-parameter-tractable in the clique-width
of the input.

In comparison, for arbitrary cycle bases, every graph has a fundamental cycle
basis, which may be constructed using any spanning tree algorithm. Finding
unrestricted minimum weight cycle bases takes polynomial time [9–12]. However,
finding an unrestricted minimum weight weakly fundamental cycle basis is NP-
hard [13], and cannot be solved by the same greedy strategy that we use for
rooted cycle bases, of choosing the shortest cycle that includes a new edge.

2 Preliminaries

By F2 we mean the field with two elements 0 and 1 under mod-2 arithmetic. If
U is an arbitrary finite set, the subsets of U form a vector space F

U
2 over F2 with

the empty set as origin and the symmetric difference of sets as addition.
We define a rooted graph to be an undirected graph G = (V,E) with a

designated root edge e. A cycle is a connected 2-regular subgraph; a cycle is
rooted if it contains e, and Hamiltonian if it contains every vertex of G. The
edge space of G is the vector space F

E
2 . The cycle space of G is the subspace of

the edge space generated by edge sets of cycles; its elements are subgraphs of G
with even degree at every vertex [14]. A cycle basis of G is a set of cycles that
forms a basis of the cycle space [12]. A cycle basis is rooted if all its cycles are
rooted.

A spanning tree of an undirected graph G is a subgraph that includes all
vertices of G, and is connected with no cycles. Any edge f that does not belong
to a spanning tree T gives rise to a fundamental cycle for T consisting of f plus
the unique path in T connecting the endpoints of f . The fundamental cycles for
T form a cycle basis; a basis formed in this way is called fundamental.

A matroid [15] may be defined as a family of subsets of a finite set, called
the independent sets of the matroid, with two properties:

– Every subset of an independent set is independent.
– If I1 and I2 are independent sets and |I1| < |I2|, then there exists an element

x belonging to I2 \ I1 such that I1 ∪ {x} is independent.



342 D. Eppstein et al.

The linearly independent subsets of a finite family of vectors in any vector space
form a linear matroid. In a matroid, a basis is an independent set all of whose
supersets are dependent; for linear matroids, this notion coincides with the stan-
dard definition of a basis of a vector space.

If the elements of a matroid are given real-valued weights, then the basis with
minimum total weight can be constructed by a greedy algorithm, generalizing
Kruskal’s algorithm for minimum spanning trees: initialize a set B to be the
empty set, and consider the elements in sorted order by their weights, adding
each element to B if the result would remain independent. In particular, if the
edges of an undirected graph G are given weights, the weight of a cycle may
be defined as the sum of the weights of its edges, and the weight of a cycle
basis may be defined as the sum of the weights of its cycles. Then the minimum
weight cycle basis may be found by considering all of the cycles of the graph in
sorted order by weight, adding each one to the basis if the result would remain
independent. This algorithm may be sped up by considering only a special set
of polynomially-many candidate cycles, leading to polynomial-time construction
of the minimum weight cycle basis in any graph [9–12].

A simple path in a graph G is a connected subgraph with two degree-one
vertices (its endpoints) and with all remaining vertices (its interior vertices)
having degree exactly two. An open ear decomposition of G is a collection of
simple paths Pi for i = 0, 1, 2, . . . (called ears) with the following properties:

– The first ear P0 is a single edge.
– The two endpoints of each ear Pi with i > 0 appear in earlier-numbered ears.
– No interior vertex of an ear appears in any earlier ear.

A graph has an open ear decomposition if and only if it is 2-vertex-connected
(no vertex deletion can disconnect the remaining graph) [16]. This decomposition
can be constructed in linear time, with any edge as the first ear [17–19]. The
number of ears equals one plus the dimension of the cycle space.

A vertex of G belongs to at least one cycle of G if and only if it belongs to the
2-core of G, the subgraph formed by removing isolated vertices and degree-one
vertices until all remaining vertices have degree ≥ 2. Therefore, the cycle bases
of G are the same as the cycle bases of its 2-core.

3 Existence and Construction of Rooted Cycle Bases

The following lemma is a special case of Menger’s theorem, but we give a proof
as we use the proof construction in our algorithms.

Lemma 1. Let e be an edge of a 2-vertex-connected graph G. Then for every
two distinct vertices u and v of G there exist two vertex-disjoint paths (possibly
of length zero) from u and v respectively to the two endpoints of e.

Proof. Let P0 = e, P1, . . . , Pk be an open ear decomposition of G. We apply
induction on k, with the following cases:
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– As a base case, if k = 0, we have two length-zero paths, one for each endpoint.
– If k > 0 and neither u nor v is an interior vertex of Pk, the result follows by

induction on the union of the ears up to Pk−1.
– If k > 0 and exactly one of u or v is an interior vertex of Pk, without loss

of generality (by swapping u and v if necessary) we may assume that u is
the interior vertex. At least one endpoint of Pk is a vertex w distinct from
v. By induction, v and w can be connected by vertex-disjoint paths to e,
using only vertices in ears P0, . . . , Pk−1. The result follows by augmenting
the path from w with the part of path Pk from u to w.

– If k > 0 and both u and v are interior vertices of Pk, then u and v have two
disjoint paths within Pk to the endpoints of Pk. By induction, the endpoints
of Pk can be connected by paths to e, using only vertices in ears P0, . . . , Pk−1.
The result follows by concatenating these paths with the paths within Pk.

Thus, in all cases, the desired two paths exist. ��
An ear with one edge cannot be part of a path constructed by this proof. So

for a graph G with n vertices and m edges and a known ear decomposition, we
can discard the one-edge ears and transform the case analysis of the proof into
an algorithm that constructs the two desired paths in time O(n).

Theorem 1. An undirected graph G rooted at edge e has a cycle basis that is
rooted at e if and only if e belongs to the 2-core of G and the 2-core is 2-vertex-
connected. When a rooted cycle basis exists, it can be constructed in time O(mn)
and the total length of the cycles in the basis is O(mn).

Proof. If G has a rooted cycle basis, its 2-core must be 2-vertex-connected. For,
suppose that a vertex v is deleted from the 2-core. Every remaining vertex u
belongs to a basis cycle from which only v can have been deleted, leaving a path
connecting u to the remaining endpoints of e. In this way any two remaining
vertices can be connected to each other via e, so the remaining vertices are not
disconnected.

In the other direction, suppose that the 2-core of G contains e and is 2-
connected. Then it has an open ear decomposition P0 = e, P1, . . . , Pk. We may
form a set of cycles C1, C2, . . . , Ck in which each cycle Ci consists of e, the edges
in Pi, and two paths through the union of ears P1, P2, . . . Pi−1 connecting the
endpoints of Pi to the endpoints of e. These cycles are independent because each
one contains at least one edge in Pi that does not belong to any previous cycle.
As an independent set of cycles of the correct cardinality to be a basis, they
must be a basis.

After computing the ear decomposition, each cycle takes time O(n) to con-
struct (by the remarks following lemma 1) and has length O(n), giving the stated
time and length bounds. ��

The length and time bounds of the theorem are tight in the worst case: for a
graph consisting of two Θ(m)-vertex cliques connected by two Θ(n)-vertex paths
(Figure 2, left), every cycle through e and an edge in the farthest clique from
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Fig. 2. Two graphs whose rooted cycle bases all have large total length: two cliques
connected by two long paths (left), and a ladder graph (right)

e has length n, so every rooted cycle basis has total length Θ(mn). For linkage
graphs with m = 3

2n − 2, the time and length bounds become O(n2), which is
again tight: every rooted cycle basis of an n-vertex ladder graph (Figure 2, right)
has total length Θ(n2).

In contrast, unrooted cycle bases may be significantly smaller. Every graph
with m vertices and n edges has an (unrooted) cycle basis of total length
O(min(n2,m log n)), a bound that is close to tight because of the existence
of sparse graphs of high girth for which every cycle basis has total length
Ω(n log n) [12,20].

4 Finding the Minimum Weight Rooted Cycle Basis

In this section we show how to find a rooted cycle basis of minimum total length
in biconnected graphs with positive edge weights, in polynomial time. We use
a greedy algorithm that chooses one cycle at a time, and prove it correct by
showing that the sequence of cycles selected by this algorithm correspond to an
ear decomposition. Our strategy is to show that an optimal basis can be derived
from an ear decomposition: the cycles of the basis can be sorted from shorter to
longer cycles in such a way that, in each successive cycle, the edges that do not
belong to earlier cycles form an ear. Our algorithm performs the following steps:
1. Initialize what will eventually become a cycle basis to the empty set.
2. Use Suurballe’s algorithm to compute, for each edge, the shortest rooted

cycle through that edge.
3. While there exists an edge that is not included in any of the cycles chosen

so far, select an edge that has not yet been included and whose computed
shortest-cycle length is as small as possible, and add its cycle to the basis.

We will prove this algorithm correct under the additional assumption that no
two paths, and no two cycles, have the same weight as each other. We say that a
graph is unambiguously weighted when this is the case. When paths and cycles
can have equal weights, this algorithm can fail by choosing a set of cycles that
together cover all edges but do not generate the whole cycle space (Figure 3), so
we need a consistent tie-breaking rule in this case, which we describe in the full
version of this paper.

4.1 Greedy Cycle Sequences

We define a greedy cycle sequence to be a sequence of cycles that could be
produced by the algorithm described at the beginning of this section. That is, it
is a sequence of rooted cycles C1, C2, . . . in which
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Fig. 3. An unweighted rooted graph (left) with two shortest rooted cycles that together
cover the whole graph but do not generate its cycle space (center and right). Our
algorithm requires that no two cycles have equal weight, to prevent bad sets of cycles
such as these from being chosen.

1. Each cycle includes an edge that is not in any earlier cycle in the sequence,
and

2. Subject to constraint (1), each cycle is as short as possible.

We will prove a sequence of lemmas about greedy cycle sequences,
with the goal of showing that the set of new edges added by each cycle
forms an ear and therefore that our greedy algorithm for rooted cycle
bases is correct. To do so, it is helpful to have a notation for the sub-
graph of G formed by the vertices and edges in the first i cycles in
the sequence. We call this subgraph the ith ambit of the cycle basis,

Ai – 1

Ci

x
y

z

t1 t2

shortest path
from x to t1

Fig. 4. Notation for Lemma 2.
A shortest path is shown
diverging from Ci before
reaching Ai−1, proven impos-
sible by the lemma.

denoted Ai.

Lemma 2. Let G be an unambiguously-weighted
rooted graph, Ai be the ith ambit of a greedy cycle
sequence C1, C2, . . . for G, and x be a point in
Ai (a vertex or a point interior to an edge). Then
Ai contains the shortest path in G from x to each
endpoint of the root edge of G.

Proof. Let t1 and t2 be the endpoints of the root
edge. We will show by induction on i that Ai con-
tains the shortest path from x to t1; by symmetry
it also contains a path to t2. We may assume that x
does not belong to Ai−1, for otherwise the shortest
path is already contained in Ai−1 by induction.

Then let P be the shortest path in G from x to
t1; we claim that P must remain within Ci until it
reaches a vertex of Ai−1. For, if P deviated from
Ci at some vertex y outside of Ai−1, let z be the
first point at which P returns to a vertex of Ci; z
must exist, because P eventually reaches t1, which
belongs to Ci. In this case the rooted cycle formed from Ci by removing the
path in Ci from y to z and replacing it with the part of P from y to z would be
strictly shorter than Ci (because the part of P from y to z is a shortest path and
no two paths have equal length) and would contain the vertex y outside Ai−1,
contradicting the greedy choice of Ci as the shortest rooted cycle not contained
in Ai−1.
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Therefore Ai contains the portion of P from x to Ai−1, and by induction it
contains as well the rest of the shortest path from x to t1. ��

4.2 Rungs of the Suurballe Ladder

Let P1 and P2 be two disjoint paths from s (an arbitrary vertex in the given
graph G) to t1 and t2 (the endpoints of the root edge of G), as constructed by
Suurballe’s algorithm. Recall that this algorithm constructs two different paths
from s to t1 and t2, the first of which is a shortest path in G and the second of
which is the shortest path in a derived graph H. The union of these two paths
differs from P1 and P2 by a collection of paths that we call rungs. Each rung is
traversed in one direction by the shortest path in G and in the opposite direction
by the shortest path in H. The endpoints of the rungs lie on P1 and P2 (in the
same order on both paths) and each of the two shortest paths is formed by
following one of P1 or P2 until reaching the endpoint of a rung, then traversing
that rung and continuing in the same way along P2 or P1 until the next rung, etc.

s

u v

t2

P1 P2

t1

Fig. 5. Notation for Lemma 3.
P1 and P2 are shown in con-
trasting colors; the horizontal
segments with both colors are
the rungs.

Lemma 3. With s, P1, and P2 as above, let C be
the cycle formed by P1, P2, and the root edge, and
let R be the rung of P1 and P2 closest to s. Let
D be the cycle formed by removing the parts of P1

and P2 from s to the endpoints of R, and replacing
them with R. Then C is longer than D.

Proof. Let u and v be the endpoints of R, let �su
denote the length of the path in P1 from s to u,
let �sv denote the length of the path in P2 from
s to v, and let �uv denote the length of the rung.
P1 follows C from s to u then crosses rung R; by
construction, it is the shortest path in G from s to
t1. Thus, �su+�uv ≤ �sv, for if not then P1 couldn’t
be a shortest path. Equivalently, adding �su − �uv
to both sides of the inequality gives 2�su ≤ �su +
�sv−�uv. But the left hand side of this inequality is
positive (by the assumption that the input graph
has positive edge weights) and the right hand side
is the difference in weights between C and D. ��
Corollary 1. Let Ci be a cycle in the greedy cycle sequence, and let Ai−1 be the
ambit of the previous cycle. Suppose that Ci is constructed by applying Suurballe’s
algorithm from a starting vertex s, and suppose that the two disjoint paths P1

and P2 comprising Ci have a nonempty sequence of rungs. Then these rungs,
and all parts of P1 and P2 from the first rung endpoint to t1 and t2, belong to
Ai−1.
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t1

Q1

Q2

t2

Ai – 1

Ci

P

f
vs

Fig. 6. Notation for Lemma 4. The figure shows a cycle Ci such that Ci \Ai−1 forms
more than one path, a configuration that is proven impossible by the lemma.

Proof. Otherwise the cycle D in the statement of Lemma 3, or one of the other
cycles constructed in the same way from one of the other rungs, would be a
shorter cycle containing at least one edge that is not in Ai−1, and would have
been selected in place of Ci in the greedy cycle sequence. ��

4.3 From Cycle Sequences to Ear Decompositions

As we now show, a greedy cycle sequence with cycles C1, C2, . . . and ambits A1,
A2, . . . may be used to derive an ear decomposition, in which the first ear P0 is
the root edge and each subsequent ear Pi is the subgraph Ai \ Ai−1. That is, for
each i, this subgraph is a single path.

Lemma 4. Let Ci and Ai be a greedy cycle sequence and the corresponding
sequence of ambits in an unambiguously-weighted graph. Then Ai \ Ai−1 forms
a single connected path in the given graph G.

Proof. Let t1 and t2 be the endpoints of the root edge. As with any rooted
cycle not contained in Ai−1, Ci forms one or more connected paths in Ai \Ai−1,
separated by vertices or edges of Ai−1. Let P be the closest to t1 of these paths
according to their ordering along Ci, and let f and v be the farthest edge and
vertex from t1 in the path ordering of P . Then v is an endpoint of f and of path
P , and belongs to Ai−1. By Lemma 2 the shortest path from v to t1 stays within
Ai−1 and therefore does not use edge f .

Let s be a point on edge f , sufficiently close to v that the shortest path from
s to t1 passes through v. (In other words, subdivide the edge, and place a vertex
at this point.) If we apply Suurballe’s algorithm starting from the point s, it
will find two paths Q1 (the shortest path from s to t1) and Q2. The symmetric
difference of these two paths is Ci again, because Ci is the unique shortest rooted
cycle containing s. Q1 passes from s through v and then stays within Ai−1 by
Lemma 2. Q2 follows the rest of P , then stays within Ai−1 until it reaches the
endpoint of the first rung of Q1 ∩Q2 (by the choice of P as the first of the paths
in Ai \ Ai−1 in cycle order). After reaching this rung endpoint, Q2 continues to



348 D. Eppstein et al.

stay within Ai−1 by Corollary 1. Thus, neither Q1 nor Q2 can escape Ai−1 once
they enter it, so the cycle Ci that they form can only have the single component
P outside of Ai−1. ��
Corollary 2. Let Ci be the cycles of a greedy cycle sequence for the rooted graph
G, and let Ai be the corresponding ambits. Let P0 be the one-edge path formed
by the root edge of G, and for i > 0 let Pi be the path Ai \ Ai−1. Then the
sequence of paths P0, P1, . . . Pi is an ear decomposition of the subgraph Ai, and
the sequence of all paths formed in this way is an ear decomposition of G.

Proof. By Lemma 4, each of these graphs is a path; its endpoints belong to
earlier paths and its edges and interior vertices do not. Thus, this sequence of
paths satisfies all the requirements of an ear decomposition. ��

4.4 Greed Is Good

We have nearly completed the proof of correctness of our greedy algorithm for
constructing minimum weight rooted cycle bases.

Lemma 5. Let Ci be the cycles of a greedy cycle sequence for an unambiguously-
weighted rooted graph G, and let Ai be the corresponding ambits. Then the set
of cycles C1, C2, . . . Ci is a minimum weight rooted cycle basis for Ai.

Proof. We use induction on i. For i = 1, the graph C1 = A1 has only the one
cycle. For i > 1, this set of cycles is linearly independent because each contains
at least one edge not found in earlier cycles. The number of cycles is the same as
the number of ears (after the root edge) in an ear decomposition, by Corollary 2,
so it equals the dimension of the cycle space. As an independent set of the correct
number of cycles, these cycles must form a cycle basis for Ai.

Because the cycle space of any graph forms a matroid, the minimum weight
basis of any subset S of cycles can be found by a greedy algorithm that at each
step selects the minimum-weight member of S that is independent of previous
selections. By the induction hypothesis, any cycle that is independent of the
previous i − 1 selections must use at least one edge outside of Ai−1, and Ci is
the minimum-weight rooted cycle with this property. Therefore, the cycles form
a minimum-weight rooted cycle basis. ��
Theorem 2. The minimum weight rooted cycle basis of a biconnected rooted
graph G with positive edge weights can be constructed in polynomial time.

Proof. As outlined at the beginning of this section, we use Suurballe’s algorithm
to order the edges of G by the lengths of their shortest cycles through the base
edge. Then, using this order as a guide, we construct a greedy cycle sequence
by repeatedly choosing an edge f that is not part of the already-chosen cycles
and using another instance of Suurballe’s algorithm to find the shortest cycle
through f and the root edge, breaking ties in favor of cycles that use as few new
edges as possible. By Lemma 5, the resulting set of cycles will form a minimum
weight rooted cycle basis.
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In a graph with n vertices and m edges, Suurballe’s algorithm can be imple-
mented in time O(m + n log n). The first stage of the algorithm may be imple-
mented using Dijkstra’s algorithm in this time bound. The second stage involves
shortest paths in a graph H with negative edge weights, to which Dijkstra’s algo-
rithm does not directly apply. However, in this second stage, we may re-weight
each directed edge in H from u to v with length �, giving it the new weight
� + d(s, v) − d(s, u), where s is the starting vertex of the first path and d is the
shortest-path distance between two vertices in the input graph. This reweighting
does not modify the comparison between any two path lengths, so the shortest
paths in the reweighted version of H remain unchanged. With these weights,
the edges whose weights were negative become zero-weight, and all other edge
weights remain non-negative, so Dijkstra’s algorithm may again be applied.

A naive implementation of the algorithm applies Suurballe’s algorithm O(m)
times so its total time is O(m2 + mn log n). However, this can be improved
by observing that there are only O(n) choices for the first path in Suurballe’s
algorithm, and that for each first path it is possible to handle all starting vertices
of the second path, simultaneously, by using Dijkstra’s algorithm to perform a
single-destination shortest path computation. With this improvement the total
runtime is O(mn + n2 log n). The algorithm as described so far applies only to
unambiguously-weighted graphs but in the full version of this paper we describe
how to reduce the general problem to this case in polynomial time. ��
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Abstract. The problem of efficiently computing and visualizing the
structural resemblance between a pair of protein backbones in 3D has
led Bereg et al. [4] to pose the Chain Pair Simplification problem (CPS).
In this problem, given two polygonal chains A and B of lengths m and n,
respectively, one needs to simplify them simultaneously, such that each
of the resulting simplified chains, A′ and B′, is of length at most k and
the discrete Fréchet distance between A′ and B′ is at most δ, where
k and δ are given parameters. In this paper we study the complexity of
CPS under the discrete Fréchet distance (CPS-3F), i.e., where the quality
of the simplifications is also measured by the discrete Fréchet distance.
Since CPS-3F was posed in 2008, its complexity has remained open. In
this paper, we prove that CPS-3F is actually polynomially solvable, by
presenting an O(m2n2 min{m, n}) time algorithm for the corresponding
minimization problem. On the other hand, we prove that if the vertices of
the chains have integral weights then the problem is weakly NP-complete.

1 Introduction

Polygonal curves play an important role in many applied areas, such as 3D mod-
eling in computer vision, map matching in GIS, and protein backbone structural
alignment and comparison in computational biology. Many different methods
exist to compare curves in these (and in many other) applications, where one of
the more prevalent methods is the Fréchet distance [8].

The Fréchet distance is often described by an analogy of a man and a dog
connected by a leash, each walking along a curve from its starting point to
its end point. Both the man and the dog can control their speed but they are
not allowed to backtrack. The Fréchet distance between the two curves is the
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minimum length of a leash that is sufficient for traversing both curves in this
manner.

The discrete Fréchet distance is a simpler version, where, instead of contin-
uous curves, we are given finite sequences of points, obtained, e.g., by sampling
the continuous curves, or corresponding to the vertices of polygonal chains. Now,
the man and the dog only hop monotonically along the sequences of points. The
discrete Fréchet distance is considered a good approximation of the continuous
distance.

One promising application of the discrete Fréchet distance has been pro-
tein backbone comparison. Within structural biology, polygonal curve alignment
and comparison is a central problem in relation to proteins. Proteins are usu-
ally studied using RMSD (Root Mean Square Deviation), but recently the dis-
crete Fréchet distance was used to align and compare protein backbones, which
yielded favourable results in many instances [9,10]. In this application, the dis-
crete version of the Fréchet distance makes more sense, because by using it the
alignment is done with respect to the vertices of the chains, which represent α-
carbon atoms. Applying the continuous Fréchet distance will result in mapping
of arbitrary points, which is not meaningful biologically.

There may be as many as 500∼600 α-carbon atoms along a protein backbone,
which are the nodes (i.e., points) of our chain. This makes efficient computation
essential, and is one of the reasons for considering simplification. In general,
given a chain A of n vertices, a simplification of A is a chain A′ such that A′ is
“close” to A and the number of vertices in A′ is significantly less than n. The
problem of simplifying a 3D polygonal chains under the discrete Fréchet distance
was first addressed by Bereg et al. [4].

(a) Simplifying the chains
independently does not nec-
essarily preserve the resem-
blance between them.

(b) A simplification of both
chains that preserves the resem-
blance between them.

Fig. 1. Independent simplification vs. simultaneous simplification. Each chain simpli-
fication consists of 4 vertices (marked by empty circles) chosen from the corresponding
chain. The unit disks illustrate the Fréchet distance between the right chain in each of
the figures and its corresponding simplification; their radius in (b) is larger
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Simplifying two aligned chains independently does not necessarily preserve
the resemblance between the chains; see Figure 1. Thus, the following question
arises: Is it possible to simplify both chains in a way that will retain the resem-
blance between them? This question has led Bereg et al. [4] to pose the Chain
Pair Simplification problem (CPS). In this problem, the goal is to simplify both
chains simultaneously, so that the discrete Fréchet distance between the resulting
simplifications is bounded. More precisely, given two chains A and B of lengths
m and n, respectively, an integer k and three real numbers δ1,δ2,δ3, one needs
to find two chains A′,B′ with vertices from A,B, respectively, each of length at
most k, such that d1(A,A′) ≤ δ1, d2(B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3 (d1 and d2
can be any similarity measures and ddF is the discrete Fréchet distance). When
the chains are simplified using the Hausdorff distance, i.e., d1, d2 is the Hausdorff
distance (CPS-2H), the problem becomes NP-complete [4]. However, the com-
plexity of the version in which d1, d2 is the discrete Fréchet distance (CPS-3F)
has been open since 2008.

Related Work. The Fréchet distance and its variants have been studied exten-
sively in the past two decades. Alt and Godau [2] gave an O(mn log mn)-time
algorithm for computing the Fréchet distance between two polygonal curves of
lengths m and n. This result in the plane was recently improved by Buchin et
al [5]. The discrete Fréchet distance was originally defined by Eiter and Man-
nila [7], who also presented an O(mn)-time algorithm for computing it. A slightly
sub-quadratic algorithm was given recently by Agarwal et al. [1].

As mentioned earlier, Bereg et al. [4] were the first to study simplification
problems under the discrete Fréchet distance. They considered two such prob-
lems. In the first, the goal is to minimize the number of vertices in the sim-
plification, given a bound on the distance between the original chain and its
simplification, and, in the second problem, the goal is to minimize this distance,
given a bound k on the number of vertices in the simplification. They presented
an O(n2)-time algorithm for the former problem and an O(n3)-time algorithm
for the latter problem, both using dynamic programming, for the case where the
vertices of the simplification are from the original chain. (For the arbitrary ver-
tices case, they solve the problems in O(n log n) time and in O(kn log n log(n/k))
time, respectively.) Driemel and Har-Peled [6] showed how to preprocess a polyg-
onal curve in near-linear time and space, such that, given an integer k > 0, one
can compute a simplification in O(k) time which has 2k − 1 vertices of the orig-
inal curve and is optimal up to a constant factor (w.r.t. the continuous Fréchet
distance), compared to any curve consisting of k arbitrary vertices.

For the chain pair simplification problem (CPS), Bereg et al. [4] proved
that CPS-2H is NP-complete, and conjectured that so is CPS-3F. Wylie et
al. [10] gave a heuristic algorithm for CPS-3F, using a greedy method with back-
tracking, and based on the assumption that the (Euclidean) distance between
adjacent α-carbon atoms in a protein backbone is almost fixed. More recently,
Wylie and Zhu [11] presented an approximation algorithm with approximation
ratio 2 for the optimization version of CPS-3F. Their algorithm actually solves
the optimization version of a related problem called CPS-3F+, it uses dynamic



354 C. Fan et al.

programming and its running time is between O(mn) and O(m2n2) depending
on the input simplification parameters.

Some special cases of CPS-3F have recently been studied. Motivated by the
need to reduce sensitivity to outliers when comparing curves, Ben Avraham et
al. [3] studied the discrete Fréchet distance with shortcuts problem. Both variants
of the shortcuts problem can be solved in subquadratic time.

Our Results. In Section 3, we resolve the question concerning the complex-
ity of CPS-3F by proving that it is polynomially solvable, contrary to what
was believed. We do this by presenting a polynomial-time algorithm for the
corresponding optimization problem. In Section 4 we devise a sophisticated
O(m2n2 min{m,n})-time dynamic programming algorithm for the minimiza-
tion problem of CPS-3F. Besides being interesting from a theoretical point of
view, only after developing (and implementing) this algorithm, were we able to
apply the CPS-3F minimization problem to datasets from the Protein Data Bank
(PDB), see the full version for the actual empirical results. Finally, in Section 5
we prove that the problem is weakly NP-complete if the vertices of the chains
carry integral weights.

2 Preliminaries

Let A = (a1 . . . , am) and B = (b1, . . . , bn) be two sequences of m and n points,
respectively, in R

k. The discrete Fréchet distance ddF (A,B) between A and B
is defined as follows. Fix a distance δ > 0 and consider the Cartesian product
A × B as the vertex set of a directed graph Gδ whose edge set is

Eδ =
{(

(ai, bj), (ai+1, bj)
) | d(ai, bj), d(ai+1, bj) ≤ δ

} ∪
{(

(ai, bj), (ai, bj+1)
) | d(ai, bj), d(ai, bj+1) ≤ δ

} ∪
{(

(ai, bj), (ai+1, bj+1)
) | d(ai, bj), d(ai+1, bj+1) ≤ δ

}
.

Then ddF (A,B) is the smallest δ > 0 for which (am, bn) is reachable from (a1, b1)
in Gδ.

The chain pair simplification problem (CPS) is formally defined as follows.

Problem 1 (Chain Pair Simplification).
Instance: Given a pair of polygonal chains A and B of lengths m and n, respec-
tively, an integer k, and three real numbers δ1, δ2, δ3 > 0.
Problem: Does there exist a pair of chains A′,B′ each of at most k vertices,
such that the vertices of A′,B′ are from A,B, respectively, and d1(A,A′) ≤ δ1,
d2(B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3?

When d1 = d2 = dH , the problem is NP-complete and is called CPS-2H, and
when d1 = d2 = ddF , the problem is called CPS-3F.
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3 Chain Pair Simplification (CPS-3F)

We now turn our attention to CPS-3F, which we show to be polynomially solv-
able in this section. We comment that the running time and space for this
solution is O(m3n3 min{m,n}) and O(m3n3) respectively, hence this solution
is impractical for most of the real protein chains (with m,n as large as 500-600).
Nonetheless, this first solution is easier to understand and can be considered as
a warm-up. We will present a much better (but more sophisticated) solution in
the next section.

We present an algorithm for the minimization version of CPS-3F. That is,
we compute the minimum integer k∗, such that there exists a “walk”, as above,
in which each of the dogs makes at most k∗ hops. The answer to the decision
problem is “yes” if and only if k∗ < k.

Returning to the analogy of the man and the dog, we can extend it as follows.
Consider a man and his dog connected by a leash of length δ1, and a woman
and her dog connected by a leash of length δ2. The two dogs are also connected
to each other by a leash of length δ3. The man and his dog are walking on the
points of a chain A and the woman and her dog are walking on the points of a
chain B. The dogs may skip points. The problem is to determine whether there
exists a “walk” of the man and his dog on A and the woman and her dog on B,
such that each of the dogs steps on at most k points.

Overview of the Algorithm. We say that (ai, ap, bj , bq) is a possible configuration
of the man, woman and the two dogs on the paths A and B, if d(ai, ap) ≤ δ1,
d(bj , bq) ≤ δ2 and d(ap, bq) ≤ δ3. Notice that there are at most m2n2 such config-
urations. Now, let G be the DAG whose vertices are the possible configurations,
such that there exists a (directed) edge from vertex u = (ai, ap, bj , bq) to vertex
v = (ai′ , ap′ , bj′ , bq′) if and only if our gang can move from configuration u to
configuration v. That is, if and only if i ≤ i′ ≤ i + 1, p ≤ p′, j ≤ j′ ≤ j + 1,
and q ≤ q′. Notice that there are no cycles in G because backtracking is for-
bidden. For simplicity, we assume that the first and last points of A′ (resp., of
B′) are a1 and am (resp., b1 and bn), so the initial and final configurations are
s = (a1, a1, b1, b1) and t = (am, am, bn, bn), respectively. (It is easy, however, to
adapt the algorithm below to the case where the initial and final points of A′

and B′ are not specified, see remark below.) Our goal is to find a path from s
to t in G. However, we want each of our dogs to step on at most k points, so,
instead of searching for any path from s to t, we search for a path that minimizes
the value max{|A′|, |B′|}, and then check if this value is at most k.

For each edge e = (u, v), we assign two weights, wA(e), wB(e) ∈ {0, 1}, in
order to compute the number of hops in A′ and in B′, respectively. wA(u, v) = 1
if and only if the first dog jumps to a new point between configurations u and
v (i.e., p < p′), and, similarly, wB(u, v) = 1 if and only if the second dog jumps
to a new point between u and v (i.e., q < q′). Thus, our goal is to find a path P
from s to t in G, such that max{ ∑

e∈P

wA(e),
∑

e∈P

wB(e)} is minimized.

Assume w.l.o.g. that m ≤ n. Since |A′| ≤ m and |B′| ≤ n, we maintain,
for each vertex v of G, an array X(v) of size m, where X(v)[r] is the minimum
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number z such that v can be reached from s with (at most) r hops of the first
dog and z hops of the second dog. We can construct these arrays by processing
the vertices of G in topological order (i.e., a vertex is processed only after all
its predecessors have been processed). This yields an algorithm of running time
O(m3n3 min{m,n}), as described in Algorithm 1.

Algorithm 1. CPS-3F
1. Create a directed graph G = (V, E) with two weight functions wA, wB , such that:

– V is the set of all configurations (ai, ap, bj , bq) with d(ai, ap) ≤ δ1, d(bj , bq) ≤
δ2, and d(ap, bq) ≤ δ3.

– E = {((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) | i ≤ i′ ≤ i + 1, p ≤ p′, j ≤ j′ ≤ j +
1, q ≤ q′}.

– For each ((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) ∈ E, set

• wA((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
1, p < p′

0, otherwise

• wB((ai, ap, bj , bq), (ai′ , ap′ , bj′ , bq′)) =

{
1, q < q′

0, otherwise

2. Sort V topologically.
3. Initialize the array X(s) (i.e., set X(s)[r] = 0, for r = 0, . . . , m − 1).
4. For each v ∈ V \ {s} (advancing from left to right in the sorted sequence) do:

(a) Initialize the array X(v) (i.e., set X(v)[r] = ∞, for r = 0, . . . , m − 1).
(b) For each r between 0 and m − 1, compute X(v)[r]:

X(v)[r] = min
(u, v) ∈ E

{
X(u)[r] + wB(u, v), wA(u, v) = 0

X(u)[r − 1] + wB(u, v), wA(u, v) = 1

5. Return k∗ = min
r

max{r, X(t)[r]} .

Running Time. The number of vertices in G is |V | = O(m2n2). By the construc-
tion of the graph, for any vertex (ai, ap, bj , bq) the maximum number of outgoing
edges is O(mn). So we have |E| = O(|V |mn) = O(m3n3). Thus, constructing
the graph G in Step 1 takes O(n3m3) time. Step 2 takes O(|E|) time, while
Step 3 takes O(m) time. In Step 4, for each vertex v and for each index r, we
consider all configurations that can directly precede v. So each edge of G partici-
pates in exactly m minimum computations, implying that Step 4 takes O(|E|m)
time. Step 5 takes O(m) time. Thus, the total running time of the algorithm is
O(m4n3).

Theorem 1. The chain pair simplification problem under the discrete Fréchet
distance (CPS-3F) is polynomial, i.e., CPS-3F ∈ P.

Remark 1. As mentioned, we have assumed that the first and last points of
A′ (resp., B′) are a1 and am (resp., b1 and bn), so we have a single initial
configuration (i.e., s = (a1, a1, b1, b1)) and a single final configuration (i.e.,
t = (am, am, bn, bn)). However, it is easy to adapt our algorithm to the case where
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the first and last points of the chains A′ and B′ are not specified. In this case,
any possible configuration of the form (a1, ap, b1, bq) is considered a potential
initial configuration, and any possible configuration of the form (am, ap, bn, bq)
is considered a potential final configuration, where 1 ≤ p ≤ m and 1 ≤ q ≤ n.
Let S and T be the sets of potential initial and final configurations, respectively.
(Then, |S| = O(mn) and |T | = O(mn).) We thus remove from G all edges enter-
ing a potential initial configuration, so that each such configuration becomes a
“root” in the (topologically) sorted sequence. Now, in Step 3 we initialize the
arrays of each s ∈ S in total time O(m2n), and in Step 4 we only process the
vertices that are not in S. The value X(v)[r] for such a vertex v is now the
minimum number z such that v can be reached from s with r hops of the first
dog and z hops of the second dog, over all potential initial configurations s ∈ S.
In the final step of the algorithm, we calculate the value k∗ in O(m) time, for
each potential final configuration t ∈ T . The smallest value obtained is then the
desired value. Since the number of potential final configurations is only O(mn),
the total running time of the final step of the algorithm is only O(m2n), and the
running time of the entire algorithm remains O(m4n3).

4 An Efficient Implementation

The time and space complexity of Algorithm 1 (which is O(m3n3 min {m,n})
and O(m3n3), respectively) makes it impractical for our motivating biological
application (as m,n could be 500∼600). In fact, when m,n are around 200 we
already had memory overflows in the implemented Algorithm 1. In this section,
we show how to reduce the time and space bounds by a factor of mn, using
dynamic programming.

We generate all configurations of the form (ai, ap, bj , bq), where the outermost
for-loop is governed by i, the next level loop by j, then p, and finally q. When
a new configuration v = (ai, ap, bj , bq) is generated, we first check whether it is
possible. If it is not possible, we set X(v)[r] = ∞, for 1 ≤ r ≤ m, and if it is, we
compute X(v)[r], for 1 ≤ r ≤ m.

We also maintain for each pair of indices i and j, three tables Ci,j , Ri,j , Ti,j

that assist us in the computation of the values X(v)[r]:

Ci,j [p, q, r] = min
1≤p′≤p

X(ai, ap′ , bj , bq)[r]

Ri,j [p, q, r] = min
1≤q′≤q

X(ai, ap, bj , bq′)[r]

Ti,j [p, q, r] = min
1≤p′≤p
1≤q′≤q

X(ai, ap′ , bj , bq′)[r]

Notice that the value of cell [p, q, r] is determined by the value of one or two
previously-determined cells and X(ai, ap, bj , bq)[r] as follows:

Ci,j [p, q, r] = min{Ci,j [p − 1, q, r],X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] = min{Ri,j [p, q − 1, r],X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] = min{Ti,j [p − 1, q, r], Ti,j [p, q − 1, r],X(ai, ap, bj , bq)[r]}
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Observe that in any configuration that can immediately precede the current
configuration (ai, ap, bj , bq), the man is either at ai−1 or at ai and the woman
is either at bj−1 or at bj (and the dogs are at ap′ , p′ ≤ p, and bq′ , q′ ≤ q,
respectively). The “saving” is achieved, since now we only need to access a
constant number of table entries in order to compute the value X(ai, ap, bj , bq)[r].

ai

bj

ai−1

bj−1

Fig. 2. Illustration of Algorithm 2

One can illustrate the algorithm using the matrix in Figure 2. There are mn
large cells, each of them containing a matrix of size mn. The large cells corre-
spond to the positions of the man and the woman. The inner matrices correspond
to the positions of the two dogs (for given positions of the man and woman). Con-
sider an optimal “walk” of the gang that ends at cell (ai, ap, bj , bq) (marked by a
full circle), such that the first dog has visited r points. The previous cell in this
“walk” must be in one of the 4 large cells (ai, bj),(ai−1, bj),(ai, bj−1),(ai−1, bj−1).
Assume, for example, that it is in (ai−1, bj). Then, if it is in the blue area, then
X(ai, ap, bj , bq)[r] = Ci−1,j [p−1, q, r−1] (marked by an empty square), since only
the position of the first dog has changed when the gang moved to (ai, ap, bj , bq). If
it is in the purple area, then X(ai, ap, bj , bq)[r] = Ri−1,j [p, q−1, r]+1 (marked by
a x), since only the position of the second dog has changed. If it is in the orange
area, then X(ai, ap, bj , bq)[r] = Ti−1,j [p−1, q−1, r−1]+1 (marked by an empty
circle), since the positions of both dogs have changed. Finally, if it is the cell
marked by the full square, then simply X(ai, ap, bj , bq)[r] = X(ai−1, ap, bj , bq)[r],
since both dogs have not moved. The other three cases, in which the previous cell
is in one of the 3 large cells (ai, bj),(ai, bj−1),(ai−1, bj−1), are handled similarly.

We are ready to present the dynamic programming algorithm. The initial
configurations correspond to cells in the large cell (a1, b1). For each initial con-
figuration (a1, ap, b1, bq), we set X(a1, ap, b1, bq)[1] = 1.

Theorem 2. The minimization version of the chain pair simplification
problem under the discrete Fréchet distance (CPS-3F) can be solved in
O(m2n2 min {m,n}) time.
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Algorithm 2. CPS-3F using dynamic programming
for i = 1 to m

for j = 1 to n
for p = 1 to m

for q = 1 to n
for r = 1 to m

X(−1,0) =min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ci−1,j [p− 1, q, r − 1]
Ri−1,j [p, q − 1, r] + 1
Ti−1,j [p− 1, q − 1, r − 1] + 1
X(ai−1, ap, bj , bq)[r]

X(0,−1) =min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ci,j−1[p− 1, q, r − 1]
Ri,j−1[p, q − 1, r] + 1
Ti,j−1[p− 1, q − 1, r − 1] + 1
X(ai, ap, bj−1, bq)[r]

X(−1,−1) =min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ci−1,j−1[p− 1, q, r − 1]
Ri−1,j−1[p, q − 1, r] + 1
Ti−1,j−1[p− 1, q − 1, r − 1] + 1
X(ai−1, ap, bj−1, bq)[r]

X(0,0) =min

⎧
⎪⎨

⎪⎩

Ci,j [p− 1, q, r − 1]
Ri,j [p, q − 1, r] + 1
Ti,j [p− 1, q − 1, r − 1] + 1

X(ai, ap, bj , bq)[r] = min{X(−1,0), X(0,−1), X(−1,−1), X(0,0)}

Ci,j [p, q, r] =min{Ci,j [p− 1, q, r], X(ai, ap, bj , bq)[r]}
Ri,j [p, q, r] =min{Ri,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}
Ti,j [p, q, r] =min{Ti,j [p− 1, q, r], Ti,j [p, q − 1, r], X(ai, ap, bj , bq)[r]}

return min
r,p,q

max{r,X(am, ap, bn, bq)[r]}

We comment that this algorithm has been implemented with C++ and tested
with real datasets from the PDB. Compared with Algorithm FIND-CPS3F+,
i.e., the algorithm (mentioned in the introduction) for the optimization version
of CPS-3F+, proposed by Wylie and Zhu [11], the improvement is huge. Due to
space constraints, we leave the empirical results out and interested readers are
referred to the full version for the details.

5 Weighted Chain Pair Simplification

In this section, we consider a more general version of CPS-3F, namely, Weighted
CPS-3F. In the weighted version of the chain pair simplification problem, the
vertices of the chains A and B are assigned arbitrary weights, and, instead of
limiting the length of the simplifications, one limits their weights. That is, the
total weight of each simplification must not exceed a given value. The problem
is formally defined as follows.
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Problem 2 (Weighted Chain Pair Simplification).
Instance: Given a pair of 3D chains A and B, with lengths m and n, respec-
tively, an integer k, three real numbers δ1, δ2, δ3 > 0, and a weight function
C : {a1, . . . , am, b1, . . . , bn} → R

+.
Problem: Does there exist a pair of chains A′,B′ with C(A′), C(B′) ≤ k,
such that the vertices of A′,B′ are from A,B respectively, d1(A,A′) ≤ δ1,
d2(B,B′) ≤ δ2, and ddF (A′, B′) ≤ δ3?

When d1 = d2 = ddF , the problem is called WCPS-3F. When d1 = d2 = dH ,
the problem is NP-complete, since the non-weighted version (i.e., CPS-2H) is
already NP-complete [4].

We prove that WCPS-3F is weakly NP-complete via a reduction from the
set partition problem: Given a set of positive integers S = {s1, . . . , sn}, find two
sets P1, P2 ⊂ S such that P1 ∩P2 = ∅, P1 ∪P2 = S, and the sum of the numbers
in P1 equals the sum of the numbers in P2. This is a weakly NP-complete special
case of the classic subset-sum problem.

Our reduction builds two curves with weights reflecting the values in S.
We think of the two curves as the subsets of the partition of S. Although our
problem requires positive weights, we also allow zero weights in our reduction
for clarity. Later, we show how to remove these weights by slightly modifying
the construction.

Fig. 3. The reduction for the weighted chain pair simplification problem under the
discrete Fréchet distance

Theorem 3. The weighted chain pair simplification problem under the discrete
Fréchet distance is weakly NP-complete.

Proof. Given the set of positive integers S = {s1, . . . , sn}, we construct two
curves A and B in the plane, each of length 2n. We denote the weight of a vertex
xi by w(xi). A is constructed as follows. The i’th odd vertex of A has weight si,
i.e. w(a2i−1) = si, and coordinates a2i−1 = (i, 1). The i’th even vertex of A has
coordinates a2i = (i + 0.2, 1) and weight zero. Similarly, the i’th odd vertex of
B has weight zero and coordinates b2i−1 = (i, 0), and the i’th even vertex of B
has coordinates b2i = (i+ 0.2, 0) and weight si, i.e. w(b2i) = si. Figure 3 depicts
the vertices a2i−1, a2i, a2(i+1)−1, a2(i+1) of A and b2i−1, b2i, b2(i+1)−1, b2(i+1) of
B. Finally, we set δ1 = δ2 = 0.2, δ3 = 1, and k = S, where S denotes the sum
of the elements of S (i.e., S =

∑n
j=1 sj).
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We claim that S can be partitioned into two subsets, each of sum S/2, if
and only if A and B can be simplified with the constraints δ1 = δ2 = 0.2, δ3 = 1
and k = S/2, i.e., C(A′), C(B′) ≤ S/2.

First, assume that S can be partitioned into sets SA and SB, such that∑
s∈SA

s =
∑

s∈SB
s = S/2. We construct simplifications of A and of B as

follows.

A′ ={a2i−1 | si ∈ SA}∪{a2i|si /∈ SA} and B′ ={b2i | si ∈ SB}∪{b2i−1|si /∈ SB} .

It is easy to see that C(A′), C(B′) ≤ S/2. Also, since {SA, SB} is a partition of
S, exactly one of the following holds, for any 1 ≤ i ≤ n:

1. a2i−1 ∈ A′, b2i−1 ∈ B′ and a2i /∈ A′, b2i /∈ B′.
2. a2i−1 /∈ A′, b2i−1 /∈ B′ and a2i ∈ A′, b2i ∈ B′.

This implies that ddF (A,A′) ≤ 0.2 = δ1, ddF (B,B′) ≤ 0.2 = δ2 and
ddF (A′, B′) ≤ 1 = δ3.

Now, assume there exist simplifications A′, B′ of A,B, such that ddF (A,A′) ≤
δ1 = 0.2, ddF (B,B′) ≤ δ2 = 0.2, ddF (A′, B′) ≤ δ3 = 1, and C(A′), C(B′) ≤ k =
S/2. Since δ1 = δ2 = 0.2, for any 1 ≤ i ≤ n, the simplification A′ must contain
one of a2i−1, a2i, and the simplification B′ must contain one of b2i−1, b2i. Since
δ3 = 1, for any i, at least one of the following two conditions holds: a2i−1 ∈ A′

and b2i−1 ∈ B′ or a2i ∈ A′ and b2i ∈ B′. Therefore, for any i, either a2i−1 ∈ A or
b2i ∈ B, implying that si participates in either C(A′) or C(B′). However, since
C(A′), C(B′) ≤ S/2, si cannot participate in both C(A′) and C(B′). It follows
that C(A′) = C(B′) = S/2, and we get a partition of S into two sets, each of
sum S/2.

Finally, we note that WCPS-3F is in NP. For an instance I with chains A,B,
given simplifications A′, B′, we can verify in polynomial time that ddF (A,A′) ≤
δ1, ddF (B,B′) ≤ δ2, ddF (A′, B′) ≤ δ3, and C(A′), C(B′) ≤ k. ��

Although our construction of A′ and B′ uses zero weights, a simple modifi-
cation enables us to prove that the problem is weakly NP-complete also when
only positive integral weights are allowed. Increase all the weights by 1, that is,
w(a2i−1) = w(b2i) = si + 1 and w(a2i) = w(b2i−1) = 1, for 1 ≤ i ≤ n, and set
k = S/2 + n. It is easy to verify that our reduction still works. Finally, notice
that we could overlay the two curves choosing δ3 = 0 and prove that the problem
is still weakly NP-complete in one dimension.

6 Concluding Remarks

In this paper we showed that CPS-3F, which has been an open problem since
2008, is polynomially solvable. We also proved that the weighted version of the
problem is weakly NP-complete. In the full version, we include a summary of
empirical results that show that Algorithm 2 can handle real datasets, while the
O(m3n3) space requirement of Algorithm 1 causes memory overflow for most
pairs of protein backbones. Still, it would be interesting and desirable to further
reduce the running time of CPS-3F, as some cases take 20 hours to compute.
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Abstract. Given an n-node m-edge graph G, the articulation points of
graph G can be found in O(m + n) time in the RAM model, through
a DFS-based algorithm. In the semi-streaming model for large graphs,
where memory is limited to O(n polylog n) and edges may only be
accessed in one or more sequential passes, no efficient DFS algorithm
is known, so another approach is needed.

We show that the articulation points can be found in O(m + n) time
using O(n) space and one sequential pass of the graph. The previous
best algorithm in the semi-streaming model also uses O(n) space and
one pass, but has running time O(mα(n)+n log n), where α denotes the
inverse of Ackermann function.

Keywords: Articulation points · Semi-streaming algorithm · Linear-
time algorithm · Space lower bound

1 Introduction

An articulation point is a node whose removal increases the number of con-
nected components of a graph. There are efficient algorithms in various models
for finding all articulation points in an n-node m-edge graph G. For example,
in the RAM model, Hopcroft and Tarjan [10] give a DFS-based algorithm that
runs in O(m + n) time.

This classical algorithm does not scale to graphs that are larger than memory.
We consider algorithms in the semi-streaming model [11–13], in which we are
allowed O(n polylog n) working space and edges may be accessed in sequential
read-only passes through the graph. The goal is then to minimize the number of
passes and the time complexity of the algorithm.

Some graph problems, e.g. connectivity or minimum spanning tree, can be
solved optimally [7]. Other graph problems, e.g. counting the number of 3-cycles,
maximum matching and graph degeneracy, can be approximated [1,3,6]. Some
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fundamental problems, such as breath-first search, depth-first search, topologi-
cal sorting, and directed connectivity, are believed to be difficult to solve in a
small number of passes [9,12,13]. Hence, the known algorithms [2,7] for finding
articulation points take approaches other than computing a DFS tree.

Feigenbaum et al. [7] gave a first semi-streaming algorithm for finding artic-
ulation points. Their algorithm, which we refer to as the FKMSZ algorithm, has
quadratic run time O(mnα(n)), where α denotes the inverse Ackermann func-
tion. Ausiello et al. [2] later gave an algorithm with run time O(mα(n)+n log n).
Both these algorithms use O(n) space and perform one pass. Here, we present
the first linear-time algorithm for this problem. It also uses O(n) space and
performs one pass.

Instead of maintaining a structure that processes each incoming edge as it is
scanned, we achieve optimality by buffering incoming edges and processing them
in batches of size O(n). We extend this approach to the problems of computing
spanning trees and of finding all bridges, where a bridge is an edge whose
removal increases the number of connected components. Our algorithm has run
time O(m+n), which improves the run time O(mα(n)) that comes from directly
using the disjoint union-find set data structure [14].

The proposed algorithm not only has an optimal time complexity but has an
optimal space complexity. A lower bound for space complexity can be obtained
by noting that biconnectivity1 is a balanced property [8]. For any balanced
property P, testing property P with probability at least 3/4 has a space lower
bound of Ω(n) bits. Since finding articulation points is no easier than biconnec-
tivity, it has a space lower bound of Ω(n) bits. In Section 6, we give a tighter
analysis that finding articulation points in one sequential pass requires Ω(n log n)
bits. Hence, the space complexity of the proposed algorithm is optimal.

Organizations. In Section 2, we illustrate the idea of batches on two simpler
problems. In Section 3, we revisit the FKMSZ algorithm. We explain a simple
version of the proposed algorithm in Section 4 and defer the discussion of the full
version to Section 5. In Section 6, we prove the space lower bound, Ω(n log n)
bits.

2 Preliminaries

We begin by showing how to reduce the running time for two simpler problems:
finding a spanning tree and all bridges in a given graph G. We illustrate the idea
of buffering scanned edges and processing them in a batch. This is the main idea
used in our articulation-point algorithm.

Consider a spanning-tree algorithm in the semi-streaming model, and let F
be a spanning forest of G, given the edges seen so far. As each edges e gets
scanned, it can be added to F if it does not form a cycle. Testing cyclicity can
be accomplished via a disjoint union-find data structure, which takes O(mα(n))
in total.
1 A graph is biconnected iff it has no articulation point.



Finding Articulation Points of Large Graphs in Linear Time 365

In order to reduce the total running time, process n edges for inclusion into
the tree, instead of one at a time. Let B be the set of the next n edges to process,
and let F be the current spanning forest. Compute a spanning forest of B ∪ F
in O(n) time by an in-memory DFS. After all O(m/n) batches of edges have
been processed in a single pass, the final F is a spanning forest of the original
graph and the total computation time is O(m + n).

We apply the same idea to finding all bridges. Let F denote the spanning
forest produced by the above algorithm. Note that if an edge e /∈ F , then the
edge e is on some cycle and thus cannot be a bridge. In addition to comput-
ing F , compute FD, a spanning forest of G\F , the discarded edges. This can be
computed during the same pass where F is computed. Together they take O(n)
space, one pass and O(m + n) time to compute. Once F and FD are computed,
the bridges in G can be reduced to find bridges in F ∪FD due to Lemma 1, thus
in O(n) time by a DFS.

This approach improves the previously best O(mα(n) + n log n)-time algo-
rithm for finding bridges [2] to linear time.

Lemma 1. An edge (u, v) ∈ bridge(G) if and only if (u, v) ∈ F \ FD and
(u, v) ∈ bridge(F ∪FD), where bridge(H) denotes the set of bridges in graph H.

Proof. Let FD = T1 ∪ T2 ∪ · · · ∪ Tk, where each Ti is a maximal tree in FD.
(⇒) If (u, v) ∈ bridge(G), then (u, v) ∈ F , (u, v) /∈ FD. Assume that

(u, v) /∈ bridge(F ∪ FD), then there is a path P connecting nodes u, v in F ∪ FD

without passing through (u, v). The path P is also in G because F ∪ FD ⊆ G, a
contradiction.

(⇐) If (u, v) ∈ F \ FD and (u, v) ∈ bridge(F ∪ FD), then u ∈ Ta, v ∈ Tb for
some a �= b. Assume that (u, v) /∈ bridge(G), then there is a path P connecting
nodes u, v in G without passing through (u, v). Since (u, v) ∈ bridge(F ∪ FD),
there are some edges (x1, y1), (x2, y2), . . . in P are discarded. Note that for any
discarded edge (xi, yi) the nodes xi, yi are both contained in some Tj , implying
that a path Pi in Tj connects nodes xi, yi. Since u ∈ Ta, v ∈ Tb for some a �= b,
then (u, v) /∈ Pi for all i. Therefore, the closed loop formed by bridge (u, v)
and path P with replacing the discarded edges with Pi’s (note that (u, v) /∈ Pi)
implies a simple cycle passing through (u, v) in F ∪ FD, a contradiction. �	

3 The FKMSZ Algorithm

The classical algorithm for finding articulation points in the RAM model generates
a DFS tree T and detects articulation points by identifying backedges. However, in
the semi-streaming model, no efficient algorithm is known for generating a DFS
tree. The FKMSZ algorithm replaces the DFS tree with an arbitrary spanning
tree, implicitly relying on Lemmas 2 and 4. Since these lemmas were not stated
as such in [7], we provide a statement and proof for each here for completeness.

We define some notions before proceeding to the lemmas. Given a spanning
tree T of graph G, if nodes u, v are both tree neighbors of some node x, then we
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say nodes u, v are co-paired at node x or that they are a co-pair for short,
since x is uniquely defined as the only shared neighbor of u and v.

We say that nodes u and v are tree-biconnected if there exists an edge
e ∈ G \ T such that u and v are biconnected in T ∪ {e}. Note that if two
nodes are tree-biconnected, they are biconnected, but the converse is not true.
Tree-biconnectivity is easier to test for than biconnectivity.

Lemma 2. Given a spanning tree T of graph G, a node x is an articulation
point if and only if some co-pair at x is not biconnected.

Proof. (⇒) By definition, if x is an articulation point in graph G, then, for
some nodes a, b ∈ G, a, b �= x, every path connecting a, b passes through x. This
implies that, for some neighbors u, v ∈ G of node x, every path connecting u, v
passes through node x.

We divide the x’s neighbors into two classes w.r.t. T : tree neighbors and non-
tree neighbors. Suppose that node u is a non-tree neighbor of node x, then u, x
are connected by a non-tree edge and therefore u and some x’s tree neighbor are
connected in G \ {x}. Therefore, no matter whether u, v are x’s tree neighbors
or non-tree neighbors, if nodes u, v are disconnected in G \ {x}, then some pair
of x’s tree neighbors are also disconnected in G \ {x}. Hence, some co-pair at x
is not biconnected.

(⇐) Suppose that x is not an articulation point, and let y be an articulation
point that separates u and v. Such a y must exist because u and v are not
biconnected. But removing y �= x leaves the u, x, v path intact, contradicting
that y separates u and v. �	
Corollary 3. If x is a leaf node in any spanning tree T of graph G, then x is
not an articulation point of graph G.

Lemma 4. Given a spanning tree T of graph G, a co-pair (u, v) at node x is
biconnected if and only if there exist nodes u = w0, w1, . . . , wt = v such that
(wi−1, wi) is a tree-biconnected co-pair at node x for all i ∈ [t].

Proof. (⇐) If (wi−1, wi) is a tree-biconnected co-pair at node x, then nodes
wi−1, wi are contained in some cycle of T ∪{e} for some non-tree edge e. There-
fore, nodes wi−1, wi are connected in G \ {x}. Since connectivity is transitive,
u, v are connected in G \ {x}.

(⇒) Observe that T \ {x} is a set of subtrees. Each of x’s tree neighbors
belongs to an unique subtree and each subtree contains an unique tree neigh-
bor of x. Observe further that G \ {x} is a set of connected components. The
connected components induced by the forest is a refinement of the connected
components of the graph. That is, each connected component of the graph is
spanned by one or more trees in the forest.

Since (u, v) is a co-pair at x, nodes u, v belong to different subtrees Tu, Tv.
Since nodes u, v are biconnected, Tu, Tv are subgraphs of the same connected
component C. Suppose C contains k subtrees, then k − 1 non-tree edges suffice
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to connect the subtrees. Each of the k−1 non-tree edges indicates that a co-pair
at x is tree-biconnected, implying that there exist nodes u = w0, w1, . . . , wt = v
such that (wi−1, wi) is a tree-biconnected co-pair at node x. �	

To realize the procedure in Lemma 4, we need an Union-Find data structure.
In Section 4, we will introduce an Union-Find data structure that improves the
run time of FKMSZ, but for now we will use a standard solution [14]. Let S(x)
be such a data structure for x, and initialize S(x) with x’s tree neighbors. The
main idea of the algorithm is, for each tree-biconnected co-pair (u, v) at node x,
to union u and v in S(x). Thus, by Lemmas 2 and 4, we know that when we are
done processing all edges, x is an articulation point iff S(x) contains multiple
sets, which we can check by performing a find on each element in S(x). Putting
this together gives the FKMSZ Algorithm:

1 Find a spanning tree T of graph G;
2 Prepare a union-find data structure S(x) for each node x and make an element

in S(x) for each of x’s tree neighbors ;
3 foreach incoming non-tree edge (u, v) do
4 Find the path PT (u, v), a1 = u, a2, . . . , at = v in tree T ;
5 For each co-pair (ai−1, ai+1), union ai−1 and ai+1 in S(ai);

6 foreach node x do
7 Let rx be the find of any element in S(x).;
8 foreach element y in S(x) do
9 if find(y) �= rx, report x as an articulation point & break;

Algorithm 1. Pseudo-code of FKMSZ algorithm.

4 A Two Pass Algorithm for Articulation Points

We explain a simple, two-pass version of our algorithm in this section and defer
the full one-pass version to Section 5. The simplified algorithm finds all articula-
tion points of an n-node m-edge graph G in O(m + n) time after two sequential
passes on the entire graph. We assume that graph G is connected; otherwise,
one can adapt our algorithm to the unconnected cases in a straightforward way.

Our algorithm proceeds as follows. In the first pass, we find a spanning tree
T of graph G and preprocess T . In the second pass, we execute Algorithm 1,
achieving linear time by exploiting our preprocessing.

4.1 First Pass

We find a spanning tree T of graph G in O(m+n) time. Before the second pass,
we root T at an arbitrary node and preprocess T in O(n) time to answer the
following queries in O(1) time:
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(1) degT (x): the degree of node x in tree T ,
(2) depthT (x): the depth of node x in tree T ,
(3) lcaT (u, v): the lowest common ancestor of nodes u and v in rooted tree

T [4],
(4) laT (u, d): the ancestor of node u that has depth d in rooted tree T [5].

In addition, we need to build, for each node x, an union-find data structure,
uf(x). We initialize uf(x) with all of its neighbors. We specify an union in the
typical manner: uf(x).union(u, v) performs an union in uf(x) between the set
that contains u and the set that contains v.

In order to beat the bound for union find, we do two things. First, rather than
allow arbitrary find queries, we only allow queries uf(x).one(), which returns
True if uf(x) contains only one set, that is, if all sets have been merged into
one. Second, we favor unions over queries. As we will see in our analysis, unions
are much more common than queries, so this tradeoff will give us a better total
run time than using an off-the-shelf union-find algorithm would.

Lemma 5. The union-find data structure uf(x) can be implemented using
O(degT (x)) space such that uf(x).union(u, v) takes amortized constant time
and uf(x).one() takes O(degT (x)) time.

Proof. Let each set in uf(x) be a node, and let d = degT (x). We maintain a
forest F of all nodes, where two nodes are in the same tree iff they are in the same
set. This takes space O(d). We use a buffer of size d. During uf(x).union(u, v), an
edge (u, v) is placed in the buffer. If the buffer is not full, then uf(x).union(u, v)
takes constant time. If the buffer is full, let B be the set of edges in the buffer.
We compute a new spanning forest of F ∪ B in time O(d). The new spanning
forest takes space O(d), and the buffer is now empty. Since this flushing step
happens after every d edge insertions, the amortized edge insertion cost is O(1).

The query returns true iff F ∪ B has a single connected component, which
can be checked in O(d) time. �	

4.2 Second Pass

We need to apply the unions specified by Algorithm 1 for each tree-biconnected
co-pair found. However, if we do this, then each of the m non-tree edges found
during the second pass would take time equal to the length of the cycle induced
by adding the edge to T . In the worst case, we would end up with O(mn) time.

The problem is that this approach unions the same sets many times. To
improve this, instead of enumerating the co-pairs on path PT (u, v) for each non-
tree edge (u, v) individually, we defer the enumeration until there are n such
paths waiting for enumeration. Then, we enumerate the co-pairs on n paths in
a batch. In this way, we can avoid much of the work of finding the same co-pair
many times, as follows.

Decompose each path PT (u, v) into paths PT (u,w) and PT (v, w), where w =
lcaT (u, v), the lowest common ancestor of node u and node v in tree T . Then,
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the set of co-pairs on path PT (u, v) is the union of co-pairs on path PT (u,w),
those on path PT (v, w), and the co-pair (wu, wv) if wu, wv exist, where by wu we
denote the child of node w that is an ancestor of node u in tree T and likewise
for node wv. Since there are at most n co-pairs of this last form, the enumeration
of such co-pairs takes O(n) time. Hence, the only difficulty lies in how to union
the short paths to reduce the repeated enumeration.

Note that all such paths go from a descendant to an ancestor. We partition
the paths by their deepest node. Now, for each u, we union all the paths in
u’s partition. Notice that if PT (u, a) and PT (u, b) are in u’s partition, then a
and b are both ancestors of u, so one is an ancestor of the other. Furthermore,
PT (u, a) ⊆ PT (u, b) if b is an ancestor of a, a condition we can check in O(1)
time since we have precomputed the depth of every node. Thus, all we need to do
is find the shallowest node in u’s partition, and we can discard all other paths.
There are at most 2n paths total, so these steps take O(n) time for all paths
and all nodes.

This is not enough, however, because the paths we have remaining can still
add to length O(n2). In order to compute all co-pairs specified by these paths, we
need to compute, for each node, if it and its grandparent is in one of the specified
paths. But we can test this by a single DFS of the tree as follows. Mark every
node u with path PT (u,w) with depthT (w). Now by DFS, we can compute
for every node v the depth of the shallowest endpoint of every path that goes
through v. If this depth is depthT (v) − 2 or less, then v and its grandparent
form a tree-biconnected co-pair. Thus, we can find all tree-biconnected co-pairs
specified by n non-tree edges in O(n) time. We summarize the result in Lemma 6.

Lemma 6. Given n paths on a tree of n nodes, the (multi-) set of co-pairs on
these n paths can be enumerated in O(n) time.

We are ready to prove the claimed time complexity. In the second pass, for
each n non-tree edges, we enumerate O(n) tree-biconnected co-pairs in O(n) time
due to Lemma 6. We perform all the unions specified by those co-pairs, that is, if
(x, z) is a co-pair at y, we call uf(y).union(x, z), and repeat for each such triple.
This part also takes O(n) due to Lemma 5. Therefore, after processing m edges,
the running time so far is O(m + n).

Since a node x is an articulation point if and only if uf(x).one() returns
False, due to Lemmas 2 and 4, one can find all articulation points in

O
(

∑

x∈T

degT (x)

)

= O(n)

time.

Theorem 7. Given an n-node m-edge graph G, all articulation points of G can
be found in O(m + n) time using O(n) space and two sequential passes on the
entire graph.
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5 A One Pass Algorithm for Articulation Points

In this section, we modify the above two-pass algorithm into a one-pass algo-
rithm. We do so by bypassing the first pass of the two-pass algorithm and directly
moving into the second pass as if the spanning tree T were given. We are able to
do this because, for every step of pass two, we don’t actually need all of T , but
only the parts of T that have some intersection with edges seen so far during
the second phase. Thus T can be built incrementally, and the first-pass prepro-
cessing can be computed incrementally, as we encounter edges in the “second”
pass.

We first make one modification to the two-pass algorithm. Note that we did
not specify which spanning tree T was needed for the two-pass algorithm. Any
spanning tree suffices. Thus we have the flexibility to pick one that is suitable
for our one-pass algorithm. In Section 2, we present a procedure for finding a
spanning tree T of graph G in linear time. In the procedure, we use a buffer of
size n to accommodate incoming edges and trim the edges to obtain an interme-
diate spanning forest every time the buffer is full. We denote those intermediate
spanning forests by F0 = φ, F1, . . . , Fm/n = T . We say that a such procedure is
stable if Fi is a subgraph of Fj for all i < j. In Lemma 8, we prove that one
can generate a spanning tree with a stable procedure in linear time.

Lemma 8. There is a stable procedure for finding a spanning tree T of an n-
node m-edge graph G that runs in O(m + n) time using O(n) space and one
sequential pass on the entire graph.

Proof. To make the procedure stable, one need to assert that the newly generated
spanning forest Fi+1 is a supergraph of Fi. In other words, one needs to keep
the newer edges with a lower priority than the older ones. To achieve this, one
can contract the connected component in the spanning forest Fi and conduct a
DFS on the contracted graph Fi union newly added edges. Both the contraction
and DFS both takes linear time. �	

To mimic the two-pass algorithm, consider the ith batch of n edges. At this
stage, we have spanning forest Fi, which is a subgraph of the spanning tree T .
Then, for each non-tree edge (u, v) in the current batch, we need to find the
path PT (u, v) given the subgraph Fi. Node u and node v cannot be contained
in two different trees of forest Fi. Otherwise, we would have added edge (u, v)
to Fi. We conclude that PFi

(u, v) = PT (u, v).
The last problem is how to deal with the co-pairs on these paths in the

claimed bound. First, we do not know degT (x) without the entire tree T . How-
ever, we only use degT (x) to allocate space for the union-find data structure
uf(x). One can achieve the same effect without knowing degT (x) by allocating
2s = O(1) space for uf(x) and iteratively doubling s whenever a new forest is
computed and the degree of a node exceeds it’s s − 1. In this way, each uf(x)
grows to the size O(degT (x)) and each uf(x).union(u, v) still takes O(1) amor-
tized time.
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Second, for each Fi we preprocess the data structures to answer the queries
used in the two-pass algorithm in constant time. Since the preprocessing can
be done in time linear to the size of Fi, the total preprocessing time is thus
O (

∑
i |Fi|) = O(m +n). Therefore, this variation of the two-pass algorithm can

be simulated by one-pass.

Theorem 9. All articulation point of an n-node m-edge graph G can be done
in O(m + n) time using O(n) space and one sequential pass on the entire graph.

6 Space Lower Bound

In this section, we prove the following theorem.

Theorem 10. Any semi-streaming algorithm that can output all articulation
points of an n-node m-edge graph after one sequential pass requires Ω(n log n)
bits of space.

Proof. Let function h be a bijection function from [n] to [n]. Function h can be
encoded with the graph Gh in Figure 1 without the dashed edge e = (0, n + k)
where k ∈ [n] and there are n possible choices for e.

Then, we construct a stream for all edges in G ∪ {e}, where the dashed edge
e is placed last. The articulation points of graph G ∪ {e} are node 0 and every
node h(i) for i �= k. Therefore, an algorithm that can output all articulation
points of the graph G ∪ {e} also answers what h(k) is, by computing the sum
SAP of the node labels of articulation points

SAP = n(n + 1)/2 − h(k).

At the time that a semi-streaming algorithm processes the last edge e =
(0, n+k), the state of memory must include an encoding of the bijection function
h : [n] → [n] because based on the state of memory and the last edge e =
(0, n + k), one has to answer what h(k) is, for any possible k. Since the number
of possibilities of such a bijection function h : [n] → [n] is n!, the memory must
have size at least Ω(n log n) bits. �	

0

h(1) h(2) h(k) h(n)

n + 1 n + 2 n + k n + n

· · ·

· · ·

· · ·

· · ·

Fig. 1. Graph encoding of the bijection function h : [n] → [n]
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Abstract. We study problems that integrate buy-at-bulk network
design into the classical (connected) facility location problem. In such
problems, we need to open facilities, build a routing network, and route
every client demand to an open facility. Furthermore, capacities of the
edges can be purchased in discrete units from K different cable types with
costs that satisfy economies of scale. We extend the linear programming
framework of Talwar [IPCO 2002] for the single-source buy-at-bulk prob-
lem to these variants and prove integrality gap upper bounds for both
facility location and connected facility location buy-at-bulk problems.
For the unconnected variant we prove an integrality gap bound of O(K),
and for the connected version, we get an improved bound of O(1).

1 Introduction

We study problems that integrate buy-at-bulk network design into the classical
(connected) facility location problem. We are interested in applications with
trade-offs between facility opening and network design costs. Problems of this
type arise in the planning of optical access networks in telecommunications,
for example. An operator must decide on which nodes to install routing and
switching devices (these are called central offices, and represented by facilities)
and on which edges to install transmission technologies (represented by so-called
cable types) to route traffic demands. In these networks, the traffic originating
from each client is sent via tree-like access networks, to its respective facility.
A combination of different cable types may be installed on the edges of these
access trees to support the traffic flow. This allows for multiple fibers emanating
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from different clients to share a single, larger cable and the same trunk on their
common path towards their common central office. The facilities are connected
amongst each other or to some higher network level via a core network of (almost)
unlimited capacity, which is required to route the traffic further towards its
destination. Designing such a network involves selecting the facilities, connecting
them via high-bandwidth links, and dimensioning the access links that are used
to route the traffic from the clients to facilities.

This planning problem can be modeled as a connected facility location with
buy-at-bulk edge costs problem, denoted by BBCFL. We are given a complete
graph G=(V,E) with nonnegative edge lengths ce ∈Z≥0, e∈E satisfying triangle
inequality; a set F ⊆V of facilities with opening costs μi ∈Z≥0, i∈F ; and a set
of clients D ⊆ V with demands dj ∈ Z>0, j ∈ D. We are also given K types of
access cables that may be used to connect clients to open facilities. A cable of
type i has capacity ui ∈Z>0 and cost (per unit length) σi ∈Z≥0. Furthermore,
we are given an extra type of cable, called core cable, having a cost (per unit
length) of M >σK and infinite capacity, which may be used to connect the open
facilities with each other. We assume that access cable types obey economies of
scale. That is, σ1 < σ2 < · · · < σK and σ1

u1
> σ2

u2
> · · · > σK

uK
. A feasible solution

or BBCFL consists of (1) A subset F0 ⊆ F of facilities to open; (2) a Steiner
tree of G (core network) connecting all open facilities via core cables; and (3) a
forest (access network) connecting all clients to the open facilities. Furthermore,
on each edge of this forest we have to specify a list of possibly multiple copies
and types of access cables to install, in such a way that the entire demand of
each client can be routed along a single path to an open facility. The objective
of BBCFL is to minimize the total cost of opening facilities, and constructing
core and access networks; where the cost for using edge e in the core network
is Mce, and the cost for installing a single copy of access cable of type i on
an edge e is σice. It is worth noting that we are allowed to install core cables
on edges incident to closed facilities, to clients, or even to nodes in V \(F ∪D).
Nevertheless, the demand from a client to its facility is not allowed to use core
cables. The rationality for this constraint is that in real-life situations core and
access networks are run independently. The only way to access from the access
network to the core network is via an open facility.

There are various interesting variants of BBCFL that differ with respect to
the structure of the access or core network. For example, the planning of water
and energy supply networks occur in settings where different connection types on
the edges of the access network is not motivated by the different capacities but
by the different per unit shipping cost of alternative technologies or operational
modes. This naturally leads to the connected facility location with deep-discount
edge costs problem, denoted by DDCFL. In this problem, instead of capacitated
access cables, we are given K discount cable types, where cable type i has a
fixed (setup) cost of σi, a flow dependent incremental cost of δi, and unbounded
capacity. We assume that δ1>δ2> · · ·>δk (i.e., discount cables obey economies
of scale). The cost for installing one copy of discount type i on edge e and
transporting R flow units on e is (σi + Rδi)ce. Yet another variant occurs in
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logistic networks where the connectivity among facilities is not required, see
[12] for more details. This is called facility location with buy-at-bulk edge costs
problem, denoted by BBFL.

Previous Work. The BBFL problem was first considered by Meyerson et
al. [11]. They show that BBFL can be seen as a special case of the Cost-Distance
problem, and thereby provide the first randomized approximation algorithm with
approximation guarantee O(log(|D|)) for this problem. Their algorithm works
for the more general version of non-uniform buy-at-bulk where one has a differ-
ent set of cable types for each edge. The algorithm was then derandomized by
Chekuri et al. [2], who also show that the integrality gap of the cost-distance
problem is O(log(|D|)). Ravi and Sinha [12] later developed an O(K) approxi-
mation for this problem extending a combinatorial algorithm for the buy-at-bulk
problem presented by Guha et al. [7]. The BBCFL problem was recently consid-
ered by Bley and Rezapour [1] who designed an approximation algorithm based
on the random sampling techniques, achieving a 192-approximation.

The Connected facility location problem (ConFL) is the special case of the
BBCFL problem with only one access cable type of unit capacity. Gupta et al. [8]
obtained a 10.66-approximation for this problem, based on LP rounding. Swamy
and Kumar [14] improved the approximation ratio to 8.55, using a primal-dual
algorithm. Using sampling techniques, the guarantee was later reduced to 4 by
Eisenbrand et al. [3], and to 3.19 by Grandoni et al. [6].

The unsplittable Single-Sink Buy-at-Bulk problem (uSSBB) can be seen as a
further simplification of BBCFL in which the set of interconnected open facilities
are given in advance. Several approximation algorithms for uSSBB have been
proposed in the literature. Using LP rounding techniques, Garg et al. [4] devel-
oped an O(K) approximation, where K is the number of cable types. The first
constant factor approximation for this problem is due to Guha et al. [7]. Talwar
[15] showed that an LP formulation of this problem has a constant integrality
gap and provided a 216 approximation. Using sampling techniques, this factor
was reduced to 145.6 by Jothi et al. [9], and later to 40.82 by Grandoni et al. [5].
Our Results. We extend the LP-based approximation for uSSBB in [15] to
BBCFL and BBFL, thereby establishing an LP rounding framework for buy-
at-bulk variants. Similar to previous work, one can show that the BBCFL and
DDCFL problems are closely related, so that a ρ-approximation algorithm for
one problem gives a 2ρ-approximation algorithm for the other. Since the integral-
ity gap of the natural flow-based formulation for BBCFL can be arbitrarily large,
we focus on the DDCFL problem. In Section 2, we present a strong flow-based
IP (IP-1) model for this problem. Our main result is the following.

Theorem 1. The integrality gap of (IP-1) is at most 234.

As a consequence, we get an improved constant factor approximation for
DDCFL, beating the 384-approximation one can obtain from doubling the 192-
approximation guarantee in [1] for BBCFL. We also obtain the first LP based
(deterministic) algorithm for the BBCFL problem whose factor is comparable
with the (expected) approximation factor of the one in [1]. Finally, using similar
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techniques, we obtain an integrality gap of O(K) for BBFL in Section 4. This
matches the approximation guarantee of the combinatorial algorithm [12].

The reason why we get a better guarantee for BBCFL, even though it may
seem more difficult than BBFL, is that the extra constraints in (IP-1) that ensure
connectivity among open facilities are helpful in bounding the integrality gap.

2 IP Modeling of DDCFL

We write a flow-based IP formulation for DDCFL. We assume w.l.o.g. that a
particular facility r is open and thus it belongs to the core network in the optimal
solution and that D ∩F =∅. Also, to simplify the description of our algorithm it
will be useful to add an artificial root client r∗ with unit demand, connected to
r by an edge of 0 length. For each edge we create a pair of anti-parallel directed
arcs, with same length as the original one. Let E be the set of these arcs. The
undirected version of an arc e∈E is denoted by ē. For every e ∈ E, cable type
k ∈ [K] = {1, . . . , K} and client j ∈ D, the variable f j

e;k indicates if flow from
client j uses cable type k on arc e; for ē ∈ E and k ∈ [K], xk

ē indicates if cable
type k is installed on edge ē; zē indicates if the core cable is installed on edge ē;
and yi indicates if facility i is opened. The opening cost Cfac, the core cost Ccore,
the fixed cost Cfixed and the routing cost Croute of a solution are defined as

Cfac =
∑

i∈F

μiyi; Ccore =M
∑

ē∈E

cēzē; Cfixed =

K∑

k=1

Cfixed
k ; Croute =

K∑

k=1

Croute
k ,

where Cfixed
k = σk

∑

ē∈E

cēx
k
ē , and Croute

k = δk

∑

j∈D

dj

∑

e∈E

cēf
j
e;k, (1)

represent the fixed cost and routing cost of the cables of type k, respectively.
We use the notation δ+(S) = {(u, v) ∈ E : u ∈ S, v /∈ S}, δ−(S) = δ+(V \ S),
δ(S) = {uv ∈ E : u ∈ S, v �∈ S} for each S ⊆ V and δ+(v) = δ+({v}) for each
v∈V . Given a set of cables I ⊆ [K] and a client j ∈D, we define the access flow on
e ∈ E with respect to I and j as f j

e;I =
∑

k∈I f j
e;k; and the net in-flow on a vertex

v ∈ V with respect to I and j, as gj
I(v)=

∑
e∈δ−(v) f j

e;I −∑
e∈δ+(v) f j

e;I . We also
define hj

i =max{gj
[K](i), 0} for j ∈D and i∈F . Formally, this quantity indicates

whether facility i is serving client j. With all the notation above, our integer
program formulation is as follows. Constraints (2) impose that at least one unit
of flow leaves the clients. Constraints (3) are flow conservation constraints at
non-facility nodes. Constraints (4) and (5) state that the flow only terminates
at open facilities. Constraints (6) ensure that we install access links to support
the flow. Finally, Constraints (7) state that if i is the facility serving demand j

(the only i for which hj
i = 1) then for each set S containing i and not containing

the root there is a core link connecting S with its complement. In other words,
all open facilities are connected to the root via core links, where Constraint
(8) defines the root facility. Constraints (9) and (10), called path monotonicity
constraints, strengthen the linear relaxation of (IP-1) – they ensure that the
cable types along any path used to connect clients to facilities are nondecreasing
from each client to its facility. The validity of these constraints follows from the
fact that we have economy of scale, and hence that the flow aggregated on an
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edge (in the optimum fractional solution) never splits; see [4] for more details.

(IP-1) min Cfac + Ccore + Cfixed + Croute

gj
[K](j) ≤ −1 ∀j ∈ D (2)

gj
[K](v) = 0 ∀j ∈ D, v ∈ V \ (F ∪ {j}) (3)

gj
[K](i) ≤ hj

i ∀j ∈ D, i ∈ F (4)

hj
i ≤ yi ∀j ∈ D,i ∈ F (5)

f j
(u,v);k + f j

(v,u);k ≤ xk
uv ∀j ∈ D, k ∈ [K], uv ∈ E (6)

∑

i∈S∩F

hj
i −

∑

ē∈δ(S)

zē ≤ 0 ∀j ∈ D, S ⊆V \ {r} : S∩F �= ∅ (7)

yr = 1 (8)

gj
[q,K](v) ≤ 0 ∀j ∈ D,v ∈ V \F, 1≤q≤K (9)

gj
[q,K](i)−

∑

ē∈δ(i)

zē ≤ 0 ∀j ∈ D, i ∈ F \{r}, 1≤q≤K (10)

xk
ē , f j

e;k, yi, zē, h
j
i ∈ {0, 1} (11)

3 Proof of Theorem 1

Let (LP-1) be the linear program relaxation of (IP-1) and (f, x, y, z) be an opti-
mal solution to (LP-1). It is not hard to show that (LP-1) can be solved in poly-
nomial time using, for example, the ellipsoid method. We show how to round
this LP solution to an integer one at constant factor loss.

3.1 Rounding Algorithm

We extend the rounding approach of [15] for the single-source buy-at-bulk prob-
lem to devise a rounding algorithm for DDCFL. Our algorithm has four phases.

Preprocessing Phase:

Pruning: We prune the set of access cable types such that all cables are consid-
erably different. Similar to [15], this can be done without increasing the cost of
the optimal solution too much.

Theorem 2. Given ε1, ε2 ∈ (0, 1), we can prune the set of access cables
so that for any i, σi+1 > σi/ε1 and δi+1 < ε2 · δi hold, increasing the instal-
lation and routing costs of the optimal fractional solution by a factor of at most
1/ε1 and 1/ε2, resp.

For the sake of notation, let [K] be the set of cables left and let (f, x, y, z) be
the new solution of (LP-1) after the pruning stage. For each client j and positive
radius R, define B(j, R)={v∈V : cjv ≤R} to be the moat centered at j. We say
that two moats B1 = B(j1, R1) and B2 = B(j2, R2) overlap if cj1j2 ≤ R1+R2.
Define also Lj

k =
∑

e∈E f j
e;kcē which represents the estimated distance that the

flow of client j travels on cables of type k. Note that Croute
k =δk

∑
j∈D djL

j
k.
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Flow path decomposition: Every client j sends (at least) one unit of flow from
itself to open facilities, specified by the f j

e,[K] variables. We decompose this frac-
tional flow into a set of paths Pj , with path p ∈ Pj starting from j and ending
at some facility. Let φ(p) denote the amount of flow of path p.

Filtering: For a predefined constant θ ∈ (0, 1) and for all j ∈ D, choose a
subset of paths P̄j ⊆ Pj such that φj :=

∑
p∈P̄j

φ(p) ≥ θ, by selecting paths
in increasing order of their lengths until their total φ(p)-value is at least θ. For
each j ∈ D, let βj be the length of the longest path in P̄j . Define a new solution
(f̄ , x̄, ȳ, z̄) as follows. For each client j ∈ D, scale the amount of flow sent across
each P ∈ P̄j by 1/φj and set the flow sent across each P ∈ Pj − P̄j to 0. The
new flow f̄ is derived naturally from this new path decomposition. For each cable
k ∈ [K] and edge ē ∈ E, define x̄k

ē as xk
ē/θ if there exists some j with f̄ j

e′;k > 0,
where e′ ∈ E is one of the two arcs associated to ē; and 0 otherwise. For each
i, set ȳi = min{yi/θ, 1}. And finally for each ē ∈ E, set z̄ē = min{zē/θ, 1}. It is
easy to show that this solution is feasible for (LP-1).

Two important points: first, the solution (f̄ , x̄, ȳ, z̄) is such that the entire
demand of client j is satisfied by open facilities on the moat B(j, βj). The second
property is the following bound which is useful for the analysis. Let P̃j ⊆ Pj

be the set of paths with lengths at least βj . Then, P̃j includes all paths in
Pj \ P̄j and at least one path, say p∗ (the longest) of P̄j . We conclude that∑

p∈ ˜Pj
φ(p) ≥ ∑

p∈Pj
φ(p) − ∑

p∈P̄j\{p∗} φ(p) ≥ 1 − θ, and so
K∑

k=1

Lj
k =

∑

p∈Pj

∑

e∈p

φ(p)cē ≥
∑

p∈ ˜Pj

φ(p)
∑

e∈p

cē ≥ βj(1 − θ). (12)

Facility Selection Phase:

Moat Selection: For a predefined constant η > 1, we consider the set of moats
Bη = {B(j, ηβj) : j ∈ D} around clients. We choose a maximal set B′ ⊆ Bη

of moats which do not overlap. We do this by processing the moats in Bη in
increasing order of their radii, and greedily adding them to B′ so that for each
pair of selected moats in B′ with centers j, j′ ∈ D, B(j, ηβj) and B(j′, ηβj′) do
not overlap. Let Score be the set of clients with moats in B′. Observe that for
the artificial root client r∗, we have βr∗ = 0 and so r∗ ∈ Score.

Facility Opening: For each j ∈ Score, let Fj = {i : h̄j
i > 0} be the facilities

fractionally serving demand from j with respect to solution (f̄ , x̄, ȳ, z̄). By the
first property noted at the end of the preprocessing phase, Fj ⊆ B(j, ηβj), hence
{Fj : j ∈ Score} consist of disjoint sets. On each Fj we open the facility i∗j
with lowest opening cost. In particular, the root r is opened since Fr∗ = {r}.
Let I be the set of facilities opened on this stage. The basic idea of this part
of the algorithm is inspired by [13]. For the purpose of analysis, associate each
client with a special facility denoted as its (K + 1)-st proxy. Formally, for each
j ∈ Score we set proxyK+1(j) = i∗j . For the remaining clients j ∈ D \ Score, we
set proxyK+1(j) = proxyK+1(j′), where j′ ∈ Score is the center of the smallest
moat in B′ that overlapped with B(j, ηβj). Since the moats in B′ were added in
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increasing radii and (12), we get

c(j, proxyK+1(j)) ≤ (1 + 2η)βj ≤ (1 + 2η)

(1 − θ)

K∑

q=1

Lj
q ∀j ∈ D. (13)

Core Network Phase: Consider the graph GK+1 obtained from G by con-
tracting the nodes of each Fj into single nodes, for j ∈ Score. We construct an
approximately optimal Steiner tree T ′ in GK+1 having the contracted nodes as
terminals. To do this, we find an approximate Steiner tree whose cost is within
a factor 2 of the cut-based relaxation. The edges of T ′ form a forest in G which
touches a subset of the facilities in Fj , called F̄j which may not include the open
facility i∗j . In order to connect all the open facilities together, we augment T ′

with the stars Qj = {ji : i ∈ F̄j ∪ {i∗j}}, j ∈ Score. Let T core be the resulting
tree, after possibly canceling some cycles. To conclude this stage, we install core
cables on T core.

Access Network Phase: We construct the access network in a top-down man-
ner, installing cables progressively in stages numbered from i = K to 1. Let
TK+1 be a minimum spanning tree on the graph induced by the set I of open
facilities, and connect them using an artificial cable type K + 1. This tree won’t
appear in the end, as it will be replaced by the core network. In stage i, we
augment the current tree Ti+1, which uses only cables of type i + 1 or higher,
by installing cables of type i. Define L̄j

k to be
∑

e∈E f̄ j
e;k · ce. This estimates the

distance that flow from j goes on cable type k. Let R̄j
l =

∑l−1
k=1 L̄j

k be the esti-
mated distance beyond that flow from j uses cable type l or higher in the new
fractional solution. Intuitively, R̄j

l tells us how far from j to go before the LP
solution installs access cable types l or higher. Stage i consists of two steps:

Step 1. Moat Selection: For predefined γ > ζ > 1, we construct the set of
moats Bi

γ = {B(j, γR̄j
i ): j ∈ D} around all clients. We define Ŝi to be the set of

clients whose moats intersect Ti+1. For each j ∈ Ŝi remove moat B(j, γR̄j
i ) from

Bi
γ . Similar to what we did for the core network, we choose a maximal set Bi ⊆Bi

γ

of moats which do not overlap by selecting moats from Bi
γ in increasing order of

their radii. Let Si be the set of clients whose moats are selected in round i.
Step 2. Cable type i installation: We construct the set Bi

ζ = {B(j, ζR̄j
i ) : j ∈

Si} of moats around clients in Si. We obtain a graph Gi from G by contracting
each moat in Bi

ζ into a super-node, and the current tree Ti+1 into a super-node
called ri+1. We then construct an approximately optimal Steiner tree in Gi (with
integrality gap bound 2), where the terminals are all the super-nodes. By uncon-
tracting, we get a forest in G touching at least one node in Ti+1 and one node
from each moat. To get a tree, called T̄i, from the resulting forest, we add direct
edges from each client j ∈ Si to each node of B(j, ζR̄j

i ) that is incident on the
forest1 and then we cancel cycles.
1 This crucial step of adding direct edges is missing from the uSSBB-approximation

in [15], even though it seems necessary for both that algorithm and ours to work.
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Using Khuller et al.’s technique [10], we then convert tree T̄i rooted at ri+1,
into an (α, β)-Light Approximate Shortest-path Tree (LAST), for parameters
β = α+1

α−1 and α > 1 to be chosen later. Let LASTi be the resulting tree. The
LAST algorithm [10] transforms tree T̄i into LASTi with c(LASTi) ≤ βc(T̄i)
such that the path length of any vertex v to root ri+1 in LASTi is at most α
times the length of a shortest v-ri+1 path in Gi. We un-contract the moats and
install cables of type i on the edges of LASTi. Let Ti = Ti+1 ∪ LASTi.

For the purpose of analysis, for each j ∈ Si, we call an arbitrary node in its
moat which is connected to LASTi as the proxy, denoted by proxyi(j). For the
clients j ∈ Ŝi, we define proxyi(j) to be an arbitrary node in B(j, γR̄j

i ) ∩ Ti+1.
For the remaining clients j′ ∈ D \ Si ∪ Ŝi, we define proxyi(j′) to be proxyi(j),
where j ∈ Si is the center of the smallest moat in Bi that overlapped with
B(j′, γR̄j′

i ). It is easy to verify that c(j,proxyi(j)) ≤ 3γR̄j
i ≤ 3γ

θ

∑i−1
k=1 Lj

k. If we
set Δ = max{ 1+2η

1−θ , 3γ
θ }, then by the previous inequality and (13), we get

c(j, proxyi+1(j)) ≤ Δ ·
i∑

q=1

Lj
q ∀j ∈ D, 1 ≤ i ≤ K (14)

which will be useful in bounding the routing cost.
Finally, note that Rj

1 = 0 for all j. This means that in the first step of the
last stage, S1 consists of all clients that have not been connected to the current
tree. Therefore, at the end of the last stage, T1 is a tree spanning all clients and
open facilities. The access network we return consists of the forest obtained by
removing the artificial tree TK+1 from T1.

3.2 Analysis

Let C∗fac, C∗core, C∗fixed and C∗route be the opening cost, core installation cost,
fixed installation cost and routing cost paid by the LP optimum (see (1)). And
let Cfac, Ccore, Cfixed and Croute the ones paid by our algorithm. Let gapST

denote the upper bound on the integrality gap of the cut based formulation of
Steiner tree problem, which is 2. Let OPT be the cost of LP optimum. The
following lemma bounds the opening cost; the proof is omitted as it is similar to
that for the facility location problem [13].

Lemma 3. The opening cost of the returned solution is at most 1
θ C∗fac.

Lemma 4. The cost of core link installation is at most η+1
θ(η−1) · gapST · C∗core.

Proof. By (7), one can verify that
∑

ē∈δ+(S) z̄ē ≥ 1 holds for any arbitrary set
S ⊂ V that contains all facilities in Fj (for some j) and it does not contain r. This
means that z̄ is a feasible fractional solution to the cut based LP relaxation of
the Steiner tree problem on the graph GK+1 (see the core network phase) whose
terminals are all the contracted sets Fj (recall that Fr∗ = {r}). In particular,
the Steiner tree T ′ found in the core network phase has cost at most gapST ·∑

ē∈E cēz̄ē. The cost of the extra edges included in the final tree T core (i.e., the
union of all stars Qj) can be charged to the cost of T ′ as follows.
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For each facility bj in F̄j let e(bj) = bjv ∈ T ′ be any edge incident to it. Since
bj is in B(j, βj) and v is outside B(j, ηβj), we conclude that the cost of e(bj) is
at least (η − 1)βj . By a similar argument, if e = e(bj) = e(bk) where bj ∈ F̄j and
bk ∈ F̄k, then we can use the fact that B(j, ηβj) and B(k, ηβk) do not overlap
to conclude that the length of e is at least (η − 1)(βj + βk). Therefore, the total
cost of the union of all Qj is at most

∑

j∈Score

(
c(ji∗j ) +

∑

b∈F̄j

c(jb)

)
≤ 2

∑

j∈Score

∑

b∈F̄j

βj ≤ 2
∑

e∈T ′

c(e)

η − 1
.

Summing up, the cost of T core is at most 1 + 2
(η−1) times the cost of T ′, and

therefore it is at most η+1
θ(η−1) · gapST · ∑

e∈E cēzē. ��
In the following, we bound the fixed cost and routing cost of the cables installed
at stage i of the access network phase, denoted by Cfixed

i and Croute
i , respectively.

Lemma 5. Cfixed
i ≤ σi · gapST · γβζ

(γ − ζ)(ζ − 1)θ

( K∑

q=i

1

σq
C∗fixed

q +
1

M
C∗core

)

Proof. Let S be an arbitrary subset of V \ {r} that contains B(j, ζR̄j
i ). We first

show that
∑i−1

q=1 b̄j
q;S ≤ 1

ζ , where b̄j
q;S :=

∑
e∈δ+(S) f̄ j

e,q indicates the amount of
flow from j crossing the boundary of S thorough cables of type q. The flow we are
considering has to travel from j to the boundary of S using only use cables of type
q or thinner. So, as b̄j

q;S travels a distance of at least ζR̄j
i , it contributes at least

b̄j
q;SζR̄j

i units to R̄j
i =

∑i−1
k=1 L̄j

k. As the contributions from each q are disjoint,
we have R̄j

i ≥ ∑i−1
q=1 b̄j

q;SζR̄j
i , which implies that

∑i−1
q=1 b̄j

q;S ≤ 1
ζ . This together

with the LP constraints guarantee that
∑K

q=i b̄j
q;S +

∑
e∈δ+(S) z̄e ≥ 1 − 1

ζ and

hence
∑

e∈δ+(S)

( ∑K
q=i x̄q

e + z̄e

) ≥ 1− 1
ζ . This means that the vector z̄+

∑K
q=i x̄q,

scaled by a factor ζ
ζ−1 , is a feasible fractional solution to the LP relaxation of

the Steiner tree connecting balls B(j, ζR̄j
i ) to Ti+1. Therefore, the cost of the

Steiner tree computed in step 2 of the access network phase can be bounded by
gapSTζ

ζ − 1

(∑

e∈E

K∑

q=i

cex̄
q
e +
∑

e∈E

cez̄e

)
≤ gapSTζ

(ζ − 1)θ

( K∑

q=i

1

σq
C∗fixed

q +
1

M
C∗core

)
.

Similar to Lemma 4, one can show that the cost of extra edges of T̄i, added
after un-contracting the moats, is at most ζ

γ−ζ times the cost of the current
forest. Altogether, the cost of the LASTi tree is at most

c(LASTi) ≤ gapST · γ

γ − ζ
· βζ

(ζ − 1)θ

( K∑

q=i

1

σq
C∗fixed

q +
1

M
C∗core

)
. ��

The proof of the next lemma is omitted due to page limitations.

Lemma 6. Croute
i ≤ Δδiα

i∑

q=1

(1 + α)i−q 1
δq

C∗route
q .
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By Lemma 5, Theorem 2, and by summing over all cable types, the fixed cost
paid by the algorithm can be bounded as follows.

Cfixed ≤ gapST · γβζ

(γ − ζ)(ζ − 1)θ

[ K∑

s=1

C∗fixed
s (

∑

i≤s

σi

σs
) + C∗core(

K∑

i=1

σi

M
)
]

≤ gapST · γβζ

(γ − ζ)(ζ − 1)θ(1 − ε1)

[
C∗fixed + C∗core]. (15)

Similarly, by using Lemma (6), we bound the routing cost as follows.

Croute ≤ Δα
K∑

i=1

i∑

s=1

(1 + α)i−s δi

δs
C∗route

s ≤ Δα
K∑

i=1

i∑

s=1

(
(1 + α) · ε2

)i−s
C∗route

s

≤ Δα

K∑

s=1

C∗route
s

∑

i≥s

(
(1 + α) · ε2

)i−s ≤ Δα

1 − ε2(1 + α)
· C∗route. (16)

Using (15), (16), Lemmas 3 and 4, the total cost of our solution is at most
1

θ
C∗fac +

(η + 1)gapST

θ(η − 1)
C∗core +

γβζ · gapST (C∗fixed + C∗core)
(γ − ζ)(ζ − 1)θ(1 − ε1)

+
Δα

1 − ε2(1 + α)
C∗route.

Finally, using Theorem 2, we can bound the cost of our solution by

≤ max

(
1

ε1
· γβζ · gapST

(γ − ζ)(ζ − 1)θ(1 − ε1)
+

(η + 1)gapST

θ(η − 1)
,

1

ε2
· Δα

1 − ε2(1 + α)

)
OPT. (17)

This completes the proof of Theorem 1. Setting α = 1.47, γ = 4.10, ε1 = 0.50,
ε2 = 0.20, θ = 0.78, η = 1.27 and ζ = 2 and recalling gapST = 2, inequality (17)
implies that the integrality gap of (IP-1) is no more than 234. Thus, we obtain
the first LP based (deterministic) algorithm for DDCFL and thereby for BBCFL.

4 On the Integrality Gap of the BBFL Problem

Recall that if we omit the requirement to connect the open facilities, the BBCFL
becomes the BBFL problem. In this section we study the integrality gap of an
LP formulation for the problem. As with the BBCFL problem, we consider a
variant of BBFL, called DDFL, in which we replace the capacitated access cables
by discount cable types. Note that similar to the relation between BBCFL and
DDCFL, one can transform between BBFL and DDFL with a factor 2 loss.

IP Formulation. Similar to Section 2, DDFL can be formulated as follows:

(IP-2) min Cfac + Cfixed + Croute s.t. (2), (3), (6), (9)

gj
[K](i) ≤ yi ∀j ∈ D, i ∈ F (18)

gj
[q,K](i) − yi ≤ 0 ∀j ∈ D, i ∈ F, 1 ≤ q ≤ K (19)

xk
ē , f j

e;k, yi ∈ {0, 1} (20)

We do not need the z and hj
i variables anymore, as they were used to model

facility connectivity. Constr. (18) state that the flow only ends at open facilities,
and Constr. (9) and (19) force the path monotonicity discussed in Section 2.
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Algorithm. We follow the same general ideas of the rounding algorithm for
DDCFL, but we replace the core network and access network phases by a single
one denoted network phase. Another key difference is that we may open facilities
at any stage of the network phase. Ultimately, this is why our integrality gap
bound is O(K) as we have to overestimate and bound the opening cost in each
of the K stages by the total opening cost paid by the LP.

Preprocessing Phase. Apply the preprocessing phase (pruning, flow path decom-
position and filtering) of Section 3.1, disregarding variables z. Let (f̄ , x̄, ȳ) be
the solution after this phase.

Initial Facility Selection Phase. Perform the facility selection phase of Section
3.1 but fixing η=1. Let I ′ be the set of facilities opened in this phase.

Network Phase. We construct a solution in a top-down manner, installing cables
and possibly opening more facilities in stages, which we number from i=K to 1.
We start with solution (IK+1,TK+1)=(I ′,∅). At stage i we augment the current
solution by (1) opening some extra facilities and (2) installing cables of type i.
We do this while keeping the invariant that Ti is a forest in G such that each
connected component contains an open facility of Ii. Stage i is similar to the
i-th stage of the access network phase in Section 3.1.

1. For a predefined constant γ > ζ > 1, construct the set of moats B(j, γR̄i
j)

around clients j ∈D. Remove the moats which intersect Ti+1 and select from
the rest a maximal subset Bi of non-overlapping moats in increasing order of
their radii. Let Si be the set of selected clients associated to Bi and construct
the set Bi

ζ ={B(j, ζR̄j
i ) : j ∈ Si} of moats around clients in Si.

2. Add a dummy node r̃ and connect it to every facility v fractionally opened
by the LP (with ȳv > 0). Set the cost of each dummy edge ẽ = r̃v to be
zero if facility v ∈ Ii+1; otherwise set it to be fv. To simplify the analysis,
associate each edge ẽ = r̃v with a variable x̃ẽ equal to ȳv.

3. Contract each moat in Bi
ζ , and each component of Ti+1 into super-nodes.

Call the contracted graph G̃.
4. Construct an approximately optimal Steiner tree T̂ on G̃, where the terminals

are r̃ and all the super-nodes. Without loss of generality we assume that T̂
includes a dummy edge of cost 0 from r̃ to every super-node associated to a
component of Ti+1 (or, more precisely, to each facility v ∈ Ii+1).

5. For each v∈F \Ii+1, if edge r̃v is in T̂ then open facility v and put it in Ii.
6. Set Ii = Ii ∪ Ii+1.
7. Contract all the dummy edges that are contained in T̂ , and uncontract the

super-nodes associated to the moats. The edges from T̂ form a forest in the
resulting graph. To get a tree, add for each moat direct edges from its center
to all nodes in the moat that are incident to T̂ . Let T̃ be the resulting tree.

8. Using the LAST algorithm for appropriate parameters, transform T̃ rooted
at the contracted node containing r̃ into a tree called LASTi.

9. Install cables of type i along LASTi and let Ti = Ti+1 ∪ LASTi.

Theorem 7. The integrality gap of (IP-2) is at most O(K).
The proof is omitted due to page limitations.
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5 Conclusion

We have shown that the LP rounding framework for uSSBB [15] extends to facil-
ity location buy-at-bulk problems. Our integrality gap analysis roughly matches
the known approximation ratios of combinatorial algorithms for BBCFL [1] and
BBFL [12], so the obvious open problem is to improve this analysis to derive bet-
ter approximation algorithms. In particular, can we get an O(1)-approximation
for BBFL? We were able to bound the gap by O(1) for BBCFL by exploiting the
fact that the facility core network is fractionally connected by the LP. However,
in BBFL we do not have this property so we have to pay for the facility opening
costs with a copy of the y-values in each stage. A potentially easier problem is
to get an α-approximation for BBFL with running time nf(k) for some function
f where α is a constant that does not depend on k.

Acknowledgments. A special thank to Babak Behsaz for helpful discussions.
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Abstract. Many properties of a string can be viewed as sets of depen-
dencies between substrings of the string expressed in terms of substring
equality. We design a linear-time algorithm which finds a solution to an
arbitrary system of such constraints: a generic string satisfying a system
of substring equations. This provides a general tool for reconstructing
a string from different kinds of repetitions or symmetries present in the
string, in particular, from runs or from maximal palindromes. The recur-
sive structure of our algorithm in some aspects resembles the suffix array
construction by Kärkkäinen and Sanders (J. ACM, 2006).

1 Introduction

Let s be a string of length n, s = s0 . . . sn−1. For 0 ≤ p ≤ q < n, we denote
a substring sp . . . sq by s[p..q]. A substring equation is a constraint of the form
“s[p..q] = s[p′..q′]”. We say that a string s of length n is a solution to a system
of substring equations E (satisfies E) if it satisfies each equation of the system.

Clearly, every system has a solution which is a string over a unary alphabet,
i.e., an. Thus, we focus on generic solutions containing the largest number of
different characters. The important feature of any such solution is that it can be
used to describe all solutions of a system of substring equations:

Observation 1. If s is a generic solution of length n to a system E, then for
each string s′ of length n that satisfies E there exists a letter-to-letter morphism
(a coding) μ such that μ(s) = s′.

In particular, every two generic solutions of the same length are equivalent
up to renaming letters. We denote one of the generic solutions by Φ(E).
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Our Main Result. We design a linear-time algorithm which computes a generic
solution Φ(E) for a system E of substring equations.

The fact that our solution is generic lets us solve in O(n) time many classic
string recovery problems.

Algorithms recovering (reverse engineering, inferring) a string from many
internal structures are known. This includes recovery from border array [11–13],
strong border array [15], prefix array [7], the set of maximal palindromes [17],
minimum and maximum cover array [9,26], Lyndon factorization [27], suffix
array [3], directed acyclic word graph (DAWG) [3], suffix tree [5,19,28], and
parameterized border array [18]. For all but the last one of the aforementioned
problems, there are algorithms running in linear time and constructing a string
over the smallest possible alphabet. For parameterized border array reconstruc-
tion, the fastest algorithm works in O(n1.5) time. A more difficult task is recon-
struction of a string from the set of all runs. In [25] an O(n2)-time algorithm
for this problem is presented and, moreover, it is shown that recovering a string
over the smallest alphabet is NP-hard. Another hard problem is string recon-
struction from the longest previous factor (LPF) array, which is NP-complete
even without restrictions on the alphabet size [16]. Recovery problems have also
been investigated for indeterminate strings [1,4].

A solution to our general problem provides a single tool for several existing
recovery problems. This mainly includes problems which can be expressed as
finding a string satisfying a conjunction of certain explicit substring equality
constraints and implicit substring inequality constraints.

Our Further Results. We obtain linear-time algorithms for inferring a string
from its border array, prefix array, set of maximal palindromes or set of runs. In
particular, we improve the quadratic reconstruction algorithm from runs of [25].
In all cases the algorithms compute a generic solution.

Overview of the Paper. In Section 2, we present a naive algorithm and name
certain properties of generic solutions Φ(E). Also, we provide a way to remove
all redundant equations in the system. In Section 3, we present a simple O(|E|+
n log n)-time algorithm, which is based on the doubling technique. It shares
some features with the construction algorithm of the KMR identifiers [21], but
it processes equations in decreasing lengths, as opposed to the increasing order
in KMR. Then, in Section 4, we design a linear-time solution. It is a recursive
algorithm which to some extent resembles the suffix array construction algorithm
by Kärkkäinen & Sanders [20]. In order to achieve O(n) running time, in this
version of the algorithm we apply the maximum spanning tree construction
algorithm by Fredman and Willard [14], which is not feasible in practice. To
overcome this issue, in Section 5 we change some details of the algorithm, so
that no heavy word-RAM machinery is required. We conclude with Section 6,
where we present applications to several string recovery problems.
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2 Basic Observations

A naive approach to finding a generic n-character solution to a system of equa-
tions E is to transform substring equations into equations of individual letters.
If “s[p..q] = s[p′..q′]” belongs to E, then for every i ∈ {0, . . . , q − p}, the equa-
tion on letters sp+i = sp′+i must be satisfied. The latter can be represented as
edges in a positions graph whose vertices {0, . . . , n − 1} correspond to positions
in s. This graph lets us easily characterize generic solutions. The idea of using
a graph to represent constraints on letters already appeared in the context of
prefix array reconstruction for indeterminate strings [4,6].

Observation 2. For s = Φ(E), we have s[i] = s[j] if and only if i, j are in
the same connected component of the positions graph.

Example 3. If the equations are:

E : s[0..2] = s[3..5], s[2..2] = s[3..3], s[3..5] = s[5..7],

then we obtain the following positions graph:

0 1 2 3 4 5 6 7

Its connected components are {0, 2, 3, 5, 7} and {1, 4, 6}. The generic string
that satisfies E is a string Φ(E) = abaababa.

The approach described above in general works in O(|E|n) time, where |E|
is the number of equations in E. However, it is much more efficient for short
equations.

Observation 4. If all equations of E are of length 1, then the size of the posi-
tions graph is O(|E| + n). Consequently, Φ(E) can be computed in linear time.

We call two systems E and E′ equivalent, denoted E ≡ E′, if both have
exactly the same solutions, i.e., Φ(E) = Φ(E′). Observe that this relation is
hereditary in some sense: if E ≡ E′, then E ∪ F ≡ E′ ∪ F for any system F .

In the remainder of the paper, we represent each equation “s[p..q] = s[p′..q′]”
as a triple (p, p′, q−p+1). We refer to p, p′ as the starting positions and to q−p+1
as the length of the equation.

Our algorithms follow the lines of Theorem 4, converting the input system
E to an equivalent system composed of equations of length 1. As opposed to the
naive algorithm, we control the number of the equations. This is achieved using
two kinds of transformations, which we refer to as Split and Reduce.

A Split operation transforms a single equation into an equivalent system
of shorter equations. More formally, to split an equation (i, j, �), we choose a
collection I of integer intervals {b, . . . , e− 1} such that

⋃ I = {0, . . . , �− 1} and



Universal Reconstruction of a String 389

replace {(i, j, �)} with {(i+ b, j + b, e− b) : {b, . . . , e−1} ∈ I}. It is easy to verify
that this indeed produces an equivalent system of equations.

While a Split transformation lets us decrease the lengths of equations, it
increases the number of equations. To control the latter, we apply a Reduce
operation, which finds E′ ⊆ E such that E′ ≡ E. Such an operation can be
also seen as a sequence of removals of a redundant equation: we find an equation
(i, j, �) ∈ E such that E \ {(i, j, �)} ≡ E, and remove it from E.

For a system of equations E represented as triples, we define its equations
graph G(E) as a weighted graph (V (E), E), where V (E) =

⋃
(i,j,�)∈E{i, j}, and

triple (i, j, �) represents edge (i, j) with weight �. Note that the equations graph
coincides with the positions graph for every system of equations of length 1. The
equations graph lets us conveniently describe some properties of the system E
using notions of graph theory. We say that a system of equations E is acyclic
if the underlying graph G(E) is acyclic, i.e., if G(E) is a forest. For a weighted
graph G, by MST(G) we denote the edge-set of a maximum-weight spanning
forest of G.

Lemma 5. Let F = MST(G(E)) be a maximum-weight spanning forest of
G(E). Then F ≡ E.

Proof. It is well-known that a maximum spanning forest can be constructed by
iteratively removing the lightest edge on a cycle (this is the so-called red rule,
upon which Kruskal’s algorithm is based). Suppose that G(E) contains a cycle C.
By removing the lightest edge of C, denoted (i, j, �), we obtain a set of edges E′.

Note that C ′ = C \ {(i, j, �)} is a sequence of edges (i, i1, �1), . . . , (ik−1, j, �k)
such that � ≤ min(�1, . . . , �k). By transitivity, the equation (i, j, �) is implied by
the equations from C ′. Hence, C ≡ C ′, and consequently, E ≡ E′.

Applying this argument inductively, we obtain that MST(G(E)) ≡ E. ��

3 O(|E| + n logn)-Time Algorithm

We start with an O(|E| + n log n)-time algorithm, which uses simple split and
reduction rules. We say that a system of equations E is p-uniform if all equa-
tions in E have length p. For uniform systems, it is easy to design an efficient
implementation of the reduction rule obtained through Theorem 5. We denote
the underlying procedure as UniformReduce(E).

Lemma 6. Given a p-uniform system E, an equivalent acyclic subsystem F ⊆
E can be constructed in O(|E|) time.

Proof. By Lemma 5, it suffices to take F = MST(G(E)). For a uniform system
of equations, G(E) has uniform weights, so any spanning forest is maximal. Such
a forest can be constructed using a textbook graph search algorithm. ��

A complementary split rule UniformSplit(E, p) is used to transform each
equation (i, j, �) from a system E into a pair of equations of a specified length p:

{(i, j, �)} ≡ {(i, j, p), (i + � − p, j + � − p, p)}.
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It is applicable whenever all equations satisfy p ≤ � ≤ 2p.
The pseudocode of an algorithm using these two rules is provided below. In

each step, it processes a system of equations of length between 2k and 2k+1 − 1,
which consists both of equations obtained from the preceding step and equations
from the input system. First, these equations are transformed into a 2k-uniform
system using the UniformSplit operation. Then the resulting system is reduced
into an acyclic system using Theorem 6.

Algorithm 1. O(|E| + n log n)-time solution
Input: A system of equations E
Output: A generic solution Φ(E)

F�log n�+1 := ∅
for k := 
log n� downto 0 do

Ek := {(i, j, �) ∈ E : 2k ≤ � < 2k+1}
Fk := UniformSplit(Fk+1 ∪ Ek, 2k) {now Fk is 2k-uniform}
Fk := UniformReduce(Fk, 2k) {using Theorem 6}

return Φ(F0) {using Theorem 4}

Proposition 7. Let E be a system of m equations over n positions. Algorithm 1
computes the universal solution Φ(E) of E in O(m + n log n) time.

Proof. The iteration of the for-loop indexed with k runs in O(|Ek|+ |Fk|) time.
Note that

∑
k |Ek| = m and |Fk| < n, since each Fk is acyclic. ��

4 Linear-Time Algorithm

There are two main ideas behind the improvement from O(n log n) to O(n)
in the running time of the algorithm. First, we apply advanced machinery to
efficiently implement for an arbitrary system the reduction rule following from
Lemma 5. The other idea relies on a novel application of splitting. Previously, we
used it only to manipulate the lengths of equations: to make them smaller and
uniform. Now, we also apply split operations to restrict the starting positions of
long equations. This is useful since the |E| < n bound on the size of an acyclic
system is actually |E| < |V (E)|. Thus, we introduce special positions.

4.1 Properties of k-Special Integers

Definition 8. We say that a non-negative integer i is k-special if none of the
k least significant digits of the quaternary representation of i is zero, i.e., if the
suffix of length k of (i)4 does not contain a zero.

We denote the set of k-special integers by Sk.
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Observation 9. Let i, j be non-negative integers such that i ≡ j (mod 4k).
Then i ∈ Sk if and only if j ∈ Sk.

Example 10. An integer i is 2-special unless its remainder modulo 16 is one
of the following: {(00)4, (01)4, (02)4, (03)4, (10)4, (20)4, (30)4}. We have S2 =
{5, 6, 7, 9, 10, 11, 13, 14, 15, 21, 22, 23, 25, 26, 27, 29, 30, 31, . . .}.

Fact 11. (a) For every positive integer n we have |Sk ∩{0, . . . , n−1}| ≤ (
3
4

)k
n.

(b) If i, j ∈ Sk, then there exists an integer r ∈ {0, 1, 2} such that i + r4k, j +
r4k ∈ Sk+1. Moreover, such r can be found in constant time.

Proof. (a) Observe that |Sk ∩ {0, . . . , 4k − 1}| = 3k. Hence, due to Theorem 9,
the claim is valid whenever n is a multiple of 4k. The technical generalization of
the proof for arbitrary n is omitted in this version.

(b) Let c and d be the (k + 1)-th least significant digits of (i)4 and (j)4,
respectively. If both c and d are non-zero, we take r = 0. If both are equal to 0,
we take r = 1. Otherwise, exactly one of c, d is 0. If the other is equal to 1 or 2,
we choose r = 1. In the remaining cases, we take r = 2. ��

4.2 Split Rules

An equation (i, j, �) is called k-special if the positions i, j are both k-special
integers. We say that an equation is r-short if its length does not exceed r.

Lemma 12. Every k-special equation can be split in O(1) time into a constant
number of k-special equations each of which is (k + 1)-special or 4k+1-short.

Proof. If the input equation (i, j, �) is already 4k+1-short, there is nothing to do.
Otherwise, we apply Theorem 11(b) to find r ∈ {0, 1, 2} such that (i + r4k, j +
r4k, � − r4k) is (k + 1)-special, and we use it in the decomposition along with
(i, j, 4k+1). ��
By SpecialSplit(E, k) we denote a procedure which applies the lemma above
for every equation in E and returns a pair of systems (E1, E2) such that equations
in E1 are 4k+1-short, equations in E2 are (k + 1)-special, and E ≡ E1 ∪ E2.

Lemma 13. Every 4k+1-short k-special equation can be split in O(1) time into
a constant number of 4k-short k-special equations.

Proof. If the input equation (i, j, �) is already 4k-short, there is nothing to do.
Otherwise, we split it into at most four 4k-short k-special equations. We replace
the input equation with (i, j, 4k) and (i + 4k, j + 4k, � − 4k). By Theorem 9,
the latter is also k-special, and we might need to further split it into shorter
equations. This step needs to be performed at most 4 times since � ≤ 4k+1. ��
By SimpleSplit(E, k) we denote a procedure which applies the lemma above
for every equation in E and returns a system E′ equivalent with E.



392 P. Gawrychowski et al.

4.3 Reduction Rule

The general reduction procedure Reduce(E) is based on implementing Theorem 5
using a celebrated result by Fredman and Willard:

Theorem 14 ([14]). In the standard word-RAM model of computation with
word size w = Ω(log n), maximum-weight spanning forest of a graph with w-bit
integer weights can be computed in linear time.

Corollary 15. After O(n)-time preprocessing, given an arbitrary equation sys-
tem E, an equivalent acyclic system F ⊆ E can be constructed in O(|E|) time.

Proof. We follow the approach given by Theorem 5: we build the equations
graph G(E) and apply Theorem 14 to compute its maximum-weight spanning
forest F ⊆ E. To avoid renaming vertices, we store them in an array of size
n. During the preprocessing phase, we initialize this representation to store an
empty graph, and then add an edge for each equation in E. Once we are done
computing MST(G(E)), we clean up iterating through E once again. ��

4.4 Algorithm

In this section we apply the split and reduction rules developed above to obtain
a linear-time algorithm. The main idea is to use SpecialSplit for subsequent
values k = 0, 1, . . . in order to further and further restrict the starting positions
of long equations. This is interleaved with reductions which bound the number
of such equations to |Sk ∩ {0, . . . , n − 1}| ≤ ( 34 )kn, which is O(n) in total. For
large enough k there are no k-special equations. In the end we are left with the
remaining products of SpecialSplit, i.e., for every k with O((34 )kn) equations
which are both 4k+1-short and k-special. They are processed in the order of
decreasing k using alternating calls of SimpleSplit and Reduce, similarly as in
Algorithm 1. The following recursive procedure implements this approach.

Procedure Shorten(E, k)

Input: An acyclic system E of k-special equations
Output: An equivalent acyclic system of k-special 4k-short equations

if E = ∅ then return ∅
(E1, E2) := SpecialSplit(E, k) {using Theorem 12}
F := Shorten(Reduce(E2), k + 1) {recursive call, Theorem 15}
F ′ := SimpleSplit(E1 ∪ F, k) {using Theorem 13}
return Reduce(F ′) {using Theorem 15}

Let us analyze its running time. By Theorem 11(a), the size of any acyclic
system of k-special equations does not exceed ( 34 )kn. Consequently, we have
|E| ≤ ( 34 )kn and |F | ≤ ( 34 )k+1n. Theorems 12 and 13 imply that split operations
work in O(( 34 )kn) time and, in particular, return systems of this size. Thus, by
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Theorem 15, the reduction also works in O((34 )kn) time. Consequently, the total
time to compute Shorten(E, 0) is O(

∑
k≥0(

3
4 )kn) = O(n).

Before we apply the Shorten procedure, we need to make sure the input
system is acyclic and consists of 0-special equations. The latter condition is
void, so we just perform a reduction.

Algorithm 2. MAIN. An O(|E| + n)-time solution
Input: A system of equations E
Output: A generic solution Φ(E)

E′ := Reduce(E)
E′′ := Shorten(E′, 0) {E′′ is 1-short and E′′ ≡ E}
return Φ(E′′) {using Theorem 4}

This way, we complete the proof of our main result.

Theorem 16. Let E be a system of m equations between substrings of a string
of length n. There exists an O(n+m)-time algorithm that finds the generic string
Φ(E) that satisfies E.

5 Practical Implementation

The disadvantage of the algorithm presented in the previous section is that it
uses the algorithm of Fredman and Willard (Theorem 14), which is very efficient
in asymptotic terms but complicated and thus impractical. However, without
much effort we are able to restrict the weights to powers of 2 not exceeding n.
In this case, the MST can be computed using a simple solution based on the the
Dijkstra-Jarńık-Prim algorithm, which uses a priority queue as the underlying
data structure (rather than union-find in Kruskal’s algorithm). We maintain a
single instance of the queue designed to efficiently handle a small universe.

Lemma 17. In the standard word-RAM model of computation with word size
w = Ω(log N) (where N is a power of 2), one can implement a priority queue
for keys within {20, 21, . . . , 2log N−1} supporting standard operations (insert, find
maximum, delete maximum) in O(1) time after O(N)-time initialization.

Proof sketch. The idea behind the priority queue is to store an integer whose
bits represent keys present in the queue. Elements in the queue are stored in
lists with each list responsible for a single key. To implement this queue, we still
require word-RAM model, but we just use two standard bit operations. First,
given a non-negative integer x < N , we want to locate position of the highest bit
set to 1 in its binary representation, denoted msb(x). Second, given x < N and
k < log N , we want to flip the k-th bit of x. Details are left for the full version.

Corollary 18. After O(n)-time preprocessing, given an arbitrary system E of
equations whose lengths are powers of two, an equivalent acyclic subsystem F ⊆
E can be constructed in O(|E|) time.
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5.1 Adjusted Algorithm

We modify the definition of a k-special equation as follows. An equation (i, j, �) is
strongly k-special if i, j ∈ Sk and additionally � = 2p for some integer p ≥ 2k. In
particular, we may use Theorem 18 for any system of strongly special equations.
The lower bound � ≥ 4k is useful to implement the split operations, both adjusted
below for strongly k-special equations. Due to space constraints, we omit the
proof of Lemma 19.

Lemma 19. Every strongly k-special equation can be split in O(1) time into a
constant number of strongly k-special equations each of which is strongly (k+1)-
special or 4k+1-short.

Lemma 20. Every strongly k-special equation of length up to 4k+1 can be split
in O(1) time into a constant number of 4k-short strongly k-special equations.

Proof. It suffices to split each equation equally into equations of length 4k. ��
Apart from slightly different implementation of subroutines, the procedure

Shorten remains unchanged. However, before we apply it for k = 0, we need
to take into account that while every equation is 0-special, it does not need to
by strongly 0-special. However, it is easy to split any equation into two strongly
0-special ones. This is exactly the UniformSplit operation of Section 3.

6 Applications

In this section we apply Theorem 16 for several string recovery problems. In
this class of problems, we are supposed to find an example string of a given
length n which satisfies certain properties, or state that no such string exists. We
assume an unbounded alphabet Σ = N. In each of the problems, the property is
expressible as a system of equations on substrings E= and a system of inequalities
(more precisely, non-equalities) of substrings E�= that the string should satisfy.

Theorem 21 provides a verification tool for the question whether there are
strings consistent with E= and E �=. This is because either Φ(E=) is valid or there
are no solutions possible.

Lemma 21. Let E= and E �= be sets of equations and inequalities over n posi-
tions. If Φ(E=) does not satisfy E�= then there exists no string of length n that
satisfies both E= and E �=. Moreover, one can check in O(n+ |E�=|) time if Φ(E=)
satisfies all inequalities E�=.

Proof. By Observation 1, any string s satisfying E= must be an image of t =
Φ(E=) through a letter-to-letter morphism. Therefore, every substring inequality
satisfied by s is also satisfied by t. To check if t satisfies E�=, one can use longest
common extension queries (i.e., longest common prefix queries); see [8]. ��

We start the presentation of applications with two simpler examples. The
prefix array PREF[1..n − 1] stores in PREF[i] the length of the longest common
prefix of s and s[i..n − 1].
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Lemma 22. For every array A[1..n−1] with values in {0, . . . , n−1} there exists
a set of equations E= and a set of inequalities E�= such that A is the prefix array
of a string s if and only if s satisfies both E= and E �=. Moreover, |E=| ≤ n,
|E �=| ≤ n and both sets can be constructed in O(n) time.

Proof. We take the following equations: E= = {s[0..A[i]−1] = s[i..i+A[i]−1] :
i = 1, . . . , n − 1} and inequalities: E�= = {s[A[i]] �= s[i + A[i]] : i + A[i] < n ;
i = 1, . . . , n − 1}. ��

We say that a string u is a border of a string v, if u occurs both as a proper
prefix and as a proper suffix of v. The border array B[1..n−1] is an integer array
such that B[i] is the length of the longest border of s[0..i].

Lemma 23. For every array A[1..n−1] with values in {0, . . . , n−1} there exists
a set of equations E= and a set of inequalities E �= such that A is the border array
of a string s if and only if s satisfies both E= and E �=. Moreover, |E=| ≤ n and
this set can be constructed in O(n) time.

Proof. We take the following equations: E= = {s[0..A[i]−1] = s[i−A[i]+1..i] :
i = 1, . . . , n − 1}. The inequalities state in an analogous way that s[0..i] have
no border of length exceeding A[i]: E�= = {s[0..j − 1] �= s[i − j + 1..i] : i =
1, . . . , n − 1; A[i] < j ≤ i}. ��

A period of a string v is such a positive integer p ≤ |v| that v[i] = v[i + p]
for 0 ≤ i < |v| − p. A run is a triple (i, j, p) such that p is the smallest period of
s[i..j], |s[i..j]| ≥ 2p and neither s[i − 1..j] nor s[i..j + 1] have period p (possibly
because i = 0 or j = |s| − 1). By Runs(s) we denote the set of all runs in s.
Every string of length n has less than n runs [2].

Lemma 24. For a set R (|R| < n) of integer triples (i, j, p), 0 ≤ i < j ≤ n − 1,
p ∈ {1, . . . , 
n/2�}, there exists a set of equations E= and a set of inequalities
E�= such that R is the set of all runs of a string s of length n if and only if s
satisfies both E= and E�=. Moreover, |E=| ≤ n and this set can be constructed
in O(n) time.

Proof. The fact that R is a set of runs of a string s can be described using
equations E= = {s[i..j − p] = s[i + p..j] : (i, j, p) ∈ R}. Inequalities say that no
run is extendible or has a smaller period, and that no other runs exist in s. ��

A string v is called a palindrome if v is equal to its reverse vR = v|v|−1 . . . v1v0.
A substring s[i..j] is called a maximal palindrome if it is a palindrome, but
s[i−1..j +1] is not a palindrome. The set of maximal palindromes in s, denoted
as MaxPal(s), determines the structure of all palindromic substrings of s. Due
to space constraints we omit the proof of the following lemma.

Lemma 25. For a set P (|P | < 2n) of integer pairs (i, j), 0 ≤ i ≤ j ≤ n − 1,
there exists a set of equations E= and a set of inequalities E�= over 2n positions
such that P is the set of maximal palindromes of a string t of length n if and
only if there exists a string s of length 2n that satisfies both E= and E �= (then
s = ttR). Moreover, |E=| ≤ 3n, |E �=| = O(n) and both sets can be constructed
in O(n) time.



396 P. Gawrychowski et al.

Theorem 26. In O(n) time one can recover a string of length n from its prefix
array, its border array, its runs structure, or its maximal palindromes.

Proof. First, we apply one of Lemmas 22–25 to generate in O(n) time a system
of equations E= for the particular recovery problem. Using Theorem 16, we
compute a generic string s = Φ(E=). Theorem 21 guarantees that if a solution to
the recovery problem exists, then s is such a solution. Finally, we use a linear-time
algorithm to compute its prefix array/border array/runs/maximal palindromes
(see [2,10,24]), and check if the result matches the input. Note that for the
maximal palindromes recovery problem, this way we obtain s = ttR, so we need
to take the first half of s = Φ(E=) as the final solution t.

In the case of prefix array and maximal palindromes we have |E�=| = O(n).
Therefore in these cases we obtain a simpler algorithm to check if s is a solution
using Theorem 21. Either approach gives O(n)-time recovery. ��

Our linear-time algorithm to recover a string from its runs improves upon an
O(n2)-time algorithm by Matsubara et al. [25]. Finally, recovery from runs can
be extended to gapped repeats and subrepetitions [23] with running time equal
to the running time of the respective construction algorithms [22,23].
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Abstract. Suppose that we are given two dominating sets Ds and Dt

of a graph G whose cardinalities are at most a given threshold k. Then,
we are asked whether there exists a sequence of dominating sets of G
between Ds and Dt such that each dominating set in the sequence is of
cardinality at most k and can be obtained from the previous one by either
adding or deleting exactly one vertex. This decision problem is known to
be PSPACE-complete in general. In this paper, we study the complexity
of this problem from the viewpoint of graph classes. We first prove that
the problem remains PSPACE-complete even for planar graphs, bounded
bandwidth graphs, split graphs, and bipartite graphs. We then give a
general scheme to construct linear-time algorithms and show that the
problem can be solved in linear time for cographs, trees, and interval
graphs. Furthermore, for these tractable cases, we can obtain a desired
sequence if it exists such that the number of additions and deletions is
bounded by O(n), where n is the number of vertices in the input graph.

1 Introduction

Consider the art gallery problem modeled on graphs: Each vertex corresponds to
a room which has a monitoring camera and each edge represents the adjacency of
two rooms. Assume that each camera in a room can monitor the room itself and
its adjacent rooms. Then, we wish to find a subset of cameras that can monitor all
rooms; the corresponding vertex subset D of the graph G is called a dominating
set, that is, every vertex in G is either in D or adjacent to a vertex in D. For
example, Fig. 1 shows six different dominating sets of the same graph. Given a
graph G and a positive integer k, the problem of determining whether G has a
dominating set of cardinality at most k is a classical NP-complete problem [4].
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Ds = D0 D1 D2 D3 D4 D5 = Dt

Fig. 1. A sequence 〈D0, D1, . . . , D5〉 of dominating sets in the same graph, where k = 4
and the vertices in dominating sets are depicted by large (blue) circles

1.1 Our Problem

However, the art gallery problem could be considered in more “dynamic” sit-
uations: In order to maintain the cameras, we sometimes need to change the
current dominating set into another one. This transformation needs to be done
by switching the cameras individually and we certainly need to keep monitoring
all rooms, even during the transformation.

In this paper, we thus study the following problem: Suppose that we are
given two dominating sets of a graph G whose cardinalities are at most a given
threshold k > 0 (e.g., the leftmost and rightmost ones in Fig. 1, where k = 4), and
we are asked whether we can transform one into the other via dominating sets of
G such that each intermediate dominating set is of cardinality at most k and can
be obtained from the previous one by either adding or deleting a single vertex.
We call this decision problem the dominating set reconfiguration (DSR)
problem. For the particular instance of Fig. 1, the answer is yes as illustrated in
Fig. 1.

1.2 Known and Related Results

Recently, similar problems have been extensively studied under the reconfigura-
tion framework [8], which arises when we wish to find a step-by-step transfor-
mation between two feasible solutions of a combinatorial problem such that all
intermediate solutions are also feasible. The reconfiguration framework has been
applied to several well-studied problems, including satisfiability [5], indepen-
dent set [7,8,10,12,15], vertex cover [8,9,11,12], clique, matching [8],
vertex-coloring [2], and so on. (See also a survey [14].)

Mouawad et al. [12] proved that dominating set reconfiguration is
W [2]-hard when parameterized by k + �, where k is the cardinality threshold of
dominating sets and � is the length of a sequence of dominating sets.

Haas and Seyffarth [6] gave sufficient conditions for the cardinality threshold
k for which any two dominating sets can be transformed into one another. They
proved that the answer to dominating set reconfiguration is yes for a
graph G with n vertices if k = n−1 and G has a matching of cardinality at least
two; they also gave a better sufficient condition when restricted to bipartite and
chordal graphs. Recently, Suzuki et al. [13] improved the former condition and
showed that the answer is yes if k = n − μ and G has a matching of cardinality
at least μ + 1, for any nonnegative integer μ.
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Fig. 2. Our results, where each arrow represents the inclusion relationship between
graph classes: A → B represents that B is properly included in A [3]. We also show
PSPACE-completeness on graphs of bounded bandwidth (Theorem 1).

1.3 Our Contribution

To the best of our knowledge, no algorithmic results are known for the domi-
nating set reconfiguration problem, and it is therefore desirable to obtain
a better understanding of what separates “hard” from “easy” instances. To that
end, we study the problem from the viewpoint of graph classes and paint an
interesting picture of the boundary between intractability and polynomial-time
solvability. (See also Fig. 2.)

We first prove that the problem is PSPACE-complete even on planar graphs,
bounded bandwidth graphs, split graphs, and bipartite graphs. Our reductions
for PSPACE-hardness follow from the classical reductions for proving the NP-
hardness of dominating set [1,4]. However, the reductions should be con-
structed carefully so that they preserve not only the existence of dominating
sets but also the reconfigurability.

We then give a general scheme to construct linear-time algorithms for the
problem. As examples of its application, we demonstrate that the problem can
be solved in linear time on cographs (also known as P4-free graphs), trees, and
interval graphs. Furthermore, for these tractable cases, we can obtain a desired
sequence if it exists such that the number of additions and deletions (i.e., the
length of the sequence) can be bounded by O(n), where n is the number of
vertices in the input graph.

Due to the page limitation, we omit proofs of lemmas and theorems marked
with a star from this extended abstract.

2 Preliminaries

In this section, we define some basic terms and notation which will be used
throughout the paper.
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2.1 Graph Notation and Dominating Set

We assume that each input graph G is a simple undirected graph with vertex set
V (G) and edge set E(G), where |V (G)| = n and |E(G)| = m. For a vertex v in
G, we let NG(v) = {u ∈ V (G) | vu ∈ E(G)} and NG[v] = NG(v)∪{v}. For a set
S ⊆ V (G) of vertices, we define NG[S] =

⋃
v∈S NG[v] and NG(S) = NG[S] \ S.

For a graph G, a set D ⊆ V (G) is a dominating set of G if NG[D] = V (G).
Note that V (G) always forms a dominating set of G. For a vertex u ∈ V (G) and
a dominating set D of G, we say that u is dominated by v ∈ D if u /∈ D and
u ∈ NG(v). A vertex w in a dominating set D is deletable if D \ {w} is also a
dominating set of G. A dominating set D of G is minimal if there is no deletable
vertex in D.

2.2 Dominating Set Reconfiguration

We say that two dominating sets D and D′ of the same graph G are adjacent if
there exists a vertex u ∈ V (G) such that D � D′ = (D \ D′) ∪ (D′ \ D) = {u},
i.e., u is the only vertex in the symmetric difference of D and D′. For two
dominating sets Dp and Dq of G, a sequence 〈D0,D1, . . . , D�〉 of dominating
sets of G is called a reconfiguration sequence between Dp and Dq if it has the
following properties:

(a) D0 = Dp and D� = Dq; and
(b) Di−1 and Di are adjacent for each i ∈ {1, 2, . . . , �}.

Note that any reconfiguration sequence is reversible, that is, 〈D�,D�−1, . . . , D0〉
is also a reconfiguration sequence between Dq and Dp. We say a vertex v ∈ V (G)
is touched in a reconfiguration sequence σ = 〈D0,D1, . . . , D�〉 if v is either added
or deleted at least once in σ.

For two dominating sets Dp and Dq of a graph G and an integer k > 0,

we write Dp
k� Dq if there exists a reconfiguration sequence 〈D0,D1, . . . , D�〉

between Dp and Dq in G such that |Di| ≤ k holds for every i ∈ {0, 1, . . . , �}, for

some � ≥ 0. Note that k ≥ max{|Dp|, |Dq|} clearly holds if Dp
k� Dq. Then,

the dominating set reconfiguration (DSR) problem is defined as follows:

Input: A graph G, two dominating sets Ds and Dt of G, and
an integer threshold k ≥ max{|Ds|, |Dt|}

Question: Determine whether Ds
k� Dt or not.

We denote by a 4-tuple (G,Ds,Dt, k) an instance of dominating set recon-
figuration. Note that DSR is a decision problem and hence it does not ask for
an actual reconfiguration sequence. We always denote by Ds and Dt the source
and target dominating sets of G, respectively.

3 PSPACE-Completeness

In this section, we prove that dominating set reconfiguration remains
PSPACE-complete even for restricted classes of graphs; some of these classes
show nice contrasts to our algorithmic results in Section 4. (See also Fig. 2.)
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Theorem 1. DSR is PSPACE-complete on planar graphs of maximum degree
six and on graphs of bounded bandwidth.

Proof. One can observe that the problem is in PSPACE [8, Theorem 1]. We
thus show that it is PSPACE-hard for those graph classes by a polynomial-time
reduction from vertex cover reconfiguration [8,9,11]. In vertex cover
reconfiguration, we are given two vertex covers Cs and Ct of a graph G′ such
that |Cs| ≤ k and |Ct| ≤ k, for some integer k, and asked whether there exists a
reconfiguration sequence of vertex covers C0, C1, . . . , C� of G such that C0 = Cs,
C� = Ct, |Ci| ≤ k, and |Ci−1 � Ci| = 1 for each i ∈ {1, 2, . . . , �}.

Our reduction follows from the classical reduction from vertex cover to
dominating set [4]. Specifically, for every edge uw in E(G′), we add a new ver-
tex vuw and join it with each of u and w by two new edges uvuw and vuww; let G
be the resulting graph. Then, let (G,Ds = Cs,Dt = Ct, k) be the corresponding
instance of dominating set reconfiguration. Clearly, this instance can be
constructed in polynomial time.

We now prove that Ds
k� Dt holds if and only if there is a reconfiguration

sequence of vertex covers in G′ between Cs and Ct. However, the if direction is
trivial, because any vertex cover of G′ forms a dominating set of G and both
problems employ the same reconfiguration rule (i.e., the symmetric difference is
of size one). Therefore, suppose that Ds

k� Dt holds, and hence there exists
a reconfiguration sequence of dominating sets in G between Ds and Dt. Recall
that neither Ds nor Dt contain a newly added vertex in V (G) \ V (G′). Thus, if
a vertex vuw in V (G) \ V (G′) is touched, then vuw must be added first. By the
construction of G, both NG[vuw] ⊆ NG[u] and NG[vuw] ⊆ NG[w] hold. Therefore,
we can replace the addition of vuw by that of either u or w and obtain a (possibly
shorter) reconfiguration sequence of dominating sets in G between Ds and Dt

which touches vertices only in G′. Then, it is a reconfiguration sequence of vertex
covers in G′ between Cs and Ct, as needed.

Vertex cover reconfiguration is known to be PSPACE-complete on
planar graphs of maximum degree three [9,11] and on graphs of bounded band-
width [15]. Thus, the reduction above implies PSPACE-hardness on planar
graphs of maximum degree six and on graphs of bounded bandwidth; note that,
since the number of edges in G is only the triple of that in G′, the bandwidth
increases only by a constant multiplicative factor. 	


We note that both pathwidth and treewidth of a graph G are bounded by
the bandwidth of G. Thus, Theorem 1 yields that dominating set reconfig-
uration is PSPACE-complete on graphs of bounded pathwidth and treewidth.

Adapting known techniques from NP-hardness proofs for the dominat-
ing set problem [1], we also show PSPACE-completeness of dominating set
reconfiguration on split graphs and on bipartite graphs; a graph is split if
its vertex set can be partitioned into a clique and an independent set [3].

Theorem 2 (*). DSR is PSPACE-complete on split graphs.

Theorem 3 (*). DSR is PSPACE-complete on bipartite graphs.
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4 General Scheme for Linear-Time Algorithms

In this section, we show that dominating set reconfiguration is solvable in
linear time on cographs, trees, and interval graphs. Interestingly, these results
can be obtained by the application of the same strategy; we first describe the
general scheme in Section 4.1. We then show in Sections 4.2–4.4 that the problem
can be solved in linear time on those graph classes.

4.1 General Scheme

The general idea is to introduce the concept of a “canonical” dominating set for
a graph G. We say that a minimum dominating set C of G is canonical if for
every dominating set D of G, it holds that D

k� C, where k = |D| + 1. Note
that |C| ≤ |D| always holds, since C is a minimum dominating set of G. Then,
we have the following theorem.

Theorem 4. For every graph G admitting a canonical dominating set, domi-
nating set reconfiguration can be solved in linear time.

We note that proving the existence of a canonical dominating set is sufficient
for solving the decision problem (dominating set reconfiguration). There-
fore, we do not need to find an actual canonical dominating set in linear time.
In Sections 4.2–4.4, we will show that cographs, trees, and interval graphs admit
canonical dominating sets, and hence the problem can be solved in linear time
on those graph classes. Note that, however, Theorem 4 can be applied to any
graph which has a canonical dominating set. In the remainder of this subsection,
we prove Theorem 4 starting with the following lemma.

Lemma 1. Suppose that a graph G has a canonical dominating set. Then, an
instance (G,Ds,Dt, k) of dominating set reconfiguration is a yes-instance
if k ≥ max{|Ds|, |Dt|} + 1.

Proof. Let C be a canonical dominating set of G. Then, Ds
k′

� C holds for
k′ = |Ds|+1. Suppose that k ≥ max{|Ds|, |Dt|}+1. Since k ≥ |Ds|+1 = k′, we
clearly have Ds

k� C. Similarly, we have Dt
k� C. Since any reconfiguration

sequence is reversible, we have Ds
k� C

k� Dt, as needed. 	

Lemma 1 implies that if a graph G has a canonical dominating set C, then it

suffices to consider the case where k = max{|Ds|, |Dt|}. Note that there exist no-
instances of dominating set reconfiguration in such a case, but we show
that they can be easily identified in linear time, as implied by the following
lemma.

Lemma 2. Let (G,Ds,Dt, k) be an instance of dominating set reconfigu-
ration, where G is a graph admitting a canonical dominating set, Ds �= Dt,
and k = max{|Ds|, |Dt|}. Then, (G,Ds,Dt, k) is a yes-instance if and only if Di

is not minimal for every i ∈ {s, t} such that |Di| = k.
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Lemma 2 can be immediately obtained from the following lemma.

Lemma 3. Suppose that a graph G has a canonical dominating set C. Let D
be an arbitrary dominating set of G such that D �= C, and let k = |D|. Then,
D

k� C holds if and only if D is not a minimal dominating set.

Proof. We first prove the if direction. Suppose that D is not minimal. Then, D
contains at least one vertex x which is deletable from D, that is, D \ {x} forms
a dominating set of G. Since k = |D| = |D \ {x}| + 1, we have D \ {x} k� C.
Therefore, D

k� D \ {x} k� C holds.
We then prove the only-if direction by taking the contrapositive. Suppose that

D is minimal. Then, no vertex in D is deletable and hence any dominating set D′

which is adjacent to D must be obtained by adding a vertex to D. Therefore,
|D′| = k + 1 for any dominating set D′ which is adjacent to D. Since D �= C,
D

k� C does not hold. 	

We note again that Lemmas 1 and 2 imply that an actual canonical dom-

inating set is not required to solve the problem. Furthermore, it can be easily
determined in linear time whether a dominating set of a graph G is minimal or
not. Thus, Theorem 4 follows from Lemmas 1 and 2.

Before constructing canonical dominating sets in Sections 4.2–4.4, we give the
following lemma showing that it suffices to construct a canonical dominating set
for a connected graph.

Lemma 4 (*). Let G be a graph consisting of p connected components G1, G2,
. . . , Gp. For each i ∈ {1, 2, . . . , p}, suppose that Ci is a canonical dominating set
for Gi. Then, C = C1 ∪ C2 ∪ · · · ∪ Cp is a canonical dominating set for G.

4.2 Cographs

We first define the class of cographs (also known as P4-free graphs) [3]. For two
graphs G1 and G2, their union G1 ∪ G2 is the graph such that V (G1 ∪ G2) =
V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2), while their join G1 ∨ G2 is
the graph such that V (G1 ∨ G2) = V (G1) ∪ V (G2) and E(G1 ∨ G2) = E(G1) ∪
E(G2) ∪ {vw | v ∈ V (G1), w ∈ V (G2)}. Then, a cograph can be recursively
defined as follows:

(1) a graph consisting of a single vertex is a cograph;
(2) if G1 and G2 are cographs, then the union G1 ∪ G2 is a cograph; and
(3) if G1 and G2 are cographs, then the join G1 ∨ G2 is a cograph.
In this subsection, we show that dominating set reconfiguration is solv-

able in linear time on cographs. By Theorem 4, it suffices to prove the following
lemma.

Lemma 5. Any cograph admits a canonical dominating set.
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As a proof of Lemma 5, we will construct a canonical dominating set for any
cograph G. By Lemma 4, it suffices to consider the case where G is connected
and we may assume that G has at least two vertices, because otherwise the
problem is trivial. Then, from the definition of cographs, G must be obtained
by the join operation applied to two cographs Ga and Gb, that is, G = Ga ∨ Gb.
Notice that any pair {wa, wb} of vertices wa ∈ V (Ga) and wb ∈ V (Gb) forms a
dominating set of G. Let C be a dominating set of G, defined as follows:

- If there exists a vertex w ∈ V (G) such that NG[w] = V (G), then let C = {w}.
- Otherwise choose an arbitrary pair of vertices wa ∈ V (Ga) and wb ∈ V (Gb)

and let C = {wa, wb}.
Clearly, C is a minimum dominating set of G. We thus give the following lemma,
which completes the proof of Lemma 5.

Lemma 6 (*). For every dominating set D of G, D
k� C holds, where k =

|D| + 1.

We have thus proved that any cograph has a canonical dominating set. Then,
Theorem 4 gives the following corollary.

Corollary 1. DSR can be solved in linear time on cographs.

4.3 Trees

In this subsection, we show that dominating set reconfiguration is solvable
in linear time on trees. As for cographs, it suffices to prove the following lemma.

Lemma 7. Any tree admits a canonical dominating set.

As a proof of Lemma 7, we will construct a canonical dominating set for a
tree T . We choose an arbitrary vertex r of degree one in T and regard T as a
rooted tree with root r.

We first label each vertex in T either 1, 2, or 3, starting from the leaves of T
up to the root r of T , as in the following steps (1)–(3); intuitively, the vertices
labeled 2 will form a dominating set of T , each vertex labeled 1 will be dominated
by its parent, and each vertex labeled 3 will be dominated by at least one of its
children (see also Fig. 3(a)):

(1) All leaves in T are labeled 1.
(2) Pick an internal vertex v of T , which is not the root, such that all children

of v have already been labeled. Then,
- assign v label 1 if all children of v are labeled 3;
- assign v label 2 if at least one child of v is labeled 1; and
- otherwise assign v label 3.

(3) Assign the root r (of degree one) label 3 if its child is labeled 2, otherwise
assign r label 2.

For each i ∈ {1, 2, 3}, we denote by Vi the set of all vertices in T that are assigned
label i. Then, {V1, V2, V3} forms a partition of V (T ).

We will prove that V2 forms a canonical dominating set of T . We first prove,
in Lemmas 8 and 9, that V2 is a minimum dominating set of T and then prove, in
Lemma 10, that D

k� V2 holds for every dominating set D of T and k = |D|+1.
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Fig. 3. (a) The labeling of a tree T , and (b) the partition of V (T ) into C1, C2, . . . , C5.

Lemma 8. V2 is a dominating set of T .

Proof. It suffices to show that both V1 ⊆ NT (V2) and V3 ⊆ NT (V2) hold.
Let v be any vertex in V1, and hence v is labeled 1. Then, by the construction

above, v is not the root of T and the parent of v must be labeled 2. Therefore,
v ∈ NT (V2) holds, as claimed.

Let u be any vertex in V3, and hence u is labeled 3. Then, u is not a leaf of T .
Notice that label 3 is assigned to a vertex only when at least one of its children
is labeled 2. Thus, u ∈ NT (V2) holds. 	


We now prove that V2 is a minimum dominating set of T . To do so, we intro-
duce some notation. Suppose that the vertices in V2 are ordered as w1, w2, . . . ,
w|V2| by a post-order depth-first traversal of the tree starting from the root r
of T . For each i ∈ {1, 2, . . . , |V2|}, we denote by Ti the subtree of T which is
induced by wi and all its descendants in T . Then, for each i ∈ {1, 2, . . . , |V2|},
we define a vertex subset Ci of V (T ) as follows (see also Fig. 3(b)):

Ci =
{

V (Ti) \ ⋃
j<i V (Tj) if i �= |V2|;

V (T ) \ ⋃
j<i V (Tj) if i = |V2|.

Note that {C1, C2, . . . , C|V2|} forms a partition of V (T ). Furthermore, notice
that

V2 ∩ Ci = {wi} (1)

holds for every i ∈ {1, 2, . . . , |V2|}. Then, Eq. (1) and the following lemma imply
that V2 is a minimum dominating set of T .

Lemma 9 (*). Let D be an arbitrary dominating set of T . Then, |D ∩ Ci| ≥ 1
holds for every i ∈ {1, 2, . . . , |V2|}.

We finally claim the following lemma, which completes the proof of Lemma 7.

Lemma 10 (*). For every dominating set D of T , D
k� V2 holds, where k =

|D| + 1.

We have thus proved that V2 forms a canonical dominating set for any tree T .
Then, Theorem 4 gives the following corollary.

Corollary 2. DSR can be solved in linear time on trees.
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Fig. 4. The labeling of an interval graph in the interval representation

4.4 Interval Graphs

A graph G with V (G) = {v1, v2, . . . , vn} is an interval graph if there exists a
set I of (closed) intervals I1, I2, . . . , In such that vivj ∈ E(G) if and only if
Ii ∩ Ij �= ∅ for each i, j ∈ {1, 2, . . . , n}. We call the set I of intervals an interval
representation of the graph. In this subsection, we show that dominating set
reconfiguration is solvable in linear time on interval graphs. As for cographs,
it suffices to prove the following lemma.

Lemma 11. Any interval graph admits a canonical dominating set.

As a proof of Lemma 11, we will construct a canonical dominating set for
any interval graph G. By Lemma 4 it suffices to consider the case where G is
connected. Let I be an interval representation of G. For an interval I ∈ I,
we denote by l(I) and r(I) the left and right endpoints of I, respectively; we
sometimes call the values l(I) and r(I) the l-value and r-value of I, respectively.
As for trees, we first label each vertex in G either 1, 2, or 3, from left to right; the
vertices labeled 2 will form a dominating set of G (see Fig. 4 as an example):

(1) Pick an unlabeled vertex vi which has the minimum r-value among all
unlabeled vertices and assign vi label 1.

(2) Let vj be the vertex in NG[vi] which has the maximum r-value among
all vertices in NG[vi]. Note that vj may have been already labeled, and
vj = vi may hold. We (re)label vj to 2.

(3) For each unlabeled vertex in NG(vj), we assign it label 3.
We execute Steps (1)–(3) above until all vertices are labeled. For each i ∈
{1, 2, 3}, we denote by Vi the set of all vertices in G that are assigned label
i. Then, {V1, V2, V3} forms a partition of V (G).

By the construction above, it is easy to see that V2 forms a dominating set
of G. We thus prove that V2 is canonical in Lemmas 12 and 13, that is, V2 is
a minimum dominating set of G (in Lemma 12) and D

k� V2 holds for every
dominating set D of G and k = |D| + 1 (in Lemma 13).

We now prove that the dominating set V2 of G is minimum. To do so,
we introduce some notation. Assume that the vertices in V2 are ordered as
w1, w2, . . . , w|V2| such that r(w1) < r(w2) < · · · < r(w|V2|). For each i ∈
{1, 2, . . . , |V2|}, we define the vertex subset Ci of V (G) as follows (see Fig. 4
as an example):

Ci =

⎧
⎨

⎩

{v | r(v) ≤ r(w1) } if i = 1;
{v | r(wi−1) < r(v) ≤ r(wi) } if 2 ≤ i ≤ |V2| − 1;
{v | r(w|V2|−1) < r(v) } if i = |V2|.
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Note that {C1, C2, . . . , C|V2|} forms a partition of V (G) such that

V2 ∩ Ci = {wi} (2)

holds for every i ∈ {1, 2, . . . , |V2|}. Then, Eq. (2) and the following lemma imply
that V2 is a minimum dominating set of G.

Lemma 12 (*). Let D be an arbitrary dominating set of G. Then, |D∩Ci| ≥ 1
holds for every i ∈ {1, 2, . . . , |V2|}.

We finally claim the following lemma, which completes the proof of
Lemma 11.

Lemma 13 (*). For every dominating set D of G, D
k� V2 holds, where k =

|D| + 1.

Combining Lemma 11 and Theorem 4 yields the following corollary.

Corollary 3. DSR can be solved in linear time on interval graphs.

5 Concluding Remarks

In this paper, we delineated the complexity of the dominating set reconfig-
uration problem restricted to various graph classes. As shown in Fig. 2, our
results clarify some interesting boundaries on the graph classes lying between
tractability and PSPACE-completeness: For example, the structure of interval
graphs can be seen as a path-like structure of cliques. As a super-class of inter-
val graphs, the well-known class of chordal graphs has a tree-like structure of
cliques. We have proved that dominating set reconfiguration is solvable in
linear time on interval graphs, while it is PSPACE-complete on chordal graphs.

We note again that our linear-time algorithms for cographs, trees, and inter-
val graphs employ the same strategy. We also emphasize that this general scheme
can be applied to any graph which admits a canonical dominating set. It is easy
to modify our algorithms so that they actually find a reconfiguration sequence
for a yes-instance (G,Ds,Dt, k) on cographs, trees, or interval graphs. Observe
that each vertex is touched at most once in the reconfiguration sequence from
Ds (or Dt) to the canonical dominating set. Therefore, for a yes-instance on an
n-vertex graph belonging to one of those classes, there exists a reconfiguration
sequence between Ds and Dt which touches vertices only O(n) times. In other
words, the length of a shortest reconfiguration sequence between Ds and Dt can
be bounded by O(n).
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Abstract. Given an undirected graph G and a positive integer k, the
NP-hard Sparse Split Graph Editing problem asks to transform G
into a graph that consists of a clique plus isolated vertices by performing
at most k edge insertions and deletions; similarly, the P3-Bag Editing
problem asks to transform G into a graph which is the union of two pos-
sibly overlapping cliques. We give a simple linear-time 3-approximation
algorithm for Sparse Split Graph Editing, an improvement over a
more involved known factor-3.525 approximation. Further, we show that
P3-Bag Editing is NP-complete. Finally, we present a kernelization
scheme for both problems and additionally for the 2-Cluster Editing
problem. This scheme produces for each fixed ε in polynomial time a ker-
nel of order εk. This is, to the best of our knowledge, the first example
of a kernelization scheme that converges to a known lower bound.

1 Introduction

The study of graph modification problems is a classic topic in theoretical com-
puter science. The typical task in this context is, given a graph class Π and
a graph G, to modify G by a minimum number of operations such that the
resulting graph is contained in Π. By a general result, graph modification is
NP-hard if the operation is vertex deletion and Π is hereditary [18]. In contrast,
for edge modification problems where one may insert or delete edges, no such
general hardness result is possible. One nontrivially tractable example is the
case when Π is the class of split graphs, that is, graphs whose vertex set can be
partitioned into a clique and an independent set (edges between the independent
set and the clique are allowed). The problem of modifying a graph into a split
graph by a minimum number of edge modifications (insertions or deletions) is
polynomial-time solvable [14]. This result relies on the fact that a split graph
can be recognized by its degree sequence. In contrast, Natanzon et al.[19] showed
that the problem becomes NP-hard when allowing either only edge deletions or
only edge insertions.

Damaschke and Mogren [5,6] considered several graph modification prob-
lems for very restricted graph classes where, informally, the number of different
neighborhoods is constant. In this paper, we study two problems of this kind.
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First, we consider a very restricted subclass of split graphs where no edges
between the independent set and the clique are allowed. More specifically, we
call a graph G a sparse split graph if G consists of a clique and isolated vertices.
The corresponding graph modification problem is defined as follows.

Sparse Split Graph Editing
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Can G be transformed into a sparse split graph by at most k

edge insertions and deletions?

Sparse Split Graph Editing was studied by Damaschke and Mogren [5] under
the names K1[0]-Bag Editing and Clique Editing. For example, it was shown
that Sparse Split Graph Editing can be solved in 2O(

√
k log k) · nO(1) time

whereas the NP-hardness of Sparse Split Graph Editing was initially left
open [5]; it was later shown to be NP-hard by Kovác et al. [17]. We also consider
the following further problem, as introduced by Damaschke and Mogren [5].

P3-Bag Editing
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Can G be transformed into two possibly overlapping cliques

by at most k edge insertions and deletions?

We call such graphs P3-bag graphs. The term refers to the fact that in such a
graph merging all vertices with the same closed neighborhood results in a P3 or
an induced subgraph of a P3. An equivalent definition is as follows: the graph
class is the set of all graphs with edge clique cover number at most two.

Further Related Work. To obtain a sparse split graph by a minimum number of
edge insertions is trivially solvable in polynomial time. If one allows only edge
deletions, the problem is NP-hard [6]. Sparse Split Graph Editing has appli-
cations in the identification of core–periphery structures in social networks [3].
Other models considered in this context include Split Editing and Dense
Split Graph Editing which asks to transform the input graph into a dense
split graph, that is, a graph which consists of a clique and an independent set
and in which all edges are present between the clique and the independent set [3].

Many graph classes defined by existence of a certain vertex partitioning can
be captured with the notion of a pattern [15]. A pattern for a partition into d
parts is a symmetric d × d matrix M with entries from {0, 1, ∗}. Then, an M -
partition of a graph G = (V,E) is a partition V1, . . . , Vd of V such that two
distinct vertices in (possibly equal) parts Vi and Vj are adjacent if M(i, j) = 1
and nonadjacent if M(i, j) = 0 (the entry M(i, j) = ∗ signifies no restriction).
Thus, sparse split graphs are the graphs with a

(
1 0
0 0

)
-partition and P3-bag

graphs are the graphs with a
(

1 1 1
1 1 0
1 0 1

)
-partition. Expressed with these definitions,

Damaschke and Mogren [6] consider editing problems for the case where the
diagonal is 1 and off-diagonal elements are 0 or 1.

2-Cluster Editing (also known as 2-Correlation Clustering on com-
plete graphs) is to find a minimum number of edge modifications to convert a
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graph into two disjoint cliques (that is, into a graph with a
(
1 0
0 1

)
-partition). It

is NP-hard [20], but has a kernel with at most 4k + 2 vertices [13]. It can be
solved in subexponential time 2O(

√
k)+nO(1) [10]; a subexponential running time

follows also from the more general result of Damaschke and Mogren [6]. Wu and
Chen [21] give a different subexponential algorithm.

Our Results. First, we complement and improve on results for Sparse Split
Graph Editing and P3-Bag Editing. In particular, we show a factor-3 approx-
imation for Sparse Split Graph Editing in Section 2, and prove NP-hardness
of P3-Bag Editing in Section 3. The former result improves a factor-3.524
approximation from Kovác et al. [17] and the latter answers an open question
of Damaschke and Mogren [5].

Second, we provide kernelization schemes for Sparse Split Graph Edit-
ing, P3-Bag Editing, and 2-Cluster Editing in Section 4. Analogous to
a polynomial-time approximation scheme (PTAS), a kernelization scheme pro-
vides increasingly good bounds on the kernel size, at the cost of an increasing
running time bound. Only few kernelization schemes are known (e. g. [1,2,9]),
and they provide kernel size bounds of the form (1+ε)k, where the limit bound k
is not known to be sharp (unlike for a PTAS). Abu-Khzam and Fernau [1] ask
whether there are kernelization schemes that converge to a provable lower bound.
We answer this question positively by providing, for the three above-mentioned
problems, such schemes where the size bound converges, in fact, to 0. We for-
malize this by introducing the notion of strict kernelization schemes.

Definition 1. A strict kernelization scheme is an algorithm A which takes as
input an instance (I, k) of a parameterized problem and a constant ε > 0 and
produces in (|I| + k)f(1/ε) time an instance (I ′, k′) such that (I, k) ∈ L ⇐⇒
(I ′, k′) ∈ L, |I ′| ≤ ε · g(k), and k′ ≤ k for some functions f and g.

Note that, by first kernelizing with ε = 1 and then in a second step kernelizing
the resulting instance with the intended value of ε, the running time of a strict
kernelization scheme can always be improved to g(k)f(1/ε) + |I|O(1).

Preliminaries. For a graph G = (V,E) we set n := |V | and m := |E|. The open
neighborhood of a vertex u is NG(u) := {v | {u, v} ∈ E}. The closed neighborhood
of a vertex u is NG[u] := {u}∪NG(u). For a vertex subset V ′ ⊆ V , the subgraph
induced by V ′ is denoted by G[V ′]. For two disjoint vertex subsets V1, V2 ⊆ V ,
the set of edges with one endpoint in V1 and one endpoint in V2 is denoted
by EG(V1, V2). We omit the subscript if the graph G is clear from the context.
A clique on k ∈ N vertices is denoted by Kk, and a complete bipartite graph
with k1 ∈ N vertices in one part and k2 ∈ N vertices in the other part is
denoted by Kk1,k2 . The “�” operator denotes the symmetric difference with
A � B := (A ∪ B) \ (A ∩ B).

For the relevant notions of parameterized complexity, such as kernelization,
we refer to the monograph by Downey and Fellows [7]. Due to space constraints,
several proofs are deferred to a full version.
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2 Sparse Split Graph Editing

We first make several simple observations on the structure of sparse split graphs
and on dense split graphs. These observations can be useful in applications of
Sparse Split Graph Editing.

Characterizations. The class of sparse split graphs is hereditary, that is, it is
closed under vertex deletions. Hence, sparse split graphs can be characterized by
a set of forbidden induced subgraphs. In general, such characterizations can be
useful for example for obtaining recognition algorithms for a graph class Π or
for obtaining fixed-parameter algorithms for hard graph modifications problems
for Π [4]. For sparse split graphs, the following simple characterization is known.

Theorem 1 ([22, Theorem 5.2.7]). A graph G is a sparse split graph if and
only if it does not contain a 2K2 or a P3 as an induced subgraph.

Like split graphs, sparse split graphs can be characterized by their degree
sequence, that is, the list of degrees of their vertices sorted in descending order.

Theorem 2. A graph is a sparse split graph if and only if its degree sequence is
c, c, . . . , c
︸ ︷︷ ︸

c+1

, 0, 0, . . . , 0
︸ ︷︷ ︸

n−c−1

for some c ≥ 1.

Sparse split graphs are closely related to dense split graphs.

Lemma 1. A graph G is a dense split graph if and only if its complement is a
sparse split graph.

By building the complement of the forbidden induced subgraphs for sparse split
graphs, we can thus obtain the following forbidden subgraph characterization
for dense split graphs.

Corollary 1. A graph G is a dense split graph if and only if it does not contain
a C4 or a K2 + K1 as an induced subgraph.

Similarly, we obtain the following corollary to Theorem 2.

Corollary 2. A graph is a dense split graph if and only if its degree sequence is
n − 1, n − 1, . . . , n − 1
︸ ︷︷ ︸

c

, c, c, . . . , c
︸ ︷︷ ︸

n−c

for some c ≥ 1.

Approximation. Kovác et al [17] present an approximation algorithm for Sparse
Split Graph Editing and prove an approximation factor of 3.524; they
conjecture that the algorithm is a 3.383-approximation. We give a simpler 3-
approximation, inspired by the polynomial-time algorithm for Split Graph
Editing [14] that is based on a characterization by the degree sequence. This
algorithm sorts the vertices by degree, and chooses the vertices up to a certain
point in the sequence for the independent set and the remaining ones for the
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clique of the resulting split graph. Since sparse split graphs have a similar char-
acterization by degree sequence (Theorem 2), we use the same algorithm to get
an approximation for Sparse Split Graph Editing. For separating the clique
from the independent set, however, we do not calculate the threshold but try
all of them. More precisely, for each 0 ≤ x ≤ n, choose the x vertices with the
highest degree as clique (resolving ties arbitrarily), and retain the best of these
n+1 solutions. Here, “choosing as clique” means to add all missing edges within
the vertex set and delete all other edges, yielding a sparse split graph.

Theorem 3. Sparse Split Graph Editing can be approximated in linear
time within a factor of 3.

Proof. A linear running time can be achieved by processing the vertices in order
of decreasing degree, where the clique would be formed by all vertices processed
so far. We maintain mc, the number of edges within the clique; updating mc can
be done in O(m) time total. The number of modifications for clique size c can
then be calculated as (

(
c
2

) − mc) + (m − mc).
We now analyze the approximation factor. The analysis is based on the proof

of Hammer and Simeone [14] showing that Split Graph Editing is polynomial
time solvable. Let Copt be the clique of an optimal solution Sopt of cost kopt and
C the clique of the solution S calculated by the approximation algorithm for
c = |Copt|, with cost k. For S1, S2 ⊆ V , we denote by E(S1) the edges that have
both endpoints in S1 ⊆ V and by E(S1, S2) the edges with one endpoint in S1

and the other endpoint in S2. With this, the cost kopt can be decomposed:

kopt =
c(c − 1)

2
− |E(Copt)|

︸ ︷︷ ︸
edges added in Copt

+ |E(V \ Copt)| + |E(Copt, V \ Copt)|
︸ ︷︷ ︸
deleted edges with endpoint(s) in V \Copt

. (1)

Observe that for any set S ⊆ V it holds that:
∑

v∈S

deg(v) = 2|E(S)| + |E(S, V \ S)|, (2)

where deg(v) denotes the degree of v. Rearranging Equality (2) to have |E(S)| on
the left-hand side and inserting the right-hand side in Equality (1) for |E(Copt)|
and |E(V \ Copt)| yields:

kopt =
1
2

⎛

⎝c(c − 1) −
∑

v∈Copt

deg(v) +
∑

v∈V \Copt

deg(v)

⎞

⎠ + |E(Copt, V \ Copt)|. (3)

Let d1 ≥ d2 ≥ . . . ≥ dn be the degrees of the vertices in descending order. It
follows that:

∑

v∈Copt

deg(v) ≤
c∑

i=1

di and
∑

v∈V \Copt

deg(v) ≥
n∑

i=c+1

di. (4)
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Inserting this into Equality (3) yields:

kopt ≥ 1
2

(

c(c − 1) −
c∑

i=1

di +
n∑

i=c+1

di

)

+ |E(Copt, V \ Copt)| (5)

Observe that if Copt contains the vertices with the highest degree in G, then
Inequality (5) becomes an equality. Furthermore, our approximation algorithm
for x = c actually contains the c vertices with highest degree in C. Thus, using
the same analysis as above for k and C instead of kopt and Copt, we obtain

k =
1
2

(

c(c − 1) −
c∑

i=1

di +
n∑

i=c+1

di

)

+ |E(C, V \ C)|. (6)

It remains to bound the size of E(C, V \ C). To this end, observe that

|E(C, V \ C)| ≤
∑

v∈V \C

deg(v) =
n∑

i=c+1

di

(4)

≤
∑

v∈V \Copt

deg(v)

(2)

≤ 2|E(V \ Copt)| + 2|E(V \ Copt, Copt)|
(1)

≤ 2kopt

Putting this together yields k ≤ 3kopt. ��
Using a computer program, we determined the worst-case approximation factor
(i. e., with unlucky tie resolving) for all graphs up to 11 vertices. The worst case
is a factor of 2.5, and only one graph with this factor was found (up to adding
singletons): a disjoint union of a triangle and a P3.

3 P3-Bag Editing

We now turn to P3-Bag Editing. Recall that a P3-bag graph is a graph that
consists of exactly two possibly overlapping cliques.

Characterizations. We first give a forbidden subgraph characterization of P3-
bag graphs. Note that P3-bag graphs cannot be characterized by their degree
sequence: Two disjoint triangles and a cycle on six vertices have both the degree
sequence 2, 2, 2, 2, 2, 2. However, only the former is a P3-bag graph.

Theorem 4. A graph G is a P3-bag graph if and only if it does not contain
a 3K1, P4, or C4 as an induced subgraph.

Proof. It is easy to see that P4 and C4 are not P3-bag graphs. From a more
general result on forbidden subgraphs for graphs with certain M -partitions [8,
Corollary3.3], it follows that a minimal forbidden subgraph for P3-bag graphs
can have at most four vertices, and there can be at most two minimal forbidden
subgraphs with four vertices. Finally, it is easy to verify that all graphs with
three or fewer vertices except for 3K1 are P3-bag graphs. ��



416 F. Hüffner et al.

For P3-Bag Editing, we can also consider the complement problem. The fol-
lowing characterizations follow from our characterizations of P3-bag graphs.

Lemma 2. For a graph G, the following are equivalent.

1. G is a complement of a P3-bag graph.
2. G consists of a complete bipartite graph (biclique) plus isolated vertices.
3. G does not contain a K3, P4, or 2K2 as an induced subgraph.

Thus, while Sparse Split Graph Editing is the problem of editing a graph
into a clique plus isolated vertices, P3-Bag Editing is the problem of editing
the complement of a graph into a biclique plus isolated vertices. Note that the
problem of editing a graph into a biclique (without isolated vertices) is the
complement problem of 2-Cluster Editing.

NP-hardness. We now show that P3-Bag Editing is NP-complete. This demon-
strates the value of the subexponential fixed-parameter algorithm that solves
P3-Bag Editing in O(2

√
k log k) time [6].

Theorem 5. P3-Bag Editing is NP-complete.

Proof (sketch). Containment in NP is obvious. To prove NP-hardness, we provide
a polynomial-time reduction from the Bisection problem, which was shown to
be NP-hard by Garey et al. [11].

Bisection
Input: A graph G = (V,E) and an integer k ∈ N.
Question: Does G have a bisection with cut size at most k, that is, a

partition of V into two sets V1 and V2 such that |V1| = |V2|
and |E(V1, V2)| ≤ k?

Given a Bisection instance (G = (V,E), k) with m > k we construct an equiv-
alent P3-Bag Editing instance (G′ = (V ′, E′), k′) as follows. First, copy G
into G′. Next, add for each vertex v ∈ V a clique with n2 vertices to G′ and
make all vertices in this clique adjacent to v in G′. Denote the vertices in this
clique by C(v) (with v /∈ C(v)). We call these cliques pendant cliques to distin-
guish them from the at most two maximal cliques in the P3-bag graph. We first
explain the intuition behind the construction. The pendant cliques are pairwise
non-adjacent. This forces a balanced “distribution” of the pendant cliques to
the two maximal cliques of the P3-bag graph as any non-balanced distribution
exceeds the budget (which we define below). Then the balanced distribution of
the pendant cliques forces the original vertex set V to be also split into two equal
size sets. Hence, choosing the budget k′ appropriately ensures a cut size of at
most k between these two sets. To define k′, we use t := n/2 to denote the size
of the two parts in a bisection of G and set

k′ := n4 · 2
(

t

2

)

︸ ︷︷ ︸
edges added

between cliques

+ n2 · n(t − 1)
︸ ︷︷ ︸
edges added

between cliques and
original vertices

+ k

︸︷︷︸
edges removed

in cut of
bisection

+ 2
(

t

2

)

− (m − k).
︸ ︷︷ ︸
edges added between

original vertices inside the
two parts of the partition
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It now holds that (G, k) is a yes-instance of Bisection ⇐⇒ (G′, k′) is a yes-
instance of P3-Bag Editing; we omit the proof. ��
In the proof above, the intersection of the maximal cliques in the optimal solu-
tion for the constructed instance is empty. Thus, the reduction also provides an
alternative NP-hardness proof for 2-Cluster Editing.

4 Kernelization Schemes

We now give strict kernelization schemes (see Definition 1 in Section 1) for 2-Clus-
ter Editing, Sparse Split Graph Editing, and P3-Bag Editing. Since com-
plementing the graph does not affect k, they also apply to Biclique Editing,
Dense Split Graph Editing, and Biclique+Singletons Editing.

The idea of all three schemes is to apply data reduction that ensures that the
number of edge modifications incident on each vertex is at least some constant c.
Then, if we can solve the instance with k modifications, the number of vertices
remaining is at most 2k/c, and by setting c := 2/ε, we can achieve any kernel
of order εk. The critical property that allows the data reduction is that from
knowing the neighborhood of just one vertex in an optimal solution, we can
easily construct a complete optimal solution graph. Here, for simplicity, we use
solution to refer either to the set of editing operations or to the graph from
the target class of the editing problem that is obtained by applying the editing
operations.

We formulate the data reduction for any graph modification problem that
is “neighborhood-reconstructible” and “allows isolation”, and prove that our
problems have these properties. For convenience, instead of P3-Bag Editing
we consider the complement problem Biclique+Singletons Editing, that is,
the problem of editing into a biclique plus isolated vertices.

Definition 2. A graph modification problem is neighborhood-reconstructible
in p(n) time for some polynomial p when given the nonempty neighborhood of a
vertex in a solution G′, one can in p(n) time either find a solution with at most
k edge modifications or determine that the solution G′ incurs more than k edge
modifications. This method is called neighborhood reconstruction.

Observe that we demand the reconstructibility only for nonempty neighborhoods.
This is done to cope with vertices that can become singletons in the solution.

Lemma 3. 2-Cluster Editing, Sparse Split Graph Editing, and
Biclique+Singletons Editing are neighborhood-reconstructible in linear
time.

Proof. For 2-Cluster Editing, neighborhood reconstruction is possible even
given an empty neighborhood of a vertex. Assume we know the neighbor-
hood N(u) of any vertex u in a solution. Then we can reconstruct the solution
in linear time: one clique is C1 := N [u] and the other is C2 := V \ N [u]. We can



418 F. Hüffner et al.

in linear time determine m1,2, the number of edges between C1 and C2. Then
the number of modifications k can be calculated as

(|C1|
2

)
+

(|C2|
2

) − m + 2m1,2.
For Sparse Split Graph Editing, let C and I be the clique and the

isolated vertices of a solution, respectively. Only vertices in C have nonempty
neighborhoods in a solution. Assume we know the neighborhood N(u) of a ver-
tex u ∈ C in a solution. Then C = N [u] and I = V \N [u]. We can count in linear
time the number mC of edges within C, and the number of edge modifications
is m +

(|C|
2

) − 2mC .
For Biclique+Singletons Editing, let B1 and B2 be the two parts of

the biclique, and I the isolated vertices. Assume that for a vertex u ∈ B1 ∪ B2

(without loss of generality u ∈ B1), we know the neighborhood N(u) of u in a
solution. Then we have B2 = N(u) and B1∪I = V \N(u). It remains to allocate
the vertices in B1 ∪ I to B1 or I. Each decision for a vertex v ∈ B1 ∪ I can be
made independently: if there are at least |B2|/2 edges from v to B2, we place v
in B1, and otherwise we place it in I. Since each edge will be considered at
most once, this can be done in O(m) time. We can then count in linear time the
number mB of edges between B1 and B2, and the number of edge modifications
is m + |B1||B2| − 2mB . ��
The first rule directly exploits neighborhood reconstructibility: Assume that
there is a vertex with nonempty neighborhood in the solution and that the
difference between the input neighborhood and solution neighborhood is small.
Then, we can find an optimal solution by guessing this small difference and then
using neighborhood reconstruction. When this fails for all vertices, we know that
each vertex has many incident edge modifications or is isolated in the solution.

Rule 1. Consider a constant c and a graph modification problem that is neigh-
borhood-reconstructible in p(n) time. For each vertex u, try all ways of changing
up to c−1 incidences with the other vertices, that is, consider the neighborhoods
{N(u) � T | T ⊆ V \ {u}, |T | ≤ c − 1}. If for some u and some T , neighborhood
reconstruction finds a solution with at most k edge modifications, then replace
the instance by a trivial “yes”-instance.

Lemma 4. Rule 1 is sound and can be executed in O(nc · p(n)) time.

Proof. It is clear that the rule is sound, that is, it produces a “yes”-instance if
and only if the original instance is a “yes”-instance. The running time can be
seen as follows. There are n vertices and O(nc−1) vertex sets to try, and each
choice can be checked in p(n) time. ��
Observation 1. Exhaustively applying Rule 1 yields an instance in which it
holds for every solution with at most k edge modifications that each vertex is
incident with at least c edge modifications or isolated in the solution.

For 2-Cluster Editing, at most two vertices have empty neighborhood in the
solution. Hence, Rule 1 is already sufficient to bound the number of incident
edge modifications for all except two vertices. This is not sufficient for Sparse
Split Graph Editing and Biclique+Singletons Editing where a solution
may contain many singletons. Here, we exploit another problem property.
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Definition 3. A graph modification problem allows isolation if the property of
being a solution is hereditary, and adding an isolated vertex to a solution yields
another solution.

Thus, any solution can be transformed into a new one by picking an arbitrary
vertex and removing all incident edges, hence the name. Observe that Sparse
Split Graph Editing and Biclique+Singletons Editing allow isolation.

Rule 2. For a graph modification problem that allows isolation, assume it is
known that in every solution, each vertex has at least c incident edge mod-
ifications or degree 0 in the solution (or both). If G contains a vertex u
with deg(u) ≤ c, then remove u from G and reduce k by deg(u).

Lemma 5. Rule 2 is sound and can be performed exhaustively in O(nm) time.

Observation 2. Exhaustively applying Rules 1 and 2 yields an instance in
which it holds for any solution with at most k editing operation each vertex
has at least c incident edge modifications.

Rule 3. For a graph modification problem, assume we can for some constant
c ≥ 1 in polynomial time reduce to an instance where the number of edge
modifications incident on each vertex is at least c. If the graph contains more
than 2k/c vertices, then return a trivial no-instance.

The above observation together with Rule 3 yields the problem kernel of
oder 2k/c for graph modification problems that are neighborhood-reconstructible
and allow isolation. For the running time bound of the kernelization, we make
use of the fact that neighborhood reconstruction runs in linear time for all three
problems.

Theorem 6. For any c ≥ 1, 2-Cluster Editing, Sparse Split Graph Edit-
ing, and P3-Bag Editing have a kernel with at most 2k/c vertices that can be
computed in O

(
nm + ck2 · (

2k
c−1

)c) time.

Proof. Let δ(u) denote the number of edge modifications incident on a vertex u.
By Observation 2, we have 2k =

∑
u∈V δ(u) ≥ cn, implying n ≤ 2k/c. The

straightforward running time of O(ncm) caused by Rule 1 can be improved by
applying data reduction in rounds for c′ = 1 to c′ = c. The first round with
c′ = 1 takes O(nm) time and produces an instance with at most 2k vertices.
Before a round with c′ ≥ 2, there are at most 2k/(c′ − 1) vertices left, and the
number of edges can be bounded by O(k2). Thus, the remaining rounds run in
time

c∑

c′=2

O

((
2k

c′ − 1

)c′

k2

)

= O

(

ck2 ·
(

2k

c − 1

)c)

. ��

Note that for 2-Cluster Editing, already for c = 1, we obtain a kernel with 2k
vertices, improving the 4k + 2-vertex kernel derived from a more general result
for d-Cluster Editing [13].
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Subexponential-time Algorithms. We can use our strict kernelization schemes to
obtain subexponential-time algorithms.

Theorem 7. If a graph problem can be solved in 2O(n) time and it has a strict
kernelization scheme that produces for any c > 0 in nO(c) time a kernel of at
most O(k/c) vertices, then it can be solved in 2O(

√
k log k) + nO(1) time.

Proof. We kernelize for increasing c up to c =
√

k/ log k and then solve the

instance. This requires kO(
√

k/ log k) + nO(1) + 2O(
√

k log k) = 2O(
√

k log k) + nO(1)

time. ��
For Sparse Split Graph Editing and P3-Bag Editing, this running time is
similar to the known subexponential-time algorithms [6], for 2-Cluster Editing
this running time almost meets the best known running time [10]. We can also
use Theorem 7 to rule out strict kernelization schemes for certain problems with
known lower bounds on their running time.

Theorem 8. Cluster Editing does not not have a kernelization scheme that
produces for any c > 0 in nO(c) time a kernel of at most O(k/c) vertices, unless
the exponential time hypothesis (ETH) is false.

Proof. Cluster Editing is easily solved in 2O(n) time by standard dynamic
programming over vertex subsets. Moreover, assuming ETH, there is no 2o(k) ·
nO(1) time algorithm for Cluster Editing [16]. ��

5 Outlook

Several open questions remain. For example, is Sparse Split Graph Editing
APX-hard, or does it have a PTAS? Possibly a PTAS for the 2-Correlation
Clustering problem [12] can be adapted. Furthermore, it seems worthwhile
to explore the relation between kernelization schemes, subexponential-time solv-
ability and polynomial-time approximation schemes more closely. For example, it
would be interesting to investigate whether, similar to efficient polynomial-time
approximation schemes (EPTAS) there are efficient strict kernelization schemes
with running time f(1/ε) · (|I|+k)O(1). Finally, it is open to find further applica-
tions of strict kernelization schemes. We would like to remark that the schemes
also apply to the edge deletion variants of the considered problems. Prelimi-
nary considerations indicate that some of these problems admit efficient strict
kernelization schemes.

Acknowledgments. We are grateful to Henning Fernau for fruitful discussions about
the problems considered in this work.
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Abstract. Consider an undirected and vertex-weighted graph modeling
a social network, where the vertices represent individuals, the edges do
connections among them, and weights do levels of importance of indi-
viduals. In the competitive diffusion game, each of a number of players
chooses a vertex as a seed to propagate his/her idea which spreads along
the edges in the graph. The objective of every player is to maximize the
sum of weights of vertices infected by his/her idea. In this paper, we
study a computational problem of asking whether a pure Nash equilib-
rium exists in a given graph, and present several negative and positive
results with regard to graph classes. We first prove that the problem
is W[1]-hard when parameterized by the number of players even for
unweighted graphs. We also show that the problem is NP-hard even
for series-parallel graphs with positive integer weights, and is NP-hard
even for forests with arbitrary integer weights. Furthermore, we show
that the problem for forests of paths with arbitrary weights is solvable
in pseudo-polynomial time; and it is solvable in quadratic time if a given
graph is unweighted. We also prove that the problem is solvable in poly-
nomial time for chain graphs, cochain graphs, and threshold graphs with
arbitrary integer weights.

1 Introduction

Ideas, innovations or trends spread by interactions between individuals. Social
networks such as Facebook and Twitter facilitate their diffusion; an idea of an
influential individual spreads along the connections over a network, and a small
number of initial seeds can yield widespread infection. Since we can employ
the so-called word-of-mouth effect as a tool for viral marketing, analysis of the
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dynamics and process of the diffusion receive increasing attention in computer
science. A number of papers focus on a task for a single company that wishes
to advertise their product through a network; they investigate a problem of
finding key individuals for maximizing the largest expected infection based on
a given stochastic model of diffusion process [9,19,20,22]. Another active line
of research stems from a task for multiple competing companies which try to
advertise their products through a network, where the diffusion process is set in
a game-theoretic formulation [1–7,10,15,16,23,24].

In this paper, we focus on the latter setting, and consider the one intro-
duced by Alon et al. [1]. In their setting, a network is modeled by an unweighted
graph, and each of a given number of competing companies chooses a vertex in
the graph as a seed of their advertisement. Then their advertisements determin-
istically spread along the edges of a graph so that every infected vertex adopts
its neighbors in a discrete time step. The objective of every player is to maximize
the number of infected vertices. (The precise definition of the game is given in
Section 2.) Alon et al. call the game competitive diffusion game, and show that
there exists an unweighted graph of diameter three that does not admit a Nash
equilibrium for two players. Following the paper [1], several results are known for
the competitive diffusion game. Takehara et al. provided an unweighted graph
G of diameter two that does not admit a Nash equilibrium for two players [24].
Small and Mason considered the case where a social network has a tree structure,
and show that any tree admits a Nash equilibrium for two players [23]. More
recently, Bulteau et al. consider certain graph classes including paths, cycles and
grid graphs; in particular, they prove that there is no Nash equilibrium for three
players on m × n grids with min{m,n} ≥ 5 [6].

We generalize the game to weighted graphs, where a weight on a vertex
represents a level of importance of an individual; negative weights are admitted
to express very demanding customers. We then focus on a problem Competitive
Diffusion of deciding whether, given the number k, a graph G and weight
function w, the competitive diffusion game on G with w for k players has a Nash
equilibrium.

We establish solid complexity foundation of Competitive Diffusion with
regard to graph classes. Since there are a number of theoretical models of social
networks, and some of them are directly related to restricted graph classes (such
as random trees with scale free properties [8]), our results give useful tools for
obtaining algorithmic results on such models.

Our contributions are twofold. On the one hand, we provide the following
three hardness results:

(i) Competitive Diffusion is W[1]-hard when parameterized by the number
of players even for unweighted graphs;

(ii) Competitive Diffusion is NP-complete even for series-parallel graphs
with positive integer weights;

(iii) Competitive Diffusion is NP-complete even for forests with arbitrary
integer weights.
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Fig. 1. Example of competitive diffusion with k = 3 players. (a) The graph G and
weight w; numbers in the gray squares are weights. (b) p1, p2 and p3 choose v1, v7 and
v9 in G, respectively; thus a strategy profile s = (v1, v7, v9). (c) Each player dominates
the neighbor. (d) The game ends; the two gray vertices are neutral. Consequently,
U1(s) = 2, U2(s) = 3 and U3(s) = 1.

Very recently, Etesami and Basar studied unweighted version of the problem,
and showed that Competitive Diffusion is a NP-complete problem [12], but
their result does not imply ours. On the other hand, we obtain the following two
algorithmic results.

(iv) For forests of paths, we prove that Competitive Diffusion is solvable in
pseudo-polynomial time. In particular, we give a quadratic-time algorithm
for forests of unweighted paths;

(v) For chain graphs, cochain graphs, and threshold graphs with arbitrary inte-
ger weights, we show that Competitive Diffusion is solvable in polyno-
mial time.

Note that, while four years past after Alon et al. introduced the competitive
diffusion game, no nontrivial algorithm for the k-player game is known, even for
unweighted trees with k ≥ 3. Our research breaks this situation, and provides a
new landscape of the computational aspect of the game.

The rest of the paper is organized as follows. In Section 2, we formally define
the competitive diffusion game and the problem Competitive Diffusion.
In Section 3, we present our hardness results for Competitive Diffusion.
In Section 4, we give algorithms for forests of paths. In Section 5, we provide an
algorithm for chain, cochain, and threshold graphs.

2 Preliminaries

We model a network as an undirected graph G = (V,E), where the vertex set V
represents individuals in the network, and the edge set E does the connections
among them. The weight function w : V → Z represents a level of importance of
each individual. For a positive integer k, we define [k] = {1, 2, . . . , k}, and call
the k players p1, p2, . . . , pk.

The competitive diffusion game (k,G,w) proceeds as follows (see Fig. 1(a)–
(d) for an explicit example). At time one, each player chooses a vertex in V ;
suppose a player pi, i ∈ [k], chooses a vertex v ∈ V . If any other player pj ,
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Fig. 2. The vertex v3 becomes neutral at time 2, and consequently, p3 dominates v4
at time 7

i �= j, does not choose the vertex v, then pi dominates v; and otherwise (that
is, if there exists a player pj , i �= j, who chooses v), v becomes a neutral vertex.
In the subsequent time steps, no player can dominate the neutral vertex. For
each time t, t ≥ 2, a vertex v ∈ V is dominated by a player pi at time t if (i) v
is neither neutral nor dominated by any player by time (t − 1), and (ii) v has
a neighbor dominated by pi, but does not have a neighbor dominated by any
player pj , i �= j. If v satisfies (i) and there are two or more players who dominate
neighbors of v, then v becomes a neutral vertex at time t. The game ends when
no player can dominate a vertex any more.

We note that the notion of a neutral vertex plays important role in the game;
it sometimes gives critical effect on the result. (See Fig 2.) This contrasts to a
similar game, called Voronoi game, where a player can dominate all the nearest
vertices; if there is a vertex whose distances to seeds of two or more players tie,
then they do not dominate but share the vertex [11,13,21,25].

Let s = (s(1), s(2), . . . , s(k)) ∈ V k be the vector of vertices which the players
choose at the beginning of the game. We call s a strategy profile. For every i ∈ [k],
we define a utility Ui(s) of pi for s as the sum of the weights of the vertices which
pi dominates at the end. (See Fig. 1(d).)

For an index i ∈ [k], we define (s−i, v
′) as a strategy profile such that pi

chooses v′ instead of s(i), but any other player pj , i �= j, chooses s(j): (s−i, v
′) =

(s(1), s(2), . . . , s(i−1), v′, s(i+1), . . . , s(k)). For simplicity, we write Ui(s−i, v
′) for

Ui((s−i, v
′)). Then, if s satisfies Ui(s−i, v

′) ≤ Ui(s) for every i ∈ [k] and every
v′ ∈ V , we say that s is a (pure) Nash equilibrium. The strategy profile given in
Fig. 1(b) is, in fact, a Nash equilibrium. We define Competitive Diffusion as
the problem of deciding whether (k,G,w) has a Nash equilibrium.

3 Hardness Results on Competitive Diffusion

In this section, we observe computational complexity of Competitive Diffu-
sion. Our first hardness result is the following theorem.

Theorem 1. Competitive Diffusion is W [1]-hard even for unweighted
graphs when parameterized by the number of players.
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To prove the theorem, we construct a reduction from a well-known W [1]-
hard problem, Independent Set [14]. Given a graph G = (V,E) and a positive
integer k, Independent Set asks whether there exists an independent set I of
size at least k, where a set I (⊆ V ) is called an independent set if there is no
pair of vertices u, v ∈ I such that (u, v) ∈ E.

Below we provide the desired reduction and a proof overview.
Proof idea. We construct a graph G′ = (V ′, E′) such that G = (V,E) has an
independent set I of size |I| ≥ k if and only if (k + 3, G′, w′) has a pure Nash
equilibrium, where w′ : V ′ → {1}.

Construction of G′

Let n = |V |, and dv be the degree of v for every v ∈ V . The graph G′ consists
of two connected components A = (VA, EA) and B = (VB , EB).

We obtain the component A as follows. We construct a path of four ver-
tices a1, a2, a3, a4; and make 2n vertices a′

1, a
′
2, . . . , a

′
n and a′′

1 , a′′
2 , . . . , a′′

n. Then
we connect the terminal a1 to a′

1, a
′
2, . . . , a

′
n, and connect the terminal a4 to

a′′
1 , a′′

2 , . . . , a′′
n. We obtain the component B from the original graph G as follows.

For every edge e = (u, v) ∈ E, we add a vertex be subdividing e. Then, for each
v ∈ V , we introduce a set Dv of n − dv vertices, and connect v to every u ∈ Dv.
Lastly we make a vertex b and λ vertices b1, b2, . . . , bλ, where λ is a sufficiently
large number satisfying λ = Θ(n3), and connect b to every v ∈ V , and connect
b to b1, b2, . . . , bλ. Thus, we have V ′ = VA ∪ VB and E′ = EA ∪ EB .

Consider the game (k +3, G′, w′). We can easily observe that any Nash equi-
librium includes a strategy of a single player choosing the vertex b, since the strat-
egy always give the maximum utility. Consequently, we can show that exactly
two players can choose vertices other than the ones in the original graph G to
hold a Nash equilibrium; otherwise, some player has extremely low utility (that
is, below two) due to the player choosing b. In fact, we can show that any Nash
equilibrium includes strategies of the two players choosing the vertex a2 and
a3. Then the existence of a Nash equilibrium depends on whether there exists
a strategy profile such that the other k players choose vertices composing an
independent set: If the strategy profile of the other k players does not compose
an independent set, then one of the k player obtains the utility less than n + 1;
but the player can obtain the utility exactly n + 1 by changing its strategy to
a1 or a4. 	


For the cases where weights can be nonnegative or arbitrary integers, we can
obtain the following stronger hardness results.

Theorem 2. Competitive Diffusion is NP-complete even for series-parallel
graphs with nonnegative integer weights.

Theorem 3. Competitive Diffusion is NP-complete even for forests of two
components with integer weights.

The proofs for Theorems 2 and 3 are similar to the one for Theorem 1, but we
use other tricks by means of a neutral vertex together with positive and negative
weights; we omit them due to the page limitation.
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4 Algorithms for Forests of Paths

In the last section, we have shown that Competitive Diffusion is basically a
computational hard problem. However, we can solve the problem for some partic-
ular graph classes. In Section 4.1, we give a pseudo-polynomial-time algorithm
to solve Competitive Diffusion for forests of weighted paths; as its conse-
quence, we show that the problem is solvable in polynomial time for forest of
unweighted paths. In Section 4.2, we improve the running time of our algorithm
to quadratic for the unweighted case.

4.1 Forests of Weighted Paths

Let F be a forest consisting of weighted m paths P1, P2, . . . , Pm, and let Wj

be the sum of the positive weights in a path Pj , j ∈ [m]. Then, we define
W = maxj∈[m] Wj as the upper bound on utility for F , that is, any player can
obtain at most W in F . In this subsection, we prove the following theorem.

Theorem 4. Let F be a forest of weighted paths. Let n and W be the number
of vertices in F and the upper bound on utility for F , respectively. Then, we can
solve Competitive Diffusion, and find a Nash equilibrium, if any, in O(Wn9)
time.

We note that W = O(n) if F is an unweighted graph. Therefore, by Theo-
rem 4, Competitive Diffusion is solvable in O(n10) time for an unweighted
graph F ; this running time will be improved to O(n2) in Section 4.2.

Idea and Definitions
Let F be a given forest consisting of weighted m paths P1, P2, . . . , Pm. Let w
be a given weight function; we sometimes denote by wj the weight function
restricted to the path Pj , j ∈ [m]. Suppose that, for an integer k, there exists a
strategy profile s for the game (k, F,w) that is a Nash equilibrium. Then, the
strategy profile restricted to each path Pj , j ∈ [m], forms a Nash equilibrium for
(kj , Pj , wj), where kj is the number of players who chose vertices in Pj . However,
the other direction does not always hold: A Nash equilibrium sj for (kj , Pj , wj) is
not always extended to a Nash equilibrium for the whole forest F , because some
player may increase its utility by moving to another path in F . To capture such
a situation, we classify a Nash equilibrium for a (single) path Pj more precisely.

Consider the game (κj , Pj , wj) for an integer κj ≥ 0. For a strategy profile sj

for (κj , Pj , wj), we define μPj
(sj) as the minimum utility over all the κj players:

μPj
(sj) = mini∈[κj ] Ui(sj). In other words, any player in Pj obtains the utility

at least μPj
(sj). For the case where κj = 0, we define sj = ∅ as the unique

strategy profile for (κj , Pj , wj); then, sj is a Nash equilibrium and we define
μPj

(sj) = +∞.
For a strategy profile sj =

(
s
(1)
j , s

(2)
j , . . . , s

(κj)
j

)
for (κj , Pj , wj), we then

define the “potential” of the maximum utility under sj that can be expected
to gain by an extra player other than the κj players. More formally, for a vertex
v in Pj , we denote by sj + v the strategy profile

(
s
(1)
j , s

(2)
j , . . . , s

(κj)
j , s

(κj+1)
j

)
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for (κj + 1, Pj , wj) such that s
(κj+1)
j = v. Then, we define νPj

(sj) =
maxv∈V (Pj) Uκj+1(sj + v).

For two nonnegative integers κj and t, we say that Pj admits κj players
with a boundary t if there exists a strategy profile sj such that sj is a Nash
equilibrium for (κj , Pj , wj) and νPj

(sj) ≤ t ≤ μPj
(sj) holds. Then, the following

lemma characterizes a Nash equilibrium of the game (k, F,w) in terms of the
components of F ; we omit the proof.

Lemma 1. The game (k, F,w) has a Nash equilibrium if and only if there exist
nonnegative integers κ1, κ2, . . . , κm and t such that k =

∑m
j=1 κj and Pj admits

κj players with the common boundary t for every j ∈ [m].

Algorithm
We first focus on a weighted single path.

Lemma 2. Let P be a weighted path of n vertices, and t be a nonnegative inte-
ger. Then, one can find in O(n9) time the set K ⊆ {0, 1, . . . , 2n} of all the
integers κ such that P admits κ players with boundary t.

Based on Lemma 2, we can obtain the m sets K1,K2, . . . , Km, where Kj ⊆
{0, 1, . . . , 2n}, j ∈ [m], is the set of all the integers κ such that P admits κ
players with boundary t. This can be done in O(n9) time, where n is the number
of vertices in the whole forest F .

We now claim that, for a given integer t, it can be decided in O(n3) time
whether there exist nonnegative integers κ1, κ2, . . . , κm such that k =

∑m
j=1 κj

and Pj admits κj players with the common boundary t for every j ∈ [m]; later
we will apply this procedure to all possible values of t, 0 ≤ t ≤ W . To show
this, observe that finding desired m integers κ1, κ2, . . . , κm from the m sets
K1,K2, . . . , Km can be regarded as solving an instance of the multiple-choice
knapsack problem [18]: The capacity c of the knapsack is equal to k; each integer
κ′ in Kj , j ∈ [m], corresponds to an item with profit κ′ and cost κ′; the items
from the same set Kj form one class, from which at most one item can be packed
into the knapsack. The multiple-choice knapsack problem can be solved in O(cN)
time [18], where N is the number of all items. Since c = k and N = O(mn), we
can solve the corresponding instance in time O(kmn) = O(n3).

We finally apply the procedure above to all possible values of boundaries t.
Since any player can obtain at most the upper bound W on utility for F , it
suffices to consider t ∈ [W ]. Therefore, our algorithm runs in O(Wn9) time in
total.

4.2 Forests of Unweighted Paths

In this subsection, we improve the running time of our algorithm in Section 4.1
to quadratic when restricted to the unweighted case.

Theorem 5. Let F be a forest of unweighted paths, and n be the number of
vertices in F . Then, we can solve Competitive Diffusion, and find a Nash
equilibrium, if any, in O(n2) time.
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In the rest of this subsection, we consider unweighted graphs, and thus define
w : V → {1} for the vertex set V of a given forest. We assume that the number
k of players is less than n; otherwise, a Nash equilibrium always exists. Note
that, in this case, every player has utility at least one for any Nash equilibrium.

We first show that the set Kj of Lemma 2 can be obtained in O(1) time,
instead of O(n9) time, by characterizing Nash equilibriums for (κ, P,w) in terms
of κ, t and n.

Lemma 3. Let P be a single unweighted path of n vertices, and let κ and t be
nonnegative and positive integers, respectively.

(1) P admits κ = 0 player with boundary t if and only if n ≤ t.
(2) P admits κ = 1 player with t if and only if t ≤ n ≤ 2t + 1.
(3) P admits κ = 2 players with t if and only if 2t ≤ n ≤ 2t + 2.
(4) P admits κ = 3 players with t if and only if t = 1 and n = 3, 4 or 5.
(5) For any integer κ ≥ 4, P admits κ players with t if and only if

(κ + 1)t − 1 ≤ n ≤ (2κ − 4)t + κ if κ is odd;
κt ≤ n ≤ (2κ − 4)t + κ if κ is even.

By Lemme 3, we can immediately obtain the number of players which P
admits with a given boundary t:

Corollary 1. Consider a fixed boundary t. If P is a path of n vertices, the
numbers of players which P admits with a boundary t is given as follows.

(1) If n ≤ t − 1, the number is only 0.
(2) If n = t, the numbers are 0 and 1.
(3) If t + 1 ≤ n ≤ 2t − 1, the number is only 1.
(4) If 2t ≤ n ≤ 2t + 1 and n = 3, the numbers are 1, 2 and 3; and if 2t ≤ n ≤

2t + 1 and n �= 3, the numbers are 1 and 2.
(5) If n = 2t + 2 and n = 4, the numbers are 2, 3 and 4; and if n = 2t + 2 and

n �= 4, the number is only 2.
(6) If 2t + 3 ≤ n ≤ 4t − 1, P has no desired Nash equilibrium.
(7) If 4t ≤ n and 5 ≤ n, the numbers are integers κ such that

⌈
n + 4t

2t + 1

⌉

≤ κ ≤ max(kodd, keven),

where kodd is the maximum odd integer satisfying kodd ≤ (n − t + 1)/t, and
keven is the maximum even integer satisfying keven ≤ n/t.

We use Corollary 1 to design our algorithm for forests of paths.
Without loss of generality, we assume that P1 is a longest path among the

m paths, and has n1 vertices. For each t, 1 ≤ t ≤ n1, we repeat the following
procedure: For every j, 1 ≤ j ≤ m, we obtain, using Corollary 1, the minimum
number kmin

j and the maximum number kmax
j of players which Pj admits with

the boundary t. Corollary 1 implies that, for every j, 1 ≤ j ≤ m, Pj admits κ
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players with t for any κ between kmin
j and kmax

j , and hence (k, F,w) has a Nash
equilibrium with the common boundary t if and only if

m∑

j=1

kmin
j ≤ k ≤

m∑

j=1

kmax
j . (1)

We thus complete the procedure by checking if the two inequalities in (1) both
hold. Since Corollary 1 implies that we can obtain kmin

j and kmax
j in constant

time for every j, the running time of the procedure above for single t is O(m),
and hence that of our entire algorithm is O(n1m) = O(n2), as desired.

5 Algorithms for Chain, Cochain, and Threshold Graphs

A bipartite graph B = (X,Y ;E) with |X| = p and |Y | = q is a chain graph
if there is an ordering (x1, x2, . . . , xp) on X such that N(x1) ⊆ N(x2) ⊆ · · · ⊆
N(xp), where N(u) denote a set of neighbors of a vertex u. If there is such
an ordering on X, then there also exists an ordering (y1, y2, . . . , yq) on Y such
that N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yq). We call such orderings inclusion orderings.
A graph B′ is a cochain graph if it can be obtained from a chain graph B =
(X,Y ;E) by making the independent sets X and Y into cliques. A graph B′′

is a threshold graph if it can be obtained from a chain graph B = (X,Y ;E) by
making one of the independent sets X and Y into a clique. Observe that inclusion
orderings on X and Y in B can be seen as inclusion orderings in B′ and B′′ if
we use closed neighborhoods in cliques. Such inclusion orderings can be found
in linear time [17]. Because the algorithm for chain graphs we will describe in
this section depends only on its property of having inclusion orderings, we can
apply the exactly same algorithm for cochain graphs and threshold graphs.

The following lemma follows directly from the definitions. Note that we
denote N [u] = N(u) ∪ {u}.

Lemma 4. If N(u) ⊆ N(v) or N [u] ⊆ N [v] holds for u = s(i) �= v = s(j), then

Ui(s) =

{
0 if there is h �= i such that s(h) = u,

w(u) otherwise.

In what follows, let B = (X,Y ;E) be a chain graph with inclusion orderings
(x1, . . . , xp) and (y1, . . . , yq) on X and Y , respectively. We define η(s,X) =
max({0} ∪ {i | xi ∈ V (s)}) and η(s, Y ) = max({0} ∪ {i | yi ∈ V (s)}).

Lemma 5. Let s be a Nash equilibrium of B. If s(i) /∈ {xη(s,X), yη(s,Y )}, then

w(s(i)) ≥ max
{
w(u) | u ∈ ({xj |j ≤ η(s,X)} ∪ {yj |j ≤ η(s, Y )})\V (s)

}
. (2)

Proof. Since N(s(i)) ⊆ N(xη(s,X)) or N(s(i)) ⊆ N(yη(s,Y )), it follows that
Ui(s) ≤ w(s(i)) by Lemma 4. Suppose for the contrary that there exists
u ∈ ({xj | j ≤ η(s,X)} ∪ {yj | j ≤ η(s, Y )}) \ V (s) such that w(s(i)) < w(u).
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Algorithm 1. Find a Nash equilibrium s ∈ V k of a chain graph B = (X,Y ;E)
1: Let (x1, . . . , xp) on X and (y1, . . . , yq) on Y be inclusion orderings.
2: // The following is for the case where η(s, X) �= 0.
3: for all guesses (η(s, X), η(s, Y )) ∈ {1, . . . , p} × {0, . . . , q} do
4: s(1) := xη(s,X). s(2) := yη(s,Y ) if η(s, Y ) �= 0.
5: R := {xi | i < η(s, X)} ∪ {yi | i < η(s, Y )}.
6: while there is a player i not assigned to a vertex do
7: v := arg maxu∈R w(u).
8: if w(v) ≥ 0 then
9: s(i) := v. R := R \ {v}.

10: else
11: s(i) := xη(s,X).
12: end if
13: end while
14: return s if it is a Nash equilibrium.
15: end for
16: return “no Nash equilibrium”

Now it holds that N(u) ⊆ N(xη(s,X)) or N(u) ⊆ N(yη(s,Y )). Thus, by Lemma 4,
we have Ui(s−i, u) = w(u) > w(s(i)) ≥ Ui(s). This contradicts the assumption
that s is a Nash equilibrium. 	


Thus, it suffices to check the strategy profiles satisfying Eq. (2) for our purpose.

Theorem 6. Let G be a chain, cochain, or threshold graph of n vertices and
m edges. Then, we can solve Competitive Diffusion for G, and find a Nash
equilibrium, if any, in O(n4(m + n)) time.

Proof. We present an algorithm for chain graphs only. As previously described,
we can apply the same algorithm for cochain and threshold graph.

We first guess η(s,X) and η(s, Y ). Here we assume η(s,X) �= 0. The other
case can be treated in the same way by swapping X and Y . We assign xη(s,X)

to the first player. If η(s, Y ) �= 0, then we assign yη(s,Y ) to the second player.
By Lemma 5, if s is a Nash equilibrium, then the other players have to select
the heaviest vertices in {xi | i < η(s,X)} ∪ {yi | i < η(s, Y )}. For each of the
remaining players, we assign a vacant vertex with the maximum non-negative
weight. If there is no such a vertex, we assign xη(s,X). We then test whether the
strategy profile is a Nash equilibrium. See Algorithm 1.

Lemma 5 implies that if the algorithm assigns at most one player to xη(s,X),
then the algorithm is correct. If two or more players are assigned to xη(s,X),
then these players have utility 0. In such a case, there are not enough number of
vertices of non-negative weights in {xi | i < η(s,X)} ∪ {yi | i < η(s, Y )}. Thus
every s with the guesses η(s,X) and η(s, Y ) has a player with non-positive
utility. If such a player, say pi, has negative utility, then s is clearly not a Nash
equilibrium. If pi has utility 0, then it may improve its utility only if there is
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a vertex v ∈ {xη(s,X)+1, . . . , xp} ∪ {yη(s,Y )+1, . . . , yq} such that Ui(s−i, v) > 0.
However, in this case, there is no Nash equilibrium with the guesses η(s,X) and
η(s, Y ). Therefore, the algorithm is correct.

We now analyze the running time of the algorithm. We have O(n2) options
for guessing xη(s,X) and yη(s,Y ). For each guess, the bottle-neck of the running
time is to test whether the strategy profile is a Nash equilibrium or not. It
takes O(n2(m + n)) time as follows: we have O(n2) candidates of moves of
players; for each candidate, we can compute the utility of the player moved by
running a breadth-first search once in O(m + n) time by adding a virtual root
connecting to all the vertices occupied by the players. In total, the algorithm
runs in O(n4(m + n)) time. 	
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Abstract. We consider the fundamental sorting and selection problems
on a list of elements that are not necessarily from a totally ordered set.
Here relation between elements are determined by ‘equality’ compar-
isons whose outcome is = when the two elements being compared are
equal and �= otherwise. We determine the complexity of sorting (find-
ing the frequency of every element), finding mode and other frequently
occurring elements using only =, �= comparisons. We show that Ω(n2/m)
comparisons are necessary and this many comparisons are sufficient to
find an element that appears at least m times. This is in sharp contrast
to the bound of Θ(n log(n/m)) bound in the model where comparisons
are <, =, > or ≤, >.

1 Introduction

Sorting and selection are fundamental well studied problems in computer science.
We consider these problems when the input sequence is not necessarily from a
totally ordered set. Interestingly, this corresponds to the dictionary meaning of
the word ‘sort’. The definition of “sort” in Oxford English Dictionary [13] goes on
for about 4 pages. The relevant sense is indeed the earliest as a verb: “to arrange
(things, etc.) according to kind or quality ...” (from the mid 14th century, and
from the Old French and Latin “sors” (lot, share, fortune)). Note that, there
is no notion of an inherent linear order. The word’s association with putting
things in numerical or alphabetical order, came later with the development of
computing.

The only way the relation between a pair of elements is determined in this
scenario is by making equality comparisons. While this is a natural variant that
occurs when dealing with heterogenous sets of elements, to the best of our knowl-
edge the only problem studied in this model is the problem of determining the
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 434–445, 2015.
DOI: 10.1007/978-3-319-21840-3 36



Sorting and Selection with Equality Comparisons 435

majority element (an element that appears at least �n/2� times) if exists, and
there is a classical linear time algorithm for this [6]. Exact comparison com-
plexity including upper and lower bounds, and average case complexity of this
problem have been studied [2–4,8,12].

Starting with the (natural) problem of determining the mode, the most fre-
quently occurring element, we study the comparison complexity of sorting (deter-
mining the frequency of every element) and to determine the least frequent
element. We show that Ω(n2/m) (equality) comparisons are necessary and this
many comparisons are sufficient to find an element that appears at least m
times. This is in sharp contrast to the bound of Θ(n log(n/m)) [7] bound in the
traditional comparison model. The lack of transitivity of the ‘not equal’ opera-
tion throws interesting challenges. We develop a simple mode finding algorithm
(which is then developed to a sorting algorithm), we believe that its analysis is
quite subtle and interesting. Our lower bounds are through adversary arguments.

The next section discusses algorithms to find the mode or an element with
a specific frequency in a list of n elements. In Section 3 we discuss bounds for
sorting - i.e. to determine the frequency of all elements in the list. In Section 4, we
discuss lower bounds for finding the mode and the least frequent element. Finally
in Section 5, we conclude with some remarks.

1.1 Related Work

As referred earlier, we know of only the majority problem [6] studied with =,
�= comparisons. In one of the earliest papers studying optimal algorithms on
sets, Reingold [11] proved lower bounds for determining the intersection/union
of two sets if only =, �= comparisons are allowed. Munro and Spira [9] considered
optimal algorithms and lower bounds to find the mode and the spectrum (the
frequencies of all elements), albeit in the three way comparison model. Misra
and Gries [10] give algorithms to determine an element that appears at least
n/k times for various values of k, in the three way comparison model.

2 Finding Mode (Or Elements with Specific Frequency)

A natural randomized algorithm to find the mode (given its frequency m) in
this model is to pick a random element and find its frequency by comparing it
with all other elements. If m is the frequency of the mode, then the probability
that this algorithm picks the mode in any given round is m/n, and hence in
about n/m rounds, the algorithm finds the mode with high probability. As it
makes n − 1 comparisons in each step, the expected number of comparisons is
around n2/m. A high confidence bound can then be shown for this randomized
approach. We show that this bound of O(n2/m) is achievable by a deterministic
algorithm even without the knowledge of m. In addition, we give an adversary
argument to show that Ω(n2/m) comparisons are necessary. We then extend
these results for sorting and finding the least frequent element.
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Consider the naive algorithm that repeatedly finds the frequency of every
element by a scan of the list. I.e. it picks an element, scans the list to find all
elements equal to it and removes them in n−1 comparisons, and continues until
all the frequencies are found. If, suppose, all elements appear m times, then the
algorithm performs (n−1)+(n−m−1)+(n−2m−1)+. . . 1 = n2/2m−n/m+n/2
comparisons. But if the frequencies of the elements are different, in particular,
if only the last m elements are the same and the rest are distinct, then this
algorithm performs roughly (n2 − m2)/2 comparisons which is far from optimal
(as we show in Section 4). But in this case, the following simple algorithm finds
the mode in at most n2/2(m − 1) + n comparisons.

1. Divide the given sequence into m − 1 blocks of size �n/(m − 1)� each.
2. Compare every pair of elements within each block to find the frequency

within the block of each element.
3. At least one of the blocks will have two copies of the mode and we can declare

the mode as that element after confirming by comparing it with elements of
the other blocks.

The no. of comparisons made by the algorithm is atmost (m−1)
(
(n/(m−1)+1)

2

)
+n

which is at most n2/2(m − 1) + n.
Now we give our mode finding algorithm that finds all modes in roughly

n2/m comparisons. (We subsequently generalize this for sorting.)

Theorem 1. There exists an algorithm that performs at most n2/m+n (equal-
ity) comparisons to find a mode or even all modes and their frequency m, in a
given list of n elements.

Proof. Let a1, a2, . . . an be the given sequence of n elements, and consider them
arranged clockwise in a circular list. The algorithm repeatedly compares, in
sequence, every element with the first element in the clockwise order with which
it has not determined its (equal/notequal) relation, until an element with fre-
quency m is found. If m is not known to the algorithm, then the algorithm per-
forms a sequence of rounds of comparisons until it finds an element that appears
at least �(n−1)/k� times at the end of k rounds. We show that the (circular order)
sequence in which the comparisons are made achieves the desired upper bound.

The following pseudocode describes the algorithm.

0. Initialize r = 0; for i = 1 to n eq(ai) = {i}; neq(ai) = ∅;
1. Repeat
2. r = r + 1
3. for i = 1 to n
4. find the next j if any, starting from i + 1, wrapped around after n
5. if necessary, such that j /∈ eq(ai) ∪ neq(ai).
6. if such a j is found then
7. if ai = aj then
8. for all x ∈ eq(ai) ∪ eq(aj),
9. eq(ax) ← eq(ai) ∪ eq(aj) and
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10. neq(ax) ← neq(ai) ∪ neq(aj)
11. else if ai �= aj then
12. for all x ∈ eq(ai), neq(ax) ← neq(ax) ∪ eq(aj) and
13. for all y ∈ eq(aj), neq(ay) ← neq(ay) ∪ eq(ai)
14. endfor
15. until there exists an element i such that |eq(ai)| ≥ (n − 1)/r

In the algorithm eq(ai) corresponds to the set of indices of all elements that
are known to the algorithm to be equal to ai, and similarly neq(ai) corresponds
to the set of elements known to be not equal to ai. We refer to the comparison
made in Step 7 as the one initiated by ai (in round r) and associate such a
comparison with ai (note that aj will also, by the same token, make one such
comparison which will be associated with aj). Though we count only comparisons
between elements, the book keeping required to keep track of the sets eq() and
neq() are not hard. It is clear that the algorithm maintains the invariant that if
the algorithm knows that ai = aj , then eq(ai) = eq(aj) and neq(ai) = neq(aj).
Hence we could keep these two lists for each group of elements that are known
to be equal as one pair of lists instead of keeping them with each element. In
what follows, we will continue to assume that every element has these two lists
available.

As the algorithm performs at most n comparisons in each round r, and
stops in �(n − 1)/m� rounds, the algorithm performs at most n�(n − 1)/m� ≤
n(n + m − 2)/m = (n2 − 2n)/m + n < n2/m + n comparisons.

The rest of the proof gives the correctness of the algorithm. We show that the
first time an element that appears at least (n − 1)/r times at the end of r rounds,
it is the mode. First we show that if an element appears m times, then the element
will be discovered (to have exactly m copies) in at most �(n − 1)/m� rounds. We
deal with the case m = 1 first where we can show a slightly better bound.

Lemma 1. When all elements are distinct (i.e. when m = 1), the algorithm
determines this in �n/2� rounds and the number of comparisons made by the
algorithm is n(n − 1)/2.

Proof. When n is even, each element gains information regarding two new ele-
ments in each round (one due to the comparison initiated by the element, and
another due to the comparison initiated on this element). So by round n/2 − 1,
all elements have discovered their relation with all other but one element of the
input. So in one more round of n/2 comparisons, all relationships will be found.

Thus the total number of comparisons made in this case is (n/2−1)n+n/2 =
n(n − 1)/2.

Similarly when n is odd, the algorithm takes (n − 1)/2 rounds for each ele-
ment to find its relation with the rest of the elements. Thus, total number of
comparisons made in this case is also n(n − 1)/2. �

We prove the correctness for m ≥ 2 through a series of lemmas. The first
lemma follows from the fact that we maintain the ‘invariant’ for the sets eq(ai)
and neq(ai) for each i, throughout the algorithm.
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Lemma 2. At any point in the algorithm, if ai = aj has been discovered by the
algorithm, then eq(ai) = eq(aj) and neq(ai) = neq(aj).

To understand the next lemma (and hence the total runtime of the algo-
rithm), consider the (lucky) situation where all initial comparisons were equality
comparisons and so all groups have found (a lower bound for) their frequencies.
Now to determine their exact frequency, all we need to do is to make one com-
parison between each pair of groups. But we may not be that lucky, as several
wasteful ‘not equal’ comparisons may have been made between groups of (equal)
elements before we even discover that a pair of elements in a group are equal.
Lemma 3 says that because of the order in which we make the comparisons, the
algorithm will not do too many wasteful comparisons.

Lemma 3. Let ai, aj be two elements such that ai = aj, and let k /∈ eq(i). If ai

initiates a comparison with ak in a round, then aj will subsequently not initiate
a comparison with ak (even if ai = aj was not determined when ai initiated a
comparison with ak).

Proof. If ai = aj has already been discovered by the algorithm when ak was
directly compared with ai, then clearly the outcome of the comparison between
ak and ai also gives the relation between ak and aj (as updated by the eq and
neq sets) and so the algorithm will not compare aj with ak.

Suppose ai = aj has not been discovered by the algorithm when ak was
compared with ai. Suppose k > i. If j < i, then the way the algorithm makes
the comparisons, aj would be compared with ai (and be found equal and hence
will learn its unequal relation with ak from ai’s neq set) before comparing with
ak and hence will not initiate a comparison with ak thereafter. Hence assume
that j > i. Now, if j < k, then ai would have initiated a comparison with aj

before initiating with ak – a contradiction to the fact that ai = aj has not been
discovered when ai was initiating a comparison with ak. So j > k. Then again
aj would initiate a comparison (in the wrap around) with ai before initiating a
comparison with ak. Hence aj will not initiate a comparison with ak.

A similar argument proves the claim if k < i. �

A similar mirroring lemma also holds.

Lemma 4. Let ai, aj be two elements such that ai = aj, and let k /∈ eq(i). If ak

initiates a comparison with ai in a round, then ak will subsequently not initiate
a comparison with aj (even if ai = aj was not determined when ak initiated a
comparison with ai).

Proof. Similar to proof of Lemma 3.

Lemma 5. Let X be the set of ais whose value is x, for some value x, and let
|X| = m ≥ 2. Then all elements of X together initiate at most n−1 comparisons
in �(n − 1)/m� rounds and know their relation with every other element.
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Proof. From Lemma 3, all elements of X initiate together at most n − m com-
parisons with elements not in X. As the equality relation is transitive, at most
m − 1 equality comparisons will be made among themselves to determine that
they are all equal. Thus together elements of X initiate at most n − 1 compar-
isons. Thus at least one element of X initiates at most (n − 1)/m comparisons
and hence knows its relation to others in this many rounds (as otherwise it would
have initiated more comparisons). Note that if any element of X has determined
its relationship to all other elements, then all elements of X immediately know
their relationship to all other elements. So in at most �(n − 1)/m� rounds, each
element of X will determine its relationship with all other elements. �

Hence it is clear that the first r for which an element appears at least �(n −
1)/r� times is the frequency of the mode. For, if there is an element whose
frequency is more, then from Lemma 5, that element would have been discovered
in the previous rounds. � (of Theorem 1)

In fact, it follows from the proof of the above theorem that

Theorem 2. Given a list of n elements and an integer k, all elements (if any)
with frequency at least k can be found using at most O(n2/k) comparisons.

3 Sorting

Recall the naive algorithm that repeatedly picks an element ai, which is known to
be different from the elements whose exact frequencies have been discovered, and
finds its frequency by comparing it with all elements not in eq(ai) and neq(ai)
updating these two sets after every comparison. Let c be the number of distinct
elements in the sequence, and let x1, x2, . . . xc be the values of the elements, and
let mi, i = 1 to c be the number of times xi occurs, where m1 ≥ m2 ≥ m3 . . . ≥
mc. In the worst case this algorithm will take at most (n− 1)+ (n− 1− (mc))+
(n−1−(mc+mc−1))+ ...+(n−1−(mc+mc−1− ...+m2))) comparisons. This is
at most nc−c−∑c

i=2 (i − 1)mi =
∑c

i=1(c− i+1)mi−c =
∑c

i=1(c− i)mi+n−c
which is at most c(n − 1) + n comparisons. Thus we have

Theorem 3. Let c be the number of distinct values in the sequence, and let
x1, x2, . . . xc be the values of the elements, and let m1,m2, . . . mc be the number of
times xi occurs, where m1 ≥ m2 ≥ m3 . . . ≥ mc. Then there exists an algorithm
to sort the list using at most

∑c
i=1(c − i)mi + n − c comparisons.

In what follows, we analyze the number of comparisons made by our mode
algorithm (Theorem 1) if we run it until all frequencies are determined. Let c be
the number of distinct elements in the list. Then, it follows from Lemma 4 that
an element ak never initiates a comparison with two elements ai and aj that
are equal to each other, but are not equal to ak. Thus every element initiates
at most c − 1 comparisons with elements not equal to it, and hence the total
number of comparisons resulting in ‘not equal’ answer, made by the algorithm is
at most n(c−1). Along with the n−c equality comparisons, the total number of
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comparisons is at most c(n− 1). In the following, we give a tighter upper bound
for the number of comparisons made by the algorithm.

We begin with the following corollary that follows from Lemmas 3 and 4.

Corollary 1. Let x and y be two distinct values that occur m1 and m2 times
respectively in the sequence, then the number of comparisons made by the algo-
rithm between elements ai = x and aj = y is at most 2min{m1,m2}.
Proof. Let A be the set of indices i such that ai = x and B be the set of indices
j such that aj = y. Draw a bipartite graph with two parts as A and B and orient
an edge from i to j if ai initiates a comparison with aj . Lemma 3 says that the
indegree of any vertex in this bipartite graph is at most one and Lemma 4 says
that the outdegree of any vertex is at most one. Thus the number of edges, that
corresponds to the number of comparisons made between A and B is at most
2min{m1,m2}. �

Theorem 4. Let c be the number of distinct elements in the sequence, and let
x1, x2, . . . xc be the values of the elements, and let m1,m2, . . . mc be the number
of times xi occurs, where m1 ≥ m2 ≥ m3 . . . ≥ mc. Then the number of com-
parisons made by the mode algorithm to identify the frequency of every element
is at most 2(

∑c
i=1 imi) − n − c ≤ c(n − 1).

Proof. Consider the number of comparisons made together by the set of all
elements that are equal to xc with all the elements outside this set. By Corollary
1, this number is at most 2mc(c−1). In general, the number of comparisons made
together by the set of elements that equal xi with elements that equal xj for all
j < i, is at most 2mi(i − 1). Thus the total number of comparisons made by the
algorithm is at most 2

∑c
i=1 mi(i − 1) = 2

∑c
i=1(mii − mi) = 2

∑c
i=1 imi − 2n.

As the equality comparisons are transitive, the number of equality comparisons
(made within each group) is at most

∑c
i=1(mi − 1) which is at most n − c.

Thus the total number of comparisons made by the algorithm is at most
2
∑c

i=1 imi − 2n + n − c = 2(
∑c

i=1 imi) − n − c
To show that 2(

∑c
i=1 imi)−n−c ≤ c(n−1), it suffices to show 2

∑c
i=1 imi−

2n ≤ n(c − 1) or
∑c

i=1 imi ≤ n(c + 1)/2.
Suppose c is odd. Then

n(
c + 1

2
) −

c∑

i=1

imi =
c∑

i=1

(
c + 1

2
− i)(mi)

=

(c+1)/2−1∑

i=1

mi(
c + 1

2
− i) −

c∑

i=(c+1)/2+1

mi(i − c + 1

2
)

=

(c−1)/2∑

i=1

mi(
c + 1

2
− i) −

(c−1)/2∑

j=1

j(mj+(c+1)/2)

=

(c−1)/2∑

i=1

i(m(c+1)/2−i) −
(c−1)/2∑

i=1

i(mi+(c+1)/2)

=

(c−1)/2∑

i=1

i[m(c+1)/2−i − m(c+1)/2+i] ≥ 0
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The last inequality is true since every term in the summand is nonnegative
as mi’s are in nondecreasing order. This proves the claim.

Suppose c is even. Then

n(c + 1)/2 −
c∑

i=1

imi =
c∑

i=1

((c + 1)/2) − i)(mi)

=
c/2∑

i=1

mi(
c + 1

2
− i) −

c∑

i=c/2+1

mi(i − c + 1
2

)

=
c/2∑

i=1

mi(
c + 1

2
− i) −

c/2∑

i=1

mi+c/2(i − 1/2)

=
c/2∑

i=1

mc/2−i+1(i − 1/2) −
c/2∑

i=1

mi+c/2(i − 1/2)

=
c/2∑

i=1

(i − 1/2)(mc/2−i+1 − mc/2+i) ≥ 0

This proves the theorem. �

Corollary 2. The least frequent element in a sequence of n elements can be
found in at most n2/� equality comparisons where � is the frequency of the least
frequent element.

Proof. If � is the frequency of the least frequent element, then every element
appears at least � times and hence the number c of distinct elements is at most
n/�. So if we apply our sorting algorithm (Theorem 4), we can sort, and hence
find the least frequent element in at most n(n − 1)/� comparisons. �

4 Lower Bound

In this section, we give lower bounds for finding the mode, the least frequent
element and sorting with equality comparisons. The lower bounds are proved by
the adversary first modeling the input elements as vertices of a graph. Then for
every comparison made by the algorithm, the adversary answers equal/not equal
and constructs edges (based on the structure of the graph it has constructed till
then) appropriately. The adversary answers in a way that it can instantiate the
input elements, consistent with its answers.

4.1 Lower Bound for Finding the Mode

For giving a lower bound for finding the mode, we use Turán’s theorem stated
below.
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Theorem 5. [14] (see Theorem 1.1 in Chapter VI in [5]) Let G be any graph
with n vertices such that G has no Km+1, the complete graph on m + 1 vertices.
Then the number of edges in G is at most (1 − 1/m)n2/2 = n2/2 − n2/2m.

Theorem 6. At least n2/2m − n/2 equality comparisons are necessary for any
algorithm to determine a mode with frequency m from a given list of n elements,
even if the algorithm knows m.

Proof. The proof is by an adversary argument. The adversary models the n
elements as n vertices of an undirected graph G. Whenever the algorithm makes
a comparison between a pair of elements, the adversary will answer ‘not equal’
and draws an edge between the pair of vertices, if after the addition of this edge,
there is still an independent set in the graph of size m + 1 or more. Otherwise,
the adversary will answer ‘equal’.

As long as the modeled graph has an independent set of size m + 1, the
algorithm cannot determine the mode. For, the adversary can make any subset
of the elements of the independent set of size m + 1 as being equal to the mode.

Now when the algorithm gets the first ‘equality’ answer, the graph G has no
independent set of size m+1. Hence Ḡ, the complement of G has no clique of size
m+1. Hence by Theorem 5, the number of edges in Ḡ is at most n2/2−n2/2m.
Hence the number of edges in G, that corresponds to the number of comparisons
made by the algorithm, is at least

(
n
2

) − n2/2 + n2/2m = n2/2m − n/2. �

Recall the classical (textbook) algorithm [6] to determine the majority, if
exists, of a list of n elements using at most 2n equality comparisons. Suppose
the list has no majority element, one could ask for a pair of elements whose
combined frequency is at least �n/2�. We show, by an adversary argument, using
Theorem 6 that finding such a pair requires Ω(n2) comparisons.

The adversary sets up the input in such a way that one element appears
exactly n/2−2 times (and hence not a majority) and every other element appears
once or twice. The adversary gives away the element that appears exactly n/2−2
times. So the algorithm’s task is to determine whether there is an element that
appears at least twice among the remaining elements. The adversary answers
the comparisons between the remaining elements as in the proof of Theorem 6
(with m = 2) forcing the algorithm to perform Ω(n2) comparisons. Thus we
have

Theorem 7. Given a list of n elements, Ω(n2) comparisons are necessary to
determine whether there exists a pair of elements that together appear at least
n/2 times.

4.2 Lower Bound for Finding the Least Frequent Element

Note that the adversary in the proof of Theorem 6 does not work well to prove a
lower bound for finding the least frequent element, as an algorithm can pick an
element and compare it with every other element receiving ‘not equal’ answers
and can declare it to be the least frequent element using only n−1 comparisons.
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To obtain a better lower bound for the least frequent element, we resort to a
different adversary.

It is easy to see that any algorithm to determine whether the given n elements
are distinct, using equality comparisons, requires Ω(n2) comparisons. We convert
that into a bound for finding the least frequent element.

Lemma 6. In an n element list, Ω(n2) comparisons are needed to find the least
frequent value.

Proof. The adversary answers a comparison between ai and aj ‘not equal’ as
long as there is some other element with which ai and aj have not found their
relation; i.e. the adversary makes them equal if this is the ‘last’ comparison for
ai or aj . The adversary follows this strategy except for the last pair of elements
for which it makes them not equal even on their last comparison. Thus it makes
the last pair of elements as the least frequent elements appearing only once.

More precisely the adversary’s answer for a comparison between a pair of
elements ai and aj is as follows:

– If there exists an index k(�= j) /∈ eq(ai) ∪ neq(ai), then answer ‘not equal’
– else if there exists an index k(�= i) /∈ eq(aj)∪neq(aj), then answer ‘not equal’
– else if there exists an index k �= i, k �= j such that |eq(ak)∪neq(ak)| < n−1,

then answer ‘equal’
– else answer ‘not equal’.

Thus the adversary makes all but two elements with frequency two and the
last pair of elements to determine their frequencies to be of frequency 1. The
adversary can declare the least frequent element to have frequency 1. Thus it
makes the algorithm to perform at least n − 1 comparisons to eliminate every
two elements out of contention for the least frequent element, thus forcing the
algorithm to make Ω(n2) comparisons. �

We strengthen the bound to show the following.

Theorem 8. In an n elements list, Ω(n2/l2) equality comparisons are necessary
for any algorithm to determine a least frequent element with frequency l even if
the algorithm knows l.

Proof. Let n be a multiple of l. The adversary gives away n/l sets of size l each
and reveals that all the elements in each set are equal to each other. Now the
algorithm’s task is to determine whether any element of any of the sets has copies
elsewhere. Now using the adversary as in the proof of Lemma 6, it follows that
Ω(n2/l2) comparisons are necessary to find the least frequent element. �

We also show that

Theorem 9. In an n elements list, Ω(n2/m2) equality comparisons are neces-
sary for any algorithm to find all modes or to sort if every element is a mode
appearing m times even if the algorithm knows m.
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Proof. The adversary is similar to that in the proof of Theorem 8, but if the
algorithm is told that all elements in each set (of size m) are the same, then the
algorithm has nothing to do. So the adversary partitions the set into two, one
of size n/m containing all distinct elements, which is revealed to the algorithm,
and the other of size n−n/m grouped into n/m groups of size m−1 each having
all equal elements. Now the algorithm’s task is for each element in the first set
to find its group in the second set. The adversary can answer in a way that the
algorithm is forced to make roughly n2/2m2 comparisons. �

We note that this bound falls short of our upper bound of O(n2/m) proved in
Theorem 1 to find all modes or to sort when all elements appear m times.

5 Conclusions

We have determined (up to constant factors) the comparison complexity of find-
ing a mode in a given list of n elements using only equality comparisons. There
is a gap of a factor of 2 between upper and lower bounds (Theorem 1 and Theo-
rem 6). In the special case when all elements other than the mode (that appears
m ≥ 2 times) are distinct, we did discuss an algorithm that achieves the lower
bound. So we conjecture that the lower bound is correct, and if so improving
our algorithm to match the lower bound is an interesting open problem.

Here are other specific interesting questions.

– Can we find a least frequent element that is known to appear � times, in
O(n2/�2) comparisons, as claimed in our lower bound (Theorem 8), or can
the lower bound be improved? Our algorithm (Theorem 2) finds all least
frequent elements in O(n2/�) time.

– If we are told that every element appears m ≥ 2 times, can we identify the
groups, i.e. sort or equivalently find all the modes in better than O(n2/m)
time? We could only prove a lower bound of Ω(n2/m2) (Theorem 9) and we
conjecture that the lower bound can be strengthened to n2/m even in this
case.
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Abstract. It was proved independently and with different techniques in
[Golovach et al. - ICALP 2013] and [Kanté et al. - ISAAC 2012] that there
exists an incremental output polynomial algorithm for the enumeration
of the minimal edge dominating sets in graphs, i.e., minimal dominating
sets in line graphs. We provide the first polynomial delay and polynomial
space algorithm for the problem. We propose a new technique to enlarge
the applicability of Berge’s algorithm that is based on skipping hard
parts of the enumeration by introducing a new search strategy. The new
search strategy is given by a strong use of the structure of line graphs.

1 Introduction

The Minimum Dominating Set problem is a classic and well-studied graph
optimization problem. A dominating set in a graph G is a subset D of its vertex
set such that each vertex is either in D or has a neighbor in D. Computing a min-
imum dominating set has numerous applications in many areas, e.g., networks,
graph theory (see for instance the book [9]). The Minimum Edge Dominating
Set problem is a classic well-studied variant of the Minimum Dominating Set
problem [9]. An edge dominating set is a subset F of the edge set such that each
edge is in F or is adjacent to an edge in F . In this paper, we are interested in
an output polynomial algorithm for listing without duplications the (inclusion-
wise) minimal edge dominating sets of a graph. An output polynomial algorithm
is an algorithm whose running time is bounded by a polynomial depending on
the sum of the sizes of the input and of the output. The enumeration of mini-
mal or maximal subsets of vertices satisfying some property in a (hyper)graph
is a central area in graph algorithms and for several properties output polyno-
mial algorithms have been proposed, e.g., [1,3,5,6,15,18], while for others it was
proven that no output polynomial time algorithm exists unless P=NP [14,15].

The existence of an output polynomial algorithm for the enumeration of min-
imal dominating sets of graphs (Dom-Enum problem) is a widely open question
and is closely related to the well-known Trans-Enum problem in hypergraphs
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 446–457, 2015.
DOI: 10.1007/978-3-319-21840-3 37
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which asks for an output polynomial algorithm for the enumeration of all minimal
transversals in hypergraphs. A transversal (or a hitting-set) in a hypergraph is a
subset of its vertex set that intersects all its hyper-edges. This is a long-standing
open problem (see for instance [4]) and is well-studied due to its applications in
several areas [4,5,8]. Up to now only few tractable cases are known (see [11] for
some examples). It is easy to see that the minimal dominating sets of a graph
are the minimal transversals of its closed neighbourhoods1, and then, as a par-
ticular case, it seems that the Dom-Enum problem is more tractable than the
Trans-Enum problem, but some of the authors have very recently proved in [11]
that the Trans-Enum problem can be polynomially reduced to the Dom-Enum
problem. They also investigate the enumeration of minimal dominating sets in
the perspective of graph theory and exhibit several new tractable cases, split
graphs [11], undirected path graphs [10], interval and permutation graphs [12]
and chordal P6-free graphs [11]. In particular, they prove that the enumeration
of minimal edge dominating sets can be done in (incremental) output polynomial
time (a result obtained independently by Golovach et al. [7]). Many enumeration
problems admit an output polynomial algorithm but no polynomial delay algo-
rithm [20, Section 2.3], and so a natural question is whether one can enumerate
with polynomial delay all the minimal edge dominating sets, and we answer this
question positively in this paper.

Further, some of the aforementioned tractable cases of the Trans-Enum
problem are based on Berge’s algorithm [2]. Berge’s algorithm consists in
ordering the hyper-edges E1, . . . , Em of a given hypergraph H and computes
incrementally the minimal transversals of {E1, . . . , Ei} from the minimal
transversals of {E1, . . . , Ei−1}. The algorithm is not output polynomial when
there is a possibility that the intermediate steps have huge output sizes compared
to the output solution. Indeed, it is proved in [21] that there exist hypergraphs
for which Berge’s algorithm is not output polynomial for any ordering. But,
even though the applicability of Berge’s algorithm seems to be limited, for sev-
eral cases, e.g., bounded tree-width graphs, planar graphs and more generally
k-degenerate graphs, one can prove that Berge’s algorithm is output polyno-
mial. On the other hand, in the presence of some instances Berge’s algorithm
has a great potential for being turned into a polynomial delay polynomial space
algorithm, compared to the other algorithms (for instance Khachiyan’s algo-
rithm). Indeed, Berge’s algorithm admits a depth-first search on the solution
space and then there is no need to store the solutions already found. In this
sense, expanding the applicability of Berge’s algorithm is quite important for
more understanding the Trans-Enum problem.

In this paper, we propose a new way of expanding the applicability of Berge’s
algorithm. One of the disadvantages of Berge’s algorithm is a huge computation
time on the intermediate steps. Our first idea is to identify intermediate steps
which produce intermediate solutions that can be extended to an output solution,
and “skip” the other costly intermediate steps. But the search cost for finding

1 The closed neighborhood of a vertex v in a graph is the set containing v and all its
neighbors.
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neighboring solutions becomes hard; we have to spend much time and use much
space for finding each solution in the next intermediate step, from the solution of
the current step. Our idea is to introduce another enumeration scheme to cope
with this difficulty, to enable polynomial delay enumeration of the solutions to
the next intermediate step. We apply this idea to the minimal edge dominating
set enumeration problem, and obtain the first polynomial delay polynomial space
algorithm for this problem.

2 Preliminaries

The power-set of a set V is denoted by 2V and its size is denoted by |V |. Our
graph terminology is standard and we deal only with finite and simple undirected
graphs. A graph G is denoted by the pair (V,E) with vertex set V and edge set
E. An edge between x and y in a graph is denoted by xy (equivalently yx) and
sometimes it will be convenient to consider an edge xy as the set {x, y}, but this
will be clear from the context. A hypergraph is a pair (V,F ⊆ 2V ) with V called
its vertex set and F its set of hyper-edges.

Let G := (V,E) be a graph. For a vertex x, we denote by Ñ(x) the set of
edges incident to x, and N(x) denotes the set of vertices adjacent to x. For every
edge xy, we denote by N [xy] the set Ñ(x) ∪ Ñ(y). A subset D of E is called an
edge dominating set if for every edge e of G, we have N [e] ∩ D �= ∅, and D is
minimal if no proper subset of it is an edge dominating set.

An enumeration algorithm for a search problem consists in listing completely
all the solutions without duplications. When an enumeration algorithm always
terminates in time polynomial in n and N where n is the input size and N
is the output size, the algorithm is called output polynomial, and it is called
polynomial space if it uses space bounded by a polynomial in n. The delay of an
enumeration algorithm is the maximum computation time from the time that a
solution is output to the time the next solution is output, or the termination of
the algorithm. The algorithm is called polynomial delay if its preprocessing time
and the delay are both polynomial in the input size. It is worth noticing that
such an algorithm has a running time bounded by the sum of the preprocessing
time, and the delay multiplied by the number of solutions.

Let H := (V,F) be a hypergraph. The set of private neighbors of a vertex x
w.r.t. T ⊆ V , denoted by PH(x, T ), is {E ∈ F | E∩T = {x}}. A subset T of V is
called an irredundant set if PH(x, T ) �= ∅ for all x ∈ T . A transversal (or hitting
set) of H is a subset of V that has a non-empty intersection with every hyper-
edge of H; it is minimal if it does not contain any other transversal as a proper
subset. It is known that a transversal is minimal if and only if PH(x, T ) �= ∅ for
all x ∈ T . The set of all minimal transversals of H is denoted by tr(H).

For a graph G := (V,E) and E′ ⊆ E, we denote by H(E′) the hypergraph
(E, {N [e] | e ∈ E′}), and the edge neighborhood hypergraph of G is the hyper-
graph H(E). The following proposition is easy to obtain.

Proposition 1. For any graph G := (V,E), T ⊆ E is an edge dominating set of
G if and only if T is a transversal of H(E). Therefore, T ⊆ E(G) is a minimal
edge dominating set of G if and only if T is a minimal transversal of H(E).
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For a better readability we say that an edge f is a private neighbor of an
edge e w.r.t. T in H(E′), for E′ ⊆ E, if N [f ] ∈ PH(E′)(e, T ), and by abuse of
notation we will write f ∈ PH(E′)(e, T ) instead of N [f ] ∈ PH(E′)(e, T ).

3 Berge’s Algorithm and Basic Strategy

Our strategy for the enumeration is based on Berge’s algorithm [2]. For a given
hypergraph H := (V,F) with hyper-edges enumerated as F1, . . . , Fm, let Fj be
{F1, . . . , Fj} for each 1 ≤ j ≤ m. Roughly, Berge’s algorithm computes, for each
1 < j ≤ m, tr(Fj) from tr(Fj−1). Although the algorithm is not polynomial
space, there is a way to reduce the space complexity to polynomial. The algo-
rithm follows a tree of height m rooted at ∅ and such that the nodes located on
the i-th level correspond to the minimal transversals of Fi. Thus, the leaves at
level m correspond to the minimal transversals of the hypergraph. The tree can
be described by the following parent-child relation. For j ≥ 1 and T ∈ tr(Fj),
we define the parent Q′(T, j) of T as follows

Q′(T, j) :=

{
T if T ∈ tr(Fj−1),
T \ {v} if v is such that PFj

(v, T ) = {Fj}.

We can observe that T �∈ tr(Fj−1) if and only if PFj
(v, T ) = {Fj} holds

for some v ∈ T , thus the parent is well defined and always in tr(Fj−1) [13,17].
One can moreover compute the parent of any T ∈ tr(Fj) in time polynomial in
|V |+∑

F∈F |F |. The tree induced by the parent-child relation spans all members
of

⋃

1≤j≤m

tr(Fj). We can traverse this tree in a depth-first search manner from

the root by recursively generating the children of the current visited minimal
transversal. Any child is obtained by adding at most one vertex, then the children
can be listed in polynomial time. In this way, we can enumerate all the minimal
transversals of a hypergraph with polynomial space.

Formally and generally, we consider the problem of enumerating all elements
of a set Z that is a subset of an implicitly given set X . Assume that we have a
polynomial time computable parent function P : X → X ∪ {nil}. For each X ∈
X , P (X) is called the parent of X, and the elements Y such that P (Y ) = X are
called children of X. The parent-child relation of P is acyclic if any X ∈ X is not
a proper ancestor of itself, that is, it always holds that X �= P (P (· · · P (X)) · · · ).
We say that an acyclic parent-child relation is irredundant when any X ∈ X has
a descendant in Z, in the parent-child relation. The depth of an acyclic parent-
child relation P is the size of the longest chain between nil and an element of
X . The following statements are well-known in the literature [1,13,16,17,19].

Proposition 2. All elements in Z can be enumerated with polynomial space if
there is a polynomial depth acyclic parent-child relation P : X → X ∪{nil} such
that there is a polynomial space algorithm for enumerating all the children of
each X ∈ X ∪ {nil}.
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Proposition 3. All elements in Z can be enumerated with polynomial delay and
polynomial space if there is a polynomial depth irredundant parent-child relation
P : X → X ∪ {nil} such that there is a polynomial delay polynomial space
algorithm for enumerating all the children of each X ∈ X ∪ {nil}.

With acyclic (resp., irredundant) parent-child relation P : X → X ∪ {nil},
the following algorithm enumerates all elements in Z, with polynomial space
(resp., with polynomial delay and polynomial space).

Algorithm ReverseSearch(X)
1. if X ∈ Z then output X
2. for each child Y of X call ReverseSearch(Y )

The call ReverseSearch(nil) enumerates all elements in Z. Since the above
parent-child relation for transversals Q′ is acyclic, the algorithms proposed in
[13,17] use polynomial space. However, the parent-child relation Q′ is not irre-
dundant and hence ReverseSearch(nil) does not guarantee a polynomial delay
neither an output polynomiality. Indeed, we can expect that the size of tr(Fj)
increases as the increase of j, and it can be observed in practice. However, tr(Fj)
can be exponentially larger than tr(Fm), thus Berge’s algorithm is not output
polynomial [21]. Examples of irredundant parent-child relations can be found in
the literature [1,16,19].

One idea to avoid the lack of irredundancy is to certify the existence of
minimal transversals in the descendants. Suppose that we choose some levels
1 = l1, . . . , lk = m of Berge’s algorithm, and state that for any T ∈ tr(Flj ), we
have at least one descendant in tr(Flj+1). This implies that any transversal in
tr(Flj ) has a descendant in tr(Fm), thus we can have an irredundant parent-child
relation by looking only at these levels, and the enumeration can be polynomial
delay and polynomial space.

We will use this idea to obtain a polynomial delay polynomial space algorithm
to enumerate the minimal edge dominating sets, the levels are determined with
respect to a maximal matching. From now we assume that we have a fixed graph
G := (V,E) and we will show how to enumerate all its minimal edge dominating
sets. A subset of E is a matching if every two of its edges e and f are not
adjacent. A matching is maximal if it is not included in any other matching. Let
{b1, . . . , bk} be a maximal matching of G, and let bi = xiyi. For each 0 ≤ i ≤ k,

let Vi := V \
(

⋃

i′>i

bi′

)

, and let Ei := {e | e ⊆ Vi}). Let Bi := Ei \Ei−1 for i > 1.

Note that any edge in E1 is adjacent to b1 and by definition Bi never includes
an edge bj �= bi. Without loss of generality, we here assume that we have taken
a linear ordering ≤ on the edges of G so that: (1) for each e ∈ Bi and each
f ∈ Ei−1 we have f < e, (2) for each e ∈ Ñ(xi) ∩ Bi, each f ∈ Ñ(yi) ∩ Bi we
have bi < e < f . Observe that with that ordering we have e < f whenever e ∈ Bi

and f ∈ Bj with i < j. We consider that Berge’s algorithm on H(E) follows
that ordering. In fact we will prove using Berge’s algorithm that we can define
an irredundant parent-child relation to enumerate tr(H(Ei)) from tr(H(Ei−1)).
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Lemma 1. Let 1 ≤ i < k. Any T ∈ tr(H(Ei−1)) has at least one descendant in
tr(H(Ei)).

Proof. If T ′ ∈ tr(H(Ei)) satisfies T ′ = T , then T ′ is a descendant of T since the
parent is never greater than the child. If T �∈ tr(H(Ei)), some edges X of Bi are
not dominated by T , and consider T ′ := T ∪{bi}. We observe that bi is adjacent
to all edges of Bi and the edges in X are private neighbors of bi in T ′, thus T ′

is included in tr(H(Ei)). Let us compute the ancestor of T ′ in tr(H(Ei−1)) as
follows: set T” := T ′ and repeatedly compute the parent of T” and set T” to its
parent, until reaching a minimal transversal in tr(H(Ei−1)). In this process no
vertex of T is removed since each vertex in T has a private neighbor in Ei−1.
But, at some point bi is removed from T ′ since it is the only one in T ′ which
has a private neighbor in Bi. This means that T is an ancestor of T ′, and thus
T always has a descendant in tr(H(Ei)). ��

For conciseness, we introduce a new parent-child relation for edge dominating
set enumeration. For T ∈ tr(H(Ei)), let Q′

j(T, |Ei|) be the ancestor of T located
on the j-th level of Berge’s algorithm, i.e., Q′

j(T, |Ei|) = Q′(Q′(· · · (T, |Ei|), |Ei|−
1), · · · , j + 1). Then, we define the skip parent Q(T, i) of T by Q′

|Ei−1|(T, |Ei|). T ′

is a skip-child of T ∈ tr(H(Ei−1)) if and only if T ′ ∈ tr(H(Ei)) and Q(T ′, i) = T .
The set of skip-children of T ∈ tr(H(Ei)) is denoted by C(T, i). From Propositions
2 and 3, and Lemma 1 we have the following proposition.

Proposition 4. If we can list all skip-children of T ∈ tr(H(Ei)), for each 1 ≤
i ≤ k, with polynomial delay and polynomial space, then we can enumerate all
minimal edge dominating sets with polynomial delay and polynomial space.

But, as we will show in the next section, for a transversal T in tr(H(Ei−1)),
the problem of finding a transversal of tr(H(Ei)) including T is NP-complete in
general. In order to overcome this difficulty, we will identify a pattern, that we
call an H-pattern, that makes the problem difficult. We will first show that one
can enumerate with polynomial delay and polynomial space all the skip-children
that include no edges from H-patterns, and then define a new parent-child rela-
tion that will allow to enumerate also with polynomial delay and polynomial
space the other skip-children in a different way. In the following sections, we
explain the methods for the enumeration.

4 Computing Skip-Children

Let T be in tr(H(Ei−1)) and T ′ ∈ tr(H(Ei)) a skip-child of T . First notice that
every edge in T ′ \T can have a private neighbor only in Bi. Indeed every edge in
Ei−1 is already dominated by T and an edge in T ′\T is only used to dominate an
edge in Bi. Moreover, an edge e �= bi in Ñ(xi)∩(T ′ \T ) (resp. in Ñ(yi)∩(T ′ \T ))
can only have private neighbors in Ñ(xi) ∩ Bi (resp. Ñ(yi) ∩ Bi). And from the
proof of Lemma 1 if bi ∈ T ′ \ T then T ′ \ T = {bi}.

Let us first consider the case that every edge in T ′ \T is adjacent to bi. From
our discussion above, when two edges in T ′ \T are incident to xi (resp. yi), they
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cannot have both private neighbors. Thus T ′ \ T can include at most two such
edges. Therefore, by choosing all combinations of one or two edges adjacent to
bi, adding them to T and then checking if the skip-parent of the resulting set is
T , we can enumerate all the skip-children T ′ of T such that T ′ \ T ⊆ Bi with
polynomial delay and polynomial space.

We now consider the remaining case that an edge in T ′ \ T is not adjacent
to bi. We call such a skip-child extra. We can see that at least one edge f �= bi

adjacent to bi has to be included in T ′ to dominate bi. Actually, since bi < e for
any e ∈ Bi \{bi}, any extra skip-child of T is a descendant of some T ∪{f} with
f �= bi incident to xi or yi in the original parent-child relation. So, without loss
of generality, we will assume that such an edge f �= bi is incident to xi and is
included in T . Hereafter, we suppose that N(yi) := {z1, . . . , zk} and assume T ′

is an extra skip-child of T .
A vertex zh ∈ N(yi) ∩ Vi is free if it is not incident to an edge in T , and

is non-free otherwise. A free vertex is said to be isolated if it is not incident to
an edge in Ei−1. Clearly, if there is an isolated free vertex, then T has no extra
skip-child. Thus, we assume that there is no isolated free vertex. Edges in Ei \Bi

that are incident to some free vertices are called border edges. Observe that any
border edge vzh incident to a free vertex zh is adjacent to an edge vw ∈ T if
v ∈ Vi−1. The set of border edges is denoted by Bd(T, i). Note that no edge in
Bd(T, i) is incident to two free vertices, otherwise the edge is in Ei−1 but not
dominated by T , and then any border edge is incident to exactly one free vertex.
We can see that an edge of Bi incident to yi is not dominated by T if and only
if it is incident to a free vertex, and any edge in T ′ \ T that is not incident to xi

is a border edge. Then, for any border edge set Z ⊆ Bd(T, i), T ∪Z ∈ tr(H(Ei))
only if each free vertex has a border edge e ∈ Z incident to it. Since any border
edge is incident to exactly one free vertex, for any Z ⊆ Bd(T, i) such that T ∪Z
is irredundant and for any edge vzh ∈ Z with free vertex zh, PH(Ei)(e, T ∪ Z)
is always {vzh}. This implies that T ∪ Z is in tr(H(Ei)) only if Z ⊆ Bd(T, i)
includes exactly one edge incident to each free vertex. We call such an edge set
Z a selection. We observe that all border edges are dominated by Z. We have
the following lemma which is straightforward to prove.

Lemma 2. For any edge subset Z with Z∩T = ∅, there holds T ∪Z ∈ tr(H(Ei))
only if Z is a selection.

An edge e ∈ T is called redundant if all edges in PH(Ei−1)(e, T ) are border
edges and no edge yizh is in PH(Ei)(e, T ).

Lemma 3. If T has a redundant edge, then any selection Z does not satisfy
T ∪ Z ∈ tr(H(Ei)).

Proof. Let e be a redundant edge of T . Since any border edge f is incident to
a free vertex zh, any selection Z should contain one edge incident to zh and
then if f is incident to e, we have f /∈ PH(Ei)(e, T ∪ Z). Since no edge yizh is in
PH(Ei)(e, T ), there holds that PH(Ei)(e, T ∪ Z) = ∅ for any selection Z. ��
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Let XT := {e ∈ Bd(T, i) | ∃e′ ∈ T and PH(Ei)(e
′, T ∪ {e}) ⊆ Bd(T, i)}. The

addition of any edge e ∈ XT to T transforms an edge e′ of T into a redundant
one with respect to T ∪ {e}, and thus by Lemma 3 for any Z ⊆ Bd(T, i),
T ∪ Z ∈ tr(H(Ei)) holds only if Z ∩ XT = ∅. Therefore, the following follows.

Lemma 4. If a free vertex is not incident to an edge in Bd(T, i)\XT , then any
Z ⊆ Bd(T, i) does not satisfy T ∪ Z ∈ tr(H(Ei)).

One can hope that we can characterize the selections Z not intersecting
XT such that T ∪ Z ∈ tr(H(Ei)) and be able to use it for listing the extra
skip-children. Unfortunately, checking whether there is such a selection Z is
NP-complete.

Theorem 1. Given T ∈ tr(H(Ei−1)), it is np-complete to check whether there
is a selection Z such that Z ∩ XT = ∅ and T ∪ Z ∈ tr(H(Ei)).

In order to overcome this difficulty, we identify a pattern, that we call an
H-pattern, that makes the problem difficult.

Definition 1 (H-Pattern). A vertex set {z�, v�, zj , vj} is an H-pattern if z�

and zj are free vertices, v�vj is in T , and v�vj has two non-border private neigh-
bors in Ei−1 \ T : one is adjacent to v� and the other to vj. We also say that the
edges z�v�, zjvj and v�vj induces an H-pattern.

We will see that the np-completeness comes from the presence of H-patterns.
Indeed, for an H-pattern {z�, v�, zj , vj}, any private neighbor of v�vj is adjacent
to either z�v� or to zjvj , thus we cannot add both to a selection Z since in
that case PH(Ei)(v�vj , T ∪ Z) will be empty. Let HT be the set of border edges
included in an H-pattern. In the next two subsections we will see how to list
selections including no edge from HT , and those that do.

Lemma 5. If T has no redundant edge, then T ∪ Z ∈ tr(H(Ei)) holds for any
selection Z ⊆ Bd(T, i) \ (XT ∪ HT ).

Proof. From the definition, T ∪ Z dominates all the edges in Ei and for each
e ∈ Z it holds that PH(Ei)(e, T ∪Z) �= ∅. Since Z includes no edge from HT ∪XT ,
and T has no redundant edge, one easily checks from Lemmas 2, 3 and 4 by case
analysis that any edge e ∈ T has a private neighbor f that is adjacent to no
border edge, or an edge yizh is adjacent to e and not to edges in T \ {e}. Thus,
either f ∈ PH(Ei)(e, T ∪ Z) or yizh ∈ PH(Ei)(e, T ∪ Z). These imply that T ∪ Z
is in tr(H(Ei)). ��

4.1 Dealing with Redundancies

The lemmas above demonstrate how to construct transversals T ′ ∈ tr(H(Ei))
from T , but some generated transversals may not be extra skip-children of
T . This is because such T ′ can be also generated from other transversals in
tr(H(Ei−1)). Such redundancies happen for example when two edges f1 and
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f2 in T ′ have private neighbors only in Bi, but after the removal of either one
from T ′, the other will have a private neighbor outside Bi. Assuming in this
case that f1 ∈ T and f2 ∈ T ′ \ T , it holds that T ′ can be generated from
T or from (T \ {f1}) ∪ {f2}. And since the number of selections Z such that
T ∪ Z ∈ tr(H(Ei)) can be arbitrarily large, we need to avoid such redundancies.

To address this issue, we state the following lemmas to characterize the edges
not to be added to selections Z such that T ∪ Z is an extra skip-child of T . We
say that a border edge vz� is preceding if there is an edge vzh in T satisfying
PH(Ei−1)(vzh, T ) ⊆ N [vz�] and yiz� < yizh, and denote the set of preceding
edges by X ′

T . We also say that an edge vzh ∈ T is fail if PH(Ei−1)(vzh, T ) ⊆
Bd(T, i), yizh is in PH(Ei)(vzh, T ), and no edge wz� ∈ PH(Ei−1)(vzh, T ) satisfies
yizh < yiz�.

Lemma 6. For any selection Z including a preceding edge, T ∪Z is not an extra
skip-child of T .

Lemma 7. If T has a fail edge, then T ∪ Z is not an extra skip-child of T for
any selection Z.

We are now able to characterize exactly those selections Z not intersecting
HT and such that T ∪ Z is an extra skip-child of T .

Lemma 8. Suppose that T has neither redundant edges nor fail edges and any
free vertex is incident to an edge in Bd(T, i). Then, T ∪ Z with T ∩ Z = ∅ is
an extra skip-child of T including no edge of HT if and only if Z is a selection
including no edge of XT ∪ X ′

T ∪ HT .

As a corollary we have the following.

Proposition 1. One can enumerate with polynomial delay and space all the
extra skip-children of T that do not contain edges of HT .

Proof. If T has redundant edges or fail edges or has a free vertex not incident
to an edge in Bd(T, i) \XT , then by Lemmas 3, 4 and 7 we can conclude that T
has no extra skip-child. Since we can compute XT in polynomial time and check
in polynomial time whether an edge is redundant or is a fail edge, this step can
be done in polynomial time. So, assume T has no redundant edges, no fail edges
and every free vertex is incident to an edge in Bd(T, i) \ XT . By Lemma 8 by
removing all edges in HT ∪ XT ∪ X ′

T , any selection Z is such that T ∪ Z is a
skip-child of T . One easily checks that the enumeration of these selections can
be performed by picking exactly one edge in each incident star. ��

4.2 Dealing with the Presence of H-patterns

As we saw in Theorem 1, it is hard to enumerate all extra skip-children having
some edges in H-patterns from a given transversal T ∈ tr(H(Ei−1)). Let us call
these children slide-children. We approach this difficulty by introducing a new
parent-child relation among slide-children, and enumerate them by traversing
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the forest induced by the new relation. In this way, we now do not follow the
skip-parent skip-child relation for slide-children. However, the root of each tree
in the induced forest is a transversal obtained with the skip-child skip-parent
relation. Let us be more precise now. For two sets S and S′ of edges we write
S <lex S′ if min(SΔS′) ∈ S, called lexicographical ordering.

Hereafter, we consider an extra skip-child T ′ = T ∪ Z of T ∈ tr(H(Ei−1))
such that T ′ ∩HT �= ∅. Let H∗(T ′) := {vhzh, v�z�, vhv�} be the lexicographically
minimum H-pattern among all H-patterns of T that includes an edge of Z.
Without loss of generality, we assume that v�z� is in Z. Let uzh be the edge in Z
incident to zh. Notice that such an edge exists because zh is a free vertex. Then,
we define the slide-parent Q∗(T ′, i) of T ′ by T ′ ∪ {vhzh} \ {uzh, vhv�}.

Lemma 9. The slide-parent of T ′ is well-defined and is a member of tr(H(Ei)).

Proof. Since zh is a free vertex for T , Z includes exactly one edge incident to zh,
thus uzh is uniquely determined, and thus the slide-parent is uniquely defined.
Since uzh is a border edge, either u �∈ Vi−1 or u is incident to an edge of T .
This together with that vhzh and v�z� dominate all edges in N [vhv�] leads that
Q∗(T ′, i) dominates all edges in Ei.

By adding vhzh to T ′, no edge in T ′ \ {uzh, vhv�} loses its private neigh-
bor. The edge vhzh is adjacent to no edge in T ′ \ {uzh, vhv�}, and vhzh ∈
PH(Ei)(vhzh, Q∗(T ′, i)). These imply that Q∗(T ′, i) is a member of tr(H(Ei)).

��
The slide-parent of T has less edges than T , thus the (slide-parent)-(slide-

child) relationship is acyclic, and for each T ′ ∈ tr(H(Ei)), there is an ancestor
T ′′ ∈ tr(H(Ei)) in the (slide-parent)-(slide-child) relation such that the skip-
parent of T ′′ has no H-pattern. Similar to the depth-first search versions of
Berge’s algorithm [13,17], we will traverse the (slide-parent)-(slide-child) relation
to enumerate all transversals including H-pattern edges. The following follows
from the definition of slide-parent.

Proposition 5. Any slide-child T ′ of T ′′ is obtained from T ′′ by adding two
edges and remove one edge.

The computation of the slide-parent of any T ′ ∈ tr(H(Ei)) including edges
of H-patterns can be easily done in polynomial time: compute its skip-parent
T in polynomial time, choose H∗(T ) and then compute its slide-parent in poly-
nomial time as described above. Proposition 5 shows that there are at most n3

candidates for slide-children, thus the enumeration of slide-children can be done
with polynomial delay and polynomial space.

Lemma 10. For any T ′ ∈ tr(H(Ei)), all its slide-children can be enumerated
with polynomial delay and polynomial space.

We can now summarize the steps of the algorithm.

1. All transversals in tr(H(E1)) can be enumerated with polynomial delay and
polynomial space, since they include at most two edges from N [b1].
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2. In Section 4 (second paragraph), we have explained how to enumerate all
non-extra skip-children with polynomial delay and polynomial space.

3. By Proposition 1 all the extra skip-children not including any edges of H-
patterns can be enumerated with polynomial delay and polynomial space.

4. By Lemma 10 all the extra skip-children including some edges from H-
patterns can be enumerated with polynomial delay and space.

5. Therefore, by executing these three enumeration algorithms for each minimal
transversal T ∈ tr(H(Ei−1)), we can generate all the members in tr(H(Ei))
with polynomial delay and polynomial space.

All these show that the conditions of Proposition 4 are satisfied. And thus
we can state our main result.

Theorem 2. All edge minimal dominating sets in a graph G can be enumerated
with polynomial delay and polynomial space.

The greatest delay is reached by the computation of the slide-children of a given
T ∈ tr(H(Ei)). We have O(n3) candidates and for each one we compute its
slide-parent in time O(m). Then the slide-children can be enumerated with delay
O(mn3). Since the depth of the (skip-parent)-(skip-child) relation is the size of
the maximal matching, it is bounded by n, and then the total delay is bounded
by O(n6).

5 Conclusion

In this paper, we propose a polynomial delay polynomial space algorithm for list-
ing all minimal edge dominating sets in a given graph. This improves drastically
the previously known algorithms which were incremental output polynomial and
use exponential space. We state furthermore that usual approaches with Berge’s
algorithm involves an NP-complete problem, and thus it is difficult with usual
approaches of Berge’s algorithm to produce an efficient algorithm. To cope with
this difficulty, we introduce a new idea of “changing the traversal routes in the
area of difficult solutions” (the notion of skip-children and the removal of edges
involved in H-patterns). Based on this idea, we give a new traversal route on
these difficult solutions, that is totally independent from Berge’s traversal route
(the (slide-parent)-(slide-child) relation). As a result, we are able to construct a
polynomial delay polynomial space algorithm.

The idea of changing the traversal routes seems to be new and to be able to
apply to many other kind of algorithms in enumeration area. Interesting future
works are applications of this idea to other kind of enumeration algorithms, e.g.
the one used by Lawler et al. for enumerating maximal subsets [15] or other
algorithms for enumerating minimal transversals (see for instance [5]).
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10. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the neighbourhood helly of
some graph classes and applications to the enumeration of minimal dominating
sets. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676,
pp. 289–298. Springer, Heidelberg (2012)
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Abstract. In this paper we study the problem of answering connectiv-
ity queries about a graph timeline. A graph timeline is a sequence of
undirected graphs G1, . . . , Gt on a common set of vertices of size n such
that each graph is obtained from the previous one by an addition or a
deletion of a single edge. We present data structures, which preprocess
the timeline and can answer the following queries:

– forall(u, v, a, b) – does the path u → v exist in each of Ga, . . . , Gb?
– exists(u, v, a, b) – does the path u → v exist in any of Ga, . . . , Gb?
– forall2(u, v, a, b) – do there exist two edge-disjoint paths connecting

u and v in each of Ga, . . . , Gb?
We show data structures that can answer forall and forall2 queries
in O(log n) time after preprocessing in O(m + t log n) time. Here by m
we denote the number of edges that remain unchanged in each graph
of the timeline. For the case of exists queries, we show how to extend
an existing data structure to obtain a preprocessing/query trade-off of
〈O(m + min(nt, t2−α)), O(tα)〉 and show a matching conditional lower
bound.

1 Introduction

In this paper we revisit the problem of maintaining the connectivity information
in a graph timeline. The problem was formulated and solved in a recent paper
by �L ↪acki and Sankowski [9]. They define a graph timeline to be a sequence of
graphs G1, G2, . . . , Gt on a common set of vertices V of size n such that the
graph Gi is obtained from Gi−1 by adding or deleting a single edge. Their goal
was to preprocess the graph timeline to build a data structure that may answer
connectivity queries regarding a contiguous fragment of the timeline:

– forall(u, v, a, b) — are vertices u and v connected by a path in each of
Ga, Ga+1, . . . , Gb?

– exists(u, v, a, b) — are vertices u and v connected by a path in any of
Ga, Ga+1, . . . , Gb?
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We stress that the entire timeline is revealed in the very beginning for prepro-
cessing, and after that the queries may arrive in an online fashion.

Throughout this paper, we write 〈f(n,m, t), g(n,m, t)〉 to denote a data
structure, whose preprocessing time is f(n,m, t) and the query time is g(n,m, t).

In the case of forall queries, �L ↪acki and Sankowski presented an 〈O(m +
t log t log log t log n), O(log n log log t)〉 data structure. Here by m we denote the
number of edges that remain unchanged in each of G1, . . . , Gt. Their data struc-
ture is Monte Carlo randomized and the query time is amortized. For exists
queries they give an 〈O(m + nt), O(1)〉 data structure.

We improve the results of [9] and show new algorithms, which are more
efficient, simpler and deterministic. In addition, we also develop an extended
data structure that may efficiently answer an even more complex query regarding
2-edge-connectivity:

– forall2(u,w, a, b) — are vertices u and v connected by two edge-disjoint
paths in each of Ga, Ga+1, . . . , Gb?

Moreover, we give new conditional lower bounds for the problem of answering
exists queries, which also improves the results of [9].

1.1 Related Work

A rich body of connectivity-related dynamic problems has been studied in the
area of networks and distributed computing. A number of such problems has
been surveyed in [2]. In a typical scenario, we work with a sequence of graphs
Gt = G1, . . . , Gt that represent the states of an evolving network at different
points in time. However, the properties of these graphs, which are of interest,
such as T-interval connectivity [8] or time-respecting paths [7] are usually much
more complex than what can be studied with ordinary connectivity queries,
that is queries about the existence of a path connecting two given vertices in a
particular graph. For example, the problem of T-interval connectivity consists
of deciding if for every subsequence Ga, . . . , Ga+T−1 of T consecutive graphs
in Gt, the intersection Ga ∩ . . . ∩ Ga+T−1 of these graphs contains a connected
component spanning all vertices. Here we define the intersection of two graphs
to be the graph obtained by intersecting their edge sets.

We believe that the queries we consider in this paper are powerful enough
to study interesting properties of evolving networks. A forall query checks if
two vertices are connected with a path in every graph among Ga, . . . , Gb, but
the path can be different in each of the graphs and may not even exist in the
intersection of these graphs. Even stronger is a forall2 query, checking whether
two vertices are connected with two edge-disjoint paths in each graph of the given
fragment. This may serve as a measure of robustness of connection between two
nodes of a network.

The algorithms that process graph timelines can also be considered semi-
offline counterparts of dynamic graph algorithms. The updates are given upfront,
but the queries may arrive in an online fashion, i.e. they are issued one by
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one, only after the preprocessing is finished. A possible scenario for the semi-
offline model would be to collect and index the history of evolving network up
to some point of time and then use the queries to analyze various properties of
the network efficiently.

It is worth noting that the knowledge of the entire history of changes in
most cases leads to data structures faster and simpler than the best online ones.
However, this property has rarely been exploited to design efficient algorithms.
Eppstein [4] has shown an algorithm, which, given a weighted graph G and
a sequence of k edge weight updates, computes the weight of the minimum
spanning tree after each update in O((m + k) log n) time.

1.2 Our Results

We show 〈O(m + t log n), O(log n)〉 data structures for answering forall and
forall2 queries. The data structures use O(t log n) space. This improves the
results of [9] in a number of ways: our algorithms are faster and deterministic,
use less space, the time bounds are worst-case and the query time is independent
of the length of the timeline. We also introduce forall2 queries, which were not
considered before. On top of that, our algorithms are arguably simpler.

What is interesting, we obtain a solution for the 2-edge-connectivity problem,
which is much more efficient than what has been achieved in the dynamic case.
The best known algorithm for 2-edge-connectivity is due to Holm et al. [5]. It
processes t updates in O((t + m) log4 n) time, where m is the initial number of
edges, and answers queries in O(log n) time. Our algorithm may preprocess the
timeline in only O(m + t log n) time to answer queries in O(log n) time.

In the construction of the algorithm for answering forall queries we use the
following two observations. Consider a timeline G1, . . . , Gt. If there is an edge uw
present in every graph among G1, . . . , Gt, vertices u and w are equivalent from
the point of view of any query, so the edge uw can be contracted in each graph.
Once we do that, we are left with O(t) edges in total, each being added or
deleted at some point of time. Thus, if there are much more than t vertices, some
vertices are isolated in every G1, . . . , Gt, and can be safely treated separately in
the beginning and removed. These ideas are then used recursively in a divide-
and-conquer algorithm, which at each step halves the length of the timeline to
compute a segment tree over the sequence G1, . . . , Gt. This segment tree stores
connectivity information about every individual graph in the timeline. Here we
adapt the ideas of Eppstein’s reduction and contraction scheme used for offline
computation of minimum spanning trees [4].

Next, we use a fingerprinting scheme to identify vertices belonging to the
same connected components in multiple consecutive graphs, which allows us to
answer forall queries. Additionally, our fast algorithm for answering queries
uses a data structure for efficient testing of equality of contiguous subsequences
of a given sequence. This is then extended to handle forall2 queries.

For exists queries, we show how to leverage the 〈O(m + nt), O(1)〉 data
structure from [9] to build an 〈O(m + min(nt, t2−α)), O(tα)〉 data structure,
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where α is a parameter from the range [0, 1), which can be chosen arbitrarily.
All of the presented algorithms are simple and can easily be implemented.

Moreover, we develop a conditional lower bound for the problem of answer-
ing exists queries. We show that answering t exists queries on a timeline of
length t, consisting of graphs with O(t) edges, can be used to detect triangles
in a graph with O(t) edges. This implies a conditional lower bound of Ω(t1.41)
and improves the result of [9], where a weaker lower bound was shown. We also
show that an O(t1.5−ε) combinatorial algorithm for the aforementioned problem
would imply a subcubic combinatorial algorithm for the Boolean matrix multi-
plication problem, which would be a major breakthrough. At the same time, our
improved data structure for exists queries may solve this problem in O(t1.5)
time, which means that it is, in some sense, optimal.

1.3 Organization of This Paper

In Section 2 we introduce notation and give a few simple properties of seg-
ment trees, which we later use. Section 3 describes the basic version of our
data structure, which is then extended to handle forall and forall2 queries.
Then, in Section 4 we present an algorithm for answering forall queries. Next,
in Section 5 we develop improved lower bounds for the problem of answering
exists queries, as well as show that a trade-off between query and preprocess-
ing time is possible. Finally, in Section 6 we discuss the possible directions of
future research. Due to space constraints, some parts of the description of our
algorithms have not been included in this extended abstract. In particular, the
omitted proofs of some lemmas can be found in the full version of this paper.

2 Preliminaries

A graph timeline is a sequence Gt of graphs G1, G2, . . . , Gt, where Gi = (V,Ei).
We call each individual graph in Gt a version. For each i ∈ [1, t) we have
|Ei ⊕ Ei+1| = 1, i.e. Ei+1 is obtained from Ei by adding or deleting a single
edge. We assume that the input is given as the set E1 and a list of t − 1 opera-
tions that describe, for each i ∈ [1, t − 1], how to obtain Ei+1 from Ei.

Throughout this paper we work with intervals of integers, that is [a, b] denotes
{a, a+1, . . . , b}. We say that edge (u, v) is alive in the interval [x, y] iff (u, v) ∈ Ej

for each j ∈ [x, y]. For each edge e ∈ E1 ∪ . . . ∪ Et we define L(e) to be the set
of maximal intervals such that e is alive in each of them. An edge e is called
permanent iff L(e) = {[1, t]}, that is, it is present in every version. Otherwise,
we say that e is a temporary edge. We denote by m the number of permanent
edges. The number of temporary edges is at most t. We begin the initialization
of our data structures by finding the sets L(e) in O(|E1| + t) = O(m + t) time.

We denote by Δ+
a the set of edges e such that [a, x] ∈ L(e) for some x ∈ [a, t],

i.e., edges present in Ga, but not in Ga−1. Similarly, let Δ−
b be the set of edges e

such that [x, b] ∈ L(e) for some x ∈ [1, b]. It is easy to verify that
∑t

i=1 |Δ+
i | +
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∑t
i=1 |Δ−

i | = O(m + t). Moreover, for a ∈ (1, t], we have |Δ+
a | ≤ 1, while for

b ∈ [1, t) we have |Δ−
b | ≤ 1.

Throughout the paper, we assume that t ≥ n and t = 2B for some integer
B ≥ 0. The latter assumption can be achieved by adding dummy graphs to the
timeline.

2.1 Elementary Intervals and The Segment Tree

Given t = 2B , the set of elementary intervals is defined inductively:

1. [1, t] is an elementary interval,
2. if [a, b] is an elementary interval, and a < b we let mid =

⌊
a+b
2

⌋
, and define

[a,mid] and [mid + 1, b] to be elementary intervals as well.

The set of elementary intervals can be naturally organized into a complete
binary tree, which we call a segment tree. Assuming the above notation, we
call left([a, b]) = [a,mid] the left child of interval [a, b]. Similarly, right([a, b]) =
[mid + 1, b]. The parent interval of P is denoted by par(P ).

Lemma 1. Every interval [c, d] ⊆ [1, t] can be partitioned into no more than
2 log2(d−c+1)+2 disjoint elementary intervals such that no two intervals from
the partition can be merged into a bigger elementary interval. The partition can
be computed in time O(log(d − c + 1)).

As it is much easier to work with elementary intervals, for each edge e we
partition all intervals from L(e) into elementary intervals.

Lemma 2. For each e, all intervals in L(e) can be partitioned into O(m+t log n)
elementary intervals. The partition can be performed in time O(m + t log n).

For an elementary interval [a, b], we set E[a,b] to be the set of edges that con-
tain [a, b] in their partition. From Lemmas 1 and 2 it follows that each edge is con-
tained in O(log t) sets E[a,b] and the sum over elementary intervals

∑
[a,b] E[a,b]

is of order O(m + t log n).

3 The Data Structure

We now describe a tree-like data structure T , which is a crucial part of all
our algorithms. In the following we reserve the name T for this particular data
structure. The data structure T is based on the set of all elementary intervals
organized into a complete binary tree. This tree has a single node T[a,b] for each
elementary interval [a, b]. Denote by G[a,b] the graph (V,Ea ∩ . . .∩Eb). Roughly
speaking, our goal is to associate with T[a,b] the information about the connected
components of G[a,b]. We first give a simple approach for constructing the data
structure T , and then show how to speed it up. We use the following fact.

Lemma 3. Let [a, b] be an elementary interval such that [a, b] �= [1, t]. Then
E(G[a,b]) = E(Gpar([a,b])) ∪ E[a,b].
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In the simple approach, we associate with T[a,b] a graph S[a,b], which has a
single vertex for each connected component of G[a,b], and does not contain any
edges. By Lemma 3, G[a,b] is obtained from Gpar([a,b]) by adding some edges. This
implies that each component of G[a,b] is a sum of some components of Gpar([a,b]).
To compute S[a,b] we build a graph H on a vertex set V (Spar([a,b])) and add to it
edges of E[a,b] (each edge endpoint has to be mapped to its connected component
in Gpar([a,b])) and then find its connected components. These components are
exactly the components of G[a,b]. Observe that during this computation we may
also compute a mapping between the vertices of Spar([a,b]) and S[a,b]. In the
case of S[1,t] we compute a mapping between individual vertices and connected
components of G[1,t].

T represents the connected components of every graph in the timeline. Con-
sider a graph Gc. In order to find a connected component of a vertex v in Gc, we
traverse the path in T from T[1,t] to T[c,c]. We compute the connected component
of vertex v in every graph G[a,b] on the path. Observe that if we know the con-
nected component of v in Gpar([a,b]), we may compute the connected component
of v in G[a,b] by following the mapping between the components of Gpar([a,b]) and
G[a,b]. At the end of the traversal, we find the component of v in G[c,c] = Gc.

3.1 An Efficient Construction

In order to compute the data structure T efficiently, we need to make an addi-
tional optimization, which is crucial for obtaining good running time.

Consider an elementary interval [a, b] and a connected component C of G[a,b].
Assume that within the graphs Ga, . . . , Gb no edge incident to a vertex of C is
ever added or deleted. In other words, the edges incident to vertices of C are
the same in each of Ga, . . . , Gb. This means that in each of Ga, . . . , Gb vertices
of C are connected to each other, but not connected to any vertex outside C.
Hence, C is also a connected component in each of Ga, . . . , Gb.

As a result, there is no need to store C in the descendants of T[a,b]. When
searching for a connected component of a vertex v ∈ C in Gc, where c ∈ [a, b], we
may simply stop the search in the representation of C in T[a,b]. This observation
will be used in the reduction phase of the construction of the tree T .

We now describe the efficient construction of the tree T . For each node T[a,b]

of T , where [a, b] is an elementary interval, we compute a graph S[a,b]. The
vertices of S[a,b] correspond to some of the components of G[a,b]. We say that
v ∈ V is represented in S[a,b] if there is a vertex s ∈ V (S[a,b]) that corresponds
to a component containing v. The graphs S[a,b] have no edges.1

Let [a, b] be an elementary interval. S[a,b] is computed based on Spar([a,b]) (or
(V, ∅), if [a, b] = [1, t]) in two phases called reduction and contraction.

In the reduction phase some vertices of H = Spar([a,b]) are removed, as they
are not affected by any edge addition or deletion that is carried out among
Ga, . . . , Gb. Namely, we mark endpoints of edges in F = E[a,b] ∪ ⋃b

i=a+1 Δ+
i ∪

1 Defining a graph with no edges may look confusing. However, we define S[a,b] to be
a graph, as we add edges to S[a,b] in our data structure for 2-edge-connectivity.
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⋃b−1
i=a Δ−

i and then remove the unmarked vertices. Note that the sets E[a,b],Δ
+
i

and Δ−
i contain edges of the original graph, so their endpoints have to be mapped

to the corresponding vertices of H. The reduction phase is performed only when
b−a+1 < n. It is done by a call Reduce(H,F ), which produces a pair (S′,M),
where S′ is the reduced graph and M is a mapping between V (Spar([a,b])) and
V (S′) ∪ {⊥}. The value of ⊥ means that a vertex has been removed and does
not have a corresponding vertex in S′. The procedure can be implemented with
a simple graph search to work in O(|H| + |F |) time.

In the second phase, called the contraction phase, some of the remaining
vertices of H = S′ are merged to form S[a,b]. Specifically, the components formed
in S′ after adding edges F = E[a,b] are contracted. Again, we use a function
Contract(H,F ), which produces a pair (S′,M) consisting of the contracted
graph S′ and the mapping between H and S′. This function can also be easily
implemented to work in linear time.

Consider an elementary interval P . Together with SP , the node TP stores two
tables lP and rP mapping vertices of SP to V (Sleft(P ))∪{⊥} and V (Sright(P ))∪
{⊥} respectively. If lP [k] �=⊥, lP [k] is the vertex of Sleft(P ) that corresponds to
k ∈ V (SP ). lP [k] =⊥ means that P is a leaf, or there is no vertex corresponding
to k in Sleft(P ). The table rP is defined analogously. For simplicity, we also
assume that T[1,t] is a left child of a special node T[0,∞] and S[0,∞] = (V, ∅),
so that for each v ∈ V , l[0,∞][v] points to the vertex of S[1,t] representing the
original vertex v.

The graphs SP along with l and r pointers are sufficient to find the com-
ponent of any vertex v in any of G1, . . . , Gt. To access the component of vertex
v in Gc we start at vertex v in S[0,∞] and follow l or r pointers in order to
reach the leaf T[c,c]. The traversal stops once we reach T[c,c] or the pointer we
want to use (l[k] or r[k]) is equal to ⊥. Let P be the elementary interval, where
the traversal finishes and k be the vertex in SP , which we reached. Then, as
we later show, (k, P ) uniquely identifies the component of vertex v in Gc. The
above process can be seen as a function Comp-Id(w, a, b, c) that follows the path
to T[c,c] starting at vertex w ∈ V (S[a,b]). The pair (k, P ), defined as above, is
what the call Comp-Id(l[0,∞][v], 1, t, c) returns. The full text of the Comp-Id
function can be found in the full version of this paper.

Lemma 4. Let 1 ≤ c ≤ t. For any u ∈ V , denote by (ku, Pu) the value returned
by Comp-Id(l[0,∞][v], 1, t, c). Then, two vertices v, w ∈ V are connected by a
path in Gc iff kv = kw and Pv = Pw.

Let us bound the time needed to build T . We begin with an auxiliary lemma,
whose proof is based on the fact that we perform the reduction.

Lemma 5. Let [a, b] be an elementary interval. Then |V (S[a,b])| ≤ min(8(b −
a + 1), n).

To build T we use a recursive procedure Compute-Tree(a, b), which com-
putes the subtree rooted at T[a,b]. It produces each graph S[a,b] based on Spar([a,b])

by applying reduction and contraction. After the graph S[a,b] is computed,
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the tables lpar([a,b]) and rpar([a,b]) are filled. Finally, the subtrees Tleft([a,b]) and
Tright([a,b]) are computed by calling Compute-Tree recursively.

The details of this procedure, including the pseudocode, can be found in the
full version.

Lemma 6. The total running time of Compute-Tree(1, t) is O(m + t log n).

Proof. We first analyze the time spent in the call Compute-Tree(a, b), exclud-
ing the work in recursive calls. Let C be

⋃b
i=a+1 Δ+

i ∪ ⋃b−1
i=a Δ−

i . Thus O(|C|) =
O(b − a). Recall that the functions Contract and Reduce run in linear time.
For b − a + 1 ≥ n, we only perform contraction of E[a,b] in a graph of size O(n),
which requires O(n + |E[a,b]|) time. The amount of work for b − a + 1 < n can
be bounded by O(|V (Spar([a,b]))|+ |C|+ |E[a,b]|), as Reduce is passed the edges
C ∪ E[a,b].

To complete the proof, we sum these running times over all elementary
intervals. The term |Ea,b| appears in both cases and, by Lemma 2, we have∑

P EP = O(m + t log n), thus we can focus on the other summands. For the
case b−a+1 ≥ n, the remaining work is O(n), but there are only O( t

n ) such inter-
vals, so the total work is O(t). On the other hand, if b−a+1 < n, by Lemma 5,
O(|V (Spar([a,b]))|) = O(b−a), so the total work is O(b−a). Hence, the total work
on each level of the tree such that its elementary intervals are shorter than n,
is O(t). The number of such levels is O(log n), which gives O(t log n) total time.
The lemma follows. ��

Having computed T , the function Comp-Id allows us to access the component
of some vertex v in Gc in time O(log t). However, as we now show, this can
be speeded up to O(log n) time. Recall that t = 2B . Let 2D be the smallest
power of 2 such that 2D ≥ n and fix some k ∈ [0, 2B−D). Then, for each c ∈
[k · 2D + 1, (k + 1) · 2D], the call Comp-Id(l[0,∞][v], 1, t, c) descends down T
through the first B − D levels in the same way, independent of c. We can thus
add another preprocessing phase, building the table shortcut. For a vertex v
and 0 ≤ k < 2B−D, shortcut[v][k] is defined to be a pair (s, P ) such that for
c ∈ [k · 2D + 1, (k + 1) · 2D], Comp-Id(l[0,∞][v], 1, t, c), after going through at
most B − D levels of T , ends up in the interval P and s ∈ V (SP ) represents v.
There are only O(t/n) allowed values of k, so the table shortcut has size O(t).

The table can be computed by finding the components of each vertex v in
all the graphs SP from the first B − D levels of the tree. As the component of v
in SP can be computed in constant time based on the component of v in Spar(P ),
we spend O(t/n) time for each v, and thus O(t) time in total.

The optimized procedure Comp-Id starts by looking up the shortcut through
the first B − D levels of T and then calls the original Comp-Id, starting at an
elementary interval of length O(n). Thus, its running time is O(log n).

We may build a data structure similar to T that represents information about
2-edge-connectivity in individual versions. In this case, the graphs SP are forests,
whose vertices represent (some) 2-edge-connected components of SP . The details
of this construction are deferred to the full version of this paper.
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4 Answering forall Queries

In this section we show how to extend the data structure T , so that it can be used
for answering forall queries. The preprocessing for forall queries constitutes
another phase, that we apply only after we computed the data structure T .

Let us begin with a simple observation. Assume that we want to answer a
forall(u,w, a, b) query, where [a, b] is an elementary interval. Then, if the same
vertex of S[a,b] represents both u and w, then there is actually a path between
u and w in G[a,b] and we can immediately give a positive answer. However, the
reverse relation is not true. It may happen that u and w are represented by
distinct vertices in S[a,b], but are connected in each of Ga, . . . , Gb. Thus, our
first goal in this section is to compute, for each two vertices in each of S[a,b],
whether the vertices represented by them are connected in each of Ga, . . . , Gb.

For an elementary interval [a, b], let c[a,b](s, x), where s ∈ V (S[a,b]), x ∈ [a, b],
be the result of the call Comp-Id(s, a, b, x). Our goal is to compute for each
vertex s ∈ S[a,b] a fingerprint, that is, an integer H[a,b](s) ∈ [1, |V (S[a,b])|] with
the following property: the sequences c[a,b](s, a)c[a,b](s, a + 1) . . . c[a,b](s, b) and
c[a,b](s′, a)c[a,b](s′, a + 1) . . . c[a,b](s′, b) are equal iff H[a,b](s) = H[a,b](s′).

To answer a forall(u, v, a, b) query, where [a, b] is an elementary interval, we
first map u and v into vertices u′ and v′ of S[a,b] and then report a positive answer
iff H[a,b](u′) = H[a,b](v′). In order to handle arbitrary intervals, we decompose
the query interval into O(log t) elementary intervals. The decomposition as well
as the mapping can be implemented as a function Forall-Aux(s1, s2, x, y, a, b),
whose pseudocode can be found in the full version of the paper. To answer a
forall(u, v, x, y) query we execute Forall-Aux(l[0,∞][v], l[0,∞][w], x, y, 1, t).

Let us now describe the computation of fingerprints. They are computed in
a bottom-up fashion, starting from the leaves of T .

Lemma 7. Let P = [a, b] be an elementary interval and s ∈ V (SP ). Define:

H̃P (s) =

{
(s, 0) if lP (s) =⊥ or rP (s) =⊥
(Hleft(P )(lP [s]),Hright(P )(rP [s])) otherwise.

Then cP (s1, a) . . . cP (s1, b) = cP (s2, a) . . . cP (s2, b) iff H̃P (s1) = H̃P (s2).

Observe that the pairs H̃P (s) from the above lemma satisfy the desired prop-
erties of fingerprints, with the exception that they are pairs of integers, not inte-
gers. Thus, in order to compute the values HP (s), it suffices to map the values
of H̃P (s) into distinct positive integers (two pairs are assigned the same integer
iff they are equal). As both numbers in each pair H̃P (s) are at most O(|V (SP )|)
we may compute the mapping in linear time by using radix-sort algorithm. Note
that this resembles the Karp-Miller-Rosenberg [6] algorithm. The total addi-
tional time and space used is O(

∑
P |V (SP )|) = O(t log n). Thus, we obtain an

〈O(m + t log n), O(log t)〉 data structure for answering forall queries.
However, the query time can be made independent of the length of the time-

line and speeded up to O(log n). In order to do that, we employ a shortcutting
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technique similar to the one used for finding connected components of vertices
in individual graphs combined with an optimal data structure for comparing the
subwords of a given word [3]. For details, refer to the full version of this paper.

The above construction can be generalized to work with 2-edge-connectivity
within the same time and space bounds, as shown in the full version.

Theorem 1. There exists an 〈O(m + t log n), O(log n)〉 data structure for
answering forall and forall2 queries. The data structure uses O(t log n) space.

5 Improved Lower and Upper Bounds for exists Queries

In this section we focus on exists queries. We first give improved conditional
lower bounds for answering these queries, and then show an algorithm, whose
running time matches one of the new bounds. As shown in [9], the problem
of multiplying two Boolean n × n matrices can be reduced to the problem of
answering Θ(n2) exists queries about a graph timeline Gt, where t = Θ(n2).
Denote by O(nω′

) the time required to perform n×n Boolean matrix multiplica-
tion (BMM). Thus, unless ω′ = 2, it is not possible to develop a data structure,
which after almost linear preprocessing answers exists queries in polylogarith-
mic time. In this section we give several new lower bounds.

Throughout this section, we repeatedly use ε to denote an arbitrarily small,
positive number. The exact value of ε may vary and depend on the context. We
also denote by δ(ε) some other small positive number, dependent on ε.

Let us recall the somewhat informal, yet important, partition of algorithms
into algebraic and combinatorial. The combinatorial algorithms do not make
use of the fact that the matrices are defined over a ring, i.e., they do not use
subtraction. No O(n3−ε) combinatorial algorithm is known for BMM.

We show a connection between the exists data structure and algorithmic
problems related to detecting triangles in graphs. In the triangle detection prob-
lem we are given a graph G = (V,E), where |E| = m, and the goal is to find three
vertices a, b, c ∈ V such that (a, b), (a, c), (b, c) ∈ E. The best known known algo-
rithm for triangle detection was given by Alon et al. [1] and works in O(m1.41)
time. The best combinatorial algorithm is folklore and runs in O(m

√
m) time.

The following relation between triangle detection and BMM was shown in [11]:

Lemma 8. An O(m1.5−ε) combinatorial algorithm for triangle detection implies
an O(n3−δ(ε)) combinatorial algorithm for BMM.

The related problem is triangle listing, where we are asked to find c triangles in
a graph with m edges. Pătrşcu [10] proved the following lemma.

Lemma 9. If one can list m triangles from a graph with m edges in O(m4/3−ε)
time, then there exists an O(n2−δ(ε)) algorithm for 3-SUM.

We now show a relation between triangle listing and exists queries.

Lemma 10. The problem of listing c triangles in a graph with m edges can be
reduced to answering O(m + c log n) exists queries in a timeline Gt of length
t = O(m) and no permanent edges.
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Proof. Let H be the input graph, in which we are supposed to list triangles.
Moreover, let V (H) = {v1, . . . , vn}. We build a timeline Gt of graphs on vertex
set V (H) by processing vertices v1, . . . , vn one by one. First, we add an empty
graph to Gt. Then, for a vertex vi, we append 2 degH(vi) new versions to Gt

(degH(v) denotes the degree of vertex v in H), which we call a block of vertex
vi. Within each block, we first create degH(vi) new versions, at each step adding
one more edge incident to vi. The edges are added in arbitrary order. Then, we
create degH(vi) more versions by removing the edges incident to vi. Note that
the last graph in every block is empty, and in the middle graph the vertex vi has
degree degH(vi). Let the the block of a vertex vi start at Gai

and end at Gbi .
Observe that we obtain a timeline Gt, where t = 4m + 1, as each edge

of H is added and removed exactly twice. For each edge (vi, vj) ∈ E(G), i < j,
we can test if there is a triangle (vi, vj , vk), where j < k, with a single query
exists(vi, vj , bj + 1, t). Indeed, the answer to such a query is positive iff there
exists vk such that there is a path from vi to vj in Gak+degH(vk)−1. The path,
along with the edge (vi, vj), forms a triangle.

Note that the query exists(vi, vj , ap, bq), for j < p ≤ q, tells us if there
is any triangle (vi, vj , vk) such that k ∈ [p, q]. Thus, we may use a divide-and-
conquer approach for listing triangles, which is based on the following observa-
tion. If we are looking for triangles such that k ∈ [p, q], a negative answer to an
exists(vi, vj , ap, b(p+q)/2) query allows us to halve the search interval. Hence,
we can find all l vertices vk such that (vi, vj , vk) is a triangle in time O(l log n).
The detailed procedure Report-Triangles is given in the full version. ��

By combining Lemmas 8, 9 and 10, we obtain the following.

Theorem 2. Let Ψ be a problem of answering Θ(t) exists queries about an
arbitrary graph timeline Gt with no permanent edges.

– An O(t1.4) algorithm for Ψ implies an O(t1.4) algorithm for triangle finding.
– An O(t1.5−ε) combinatorial algorithm for Ψ implies an O(n3−δ(ε)) combina-

torial algorithm for BMM.
– An O(t4/3−ε) algorithm for Ψ implies an O(n2−δ(ε)) algorithm for 3-SUM.

In addition, we show that an exists data structure with preprocessing/query
time product of O(t2−ε) and queries substantially faster than O(

√
t) implies a

faster BMM algorithm.

Lemma 11. Suppose there exists an 〈O(t2−q−ε), O(tq)〉 combinatorial data
structure for answering exists queries, where q ∈ [0, 1

2 ) is a parameter. Then
there exists an O(n3−δ(ε)) combinatorial algorithm for BMM.

What is interesting, we can give a combinatorial data structure, whose run-
ning time matches the above lower bound.

Theorem 3. For every 0 ≤ α < 1 there exists an 〈O(m+min(nt, t2−α)), O(tα)〉
data structure for answering exists queries. It uses O(min(nt, t2−α)) space.

The main idea is to split the timeline into blocks of size O(tα) and use the
〈O(m + nt), O(1)〉 exists data structure of �L ↪acki and Sankowski [9].
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6 Open Problems

For forall and forall2 queries, we gave an 〈O(m + t log n), O(log n)〉 data
structure. What about the biconnectivity? Although it is possible to propose a
similar tree-like structure that represents biconnectivity in individual versions,
it seems hard to extend it to forall2-like queries. The main obstacle is bicon-
nectivity relation on vertices not being an equivalence relation.

It would be also interesting to know whether even faster query (without
sacrificing O(t log n) initialization time) is possible for forall queries.

Concerning exists queries, we proved that beating our trade-off structure
in the domain of combinatorial algorithms implies a faster combinatorial matrix
multiplication algorithm. However, is there a way to employ fast matrix multi-
plication to obtain a data structure for exists queries with preprocessing/query
time product of O(t2−ε)?
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Abstract. Consider the problem of maintaining a family F of dynamic
sets subject to insertions, deletions, and set-intersection reporting
queries: given S, S′ ∈ F , report every member of S ∩S′ in any order. We
show that in the word RAM model, where w is the word size, given a
cap d on the maximum size of any set, we can support set intersection
queries in O( d

w/ log2 w
) expected time, and updates in O(1) expected time.

Using this algorithm we can list all t triangles of a graph G = (V, E) in
O(m + mα

w/ log2 w
+ t) expected time, where m = |E| and α is the arboric-

ity of G. This improves a 30-year old triangle enumeration algorithm of
Chiba and Nishizeki running in O(mα) time.

We provide an incremental data structure on F that supports inter-
section witness queries, where we only need to find one e ∈ S ∩ S′.

Both queries and insertions take O
(√

N
w/ log2 w

)
expected time, where

N =
∑

S∈F |S|. Finally, we provide time/space tradeoffs for the fully
dynamic set intersection reporting problem. Using M words of space,
each update costs O(

√
M log N) expected time, each reporting query

costs O(N
√

log N√
M

√
op + 1) expected time where op is the size of the out-

put, and each witness query costs O(N
√

log N√
M

+ log N) expected time.

1 Introduction

In this paper we explore the power of word level parallelism to speed up algo-
rithms for dynamic set intersection and triangle enumeration. We assume a w-bit
word-RAM model, w > log n, with the standard repertoire of unit-time opera-
tions on w-bit words: bitwise Boolean operations, left/right shifts, addition, mul-
tiplication, comparison, and dereferencing. Using the modest parallelism intrinsic
in this model (sometimes in conjunction with tabulation) it is often possible to
obtain a nearly factor-w (or factor-log n) speedup over traditional algorithms.
The Four Russians algorithm for boolean matrix multiplication is perhaps the
oldest algorithm to use this technique. Since then it has been applied to com-
puting edit distance [2], regular expression pattern matching [3], APSP in dense
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weighted graphs [4], APSP and transitive closure in sparse graphs [5,6], and
more recently, to computing the Fréchet distance [7] and solving 3SUM in sub-
quadratic time [8,9]. Refer to [10] for more examples.

Set Intersection. The problem is to represent a (possibly dynamic) family of
sets F with total size N =

∑
S∈F |S| so that given S, S′ ∈ F , one can quickly

determine if S ∩ S′ = ∅ (emptiness query) or report some x ∈ S ∩ S′ (witness
query) or report all members of S ∩ S′. Let d be an a priori bound on the size
of any set. We give a randomized algorithm to preprocess F in O(N) time such
that reporting queries can be answered in O(d/ w

log2 w
+ |S ∩ S′|) expected time.

Subsequent insertion and deletion of elements can be handled in O(1) expected
time.

We give O(N)-space structures for the three types of queries when there is
no restriction on the size of sets. For emptiness queries the expected update
and query times are O(

√
N); for witness queries the expected update and

query times are O(
√

N log N); for reporting queries the expected update time is
O(

√
N log N) and the expected query time is O(

√
N log N(1 + |S ∩ S′|)). These

fully dynamic structures do not benefit from word-level parallelism. When only
insertions are allowed we give another structure that handles both insertions and
emptiness/witness queries in O(

√
N/ w

log2 w
) expected time.1

3SUM Hardness. Data structure lower bounds can be proved unconditionally,
or conditionally, based on the conjectured hardness of some problem. One of the
most popular conjectures for conditional lower bounds is that the 3SUM problem
(given n real numbers, determine if any three sum to zero) cannot be solved in
truly subquadratic (expected) time, i.e. O(n2−Ω(1)) time. Even if the inputs are
integers in the range [−n3, n3] (the Integer3SUM problem), the problem is still
conjectured to be insoluble in truly subquadratic (expected) time. See [9,11,12]
and the references therein.

Pǎtraşcu in [11] showed that the Integer3SUM problem can be reduced to
offline set-intersection, thereby obtaining conditional lower bounds for offline
data structures for set-intersection. The parameters of this reduction were tight-
ened by us in [12]. Converting a conditional lower bound for the offline version of
a problem to a conditional lower bound for the incremental (and hence dynamic)
version of the same problem is straightforward, and thus we can prove conditional
lower bounds for the incremental (and hence dynamic) set intersection problems.
In particular, we are able to show that conditioned on the Integer3SUM conjec-
ture, for the incremental emptiness version either the update or query time must
be at least Ω(N1/2−o(1)) time. This is discussed in more detail, including lower
bounds for the reporting version, in the full version of this paper (see [1]).

Related Work. Most existing set intersection data structures, e.g., [13–15],
work in the comparison model, where sets are represented as sorted lists or
1 These data structures offer a tradeoff between space M , query time, and update

time. We restricted our attention to M = O(N) here for simplicity.
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arrays. In these data structures the main benchmark is the minimum number
of comparisons needed to certify the answer. Bille, Pagh, and Pagh [16] also
used similar word-packing techniques to evaluate expressions of set intersections
and unions. Their query algorithm finds the intersection of m sets with a total
of n elements in O(n/ w

log2 w
+ m · op) time, where op is the size of the output.

Cohen and Porat [17] designed a static O(N)-space data structure for answering
reporting queries in O(

√
N(1 + |S ∩ S′|)) time, which is only O(

√
log N) faster

than the data structure presented here.

Triangle Enumeration. Itai and Rodeh [18] showed that all t triangles in
a graph could be enumerated in O(m3/2) time. Thirty years ago Chiba and
Nishizeki [19] generalized [18] to show that O(mα) time suffices, where α is
the arboricity of the graph. This algorithm has only been improved for dense
graphs using fast matrix multiplication. The recent algorithm of Björklund,
Pagh, Williams, and Zwick [20] shows that when the matrix multiplication expo-
nent ω = 2, triangle enumeration takes Õ(min{n2 + nt2/3,m4/3 + mt1/3}) time.
(The actual running time is expressed in terms of ω.) We give the first asymp-
totic improvement to Chiba and Nishizeki’s algorithm for graphs that are too
sparse to benefit from fast matrix multiplication. Using our set intersection data
structure, we can enumerate t triangles in O(m + mα/ w

log2 w
+ t) expected time.

For simplicity we have stated all bounds in terms of an arbitrary word size
w. When w = O(log n) the w/ log2 w factor becomes log n/ log log n.

Overview of the Paper. The paper is structured as follows. In Section 2 we
discuss a packing algorithm for (dynamic) set intersection, and in Section 3 we
show how the packing algorithm for set intersection can be used to speed up
triangle listing. In Section 4 we present our data structure for emptiness queries
on a fully dynamic family of sets, with time/space tradeoffs. In Section 5 we
combine the packing algorithm for set intersection with the emptiness query
data structure to obtain a packed data structure for set intersection witness
queries on an incremental family of sets. In Section 6 we present non-packed
data structures for emptiness, witness, and reporting set intersection queries on
a fully dynamic family of sets, with time/space tradeoffs. Finally, the discussion
of conditional lower bounds based on the 3SUM conjecture for dynamic versions
of the set intersection problem appears in the full version of the paper [1].

2 Packing Sets

Theorem 1. A family of sets F = {S1, · · · , St} with d > maxS∈F |S| can be
preprocessed in linear time to facilitate the following set intersection queries.
Given two S, S′ ∈ F , one can find a witness in S ∩ S′ in O(d log2 w

w ) expected
time and list all of the elements of S ∩S′ in O(|S ∩S′|) additional expected time.
If w = O(log n) then the query time is reduced to O(d log log n

log n ). Furthermore,
updates (insertions/deletions of elements) to sets in F can be performed O(1)
expected time, subject to the constraint that d > maxS∈F |S|.
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Proof. Every set S ∈ F is split into � buckets BS
1 , . . . , BS

� where � = d log w
w . We

pick a function h from a pairwise independent family of hash functions and assign
each element e ∈ S into a bucket BS

h(e). The expected number of elements from
a set S in each bucket is w

log w . We use a second hash function h′ from another
family of pairwise independent hash functions which reduces the universe size
to w2. An h′(e) value is represented with 2 log w + 1 bits, the extra control bit
being necessary for certain manipulations described below. For each S and i we
represent h′(BS

i ) as a packed, sorted sequence of h′-values. In expectation each
h′(BS

i ) occupies O(1) words, though some buckets may be significantly larger.
Finally, for each bucket BS

i we maintain a lookup table that translates from
h′(e) to e. If there is more than one element that is hashed to h′(e) then all such
elements are maintained in the lookup table via a linked list.

Notice that S ∩ S′ =
⋃�

i=1 BS
i ∩ BS′

i . Thus, we can enumerate S ∩ S′ by
enumerating the intersections of all BS

i ∩BS′
i . Fix one such i. We first merge the

packed sorted lists h′(BS
i ) and h′(BS′

i ). Albers and Hagerup [21] showed that
two words of sorted numbers (separated by control bits) can be merged using
Batcher’s algorithm in O(log w) time. Using this as a primitive we can merge
the sorted lists h′(BS

i ) and h′(BS′
i ) in time O(|BS

i | + |BS′
i |/(w/ log2 w)). Let C

be the resulting list, with control bits set to 0. Our task is now to enumerate all
numbers that appear twice (necessarily consecutively) in C. Let C ′ be C with
control bits set to 1. We shift C one field to the right (2 log w + 1 bit positions)
and subtract it from C ′.2 Let C ′′ be the resulting list, with all control bits reset
to 0. A field is zero in C ′′ iff it and its predecessor were identical, so the problem
now is to enumerate zero fields. By repeated halving, we can distill each field to
a single bit (0 for zero, 1 for non-zero) in O(log log w) time and then take the
complement of these bits (1 for zero, 0 for non-zero). We have now reduced the
problem to reading off all the 1s in a w-bit word, which can be done in O(1)
time per 1 using the most-significant-bit algorithm of [22].3 For each repeated
h′-value we lookup all elements in BS

i and BS′
i with that value and report any

occurring in both sets. Every unit of time spent in this step corresponds to an
element in the intersection or a false positive.

The cost of intersecting buckets BS
i and BS′

i is

O

(

1 +

(

� |BS
i |

w/ log w
� + � |BS′

i |
w/ log w

�
)

log w + |BS
i ∩ BS′

i | + fi

)

,

where fi is the number of false positives. The expected value of fi is o(1) since the
expected sizes of BS

i and BS′
i are w/ log w and for e ∈ BS

i , e′ ∈ BS′
i , Pr(h′(e) =

2 The control bits stop carries from crossing field boundaries.
3 This algorithm uses multiplication. Without unit-time multiplication [23] one can

read off the 1s in O(log log w) time per 1. If w = O(log n) then the instruction set is
not as relevant since we can build o(n)-size tables to calculate most significant bits
and other useful functions.
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h′(e′)) = 1/w2. Thus, the expected runtime for a query is

�∑

i=1

O

(

1 +

(

� |BS
i |

w/ log w
� + � |BS′

i |
w/ log w

�
)

log w + |BS
i ∩ BS′

i | + fi

)

= O(� log w + |S ∩ S′|) = O

(
d log2 w

w
+ |S ∩ S′|

)

.

It is straightforward to implement insertions and deletions in O(1) time in
expectation. Suppose we must insert e into S. Once we calculate i = h(e) and
h′(e) we need to insert h′(e) into the packed sorted list representing h′(BS

i ).
Suppose that h′(BS

i ) fits in one word; let it be D, with all control bits set to
1.4 With a single multiplication we form a word D′ whose fields each contain
h′(e) and whose control bits are zero. If we subtract D′ from D and mask every-
thing but the control bits, the most significant bit identifies the location of the
successor of h′(e) in h′(BS

i ). We can then insert h′(e) into the sorted list in D
with O(1) masks and shifts. The procedure for deleting an element in O(1) time
follows the same lines. �	

3 A Faster Triangle Enumeration Algorithm

Theorem 2. Given an undirected graph G = (V,E) with m = |E| edges and
arboricity α, all t triangles can be enumerated in O(m + mα

w/ log2 w
+ t) expected

time or in O
(
m + mα

log n/ log log n + t
)
expected time if w = O(log n).

Proof. We will make use of the data structure in Theorem 1. To do this we first
find an acyclic orientation of E in which the out-degree of any vertex is O(α).
Such an orientation can be found in linear time using the peeling algorithm of
Chiba and Nishizeki [19]. Define Γ+(u) = {v | (u, v)} to be the set of out-
neighbors of u according to this orientation. Begin by preprocessing the family
F = {Γ+(u) | u ∈ V }, where all sets have size O(α). For each edge (u, v),
enumerate all elements in the intersection Γ+(u) ∩ Γ+(v). For each vertex w
in the intersection output the triangle {u, v, w}. Since the orientation is acyclic,
every triangle is output exactly once. There are m set intersection queries, each
taking O(1 + α/max{ w

log2 w
, log n
log log n}) time, aside from the cost of reporting the

output, which is O(1) per triangle. �	

4 Dynamic Emptiness Queries with Time/Space Tradeoff

Theorem 3. There exists an algorithm that maintains a family F of dynamic
sets using O(M) space where each update costs O(

√
M) expected time, and each

emptiness query costs O( N√
M

) expected time.

4 If h′(BS
i ) is larger we apply this procedure to each word of the list h′(BS

i ). It occupies
O(1) words in expectation.
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Proof. Each set S ∈ F maintains its elements in a lookup table using a perfect
dynamic hash function. So the cost of inserting a new element into S, deleting
an element from S, or determining whether some element x is in S is expected
O(1) time. Let N =

∑
S∈F |S|. We make the standard assumption that N is

always at least N ′/2 and at most 2N ′ for some natural number N ′. Standard
rebuilding de-amortization techniques are used if this is not the case.

The Structure. We say a set S is large if at some point |S| > 2N ′/
√

M , and
since the last time S was at least that large, its size was never less than N ′/

√
M .

If S is not large, and its size is at least N ′/
√

M then we say it is medium. If
S is neither large nor medium then it is small. Notice that the size of a small
set is less than N ′/

√
M = O(N/

√
M). Let L ⊆ F be the sub-family of large

and medium sets, and let � = |L|. Notice that � ≤ √
M . For each set S ∈ L we

maintain a unique integer 1 ≤ iS ≤ �, and an intersection-size dynamic look-
up table TS of size � such that for a large set S′ we have TS [iS′ ] = |S ∩ S′|.
Adding and deleting entries from the table takes expected constant time using
hashing. Due to the nature of our algorithm we cannot guarantee that all of the
intersection-size tables will always be fully updated. However, we will guarantee
the following invariant.

Invariant 1. For every two large sets S and S′, TS [iS′ ] and TS′ [iS ] are correctly
maintained.

Query. For two sets S, S′ ∈ F where either S or S′ is not large, say S, we
determine if they intersect by scanning the elements in S and using the lookup
table for S′. The time cost is O(|S|) = O(N ′/

√
M). If both sets are large, then

we examine TS [iS′ ] which determines the size of the intersection (by Invariant 1)
and decide accordingly if it is empty or not. This takes O(1) time.

Insertions. When inserting a new element x into S, we first update the lookup
table of S to include x. Next, if S was small and remained small then no addi-
tional work is done. Otherwise, for each S′ ∈ L we must update the size of S ∩S′

in the appropriate intersection-size tables. This is done directly in O(
√

M) time
by determining whether x is in S′, for each S′, via the lookup tables. We briefly
recall, as mentioned above, that it is possible that some of the intersection-size
tables will not be fully updated, and so incrementing the size of an intersection
is only helpful if the intersection size was correctly maintained before. Neverthe-
less, as explained soon, Invariant 1 will be guaranteed to hold, which suffices for
the correctness of the algorithm since the intersection-size tables are only used
when intersecting two large sets.

The more challenging case is when S becomes medium. If this happens we
would like to increase � by 1, assign iS to be the new �, allocate and initialize
TS in O(

√
M) time, and for each S′ ∈ L we compute |S ∩ S′| and insert the

answer into TS [iS′ ] and TS′ [iS ]. This entire process is dominated by the the task
of computing |S∩S′| for each S′ ∈ L, taking a total of O(

∑
S′∈L |S|) time, which

could be as large as O(N) and is too costly. However, this work can be spread
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over the next N ′/
√

M insertions made into S until S becomes large. This is
done as follows. When S becomes medium we create a list LS of all of the large
and medium sets at this time (without their elements). This takes O(

√
M) time.

Next, for every insertion into S we compute the values of O(M/N ′) locations in
TS by computing the intersection size of S and each of O(M/N ′) sets from LS

in O( M
N ′ · N√

M
) = O(

√
M) time. For each such set S′ we also update TS′ [iS ]. By

the time S becomes large we will have correctly computed the values in TS for
all O(

√
M) of the sets in LS , and for every set S′ ∈ LS we will have correctly

computed TS′ [iS ]. It is possible that between the time S became medium to the
time S became large, there were other sets such as S′ which became medium
and perhaps even large, but S′ �∈ LS . Notice that in such a case S ∈ LS′ and so
it is guaranteed that by the time both S and S′ are large, the indicators TS [iS′ ]
and TS′ [iS ] are correctly updated, thereby guaranteeing that Invariant 1 holds.
Thus the total cost of performing an insertion is O(

√
M) expected time.

Deletions. When deleting an element x from S, we first update the lookup table
of S to remove x in O(1) expected time. If S was small and remained small then
no additional work is done. If S was in L then we scan all of the S′ ∈ L and check
if x is in S′ in order to update the appropriate locations in the intersection-size
tables. This takes O(

√
M) time.

If S was medium and now became small, we need to decrease � by 1, remove
the assignment to iS to be the new �, delete TS , and for each S′ ∈ L we need
to remove TS′ [iS ]. In addition, in order to accommodate the update process of
medium sized sets, for each medium set S′ we must remove S from LS′ if it was
in there. �	
Corollary 2. There exists an algorithm that maintains a family F of dynamic
sets using O(N) space where each update costs O(

√
N) expected time, and each

emptiness query costs O(
√

N) expected time.

5 Incremental Witness Queries

Theorem 4. Suppose there exists an algorithm A that maintains a family F
of incremental sets, each of size at most d, such that set intersection witness
queries can be answered in O( d

τq
) expected time and inserts can be performed

in O(τu) expected time. Then there exists an algorithm to maintain a family
F of incremental sets—with no upper bound on set sizes—that uses O(N) space
and performs insertions and witness queries in O(

√
N ′/τq) expected time, where

N =
∑

S∈F |S|.
Proof. We make the standard assumption that N is always at least N ′/2 and
at most 2N ′ for some natural number N ′. Standard rebuilding de-amortization
techniques are used if this is not the case. In our context, we say that a set is large
if its size is at least

√
N ′τq, and is medium if its size is between

√
N ′/τq and

√
N ′τq. Each medium and large set S maintains a stash of the at most

√
N ′τq
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last elements that were inserted into S (these elements are part of S). This stash
is the entire set S if S is medium. If S is large then the rest of S (the elements
not in the stash) is called the primary set of S. Stashes are maintained using
algorithm A with d =

√
N ′τq. Thus, answering intersection queries between two

medium sets takes O(
√

N ′/τq) expected time.
We maintain for each medium and large set S a witness table PS such that

for any large set S′ we have that PS [iS′ ] is either an element (witness) in the
intersection of S and the primary set of S′, or null if no such element exists.
This works in the incremental setting as once a witness is established it never
changes. Since there are at most

√
N ′/τq large sets and at most

√
N ′τq medium

sets, the space usage is O(N ′). If a query is between S1 and S2 and S1 is large,
then: (1) if S2 is small we lookup each element in S2 to see if it is in S1, (2) if
S2 is medium or large then we use the witness tables to see if there is a witness
of an intersection between S2 and the primary set of S1 or between S1 and the
primary set of S2, and if there is no such witness then we use algorithm A to
intersect the stashes of S2 and S1. In any case, the cost of a query is O(

√
N ′/τq)

expected time. The details for maintaining these tables are similar to the details
of maintaining the intersection-size array tables from Section 4.

Insertion. When inserting an element x into S, if S is small then we do nothing.
If S is medium then we add x to the stash of S in algorithm A. If S is large then
we add x to the stash of S and verify for every other large set if x is in that
set, updating the witness table accordingly. If S became medium then we add
it to the structure of algorithm A. Since the size of S is O(

√
N ′/τq) this takes

O(
√

N ′/τq) expected time. Furthermore, when S becomes medium the table PS

needs to be prepared. To do this, between the time S is of size
√

N ′/2τq and the
time S is of size

√
N ′/τq, the table PS is inclemently constructed. If S became

large then we now allow its primary set to be nonempty, and must also update
the witness tables. The changes to witness tables in this case is treated using
the same techniques as in Theorem 3, and so we omit their description. This will
cost O(

√
N ′/τq + τu) expected time.

Finally, for a large set S, once its stash reaches size
√

N ′τq we dump the stash
into the primary set of S, thereby emptying the stash. We describe an amortized
algorithm for this process, which is deamortized using a standard lazy approach.
To combine the primary set and the stash we only need to update the witness
tables for set intersection witnesses between medium sets and the new primary
set of S as it is possible that a witness was only in the stash. To do this, we
directly scan all of the medium sets and check if a new witness can be obtained
from the stash. The number of medium sets is O(

√
N ′τq) and the cost of each

intersection will be O(
√

N ′/τq) for a total of O(N ′) time. Since this operation
only happens after Ω(

√
N ′τq) insertions into S the amortized cost is O(

√
N ′/τq)

time.
�	
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Combining Theorem 1 with Theorem 4 we obtain the following.

Corollary 1. There exists an algorithm in the word-RAM model that maintains
a family F of incremental sets using O(N) space where each insertion costs
O(

√
N

w/ log2 w
) expected time and a witness query costs O(

√
N

w/ log2 w
) expected

time.

6 Fully Dynamic Set Intersection with Witness and
Reporting Queries

Each element in
⋃

S∈F S is assigned an integer from the range of [2N ′]. When
a new element not appearing in

⋃
S∈F S arrives, it is assigned to the smallest

available integer, and that integer is used as its key. When keys are deleted
(no longer in use), we do not remove their assignment, and instead, we conduct
a standard rebuilding technique in order to reassign the elements. Finally, we
use a second assignment via a random permutation of the integers in order to
uniformly spread the assignments within the range.

The structure. Consider the following binary tree T of height log N ′ + 1 where
each vertex v covers some range from U , denoted by [αv, βv], such that the range
of the root covers all of U , and the left (right) child of v covers the first (second)
half of [αv, βv]. A vertex at depth i covers 2N ′

2i elements of U . For a vertex v

let Sv = S ∩ [αv, βv]. Let Nv =
∑

S∈F |Sv|. Let Mv = Nv·M
N ′ . We say a set S is

v-large if at some point |Sv| > 2Nv√
Mv

, and since the last time Sv was at least that

large, its size was never less than Nv√
Mv

.
Each vertex v ∈ T with children v0 and v1 maintains a structure for emptiness

queries as in Theorem 3, using Mv space, on the family F v = {Sv : S ∈ F}.
In addition, we add auxiliary data to the intersection-size tables as follows. For
sets S1, S2 ∈ F the set of all vertices in which S1 and S2 intersect under them
defines a connected tree T ′. This tree has some branching vertices which have
2 children, some non-branching internal vertices with only 1 child, and some
leaves. Consider the vertices v in T for which S1 and S2 are v-large and define
T̂ to be the connected component of these vertices that includes the root r.
(It may be that T̂ does not exist.) To facilitate a fast traversal of T̂ during a
query we maintain shortcut pointers for every two sets S1, S2 ∈ F and for every
vertex v ∈ T such that both S1 and S2 are v-large. To this end, we say v is a
branching-(S1, S2)-vertex if both Sv0

1 ∩ Sv0
2 �= ∅ and Sv1

1 ∩ Sv1
2 �= ∅. Consider the

path starting from the left (right) child of v and ending at the first descendent
v′ of v such that:(1) S1 and S2 are relatively large for all of the vertices on the
path, (2) Sv′

1 ∩ Sv′
2 �= ∅, and (3) either v′ is a branching-(S1, S2)-vertex or one

of the sets S1 and S2 is not v′-large. The left (right) shortcut pointer of v will
point to v′. Notice that the shortcut pointers are maintained for every vertex
v even if on the path from r to v there are some vertices for which either S1

or S2 are not relatively large, which helps to reduce the update time during
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insertions/deletions. Also notice that using these pointers it is straightforward
to check in O(1) time if Sv0

1 ∩ Sv0
2 and Sv1

1 ∩ Sv1
2 are empty or not.

The space complexity of the structure is as follows. Each vertex v uses O(Mv)
words of space which is O(MNv/N ′). So the space usage is

∑
v Mv = O(M log N)

words, since in each level of T the sum of all Mv for the vertices in that level is
O(M), and there are O(log N) levels.

Reporting Queries. For a reporting query on S1 and S2, if op = 0 then either the
emptiness test at the root will conclude in O(1) time, or we spend O( Nr√

Mr
) =

O( N√
M

) time. Otherwise, we recursively examine vertices v in T starting with
the root r. If both S1 and S2 are v-large and Sv

1 ∩ Sv
2 �= ∅, then we continue

recursively to the vertices pointed to by the appropriate shortcut pointers. If
either S1 or S2 is not v-large then we wish to output all of the elements in the
intersection of Sv

1 and Sv
2 . To do this, we check for each element in the smaller

set if it is contained within the larger set using the lookup table which takes
O( Nv√

Mv
) time.

For the runtime, as we traverse down T from r using appropriate shortcut
pointers, we encounter only two types of vertices. The first type are vertices v
for which both S1 and S2 are v-large, and the second type are vertices v for
which either S1 or S2 is not v-large. Each vertex of the first type performs O(1)
work, and the number of such vertices is at most the number of vertices of the
second type, due to the branching nature of the shortcut pointers. For vertices of
the second type, the intersection of S1 and S2 must both be non-empty relative
to such vertices and so the O( Nv√

Mv
) time cost can be charged to at least one

element in the output. Denote the vertices of the second type by v1, v2, . . . , vt.
Notice that t ≤ op as each vi contains at least one element from the intersection,
and that

∑
i Nvi

< 2N ′ since the vertices are not ancestors of each other. We
will make use of the following Lemma.

Lemma 3. If
∑t

i=1 xi ≤ k then
∑t

i=1

√
xi ≤ √

k · t.

Proof. Since
∑t

i=1

√
xi is maximized whenever all the xi are equal, we have that

∑t
i=1

√
xi ≤ t

√
k
t =

√
kt. �	

Therefore, the total time cost is

∑

i

Nvi√
Mvi

=
∑

i

Nvi

√
N ′

√
MNvi

=

√
N ′

M

∑

i

√
Nvi

≤
√

N ′

M

√
2N ′√t ≤ O

(
N

√
op√

M

)

.

Witness Queries. A witness query is answered by traversing down T using short-
cut pointers, but instead of recursively looking at both shortcut pointers for each
vertex, we only consider one. Thus the total time it takes until we reach a vertex
v for which either S1 or S2 is not v-large is O(log N). Next, we use the hash
function to find an element in the intersection in O( N√

M
) time, for a total of

O(log N + N√
M

) time to answer a witness query.
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Insertions and Deletions. When inserting a new element x into S1, we first locate
the leaf � of T which covers x. Next, we update our structure on the path from
� to r as follows. Starting from �, for each vertex v on the path we insert x into
Sv
1 . This incurs a cost of

√
Mv for updating the emptiness query structure at v.

If there exists some set S2 such that |Sv
1 ∩ Sv

2 | becomes non-zero, then we may
need to update some shortcut pointers on the path from � to r relative to S1

and S2. Being that such a set S2 must be large, the number of such sets is at
most Nv√

Mv
.

To analyze the expected running time of an insertion notice that since the
elements in the universe are randomly distributed, the expected value of Nv and
Mv for a vertex v at depth i are N

2i and M
2i respectively. So the number of v-large

sets is at most Nv√
Mv

= N√
2iM

. The expected time costs of updating the emptiness

structure is at most
∑log N ′

i=0
N√
2iM

= O( N√
M

). The same analysis holds for the
shortcut pointer. The deletion process is exactly the reverse of the insertions
process, and also costs O( N√

M
) expected time.

The total space usage is O(M log N). With a change of variable (substituting
M/ log N for M in the construction above), we can make the space O(M) and
obtain the following result.

Theorem 5. There exists an algorithm that maintains a family F of dynamic
sets using O(M) space where each update costs O(

√
M log N) expected time, each

reporting query costs O(N
√
log N√
M

√
op + 1) time, and each witness query costs

O(N
√
log N√
M

+ log N) expected time.
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13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions,
and differences. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 743–752 (2000)

14. Barbay, J., Kenyon, C.: Adaptive intersection and t-threshold problems. In:
Proceedings 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 390–399 (2002)

15. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In:
Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol.
3109, pp. 400–408. Springer, Heidelberg (2004)

16. Bille, P., Pagh, A., Pagh, R.: Fast evaluation of union-intersection expressions.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 739–750. Springer,
Heidelberg (2007)

17. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor.
Comput. Sci. 411(40–42), 3795–3800 (2010)

18. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4),
413–423 (1978)

19. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

20. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 223–234. Springer, Heidelberg (2014)

21. Albers, S., Hagerup, T.: Improved parallel integer sorting without concurrent writ-
ing. Inf. Comput. 136(1), 25–51 (1997)

22. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

23. Brodnik, A., Miltersen, P.B., Munro, J.I.: Trans-dichotomous algorithms with-
out multiplication—some upper and lower bounds. In: Rau-Chaplin, A., Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 426–439.
Springer, Heidelberg (1997)



Time-Space Trade-offs
for Triangulations and Voronoi Diagrams

Matias Korman1, Wolfgang Mulzer2(B), André van Renssen1,
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Abstract. Let S be a planar n-point set. A triangulation for S is a
maximal plane straight-line graph with vertex set S. The Voronoi dia-
gram for S is the subdivision of the plane into cells such that each
cell has the same nearest neighbors in S. Classically, both structures
can be computed in O(n log n) time and O(n) space. We study the
situation when the available workspace is limited: given a parameter
s ∈ {1, . . . , n}, an s-workspace algorithm has read-only access to an
input array with the points from S in arbitrary order, and it may use
only O(s) additional words of Θ(log n) bits for reading and writing inter-
mediate data. The output should then be written to a write-only struc-
ture. We describe a deterministic s-workspace algorithm for computing
a triangulation of S in time O(n2/s + n log n log s) and a randomized
s-workspace algorithm for finding the Voronoi diagram of S in expected
time O((n2/s) log s + n log s log∗ s).

1 Introduction

Since the early days of computer science, a major concern has been to cope
with strong memory constraints. This started in the ’70s [21] when memory
was expensive. Nowadays, the motivation comes from a proliferation of small
embedded devices where large memory is neither feasible nor desirable (e.g., due
to constraints on budget, power, size, or simply to discourage potential thievery).

Even when memory size is not an issue, we might want to limit the num-
ber of write operations: one can read flash memory quickly, but writing (or
even reordering) data is slow and may reduce the lifetime of the storage sys-
tem; write-access to removable memory may be limited for technical or security
reasons, (e.g., when using read-only media such as DVDs or to prevent leaking
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information about the algorithm). Similar problems occur when concurrent algo-
rithms access data simultaneously. A natural way to address this is to consider
algorithms that do not modify the input.

The exact setting may vary, but there is a common theme: the input resides
in read-only memory, the output must be written to a write-only structure, and
we can use O(s) additional variables to find the solution (for a parameter s).
The goal is to design algorithms whose running time decreases as s grows, giving
a time-space trade-off [22]. One of the first problems considered in this model
is sorting [18,19]. Here, the time-space product is known to be Ω(n2) [8], and
matching upper bounds for the case b ∈ Ω(log n)∩O(n/ log n) were obtained by
Pagter and Rauhe [20] (b denotes the available workspace in bits).

Our current notion of memory constrained algorithms was introduced to
computational geometry by Asano et al. [4], who show how to compute many
classic geometric structures with O(1) workspace (related models were studied
before [9]). Later, time-space trade-offs were given for problems on simple poly-
gons, e.g., shortest paths [1], visibility [6], or the convex hull of the vertices [5].

In our model, we are given an array S of n points in the plane such that ran-
dom access to each input point is possible, but we may not change or even reorder
the input. Additionally, we have O(s) variables (for a parameter s ∈ {1, . . . , n}).
We assume that each variable or pointer contains a data word of Θ(log n) bits.
Other than this, the model allows the usual word RAM operations. We consider
two problems: computing an arbitrary triangulation for S and computing the
Voronoi diagram VD(S) for S. Since the output cannot be stored explicitly, the
goal is to report the edges of the triangulation or the vertices of VD(S) succes-
sively, in no particular order. Dually, the latter goal may be phrased in terms of
Delaunay triangulations. We focus on Voronoi diagrams, as they lead to a more
natural presentation.

Both problems can be solved in O(n2) time with O(1) workspace [4] or in
O(n log n) time with O(n) workspace [7]. However, to the best of our knowl-
edge, no trade-offs were known before. Our triangulation algorithm achieves
a running time of O(n2/s + n log n log s) using O(s) variables. A key ingredi-
ent is the recent time-space trade-off by Asano and Kirkpatrick for a special
type of simple polygons [3]. This also lets us obtain significantly better run-
ning times for the case that the input is sorted in x-order; see Section 2. For
Voronoi diagrams, we use random sampling to find the result in expected time
O((n2 log s)/s+n log s log∗ s)); see Section 3. Together with recent work of Har-
Peled [15], this appears to be one of the first uses of random sampling to obtain
space-time trade-offs for geometric algorithms. The sorting lower bounds also
apply to triangulations (since we can reduce the former to the latter). By dual-
ity between Voronoi diagrams and Delaunay triangulations this implies that our
second algorithm for computing the Voronoi diagram is almost optimal.

2 Triangulating a Sorted Point Set

We first describe our s-workspace algorithm for triangulating a planar point set
that is given in sorted x-order. The input points S = {q1, . . . , qn} are stored by
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increasing x-coordinate, and we assume that all x-coordinates are distinct, i.e.,
xi < xi+1 for 1 ≤ i < n, where xi denotes the x-coordinate of qi, for 1 ≤ i ≤ n.

A crucial ingredient in our algorithms is a recent result by Asano and Kirk-
patrick for triangulating monotone mountains1 (or mountains for short). A
mountain is a simple polygon with vertex sequence v1, v2, . . . , vk such that the
x-coordinates of the vertices increase monotonically. The edge v1vk is called the
base. Mountains can be triangulated very efficiently with bounded workspace.

Theorem 2.1 (Lemma 3 in [3], rephrased). Let H be a mountain with n
vertices, stored in sorted x-order in read-only memory. Let s ∈ {2, . . . , n}. We
can report the edges of a triangulation of H in O(n logs n) time and O(s) space.

Since S is given in x-order, the edges qiqi+1, for 1 ≤ i < n, form a monotone
simple polygonal chain. Let Part(S) be the subdivision obtained by the union of
this chain with the edges of the convex hull of S. We say that a convex hull edge
is long if the difference between its indices is at least two (i.e., the endpoints
are not consecutive). The following lemma lets us decompose the problem into
smaller pieces. The proof can be found in the full version.

Lemma 2.2. Any bounded face of Part(S) is a mountain whose base is a long
convex hull edge. Moreover, no point of S lies in more than four faces of Part(S).

Let e1, . . . , ek be the long edges of the convex hull of S, let Fi be the unique
mountain of Part(S) whose base is ei, and let ni be the number of vertices of Fi.

With the above definitions we can give an overview of our algorithm. We start
by computing the edges of the upper convex hull, from left to right. Each time
an edge ei of the convex hull is found, we check if it is long. If so, we triangulate
the corresponding mountain Fi (otherwise we do nothing), and we proceed with
the computation of the convex hull. The algorithm finishes once all convex hull
edges are computed (and their corresponding faces have been triangulated).

Theorem 2.3. Let S be a set of n points, sorted in x-order. We can report the
edges of a triangulation of S in O(n2) time using O(1) variables, O(n2 log n/2s)
time using O(s) additional variables (for any s ∈ Ω(log log n) ∩ o(log n)), or
O(n logp n) time using O(p logp n) additional variables (for any 2 ≤ p ≤ n).

Proof. Correctness follows directly from the first claim of Lemma 2.2. Thus, it
suffices to show the performance bounds. The main steps are: (i) computing the
convex hull of a point set given in x-order; (ii) determining if an edge is long; and
(iii) triangulating a mountain. We can identify long edges in constant time, by
comparing the endpoint indices. Moreover, by Theorem 2.1, we can triangulate
the polygon Fi of ni vertices in time O(ni logs ni) with O(s) variables.

Further note that we never need to store the polygons to triangulate explic-
itly: once a long edge ei of the convex hull is found, we can implicitly give it as
input for the triangulation algorithm by specifying the indices of ei: since the
points are sorted by x-coordinate, the other vertices of Fi are exactly the input
1 Also known as unimonotone polygon [14].
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points between the endpoints of ei. We then pause our convex-hull computation,
keeping its current state in memory, and reserve O(s) memory for triangulat-
ing Fi. Once this is done, we can discard all used memory, and we reuse that
space for the next mountain. We then continue the convex hull algorithm to find
the next long convex-hull edge. By the second claim of Lemma 2.2, no vertex
appears in more than four mountains, and thus the total time for triangulating
all mountains is bounded by

∑
i O(ni logs ni) = O(n logs n).

Finally, we need to bound the time for computing the convex hull of S. Recall
that we may temporarily pause the algorithm to triangulate a generated polygon,
but overall it is executed only once over the input. There exist several algorithms
for computing the convex hull of a set of points sorted by x-coordinate under
memory constraints. When s ∈ Θ(1), we can use the gift-wrapping algorithm
(Jarvis march [16]) which runs in O(n2) time. Barba et al. [5] provided a different
algorithm that runs in O(n2 log n/2s) time using O(s) variables (for any s ∈
o(log n)).2 This approach is desirable for s ∈ Ω(log log n) ∩ o(log n). As soon as
the workspace can fit Ω(log n) variables, we can use the approach of Chan and
Chen [10]. This algorithm runs in O(n logp n) time and uses O(p logp n) variables,
for any 2 ≤ p ≤ n. In any case, the time for the convex hull dominates the time
for triangulating the mountain mountains. ��

General Input. The previous algorithm uses the sorted input order in two ways.
Firstly, the algorithms of Barba et al. [5] and of Chan and Chen [10] work only
for simple polygons (e.g., for sorted input). Instead, we may use the algorithm
by Darwish and Elmasry [13] that gives the upper (or lower) convex hull of
any sequence of n points in O(n2/(s log n) + n log n) time with O(s) variables3,
matching known lower bounds. Secondly, and more importantly, the Asano-
Kirkpatrick (AK) algorithm requires the input to be sorted. To address this issue,
we simulate sorted input using multiple heap structures. For this, we require
some technical details on how the AK-algorithm accesses its input.

Let F be a mountain with n vertices. Let F ↑ denote the vertices of F in
ascending x-order, and F ↓ denote F in descending x-order. The AK-algorithm
makes one pass over F ↑ and one pass over F ↓.4 Each pass computes half of
the triangulation, uses O(s) variables and has Θ(logs n) rounds. In round i, it
partitions F ↑ (F ↓) into blocks of O(|F |/si) consecutive points that are processed
from left to right. Each block is further subdivided into O(s) sub-blocks b1, . . . , bk

of size O(|F |/si+1). The algorithm does two scans over the sub-blocks. The first
scan processes the elements in x-order. Whenever the first scan finishes reading
a sub-block bi, the algorithm makes bi active and creates a pointer li to the
2 In fact, Barba et al. show how to compute the convex hull of a simple polygon, but

also show that both problems are equivalent. The monotone chain can be completed
to a polygon by adding a vertex with a very high or low y-coordinate.

3 Darwish and Elmasry [13] state a running time of O(n2/s+n log n), but they measure
workspace in bits while we use words.

4 AK reduce triangulation to the all next smaller right neighbor (NSR) and the all
next smaller left neighbor (NSL) problem and present an algorithm for NSR if the
input is in x-order. This implies an NSL-algorithm by reading the input in reverse.
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rightmost element of bi. The second scan goes from right to left and is concurrent
to the first scan. In each step, it reads the element at li in the rightmost active
sub-block bi, and it decreases li by one. If li leaves bi, then bi becomes inactive.
As the first scan creates new active sub-blocks as it proceeds, the second scan
may jump between sub-blocks.

We use the heap by Asano et al. [2] to provide the input for the AK-algorithm.
We shortly restate its properties.

Lemma 2.4 ([2]). Let S be a set of n points. There is a heap that supports
insert and extract-min (resp. extract-max) in O

(
(n/(s log n) + log s)D(n)) time

using O(s) variables, where D(n) is the time to decide whether a given element
currently resides in the heap (is alive).5

Lemma 2.5 ([2]). Let S be a set of n points. We can build a heap with all
elements in S in O(n) time that supports extract-min in O

(
n/(s log n) + log(n))

time using O(s) variables.

Proof. The construction time is given in [2]. To decide in O(1) time if some x ∈ S
is alive, we store the last extracted minimum m and test whether x > m. ��

We now present the complete algorithm. We first show how to subdivide S
into mountains Fi and how to run the AK-algorithm on each F ↑

i . Finally, we dis-
cuss the changes to run the AK-algorithm on each F ↓

i . Sorted input is emulated
by constructing two heaps H1,H2 for S according to x-order. By Lemma 2.5, each
heap uses O(s) space, can be constructed in O(n) time, and supports extract-
min in O(n/(s log n) + log n) worst-case time. With H1 we determine the size of
the next mountain Fi, with H2 we process the points of Fi.

We execute the convex hull algorithm with Θ(s) space until it reports the
next convex hull edge pq. Throughout, the heaps H1 and H2 contain exactly
the points to the right of p. To determine if pq is long (i.e., if there are points
between p and q), we repeatedly extract the minimum of H1 until q becomes the
minimum element. Let k be the number of removed points.

If k = 1, then pq is short. We extract the minimum of H2, and we continue
with the convex hull algorithm. If k ≥ 2, Lemma 2.2 shows that pq is the base of
a mountain F that consists of all points between p and q. These are exactly the
k+1 smallest elements in H2 (including p and q). If k ≤ s, we extract them from
H2, and we triangulate F in memory. If k > s, we execute the AK-algorithm
on F using O(s) variables. At the beginning of the ith round, we create a copy
H(i) of H2, i.e., we duplicate the O(s) variables that determine the state of H2.
Further, we create an empty max-heap H(ii) using O(s) variables to provide
input for the second scan. To be able to reread a sub-block, we create a further
copy H ′

(i) of H2. Whenever the AK-algorithm requests the next point p in the
first scan, we simply extract the minimum of H(i). When a sub-block is fully
read, we use H ′

(i) to reread the elements and insert them into H(ii). Now, the

5 The bounds in [2] do not include the factor D(n) since the authors studied a setting
similar to Lemma 2.5 where it takes O(1) time to decide whether an element is alive.
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rightmost element of all active sub-blocks corresponds exactly to the maximum
of H(ii). One step in the second scan is equivalent to an extract-max on H(ii).

At the end of one round, we delete H(i), H ′
(i), and H(ii). The space can be

reused in the next round. Once the AK-algorithm finishes, we repeatedly extract
the minimum of H2 until the minimum becomes q.

For each mountain F with |F | > s, the algorithm runs the AK-algorithm on
F ↑. To output a complete triangulation of F , we repeat the whole algorithm on
S in reverse order, so that the AK-algorithm is run on each F ↓.

Theorem 2.6. We can report the edges of a triangulation of a set S of n points
in time O(n2/s + n log n log s) using O(s) additional variables.

Proof. As before, correctness directly follows from Lemma 2.2 and the correct-
ness of the AK-algorithm. The bound on the space usage is immediate.

Computing the convex hull now needs O(n2/(s log n) + n log n) time [13].
By Lemma 2.5, the heaps H1 and H2 can be constructed in O(n) time. Dur-
ing execution, we perform n extract-min operations on each heap, requiring
O(n2/(s log n) + n log n) time in total.

Let Fj be a mountain with nj vertices that is discovered by the convex hull
algorithm. If nj ≤ s, then Fj is triangulated in memory in O(nj) time, and
the total time for such mountains is O(n). If nj > s, then the AK-algorithm
runs in O(nj logs nj) time. We must also account for providing the input for the
algorithm. For this, consider some round i ≥ 1. We copy H2 to H(i) in O(s)
time. This time can be charged to the first scan, since nj > s. Furthermore,
we perform nj extract-min operations on H(i). Hence the total time to provide
input for the first scan is O(njn/(s log n) + nj log n).

For the second scan, we create another copy H ′
(i) of H2. Again, the time for

this can be charged to the scan. Also, we perform nj extract-min operations on
H ′

(i) which takes O(njn/(s log n) + nj log n) time. Additionally, we insert each
fully-read block into H(ii). The main problem is to determine if an element in
H(ii) is alive: there are at most O(s) active sub-blocks. For each active sub-block
bi, we know the first element yi and the element zi that li points to. An element
is alive if and only if it is in the interval [yi, zi] for some active bi. This can be
checked in O(log s) time. Thus, by Lemma 2.4, each insert and extract-max on
H(ii) takes O

(
(n/(s log n)+log s) log s) time. Since each element is inserted once,

the total time to provide input to the second scan is O(nj log(s)(n/(s log n) +
log s)). This dominates the time for the first scan. There are O(logs nj) rounds,
so we can triangulate Fj in time O

(
nj logs nj + nj log(nj)

(
n/(s log n) + log s

))
.

Summing over all Fj , the total time is O(n2/s + n log n log s). ��

3 Voronoi Diagrams

Given a planar n-point set S, we would like to find the vertices of VD(S). Let
K = {p1, p2, p3} be a triangle with S ⊆ conv(K) so that all vertices of VD(S)
are vertices of VD(S ∪ K). We use random sampling to divide the problem of
computing VD(S∪K) into O(s) subproblems of size O(n/s). First, we show how
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to take a random sample from S with small workspace. One of many possible
approaches is the following deterministic one that ensures a worst-case guarantee:

Lemma 3.1. We can sample a uniform random subset R ⊆ S of size s in time
O(n + s log s) and space O(s).

Proof. We sample a random sequence I of s distinct numbers from {1, . . . , n}.
This is done in s rounds. At the beginning of round k, for k = 1, . . . , s, we have a
sequence I of k − 1 numbers from {1, . . . , n}. We store I in a binary search tree
T . We maintain the invariant that each node in T with value in {1, . . . , n−k+1}
stores a pointer to a unique number in {n − k + 2, . . . , n} that is not in I. In
round k, we sample a random number x from {1, . . . , n − k + 1}, and we check
in T whether x ∈ I. If not, we add x to I. Otherwise, we add to I the number
that x points to. Let y be the new element. We add y to T . Then we update the
pointers: if x = n − k + 1, we do nothing. Now suppose x < n − k + 1. Then, if
n − k + 1 
∈ I, we put a pointer from x to n − k + 1. Otherwise, if n − k + 1 ∈ I,
we let x point to the element that n − k + 1 points to. This keeps the invariant
and takes O(log s) time and O(s) space. We continue for s rounds. Any sequence
of s distinct numbers in {1, . . . , n} is sampled with equal probability.

Finally, we scan through S to obtain the elements whose positions correspond
to the numbers in I. This requires O(n) time and O(s) space.

��
We use Lemma 3.1 to find a random sample R ⊆ S of size s. We compute

VD(R∪K), triangulate the bounded cells and construct a planar point location
structure for the triangulation. This takes O(s log s) time and O(s) space [17].
Given a vertex v ∈ VD(R ∪ K), the conflict circle of v is the largest circle with
center v and no point from R∪K in its interior. The conflict set Bv of v contains
all points from S that lie in the conflict circle of v, and the conflict size bv of v is
|Bv|. We scan through S to find the conflict size bv for each vertex v ∈ VD(R∪K):
every Voronoi vertex has a counter that is initially 0. For each p ∈ S \ (R ∪ K),
we use the point location structure to find the triangle Δ of VD(R ∪ K) that
contains it. At least one vertex v of Δ is in conflict with p. Starting from v, we
walk along the edges of VD(R∪K) to find all Voronoi vertices in conflict with p.
We increment the counters of all these vertices. This may take a long time in the
worst case, so we impose an upper bound on the total work. For this, we choose
a threshold M . When the sum of the conflict counters exceeds M , we start over
with a new sample R. The total time for one attempt is O(n log s + M), and
below we prove that for M = Θ(n) the success probability is at least 3/4. Next,
we pick another threshold T , and we compute for each vertex v of VD(R ∪ K)
the excess tv = bvs/n. The excess measures how far the vertex deviates from
the desired conflict size n/s. We check if

∑
v∈VD(R∪K) tv log tv ≤ T . If not, we

start over with a new sample. Below, we prove that for T = Θ(s), the success
probability is at least 3/4. The total success probability is 1/2, and the expected
number of attempts is 2. Thus, in expected time O(n log s+ s log s), we can find
a sample R ⊆ S with

∑
v∈VD(R∪K) bv = O(n) and

∑
v∈VD(R∪K) tv log tv = O(s).
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We now analyze the success probabilities, using the classic Clarkson-Shor
method [12]. We begin with a variant of the Chazelle-Friedman bound [11].

Lemma 3.2. Let X be a planar point set of size o, and let Y ⊂ R
2 with |Y | ≤ 3.

For fixed p ∈ (0, 1], let R ⊆ X be a random subset of size po and let R′ ⊆ X be a
random subset of size p′o, for p′ = p/2. Suppose that p′o ≥ 4. Fix u ∈ X3, and
let vu be the Voronoi vertex defined by u. Let bu be the number of points from
X in the largest circle with center vu and with no points from R in its interior.
Then,

Pr[vu ∈ VD(R ∪ Y )] ≤ 64e−pbu/2 Pr[vu ∈ VD(R′ ∪ Y )].

Proof. Let σ = Pr[vu ∈ VD(R ∪ Y )] and σ′ = Pr[vu ∈ DT(R′ ∪ Y )]. The vertex
vu is in VD(R ∪ Y ) precisely if u ⊆ R ∪ Y and Bu ∩ (R ∪ Y ) = ∅, where Bu are
the points from X in the conflict circle of vu. If Y ∩ Bu 
= ∅, then σ = σ′ = 0,
and the lemma holds. Thus, assume that Y ∩ Bu = ∅. Let du = |u \ Y |, the
number of points in u not in Y . There are

(
o−bu−du

po−du

)
ways to choose a po-subset

from X that avoids all points in Bu and contains all points of u ∩ X, so

σ =
(

o − bu − du
po − du

) /(
o

po

)

=

∏po−du−1
j=0 (o − bu − du − j)
∏po−du−1

j=0 (po − du − j)

/ ∏po−1
j=0 (o − j)

∏po−1
j=0 (po − j)

=
du−1∏

j=0

po − j

o − j
·

po−du−1∏

j=0

o − bu − du − j

o − du − j
≤ pdu

po−du−1∏

j=0

(

1 − bu
o − du − j

)

.

Similarly, we get

σ′ =
du−1∏

i=0

p′o − i

o − i

p′o−du−1∏

j=0

(

1 − bu
o − du − j

)

,

and since p′o ≥ 4 and i ≤ 2, it follows that

σ′ ≥
(

p′

2

)du p′o−du−1∏

j=0

(

1 − bu
o − du − j

)

.

Therefore, since p′ = p/2,

σ

σ′ ≤
(

2p

p′

)du po−du−1∏

j=p′o−du

(

1 − bu
o − du − j

)

≤ 64
(

1 − bu
o

)po/2

≤ 64 epbu/2.

��
We can now bound the total expected conflict size.

Lemma 3.3. We have E
[∑

v∈VD(R∪K) bv

]
= O(n).
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Proof. By expanding the expectation, we get

E

⎡

⎣
∑

v∈VD(R∪K)

bv

⎤

⎦ =
∑

u∈S3

Pr[vu ∈ VD(R ∪ K)]bu,

vu being the Voronoi vertex of u and bu its conflict size. By Lemma 3.2 with
X = S, Y = K and p = s/n,

≤
∑

u∈S3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪ K)]bu,

where R′ ⊆ S is a sample of size s/2. We estimate

≤
∞∑

t=0

∑

u∈S3

bu∈[ tp , t+1
p )

64e−t/2(t + 1)
p

Pr[vu ∈ VD(R′ ∪ K)]

≤ 1
p

∑

u∈S3

Pr[vu ∈ VD(R′ ∪ K)]
∞∑

t=0

64e−t/2(t + 1)

= O(s/p) = O(n),

since
∑

u∈S3 Pr[vu ∈ VD(R′ ∪ K)] = O(s) is the size of VD(R′ ∪ K) and
∑∞

t=0 e−t/2(t + 1) = O(1). ��
By Lemma 3.3 and Markov’s inequality, it follows that there is an M = Θ(n)
with Pr[

∑
v∈VD(R∪K) bv > M ] ≤ 1/4. The proof for the excess is very similar to

the previous calculation and can be found in the full version.

Lemma 3.4. E
[∑

v∈VD(R∪K) tv log tv

]
= O(s).

By Markov’s inequality and Lemma 3.4, we can conclude that there is a
T = Θ(s) with Pr[

∑
v∈VD(R∪K) tv log tv ≥ T ] ≤ 1/4. This finishes the first

sampling phase. The next goal is to sample for each vertex v with tv ≥ 2 a
random subset Rv ⊆ Bv of size αtv log tv for large enough α > 0 (recall that Bv

is the conflict set of v).

Lemma 3.5. In total time O(n log s), we can sample for each vertex v ∈ VD(R∪
K) with tv ≥ 2 a random subset Rv ⊆ Bv of size αtv log tv.

Proof. First, we perform O(s) rounds to sample for each vertex v with tv ≥ 2 a
sequence Iv of αtv log tv distinct numbers from {1, . . . , bv}. For this, we use the
algorithm from Lemma 3.1 in parallel for each relevant vertex from VD(R ∪K).
Since

∑
v tv log tv = O(s), this takes total time O(s log s) and total space O(s).

After that, we scan through S. For each vertex v, we have a counter cv,
initialized to 0. For each p ∈ S, we find the conflict vertices of p, and for each
conflict vertex v, we increment cv. If cv appears in the corresponding set Iv, we
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add p to Rv. The total running time is O(n log s), as we do one point location
for each input point and the total conflict size is O(n).

��
We next show that for a fixed vertex v ∈ VD(R ∪ K), with constant probability,
all vertices in VD(Rv) have conflict size n/s with respect to Bv.

Lemma 3.6. Let v ∈ VD(R ∪ K) with tv ≥ 2, and let Rv ⊆ Bv be the sample
for v. The expected number of vertices v′ in VD(Rv) with at least n/s points
from Bv in their conflict circle is at most 1/4.

Proof. Recall that tv = bvs/n. We have

E

[
∑

v′∈VD(Rv)b
′
v′≥n/s

1

]

=
∑

u∈B3
v

b′
u≥n/s

Pr[v′
u ∈ VD(Rv)],

where b′
u is the conflict size of v′

u with respect to Bv. Using Lemma 3.2 with X =
Bv, Y = ∅, and p = (αtv log tv)/bv = α(s/n) log tv, this is O(t−α/2

v tv log tv) ≤
1/4, for α large enough (remember that tv ≥ 2). ��
By Lemma 3.6 and Markov’s inequality, the probability that all vertices from
VD(Rv) have at most n/s points from Bv in their conflict circles is at least 3/4.
If so, we call v good. Scanning through S, we can identify the good vertices in
time O(n log s) and space O(s). Let s′ be the size of VD(R ∪ K). If we have less
than s′/2 good vertices, we repeat the process. Since the expected number of
good vertices is 3s′/4, the probability that there are at least s′/2 good vertices
is at least 1/2 by Markov’s inequality. Thus, in expectation, we need to perform
the sampling twice. For the remaining vertices, we repeat the process, but now
we take two samples per vertex, decreasing the failure probability to 1/4. We
repeat the process, taking in each round the maximum number of samples that
fit into the work space. In general, if we have s′/ai active vertices in round i, we
can take ai samples per vertex, resulting in a failure probability of 2−ai . Thus,
the expected number of active vertices in round i + 1 is s′/ai+1 = s′/(ai2ai).
After O(log∗ s) rounds, all vertices are good. To summarize:

Lemma 3.7. In total expected time O(n log s log∗ s) and space O(s), we can find
sets R ⊆ S and Rv ⊂ Bv for each vertex v ∈ VD(R′ ∪ K) such that (i) |R| = s:
(ii)

∑
v∈VD(R∪K) |Rv| = O(s); and (iii) for every Rv, all vertices of VD(Rv)

have at most n/s points from Bv in their conflict circle.

We set R2 = R ∪ ⋃
v∈VD(R∪K) Rv. By Lemma 3.7, |R2| = O(s). We compute

VD(R2 ∪ K) and triangulate its bounded cells. For a triangle Δ of the trian-
gulation, let r ∈ R2 ∪ K be the site whose cell contains Δ, and v1, v2, v3 the
vertices of Δ. We set BΔ = {r}∪⋃3

i=1 Bvi
. Using the next lemma, we show that

|BΔ| = O(n/s). The proof is in the full version.
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Lemma 3.8. Let S ⊂ R
2 and Δ = {v1, v2, v3} a triangle in the triangulation

of VD(S). Let x ∈ Δ. Then any circle C with center x that contains no points
from S is covered by the conflict circles of v1, v2 and v3.

Lemma 3.9. Any triangle Δ in the triangulation of VD(R2 ∪ K) has |BΔ| =
O(n/s).

Proof. Let v be a vertex of Δ. We show that bv = O(n/s). Let ΔR = {v1, v2, v3}
be the triangle in the triangulation of VD(R) that contains v. By Lemma 3.8,
we have Bv ⊆ ⋃3

i=1 Bvi
. We consider the intersections Bv ∩Bvi

, for i = 1, 2, 3. If
tvi

< 2, then bvi
= O(n/s) and |Bv ∩Bvi

| = O(n/s). Otherwise, we have sampled
a set Rvi

for vi. Let Δi = {w1, w2, w3} be the triangle in the triangulation of
VD(Rvi

) that contains v. Again, by Lemma 3.8, we have Bv ⊆ ⋃3
j=1 Bwj

and
thus also Bv∩Bvi

⊆ ⋃3
j=1 Bwj

∩Bvi
. However, by construction of Rvi

, |Bwj
∩Bvi

|
is at most n/s for j = 1, 2, 3. Hence, |Bv ∩ Bvi

| = O(n/s) and bv = O(n/s). ��
The following lemma enables us to compute the Voronoi diagram of R2 ∪ K

locally for each triangle Δ in the triangulation of VD(R2∪K) by only considering
sites in BΔ. It is a direct consequence of Lemma 3.8.

Lemma 3.10. For every triangle Δ in the triangulation of VD(R2 ∪ K), we
have VD(S ∪ K) ∩ Δ = VD(BΔ) ∩ Δ.

Theorem 3.11. Let S be a planar n-point set. In expected time O((n2/s) log s+
n log s log∗ s) and space O(s), we can compute all Voronoi vertices of S.

Proof. We compute a set R2 as above. This takes O(n log s log∗ s) time and
space O(s). We triangulate the bounded cells of VD(R2 ∪ K) and compute a
point location structure for the result. Since there are O(s) triangles, we can
store the resulting triangulation in the workspace. Now, the goal is to compute
simultaneously for all triangles Δ the Voronoi diagram VD(BΔ) and to output all
Voronoi vertices that lie in Δ and are defined by points from S. By Lemma 3.10,
this gives all Voronoi vertices of VD(S).

Given a planar m-point set X, the algorithm by Asano et al. finds all vertices
of VD(X) in O(m) scans over the input, with constant workspace [4]. We can
perform a simultaneous scan for all sets BΔ by determining for each point in S
all sets BΔ that contain it. This takes total time O(n log s), since we need one
point location for each p ∈ S and since the total size of the BΔ’s is O(n). We
need O(maxΔ |BΔ|) = O(n/s) such scans, so the second part of the algorithm
needs O((n2/s) log s) time. ��

As mentioned in the introduction, Theorem 3.11 also lets us report all edges
of the Delaunay triangulation of S in the same time bound: by duality, the
three sites that define a vertex of VD(S) also define a triangle for the Delaunay
triangulation. Thus, whenever we discover a vertex of VD(S), we can instead
output the corresponding Delaunay edges, while using a consistent tie-breaking
rule to make sure that every edge is reported only once.
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Abstract. We consider the parameterized version of the maximum
internal spanning tree problem: given an n-vertex graph and a parameter
k, does the graph have a spanning tree with at least k internal vertices?
Fomin et al. [J. Comput. System Sci., 79:1–6] crafted a very ingenious
reduction rule, and showed that a simple application of this rule is suffi-
cient to yield a 3k-vertex kernel for this problem. Here we propose a novel
way to use the same reduction rule, resulting in an improved 2k-vertex
kernel. Our algorithm applies first a greedy procedure consisting of a
sequence of local exchange operations, which ends with a local-optimal
spanning tree, and then uses this special tree to find a reducible struc-
ture. As a corollary of our kernel, we obtain a 4k ·nO(1)-time deterministic
algorithm, improving all previous algorithms for the problem.

Keywords: Parameterized computation · Kernelization algorithms ·
Local-search

1 Introduction

A spanning tree of a connected graph G is a minimal connected subgraph of
G including all its vertices. Spanning tree is a fundamental concept in graph
theory, and finding a spanning tree of the input graph is a routine step of most
graph algorithms, though it usually induces no extra cost: most algorithms start
from exploring the input graph anyway, and both breadth- and depth-first-search
procedures produce a spanning tree as a byproduct. However, a graph can have
an exponential number of spanning trees, of which some might suit a specific
application better than others. We are hence asked to find spanning trees that
minimize or maximize certain objective functions. The most classic example is
the minimum-weight spanning tree problem (in weighted graphs), which has
an equivalent but less known formulation, i.e., maximum-weight spanning tree.
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Other spanning tree problems that have received wide attention include mini-
mum diameter spanning tree [7], degree constrained spanning tree [10,11], max-
imum leaf spanning tree [14], and maximum internal spanning tree [20]. Unlike
the minimum-weight spanning tree problem [8], most of these constrained ver-
sions are NP-hard [16].

The optimization objective we consider here is to maximize the number of
internal vertices (i.e., non-leaf vertices) of the spanning tree, or equivalently, to
minimize the number of its leaves. More formally, the maximum internal span-
ning tree problem asks whether a given graph G has a spanning tree with at
least k internal vertices. Containing the Hamiltonian path problem as a special
case (k = n − 2), it is clearly NP-hard. This paper is focused on its parame-
terized version; here the parameter is k, and hence we use the name k-internal
spanning tree. Given an instance (G, k) of the k-internal spanning tree problem,
a kernelization algorithm produces in polynomial time an “equivalent” instance
(G′, k′) such that k′ ≤ k and that the kernel size (i.e., the number of vertices in
G′) is upper bounded by some function of k′. Prieto and Sloper [17] presented
an O(k3)-vertex kernel for the problem, and improved it to O(k2) in its journal
version [18]. Fomin et al. [4] crafted a very ingenious reduction rule, and showed
that a simple application of this rule is sufficient to yield a 3k-vertex kernel.
Answering a question asked by Fomin et al. [4], we further improve the kernel
size to 2k.

Theorem 1. The k-internal spanning tree problem has a 2k-vertex kernel.

We obtain this improved result by revisiting the reduction rule proposed by
Fomin et al. [4]. A nonempty independent set X (i.e., a subset of vertices that
are pairwise nonadjacent in G) as well as its neighborhood are called a reducible
structure if |X| is at least twice as the cardinality of its neighborhood. The
observation in [4] is that the leaves of a depth-first-search tree T are independent.
Therefore, if the graph has more than 3k − 3 vertices, then either the problem
has been solved (when T has k or more internal vertices), or the set of (at least
2k − 2) leaves of T will be the required independent set. It is, however, very
nontrivial to find a reducible structure when 2k < n < 3k − 3, and this will be
the focus of this paper. We first preprocess the tree T using a greedy procedure
that applies a sequence of local-exchange operations to increase the number of its
internal vertices. After a local-optimal spanning tree is obtained, we show that
if it has more leaves than internal vertices, then a subset of its leaves and its
neighborhood make the reducible structure. We apply the reduction rule of [4]
to reduce it and then repeat the process, which terminates on either a 2k-vertex
kernel or a solution. Indeed, we are proving a stronger statement that implies
Theorem 1 as a corollary.

Theorem 2. Given an n-vertex graph G, we can find in polynomial time either
a spanning tree of G with at least n/2 internal vertices, or a reducible structure.

It is interesting to point out that our kernelization algorithm never directly
ends with a NO situation, which is common in kernelization algorithms in lit-
erature. Our algorithm either returns a trivial YES instance, or continuously
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reduces the graph until it has a spanning tree with at least half its vertices are
internal. This also means that our kernelization algorithm does not rely on the
parameter k.

Priesto and Sloper [18] also initiated the study of parameterized algorithms
(i.e., algorithms running in time O∗(f(k)) for some function f independent of n)1

for k-internal spanning tree, which have undergone a sequence of improvement.
Closely related here is the k-internal out-branching problem, which, given a
directed graph G and an integer k, asks if G has an out-branching (i.e., a spanning
tree having exactly one vertex of in-degree 0) with at least k vertices of positive
out-degrees. Any O∗(f(k))-time algorithm for k-internal out-branching can solve
k-internal spanning tree in the same time—replacing every edge by two arcs of
opposite directions, calling the algorithm for k-internal out-branching, and then
dropping the directions from the obtained out-branching,—but not necessarily
the other way. After a successive sequence of studies [2,3,5,6,22], the current
best deterministic and randomized parameterized algorithms for k-internal out-
branching run in time O∗(6.86k) and O∗(4k) respectively, which are also the best
known for k-internal spanning tree. Table 1 summarizes the history of this line
of research.

Table 1. Known parameterized algorithms for k-internal out-branching and k-internal
spanning tree (note that an algorithm for the former applies to the later as well)

Problem Running time Reference Remark

O∗(kO(k)) Gutin et al. [6]

k-internal O∗(55.8k) Cohen et al. [2]

out-branching O∗(16k+o(k)) Fomin et al. [5]

O∗(6.86k) Shachnai and Zehavi [22]

O∗(4k) Daligault and Kim [3] randomized

O∗(k2.5k) Priesto and Sloper [18]

k-internal O∗(2.14k) Binkele-Raible et al. [1] cubic graphs

spanning tree O∗(8k) Fomin et al. [4]

O∗(4k) This paper

The O∗(4k)-time randomized algorithm for k-internal out-branching [3, The-
orem 180] was obtained using an algebraic technique developed by Koutis and
Williams [12], which, however, is very unlikely to be derandomized. As a corollary
of Theorem 1, we obtain an O∗(4k)-time deterministic algorithm for k-internal
spanning tree,—it suffices to apply the O∗(2n)-time algorithm of Nederlof [15]
to the 2k-vertex kernel produced by Theorem 1,—matching the running time of
the best-known randomized algorithm.

1 Following convention, we use the O∗(f(k)) notation to suppress the polynomial factor
in the running time O(f(k) · nO(1)).
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Theorem 3. The k-internal spanning tree problem can be solved in time O∗(4k).

It remains an open problem to develop a deterministic O∗(4k)-time algorithm
for the k-internal out-branching problem. Note that the minimum spanning tree
problem has been long known to be solvable in randomized linear time [8], while
a deterministic linear-time algorithm is still elusive. As a final remark, there
is also a line of research devoted to developing approximation algorithms for
maximum internal spanning tree [9,18,19,21]. In a companion paper [13], we
have used a similar but deeper (it needs depth-5 in contrast to depth-3 used in
the present paper) local-search procedure to improve the approximation ratio to
1.5.

2 Local-Optimal Spanning Trees

All graphs discussed in this paper shall always be undirected and simple, and the
input graph is assumed to be connected and contain at least two vertices. The
vertex set and edge set of a graph G are denoted by V (G) and E(G) respectively.
For a vertex v ∈ V (G), let NG(v) denote the neighborhood of v in G, and let
dG(v) := |NG(v)| be its degree in G. The neighborhood of a subset U ⊆ V (G)
of vertices is defined to be NG(U) =

⋃
v∈U NG(v)\U . A tree T is a spanning

tree of a graph G if V (T ) = V (G) and E(T ) ⊆ E(G). A vertex u ∈ V (T ) is
a leaf of T if dT (u) = 1, and an internal vertex of T otherwise. Let L(T ) and
I(T ) denoted the set of leaves and the set of internal vertices of T respectively.
We further divide I(T ) into two subsets I2(T ) := {v ∈ V (T ) : dT (v) = 2} and
I3(T ) := {v ∈ V (T ) : dT (v) ≥ 3}. Hence, the three vertex sets L(T ), I2(T ), and
I3(T ) partition V (T ). For any pair of vertices u, v ∈ V (T ), denote by PT (u, v)
the unique path in T from u to v.

Since |I(T )| = |V (T )|−|L(T )|, to maximize it is equivalent to minimizing the
number of leaves. Also connecting leaves and internal vertices, especially I3(T ),
of a tree T is the following elementary fact:

|L(T )| − 2 =
∑

v∈I(T )

(dT (v) − 2) =
∑

v∈I3(T )

(dT (v) − 2) .

Therefore, informally speaking, we need to decrease the number and degrees of
vertices in I3(T ). This is achieved by swapping edges in T and out of T . As a
matter of fact, we can transform a spanning tree T to any other spanning tree
T ′ of the same graph by exchanging |V (T )| − 1 − |E(T ) ∩ E(T ′)| (< n) edges.

Let T be a spanning tree of graph G. An edge uv ∈ E(G) \ E(T ) is called
a cotree edge of T . Note that for a cotree edge uv, the length of PT (u, v) is at
least two. We try to turn leaves of T into internal vertices by swapping a cotree
edge and a tree edge, and hence we will be only concerned with cotree edges
that are incident to leaves of T . On the other hand, the tree edge to be removed
must be selected in a way that the resulting subgraph remains a spanning tree
of G. Let �w be a cotree edge with � ∈ L(T ), and let uv be an edge on the path
PT (�, w). An edge swapping with �w and uv on T is to add �w to T and remove
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uv, denoted by uv → �w. Edge swappings can be applied successively. A set
of edge swapping(s) is improving, weakening, and holding, respectively, if their
applications in turn increases, decreases, and maintains the number of internal
vertices in the spanning tree. Note that the cotree edge used in the second or
later swappings may or may not be incident to a leaf of the original tree.

A spanning tree T of a graph G is local-optimal if every set of three or less
edge swappings is not improving. We can in polynomial time check whether a
spanning tree is local-optimal and find an improving set of edge swappings if
it is not. Since a spanning tree of G has at most |V (G)| − 2 internal vertices,
it follows that a local-optimal spanning tree of a graph can be constructed in
polynomial time.

We now study the structural properties of a local-optimal spanning tree T .
The problem has been solved if T is already a path. Instead of polluting every
statement to follow, we will tacitly assume that T is not a path throughout. As
a result, for any pair of leaves �1, �2 of T , the path PT (�1, �2) necessarily visits
some vertex v ∈ I3(T ); let u be a neighbor of v in the path (chosen arbitrarily).
Suppose �1�2 ∈ E(G), then the edge swapping uv → �1�2 will increase the
internal vertices by either one or two (depending on dT (u)). This is not possible
as T is local-optimal.

Proposition 1. Let �1, �2 be any pair of leaves of a local-optimal spanning tree
T . The path PT (�1, �2) visits some vertex in I3(T ), and �1�2 �∈ E(G).

Proposition 1 is straightforward: indeed, a depth-first-search tree always has this
property. An edge swapping is trivial if both ends of the cotree edge are leaves.
What concern us more are the other edge swappings, where the cotree edge has
one end in L(T ) and the other in I(T ).

Definition 1. A cotree edge of T is good if it connects a leaf � and an internal
vertex w of T . We say that �w crosses every edge in the path PT (�, w).

For notational convenience, when referring to a good cotree edge �w, we always
put the leaf � first, and when referring to an edge uv crossed by �w, we always put
the vertex closer to � in T first; hence, PT (�, w) can be written as � · · · uv · · · w.
We would like to point out that the same edge uv can be crossed by two different
good cotree edges and they may be referred to by different orders.

Now consider the edge swapping uv → �w. The following three types are the
most fundamental ones and hence called basic; here possibly v = w but u must
be different from �. Three or four vertices are involved in this swapping: � and
w are always internal vertices of the new tree (independent of whether v = w or
not), and hence our focus is on u and v (when v �= w), whose degrees decrease
by one.

(A) The simplest case is when the edge swapping uv → �w itself is improving.
It turns the only leaf � into an internal vertex while keeping u, v internal.
In particular, u ∈ I3(T ) and v ∈ I3(T ) ∪ {w}.

(B) The edge swapping uv → �w does not change the number of internal vertices
if only one of the two conditions in (A) holds true. In this case, either (a)
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u ∈ I3(T ) and v ∈ I2(T ) \ {w}; or (b) u ∈ I2(T ) and v ∈ I3(T ) ∪ {w}.
The vertex v in case (a) or u in case (b) is in I2(T ), and was turned into
a leaf by uv → �w. If v is adjacent to some leaf �′ ∈ L(T ) \ {�} in T , then
a trivial edge swapping can be applied subsequently. Therefore, we have an
improving set of two edge swappings.

(C) With little effort, we can push this one step further. Now that neither of two
conditions in (A) holds true, both u and v must be in I2(T )\{w}. They are
both turned into leaves by the edge swapping uv → lw, which decreases the
number of internal vertices. However, if there are two different leaves �u and
�v such that �uu, �vv ∈ E(G) and �u �= �,—we may assume that �v �= �, as
otherwise the edge swapping �v → uv is already in type (B),—then we can
subsequently apply trivial edge swappings to �uu and/or2 �vv to increase
the number of internal vertices by at least two. We have thus an improving
set of two or three edge swappings.

By definition, none of such structures can be found in a local-optimal span-
ning tree T . To characterize vertices participating in these basic edge swappings,
we need the following technical definition.

Definition 2. All vertices in I3(T ) are detachable. A vertex w ∈ I2(T ) is
detachable if there exists a good cotree edge �w of T such that the path PT (�, w)
contains an inner vertex v that is

(1) in I3(T ), or
(2) incident to a good cotree edge �′v of T with �′ �= �.

A tree edge connecting a detachable vertex and an internal vertex of T is critical
(in T ) if it is not crossed by any good cotree edge in either direction.

Let D(T ) denote the set of detachable vertices of T , and let C(T ) denote the
(possibly empty) set of critical edges in T . We remark that in Definition 2, if
condition (2) is satisfied, then the vertex v is detachable as well: indeed, if v
itself is not in I3(T ), then the path PT (�′, v) must visit I3(T ). We can find in
polynomial time all detachable vertices and all critical edges.

In all the three kinds of basic edge swappings, the tree edge uv is not critical
and both u, v are detachable. But these two conditions are not sufficient to ensure
the application of a basic edge swapping: the definition of a detachable vertex
does not specify anything about its neighbors in T , which, however, is crucial. In
other words, a local-optimal spanning tree might still contain non-critical edges
connecting detachable vertices, of which at least one is in I2(T ). This situation
is characterize by the following lemma. Recall that the removal of uv ∈ E(T )
from a tree T breaks it into two components, one containing u and the other
containing v. In general, the removal of all edges of an edge subset E′ ⊆ E(T )
from T breaks it into |E′| + 1 components, each being a subtree of T .
2 One should be noted that in the very special case when |L(T )| = 3, which becomes

4 after uv → �w, the first trivial edge swapping (on �uu) might decrease the number
of leaves by two, thereby leaving a Hamiltonian path and the second trivial edge
swapping is no longer applicable. But this is irrelevant for our discussion.
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Lemma 1. Let u, v be two detachable vertices of a local-optimal spanning tree
T . If uv ∈ E(T ) \ C(T ), then there exist a leaf �, an internal vertex w, and
x ∈ {u, v} such that

(1) x ∈ I2(T );
(2) �w ∈ E(G) \E(T ), and � is in the component of T −uv with x but w is not;

and
(3) �x is the only good cotree edge of T incident to x.

Proof. Since u, v are detachable and uv is not critical, there must be a good
cotree edge e of T connecting the two components of T −uv. At most one of u, v
can be in I3(T ), as otherwise uv → e is an improving edge swapping. Assume
first |{u, v} ∩ I3(T )| = 1; we consider v ∈ I3(T ) and the case u ∈ I3(T ) follows
by symmetry. Then u ∈ I2(T ), and by definition, there is a good cotree edge �u
of T . The leaf � must be in the component of T −uv with u; otherwise, vu → �u
is a basic edge swapping (A). Since vu → e is not a basic edge swapping (A, B),
e crosses uv. On the other hand, since uv → e is not a basic edge swapping (B),
e has to be incident to � and �u is the only cotree edge incident to u. In other
words, �w = e and x = u verify the claim.

In the following both u, v ∈ I2(T ), each incident to some good cotree edge of
T . If there is a unique leaf � such that �u and �v are the only good cotree edges
of T incident to u and v respectively, then {u, v} = {x,w} depending on which
component of T −uv the leaf � is in. Otherwise, let �uu, �vv ∈ E(G) \E(T ) with
�u �= �v. The following hold true because T is local-optimal.

– The leaves �u and �v must be in the component of T − uv with u and
v respectively. Suppose for contradiction that �u is in the component of
T − uv with v, then the edge swapping vu → �uu is basic (B). A symmetric
arguments applies when �v is in the component of T − uv with u.

– Every good cotree edge of T crossing uv is incident to �u and every good
cotree edge of T crossing vu is incident to �v. Suppose that there is an edge
e′ ∈ E(G)\E(T ) crossing uv and non-incident to �u, then uv → e′ is a basic
edge swapping (C).

If uv is crossed by a good cotree edge �uw, then � = �u and x = u; otherwise
� = �v and x = v. The proof is now complete. 
�

We use DB(T ) to denote this set of vertices x stipulated in Lemma 1, and
define DG(T ) := D(T ) \DB(T ). Note that DB(T ) ⊆ I2(T ) and I3(T ) ⊆ DG(T ).

Proposition 2. Let T be a local-optimal spanning tree. If u ∈ DB(T ), then
|L(T ) ∩ NG(u)| = 1.

Proof. Let �w be the good cotree edge specified in Lemma 1, then � is the
component of T − uv containing u and �u is a good cotree edge of T . Noting
that dT (u) = 2, let u′ be the other neighbor of u (different from v). Since
u′u ∈ E(T ) and �u �∈ E(T ), it follows � �= u′ and NT (u) ∩ L(T ) = ∅. Therefore,
the statement follows from Lemma 1(3). 
�
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Note that in a local-optimal spanning tree T , vertices of DG(T ) cannot be
adjacent in T − C(T ). We now strengthen this result by characterizing paths
connecting vertices of DG(T ) in T − C(T ).

Lemma 2. Let T be a local-optimal spanning tree. For every pair of vertices
u,w ∈ DG(T ) that are in the same component of T − C(T ), the path PT (u,w)
visits at least one vertex v ∈ I(T ) \ D(T ). Moreover, for any � ∈ L(T ), the path
PT (�, v) visits D(T ).

Proof. Let PT (u,w) = uv1 · · · vpw; noting that uw �∈ C(T ), by Lemma 1, uw �∈
E(T ), and hence p ≥ 1. No generality will be lost by assuming that PT (u,w) is
minimal (in the sense that it visits no other vertex in DG(T )); hence vi ∈ DB(T )
and dT (vi) = 2 for each 1 ≤ i ≤ p. Note that PT (u,w) is retained in T − C(T ).

We find first an inner vertex vi of PT (u,w) that is not in D(T ) as follows. If
v1 �∈ D(T ), then i = 1 and we are done. We proceed only when v1 ∈ DB(T ), and
then there is a unique good cotree edge �1v1. We prove by contradiction that �1
is in the same component of T − uv1 with v1. Suppose the contrary, then

– if u ∈ I3(T ), then uv1 → �1v1 is a basic edge swapping (A); or
– if u ∈ I2(T ) ∩ DG(T ), then there is a good cotree edge �′u with �′ �= �1, and

hence uv1 → �1v1 is a basic edge swapping (B).

Noting that every inner vertex of PT (u,w) has degree 2, this actually implies
that �1 must be in the same component of T − vpw with w. With a symmetric
argument, we can either find a leaf �p in the same component of T − uv1 with
u such that �pvp is the only good cotree edge incident to vp, or conclude that
vp �∈ D(T ). In either case, �1vp �∈ E(G) and p ≥ 2. Let i be the smallest such
that �1vi �∈ E(G); clearly, 2 ≤ i ≤ p, and its existence is ensured by �1vp �∈ E(G).
If there exists a good cotree edge �′vi of T , then �′ �= �1 (possibly �′ = �p) and
vivi−1 → �1vi−1 is a basic edge swapping (B). This contradiction implies that
there exists no such a good cotree edge of T . Noting that vi ∈ I2(T ), we have
verified that vi is an inner vertex of PT (u,w) not in D(T ).

For any � ∈ L(T ), the path PT (�, v) necessarily visits either u or w, which is
in D(T ). This concludes the proof. 
�

3 The Kernelization Algorithm

We use the reduction rule of Fomin et al. [4], which is recalled below. Let opt(G)
denote the maximum number of internal vertices a spanning tree of G can have.

Lemma 3 ([4]). Let L′ be an independent set of G satisfying |L′| ≥ 2|NG(L′)|.
We can find in polynomial time nonempty subsets S ⊆ NG(L′) and L ⊆ L′ such
that:

(1) NG(L) = S, and
(2) the graph (S ∪ L,E(G) ∩ (S × L)) has a spanning tree such that all vertices

of S and |S| − 1 vertices of L are internal.



A 2k-vertex Kernel for Maximum Internal Spanning Tree 503

Moreover, let G′ be obtained from G by adding a vertex vS adjacent to every
vertex in NG(S)\L, adding a vertex vL adjacent to vS, and removing all vertices
of S ∪ L, then opt(G′) = opt(G) − 2|S| + 2.

Reduction Rule ([4]). Find nonempty subsets S and L of vertices as in
Lemma 3. Return (G′, k′) where G′ is defined in Lemma 3 and k′ = k −2|S|+2.

The safeness of the reduction rule is ensured by Lemma 3. Note that |L| ≥ 2
(otherwise the graph mentioned in Lemma 3(2) cannot have internal vertices),
and hence each application of the reduction rule decreases the number of vertices
by at least 1.

The main technical obstacle is then to identify a vertex set L′ with |L′| ≥
2|NG(L′)|. This is trivial when |V (G)| ≥ 3k − 3. In any spanning tree T of G
with |I(T )| < k it holds that |L(T )| ≥ 2k − 2 ≥ 2|I(T )| ≥ 2|NG(L(T ))|. Hence,
we can use L(T ) as L′ and a 3k-vertex kernel follows. However, it becomes very
nontrivial to find such a set when 2k < |V (G)| < 3k−3. Our approach here is to
separate a local-optimal spanning tree T into several subtrees (by removing all
critical edges) and bound the number of L(T ) by the number of I(T ) residing in
each subtree individually. It is worth mentioning that a leaf of a subtree may not
be a leaf of T . We are now ready for proving the main result of the paper. Recall
that the two ends of any good cotree edge always reside in the same subtree.

Lemma 4. Let T be a local-optimal spanning tree of G with |V (G)| ≥ 4. If
|L(T )| > |I(T )|, then we can find in polynomial time an independent set L′ of
G such that |L′| ≥ 2|NG(L′)|.
Proof. We find all critical edges C(T ), and take the forest T −C(T ). By assump-
tion, there must be some component T0 of T − C(T ) of which more than half
vertices are from L(T ). Let X and Y denote L(T ) ∩ V (T0) and I(T ) ∩ V (T0)
respectively; then |X| ≥ |Y | + 1. By Proposition 1, X is an independent set. We
divide X into the following three subsets:

X1 := X∩NG(DB(T )); X2 := X∩NT (D(T ))\X1; and X3 := X\(X1∪X2).

We will show that |X2| ≥ 2|NG(X2)|, and hence X2 satisfies the claimed condi-
tion and can be used as L′. We accordingly divide Y into subsets. The detachable
vertices are either in Y1 := DB(T ) ∩ V (T0) or Y2 := (D(T ) \ DB(T )) ∩ V (T0),
while a vertex y ∈ Y \ D(T ) is in Y3 if there exists � ∈ L(T ) such that the path
PT (�, y) does not visit D(T ), or in Y4 otherwise. Note that |X| = |X1|+|X2|+|X3|
and |Y | = |Y1| + |Y2| + |Y3| + |Y4|.

We argue first that NG(X2) ⊆ Y2. By the definition of critical edges, there is
no good cotree edge of T connecting two different components of T −C(T ); hence
NG(X) ⊆ V (T0) \ X = Y . It suffices to show NG(X2) ⊆ D(T ) (the definition of
X2 requires that a vertex in it is nonadjacent to DB(T ) in G), which further boils
down to showing NG(X2)∩I2(T ) ⊆ D(T ): by Proposition 1, X2 has no neighbor
in L(T ); on the other hand, I3(T ) ⊆ D(T ). Consider a vertex x ∈ X2, and let y
be the unique neighbor of x in T . By assumption, y ∈ DG(T )∩ I2(T ), and hence
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there is a good cotree edge �y of T with � �= x. For each y′ ∈ NG(x) ∩ I2(T )
different from y, the path PT (x, y′) visits y, using the definition of D(T ) we can
conclude that y′ ∈ D(T ).

Each x ∈ X1 has a neighbor y ∈ Y1. By Proposition 2(5), x is the only vertex
in NG(y) ∩ L(T ). Thus, |X1| ≤ |Y1|. The unique neighbor y of a vertex x ∈ X3

in T must be in I2(T ) \ D(T ). Since the trivial path PT (x, y) (consisting of a
single edge xy) does not visit D(T ), we have y ∈ Y3. The other neighbor of y
in T cannot be a leaf of T (G has at least four vertices). Thus, |X3| ≤ |Y3|. By
Lemma 2, for any two different vertices u and w of Y2, the path PT (u,w) visits
at least one vertex in Y4. Since T0 is a tree, using induction it is easy to show
|Y4| ≥ |Y2| − 1.

Summarizing above, we have

|X2| = |X| − |X1| − |X3| (because |X| = |X1| + |X2| + |X3|.)
≥ |Y | + 1 − |Y1| − |Y3| (because |X| ≥ |Y | + 1; |X1| ≤ |Y1|; |X3| ≤ |Y3|.)
= |Y2| + |Y4| + 1 (because |Y | = |Y1| + |Y2| + |Y3| + |Y4|.)
≥ 2|Y2| (because |Y4| ≥ |Y2| − 1.)

≥ 2|NG(X2)|. (because NG(X2) ⊆ Y2.)

Hence X2 can be used as the independent set L′. This concludes the proof. 
�
Lemmas 4 and 3 imply Theorem 2.
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Abstract. A vertex-subset graph problem Q defines which subsets of the
vertices of an input graph are feasible solutions. A reconfiguration vari-
ant of a vertex-subset problem asks, given two feasible solutions Ss and
St of size k, whether it is possible to transform Ss into St by a sequence
of vertex additions and deletions such that each intermediate set is also a
feasible solution of size bounded by k. We study reconfiguration variants
of two classical vertex-subset problems, namely Independent Set and
Dominating Set. We denote the former by ISR and the latter by DSR.
Both ISR and DSR are PSPACE-complete on graphs of bounded band-
width and W[1]-hard parameterized by k on general graphs. We show
that ISR is fixed-parameter tractable parameterized by k when the input
graph is of bounded degeneracy or nowhere dense. As a corollary, we
answer positively an open question concerning the parameterized com-
plexity of the problem on graphs of bounded treewidth. Moreover, our
techniques generalize recent results showing that ISR is fixed-parameter
tractable on planar graphs and graphs of bounded degree. For DSR, we
show the problem fixed-parameter tractable parameterized by k when
the input graph does not contain large bicliques, a class of graphs which
includes degenerate and nowhere dense graphs.

1 Introduction

Given an n-vertex graph G and two vertices s and t in G, determining whether
there exists a path and computing the length of the shortest path between s
and t are two of the most fundamental graph problems. In the classical battle
of P versus NP or “easy” versus “hard”, both of these problems are on the easy
side. That is, they can be solved in poly(n) time, where poly is any polynomial
function. But what if our input consisted of a 2n-vertex graph? Of course, we can
no longer assume G to be part of the input, as reading the input alone requires
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more than poly(n) time. Instead, we are given an oracle encoded using poly(n)
bits and that can, in constant or poly(n) time, answer queries of the form “is u
a vertex in G” or “is there an edge between u and v?”. Given such an oracle and
two vertices of the 2n-vertex graph, can we still determine if there is a path or
compute the length of the shortest path between s and t in poly(n) time?

This seemingly artificial question is in fact quite natural and appears in many
practical and theoretical problems. In particular, these are exactly the types of
questions asked under the reconfiguration framework, the main subject of this
work. Under the reconfiguration framework, instead of finding a feasible solution
to some instance I of a search problem Q, we are interested in structural and
algorithmic questions related to the solution space of Q. Naturally, given some
adjacency relation A defined over feasible solutions of Q, the solution space can
be represented using a graph RQ(I). RQ(I) contains one node for each feasible
solution of Q on instance I and two nodes share an edge whenever their cor-
responding solutions are adjacent under A. An edge in RQ(I) corresponds to a
reconfiguration step, a walk in RQ(I) is a sequence of such steps, a reconfiguration
sequence, and RQ(I) is a reconfiguration graph.

Studying problems related to reconfiguration graphs has received con-
siderable attention in the literature [3,12,15,16,20,21], the most popular
problem being to determine whether there exists a reconfiguration sequence
between two given feasible solutions/configurations. In many cases, this prob-
lem was shown PSPACE-hard in general, although some polynomial-time solvable
restricted cases have been identified. For PSPACE-hard cases, it is not surpris-
ing that shortest paths between solutions can have exponential length. More
surprising is that for most known polynomial-time solvable cases the diameter
of the reconfiguration graph has been shown to be polynomial. Some of the
problems that have been studied under the reconfiguration framework include
Independent Set [19], Shortest Path [2], Coloring [4], Boolean Sat-
isfiability [12], and Flip Distance [3,5]. We refer the reader to the recent
survey by van den Heuvel [27] for a detailed overview of reconfiguration prob-
lems and their applications. Recently, a systematic study of the parameterized
complexity [9] of reconfiguration problems was initiated by Mouawad et al. [21];
various problems were identified where the problem was not only NP-hard (or
PSPACE-hard), but also W-hard under various parameterizations. The reader is
referred to [9] for more on parameterized complexity.

Overview of our Results. In this work, we focus on reconfiguration variants
of the Independent Set (IS) and Dominating Set (DS) problems. Given
two independent sets Is and It of a graph G such that |Is| = |It| = k, the Inde-
pendent Set Reconfiguration (ISR) problem asks whether there exists a
sequence of independents sets σ = 〈I0, I1, . . . , I�〉, for some �, such that:

(1) I0 = Is and I� = It,
(2) Ii is an independent set of G for all 0 ≤ i ≤ �,
(3) |{Ii \ Ii+1} ∪ {Ii+1 \ Ii}| = 1 for all 0 ≤ i < �, and
(4) k − 1 ≤ |Ii| ≤ k for all 0 ≤ i ≤ �.
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Alternatively, given a graph G and integer k, the reconfiguration graph Ris(G, k−
1, k) has a node for each independent set of G of size k or k − 1 and two nodes
are adjacent in Ris(G, k − 1, k) whenever the corresponding independent sets
can be obtained from one another by either the addition or the deletion of a
single vertex. The reconfiguration graph Rds(G, k, k + 1) is defined similarly for
dominating sets. Hence, ISR and DSR can be formally stated as follows:

Independent Set Reconfiguration (ISR)
Input: Graph G, integer k > 0, and two independent sets Is and It of size k
Question: Is there a path from Is to It in Ris(G, k − 1, k)?

Dominating Set Reconfiguration (DSR)
Input: Graph G, integer k > 0, and two dominating sets Ds and Dt of size k
Question: Is there a path from Ds to Dt in Rds(G, k, k + 1)?

Note that since we only allow independent sets of size k and k − 1 the ISR
problem is equivalent to reconfiguration under the token jumping model con-
sidered by Ito et al. [17,18]. ISR is known to be PSPACE-complete on graphs of
bounded bandwidth [28] (hence pathwidth and treewidth) and W[1]-hard when
parameterized by k on general graphs [18]. On the positive side, the problem
was shown fixed-parameter tractable, with parameter k, for graphs of bounded
degree, planar graphs, and graphs excluding K3,d as a (not necessarily induced)
subgraph, for any constant d [17,18]. We push this boundary further by show-
ing that the problem remains fixed-parameter tractable for graphs of bounded
degeneracy and nowhere dense graphs. As a corollary, we answer positively an
open question concerning the parameterized complexity of the problem param-
eterized by k on graphs of bounded treewidth.

For DSR, we show that the problem is fixed-parameter tractable, with
parameter k, for graphs excluding Kd,d as a (not necessarily induced) subgraph,
for any constant d. Note that this class of graphs includes both nowhere dense
and bounded degeneracy graphs and is the “largest” class on which the Domi-
nating Set problem is known to be in FPT [25,26].

Clearly, our main open question is whether ISR remains fixed-parameter
tractable on graphs excluding Kd,d as a subgraph. Intuitively, all of the classes
we consider fall under the category of “sparse” graph classes. Hence, in some
sense, one would not expect a sparse graph to have “too many” dominating sets
of fixed small size k as n becomes larger and larger. For independent sets, the
situation is reversed. As n grows larger, so does the number of independent sets
of fixed size k. So it remains to be seen whether some structural properties of
graphs excluding Kd,d as a subgraph can be used to settle our open question or
whether the problem becomes W[1]-hard. In the latter case, this would be the
first example of a W[1]-hard problem (in general), which is in FPT on a class C

of graphs but where the reconfiguration version is not; finding such a problem,
we believe, is interesting in its own right. Another open question is whether
we can adapt our results for ISR to find shortest reconfiguration sequences. Our
algorithm for DSR does in fact guarantee shortest reconfiguration sequences but,
as we shall see, the same does not hold for either of the two ISR algorithms.
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Due to space limitations, some proofs (marked with a star) have been omitted
from the current version of the paper.

2 Preliminaries

For an in-depth review of general graph theoretic definitions we refer the reader
to the book of Diestel [8]. Unless otherwise stated, we assume that each graph
G is a simple, undirected graph with vertex set V (G) and edge set E(G), where
|V (G)| = n and |E(G)| = m. The open neighborhood, or simply neighborhood,
of a vertex v is denoted by NG(v) = {u | uv ∈ E(G)}, the closed neighborhood
by NG[v] = NG(v) ∪ {v}. Similarly, for a set of vertices S ⊆ V (G), we define
NG(S) = {v | uv ∈ E(G), u ∈ S, v �∈ S} and NG[S] = NG(S)∪S. The degree of a
vertex is |NG(v)|. We drop the subscript G when clear from context. A subgraph
of G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The induced
subgraph of G with respect to S ⊆ V (G) is denoted by G[S]; G[S] has vertex set S
and edge set E(G[S]) = {uv ∈ E(G) | u, v ∈ S}. For r ≥ 0, the r-neighborhood of
a vertex v ∈ V (G) is defined as Nr

G[v] = {u | distG(u, v) ≤ r}, where distG(u, v)
is the length of a shortest uv-path in G.

Contracting an edge uv of G results in a new graph H in which the vertices
u and v are deleted and replaced by a new vertex w that is adjacent to NG(u) ∪
NG(v) \ {u, v}. If a graph H can be obtained from G by repeatedly contracting
edges, H is said to be a contraction of G. If H is a subgraph of a contraction
of G, then H is said to be a minor of G, denoted by H 
m G. An equivalent
characterization of minors states that H is a minor of G if there is a map that
associates to each vertex v of H a non-empty connected subgraph Gv of G such
that Gu and Gv are disjoint for u �= v and whenever there is an edge between
u and v in H there is an edge in G between some node in Gu and some node
in Gv. The subgraphs Gv are called branch sets. H is a minor at depth r of G,
H 
r

m G, if H is a minor of G which is witnessed by a collection of branch sets
{Gv | v ∈ V (H)}, each of which induces a graph of radius at most r. That is,
for each v ∈ V (H), there is a w ∈ V (Gv) such that V (Gv) ⊆ Nr

Gv
[w].

Sparse Graph Classes. We define the three main classes we consider.

Definition 1 ([22,24]). A class of graphs C is said to be nowhere dense if for
every d ≥ 0 there exists a graph Hd such that Hd �
d

m G for all G ∈ C. C is
effectively nowhere dense if the map d �→ Hd is computable. Otherwise, C is said
to be somewhere dense.

Nowhere dense classes of graphs were introduced by Nesetril and Ossona
de Mendez [22,24] and “nowhere density” turns out to be a very robust con-
cept with several natural characterizations [13]. We use one such characteriza-
tion in Section 3.2. It follows from the definition that planar graphs, graphs
of bounded treewidth, graphs of bounded degree, H-minor-free graphs, and
H-topological-minor-free graphs are nowhere dense [22,24]. As in the work of
Dawar and Kreutzer [7], we are only interested in effectively nowhere dense
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classes; all natural nowhere dense classes are effectively nowhere dense, but it
is possible to construct artificial classes that are nowhere dense, but not effec-
tively so.

Definition 2. A class of graphs C is said to be d-degenerate if every induced
subgraph of any graph G ∈ C has a vertex of degree at most d.

Graphs of bounded degeneracy and nowhere dense graphs are incompa-
rable [14]. In other words, graphs of bounded degeneracy are somewhere
dense. Degeneracy is a hereditary property, hence any induced subgraph of a
d-degenerate graph is also d-degenerate. It is well-known that graphs of treewidth
at most d are also d-degenerate. Moreover a d-degenerate graph cannot contain
Kd+1,d+1 as a subgraph, which brings us to the class of biclique-free graphs. The
relationship between bounded degeneracy, nowhere dense, and Kd,d-free graphs
was shown by Philip et al. and Telle and Villanger [25,26].

Definition 3. A class of graphs C is said to be d-biclique-free, for some d > 0,
if Kd,d is not a subgraph of any G ∈ C, and it is said to be biclique-free if it is
d-biclique-free for some d.

Proposition 1 ([25,26]). Any degenerate or nowhere dense class of graphs is
biclique-free, but not vice-versa.

Reconfiguration. For any vertex-subset problem Q, graph G, and positive
integer k, we consider the reconfiguration graph RQ(G, k, k + 1) when Q is a
minimization problem (e.g. Dominating Set) and the reconfiguration graph
RQ(G, k − 1, k) when Q is a maximization problem (e.g. Independent Set).
A set S ⊆ V (G) has a corresponding node in V (RQ(G, rl, ru)), rl ∈ {k − 1, k}
and ru ∈ {k, k+1}, if and only if S is a feasible solution for Q and rl ≤ |S| ≤ ru.
We refer to vertices in G using lower case letters (e.g. u, v) and to the nodes in
RQ(G, rl, ru), and by extension their associated feasible solutions, using upper
case letters (e.g. A,B). If A,B ∈ V (RQ(G, rl, ru)) then there exists an edge
between A and B in RQ(G, rl, ru) if and only if there exists a vertex u ∈ V (G)
such that {A \ B} ∪ {B \ A} = {u}. Equivalently, for AΔB = {A \ B} ∪ {B \ A}
the symmetric difference of A and B, A and B share an edge in RQ(G, rl, ru) if
and only if |AΔB| = 1.

We write A ↔ B if there exists a path in RQ(G, rl, ru), a reconfiguration
sequence, joining A and B. Any reconfiguration sequence from source feasible
solution Ss to target feasible solution St, which we sometimes denote by σ =
〈S0, S1, . . . , S�〉, for some �, has the following properties:

- S0 = Ss and S� = St,
- Si is a feasible solution for Q for all 0 ≤ i ≤ �,
- |SiΔSi+1| = 1 for all 0 ≤ i < �, and
- rl ≤ |Si| ≤ ru for all 0 ≤ i ≤ �.
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We denote the length of σ by |σ|. For 0 < i ≤ |σ|, we say vertex v ∈ V (G) is
added at step/index/position/slot i if v �∈ Si−1 and v ∈ Si. Similarly, a vertex v is
removed at step/index/position/slot i if v ∈ Si−1 and v �∈ Si. A vertex v ∈ V (G)
is touched in the course of a reconfiguration sequence if v is either added or
removed at least once; it is untouched otherwise. A vertex is removable (addable)
from feasible solution S if S \ {v} (S ∪ {v}) is also a feasible solution for Q. For
any pair of consecutive solutions (Si−1, Si) in σ, we say Si (Si−1) is the successor
(predecessor) of Si−1 (Si). A reconfiguration sequence σ′ = 〈S0, S1, . . . , S�′〉 is a
prefix of σ = 〈S0, S1, . . . , S�〉 if �′ < �.

We adapt the concept of irrelevant vertices from parameterized complexity
to introduce the notions of irrelevant and strongly irrelevant vertices for recon-
figuration. Since these notions apply to almost any reconfiguration problem, we
give general definitions.

Definition 4. For any vertex-subset problem Q, n-vertex graph G, positive inte-
gers rl and ru, and Ss, St ∈ V (RQ(G, rl, ru)) such that there exists a reconfig-
uration sequence from Ss to St in RQ(G, rl, ru), we say a vertex v ∈ V (G) is
irrelevant (with respect to Ss and St) if and only if v �∈ Ss ∪St and there exists a
reconfiguration sequence from Ss to St in RQ(G, rl, ru) which does not touch v.
We say v is strongly irrelevant (with respect to Ss and St) if it is irrelevant and
the length of a shortest reconfiguration sequence from Ss to St which does not
touch v is no greater than the length of a shortest reconfiguration sequence which
does (if the latter sequence exists).

At a high level, it is enough to ignore irrelevant vertices when trying to find
any reconfiguration sequence between two feasible solutions, but only strongly
irrelevant vertices can be ignored if we wish to find a shortest reconfiguration
sequence. As we shall see, our kernelization algorithm for DSR does in fact find
strongly irrelevant vertices and can therefore be used to find shortest recon-
figuration sequences. For ISR, we are only able to find irrelevant vertices and
reconfiguration sequences are not guaranteed to be of shortest possible length.

3 Independent Set Reconfiguration

3.1 Graphs of Bounded Degeneracy

To show that the ISR problem is fixed-parameter tractable on d-degenerate
graphs, for some integer d, we will proceed in two stages. In the first stage, we
will show, for an instance (G, Is, It, k), that as long as the number of low-degree
vertices in G is “large enough” we can find an irrelevant vertex (Definition 4).
Once the number of low-degree vertices is bounded, a simple counting argument
(Proposition 2) shows that the size of the remaining graph is also bounded and
hence we can solve the instance by exhaustive enumeration.

Proposition 2 (�). Let G be an n-vertex d-degenerate graph, S1 ⊆ V (G) be
the set of vertices of degree at most 2d, and S2 = V (G) \ S1. If |S1| < s, then
|V (G)| ≤ (2d + 1)s.
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To find irrelevant vertices, we make use of the following classical result of
Erdős and Rado [11], also known in the literature as the sunflower lemma. We
first define the terminology used in the statement of the theorem. A sunflower
with k petals and a core Y is a collection of sets S1, . . . , Sk such that Si ∩Sj = Y
for all i �= j; the sets Si\Y are petals and we require all of them to be non-empty.
Note that a family of pairwise disjoint sets is a sunflower (with an empty core).

Theorem 1 (Sunflower Lemma [11]). Let A be a family of sets (without
duplicates) over a universe U, such that each set in A has cardinality at most
d. If |A| > d!(k − 1)d, then A contains a sunflower with k petals and such a
sunflower can be computed in time polynomial in |A|, |U|, and k.

Lemma 1. Let (G, Is, It, k) be an instance of ISR and let B be the set of vertices
in V (G) \ {Is ∪ It} of degree at most 2d. If |B| > (2d + 1)!(2k − 1)2d+1, then
there exists an irrelevant vertex v ∈ V (G) \ {Is ∪ It} such that (G, Is, It, k) is a
yes-instance if and only if (G′, Is, It, k) is a yes-instance, where G′ is obtained
by deleting v and all edges incident on v.

Proof. Let b1, b2, . . ., b|B| denote the vertices in B and let A = {NG[b1], NG[b2],
. . ., NG[b|B|]} denote the family of the closed neighborhoods of each vertex in B

and set U =
⋃

b∈B N [b]. Since |B| is greater than (2d+1)!(2k − 1)2d+1, we know
from Theorem 1 that A contains a sunflower with 2k petals and such a sunflower
can be computed in time polynomial in |A| and k. Note that we assume, without
loss of generality, that there are no two vertices u and v in V (G) \ {Is ∪ It} such
that NG[u] = NG[v], as we can safely delete one of them from the input graph
otherwise, i.e. uv ∈ E(G) and one of the two is (strongly) irrelevant. Let vir be
a vertex whose closed neighborhood is one of those 2k petals. We claim that vir

is irrelevant and can therefore be deleted from G to obtain G′.
To see why, consider any reconfiguration sequence σ = 〈Is = I0, I1, . . . , It =

I�〉 from Is to It in Ris(G, k − 1, k). Since vir �∈ Is ∪ It, we let p, 0 < p < �,
be the first index in σ at which vir is added, i.e. vir ∈ Ip and vir �∈ Ii for all
i < p. Moreover, we let q + 1, p < q + 1 ≤ � be the first index after p at which
vir is removed, i.e. vir ∈ Iq and vir �∈ Iq+1. We will consider the subsequence
σs = 〈Ip, . . . , Iq〉 and show how to modify it so that it does not touch vir.
Applying the same procedure to every such subsequence in σ suffices to prove
the lemma.

Since the sunflower constructed to obtain vir has 2k petals and the size
of any independent set in σ (or any reconfiguration sequence in general) is at
most k, there must exist another free vertex vfr whose closed neighborhood
corresponds to one of the remaining 2k − 1 petals which we can add at index
p instead of vir, i.e. vfr �∈ NG[Ip]. We say vfr represents vir. Assume that no
such vertex exists. Then we know that either some vertex in the core of the
sunflower is in Ip contradicting the fact that we are adding vir, or every petal
of the sunflower contains a vertex in Ip, which is not possible since the size of
any independent set is at most k and the number of petals is larger. Hence, we
first modify the subsequence σs by adding vfr instead of vir. Formally, we have
σ′

s = 〈(Ip \ {vir}) ∪ {vfr}, . . . , (Iq \ {vir}) ∪ {vfr}〉.
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To be able to replace σs by σ′
s in σ and obtain a reconfiguration sequence

from Is to It, then all of the following conditions must hold:

(1) |(Iq \ {vir}) ∪ {vfr}| = k.
(2) (Ii \ {vir}) ∪ {vfr} is an independent set of G for all p ≤ i ≤ q,
(3) |(Ii \ {vir}) ∪ {vfr}Δ(Ii+1 \ {vir}) ∪ {vfr}| = 1 for all p ≤ i < q, and
(4) k − 1 ≤ |(Ii \ {vir}) ∪ {vfr}| ≤ k for all p ≤ i ≤ q.

It is not hard to see that if there exists no i, p < i ≤ q, such that σ′
s adds a

vertex in N [vfr] at position i, then all four conditions hold. If there exists such
a position, we will modify σ′

s into yet another subsequence σ′′
s by finding a new

vertex to represent vir. The length of σ′′
s will be two greater than that of σ′

s.
We let i, p < i ≤ q, be the first position in σ′

s at which a vertex in u ∈ N [vfr]
(possibly equal to vfr) is added (hence |Ii−1| = k−1). Using the same arguments
discussed to find vfr, and since we constructed a sunflower with 2k petals, we
can find another vertex v′

fr such that N [vfr] ∩ ((Ii−1 \ {vir}) ∪ {vfr}) = ∅. This
new vertex will represent vir instead of vfr. We construct σ′′

s from σ′
s as follows:

σ′′
s = 〈(Ip \ {vir}) ∪ {vfr}, . . . , (Ii−1 \ {vir}) ∪ {vfr}, (Ii−1 \ {vir}) ∪ {vfr} ∪

{v′
fr}, (Ii−1 \ {vir}) ∪ {v′

fr}, (Ii \ {vir}) ∪ {v′
fr}, . . . , (Iq \ {vir}) ∪ {v′

fr}〉. If σ′′
s

now satisfies all four conditions then we are done. Otherwise, we repeat the same
process (at most q − p times) until we reach such a subsequence. ��
Theorem 2. ISR on d-degenerate graphs is fixed-parameter tractable parame-
terized by k + d.

Proof. For an instance (G, Is, It, k) of ISR, we know from Lemma 1 that as long
as V (G)\{Is ∪ It} contains more than (2d+1)!(2k −1)2d+1 vertices of degree at
most 2d we can find an irrelevant vertex and reduce the size of the graph. After
exhaustively reducing the graph to obtain G′, we known that G′[V (G′)\{Is∪It}],
which is also d-degenerate, has at most (2d + 1)!(2k − 1)2d+1 vertices of degree
at most 2d. Hence, applying Proposition 2, we know that |V (G′) \ {Is ∪ It}| ≤
(2d+1)(2d+1)!(2k−1)2d+1 and |V (G′)| ≤ (2d+1)(2d+1)!(2k−1)2d+1+2k. ��

3.2 Nowhere Dense Graphs

Nesetril and Ossona de Mendez [23] showed an interesting relationship between
nowhere dense classes and a property of classes of structures introduced by
Dawar [6] called quasi-wideness. We will use quasi-wideness and show a rather
interesting relationship between ISR on graphs of bounded degeneracy and
nowhere dense graphs. That is, our algorithm for nowhere dense graphs will
closely mimic the previous algorithm in the following sense. Instead of using the
sunflower lemma to find a large sunflower, we will use quasi-wideness to find a
“large enough almost sunflower” with an initially “unknown” core and then use
structural properties of the graph to find this core and complete the sunflower.
We first state some of the results that we need. Given a graph G, a set S ⊆ V (G)
is called r-scattered if Nr

G(u) ∩ Nr
G(v) = ∅ for all distinct u, v ∈ S.
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Proposition 3. Let G be a graph and let S = {s1, s2, ..., sk} ⊆ V (G) be a
2-scattered set of size k in G. Then the closed neighborhoods of the vertices in S
form a sunflower with k petals and an empty core.

Definition 5 ([7,23]). A class C of graphs is uniformly quasi-wide with margin
sC : N → N and NC : N × N → N if for all r, k ∈ N, if G ∈ C and W ⊆ V (G)
with |W | > NC(r, k), then there is a set S ⊆ W with |S| < sC(r), such that
W contains an r-scattered set of size at least k in G[V (G) \ S]. C is effectively
uniformly quasi-wide if sC(r) and NC(r, k) are computable.

Examples of effectively uniformly quasi-wide classes include graphs of
bounded degree with margin 1 and H-minor-free graphs with margin |V (H)|−1.

Theorem 3 ([7]). A class C of graphs is effectively nowhere dense if and only
if C is effectively uniformly quasi-wide.

Theorem 4 ([7]). Let C be an effectively nowhere dense class of graphs and h
be the computable function such that Kh(r) �
r

m G for all G ∈ C. Let G be an
n-vertex graph in C, r, k ∈ N, and W ⊆ V (G) with |W | ≥ N(h(r), r, k), for some
computable function N . Then in O(n2) time, we can compute a set B ⊆ V (G),
|B| ≤ h(r) − 2, and a set A ⊆ W such that |A| ≥ k and A is an r-scattered set
in G[V (G) \ B].

Lemma 2. Let C be an effectively nowhere dense class of graphs and h be the
computable function such that Kh(r) �
r

m G for all G ∈ C. Let (G, Is, It, k) be
an instance of ISR where G ∈ C and let R be the set of vertices in V (G) \
{Is ∪ It}. Moreover, let P = {P1, P2, . . .} be a family of sets which partitions
R such that for any two distinct vertices u, v ∈ R, u, v ∈ Pi if and only if
NG(u) ∩ {Is ∪ It} = NG(v) ∩ {Is ∪ It}. If there exists a set Pi ∈ P such that
|Pi| > N(h(2), 2, 2h(2)+1k), for some computable function N , then there exists
an irrelevant vertex v ∈ V (G) \ {Is ∪ It} such that (G, Is, It, k) is a yes-instance
if and only if (G′, Is, It, k) is a yes-instance, where G′ is obtained from G by
deleting v and all edges incident on v.

Proof. By construction, we known that the family P contains at most 4k sets, as
we partition R based on their neighborhoods in Is ∪ It. Note that some vertices
in R have no neighbors in Is ∪ It and will therefore belong to the same set in P.

Assume that there exists a P ∈ P such that |P | > N(h(2), 2, 2h(2)+1k).
Consider the graph G[R]. By Theorem 4, we can, in O(|R|2) time, compute a
set B ⊆ R, |B| ≤ h(2) − 2, and a set A ⊆ P such that |A| ≥ 2h(2)+1k and A
is a 2-scattered set in G[R \ B]. Now let P′ = {P ′

1, P
′
2, . . .} be a family of sets

which partitions A such that for any two distinct vertices u, v ∈ A, u, v ∈ P ′
i if

and only if NG(u) ∩ B = NG(v) ∩ B. Since |A| ≥ 2h(2)+1k and |P′| ≤ 2h(2), we
know that at least one set in P′ will contain at least 2k vertices of A. Denote
these 2k vertices by A′. All vertices in A′ have the same neighborhood in B
and the same neighborhood in Is ∪ It (as all vertices in A′ belonged to the
same set P ∈ P). Moreover, A′ is a 2-scattered set in G[R \ B]. Hence, the sets
{NG[a′

1], NG[a′
2], . . . , NG[a′

2k]}, i.e. the closed neighborhoods of the vertices in
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A′, form a sunflower with 2k petals (Proposition 3); the core of this sunflower
is contained in B ∪ Is ∪ It. Using the same arguments as we did in the proof
of Lemma 1, we can show that there exists at least one irrelevant vertex v ∈
V (G) \ {B ∪ Is ∪ It}. ��
Theorem 5. ISR restricted to any effectively nowhere dense class C of graphs
is fixed-parameter tractable parameterized by k.

Proof. If after partitioning V (G)\{Is ∪ It} into at most 4k sets the size of every
set P ∈ P is bounded by N(h(2), 2, 2h(2)+1k), then we can solve the problem by
exhaustive enumeration, as |V (G)| ≤ 2k +4kN(h(2), 2, 2h(2)+1k). Otherwise, we
can apply Lemma 2 and reduce the size of the graph in polynomial time. ��

4 Dominating Set Reconfiguration

4.1 Graphs Excluding Kd,d as a Subgraph

The parameterized complexity of the Dominating Set problem (parameterized
by k the solution size) on various classes of graphs has been studied extensively
in the literature; the main goal has been to push the tractability frontier as far
as possible. The problem was shown fixed-parameter tractable on nowhere dense
graphs by Dawar and Kreutzer [7], on degenerate graphs by Alon and Gutner [1],
and on Kd,d-free graphs by Philip et al. [25] and Telle and Villanger [26]. Our
fixed-parameter tractable algorithm relies on many of these earlier results. Inter-
estingly, and since the class of Kd,d-free graphs includes all those other graph
classes, our algorithm (Theorem 6) implies that the diameter of the reconfigura-
tion graph Rds(G, k, k +1) (or of its connected components), for G in any of the
aforementioned classes, is bounded above by f(k, c), where f is a computable
function and c is constant which depends on the graph class at hand. We start
with some definitions and needed lemmas.

Definition 6. A bipartite graph G with bipartition (A,B) is B-twinless if there
are no vertices u, v ∈ B such that N(u) = N(v).

Lemma 3 (�). If G is a bipartite graph with bipartition (A,B) such that |A| ≥
2(d−1), G is B-twinless, and G excludes Kd,d as a subgraph, then |B| ≤ 2d|A|d.
Definition 7 ([10]). Given a graph G, the domination core of G is a set C ⊆
V (G) such that any set D ⊆ V (G) is a dominating set of G if and only if D
dominates C, i.e. D is a dominating set of G if and only if C ⊆ NG[D].

Lemma 4 (�). If G is a graph which excludes Kd,d as a subgraph and G has a
dominating set of size at most k then the size of the domination core C of G is
at most 2dk2d and C can be computed in O∗(dkd) time.

Since Lemma 4 implies a bound on the size of the domination core and allows
us to compute it efficiently, our main concern is to deal with vertices outside of
the core, i.e. vertices in V (G) \ C. The next lemma shows that we can in fact
find strongly irrelevant vertices outside of the domination core.
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Lemma 5 (�). For G an n-vertex graph, C the domination core of G, and Ds

and Dt two dominating sets of G, if there exist u, v ∈ V (G)\{C ∪Ds ∪Dt} such
that NG(u) ∩ C = NG(v) ∩ C then u (or v) is strongly irrelevant.

Theorem 6. DSR parameterized by k+d is fixed-parameter tractable on graphs
that exclude Kd,d as a subgraph.

Proof. Given a graph G, integer k, and two dominating sets Ds and Dt of G of
size at most k, we first compute the domination core C of G, which by Lemma 4
can be accomplished in O∗(dkd) time. Next, and due to Lemma 5, we can delete
all strongly irrelevant vertices from V (G) \ {C ∪ Ds ∪ Dt}. We denote this new
graph by G′.

Now consider the bipartite graph G′′ with bipartition (A = C\{Ds∪Dt}, B =
V (G′) \ {C ∪Ds ∪Dt}). This graph is B-twinless, since for every pair of vertices
u, v ∈ V (G) \ {C ∪ Ds ∪ Dt} such that NG(u) ∩ C = NG(v) ∩ C either u or v
is strongly irrelevant and is therefore not in V (G′) nor V (G′′). Moreover, since
every subgraph of a Kd,d-free graph is also Kd,d-free, G′′ is Kd,d-free. Hence, if
|A| < 2(d − 1) then |B| ≤ 22(d−1) = 4d−1. Otherwise, by Lemmas 3 and 4, we
have |B| ≤ 2d|A|d ≤ 2d(2dk2d)d.

Putting it all together, we know that after deleting all strongly irrelevant
vertices, the number of vertices in the resulting graph G′ is at most |V (G′)| =
|V (C)| + |Ds ∪ Dt| + |V (G′) \ {C ∪ Ds ∪ Dt}| ≤ 2dk2d + 2k + 2d(2dk2d)d.

Hence, we can solve DSR by exhaustively enumerating all 2|V (G′)| subsets of
V (G′) and building the reconfiguration graph Rds(G′, k, k + 1). ��
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Abstract. Smoothed analysis is a method for analyzing the perfor-
mance of algorithms for which classical worst-case analysis fails to
explain the performance observed in practice. Smoothed analysis has
been applied to explain the performance of a variety of algorithms in the
last years.

One particular class of algorithms where smoothed analysis has been
used successfully are local search algorithms. We give a survey of
smoothed analysis, in particular applied to local search algorithms.

1 Smoothed Analysis

1.1 Motivation

The goal of the analysis of algorithms is to provide measures for the performance
of algorithms. In this way, it helps to compare algorithms and to understand their
behavior. The most commonly used method for the performance of algorithms
is worst-case analysis. If an algorithm has a good worst-case performance, then
this is a very strong statement and, up to constants and lower order terms,
the algorithm should also perform well in practice. However, there are many
algorithms that work surprisingly well in practice although they have a very poor
worst-case performance. The reason for this is that the worst-case performance
can be dominated by a few pathological instances that hardly or never occur in
practice.

A frequently used alternative to worst-case analysis is average-case analysis.
In average-case analysis, the expected performance is measured with respect to
some fixed probability distribution. Many algorithms with poor worst-case but
good practical performance show a good average-case performance. However, the
drawback of average-case analysis is that random instances drawn according to
some fixed probability distribution often have very special properties with high
probability. These properties of random instances distinguish them from typical
instances. Thus, a good average-case running-time does not necessarily explain
a good practical performance.

In order to get a more realistic measure for the performance of algorithms
in cases where worst-case analysis is too pessimistic, Spielman and Teng [56]
proposed smoothed analysis as a new paradigm to analyze algorithms. The key
idea is that practical inputs are often not pathological, but are subject to a
c© Springer International Publishing Switzerland 2015
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small amount of random noise. This random noise can, for instance, stem from
measurement errors. It can also come from numerical imprecision or other cir-
cumstances, where we have no reason to believe that these influences change the
input in a worst-case manner.

1.2 Definition

In smoothed analysis, we measure the maximum expected running-time, where
the maximum is taken over the (adversarial) choices of the adversary, and the
expected value is taken over the random perturbation of the input. The random
perturbation is controlled by some perturbation parameter.

In almost all cases, this perturbation parameter is either the standard devia-
tion σ of the perturbation or an upper bound φ on the density of the underlying
probability distributions. In the former case, larger σ means more randomness,
and the analysis approaches the worst-case analysis for very small σ. This model
is also called the two-step model of smoothed analysis. The most commonly used
type of perturbations are Gaussian distributions of standard deviation σ.

In the latter case, smaller φ means more randomness, and the analysis
approaches the worst-case analysis for large φ. This model is also called the
one-step model of smoothed analysis.

We restrict ourselves here to the two-step model with Gaussian noise, and
we define this model in the following. We assume that our instances X =
{x1, . . . , xn} of size n consist of n points xi ∈ R

d (1 ≤ i ≤ n). We denote
by N (μ, σ2) a d-dimensional Gaussian distribution with mean μ ∈ R

d and vari-
ance σ2 (more precisely, its covariance matrix is a diagonal matrix with σ2 on
all diagonal entries).

Assume that we have a performance measure m that maps instances to, e.g.,
the number of iterations that the algorithm under consideration needs on an
instance X or the approximation ratio that the algorithm achieves on X. Then
the worst-case performance as a function of the input size is given as

Mworst(n) = max
X = {x1, . . . , xn}

⊆ [0, 1]d

(
m(X)

)
. (1)

The average-case performance is given by

Maverage(n) = E
Y = {y1, . . . , yn}
yi ∼ N (0, 1)

(
m(Y )

)
.

Here, the points yi (for 1 ≤ i ≤ n) are drawn according to independent
d-dimensional Gaussian distributions with mean 0 and standard deviation 1.
Another probability distribution that is frequently used is drawing the points
independently and uniformly from the unit hypercube [0, 1]d.

The smoothed performance is a combination of both:

Msmoothed(n, σ) = max
X = {x1, . . . , xn}

⊆ [0, 1]d

E
Y = {y1, . . . , yn}
yi ∼ N (xi, σ2)

(
m(Y )

)
. (2)
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An adversary specifies the instance X, and then Y is obtained by perturbing the
points in X.

Note that Msmoothed depends also on the perturbation parameter σ: For
very small σ, we have Y ≈ X and the smoothed performance approaches the
worst-case performance. For large σ, the influence of X is negligible compared
to the perturbation, and the smoothed performance approaches the average-case
performance.

Note further that we have restricted the choices of the adversary to points in
[0, 1]d. Assuming scale-invariance of the underlying problem, this is no restriction
and makes no difference for worst-case analysis. For smoothed analysis, however,
we would have to scale σ in the same way.

Moreover, we observe that the (adversarial) choice of X in (2) can be differ-
ent from the choice of X in (1). In worst-case analysis, the adversary picks an
instance with worst performance. In smoothed analysis, the adversary chooses
an instance X that maximizes the expected performance subject to the pertur-
bation.

Finally, we remark that we do not require that a feasible or optimal solution
for X remains a feasible or an optimal solution for Y , respectively. Roughly
speaking, we are interested in the distribution of difficult instances and if difficult
instances are isolated. This does not require that we can obtain a solution for X
from a solution for the instance Y obtained by perturbing X.

1.3 Overview of Results Besides Local Search

Since its invention, smoothed analysis has been applied to a variety of algorithms
and problems using a variety of perturbation models. We do not discuss the mod-
els here, but only give an overview to which algorithms and problems smoothed
analysis has been applied. We also refer to two surveys about smoothed analysis
that highlight different perspectives of smoothed analysis [46,57].

Linear programming and matrix problems. Smoothed analysis has originally
been applied to the simplex method [56]. This analysis has subsequently been
improved and simplified significantly [28,59]. Besides this, smoothed analy-
sis has been applied to a variety of related algorithms and problems such as
the perceptron algorithm [13], interior point methods [55], and condition num-
bers [19,20,29,52,58].

Integer programming and multi-criteria optimization. Starting with a smoothed
analysis of the knapsack problem [7], a significant amount of research has been
dedicated to understanding the solvability of integer programming problems and
the size of Pareto curves in multi-criteria optimization problems [6,8,10,16,17,
49–51]. Beier and Vöcking’s characterization of integer programming problems
that can be solved in smoothed polynomial time [8] inspired an embedding of
smoothed analysis into the existing worst-case and average-case complexity the-
ory [11].
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Graphs and formulas. Smoothed analysis can also be applied to purely discrete
problems such as satisfiability of Boolean formulas [24,34,41] or graph prob-
lems [35,41,44,54]. However, it is much less obvious what a meaningful pertur-
bation model is than in problems involving numbers.

Sorting and searching. Smoothed analysis has been applied to analyze problems
based on permutations, most notably the quicksort algorithm [4,27,36,45].

Approximation ratios. Smoothed analysis has mostly been applied to analyze the
running-time of algorithms, but there are also a few analyses of approximation
ratios for Euclidean optimization problems [12,26] and packing problems [26,39].

Other applications. Other applications of smoothed analysis to concrete algo-
rithms include online algorithms [5,53], algorithms for computing minimum cost
flows [15,25], computational geometry [9,22], finding Nash equilibria [23], PAC
learning [38], computing the edit distance [1], minimizing concave functions [40],
balancing networks [37], and belief propagation for discrete optimization prob-
lems [14].

2 Local Search Algorithms

Local search algorithms are often very powerful tools to compute near-optimal
solutions for hard combinatorial optimization problems. Starting from an initial
solution, they iteratively try to improve the solution by small changes, until they
terminate in a local optimum. While often showing a surprisingly good perfor-
mance in practice, the theoretical performance of many local search heuristics is
poor.

Smoothed Analysis has successfully been used to bridge the gap between the
theoretical prediction of performance and the performance observed in practice
and to explain the practical performance of a couple of local search algorithms.
In most cases, the number of iterations until a local optimum is reached has
been analyzed. Examples of local search algorithms whose running-time has been
analyzed in the framework of smoothed analysis include the 2-opt heuristic for
the traveling salesman problem (TSP) [31,48], the iterative closest point (ICP)
algorithm to match point clouds [3], the k-means method for clustering [2,3,47],
and the flip heuristic for the maximum cut problem [30,33].

Only a few results are known about the smoothed approximation ratio of
local search algorithms. Examples are the 2-opt heuristic for the TSP [31,42]
and the jump and lex-jump heuristic in scheduling [18,32].

In the following, we briefly sketch the main ideas how these results have been
obtained.

2.1 Smoothed Analysis of the Running-Time

The key idea of all smoothed analyses of running-times of local search heuristics
is the following: we use the objective function to measure progress. Then we
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show that, after perturbation, the objective function decreases (in case of a min-
imization problem) significantly with high probability either in every iteration
or in every sequence of iterations.

More precisely: assume that the objective value of our initial solution is at
most I, and assume further that the objective value decreases by at least δ in
every iteration of the local search algorithm. Then (assuming that the objective
value cannot become negative) we must reach a local optimum within at most
I/δ iterations. An upper bound I for the initial solution is often relatively easy
to get, and usually one that holds with high probability suffices. Thus, the main
task is to analyze the minimal improvement δ.

The general outline to analyze δ is as follows: often, it is quite straightforward
to show that the probability that some fixed iteration yields a small improve-
ment is small. Then a simple union bound over all possible iterations yields a
first bound for the probability that δ is small. However, the number of possible
iterations can be quite large, which renders this bound useless. Thus, the goal
is to analyze similar iterations together to avoid the wasteful and naive union
bound. Hence, we want to come up with as few classes as possible such that for
every class, we can show that it is unlikely that it contains an iteration that
yields only a small improvement.

For the 2-opt heuristic for the TSP, one can get polynomial bounds for the
smoothed running-time by considering single iterations, although better bounds
can be obtained by considering pairs of iterations that share an edge [31].

For the k-means method for clustering, considering single iterations does not
seem to be sufficient. In the case that the clustering does not change much from
iteration to iteration, it seems to be possible that very small improvements occur.
However, it is unlikely that a short sequence of such iterations yields only very
small improvements [2]. Even more iterations have been considered together to
analyze the flip heuristic for the maximum cut problem [33].

2.2 Smoothed Analysis of the Approximation Ratio

Much less is known about the smoothed approximation ratios of local search
algorithms than about their smoothed running-time. This might be because the
approximation ratio depends heavily on the initialization, and the worst local
optima are often quite robust against slight perturbations. In light of this, the
running-time becomes crucial for the approximation performance: if the local
search heuristic terminates very quickly, we can afford to run it many times
with different initializations. Hopefully, at least one initialization yields a good
solution.

One way to get rid of the dependency of the initialization in the analysis is
to compare the worst local optimum to the global optimum [31,42]. This keeps
the analysis tractable, but still often leads to results that are too pessimistic
to reflect the performance observed in practice. In the following, we denote by
WLO the objective value of the worst local optimum and by OPT the objective
value of a global optimum.
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A second technical difficulty is that WLO and OPT are not independent, and
we would like to analyze their ratio. The simplest approach to circumvent this
challenge is to replace WLO by a worst-case upper bound. While this again seems
too pessimistic, it simplifies the analysis a lot: we are only left with analyzing
E( 1

OPT ) instead of E(WLO
OPT ). This approach has in particular been used for the

2-opt heuristic for the TSP. For the 2-opt heuristic, it is known that WLO =
O(n

d−1
d ) for tours of n points in [0, 1]d [21]. This has been exploited by Englert

et al. [31] to prove a bound on the smoothed approximation ratio of the 2-opt
heuristic.

However, ignoring the dependency between global and local optimum has
significant limitations. What is bad for the approximation ratio is a large WLO
together with a small OPT. Intuitively, in terms of the TSP, we get a very short
optimal tour if the points are very close. But then also WLO should be small.
The other way around, if there is a locally optimal TSP tour that is very long,
then the points cannot be too close to each other. Hence, OPT cannot be too
small. This information has been exploited to prove that the 2-opt heuristic
achieves smoothed approximation ratio of O(log(1/σ)) [42].

Still, simple construction heuristics for the TSP achieve approximation
ratios of 2. Thus, the obvious open problem concerning smoothed approxima-
tion ratios is to analyze hybrid heuristics consisting of a clever initialization
together with local search (see also Section 3). (It has been shown that using
the nearest-neighbor heuristic to initialize 2-opt does not yield a better bound
than Ω(log n/ log log n) for sufficiently small σ [42].)

3 Open Problems

To conclude, we list three open problems concerning smoothed analysis of local
search algorithms.

Lin-Kernighan heuristic for the TSP. The Lin-Kernighan heuristic [43] is an
extremely powerful heuristic for finding near-optimal TSP tours quickly in prac-
tice. Unfortunately, different to the 2-opt heuristic, it seems to be difficult to
describe iterations or sequences of iterations in a compact form in order to avoid
a too wasteful union bound.

Flip heuristic for Max-Cut. Etscheid and Röglin [33] have recently shown that
the smoothed number of iterations that the flip heuristic needs is bounded by a
polynomial in nlog n and the perturbation parameter φ, where n is the number
of nodes of the graph.

More general, we observe that the running-time of the flip heuristic is pseudo-
polynomial. For integer programming problems, it is known that every problem
that can be solved in pseudo-polynomial time can also be solved in smoothed
polynomial time [8]. It would be interesting to see if something similar holds
for local search heuristics, i.e., if every local search algorithm with pseudo-
polynomial running-time has also smoothed polynomial running-time.
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Approximation ratios with initialization. The existing results about smoothed
approximation ratios of local search algorithms compare the worst local optimum
to the global optimal solution [31,42]. However, the performance of local search
heuristics relies heavily on a good initialization. The 2-opt heuristic is no excep-
tion, and the smoothed guarantees for the approximation ratio are easily beaten
by choosing the initial tour with a constant-factor approximation algorithm.

Consequently, an obvious open problem is to take into account clever initial-
izations when analyzing the approximation ratios of local search algorithms.

References

1. Andoni, A., Krauthgamer, R.: The smoothed complexity of edit distance. ACM
Transactions on Algorithms 8(4), 44:1–44:25 (2012)
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8. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete
optimization. SIAM Journal on Computing 35(4), 855–881 (2006)

9. de Berg, M., Haverkort, H.J., Tsirogiannis, C.P.: Visibility maps of realistic terrains
have linear smoothed complexity. Journal of Computational Geometry 1(1), 57–71
(2010)
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Abstract. During compilation of a program, register allocation is the
task of mapping program variables to machine registers. During register
allocation, the compiler may introduce shuffle code, consisting of copy
and swap operations, that transfers data between the registers. Three
common sources of shuffle code are conflicting register mappings at joins
in the control flow of the program, e.g, due to if-statements or loops;
the calling convention for procedures, which often dictates that input
arguments or results must be placed in certain registers; and machine
instructions that only allow a subset of registers to occur as operands.

Recently, Mohr et al. [9] proposed to speed up shuffle code with
special hardware instructions that arbitrarily permute the contents of
up to five registers and gave a heuristic for computing such shuffle codes.

In this paper, we give an efficient algorithm for generating optimal
shuffle code in the setting of Mohr et al. An interesting special case occurs
when no register has to be transferred to more than one destination, i.e.,
it suffices to permute the contents of the registers. This case is equivalent
to factoring a permutation into a minimal product of permutations, each
of which permutes up to five elements.

1 Introduction

One of the most important tasks of a compiler during code generation is register
allocation, which is the task of mapping program variables to machine registers.
During this phase, it is frequently necessary to insert so-called shuffle code that
transfers values between registers. Common reasons for the insertion of shuf-
fle code are control flow joins, procedure calling conventions and constrained
machine instructions.

The specification of a shuffle code, i.e., a description which register contents
should be transferred to which registers, can be formulated as a directed graph
whose vertices are the registers and an edge (u, v) means that the content of u
before the execution of the shuffle code must be in v after the execution. Natu-
rally, every vertex must have at most one incoming edge. Note that vertices may
have several outgoing edges, indicating that their contents must be transferred to
several destinations, and even loops (u, u), indicating that the content of register
u must be preserved. We call such a graph a Register Transfer Graph or RTG.
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Fig. 1. Two example RTGs where the optimal shuffle code is not obvious

Two important special types of RTGs are outdegree-1 RTGs where the maxi-
mum out-degree is 1 and PRTGs where deg−(v) = deg+(v) = 1 for all vertices
v (deg− and deg+ denote the in- and out-degree of a vertex, respectively).

We say that a shuffle code, consisting of a sequence of copy and swap oper-
ations on the registers, implements an RTG if after the execution of the shuffle
code every register whose corresponding vertex has an incoming edge has the
correct content. The shuffle code generation problem asks for a shortest shuffle
code that implements a given RTG.

The amount of shuffle code directly depends on the quality of copy coalesc-
ing, a subtask of register allocation [9]. As copy coalescing is NP-complete [2],
reducing the amount of shuffle code is expensive in terms of compilation time,
and thus cannot be afforded in all contexts, e.g., just-in-time compilation.

Therefore, it has been suggested to allow more complicated operations than
simply copying and swapping to enable more efficient shuffle code. Mohr et al. [9]
propose to allow performing permutations on the contents of small sets of up to
five registers. The processor they develop offers three instructions to implement
shuffle code:
copy: copies the content of one register to another one
permi5: cyclically shifts the contents of up to five registers
permi23: swaps the contents of two registers and performs a cyclic shift of the

contents of up to three registers; the two sets of registers must be disjoint.
In fact, the two operations permi5 and permi23 together allow to arbitrarily
permute the contents of up to five registers in a single operation. A corresponding
hardware and a modified compiler that employs a greedy approach to generate
the shuffle code have been shown to improve performance in practice [9]. While
the greedy heuristic works well in practice, it does not find an optimal shuffle
code in all cases.

It is not obvious how to generate optimal shuffle code using the three instruc-
tions copy, permi5 and permi23 even for small RTGs. In the left RTG from
Fig. 1, a naive solution would implement edges (1, 2) and (1, 3) using copies
and the remaining cycle (4 5 6) using a permi5. However, using one permi23 to
implement the cycle (4 5 6) and swap registers 1 and 2, and then copying reg-
ister 2 to 3 requires only two instructions. This is legal because the contents of
register 1 can be overwritten. The same trick is not applicable for the right RTG
in Fig. 1 because of the loop (1, 1) and hence three instructions are necessary to
implement that RTG.

A maximum permutation size of 5 may seem arbitrary at first but is a con-
sequence of instruction encoding constraints. In each permi instruction, the reg-
ister numbers and their order must be encoded in the instruction word. Hence,
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�log2 (
(
n
k

)
k!)� bits of an instruction word are needed to be able to encode all

permutations of k registers out of n total registers. As many machine architec-
tures use a fixed size for instruction words, e.g., 32 or 64 bits, and the operation
type must also be encoded in the instruction word, space is very limited. In fact,
for a 32 bit instruction word, 34 is the maximum number of registers that leave
enough space for the operation type.

Related Work. As long as only copy and swap operations are allowed, finding
an optimal shuffle code for a given RTG is a straightforward task [7, p. 56–57].
Therefore work in the area of compiler construction in this context has focused
on coalescing techniques that reduce the number and the size of RTGs [1,2,6,8].

From a theoretical point of view, the most closely related work studies the
case where the input RTG consists of a union of disjoint directed cycles, which
can be interpreted as a permutation π. Then, no copy operations are necessary
for an optimal shuffle code and hence the problem of finding an optimal shuffle
code using permi23 and permi5 is equivalent to writing π as a shortest product
of permutations of maximum size 5, where a permutation of n elements has size k
if it fixes n − k elements.

There has been work on writing a permutation as a product of permuta-
tions that satisfy certain restrictions. The factorization problem on permutation
groups from computational group theory [10] is the task of writing an element g
of a permutation group as a product of given generators S. Hence, an algorithm
for solving the factorization problem could be applied in our context by using
all possible permutations of size 5 or less as the set S. However, the algorithms
do not guarantee minimality of the product. For the case that S consists of all
permutations that reverse a contiguous subsequence of the elements, known as
the pancake sorting problem, it has been shown that computing a factoring of
minimum size is NP-complete [4].

Farnoud and Milenkovic [5] consider a weighted version of factoring a permu-
tation into transpositions. They present a polynomial constant-factor approxi-
mation algorithm for factoring a given permutation into transpositions where
transpositions have arbitrary non-negative costs. In our problem, we cannot
assign costs to an individual transposition as its cost is context-dependent, e.g.,
four transpositions whose product is a cycle require one operation, whereas four
arbitrary transpositions may require two.

Contribution and Outline. In this paper, we present an efficient algorithm
for generating optimal shuffle code using the operations copy, permi5, and
permi23, or equivalently, using copy operations and permutations of size at
most 5.

We first prove the existence of a special type of optimal shuffle codes whose
copy operations correspond to edges of the input RTG in Section 2. Removing the
set of edges implemented by copy operations from an RTG leaves an outdegree-1
RTG.
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We show that the greedy algorithm proposed by Mohr et al. [9] finds optimal
shuffle codes for outdegree-1 RTGs and that the size of an optimal shuffle code
can be expressed as a function that depends only on three characteristic numbers
of the outdegree-1 RTG rather than on its structure. Since PRTGs are a special
case of outdegree-1 RTGs, this shows that Greedy is a linear-time algorithm
for factoring an arbitrary permutation into a minimum number of permutations
of size at most 5.

Finally, in Section 4, we show how to compute an optimal set of RTG edges
that will be implemented by copy operations such that the remaining outdegree-1
RTG admits a shortest shuffle code. This is done by several dynamic programs
for the cases that the input RTG is disconnected, is a tree, or is connected and
contains a (single) cycle. Proofs omitted due to space constraints can be found
in the full version of this paper [3].

2 Register Transfer Graphs and Optimal Shuffle Codes

In this section, we rephrase the shuffle code generation problem as a graph
problem. An RTG that has only self-loops needs no shuffle-code and is called
trivial.

It is easy to define the effect of a permutation on an RTG. Let G be an RTG
and let π be an arbitrary permutation that is applied to the contents of the
registers. We define πG = (V, πE), where πE = {(π(u), v) | (u, v) ∈ E}. This
models the fact that if v should receive the data contained in u, then after π
moves the data contained in u to some other register π(u), the data contained
in π(u) should end up in v. We observe that for two permutations π1, π2 of V , it
is (π2 ◦ π1)G = π2(π1(G)), i.e., we have defined a group action of the symmetric
group on RTGs. For PRTGs, the shuffle code generation problem asks for a
shortest shuffle code that makes the given PRTG trivial.

Unfortunately, it is not possible to directly express copy operations in RTGs.
Instead, we rely on the following observation. Consider an arbitrary shuffle code
that contains a copy a → b with source a and target b that is followed by a
transposition τ of the contents of registers c and d. We can replace this sequence
by a transposition of the registers {c, d} and a copy τ(a) → τ(b). Thus, given
a sequence of operations, we can successively move the copy operations to the
end of the sequence without increasing its length. Thus, for any RTG there
exists a shuffle code that consists of a pair of sequences ((π1, . . . , πp), (c1, . . . , ct)),
where the πi are permutation operations and the ci are copy operations. We now
strengthen our assumption on the copy operations.

Lemma 1. Every instance of the shuffle code generation problem has an optimal
shuffle code ((π1, . . . , πp), (c1, . . . , ct)) such that

(i) No register occurs as both a source and a target of copy operations.
(ii) Every register is the target of at most one copy operation.
(iii) There is a bijection between the copy operations ci and the edges of πG that

are not loops, where π = πp ◦ πp−1 ◦ · · · ◦ π1.
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1 2 3 4 5 6

(a) The original RTG G needs one per-
mutation and one copy operation

1 2 3 4 5 6

(b) After removing the edge (2, 3), the
RTG needs two permutation operations

Fig. 2. The RTG G obtains the normalized optimal shuffle code (π1, c1), where π1 =
(23456) and c1 = 3 → 1. However, after removing the edge (2, 3) (instead of (1, 2)) we
cannot achieve an optimal solution anymore.

(iv) If u is the source of a copy operation, then u is incident to a loop in πG.
(v) The number of copies is

∑
v∈V max{deg+

G(v) − 1, 0}.
We call a shuffle code satisfying the conditions of Lemma 1 normalized.

Observe that the number of copy operations used by a normalized shuffle code
is a lower bound on the number of necessary copy operations since permutations
cannot copy values.

Consider now an RTG G together with a normalized optimal shuffle code
and one of its copy operations u → v. Since the code is normalized, the value
transferred to v by this copy operation is the one that stays there after the
shuffle code has been executed. If v had no incoming edge in G, then we could
shorten the shuffle by omitting the copy operation. Thus, v has an incoming
edge (u′, v) in G, and we associate the copy u → v with the edge (u′, v) of G. In
fact, u′ = π−1(u), where π = πp ◦ · · · ◦ π1. In this way, we associate every copy
operation with an edge of the input RTG. In fact, this is an injective mapping
by Lemma 1 (ii).

Lemma 2. Let ((π1, . . . , πp), (c1, . . . , ct)) be an optimal shuffle code S for an
RTG G = (V,E) and let C ⊆ E be the edges that are associated with copies in
S. Then

(i) Every vertex v has max{deg+
G(v) − 1, 0} outgoing edges in C.

(ii) G − C is an outdegree-1 RTG.
(iii) π1, . . . , πp is an optimal shuffle code for G − C.

Lemma 2 shows that an optimal shuffle code for an RTG G can be found by
1) picking for each vertex one of its outgoing edges (if it has any) and removing
the remaining edges from G, 2) finding an optimal shuffle code for the resulting
outdegree-1 RTG, and 3) creating one copy operation for each of the previously
removed edges. Fig. 2 shows that the choice of the outgoing edges is crucial to
obtain an optimal shuffle code.

In the following, we first show how to compute an optimal shuffle code for an
outdegree-1 RTG in Section 3. Afterwards, in Section 4, we design an algorithm
for efficiently determining a set of edges to be removed such that the resulting
outdegree-1 RTG admits a shuffle code with the smallest number of operations.



Optimal Shuffle Code with Permutation Instructions 533

3 Optimal Shuffle Code for Outdegree-1 RTGs

In this section we prove the optimality of the greedy algorithm proposed by
Mohr et al. [9] for outdegree-1 RTGs. Before we formulate the algorithm, let us
look at the effect of applying a transposition τ = (u v) to contiguous vertices of
a k-cycle K = (VK , EK) in a PRTG G, where k-cycle denotes a cycle of size k.
Hence, u, v ∈ VK and (u, v) ∈ EK . Then, in τG, the cycle K is replaced by a
(k − 1)-cycle and a vertex v with a loop. We say that τ has reduced the size of
K by 1. If τK is trivial, we say that τ resolves K. It is easy to see that permi5
reduces the size of a cycle by up to 4 and permi23 reduces the sizes of two
distinct cycles by 1 and up to 2, respectively. We can now formulate Greedy
as follows.
1. Complete each directed path of the input outdegree-1 RTG into a directed

cycle, thereby turning the input into a PRTG.
2. While there exists a cycle K of size at least 4, apply a permi5 operation to

reduce the size of K as much as possible.
3. While there exist a 2-cycle and a 3-cycle, resolve them with a permi23 oper-

ation.
4. Resolve pairs of 2-cycles by permi23 operations.
5. Resolve triples of 3-cycles by pairs of permi23 operations.

We claim that Greedy computes an optimal shuffle code. Let G be an
outdegree-1 RTG and let Q denote the set of paths and cycles of G. For a
path or cycle σ ∈ Q, we denote by size(σ) the number of vertices of σ. Define
X =

∑
σ∈Q�size(σ)/4	 and ai = |{σ ∈ Q | size(σ) = i mod 4}| for i = 2, 3. We

call the triple sig(G) = (X, a2, a3) the signature of G.

Lemma 3. Let G be an outdegree-1 RTG with sig(G) = (X, a2, a3). The number
Greedy(G) of operations in the shuffle code produced by the greedy algorithm is
Greedy(G) = X + max{�(a2 + a3)/2�, �(a2 + 2a3)/3�}.

In particular, the length of the shuffle code computed by Greedy only
depends on the signature of the input RTG G. In the following, we prove that
Greedy is optimal for outdegree-1 RTGs and hence Greedy(G) is the length
of an optimal shuffle code.

Lemma 4. Let G,G′ be PRTGs with sig(G) = (X, a2, a3), sig(G′) = (X ′, a′
2, a

′
3)

and Greedy(G) − Greedy(G′) ≥ c, and let (ΔX ,Δ2,Δ3) = sig(G) − sig(G′).
If a2 ≥ a3, then 2ΔX +Δ2 +Δ3 ≤ −2c+1. If a3 > a2, then 3ΔX +Δ2 +2Δ3 ≤
−3c + 2.

Proof (sketch). We assume that a2 ≥ a3, the other case is analogous. By
Lemma 3 Greedy(G) ≤ X+(a2+a3+1)/2 and Greedy(G′) ≥ X ′+(a′

2+a′
3)/2.

Therefore, Greedy(G) − Greedy(G′) ≤ −ΔX − (Δ2 + Δ3 − 1)/2 = −(2ΔX +
Δ2 +Δ3 −1)/2. By assumption, −(2ΔX +Δ2 +Δ3 −1)/2 ≥ c; this is equivalent
to the claim. �

Lemma 4 gives us necessary conditions for when the Greedy solutions of
two RTGs differ by some value c. These necessary conditions depend only on
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Fig. 3. The transposition τ = (5 8) acting on PRTGs. Affected edges are drawn thick.
Read from left to right, the transposition is a merge; read from right to left, it is a
split.

Table 1. Signature changes and Ψ values for merges. Row and column are the cycle
sizes modulo 4 before the merge.

0 1 2 3

0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

1 (0, 1, 0) (0, −1, 1) (1, 0, −1)

2 (1, −2, 0) (1, −1, −1)

3 (1, 1, −2)

(a) Signature change (ΔX , Δ2, Δ3)

0 1 2 3

0 0 0 0 0

1 1 0 1

2 0 0

3 1

0 1 2 3

0 0 0 0 0

1 1 1 1

2 1 0

3 0

(b) Values of Ψ1 (left) and Ψ2 (right)

the difference of the two signatures. To study them more precisely, we define
Ψ1(ΔX ,Δ2,Δ3) = 2ΔX + Δ2 + Δ3 and Ψ2(ΔX ,Δ2,Δ3) = 3ΔX + Δ2 + 2Δ3.
Next, we study the effect of a single transposition on these two functions.

Let G = (V,E) be a PRTG with sig(G) = (X, a2, a3) and let τ be a transpo-
sition of two elements in V . We distinguish cases based on whether the swapped
elements are in different connected components or not. In the former case, we
say that τ is a merge, in the latter we call it a split ; see Fig. 3 for an illustration.

We start with the merge operations. When merging two cycles of size s1

and s2, respectively, they are replaced by a single cycle of size s1 + s2. Note that
removing the two cycles may decrease the values a2 and a3 of the signature by at
most 2 in total. The new cycle can potentially increase one of these values by 1.
The value X never decreases, and it increases by 1 if and only if s1 mod 4 + s2

mod 4 ≥ 4. Table 1a shows the possible signature changes (ΔX ,Δ2,Δ3) resulting
from a merge. The entry in row i and column j shows the result of merging
two cycles whose sizes modulo 4 are i and j, respectively. Table 1b shows the
corresponding values of Ψ1 and Ψ2. Only entries with i ≤ j are shown, the
remaining cases are symmetric.

Lemma 5. Let G be a PRTG with sig(G) = (X, a2, a3) and let τ be a merge.
Then Greedy(G) ≤ Greedy(τG).

Proof. Suppose Greedy(τG) < Greedy(G). Then Greedy(G) −
Greedy(τG) ≥ 1 and by Lemma 4 either Ψ1 ≤ −1 or Ψ2 ≤ −1. However,
Table 1b shows the values of Ψ1 and Ψ2 for all possible merges. In all cases it is
Ψ1, Ψ2 ≥ 0. A contradiction. �
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0 1

23

0 1

23

Fig. 4. Transition graphs for Ψ1 (left) and Ψ2 (right)

In particular, the lemma shows that merges never decrease the cost of the
greedy solution, even if they were for free. We now make a similar analysis for
splits. It is, however, obvious that splits indeed may decrease the cost of greedy
solutions. In fact, one can always split cycles in a PRTG until it is trivial.

First, we study again the effect of splits on the signature change
(ΔX ,Δ2,Δ3). Since a split is an inverse of a merge, we can essentially reuse
Table 1a. If merging two cycles whose sizes modulo 4 are i and j, respectively,
results in a signature change of (ΔX ,Δ2,Δ3), then, conversely, we can split a
cycle whose size modulo 4 is i+ j into two cycles whose sizes modulo 4 are i and
j, respectively, such that the signature change is (−ΔX ,−Δ2,−Δ3), and vice
versa. Note that given a cycle whose size modulo 4 is s one has to look at all cells
(i, j) with i+ j ≡ s (mod 4) to consider all the possible signature changes. Since
Ψ1, Ψ2 are linear, negating the signature change also negates the corresponding
value. Thus, we can reuse Table 1b for splits by negating each entry.

Lemma 6. Let G = (V,E) be a PRTG and let π be a cyclic shift of c vertices
in V . Let further (ΔX ,Δ2,Δ3) be the signature change affected by π. Then
Ψ1(ΔX ,Δ2,Δ3) ≥ −�(c − 1)/2� and Ψ2(ΔX ,Δ2,Δ3) ≥ −�(3c − 3)/4�.
Proof. We can write π = τc−1 ◦ · · · ◦ τ1 as a product of c − 1 transpositions such
that any two consecutive transpositions τi and τi+1 affect a common element for
i = 1, . . . , c − 1.

Each transposition decreases Ψ1 (or Ψ2) by at most 1, but a decrease happens
only for certain split operations. However, it is not possible to reduce Ψ1 (or Ψ2)
with every single transposition since for two consecutive splits the second has to
split one of the connected components resulting from the previous splits. To get
an overview of the sequences of splits that reduce the value of Ψ1 (or of Ψ2) by 1
for each split, we consider the following transition graphs Tk for Ψk (k = 1, 2)
on the vertex set S = {0, 1, 2, 3}. In the graph Tk there is an edge from i to j
if there is a split that splits a component of size i mod 4 such that one of the
resulting components has size j mod 4 and this split decreases Ψk by 1. The
transition graphs T1 and T2 are shown in Fig. 4.

For Ψ1 the longest path in the transition graph has length 1. Thus, the value
of Ψ1 can be reduced at most every second transposition and Ψ1(ΔX ,Δ2,Δ3) ≥
−�(c − 1)/2�.

For Ψ2 the longest path has length 3 (vertex 1 has out-degree 0). Therefore,
after at most three consecutive steps that decrease Ψ2, there is one that does not.
It follows that at least �(c−1)/4	 operations do not decrease Ψ2, and consequently
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at most �(3c − 3)/4� operations decrease Ψ2 by 1. Thus, Ψ2(ΔX ,Δ2,Δ3) ≥
−�(3c − 3)/4�. �

Since permi5 performs a single cyclic shift and permi23 is the concatenation
of two cyclic shifts, Lemmas 6 and 4 can be used to show that no such operation
may decrease the number of operations Greedy has to perform by more than 1.

Corollary 1. Let G be a PRTG and let π be an operation, i.e., either a permi23
or a permi5. Then Greedy(G) ≤ Greedy(πG) + 1.

Using this corollary and an induction on the length of an optimal shuffle
code, we show that Greedy is optimal for PRTGs; if no operation reduces the
number of operations Greedy needs by more than 1, why not use the operation
suggested by Greedy?

Theorem 1. Let G be a PRTG. An optimal shuffle code for G takes
Greedy(G) operations. Algorithm Greedy computes an optimal shuffle code
in linear time.

Moreover, since merge operations may not decrease the cost of Greedy and
any PRTG that can be formed from the original outdegree-1 RTG G by inserting
edges can be obtained from the PRTG G′ formed by Greedy and a sequence
of merge operations, it follows that the length of an optimal shuffle for G is
Greedy(G′). Thus, Greedy is optimal for outdegree-1 RTGs.

Theorem 2. Let G be an outdegree-1 RTG. Then an optimal shuffle code for G
requires Greedy(G) operations. Greedy computes such a shuffle code in linear
time.

4 The General Case

In this section we study the general case. A copy set of an RTG G = (V,E)
is a set C ⊆ E such that G − C = (V,E − C) is an outdegree-1 RTG and
|C| =

∑
v∈V max{deg+(v) − 1, 0}. We denote by C(G) the set of all copy sets

of G. According to Lemma 2 an optimal shuffle code for G can be found by
finding a copy set C ∈ C(G) such that the outdegree-1 RTG G − C admits a
shortest shuffle code. By Theorem 2 an optimal shuffle code for G − C can be
computed with the greedy algorithm and its length can be computed according
to Lemma 3. We thus seek a copy set C ∈ C(G) that minimizes the cost function
Greedy(G − C) = X + max{�(a2 + a3)/2�, �(a2 + 2a3)/3�}, where (X, a2, a3)
is the signature of G − C. Such a copy set is called optimal. Clearly, this is
equivalent to minimizing the function

Greedy′(G−C) = X +max{a2 + a3

2
,
a2 + 2a3

3
} =

{
X + a2

2 + a3
2 if a2 ≥ a3

X + a2
3 + 2a3

3 if a2 < a3

To keep track of which case is used for evaluating Greedy′, we define diff(G −
C) = a2 − a3 and compute for each of the two function parts and every possible
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value d a copy set Cd with diff(G − Cd) = d that minimizes that function. More
formally, we define cost1(G − C) = X + 1

2a2 + 1
2a3 and cost2(G − C) = X +

1
3a2+ 2

3a3 and we seek two tables T 1
G[·], T 2

G[·], such that T i
G[d] is the smallest cost

costi(G−C) that can be achieved with a copy set C ∈ C(G) with diff(G−C) = d.
We observe that T i

G[d] = ∞ for d < −n and for d > n. The following lemma
shows that the length of an optimal shuffle code can be computed from these
two tables.

Lemma 7. Let G = (V,E) be an RTG. The length of an optimal shuffle code
for G is

∑
v∈V max{deg+(v) − 1, 0} + min{mind≥0�T 1

G[d]�,mind<0�T 2
G[d]�}.

In the following, we show how to compute for an RTG G a table TG[·] with

TG[d] = min
C∈C(G)

diff(G−C)=d

cost(G − C)

for an arbitrary cost function cost(G − C) = c(sig(G − C)), where c is a linear
function. This is done in several steps depending on whether G is disconnected,
is a tree, or is connected and contains a cycle. Before we continue, we introduce
several preliminaries to simplify the following calculations. We denote by Ps a
directed path on s vertices.

Definition 1. A map f that assigns a value to an outdegree-1 RTG is signature-
linear if there exists a linear function g : R3 → R such that f(G) = g(sig(G)) for
every outdegree-1 RTG G. For a signature-linear function f , Δf (s) = f(Ps+1)−
f(Ps) is the correction term.

Note that both cost = c ◦ sig and diff = d ◦ sig with d(X, a2, a3) = a2 − a3 are
signature-linear. The correction term Δf (s) describes the change of f when the
size of one connected component is increased from s to s + 1.

Lemma 8. Let f be a signature-linear function. Then the following hold:
(i) f(G1 ∪ G2) = f(G1) + f(G2) for disjoint outdegree-1 RTGs G1, G2,
(ii) Let G = (V,E) be an outdegree-1 RTG and let v ∈ V with in-degree 0.

Denote by s the size of the connected component containing v and let G+ =
(V ∪{u}, E∪{(u, v)}) where u is a new vertex. Then f(G+) = f(G)+Δf (s).

Note that Δf (s) = Δf (s+4) for all values of s and hence it suffices to know the
size of the enlarged component modulo 4.

The main idea for computing table TG[·] by dynamic programming is to
decompose G into smaller edge-disjoint subgraphs G = G1 ∪ · · · ∪ Gk such that
the copy sets of G can be constructed from copy sets for each of the Gi. We call
such a decomposition proper partition if for every vertex v of G there exists an
index i such that Gi contains all outgoing edges of v. Let G1, . . . , Gk be a proper
partition of G and let Ci ⊆ C(Gi) for i = 1, . . . , k. We define C1 ⊗ · · · ⊗ Ck =
{C1 ∪ · · · ∪ Ck | Ci ∈ Ci, i = 1, . . . , k}. It is not hard to see that C(G1∪· · ·∪Gk) =
C(G1) ⊗ · · · ⊗ C(Gk).
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Disconnected RTGs. We start with the case that G is disconnected and
consists of connected components G1, . . . , Gk, which form a proper partition of
G. The main issue is to keep track of diff and cost. For an RTG G, we define
C(G; d) = {C ∈ C(G) | diff(G − C) = d}. By Lemma 8(i) and the signature-
linearity of diff, if Ci ∈ C(Gi; di) for i = 1, 2, then C1 ∪C2 ∈ C(G1 ∪G2; d1 +d2).
This leads to the following lemma.

Lemma 9. Let G be an RTG and let G1, G2 be vertex-disjoint RTGs. Then
(i) C(G) =

⋃
d C(G; d) and (ii) C(G1 ∪ G2; d) =

⋃
d′ (C(G1; d′) ⊗ C(G2; d − d′)).

By further exploiting the signature-linearity of cost, we also get cost((G1 ∪
G2) − (C1 ∪ C2)) = cost(G1 − C1) + cost(G2 − C2), allowing us to compute the
cost of copy sets formed by the union of copy sets of vertex-disjoint graphs.

Lemma 10. Let G1, G2 be two vertex-disjoint RTGs and let G = G1∪G2. Then
TG[d] = mind′{TG1 [d

′] + TG2 [d − d′]}.

Proof. Applying the definition of TG[·] as well as Lemma 9 (ii) and Lemma 8 (i)
yields

TG[d] = min
C∈C(G;d)

cost(G − C) = min
C∈⋃d′ (C(G1;d′)⊗C(G2;d−d′))

cost(G − C)

= min
d′

{

min
C∈C(G1;d′)⊗C(G2;d−d′)

cost(G − C)
}

= min
d′

{

min
C1∈C(G1;d′)

cost(G1 − C1) + min
C2∈C(G2;d−d′)

cost(G2 − C2)
}

= min
d′

{TG1 [d
′] + TG2 [d − d′]}. �

By iteratively applying Lemma 10, we compute TG[·] for a disconnected RTG
G with an arbitrary number of connected components.

Lemma 11. Let G be an RTG with n vertices and connected components
G1, . . . , Gk. Given the tables TGi

[·] for i = 1, . . . , k, the table TG[·] can be com-
puted in O(n2) time.

Tree RTGs. For a tree RTG G, we compute TG[·] in a bottom-up fashion.
The direction of the edges naturally defines a unique root vertex r that has no
incoming edges and we consider G as a rooted tree. For a vertex v, we denote by
G(v) the subtree of G with root v. Let v be a vertex with children v1, . . . , vk. How
does a copy set C of G(v) look like? Clearly, G(v)−C contains precisely one of the
outgoing edges of v, say (v, vj). Then Zj = {(v, vi) | i �= j} ⊆ C. Graph G(v)−Zj

has connected components G(vi) for i �= j, whose union we denote G¬j , and one
additional connected component G+(vj) that is obtained from G(vj) by adding
the vertex v and the edge (v, vj). This forms a proper partition of G(v) − Zj .
As above, we decompose the copy set C − Zj further into a union of a copy set
C¬j of G¬j and a copy set Cj of G+(vj). Graph G¬j is disconnected and can be
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handled as above. Note that the only child of the root of G+(vj) is vj and hence
Cj is a copy set of G(vj). For expressing the cost and difference measures for
copy sets of G+(vj) in terms of copy sets of G(vj), we use the correction terms
Δcost and Δdiff . By Lemma 8 (ii), diff(G+(vj)−Cj) = diff(G(vj)−Cj)+Δdiff(s),
where s is the size of the root path P (vj , Cj) of G(vj) − Cj , i.e., the size of the
connected component of G(vj)−Cj containing vj . An analogous statement holds
for cost. More precisely, it suffices to know s modulo 4. Therefore, we further
decompose our copy sets as follows, which allows us to formalize our discussion.

Definition 2. For a tree RTG G with root v and children v1, . . . , vk, we define
C(G; d, s) = {C ∈ C(G; d) | |P (v, C)| ≡ s (mod 4)}. We further decompose these
by C(G; d, s, j) = {C ∈ C(G; d, s) | (v, vj) �∈ C}, according to which outgoing edge
of the root is not in the copy set.

Lemma 12. Let G be a tree RTG with root v and children v1, . . . , vk and for
a fixed vertex vj, 1 ≤ j ≤ k, let G+(vj) be the subgraph of G induced by the
vertices in G(vj) together with v. Let further G¬j =

⋃k
i=1,i �=j G(vi) and Zj =

{(v, vi) | i �= j}. Then
(i) C(G; d) =

⋃3
s=0 C(G; d, s) and C(G; d, s) =

⋃k
j=1 C(G; d, s, j).

(ii) C(G+(vj); d, s) = C(G(vj); d − Δdiff(s), s − 1).
(iii) C(G; d, s, j) =

⋃
d′ (C(G¬j ; d′) ⊗ C(G+(vj); d − d′, s) ⊗ {Zj}).

To make use of this decomposition of copy sets, we extend our table T with an
additional parameter s to keep track of the size of the root path modulo 4. We call
the resulting table T̃ . More formally, T̃v[d, s] = minC∈C(G(v);d,s) cost(G(v) − C).
It is not hard to see that TG[·] can be computed from T̃r[·, ·] for the root r of a
tree RTG G.

Lemma 13. Let G be a tree RTG with root r. Then TG[d] = mins T̃r[d, s].

To compute T̃v[·, ·] in a bottom-up fashion, we exploit the decompositions
from Lemma 12 and the fact that we can update the cost function from G(vj)−Cj

to G+(vj) − Cj using the correction term Δcost. The proof is similar to that of
Lemma 10 but more technical.

Lemma 14. Let G be a tree RTG, let v be a vertex of G with children v1, . . . , vk,
and let G(vi) = (Vi, Ei) for i = 1, . . . , k. Then with G¬j = (V¬j , E¬j) =
⋃k

i=1,i �=j G(vi)
T̃v[d, s] = min

j∈{1,...,k}
min

d′
TG¬j

[d′]+ T̃vj
[d−d′ −Δdiff(s), (s−1) mod 4]+Δcost(s).

For leaves v of a tree RTG G, T̃v[0, 1] = 0 and all other entries are ∞. We
compute TG[·] by iteratively applying Lemma 14 in a bottom-up fashion, using
Lemma 13 to compute T [·] from T̃ [·, ·] in linear time when needed.

Lemma 15. Let G = (V,E) be a tree RTG with n vertices and root r. The
tables T̃r[·, ·] and TG[·] can be computed in O(n3) time.
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Connected RTGs Containing a Cycle. We only give a sketch. The idea is
that such an RTG contains a single directed cycle. Every copy set contains either
an edge of that cycle or it contains all edges that have their source on the cycle
but do not belong to the cycle. This leads to a linear number of tree instances,
which we solve using Lemma 15.

Lemma 16. Let G be a connected RTG containing a directed cycle. The table
TG[·] can be computed in O(n4) time.

Putting Things Together. To compute TG[·] for an arbitrary RTG G, we
first compute TK [·] for each connected component K of G using Lemmas 15
and 16. Then, we compute TG[·] using Lemma 11 and the length of an optimal
shuffle code using Lemma 7. To actually compute the shuffle code, we augment
the dynamic program computing TG[·] such that an optimal copy set C can be
found by backtracking in the tables. An optimal shuffle code is then found by
applying Greedy to G − C and adding one copy operation for each edge in C.

Theorem 3. Given an RTG G, an optimal shuffle code can be computed in
O(n4) time.

Conclusion. We have presented an efficient algorithm for generating optimal
shuffle code using copy instructions and permutation instructions, which allow
to arbitrarily permute the contents of up to five registers. As an intermediate
result, we have proven the optimality of the greedy algorithm for factoring a
permutation into a minimal product of permutations, each of which permutes
up to five elements. It would be interesting to allow permutations of larger size.
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10. Seress, Á.: Permutation Group Algorithms, vol. 152. Cambridge University Press
(2003)

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532


Non-preemptive Scheduling on Machines
with Setup Times
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Abstract. Consider the problem in which n jobs that are classified into
k types are to be scheduled on m identical machines without preemption.
A machine requires a proper setup taking s time units before processing
jobs of a given type. The objective is to minimize the makespan of the
resulting schedule. We design and analyze an approximation algorithm
that runs in time polynomial in n,m and k and computes a solution with
an approximation factor that can be made arbitrarily close to 3/2.

Keywords: Scheduling · Approximation algorithms · Setup times

1 Introduction

In this paper, we consider a scheduling problem where a set of n jobs, each with
an individual processing time, that is partitioned into k disjoint classes has to
be scheduled on m identical machines. Before a machine is ready to process jobs
belonging to a certain class, this machine has to be configured properly. That
is, whenever a machine switches from processing a job of one class to a job of
another class, a setup taking s time units is required. Meanwhile a machine is
not available for processing. The objective is to assign jobs (and the respective
setup operations) to machines so as to minimize the makespan of the resulting
non-preemptive schedule.

The considered problem models situations where the preparation of machines
for processing jobs requires a non-negligible setup time. These setups depend on
the classes of jobs to be processed (i.e. they are class-dependent), however, the
required setup time is class-independent. Also, jobs might not be preempted, e.g.
because of additional high preemption costs. Possible examples of problems for
which this model is applicable are (1) the processing of jobs on (re-)configurable
machines (e.g. Field Programmable Gate Arrays) which only provide function-
alities required for certain operations (or jobs of a certain class) after a suitable
setup or (2) a scenario where large tasks (consisting of smaller jobs) have to
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be scheduled on remote machines and it takes a certain (setup) time to make
task-dependent data available on these distributed machines.

Surprisingly, although a lot of research has been done on scheduling with
setup times, we are not aware of results concerning the considered model. This
is due to the fact that the motivation for considering setup times are often related
to preemption of jobs, which is not true for our model. We discuss some results on
these alternative models in the following section on related work. Thereafter, we
settle some preliminaries in Section 3. Section 4 presents the main contribution
of this paper which is an algorithm whose approximation factor can be made
arbitrarily close to 3/2 with a runtime that is polynomial in the input quantities
n, k and m. For an online version where jobs arrive over time our offline algorithm
implies an online strategy with a competitiveness arbitrarily close to 4.

For ommited proofs please refer to the full version of this paper [7].

1.1 Related Work

The scheduling problem considered in this paper is a generalization of the clas-
sical problem of scheduling jobs on identical machines without preemption and
in which setup times are equal to 0. This problem has been extensively studied
in theoretical research and PTASs with runtimes that are linear in the number
n of jobs are known for objective functions such as minimizing (maximizing) the
maximum (minimum) completion time or sum of completion times [2,5]. If the
number m of machines is constant, even FPTASs exist [6].

When setup times are larger than 0, the problem is usually refered to as
scheduling with setup times (or setup costs). It has also been studied for quite a
long time and there is a rich literature analyzing different models and objective
functions. Usually models are distinguished by whether or not setup times are
job-, machine- and/or sequence-dependent. For an overview on studied problems
and results in this context the reader is refered to detailed surveys on scheduling
with setup times [1,9]. We discuss some closely related problems in the following.
In [8], Monma and Potts consider a model quite similar to ours but they allow
preemption of jobs and setup times may be different for each class. They design
two simple algorithms, one with an approximation factor of at most max{3/2 −
1/(4m − 4), 5/3 − 1/m} if each class is small (i.e. setup time plus size of all jobs
of a class are not larger than the optimal makespan), and a second one with
approximation factor of at most 2 − 1/(�m/2� + 1) for the general case. Later,
Schuurman and Woeginger [10] improve the result for the case that each class
consists of only one job that, together with its setup time, is not larger than
the optimal makespan. The authors design a PTAS for the case where all setup
times are identical and a polynomial time algorithm with approximation factor
arbitrary close to 4/3 for non-identical setup times.

A closely related problem was also studied in another context by Shachnai
and Tamir [11]. They design a dual PTAS for a class-constrained packing prob-
lem. In contrast to the basic bin packing problem, in this variant each item
belongs to a class and each bin has an upper bound on the number of different
classes that might be placed in one bin.
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The dual problem of our scheduling problem was studied by Xavier and
Miyazawa and is known as class-constrained shelf bin packing. For a constant
number of classes, an asymptotic PTAS is known for this problem [13] as well as
a dual approximation scheme [14], i.e. a PTAS for our problem if k is constant.

Very recently, Correa et al. [3] studied the problem of scheduling splittable
jobs on unrelated machines. Here, unrelated refers to the fact that each job may
have a different processing time on each of the machines. In their model, jobs
may be split and each part might be assigned to a different machine but each
requires a setup before being processed. For this problem and the objective of
minimizing the makespan they show their algorithm to have an approximation
factor of at most 1 + φ, where φ ≈ 1.618 is the golden ratio.

In [4], an online variant of scheduling with setup times is considered. The
authors propose a O(1)-competitive online algorithm for minimizing the maxi-
mum flow time if jobs arrive over time at one single machine.

2 Model and Notation

We consider a model in which there is a set J = {1, . . . , n} of n independent jobs
(i.e. there are no precedence constraints for jobs) that are to be scheduled on m
identical machines M = {M1, . . . , Mm}1. Each job i is available at the beginning
and comes with a processing time (or size) pi ∈ N>0. Additionally, the job set
is partitioned into k disjoint classes C = {C1, . . . , Ck}, i.e. J =

⋃k
i=0 Ci and

Ci ∩ Cj = ∅ for all i �= j. Before a job j ∈ Ci can be processed on a machine,
this machine has to be configured properly and afterward jobs of class Ci can be
processed without additional setups until the machine is reconfigured for a class
Ci′ �= Ci. That is, a setup needs to take place before the first job is processed on
a machine and whenever the machine switches from processing a job j ∈ Ci to
a job j′ ∈ Ci′ with Ci �= Ci′ . Such a setup takes s ∈ N>0 time units and while
setting up a machine, it is blocked and cannot do any processing.

Given this setting, the objective is to find a feasible schedule that minimizes
the makespan, i.e. the maximum completion time of a job, and does not preempt
any job, i.e. once the processing of a job is started at a machine it finishes at
this machine without interruption.

In the following we refer to the overall processing time of all jobs of a class
Ci as its workload and denote it w(Ci) :=

∑
j∈Ci

pj and we assume that for all
1 ≤ i ≤ n it holds that w(Ci) ≤ γOPT for some constant γ and OPT being the
optimal makespan. By abuse of notation, by w(Ci) we sometimes also represent
(an arbitrary sequence of) those jobs belonging to class Ci. To refer to the class
Ci of a job j ∈ Ci, we use a mapping c : J → C with c(j) = Ci and we say a
job j ∈ Ci forms an individual class if c−1(Ci) = {j}. The processing time of
the largest job in a given instance is denoted by pmax := max1≤i≤n(pi). We say
a machine is an exclusive machine (of a class Ci) if it only processes jobs of a
single class (class Ci).
1 We do not assume m to be a constant. Although still being NP-hard, for constant
m there is a simple FPTAS that can be found in the full version.
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3 Preliminaries

As a preliminary for our approximation algorithm presented in Section 4, we
need to know the optimal makespan before we can actually compute a schedule
fulfilling the desired approximation guarantee concerning its makespan. However,
this assumption is feasible and justified by the applicability of a common notion
known as an α-relaxed decision procedure [5].

Definition 1. Given an instance I and a candidate makespan T , an α-relaxed
decision procedure either outputs no or provides a schedule with makespan at
most α · T . In case it outputs no, there is no schedule with makespan at most T .

Using such an α-relaxed decision procedure (that runs in polynomial time) to
guide a binary search on an interval [l, u] with OPT ∈ [l, u], we directly obtain a
polynomial time approximation algorithm with approximation factor α. We can
find a suitable interval containing the optimal makespan by applying a greedy
algorithm that provides an interval of length OPT in time O(n) as described in
the full version.

For the sake of simplicity, we assume in the following that by means of this
approach we have guessed OPT correctly and show how to obtain an effective
approximation algorithm. Particularly, using the presented algorithm within the
binary search framework as an α-relaxed decision procedure, provides the final
result.

4 (3/2 + ε)-Approximation Algorithm

In this section, we present the main algorithm of the paper. The outline of our
approach is as follows:
(1) We first identify a class of schedules that features a certain structural prop-
erty and show that if we narrow our search for a solution to schedules belonging
to this class, we will still find a good schedule, i.e. one whose makespan is not
too far away from an optimal one.
(2) We then show how to perform a rounding of the involved job sizes and further
transformations and thereby significantly decrease the size of the search space.
(3) Finally, given such a (transformed) instance, it will be easy to optimize over
the restricted class of schedules studied in (1) to obtain an approximate solution
to any given instance.

4.1 Block-Schedules

We start by discussing the question how to narrow our study to a class of sched-
ules that fulfill a certain property and still, be able to find a provably good
approximate solution. Particularly, we focus on block-schedules, which are sched-
ules satisfying a structural property, and which we define in Definition 2. Intu-
itively speaking, in a block-schedule jobs of a class are assigned to consecutive
machines instead of being widely scattered.
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Definition 2. Given an instance I, we call a schedule for I block-schedule if
for all 1 ≤ i ≤ m the following holds: In the (partial) schedule for the machines
M1, . . . , Mi, there is at most one class of which some but not all jobs are processed
on M1, . . . , Mi.

In order to prove our main theorem about block-schedules, we first have to take
care of jobs having a large processing time in terms of the optimal makespan.
Let Li = {j ∈ Ci : 1

2OPT − s < pj < 1
2OPT} be the set of large jobs of class Ci

and Hi = {j ∈ Ci : pj ≥ 1
2OPT} be the set of huge jobs of class Ci. Based on

these definitions we show the following lemma.

Lemma 1. With an additive loss of s in the makespan we may assume that

1. Each huge job forms an individual class,
2. There is a schedule with the property that all large jobs of class Ci are pro-

cessed on exclusive machines, except (possibly) one large job qi ∈ Li, for
each Ci, and

3. qi = argminj∈Li
{pj} is the smallest large job in Ci and the machine it is

processed on has makespan at most OPT .

Proof. We prove the lemma by showing how to establish the three properties by
transformations of the given instance I and an optimal schedule S for I with
makespan OPT . To establish the first property, transform I into I ′ by putting
each job j ∈ Hi into a new individual class, for each class Ci. Because any
machine processing such a huge job j cannot process any other huge or large
job due to their definitions, the transformation increases the makespan of any
machine by at most s.

Next, we focus on the second property. In S no machine can process two
large jobs of different classes. Hence, we distinguish the following two cases:
A machine processes one large job or a machine processes at least two large
jobs. We start with the latter case and consider any machine that processes at
least two large jobs of a class Ci. Because these two jobs already require at least
2 �(OPT+1)/2 − s+ s ≥ OPT − s+1 time units including the setup time, no job
of another class can be processed and thus, this machine already is an exclusive
machine. On the other hand, if a machine Mp only processes one large job j ∈ Ci,
we can argue as follows. The machine Mp works on j for at least �(OPT+1)/2
time units (including the setup). Thus, the remaining jobs and setups processed
by Mp can have a size of at most �(OPT−1)/2�. If there is still another machine
processing a single large job of Ci, we can exchange these jobs and setups with
this large job and both involved machines have a makespan of at most OPT +s.
Also, the machine from which the large job was removed does not contain any
huge or large jobs anymore ensuring there is no machine where this process can
happen twice. Therefore, we can repeat this procedure until all (but possibly
one) large jobs are paired so that the second property holds.

Finally, to establish the third property, we can argue as follows: If the smallest
large job qi is the only large one on a machine in the schedule S, we can do the
grouping just described without shifting qi to another machine satisfying the
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desired bound on the makespan. If qi is already processed on a machine together
with another large job, we may pair the remaining jobs but (possibly) one (one
that is not processed together with another large job on a machine). In case
there is such a remaining unpaired job, we finally exchange qi with the unpaired
job. The resulting schedule fulfills the desired properties. ��

By our next transformation we put the smallest large job qi of each class Ci

into a new individual class. Based on the previous result there is still a schedule
with makespan at most OPT + s for the resulting instance.

In the next lemma, we directly deduce that there is a block-schedule with
makespan at most OPT + s if we allow some jobs to be split, i.e. some jobs are
cut into two parts that are treated as individual jobs and processed on different
machines. To this end, fix a schedule S for I fulfilling the properties of Lemma 1.
By M̃ denote the exclusive machines according to schedule S and by C̃i the class
Ci without those jobs processed on machines belonging to M̃ .

Lemma 2. Given the schedule S fulfilling the properties of Lemma 1, there is
a schedule S′ with makespan at most OPT + s with the following properties:

1. A machine is exclusive in S′ if and only if it belongs to M̃ and the partial
schedule of these machines is unchanged.

2. When removing the machines belonging to M̃ and their jobs from S, we can
schedule the remaining jobs on the remaining machines such that
(a) The block-property holds and
(b) only jobs with size at most 1

2OPT − s are split s.t. one part is processed
until the completion time of some Mj and one from time s on by Mj+1.

Proof. Remove machines belonging to M̃ and the jobs scheduled on them from
the schedule S obtaining S̃. We now show that there is a schedule S′ with the
desired properties. Similar to [10] consider a graph G = (V,E) in which the nodes
correspond to the machines in S̃ and there is an edge between two nodes if and
only if in S̃ the respective machines process jobs of the same class. We argue for
each connected component of G. Let m′ be the number of nodes/machines in this
component. Furthermore, let C ′ = {C ′

1, . . . C
′
l} be the set of classes processed

on these machines without those formed by single huge or large jobs and H =
{h1, . . . , hr} be the set of jobs processed on these machines that are either huge
jobs or large jobs forming individual classes. Note that r ≤ m′ since all jobs of
H must be processed on different machines in S̃. Note that the number of setups
is at least l + r + m′ − 1 because there are l + r classes and at least m′ − 1
additional setups by the definition of the edges. By an averaging argument we
know OPT+s ≥ 1

m′

(∑l
i=1 w(C̃ ′

i) +
∑r

i=1 w(hi) + (l + r + m′ − 1)s
)

and hence,

l∑

i=1

w(C̃ ′
i) + (l − 1)s ≤ (m′ − r)OPT +

r∑

i=1

(OPT − w(hi) − s). (1)

Consider the sequence w(C̃ ′
1), s, w(C̃ ′

2), s, . . . , s, w(C̃ ′
l) of length

∑l
i=1 w(C̃ ′

i) +
(l − 1)s and split it from the left to the right into blocks of length OPT −
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w(h1) − s, . . . , OPT − w(hr) − s, followed by blocks of length OPT . Note that
each block has non-negative length. By equation (1) we obtain at most m′ blocks
and by adding a setup to each block and the jobs hi plus setup to the first r
blocks, we can process each block on one machine.

Consequently, if we apply these arguments to each connected component and
add the removed exclusive machines, we have shown that there is a schedule S′

with makespan at most OPT +s satisfying the required properties of the lemma.
��

Lemma 2 proves the existence of a schedule that almost fulfills the properties
of block-schedules, whose existence is the major concern in this section. However,
it remains to show how to handle jobs that are split as we do not allow splitting
or preemption of jobs and how to place exclusive machines belonging to M̃ ,
which are not taken care of by the previous lemma, into the obtained schedule
in order to yield a block-schedule.

To simplify the description in the following, when we say we place an exclusive
machine Mi before machine Mj , we think of a re-indexing of the machines such
that the ordering of machines other than Mi and Mj stays untouched but now
the new indices of Mi and Mj are consecutive. Also, a job j is started at the
machine that processes (parts of) j and has the smallest index among all those
processing j. A class Ci is processed at the end (beginning) of a machine if there
is a job j ∈ Ci that is processed as the last job (as the first job) on Mj .

Lemma 3. A schedule fulfilling the properties of Lemma 2 can be transformed
into a block-schedule with makespan at most 3

2OPT .

Proof. Consider an arbitrary class Ci. We distinguish three cases depending on
where the jobs of Ci are placed in the schedule S′ according to the proof of the
previous lemma.

(1) There is a job in C̃i that is split among two machines Mj and Mj+1.
(2) There is no job in C̃i that is split.
(3) C̃i = ∅.

In case (1) there is a job in C̃i that is split. Hence, we can simply place all
exclusive machines of Ci between Mj and Mj+1. Since jobs that are split have
size at most 1

2OPT − s, we can process any split job completely on the machine
on which it was started increasing its makespan to at most 3

2OPT . We repeat
this process as long as there are jobs with property (1) left. Note that for each
class Ci, after having finished case (1), there is no split job left.

In case (2), we distinguish two cases. If the jobs in C̃i have an overall size
of at most 1

2OPT (including setup), there either is no exclusive machine of Ci

and hence no violation of the block-property, or we can process the jobs on an
exclusive machine of Ci increasing its makespan to at most 3

2OPT . If the jobs
have an overall size of more than 1

2OPT , we distinguish whether C̃i is processed
at the end or beginning of a machine Mj or not. In the positive case, we can
simply place any exclusive machines of Ci behind or before machine Mj . If C̃i
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is not processed at the end or beginning of a machine Mj , there must be a
second class C̃i′ that is processed at the beginning and a third class C̃i′′ that is
processed at the end of machine Mj . Note that consequently the workload of C̃i′

processed on Mj cannot be larger than 1
2OPT −s. We can perform the following

steps on the currently considered machine Mj :

1. Move all jobs from the class Ci′ that is processed at the beginning of Mj to
machine Mj−1 if Ci′ is also processed at the end of Mj−1, thus only increasing
the makespan of Mj−1 by at most 1

2OPT − s.
2. Move all other jobs processed before some workload of Ci to one of their

exclusive machines, if they exist.
3. Shift all the workload w(C̃i) to time 0 on machine Mj and shift other jobs to

a later point in time.
4. Place all exclusive machines of Ci in front of Mj .

In case (3), there are only exclusive machines. Such machines can simply be
placed behind all other machines.

These steps establish the block-schedule property and no jobs are split any-
more. Also note that each machine gets an additional workload of at most
1
2OPT − s without requiring additional setups, proving the lemma. ��
Theorem 1. Given an instance I with optimal makespan OPT , there are trans-
formations to I ′ such that there is a block-schedule for I ′ with makespan at most
OPTBL := min{OPT + pmax − 1, 3

2OPT} and it can be turned into a schedule
for I with makespan not larger than OPTBL.

Proof. The bound OPTBL ≤ 3
2OPT directly follows from Lemma 3 and the

fact that there are only transformations performed on instance I by Lemma 1.
The second bound (which gives a better result if pmax ≤ 1

2OPT ) follows by
arguments quite similar to those used before: If pmax ≤ 1

2OPT holds, we skip
the transformation of Lemma 1. Additionally, in the proof of Lemma 2 we do
not remove exclusive machines (thus, considering all machines). Note that, since
we skipped the transformation of Lemma 1, the set H is empty. Then, it is
straightforward to calculate the second bound of OPTBL ≤ OPT + pmax − 1.

��

4.2 Grouping and Rounding

In this section, we show how we can reduce the search space by rounding the
involved processing times to integer multiples of some value depending on the
desired precision ε > 0 of the approximation. We assume that the transfor-
mations described in previous sections have already been performed. In order
to be able to ensure that the rounding of processing times cannot increase the
makespan of the resulting schedule too much, we first need to get rid of classes
and jobs that have a very small workload in terms of OPTBL and ε. In the fol-
lowing, we use λ > 0 to represent the desired precision, i.e. λ essentially depends
on the reciprocal of ε. We call every job j with pj ≤ OPTBL/λ a tiny job and
every class Ci with w(Ci) ≤ OPTBL/λ a tiny class.
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Lemma 4. Given a block-schedule for an instance I, with an additive loss of at
most 4OPTBL/λ in the makespan we may assume that tiny jobs only occur in
tiny classes.

Proof. We prove the lemma by applying the following transformations to each
class Ci: In a first step, we greedily group as many tiny jobs of class Ci as possible
to new jobs with sizes in the interval [OPTBL/λ, 2OPTBL/λ). In a second step,
combine the (possibly) remaining tiny grouped job j ∈ Ci with a size less than
OPTBL/λ, with an arbitrary other job j′ ∈ Ci. By this transformation we ensure
that tiny jobs only occur in tiny classes and it remains to show the claimed bound
on the makespan.

First of all, focus on the first step of the transformation and assume that we
do not perform the second step. Let S be the given block-schedule for instance
I. Lemma 2.3 in the work of Shachnai and Tamir [11] proves (speaking in our
terms) that for the transformed instance there is a schedule S′ with makespan
of at most OPTBL + 2OPTBL/λ. The proof also implies that S′ is still a block-
schedule: For each machine Mj it holds that if Mj is configured for class Ci in the
new schedule S′, it has also been configured for Ci in the original block-schedule
S. Thus, if S is a block schedule, so is S′ since we do not have any additional
setups in S′.

Now assume that also the second step of the transformation is carried out
and consider the block-schedule S′ we just proved to exist. Distinguish two cases,
depending on where the tiny grouped job j ∈ Ci, which was paired in the second
step, is processed in schedule S′. If j was paired with a job j′ and both j and
j′ are assigned to the same machine in S′, the schedule S′ already is feasible
for the transformed instance (possibly after shifting j and j′ such that they are
processed consecutively). If the paired jobs j and j′ are processed on different
machines in schedule S′, there is a schedule whose makespan is by an additive of
at most 2OPTBL

λ larger than that of S′. To see this, note that in S′ this case can
happen at most twice per machine (for the classes processed at the beginning
and end of the machine). Hence, we can place any paired jobs j and j′ on the
same machine yielding a schedule for the transformed instance with the claimed
bound on the makespan. Finally, note that we can easily turn a schedule fulfilling
the claimed bound on the makespan into a schedule for the original instance I
satisfying the same bound on the makespan. ��

Next, we take care of tiny classes that still might occur in a given instance.
Again, without losing too much with respect to the optimal makespan we may
assume a simplifying property as shown in the next lemma.

Lemma 5. With an additive loss of at most 4OPTBL/λ in the makespan we
may assume the following properties:

1. Each tiny class consists of a single job.
2. In case that OPTBL/λ > s, this job has size OPTBL/λ − s.

Proof. At first note that with an additive loss of at most 2OPTBL/λ in the
makespan, we may assume that a tiny class is completely scheduled on one
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machine in a block-schedule. This is true because of reasons similar to those
used in the proof of the previous lemma: For each machine it holds that there
are at most two different tiny classes of which some but not all jobs are processed
on this machine. Hence, we may shift all jobs of such classes to one machine and
thereby increase the makespan by at most 2OPTBL/λ.

Now distinguish two cases depending on whether OPTBL/λ > s or not. If this
is the case, determine the length L of the sequence of all tiny classes (including
setup times), round up L to an integer multiple of OPTBL/λ, remove all tiny
classes from the instance and instead, introduce λL/OPTBL new classes each
comprised of a single job with workload OPTBL/λ − s. Observe that, given a
block-schedule in which each tiny class is completely scheduled on one machine,
we can simply replace tiny classes by these new classes, increasing the makespan
by an additive of at most OPTBL/λ. Also, this schedule implies a schedule for
the instance in which tiny classes have not been grouped and its makespan is
by an additive of at most OPTBL/λ larger. This schedule is simply obtained by
again replacing grouped tiny classes by its respective original classes.

In case that OPTBL/λ ≤ s, we simply group all jobs of a tiny class Ci to a
new job j of the same size pj = w(Ci). Due to the fact that we might assume that
a tiny class is completely scheduled on one machine, this proves the lemma. ��

From now on, we assume that we have already conducted the grouping from
the previous lemmas and we describe how to round job sizes to reduce the search
space for later optimization. The approach is quite common for scheduling.

Given an instance I, we compute its rounded version I ′ by rounding up the
size of each job to the next integer multiple of OPTBL/λ2. We know that there is
a block-schedule with makespan at most OPTBL + 8OPTBL

λ and we also assume
that the properties from Lemma 5 hold.

In case that OPTBL/λ > s each job has either a processing time of at least
OPTBL/λ or forms a tiny class with workload at least OPTBL/λ − s. On the other
hand, in case that OPTBL/λ ≤ s and there are tiny classes consisting of a
single job, to execute such a job, we need to perform a setup first which yields a
processing time of at least OPTBL/λ as well. Hence, we can have at most λ+8 jobs
on one machine in the considered block-schedule, leading to an additive rounding
error of at most (λ + 8) · OPTBL/λ2 in the makespan. Therefore, by choosing λ
appropriately, there is a solution to the rounded instance that approximates
OPTBL up to any desired precision ε > 0.

4.3 Optimization over Block-Schedules

We are ready to show how to compute a block-schedule for the rounded instance
with makespan at most (1+ε)OPTBL for any ε > 0. The schedule directly implies
a schedule for the original instance with the same bound on the makespan.

We say that all classes that can be represented by the same tuple are of the
same class-type and show that there are not too many different class-types.

Lemma 6. If all job sizes are a multiple of OPTBL/λ2 and λ > 0 is a constant,
there is only a constant number ccl of different class-types.
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Proof. We can represent any class Ci by a tuple of length λ2 describing how
many jobs of each size l · OPTBL/λ2, 1 ≤ l ≤ λ2, occur in class Ci. Recall that
each class has a size of at most γ · OPT and hence, each entry of the tuple
is limited by γλ2. Thus, there is at most a constant number ccl := (γλ2)λ2

of different tuples describing the classes and hence, only a constant number of
different class-types. ��

We can represent the classes that have to be scheduled as a tuple of size ccl

where each entry contains the number of times classes of the respective class-
type occur. Given a block-schedule S, we consider machine configurations that
describe which classes are finished on the first i machines. We denote the sub-
schedule induced by these first i machines by Si.

Lemma 7. If all job sizes are a multiple of OPTBL/λ2 and λ > 0 is a constant,
the number of machine configurations representing Si for some block-schedule S
and some i > 0 is bounded by a value cconf that is polynomial in m.

Proof. First, note that in a block-schedule S, for every Si, there is at most one
class that is split due to the block-schedule property. Now, to uniquely define a
candidate configuration, we need to store information about the classes that are
finished, and in case a class has been split, the type of this class and which jobs of
this class are finished. We reserve ccl entries for the finished classes, where each
entry corresponds to the number of classes of the certain type that has been fully
finished. Each entry is at most m · (λ+8) with similar arguments as in the proof
of Lemma 6 and the reasoning concerning the maximum rounding error. For the
class that has been split, we store the type of that class in an extra entry, which
gives ccl possible values. If there is no class that has been split, we leave this entry
empty adding another possible value to the entry. Finally, we store the number of
jobs from the split class that have been finished for each job size as λ2 additional
entries, where each entry does not exceed ccl · λ similar to the structure in
Lemma 6. Overall, we write a configuation as a tuple (n1, . . . , nccl , j, u1, . . . , uλ2)
and thus there are at most cconf := (m(λ + 8))ccl · (ccl + 1) · (cλ)λ2

possible
configurations, which proves the lemma. ��

We now build a graph where we add a node for each machine configuration.
We draw a directed edge from node u to v if and only if the machine configuration
corresponding to v can be reached from the configuration u by using at most
one additional machine with makespan not larger than (1 + ε)OPTBL. That is,
assuming u is a possible sub-schedule induced by the first i machines, we verify
whether v is a possible sub-schedule induced by the first i + 1 machines. We
can do so as we assume that we have guessed OPT correctly and we can hence
determine (1 + ε) OPTBL which is the amount of workload we will fit on one
machine. Using this idea, we obtain the following lemma and theorem, which
proves our main result. The proofs can be found in the full version.

Lemma 8. We can construct a graph G such that there is a path from the node
representing no job at all (source) to the node representing the entire instance
I ′ (target) that has a length of at most m.
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Theorem 2. Using breadth-first search on G, a schedule with makespan at most

(1 + ε)min
{

3
2
OPT,OPT + pmax − 1

}

for the original instance I can be determined. It implies an algorithm with exactly
this approximation guarantee and runtime polynomial in n, k and m.

For an online variant where jobs arrive over time and are not known to the
scheduler before their release times, we have the following result (cf. full version).

Theorem 3. No online algorithm can be c-competitive for c ≤ 2 − ε and arbi-
trary small ε > 0. Furthermore, our offline algorithm implies an online strategy
which is c-competitive for c arbitrary close to 4.
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7. Mäcker, A., Malatyali M., Meyer auf der Heide, F., Riechers, S.: Non-Preemptive
Scheduling on Machines with Setup Times. CoRR (2015). 1504.07066

8. Monma, C.L., Potts, C.N.: Analysis of Heuristics for Preemptive Parallel Machine
Scheduling with Batch Setup Times. Operations Research 41(5), 981–993 (1993)

9. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European Jour-
nal of Operational Research 120(2), 228–249 (2000)

10. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup
times. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1999), pp. 759–767. ACM/SIAM (1999)

11. Shachnai, H., Tamir, T.: Polynomial Time Approximation Schemes for Class-
Constrained Packing Problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000.
LNCS, vol. 1913, pp. 238–249. Springer, Heidelberg (2000)

12. Shmoys, D.B., Wein, J., Williamson, D.: Scheduling Parallel Machines On-line. In:
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS 1991), pp. 131–140. IEEE (1991)

13. Xavier, E.C., Miyazawa, F.K.: A one-dimensional bin packing problem with shelf
divisions. Discrete Applied Mathematics 156(7), 1083–1096 (2008)

14. Xavier, E.C., Miyazawa, F.K.: A Note on Dual Approximation Algorithms for
Class Constrained Bin Packing Problems. RAIRO - Theoretical Informatics and
Applications 43(2), 239–248 (2009)

http://arxiv.org/abs/1504.07066


A Moderately Exponential Time Algorithm
for k-IBDD Satisfiability

Atsuki Nagao1,2, Kazuhisa Seto3, and Junichi Teruyama4,5(B)

1 Kyoto University, Kyoto, Japan
2 Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan

a-nagao@kuis.kyoto-u.ac.jp
3 Seikei University, Musashino, Japan

seto@st.seikei.ac.jp
4 National Institute of Informatics, Tokyo, Japan

5 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan
teruyama@nii.ac.jp

Abstract. A k-indexed Binary Decision Diagram (k-IBDD) is a branch-
ing program with k-layers and each layer consists of an Ordered Binary
Decision Diagram (OBDD). This paper studies the satisfiability of k-
IBDD (k-IBDD SAT). A k-IBDD SAT is, given a k-IBDD, to ask whether
there exists a consistent path from the root to the 1-sink. We propose
a moderately exponential time algorithm using exponential space for
k-IBDD SAT of n variables and cn size. Our algorithm runs in time

O
(
2(1−μ(c))n

)
, where μ(c) = Ω

(
1

(log c)2
k−1−1

)
. As a corollary, we obtain

a polynomial space and deterministic algorithm, which solves k-IBDD

SAT of size polynomial in n and runs in O

(
2n−n1/2k−1

)
time.

Keywords: Indexed binary decision diagram · Ordered binary decision
diagram · Satisfiability · Moderately exponential time

1 Introduction

The satisfiability problem (SAT) is one of central problems in theoretical com-
puter science. There exist many variants of SAT and in many cases, they are
known to be NP-complete. One can solve SAT by an exhaustive search which
checks all possible assignments to the input variables. Therefore, it is a natural
task to design a faster algorithm than an exhaustive search.

CNF SAT is one of well studied problems. CNF SAT is, given a conjunctive
normal form, to ask whether there exists an assignment satisfying it. An exhaus-
tive search algorithm solves this problem with n variables and m clauses in time
O(m · 2n). A lot of excellent algorithms for this problem have been developed
such as [1,5,7,8,10,13,15]. The current best algorithm for CNF SAT runs in time
O

(
2(1− 1

log(m/n) )n
)

[5]. This states that if the number of clauses is bounded by cn

(c is an arbitrary positive constant), CNF SAT is solvable in time O
(
2(1−μ(c))n

)
,
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where μ(c) is some constant depending on c. Such algorithms are called “Moder-
ately exponential time algorithms.” Recently, Circuit SAT has been extensively
studied. Circuit SAT is, given a Boolean Circuit C with n variables and m gates,
to ask whether there exists an assignment to the input variables such that C
outputs 1. CNF SAT is a special case of Circuit SAT. In some class of circuits,
moderately exponential time satisfiability algorithms have been designed such
as [11,14,16].

However, there are a very few researches on the satisfiability of branching pro-
grams. One important result is about k-OBDD SAT. An OBDD is a branching
program such that all paths from the root to any sink have the same order of the
variables. A k-OBDD is an extension of OBDD such that it can be separated to
k layers and all layers are OBDD with the same order of the variables. k-OBDD
SAT, given a k-OBDD, asks whether there exists a consistent path from the root
to the 1-sink. For any constant k, this problem is solvable in polynomial time [3].
For the satisfiability of general branching programs, a deterministic algorithm
running in O(2n−ω(log n)) time exists [6]. This algorithm requires exponential
space and cannot solve BP SAT with m = Ω(n2) states, but counts the number
of satisfying assignments.

In this paper, we consider the satisfiability of a k-Indexed Binary Decision
Diagram (k-IBDD). A k-IBDD is an extension of k-OBDD, which is the same
as k-OBDD except that each layer may have a different order of the variables.
k-IBDD SAT was shown to be NP-complete for any k ≥ 2 [3]. Our task is to
design an algorithm super-polynomially faster than an exhaustive search: i.e., an
O(m · 2n−ω(log n)) time algorithm. Jain et al. proposed an experimental efficient
algorithm [12], but the worst case complexity has not been given.

We design a moderately exponential time algorithm for k-IBDD SAT and
analyze its time and space complexity, then we obtain the followings.

Theorem 1. There exists a deterministic and exponential space algorithm for
k-IBDD SAT with n variables and cn nodes, which runs in time O

(
2(1−μ(c))n

)
,

where μ(c) = Ω
(

1

(log c)2k−1−1

)
and c is an arbitrary positive constant.

Corollary 1. There exists a deterministic and polynomial space algorithm for
k-IBDD SAT with n variables and poly(n) nodes, which runs in time O

(
2n−nα)

,
where α = 1

2k−1 .

Paper Organization: In Section 2, we give notations and definitions used in
this paper. In Section 3, we provide two key transformations of OBDDs to use
our proposed algorithm. In Section 4, we give an algorithm for k-IBDD SAT.

2 Preliminaries

Let X = {x1, . . . , xn} be a set of variables and x is the negation of variable
x ∈ X. A nondeterministic branching program, denoted by B = (V,E), is a
rooted directed acyclic multigraph. Each v ∈ V is called node, and has a label
from X ∪ {0,1}. The root node is denoted by r and there exists exact two sink
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nodes denoted by t0 and t1 with labels 0 and 1, respectively. Nodes t0 and t1
are called the 0-sink and the 1-sink, respectively. For all nodes v ∈ V except for
t0 and t1, v gets a label from X. A node v is called an xi-node when v’s label is
xi. Each edge e ∈ E has a label 0 or 1. An edge e is called a 0-edge (resp. 1-edge)
when its label is 0 (resp. 1). For an edge e = (u, v) ∈ E, u is a parent of v and
the head of e, and v is the tail of e. The number of parents of v is called the
in-degree of v. In addition, when e is a 0-edge (resp. 1-edge), we call v as the 0-
successor (resp. 1-successor) of u. For a branching program B on X, each input
a = (a1, . . . , an) ∈ {0, 1}n activates all ai-edges leaving xi-nodes in B, where
1 ≤ i ≤ n. B outputs 0 if there is no path from the root node r to the 1-sink t1
using only activated edges. In other words, B outputs 1 if there is at least one
path from r to t1 using only activated edges. A computation path is a path from
r to t0 or from r to t1 using only activated edges. Let f : {0, 1}n → {0, 1} be
a boolean function. A branching program B represents f if f(a) is equal to the
output of B for any assignment a ∈ {0, 1}n. If both of branching programs B
and B′ represent the same function, then B is equivalent to B′. The size of B,
denoted by |B|, is defined as the number of edges in B. A branching program B
is deterministic if any nodes except for t0 and t1 in B have exact two outgoing
edges: one is 0-edge and the other is 1-edge. Note that if B is deterministic, B
shows exact one computation path for any inputs. In this paper, a branching
program is deterministic unless otherwise noted.

A order π = (π(1), π(2), . . . , π(n)) is an arbitrary order from 1 to n. For
i ∈ {1, . . . , n}, we define that π−1(i) = j when π(j) = i. An ordered binary
decision diagrams (OBDD) and a k-indexed binary decision diagrams (k-IBDD)
are defined as below.

Definition 1. An OBDDπ is a branching program with a fixed ordering π. It
holds that π−1(i) < π−1(j) if there exists an edge from an xi-node to an xj-node.

Definition 2. A k-IBDD(π1,...,πk) is a branching program as follows: It can be
separated into k layers and the i-th layer is an OBDDπi

. An arbitrary edge from
the i-th layer reaches to the j-th layer or a sink node where i < j. If all πi are
the same order π, it is called as a k-OBDDπ.

Figure 1 and Figure 2 represent a nondeterministic OBDDπ and a deterministic
OBDDπ, where π = (1, 2, 3), respectively. Figure 3 represents a (deterministic)
2-IBDD(π1,π2) with π1 = (1, 2, 3) and π2 = (2, 3, 1).

Remark 1. In [17], the definition of OBDD is as follows: A π′-OBDD is a branch-
ing program with a fixed π′, and π′(i) < π′(j) holds if there exists an edge from
an xi-node to an xj-node. An OBDDπ is also a π′-OBDD, if π and π′ satisfy
the following property: For all i if π(i) = j, then π′(j) = i. For example, if
π = (2, 3, 1) and π′ = (3, 1, 2), then an OBDDπ is also a π′-OBDD. For the
simple description of our algorithm, in this paper we adopt Definition 1 as the
definition of OBDDs.

k-IBDD SAT is, given a k-IBDD(π1,...,πk) B with n variables and m nodes,
to ask whether there exists an input a ∈ {0, 1}n such that B outputs 1.
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Fig. 1. A nondeterministic OBDD Fig. 2. An OBDD Fig. 3. 2-IBDD

If k = 1, a 1-IBDD(π) (equal to an OBDDπ) can be solved in O(m) time by
solving reachability from the root node to the 1-sink. k-IBDD SAT is known to
be NP-complete when k ≥ 2 [3].

A partial assignment to x = (x1, . . . , xn) is a = (a1, . . . , an) ∈ {0, 1, ∗}n. This
means that xi is assigned to 0 or 1 if ai is 0 or 1, respectively. For any partial
assignment a ∈ {0, 1, ∗}n, a support of a is defined as S(a) := {xi | ai �= ∗}. Let
B|a be a partial branching program of B followed by a partial assignment a, and
it is constructed as follows:

(1) For all xi ∈ S(a), remove all ai-edges whose heads are xi-nodes.
(2) For any node v with in-degree 0 except for the root node, remove all edges

whose heads are v and the node v.
(3) For all xi ∈ S(a) and any xi-node v except for the root node, let U be

{u | (u, v) ∈ E}. Note that there exists an ai-edge (v, w). For all u ∈ U ,
we add an edge (u,w) labeled the same label of (u, v) and remove an edge
(u, v). Remove an edge (v, w).

(4) If the label of the root node r is in S(a), then remove an edge (r, v) and set
the node v as a new root node.

Figure 4 is a partial branching program of Figure 3 followed by a partial assign-
ment a = (1, ∗, ∗). Note that this partial branching program is a 2-OBDDπ,
where π = (2, 3) or (3, 2). For partial assignments a and a′ such that S(a) and
S(a′) are disjoint, a ◦ a′ denotes a composition of a and a′: a ◦ a′(i) = a(i) if
xi ∈ S(a), a ◦ a′(i) = a(i) if xi ∈ S(a′), a ◦ a′(i) = ∗ otherwise. For instance,
when a = (1, ∗, ∗) and a′ = (∗, ∗, 0), a ◦ a′ = (1, ∗, 0).

Recall π = (π(1), π(2), . . . , π(n)). A reverse order of π is defined as πR =
(πR(1), πR(2), . . . , πR(n)) = (π(n), π(n − 1), . . . , π(1)). A subsequence of length
m of π is π′ = (π′(1), π′(2), . . . , π′(m)) = (π(i1), π(i2), . . . , π(im)), where 1 ≤
i1 < i2 < · · · < im ≤ n. A longest increasing subsequence or LIS is a subsequence
π′ of length m of π with maximum m such that it satisfies π′(i) < π′(j) for all
1 ≤ i < j ≤ m. A longest decreasing subsequence or LDS is a subsequence π′

of length m of π with maximum m such that it satisfies π′(i) > π′(j) for all
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Fig. 4. A partial branching program

1 ≤ i < j ≤ m. Note that LIS and LDS can be found in O(n log n) time [2] and
the following is well known.

Theorem 2 (The Erdős-Szekeres theorem [9]). A sequence of real number
of length n contains a longest increasing subsequence of length m ≥ 
√n� or a
longest decreasing subsequence of length m ≥ 
√n�.

3 Algorithms of Transformation for OBDDs

In this section, we introduce two key transformations for our algorithm.
First, we can construct a nondeterministic OBDDπ B by conjunction of two

nondeterministic OBDDπs B1 and B2. The nondeterministic OBDDπ B rep-
resents the function f1 ∧ f2, where f1 and f2 are functions represented by B1

and B2, respectively. Bryant provided such an algorithm when B1 and B2 are
deterministic OBDDπs [4]. We modify Bryant’s algorithm to be applied to non-
deterministic OBDDπs and get the following lemma. We omit the proof in this
paper, see the full version of this paper.

Lemma 1. Let B1 and B2 be nondeterministic OBDDπs which represent
boolean functions f1 and f2, respectively. There exists an algorithm which con-
structs an OBDDπ B which represents f1 ∧ f2 from B1 and B2, and it runs in
O (|B1| · |B2|) time. Moreover, |B| ≤ |B1| · |B2| holds.

Next, we provide an algorithm which constructs a nondeterministic OBDDπR

BR from a deterministic OBDDπ B. BR and B represent the same function.

Lemma 2. There exists an algorithm which, given an OBDDπ B, constructs
a nondeterministic OBDDπR BR which is equivalent to B in O(|B|) time. The
size of BR, denoted by |BR|, is at most 7|B|.
Proof. Let B be a given OBDDπ. Our transformation is divided into two parts.
We call the first part Preprocess and the second part Reverse.
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Preprocess: First, we construct B′ from B by removing all edges whose tails
are the 0-sink. Next, we construct B′′ by adding some new nodes into B′

to satisfy that for each node v, parents of v have the same label. Now, we
describe the detail of these operations. Let U(v) be a set of parents of v, i.e.,
U(v) := {u | (u, v) ∈ E} and Φ(v) be a set of labels of nodes in U(v), i.e.,
Φ(v) := {xi | u is an xi-node and u ∈ U(v)}. If Φ(v) includes at least two
different labels, we choose a label x� such that π−1(�) is the maximum in
Φ(U(v)). For each b-edge e = (u, v), b ∈ {0, 1}, such that u ∈ U(v) and u is
not an x�-node,
(P1) Add a new x�-node w.
(P2) Add a new b-edge (u,w).
(P3) Add two new edges, the 0-edge (w, v) and the 1-edge (w, v).
(P4) Remove e.
The second of the left of Figure 5 shows an example of this operation applied
to Figure 2. For each node in B′′, its parents have the same label. Note that
the function represented by B′′ is the same function of B. This operation is
not applied to any new node created by this operation because such node
has exactly one parent. Since (P1)–(P4) are applied to B′ at most |E| times,
the number of edges of B′′ is at most 3|E| and the number of nodes in B′′

is at most |V | + |E|. Preprocess takes only O(|B|) time.

Reverse: We construct BR from B′′ as follows:
(R1) Label each node by the following way in bottom up fashion: Label a

node v xi, where xi is the label of v’s parents. Finally, label the root
node 1, i.e., the root node is replaced with the 1-sink.

(R2) Reverse the direction of all edges.
(R3) For any node v and b ∈ {0, 1}, if there exists no a b-successor of v,

add a new b-edge (v, t0), where t0 is the 0-sink.
For any b-edge e = (u, v) on B′′, let us assume that u is an xi-node. Applying
(R1) and (R2), v becomes an xi-node and BR has a b-edge eR = (v, u).
Both e and eR are activated by inputs a such that ai = b. Thus, a path
p = (e1, . . . , e|p|) which is a computation path to the 1-sink on B′′ and a
path pR := (eR

|p|, . . . , e
R
1 ) which is a computation path to the 1-sink on BR

are in one-to-one correspondence, where |p| is the length of p. In addition, sets
of inputs which activate p and pR are equivalent. Therefore, the satisfying
input set for BR and B′′ are equivalent. In this way, we can construct a
nondeterministic OBDDπR BR which is equivalent to B. Note that BR can
be a nondeterministic OBDDπR if there exist at least 2 edges whose labels
are the same and tails are the same. The rightmost of Figure 5 shows a
nondeterministic OBDDπR constructed by completing this transformation.
Since we add at most two edges per one node at (R3), |BR| ≤ 3|E|+2(|V |+
|E|) ≤ 7|E| = 7|B|. Reverse takes only O(|B|) time.

The proof is complete. ��
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Fig. 5. Preprocess and Reverse

4 Satisfiability Algorithms for k-IBDD

In this section, we explain the proposed algorithm. At first, we provide a polyno-
mial time algorithm for a special k-IBDD SAT satisfying the following property:
each layer has either the order π or πR. Next, we give an algorithm for general
case.

4.1 Special Cases

We show that one can solve k-IBDD SAT in polynomial time in the size of input,
when a given k-IBDD(π1,...,πk) satisfies that πi = π or πi = πR (1 ≤ i ≤ k) for
some order π and k is a constant. We call such a k-IBDD as k-IBDD{π,πR}.

Lemma 3. Let k be a positive integer. There exists an O
(
(6m/k)2k

)
time and

O
(
(14m/k)k

)
space algorithm for k-IBDD{π,πR} SAT with n variables and m

nodes.

Proof. We extend Theorem 2 in [3] to k-IBDD{π,πR}s. Let B be an arbitrary
k-IBDD{π,πR}. For 1 ≤ h ≤ k, let Bh be the h-th layer of B and Vh be a set of
nodes of Bh.

We choose a set I = {�i} ⊆ {1, . . . , k} such that �1 = 1 < �2 < · · · < �|I| ≤ k
holds. Let L := |I|. Then, we choose R = {ri} such that ri ∈ V�i

and there
exists some edge (v, ri), where v ∈ V�i−1 . For each choice (I, R), we check
whether there exists an input a ∈ {0, 1}n which satisfies the following condition:
The computation path for a of B reaches to the 1-sink through edges (vi−1, ri),
where vi−1 ∈ V�i−1 for all 1 < i ≤ L.

For simplicity, let r1 and rL+1 be the root and the 1-sink of B, respectively.
From B�i

, for each 1 ≤ i ≤ L, we construct an OBDDπi
B′

i with a root node
ri as follows. Let V ′

i and E′
i be a set of nodes and edges of B′

i, respectively. At
first, V ′

i consists of nodes such as a 0-sink ti,0, a 1-sink ti,1 and all nodes v ∈ V�i

which are reachable from ri. For each edge e = (u, v) ∈ E such that u ∈ V ′
i , E′

i

contains an edge e′ has the same label as e and satisfies the following property:

– e′ := (u, v) if v ∈ V ′
i .

– e′ := (u, ti,1) if v = ri+1.
– e′ := (u, ti,0) if v /∈ V ′

i ∪ {ri+1}.
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From this construction, the following two statements are equivalent:

(1) There is an input a ∈ {0, 1}n such that the computation path on B reaches
to the 1-sink through edges (vi−1, ri), where vi−1 ∈ V ′

i−1 for all 1 < i ≤ L.
(2) There is a common input a ∈ {0, 1}n that satisfies B′

i for all 1 ≤ i ≤ L.

If πR
�i

= π for 1 ≤ i ≤ L, then we construct a nondeterministic OBDDπ B′R
i

which is equivalent to the OBDDπR B′
i. By Lemma 2, we can construct B′R

i in
time O(|B′

i|) and |B′R
i | ≤ 7|B′

i| ≤ 7|B�i
| holds. Then, we rename this B′R

i by B′
i.

Here, it is sufficient to check whether there exists an assignment which satisfies all
nondeterministic OBDDπs B′

1, B
′
2, . . . , B

′
L. Applying Lemma 1 to B′

1, B
′
2, . . . , B

′
L

continuously, we have a nondeterministic OBDDπ B∗ such that B∗ outputs 1 if
and only if there exists an assignment that satisfies B′

1, B
′
2, . . . , B

′
L simultane-

ously. The constructing B∗ ends in O(7k
∏k

i=1 |Bi|) time and the size of B∗ is
O(7k

∏k
i=1 |Bi|). Finally, we check the satisfiability of B∗ in O(|B∗|) time and

O(|B∗|) space by solving reachability.
The number of pairs (I ′, R) is at most the number of choices when at most

one node must be chosen from each layer. Then, it is at most
∏k

i=2 |Bi|. For
each choice, we take O(7k

∏k
i=1 |Bi|) time to check the satisfiability. Thus, a sat-

isfiability of B can be solvable in O(7k
∏k

i=1 |Bi|2) time and O(7k
∏k

i=1 |Bi|)
space. Using the arithmetic-geometric mean inequality and the assumption∑k

i=1 |Bi| = |B| ≤ 2m, we have

k∏

i=1

|Bi| ≤
(

k∑

i=1

|Bi|
k

)k

≤
(

2m

k

)k

holds. Then, the computational time is

O

(

7k
k∏

i=1

|Bi|2
)

= O

⎛

⎝

(
2
√

7m

k

)2k
⎞

⎠ = O

((
6m

k

)2k
)

.

In addition, the computational space is O(7k
∏k

i=1 |Bi|) = O((14m/k)k). ��

4.2 Main Algorithm

We provide a moderately exponential time algorithm that solves k-IBDD SAT
when k is a constant and the size of input is linear in n. To understand the idea
of our proposed algorithm, we describe the outline of our algorithm.

Let B be a given k-IBDD(π1,π2,...,πk). Without loss of generality, we assume
π1 = (1, 2, . . . , n). We focus layers of B from the second layer to the k-th
layer. First, we focus on the second layer and divide the order π2 into L parts
π1
2 , . . . , π

L
2 . This means that the second layer is divided into L layers such that

each layer respects to orders π1
2 , . . . , π

L
2 , respectively. For each divided layer, we

compute the longer sequence σ� of an LIS or an LDS of π�
2. Let σ be the ascending



562 A. Nagao et al.

Algorithm 1. k-IBDD SAT(B, L)
Require: k-IBDD(π1,...,πk) B, where π1 = (1, . . . , n), an integer L
Ensure: Output “Yes” if B is satisfiable, otherwise “No”.
1: return Solve(B, L, 1, π1, a = (∗, . . . , ∗))

Algorithm 2. Solve(B, L, h, σh, a)
Require: k-IBDD(π1,...,πk) B, an integer L
Ensure: Output “Yes” if B is satisfiable, otherwise “No”.
1: if h = k { B|a is a ((k − 1)L + 1)-IBDD{σk,σR

k
} } then

2: Solve ((k − 1)L + 1)-IBDD{σk,σR
k

} SAT for B|a
3: if B|a is satisfiable then
4: return “Yes”
5: else
6: return “No”
7: end if
8: else
9: π′

h+1 := the subsequence of πh+1 that consists of all elements of σh

10: Divide π′
h+1 into L parts such as π1

h+1, . . . , π
L
h+1.

11: for � = 1 to L do
12: σ�

h+1 := the longer sequence of an LIS or an LDS of π�
h+1

13: end for
14: σh+1 := the ascending order of all elements of {σ�

h+1}
15: Xh+1 := {xi | i ∈ Ih+1}
16: for all partial assignments ah+1, where S(ah+1) = X \ S(ah) \ Xh+1 do
17: if Solve(B, L, h + 1, σh+1, a ◦ ah+1) = “Yes” then
18: return “Yes”
19: end if
20: end for
21: return “No”
22: end if

order of all elements of {σ1, . . . , σL} and X2 be a set of variables whose indices
are elements of σ. We assign to all variables in X\X2. For any partial assignment
a such that S(a) = X \X2, a partial k-IBDD B|a satisfies that the first layer and
all divided L parts respect to orders σ or σR. Next, we focus on the third layer
and applying the above division and partial assignment for B|a. After opera-
tions with regard to the k-th layer, we have a partial ((k − 1)L+1)-IBDD{π,πR}
B|a′ for some order π. We check the satisfiability of B|a′ by applying Lemma 3.
We can solve the satisfiability of B by computing the satisfiability of all partial
IBDDs for all partial assignments. Selecting the parameter L optimally, we have
a moderately exponential time algorithm.

Here, we provide the moderately exponential time algorithm for k-IBDD SAT
with linear size inputs (See Algorithm 1 and its module Algorithm 2). Theorem 1
is directly implied by the following theorem.
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Theorem 3. There exists a deterministic and O
(
2ν(c)n

)
space algorithm for k-

IBDD SAT with n variables and m = cn nodes which runs in O
(
2(1−μ(c))n

)

time, where μ(c) > 0 for all c > 0 and μ(c) = Ω
(

1

(log c)2k−1−1

)
, ν(c) =

O
(

1

(log c)2k−1−1

)
for sufficiently large c.

Proof. Let B be a k-IBDD(π1,π2,...,πk). Without loss of generality, we assume
π1 = (1, 2, . . . , n). We describe the detail of the proposed algorithm. Let L be a
parameter.

First, divide π2 into L consecutive subsequences π1
2 , . . . , π

L
2 . This means that

we divide the second layer into L parts such that each divided layer respects
to the order π�

2. We denote an LIS and an LDS of π�
2 by σ�

2,inc and σ�
2,dec,

respectively. Let a sequence σ�
2 be the longer one of σ�

2,inc or σ�
2,dec. Let σ2 be

the ascending order of all elements of {σ1
2 , . . . , σ

L
2 }. We define X2 := {xσ2(i) |

1 ≤ i ≤ |σ2|}, i.e., the set of variables whose indices appear in σ2. We assign to
all variables in X \X2. For any partial assignment a2 such that S(a2) = X \X2,
the first layer and all divided parts of the second layer of B|a2 respect to orders
σ2 or σR

2 . Then, we focus on the third layer.
Here, we focus on the (h + 1)-th layer, where 2 ≤ h ≤ k − 1. Let us assume

that we have a partial assignment a2 ◦ · · · ◦ ah and a sequence σh such that all
of divided layers from the second to the h-th layer respect to orders σh or σR

h on
B|a2◦···◦ah

. Let Xh := X \S(a2 ◦· · ·◦ah), i.e., the set of unassigned variables. Let
π′

h+1 be a subsequence of πh+1 that consists of all elements of σh. The (h + 1)-
th layer respects to the order π′

h+1 on B|a2◦···◦ah
. We divide π′

h+1 into L parts
π1

h+1, . . . , π
L
h+1. Let σ�

h+1 be the longer sequence of an LIS or an LDS of π�
h+1.

Let σh+1 be the ascending order of all elements of {σ1
h+1, . . . , σ

L
h+1}. We define

Xh+1 := {xσh+1(i) | 1 ≤ i ≤ |σh+1|} and assign to all variables in Xh \Xh+1. For
any partial assignment ah+1 such that S(ah+1) = Xh \ Xh+1, S(a2 ◦ · · · ◦ ah ◦
ah+1) = X \ Xh+1 holds. A partial branching program B|a2◦···◦ah◦ah+1 satisfies
that all divided parts of (h + 1)-th layer are respect to orders σh+1 or σR

h+1. In
addition, since σh+1 is a subsequence of σh, the first layer and all divided parts
of the second to h-th layer are also respect to orders σh+1 or σR

h+1. We focus on
the next (h + 2)-th layer, if h + 1 < k.

Inductively, we have a partial ((k − 1)L + 1)-IBDD{σk,σR
k } B|a2◦···◦ak

after
the above operations for the k-th layer. Applying Lemma 3, we check the sat-
isfiability of B|a2◦···◦ak

. We can compute the satisfiability of B by checking the
satisfiability of B|a2◦···◦ak

for all partial assignments a2 ◦ · · · ◦ ak.
Here, we give the analysis of the computational time and space. We denote

the size of Xh by nh. Let Th be the computational time which Solve(B, L,
h, σh, a) requires. Then, T1 means the computational time for k-IBDD SAT
and Tk means the computational time for ((k − 1)L + 1)-IBDD{σk,σR

k } SAT. By
Lemma 3, we have

Tk ≤ poly(n) · (6cn/(k − 1)L)2(k−1)L. (1)

For 1 ≤ h ≤ k − 1, when we focus on the (h + 1)-th layer, the number of partial
assignments is 2nh−nh+1 . We can compute LISs and LDSs in polynomial time.
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Then,

Th ≤ poly(n) · 2nh−nh+1 · Th+1. (2)

For each 1 ≤ � ≤ L, the length of divided order π′�
h+1 is �nh/L� or 
nh/L�. From

Theorem 2, |σ�
h+1| ≥

⌈√�nh/L�
⌉

or
⌈√
nh/L�

⌉
. By calculating, we have

nh+1 =
L∑

�=1

|σ�
h+1| ≥

√
Lnh

holds, where n1 = n. Inductively, nk ≥ L1− 1
2k−1 × n

1
2k−1 holds. Calculating

inequalities (1) and (2) inductively,

T1 ≤ nO(k) · 2(n1−nk) · Tk

≤ nO(k) · 2

(

n−L
1− 1

2k−1 n
1

2k−1
)

·
(

6cn

(k − 1)L

)2(k−1)L

holds. Using a new parameter δ := L/n (0 < δ ≤ 1), we have

T1 ≤ 2

(

1−δ
1− 1

2k−1 +2(k−1)δ log 6c
(k−1)δ

)

n+O(k log n)
.

Let μ(c) = δ1− 1
2k−1 − 2(k − 1)δ log 6c

(k−1)δ . Setting δ = 1

β·(log c)2k−1 and

β > (2(k − 1))2
k−1

, μ(c) = Ω
(

1

(log c)2k−1−1

)
holds for sufficiently large c. The

complete analysis of μ(c) is shown in the full version of this paper.
When we focus on each layer, we need only polynomial space. We use

poly(n) · (7cn/(k − 1)L)(k−1)L space for ((k − 1)L + 1)-IBDD{σk,σR
k } SAT

by Lemma 3. Therefore, the computational space is poly(n) · 2ν(c)n, where
ν(c) = O

(
1

(log c)2k−1

)
.

Therefore, the proof is complete. ��
We obtain the following corollary by setting the parameter L = 1 and c =

poly(n) in the proof of Theorem 3. The precise proof is shown in the full version
of this paper.

Corollary 2 (Recall of Corollary 1). There exists a deterministic and poly-
nomial space algorithm for k-IBDD SAT with n variables and poly(n) nodes,
which runs in time O

(
2n−nα)

, where α = 1
2k−1 .
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Abstract. Computing the minimum distance of a linear code is a fun-
damental problem in coding theory. This problem is a special case of
the Matroid Girth problem, where the objective is to compute the
length of a shortest circuit in a given matroid. A closely related problem
on matroids is the Matroid Connectivity problem where the objec-
tive is to compute the connectivity of a given matroid. Given a matroid
M = (E, I), a k-separation of M is a partition (X,Y ) of E such that
|X| ≥ k, |Y | ≥ k and r(X) + r(Y ) − r(E) ≤ k − 1, where r is the rank
function. The connectivity of a matroid M is the smallest k such that
M has a k-separation.

In this paper we study the parameterized complexity of Matroid
Girth and Matroid Connectivity on linear matroids representable
over a field Fq. We consider the parameters–(i) solution size, k, (ii)
rank(M), and (iii) rank(M)+q, where M is the input matroid.

We prove that Matroid Girth and Matroid Connectivity when
parameterized by rank(M), hence by solution size, k, are not expected to
have FPT algorithms under standard complexity hypotheses. We then
design fast FPT algorithms for Matroid Girth and Matroid Con-
nectivity when parameterized by rank(M)+q. Finally, since the field
size of the linear representation of transversal matroids and gammoids
are large we also study Matroid Girth on these specific matroids and
give algorithms whose running times do not depend exponentially on the
field size.

1 Introduction

One of the most fundamental problems in coding theory is the problem of com-
puting the minimum distance of a linear code. The decision version of this prob-
lem for binary linear codes was conjectured to be NP-complete by Berlekamp,
McEliece, and van Tilborg [1] in 1978 and it was only in 1997 that its NP-
completeness was proved by Vardy [13]. In fact, the result of Vardy can be
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extended to linear codes over all finite fields. The Minimum Distance prob-
lem is a special case of the Matroid Girth problem, where the objective is to
compute the length of a shortest circuit in a given matroid. A closely related
problem on matroids is the Matroid Connectivity problem where the objec-
tive is to compute the connectivity of a given matroid. This problem generalizes
the classical graph problem of computing the connectivity of a given graph. In
this paper we study the parameterized complexity of natural decision problems
associated with Girth and Connectivity on linear matroids.

Matroids are mathematical objects which have many applications in algo-
rithms. Certain problems on matroids are known to be equivalent to fundamental
combinatorial problems like Minimum Weight Spanning Tree or Perfect
Matching. Matroids are an exact characterization of structures on which a
greedy algorithm produces an optimum solution. This motivates our study on
several natural matroid problems. In order to give an unambiguous descriptions
of the problems we study, we first recall certain notions from matroid theory.

Matroids. A matroid is a pair M = (E, I), where E is a ground set and I is
a family of subsets (called independent sets) of E, and it satisfies the following
conditions: (i) ∅ ∈ I, (ii) If A′ ⊆ A and A ∈ I then A′ ∈ I, and (iii) If A,B ∈ I
and |A| < |B|, then ∃ e ∈ (B \ A) such that A ∪ {e} ∈ I.

An inclusion-wise maximal set of I is called a basis of the matroid. Using
axiom (iii) it is easy to show that all the bases of a matroid have the same size.
This size is called the rank of the matroid M , and is denoted by rank(M).
Linear Matroids and Representable Matroids. Let A be a matrix over an
arbitrary field F and let E be the set of columns of A. Given A we define the
matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I) if
the corresponding columns are linearly independent over F. The matroids that
can be defined by such a construction are called linear matroids, and if a matroid
can be defined by a matrix A over a field F, then we say that the matroid is
representable over F. A matroid M = (E, I) is called representable or linear if it
is representable over some field F. For a matrix A, we also use rank(A) to denote
its rank.
Girth and Connectivity. A subset of the ground set E that is not indepen-
dent is called dependent. A circuit in a matroid M is an inclusion-wise minimal
dependent subset of E. The girth of a matroid M , denoted by g(M), is the
cardinality of a minimum sized circuit. We now consider the notion of a rank
function associated with a matroid: r : 2E → N

+ ∪ {0}. Here, r(S) is the max-
imum size of an independent set contained in S. Note that r(E) = rank(M). It
is also well known that r is a submodular function, which is extremely useful
in designing algorithms for matroids. Now we define the notions of k-separation
and connectivity.

Definition 1. A k-separation of M is a partition (X,Y ) of E such that |X| ≥
k, |Y | ≥ k and r(X) + r(Y ) − r(E) ≤ k − 1. The connectivity of a matroid M ,
denoted by κ(M), is the smallest k such that M has a k-separation.
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We first discuss how the notions of girth and connectivity defined for matroids
relate with the ones defined for graphs. Given a graph G, one can define a matroid
M = (E, I) as follows. We take E as E(G) and a set F ⊆ E(G) is in I if it
forms a forest. This is called a graphic matroid. The notion of girth for graphic
matroids coincides with the notion of girth defined in the context of graphs. The
notion of connectivity defined for matroids is slightly different from the standard
one defined for graphs. It would be desirable to have a notion of connectivity
from graphs extending to matroids. Unfortunately, the standard notion of edge-
connectivity in graphs when extended to matroids does not fit well with the
duals of these matroids. With these issues in mind, Tutte [12] proposed the
above definition of connectivity for a matroid, which renders it dual-invariant.
That is, a matroid is �-connected if and only if its dual is. Finally, we note
that Oxley [10] has shown how Tutte’s definition of matroid connectivity can
be modified to give a matroid concept that directly generalizes the notion of
connectivity on graphs.

The Problems and our Results. In this paper we study the following two
problems on linear matroids.

Matroid Girth
Input: A linear matroid M = (E, I) together with its representation matrix
AM of dimension rank(M)×|E| over a field Fq, and a positive integer k.
Parameters: (1) k, (2) rank(M) and (3) rank(M)+q
Question: Does there exist a circuit of size at most k in M?

.

Matroid Connectivity
Input: A linear matroid M = (E, I) together with its representation matrix
AM of dimension rank(M)×|E| over a field Fq, and a positive integer k.
Parameters: (1) k, (2) rank(M) and (3) rank(M)+q
Question: Does M has a k-separation?

It was known in the 80’s that Matroid Girth is NP-complete [9]. Later
Vardi showed that the problem is NP-complete even for binary matroids
(matroids over F2) [13]. Similarly, it is possible to derive that Matroid Con-
nectivity is not in P unless P=NP (see Section 3). Although it is easy to observe
that Matroid Girth admits an algorithm with running time |E|O(k), it is not
at all obvious that Matroid Connectivity admits an algorithm that is poly-
nomial for every fixed integer k. Bixby and Cunningham, using an algorithm
for matroid intersection, gave an algorithm for Matroid Connectivity run-
ning in time |E|O(k) (see [3] for details). Therefore, these problems are natural
candidates for a study in the realm of parameterized complexity.

In parameterized complexity each problem instance comes with a parameter
k and a central notion in parameterized complexity is fixed parameter tractability
(FPT). This means, for a given instance (x, k), solvability in time τ(k)|x|O(1),
where τ is an arbitrary function of k. There is also an accompanying theory of
intractability which enables us to show that certain problems are unlikely to be
FPT. These problems are called W -hard problems (see [4] for more details).
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A first natural parameter for our problems is the solution size, k. We argue
that this problem is unlikely to have an FPT algorithm in general. For this, we
consider the Hall Set problem. In this problem we are given a bipartite graph
G with bipartition into A and B and a positive integer k, and the objective
is to find a set S ⊆ A of size at most k such that the number of neighbors
of S in B is strictly smaller than |S|, that is, |N(S)| < |S|. It is known that
Hall Set is W -hard [6]. This problem is clearly a special case of Matroid
Girth. Indeed, if the input to Matroid Girth is a transversal matroid then the
problem is precisely Hall Set. We would also like to point out that Even Set,
the parameterized version of the problem of computing the minimum distance
of a binary linear code is a long standing open problem in the area and is stated
among the most “infamous open problems” in the Research Horizons section
of the recent textbook by Downey and Fellows [4, Chapter33.1]. However, the
exact version of Even Set, where we want to check for a circuit of size exactly
k is known to be W -hard [5]. In this work, we prove a similar hardness result
for Matroid Connectivity. These intractability results force us to look for
alternate parameterizations.

The next natural parameter would be the rank of the input matroid. Since
it is a larger parameter than the solution size k, one might hope for tractability
results in place of previous intractability results. However, we show (Section 3)
that this is also unlikely. Therefore, we choose as our parameter, rank(M)+q,
where q is the size of the field in which the matroid is represented. Indeed, q
is constant for a fixed finite field such as F2. Observe that since the number
of distinct column vectors in F

r
q is qr, Matroid Girth can be solved in time

qr2 |E|O(1), where r = rank(M). Furthermore, an algorithm for Matroid Girth

with running time O(qrank(M)+krank(M) log k) can be found as a byproduct
in [2] (see Theorem 14 in [2]). However, it was unknown if the additive depen-
dence on k in the exponent can be avoided. In this paper, we give a faster
algorithm for Matroid Girth. This algorithm gives an exponential speedup
over the previous algorithm when k is close to rank(M).

Theorem 1. Matroid Girth can be solved in time O(qrank(M)rank(M) +
|E|k2).

In the context of Matroid Connectivity, we first show that the problem
is not FPT unless FPT= W [1], when parameterized by rank(M). Subsequently,
we give a branching algorithm for Matroid Connectivity which has a single-
exponential dependence on the rank. The main features of this algorithm are
the use of the rank of matroids obtained in the subproblems as a measure to
quantify the progress of the algorithm and application of the algorithm given
by Theorem 1 to solve the base cases. Thus, one can view this algorithm as
a parameterized Turing-reduction from Matroid Connectivity to Matroid
Girth. Formally, we obtain the following theorem.

Theorem 2. Matroid Connectivity can be solved in time

O
(
2rank(M)+k · rank(M)2 · |E| ·

(
qrank(M)rank(M) + |E|k2

))
.
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Theorems 1 and 2 imply FPT algorithms parameterized by rank(M) for all
matroids defined over a constant size field (such as graphic matroids and co-
graphic matroids). Our lower bounds rule out having an algorithm without hav-
ing any dependence on the field size. However, it is possible that for certain
matroids, for instance, transversal matroids, gammoids and strict gammoids,
which are only representable over fields whose size depends on |E|, one can
obtain an FPT algorithm parameterized by rank(M) alone. In fact, we give such
an algorithm, running in time 2rank(M)|E|O(1), for transversal matroids. For
strict gammoids however, we give a polynomial time algorithm and leave open
the same problem for gammoids. Due to lack of space, the proofs of these two
results are deferred to the full version of the paper.

2 Preliminaries

In this section we give some basic definitions and terminology we use in the
paper.

Matroids. Here we give definitions related to matroids that are not presented
in the introduction (Section 1). For a broader overview on matroids we refer
to [11]. Let M = (E, I) be a matroid. Recall that r : 2E → N

+ ∪ {0} is the
rank function associated with the matroid M = (E, I). The closure cl(A) of a
subset A of E is the set cl(A) =

{
x ∈ E | r(A) = r

(
A ∪ {x})

}
. For X ⊆ E,

the contraction of M by X, written M/X, is the matroid on the underlying set
E \ X whose rank function r′ : 2E\X → N

+ ∪ {0} is defined as follows. For all
A ⊆ E \ X, r′(A) = r(A ∪ X) − r(X). We now define the notion of the dual of
a matroid.

Definition 2. For a matroid, M = (E, I), the dual matroid M∗ = (E, I∗) is a
matroid such that the bases of M∗ are the complements of the bases of M .

We note that the rank of the dual matroid M∗ is |E|−rank(M). The dual of a
linear matroid is also linear. Further, given a representation A of a matroid M ,
a representation of the dual matroid M∗ can be found in polynomial time.

Uniform Matroid. A pair M = (E, I), is called a uniform matroid if the family
of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is a constant.
This matroid is also denoted as Un,k. Every uniform matroid is linear and can be
represented over a finite field by a k × n matrix AM where the AM [i, j] = ji−1.

3 W [1]-Hardness When Parameterized by Rank

In this section we show that Matroid Girth and Matroid Connectivity
parameterized by rank(M) are not FPT unless FPT=W [1]. It is known that
Matroid Girth is NP-hard [9,13]. In this section we first show that Matroid
Connectivity cannot be solved in polynomial time unless P = NP . Then we
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explain how the same proof gives W [1]-hardness result for Matroid Connec-
tivity and prove the W [1]-hardness result for Matroid Girth. Towards the
proof, we need to consider the Uniform Matroid Isomorphism problem.

Uniform Matroid Isomorphism (UMI)
Input: A k × m matrix M of rank k.
Question: Is M isomorphic to Um,k? I.e., is every k sized subset of columns
of M linearly independent?

Khachiyan et al [7] showed that UMI is NP-hard, by giving a reduction from
Small Subset Sum, which is defined as follows.

Small Subset Sum
Input: A set of n positive integers S = {α1, . . . , αn} and k, β ∈ N

+.
Question: Does there exist a subset of k integers in S which sum up to β?

The following known lemma is needed to prove the hardness of Matroid
Connectivity and Matroid Girth, and its proof is deferred to the full version
of the paper.

Lemma 1. Let M = (E, I) be a matroid of rank k and m = |E| > 2k+1. Then

1. M is isomorphic to Um,k, if and only if the girth of M is k + 1.
2. If κ(M) = k + 1 then g(M) = k + 1.

Theorem 3. Matroid Connectivity is not in P unless P=NP.

Proof. We prove the theorem by designing a polynomial time algorithm for UMI,
which uses an algorithm for Matroid Connectivity as a subroutine. Now
given a k × m matrix M of rank k, we want to test whether M is isomorphic to
Um,k. We assume that m > 2k+1. Note that M is a uniform matroid if and only
if the dual of M is also a uniform matroid. So without loss of generality we can
assume that k ≤ m − k, otherwise instead of checking whether M is isomorphic
to Um,k, it is enough to check whether dual of M is isomorphic to Um,m−k.

Now we describe an algorithm to solve UMI using an algorithm for Matroid
Connectivity. Using an algorithm for Matroid Connectivity, find the least
integer, i ≤ k + 1, if it exists, such that M has i-separation. This implies that
κ(M) = i. If i = k + 1 then we output Yes, otherwise we output No. Now we
show that our algorithm is correct. If the algorithm outputs Yes, then κ(M) =
k + 1. Then by Lemma 1, we have that g(M) = k + 1 and M is isomorphic to
Um,k. Now consider the following claim.

Claim 1. κ(Um,k) = k + 1

Proof. Let E be the ground set of Um,k. Let C ⊆ E be an arbitrary subset of size
k+1. Note that r(C)+r(E \C)−r(E) ≤ r(C) ≤ |C|−1 and |C|, |E \C| ≥ k+1.
Hence, κ(M) ≤ k + 1. Next we show that there does not exists i < k + 1 such
that κ(M) = i. We prove the statement via contradiction. Suppose there exists
i < k + 1 such that κ(M) = i. Let (A,E \ A) be an i-separation. Since m > 2k,
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we have that |A| > k or |E \ A| > k. Assume without loss of generality that
|E \ A| > k. Then r(A) + r(E \ A) − r(E) = r(A) ≥ i (since |A| ≥ i and i ≤ k).
This leads to a contradiction that (A,E \ A) be an i-separation. This completes
the proof of the lemma. 
�
If M is isomorphic to Um,k then by Claim 1, we have that κ(M) = k + 1 and
thus the algorithm will output Yes. This completes the proof of correctness of
our algorithm. Hence, if we do have a polynomial time algorithm for Matroid
Connectivity then we do have a polynomial time algorithm for UMI. 
�

Now we explain that in fact the proof of Theorem 3 also gives the lower bound
for Matroid Connectivity parameterized by rank(M). The reduction to prove
UMI NP-hard [7, Theorem 1] takes as an input (S, k, β) to Small Subset Sum
and produces an instance (M,k+3) to UMI, where M is a (k+3)×(n+2) matrix.
It is known that Small Subset Sum parameterized by k is W [1]-hard [4]. This
implies that UMI parameteized by k is W [1]-hard. Thus, combining this fact
with Theorem 3 we have that, if Matroid Connectivity parameterized by
rank(M) is FPT, then UMI parameterized by, k= rank(M) is FPT. Thus we
have the following theorem.

Theorem 4. Matroid Connectivity parameterized by rank(M) is not FPT
unless FPT=W [1].

As κ(M) ≤ rank(M)+1, Matroid Connectivity parameterized by k is also
not FPT unless FPT=W [1]. Now in the proof of Theorem 3, if we replace the
Matroid Connectivity subroutine with a subroutine of Matroid Girth,
then by condition 1 in Lemma 1, we get an algorithm for UMI. Again, by the
fact that UMI parameteized by k is W [1]-hard, we get the following theorem.

Theorem 5. Matroid Girth parameterized by rank(M) is not FPT unless
FPT=W [1].

4 Algorithms for Girth of a Matroid

In this section we design a qrank(M)|E|O(1) time algorithm for Matroid Girth
parameterized by rank(M) using the MacWilliams identity. In what follows we
give basics of coding theory and recall the MacWilliams identity.

Coding Theory. A linear code C over a finite field Fq, defined by n×m matrix
A, is the set of m-dimensional vectors C = {vA | v ∈ F

n
q }. The matrix A is called

the generator matrix of C. The code C is the linear subspace of Fm
q spanned by

the row vectors of A and its dimension is equal to rank(A). Without loss of
generality we can assume n =rank(A). A (m,n)-linear code is one such that the
length of codewords is m and its dimension is n.

Let C be a linear code with generator matrix A. Let 0 be the zero vector
(0, . . . , 0)T . The length of 0 will be clear from the context. The parity check
matrix H of C is a (m − n) × m matrix satisfying HwT = 0 for any codeword
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w ∈ C. It is well-known that there is a duality between generator matrices and
parity check matrices: For the code C⊥ with generator matrix HT , it is easily
verified that Av = 0 holds for any v ∈ C⊥ . That is, A is the parity check
matrix of C⊥. The code C⊥ is called the dual code of C. Given a codeword w,
the number of non-zero entries in w is called the weight of w and is denoted by
wt(w). The weight enumerator of an (m,n)-linear code C is a polynomial in x, y
and is given by,

WC(x, y) =
∑

c∈C

xm−wt(c)ywt(c) =
m∑

i=0

ξix
m−iyi,

where ξi is the number of words of weight i in C. The following theorem shows
that the weight enumerator of C⊥ can be calculated from that of C.

Proposition 1 (MacWilliams identity [8]). WC⊥(x, y) = 1
|C|WC(x + (q −

1)y, x − y).

Algorithm for Matroid Girth. We next prove Theorem 1.

Proof (Proof of Theorem 1). Let (M,k) be an instance to Matroid Girth
and let AM be the representation matrix of M of order r × m over Fq, where
m = |E| and r =rank(M). Consider the system of linear equations AMv = 0,
where v = (v1, . . . , vm)t is a vector of variables. We have the following claim.

Claim 2. g(M) ≤ k if and only if there exists a vector z ∈ F
m
q with wt(z) ≤ k

and AMz = 0.

Proof. Let C ′ ⊆ E be a circuit of length at most � ≤ k in M . Let W ⊆ {1, . . . , m}
be the set of indices corresponding to the elements of the circuit C ′. Since C ′

is a circuit in M , C ′ is linearly dependent. Thus, the columns corresponding to
indices in W are also linearly dependent. Hence there exist λ1, . . . , λ� ∈ Fq, not
all zeros, such that

∑
j∈W λjAj = 0. Here, Aj denotes the j-th column of AM .

Now consider the vector z = (z1, . . . , zm)T , where zj = λj if j ∈ W , else zj = 0.
Note that wt(z) = � ≤ k. Since

∑
j∈W λjAj = 0, we have that AMz = 0.

Suppose there exists a vector z with wt(z) ≤ k such that AMz = 0, then∑m
i=1 ziAi = 0 where Ai is ith column in AM . Let W ⊆ {1, . . . , m} such that

i ∈ W if and only if zi �= 0, then
∑

i∈W ziAi = 0. Since |W | ≤ k, there exist (at
most) k columns in A which are linearly dependent. Hence, g(M) ≤ k. 
�

By Claim 2, to show that g(M) ≤ k, it is sufficient to show that there exists
a vector z ∈ F

m
q with wt(z) ≤ k and AMz = 0. Let C be the code generated by

the matrix AM , i.e., C = {vAM | v ∈ F
r
q}. Let C⊥ be the dual code of C, i.e

C⊥ = {u | AMu = 0}. Using the MacWilliams identity we have,

WC⊥(x, y) =
1

|C|WC(x + (q − 1)y, x − y). (1)
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Since |C| ≤ qr, the polynomial WC(x, y) can be computed in O(qrr + |E|) time.
Now we have,

WC(x + (q − 1)y, x − y) =
m∑

i=0

ξi(x + (q − 1)y)m−i(x − y)i,

where ξi is the number of codewords in C of weight i. Claim 2 implies that there
exists a circuit of size at most k in M if and only if there exists a codeword z
in C⊥ such that wt(z) ≤ k, that is, the coefficient of xm−jyj in WC⊥(x, y) is
non zero for some j ≤ k (by the definition of weight enumerator of C⊥). Due to
the MacWilliams identity (Equation 1), there exists a codeword z in C⊥ such
that wt(v) = j if and only if coefficient of xm−jyj in WC(x + (q − 1)y, x − y) is
not equal to zero. Using the binomial theorem, we have that the coefficient of
xm−jyj in ξi(x + (q − 1)y)m−i(x − y)i is

ξi

∑

j′+j′′=j

(−1)j′′
(q − 1)j′

(
m − i

j′

)(
i

j′′

)

.

Hence the coefficient of xm−jyj in WC(x + (q − 1)y, x − y) is

m∑

i=0

ξi

∑

j′+j′′=j

(−1)j′′
(q − 1)j′

(
m − i

j′

)(
i

j′′

)

(2)

Thus we can check whether the coefficient of xm−jyj in WC(x + (q − 1)y, x − y)
is non zero or not in time O(qr + mj). We output Yes if Equation 2 is non zero
for any j ≤ k. Hence the total running time is O(qrr + |E|k2). 
�

5 Algorithm for k-Connectivity of a Matroid

In this section we design a fast FPT algorithm for Matroid Connectivity
parameterized by rank(M)+q. Our algorithm is a recursive algorithm and at
the leaves of the search tree it runs the algorithm for Matroid Girth as a
subroutine. In what follows, we say that a partition (X,Y ) of the ground set
E of a matroid M , obeys the pair (X1, Y1) where X1, Y1 ⊆ E, if X1 ⊆ X and
Y1 ⊆ Y . We start with two lemmas which are useful for our algorithm.

Lemma 2. Let M = (E, I) be a matroid. Let X,Y ⊆ E such that X ∩ Y = ∅
and |Y | ≥ k. Let Sx = cl(X)∩(E\(X∪Y )). If there exist a k-separation (X ′, Y ′)
obeying the pair (X,Y ), then there exist a k-separation (X ′′, Y ′′) obeying the pair
(X ∪ Sx, Y ).

Proof. Let (X ′, Y ′) be a k-separation obeying the pair (X,Y ). Then we know
that r(X ′)+ r(Y ′)− r(E) ≤ k −1. Now consider the partition (X ′ ∪Sx, Y ′ \Sx).
We claim that (X ′ ∪ Sx, Y ′ \ Sx) is a k-separation because |X ′ ∪ Sx| ≥ |X ′| ≥ k,
|Y ′ \Sx| ≥ |Y | ≥ k and r(X ′ ∪Sx)+ r(Y ′ \Sx)− r(E) ≤ r(X ′)+ r(Y ′)− r(E) ≤
k − 1. The pair (X ′ ∪ Sx, Y ′ \ Sx) obeys (X ∪ Sx, Y ) because X ∪ Sx ⊆ X ′ ∪ Sx

and Y ⊆ Y ′ \ Sx. 
�
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Lemma 3. Let M = (E, I) be a matroid. Let X,Y ⊆ E such that X ∩ Y = ∅,
|Y | ≥ k, |X| < k, r(Y ) = r(E), and r(X) = |X|. Then there exists a k-separation
(X ′, Y ′) obeying (X,Y ) if and only if there exists a circuit C in the matroid M/X
of size at most k − |X| contained in E \ (X ∪ Y ).

Proof. (⇒) Suppose there exists a k-separation (X ′, Y ′) obeying (X,Y ). We
need to show that there exists a circuit C in the matroid M/X, of size at most
k − |X|, contained in E \ (X ∪ Y ). Since (X ′, Y ′) is a k-separation, we have
that r(X ′) + r(Y ′) − r(E) ≤ k − 1. This implies that r(X ′) ≤ k − 1, because
r(Y ′) = r(E). Since (X ′, Y ′) is a k-separation, |X ′| ≥ k. Consider a minimum
sized set S ⊆ X ′ such that X ⊆ S and r(S) = |S| − 1 (such a set S exists
because |X ′| ≥ k, r(X ′) ≤ k − 1 and r(X) = |X|). Also note that |S| ≤ k. Since
r(S) = |S| − 1, there exists a circuit C ′ in S. Now we claim that there exists a
circuit in M/X of size at most k −|X| contained in C ′ \X. It is easy to see that
rM/X(C ′ \ X) ≤ |C ′ \ X| − 1. Now consider the size of C ′ \ X.

|C ′ \ X| = |C ′| − |X| + |X \ C ′|
≤ |S| − |X \ C ′| − |X| + |X \ C ′| (Since C ′ ⊆ S and X ⊆ S)
≤ k − |X| (Since |S| ≤ k)

Hence there exists a circuit in M/X of size at most k−|X| contained in C ′ \X ⊆
E \ (X ∪ Y ).

(⇐) Suppose there exists a circuit C in M/X of size at most k−|X|, contained
in E \ (X ∪Y ). Then we claim that (C ∪X ∪S,E \ (C ∪X ∪S) is a k-separation
obeying (X,Y ), where S is an arbitrary k −|C ∪X| sized set in E \ (C ∪X ∪Y ).
Note that |C ∪ X ∪ S|, |E \ (C ∪ X ∪ S)| ≥ k and

r(C ∪ X ∪ S) + r(E \ (C ∪ X ∪ S)) − r(E) ≤ r(C ∪ X ∪ S)
≤ rM/X(C) + r(X) + r(S)
≤ |C| − 1 + |X| + k − |C ∪ X|
≤ k − 1.

This completes the proof. 
�
Now we give the main proof of this section.

Proof (Proof of Theorem 2). Let r = rank(M). Since κ(M) ≤ rank(M)+1, we
can assume that k ≤ r. We design a branching algorithm which gradually creates
a solution (X,Y ) starting from the pair (∅, ∅). At any point in the branching
algorithm, we branch on a carefully chosen element from E \ (X ∪ Y ). Our
branching rules are the following, applied in the order in which they are listed.

– Rule 1: If there exists an element e ∈ E\(X∪Y ) such that e /∈ cl(X)∪cl(Y ),
we branch on e by adding e to X or Y .

– Rule 2: If |X|, |Y | < k, then we branch on an arbitrary element e ∈
E \ (X ∪ Y ).
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In any node of the branching tree of the algorithm we have a potential partial
solution (X,Y ), and we abort if r(X) + r(Y ) − r(E) ≥ k. Now we claim that
there will not be an application of Rule 1 after an application of Rule 2. Consider
a node of the branching tree of the algorithm, with a potential partial solution
(X,Y ). We apply Rule 2, only if Rule 1 is not applicable, that is when for all
e ∈ E \ (X ∪ Y ), e ∈ cl(X) ∪ cl(Y ). Hence for any X ′ ⊇ X,Y ′ ⊇ Y , for all
e ∈ E \ (X ′ ∪ Y ′), e ∈ cl(X ′) ∪ cl(Y ′). This implies Rule 1 is not applicable after
an application of Rule 2. Now consider any root to leaf path in the branching
tree of the algorithm. If there exists an application of Rule 2 in this path then the
length of the path is at most 2k, because Rule 2 is applicable only if |X|, |Y | < k.
Otherwise, we claim that the length of the path is at most r + k. Suppose not.
Consider the leaf node and the potential partial solution (X,Y ) associated with
it. If the length of the path is more than r + k and if we only used branching
Rule 1, then r(X) + r(Y ) − r(E) > r + k − r(E) > k, which is a contradiction
(because we should have aborted this branch). Hence the height of the branching
tree is at most r + k (since k ≤ r).

Now we explain how to compute a solution from a leaf node labeled (X,Y ),
if there exists a solution obeying (X,Y ). Note that for all e ∈ E \ (X ∪ Y ),
e ∈ cl(X) ∪ cl(Y ) because of Rule 1. Also note that either |X| ≥ k or |Y | ≥ k.
Without loss of generality assume that |Y | ≥ k. Now we can apply Lemma 2
and add Sx to X where Sx = cl(X) ∩ (E \ (X ∪ Y )). Now if |X ∪ Sx| ≥ k, then
we can output the partition (X ∪ Sx, E \ (X ∪ Sx)) as k-separation, because
r(X ∪ Sx) + r(E \ (X ∪ Sx)) − r(E) = r(X) + r(Y ) − r(E) ≤ k − 1 (because we
did not abort this branch). Otherwise |X ∪Sx| < k. For convenience, now we use
(X,Y ) to denote the partial solution (X ∪ Sx, Y ). The properties of (X,Y ) are
|X| < k, |Y | ≥ k, for all e ∈ E \ (X ∪ Y ) e ∈ cl(Y ) and e /∈ cl(X). If r(X) < |X|,
then we can output (X ∪S,E \ (X ∪S)) as a k-partition where S is an arbitrary
set of k − |X| elements from E \ (X ∪ Y ), because

r(X ∪ S) + r(E \ (X ∪ S)) − r(E) ≤ r(X) + r(S) + r(E \ (X ∪ S)) − r(E)
≤ r(X) + k − |X| + r(E \ (X ∪ S)) − r(E)
≤ k − 1 (Since r(X) < |X|)

If r(X) = |X| and r(Y ) < r(E), then we can output the (X ∪ S,E \ (X ∪ S)) as
a k-partition where S is an arbitrary set of k − |X| elements from E \ (X ∪ Y ),
because

r(X ∪ S) + r(E \ (X ∪ S)) − r(E) ≤ k + r(E \ (X ∪ S)) − r(E)
≤ k + r(Y ) − r(E) ≤ k − 1.

Now if r(X) = |X|, |X| < k, r(Y ) = r(E), |Y | ≥ k, then we apply Lemma 3
and output Yes if there exists a circuit of size at most k − |X| in M/X
(if there exists one), otherwise abort this particular branch. A linear represen-
tation of M/X and different case analysis explained above can be computed
in time O((rank(M))2|E|) field operations using Gaussian elimination. Since
the height of the branching tree is at most r + k, the algorithm runs in time
O(2rank(M)+k · (rank(M))2|E|(qrank(M)rank(M) + |E|k2)). 
�
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6 Conclusion

In this paper we proved that Matroid Girth and Matroid Connectivity in
a linear matroid when parameterized by rank(M) are not FPT unless FPT= W [1],
but FPT when parameterized by rank(M)+q, where q is the field size. Other
than the Even Set problem which remains notoriously open, we draw attention
to the following interesting open problem arising from our work. Is Matroid
Girth FPT on gammoids when parameterized by rank(M)?
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Abstract. In geometric shape matching problems one is given a pattern
P , a model Q, a distance measure d (which formalizes the intuitive notion
of similarity of such shapes), and a class of geometric transformations
applicable to the pattern P . The task is to find a transformation t in the
given class that minimizes the distance of the transformed pattern t(P )
to the model Q (as measured by d) in order to compute the similarity of
the given shapes.

In many applications, among them medical-image analysis, industrial
design, robotics or computer vision, where local distortions and complex
deformations can occur, this setting is too restrictive, since only the sin-
gle transformation t is used to align the entire pattern with the model.
Almost all known strategies that deal with non-rigid deformations apply
heuristics (based on local descent, relaxed LP formulations, simulated
annealing, or alike). The quality of the solution found by these heuristics
can usually not be related to the quality of a global optimum.

Elastic geometric shape matching tries to remedy this situation by
computing a whole set of transformations T . Each transformation t ∈ T
is applied to a subpattern of P . The objective of the optimization prob-
lem becomes twofold: Minimize the distance of the (union of the) trans-
formed subpatterns to the model while also maximizing the similarity of
the transformations in the ensemble T . This modeling aims at strategies
that compute provably optimal solutions, or alternatively approximative
results of a guaranteed quality.

We consider variations of a simple elastic geometric shape matching
problem in the plane where each subshape is just a single point. We show
that this problem already is NP -hard for the directed Hausdorff- or bot-
tleneck distance under arbitrary translations. We complement our result
with efficient algorithms to compute transformation ensembles under
both distances for variants of the problem where only translations in
a prescribed, fixed direction are allowed.

1 Introduction

Determining the similarity of two geometric shapes and computing a deformation
of a geometric shape to maximize its similarity to another one are two central
problems studied in computational geometry. Due to the vast number of applica-
tions (character recognition, logo detection, human-computer-interaction, etc.)
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 578–592, 2015.
DOI: 10.1007/978-3-319-21840-3 48
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and the plethora of implications for other scientific fields (robotics [14], com-
puter aided medicine [6], drug design [13], etc.) such problems have received a
considerable amount of attention. We refer to the survey papers by Alt et al. [2]
and Veltkamp et al. [12] for an extensive overview of this field.

1.1 The Standard Approach vs. the Elastic Setting

Most geometric shape matching problems can be stated in the following form:
Given two geometric shapes P (the pattern) and Q (the model), both from a
class S of shapes at hand (point sets, polygons, etc.), a transformation class T
acting on S (e.g., translations, rigid motions, affine transformations, etc.), and
a distance measure : S × S → R, the task is to compute a transformation t ∈ T
minimizing d(t(P ), Q). Prominent examples of distance measures for point sets
A,B ⊆ R

d are the directed Hausdorff distance

h (A,B) := max
f :A→B

min
a∈A

‖a − f(a)‖,

and the bottleneck distance

b (A,B) := max
f :A→B

f injective

min
a∈A

‖a − f(a)‖

(for our purposes ‖a − b‖ always denotes the Euclidean distance between a and
b, i.e., the Euclidean length of the vector a − b).

Geometric shape matching is often used to solve registration problems. In such
problems the goal is to align two geometric spaces (e.g., the coordinate system
of an operation theatre and the coordinate system of a 3D-model of the patient
acquired during a pre-operative MRI scan) in order to provide a mapping from
one space into the other one (e.g., in order to perform computer-aided navigation
during a surgery). To compute such a registration, the same structure (e.g., a
prominent anatomical feature) is measured in the two spaces and a geometric
shape matching is computed to align the two resulting geometric shapes. The
corresponding transformation is then used as a mapping from one space into
the other one. Especially in applied scenarios (e.g., soft-tissue registrations for
computer-aided surgery) where local distortions and complex (e.g., non-affine)
deformations can occur, geometric shape matchings as described above are too
restrictive: A single transformation is computed to match the entire pattern
(or to map the entire space). To address this issue, geometric shape matching
problems have been generalized to elastic geometric shape matching problems
(EGSM problems) in [5,11].

In an EGSM problem, the pattern P consists of subshapes. Instead of a sin-
gle transformation, a so-called transformation ensemble is computed. A trans-
formation ensemble consists of a set of transformations which are (individually)
applied to the subshapes of P in order to minimize the distance of the trans-
formed pattern to the model. However, instead of independently solving a “clas-
sic” geometric shape matching problem for each subshape, the consistency (and
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“continuity”) of the ensemble (and by that, also of the transformed pattern) is
ensured by enforcing certain transformations (e.g., transformations that act on
subshapes that are “close”) to be similar (with respect to a suitable measure
defined for the transformation class at hand). Formally, the (decision version of)
a simple EGSM problem for point sets in the plane under translations can be
stated as follows:

Problem 1 (EGSM for planar point sets under translations).
Given: P = {p1, . . . , pn} ⊂ R

2 a planar point set (the pattern)
Q = {q1, . . . , qm} ⊂ R

2 a planar point set (the model)
d a distance measure for point sets in R

2

G = ([n], E) a graph with [n] = {i | 1 ≤ i ≤ n}
δ ≥ 0 the decision parameter

Question: Are there n translation vectors T = (t1, . . . , tn) so that

max
(

d (T (P ), Q) , max
{i,j}∈E

‖ti − tj‖
)

≤ δ, (1)

where T (P ) := {ti(pi) | 1 ≤ i ≤ n}?

In this formulation each point of P forms an individual subshape of the
pattern. In the context of EGSM, the graph G is called the neighborhood graph of
the subshapes and the sequence T is called a transformation ensemble. The graph
G encodes which subshapes have to be transformed by similar translations; in
this case the (dis)similarity of two translation vectors is measured by the length
of their difference.

Intuitively, the graph G should encode the concept of “neighborhood” of sub-
shapes. For complex types of subshapes this notion is not easy to formalize but
in the setting considered in Problem 1 (where each point forms a subshape on its
own) a standard geometric neighborhood (or proximity) graph defined on P (e.g.,
the minimum-spanning tree, the Delaunay-triangulation, the Gabriel-graph, etc.)
would be a natural choice. Unfortunately, to the best of our knowledge, the com-
plexity status for Problem 1 is unknown for all the standard proximity graphs.

1.2 Related and Previous Work

Several approaches that deal with non-linear transformations can be found in
the literature [1,3,7–9]. All of these strategies are heuristics that are based on
relaxed ILP formulations [3,8], probabilistic methods [7], or ICP formulations
[1,9]. None of these methods compute provably “good” solutions, i.e., solutions
that are optimal (up to an approximation factor).

In [5] we considered several variants of Problem 1, where the pattern and the
model are point sequences with a fixed correspondence between them. For these
cases efficient (i.e., polynomial time) exact (based on a convex programming
formulation) and approximate (combinatorial) algorithms were developed (for
different types of neighborhood graphs).
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In [11] we developed a polynomial time constant factor approximation algo-
rithm for Problem 1 for complete neighborhood graphs under the directed Haus-
dorff distance (which complements our hardness result from Theorem 1 below).

1.3 Our Contribution

We show in Section 2 that Problem 1 is NP -complete for complete neighborhood
graphs G = Kn (the complete graph on n vertices) under the directed Hausdorff
distance as well as under the bottleneck distance (c.f., Theorem 1 on page 582).

On the positive side, we show in Section 3 that variants of Problem 1, where
only translations in a prescribed, fixed direction are allowed, permit efficient
solutions. More specifically, we present algorithms

• for neighborhood graphs that are complete or trees under the Hausdorff
distance that run in O (nm (log n + log m)) time (c.f., Theorem 2 on page 587
and Theorem 3 on page 588), and

• for complete neighborhood graphs under the bottleneck distance that run in
O

(
nm

(
log n (n + m)1.495

))
time (c.f. Theorem 4 on page 588).

2 Hardness of EGSM under Translations

In the EGSM model, neighborhood graphs have been introduced as a tool to
describe which transformations of the transformation ensemble are forced to be
similar as their corresponding subshapes are (usually spatially) related. The sec-
ond argument in the objective function (1) enforces this restriction by requiring
that the length of the longest difference vector of any two translation vectors that
are adjacent in the neighborhood graph G has to be smaller than the threshold
value δ. In the following, we show that Problem 1 is NP -complete under the
directed Hausdorff distance as well as under the bottleneck distance when G is
the complete graph (the proof generalizes to any dimension d ≥ 2).

In this specific setting (G being complete), we show that solving the decision
problem is equivalent to finding a set of points in the Euclidean plane where every
point has to be chosen from a specific admissible region and additionally the
diameter of the point set must not exceed δ. For complete neighborhood graphs
(and only for complete neighborhood graphs) one could also bound the deviation
of the translations by minimizing the radius of their smallest enclosing disc. In
[11, Theorem 17] we showed that this variant can be solved in O

(
mn2 log(mn)

)

time and that such a solution can be transformed in linear time into a (2/3) (1 +
1/3)-approximation of the variant considered here. For arbitrary graphs however,
the smallest enclosing disc is not a reasonable measure and the following NP -
completeness proof shows the hardness of the general problem:

2.1 Moving from Object-Space to Transformation-Space

Consider the set Tp,q = {t | ‖t(p) − q‖ ≤ δ} of translations that bring a point
p within distance ≤ δ (“δ-close”) to a point q. In transformation-space, these
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translations form a disc of radius δ with center q−p. The set Tp,Q of translations
that bring a point p δ-close to some point in Q consequently is

Tp,Q =
⋃

q∈Q

Tp,q.

In the context of Problem 1 we call Tp,Q the admissible region of p: Any t ∈ Tp,Q

ensures that distance of t(p) to some point in Q is at most δ.
These observations allow us to investigate Problem 1 solely in transformation-

space: A valid solution T = (t1, . . . , tn) satisfies

∀ 1 ≤ i ≤ n : ti ∈ T (pi, Q) ∧ ∀ 1 ≤ i < j ≤ n : ‖ti − tj‖ ≤ δ.

In other words, every ti has to lie within some disc of Tpi,Q and the resulting set
{t1, . . . , tn} has to have a diameter of at most δ.

2.2 EGSM for Point Sets under Translations Is NP -hard

Theorem 1. EGSM for point sets under translations and complete neighbor-
hood graphs wrt. the directed Hausdorff distance or the bottleneck distance (Prob-
lem 1) is NP -hard.

Proof. The NP -hardness of Problem 1 will be proven by a reduction from
3-SAT: Let φ be a formula in 3-CNF with n variables v1, . . . , vn and m clauses
φ1, . . . , φm. From φ, an EGSM instance will be constructed that consists of
|P | = m + 1 and |Q| = 3 · (

2n
3

)
+ 1 points respectively. The parameter δ will

be set to 2/3 − ε, for a small ε > 0 that will be specified later. Finally, we set
G = Kn.

We will define P = {p0, p1, . . . , pm} and Q implicitly by describing Tp,Q for
all p ∈ P . Note, that for points pi, pj ∈ P the set Tpi,Q is just a copy of Tpj ,Q

translated by pj − pi. To be more precise, we first define Q by defining p0 and
Tp0,Q, and then we define pi by describing how Tpi,Q is shifted relative to Tp0,Q.

Constructing Clauses with Flowers. The clauses of φ will be encoded in so-
called flowers. First we define the base-flower, see Figure 1(a): We (arbitrarily)
place n discs d1, . . . , dn of radius δ with distinct centers on the unit circle with
positive coordinates (all centers lie in the first quadrant). Let d1, . . . , dn be their
reflections at the origin (so that di and di are antipodal with respect to the unit
circle), and let D = {d1, . . . , dn, d1, . . . , dn}. Cabello et al. [4, Lemma 2] have
shown that the centers of these discs can be found with bounded sized rational
coordinates:

Lemma 1 (Cabello et al. [4, Lemma 2]). For any n > 0, there exists n
distinct points on the unit circle such that they all have rational coordinates
with the numerators and denominators bounded by a polynomial in n, and the
distance between any two points is at most

√
2/6.
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Fig. 1. Illustration of the base-flower and a clause-flower. (a) The base-flower for n = 5;
(b) A clause-flower encoding the clause (v1 ∨ v3 ∨ v5).

We define
(
2n
3

)
(the number of distinct clauses that can appear in a 3-CNF

formula with n variables) clause-flowers by placing copies of the base-flower
along the x-axis so that any two consecutive clause-flowers are 4 units apart
(when we measure the distance of the centers of the translated unit circles). From
each clause-flower, we remove all but three discs, in such a way that for every
possible choice of three distinct discs of D, translational copies of these three
discs are present in exactly one flower. The clause-flowers are now in one-to-one
correspondence with all possible 3-clauses that can be formed from the literals
{v1, . . . , vn, v1, . . . , vn}: Let da, db, dc ∈ D be the discs whose translational copies
remained in the same flower. This flower corresponds to the clause (la ∨ lb ∨ lc)
where for h ∈ {a, b, c} we have that lh = vi if dh = di or lh = vi if dh = di

for some 1 ≤ i ≤ n, see Figure 1(b). The construction of Tp,Q is completed by
placing a single disc dx of radius δ so that its center is 4 units below the center
of the leftmost clause-flower, see Figure 2.

Recall that δ = 2/3 − ε. The value ε > 0 will be chosen small enough, so
that for any two non-antipodal discs d, d′ ∈ D of the same flower there are two
points a ∈ d and b ∈ d′ with ‖a − b‖ ≤ δ. By construction, the closest distance
of two points that lie in antipodal discs of a flower or in discs that do not belong
to the same flower is 2(1 − δ) = 2/3 + 2ε > δ, see Figure 3 in the Appendix.

The pattern P then consists of m + 1 points {p0, . . . , pm}. The point p0 is
chosen (independent of the actual formula φ) such that the center of dx ∈ Tp0,Q

lies on the origin. The point pi for 1 ≤ i ≤ m is chosen in a way such that the
flower in Tpi,Q that encodes the clause φi is centered in the origin.

Relation Between the Instances. The EGSM instance is constructed in
such a way, that the admissible regions T·,Q encode all possible clauses that can
appear in a 3-CNF formula. By placing the points p1, . . . , pm ∈ P as described
above, the clauses φ1 to φm of the formula φ are selected by placing the center
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4

4

> δ

dx

4

Fig. 2. Illustration of admissible regions Tp,Q for an point p ∈ P , only the first three
flowers are shown, the illustration extends to the right. The gray dotted circles indicate
the translated unit discs and are not part of the construction.

of the flower that encodes the respective clause on the origin. As Tp0,Q has been
translated so that dx is centered in the origin, a valid solution T = (t0, . . . , tm)
is forced to choose t0 from the disc dx of Tp0,Q. To clarify this restriction on
t0, assume t0 to be chosen from a disc that is part of some flower of Tp0,Q: By
construction, the translation t ∈ Tpi,Q that is closest to t0 for every 1 ≤ i ≤ m
is at distance ‖t0 − t‖ > δ.

So as t0 ∈ dx ∈ Tp0,Q, all ti for 1 ≤ i ≤ m are forced to lie in a disc that
is part of the flower of Tpi,Q that is centered in the origin as again all other
translations of Tpi,Q are at distance larger than δ from t0.

If the 3-SAT instance is satisfiable, there is a solution to the EGSM instance
Let A = (a1, . . . , an) with ai ∈ {true, false} be an assignment of the variables
v1, . . . , vn that satisfies φ. Consider a circle centered in the origin with radius
1 − δ that touches the afore described discs in a set X of 2n points. Let xi be
its touching point with disc di and xi its antipodal point.
Consider the set XA = {xi ∈ X | ai = true} ∪ {xi ∈ X | ai = false}. For
1 ≤ i ≤ n choose any point ti ∈ XA ∩ Tpi,Q. Note, that XA ∩ Tpi,Q �= ∅ as the
three relevant discs of Tpi,Q encoded the literals of φi and at least one of these
literals satisfied φi under the assignment A.

As for all 0 ≤ i ≤ m : ti ∈ Tpi,Q we have that the directed Hausdorff
distance in object space is at most δ, i.e., every point p ∈ P is at distance ≤ δ
to some point in Q. As for the similarity of the chosen translations we have
that for 1 ≤ i ≤ m : ‖t0 − ti‖ = 1 − δ < δ. By construction, we have that all
non-antipodal point pairs in XA are at distance ≤ δ and XA can not contain
antipodal points.

If there is a solution for the EGSM instance, the 3-SAT instance is satisfiable
Let T = (t0, t1, . . . , tm) be a solution for the EGSM instance. An assignment
A = (a1, . . . , an) of the variables v1 to vn that satisfies φ can be found in the
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following way: For 1 ≤ i ≤ m let Di be the set of discs of Tpi,Q that contain ti
(Di may contain more than one disc, as ti can be in the intersection of up to
three discs). Pick any disc d ∈ Di and set

aj = true if d = dj , or aj = false if d = dj .

The disc d encoded a literal that satisfies φi, more precisely if d = dj then φi

contained the literal vj or otherwise if d = dj then literal vj was part of φi.
Therefore choosing aj according to d will satisfy a literal of each clause of φi for
all 1 ≤ i ≤ m. Note, that a valid solution T cannot contain two translations t,
t′ so that t ∈ dk and t′ ∈ dk for any 1 ≤ k ≤ n as by construction the smallest
distance between any two points in antipodal discs is larger than δ.

It is possible, that some variables are left unassigned after this processes. As
the variables assigned so far already satisfy φ, these remaining variables can be
assigned arbitrarily to true or false.

This finishes the proof of the NP -hardness for the Hausdorff distance.

The Case of the Bottleneck Distance. Note, that in this reduction, all discs
that are part of flowers that are centered in the origin are induced by different
points of Q. This implies that the same reduction proves the NP -hardness for
the bottleneck distance as well.

Essentially by following the same lines as for the NP -completeness proof above,
it is easy to show that the problem remains NP -complete if every point p ∈ P
is allowed to be translated along a given direction �dp:

Corollary 1. Problem 1 remains NP -complete, even if each point p ∈ P is
restricted to be translated parallel to a a given direction �dp where the set DP =
{�dp | p ∈ P} is part of the input.

3 Computing EGSM for Translations in a Fixed Direction

Given that Problem 1 is NP -hard, it is reasonable to investigate more restricted
settings. In the following, each point of the pattern P can be translated along a
fixed, given direction, which makes the translation-space one-dimensional.

At first this restriction to one dimension seems to be too restrictive to be
helpful, but has stated in Corollary 1, the problem remains hard even for n given
directions. The following positive result where a single direction is fixed (wlog.
parallel to the x-axis) is therefore a first step in closing the gap between efficient
strategies for and the hardness of Problem 1 for general graphs.

3.1 Admissible Transformations

A translation parallel to the x-axis will be called an x-translation. To simplify
the presentation, we sightly abuse the notation by identifying a translation with
its x-component, i.e., the x-translation with the translation vector (t, 0) will be
represented by the scalar t.
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For points p = (px, py) ∈ P and q = (qx, qy) ∈ Q we consider the set Ip,q

of admissible transformations Ip,q :=
{

t
∣
∣
∣

(
(px + t − qx)2 + (py − qy)2

)0.5 ≤ δ
}

.
The set Ip,q consists of all x-translations t that bring p at least δ-close to q.
Note, that (for every convex distance function) Ip,q is either empty or consists of
a single interval. The set Ip,Q of translations that bring p δ-close to some point
q ∈ Q is Ip,Q := ∪q∈QIp,q. Let IP,Q := ∪p∈P Ip,Q be the set of all admissible
transformations for all points of P .

Lemma 2. The set Ip,Q (represented as a sequence of intervals sorted by their
left endpoints) can be computed in O (m log m) time.

Due to space limitations, the proof of Lemma 2 has been moved to the appendix.

3.2 Minimizing the Hausdorff Distance in Object-Space . . .

In this section, we consider the decision problem of determining whether there
is a set of x-translations for P so that the directed Hausdorff distance of the
translated point set P to Q is no more than δ while at the same time requiring
that all pairs of translations ti, tj that are connected by an edge in G = ([n], E)
differ by at most δ, i.e., ‖ti − tj‖ ≤ δ for all {i, j} ∈ E.

. . . for Complete Neighborhood Graphs. For now, let G be the complete
graph Kn, i.e., any two translations t, t′ of the computed translation ensemble
have to satisfy ‖t − t′‖ < δ.

To decide whether there is a set T of translations that satisfies condition (1)
(c.f., page 580), a double sweep-line algorithm will be performed. A double sweep-
line algorithm can be thought of as sweeping over the scene with a vertical strip
of a specific width. Events are processed when elements (here: The start- or
endpoint of an admissible transformation interval) enter or leave the strip. The
process is simulated by using two sweep-lines Se and Ss representing the left and
right boundary of the strip.

For the specific problem considered here, we enforce that the two sweep-lines
are δ-apart (the strip has width δ). This implies, that if x was the event that had
been processed last by sweep-line S (denoted by x � S), the next event next(x)
is determined by:

next(x) :=
{

min{s | [s, e] ∈ IP,Q, s ≥ x} ∪ {e | [s, e] ∈ IP,Q, e ≥ x − δ} , if x � Ss

min{s | [s, e] ∈ IP,Q, s ≥ x + δ} ∪ {e | [s, e] ∈ IP,Q, e ≥ x} , if x � Se.

Ties are broken by favoring events that appear at the right boundary Ss of the
strip (among which the order is arbitrary). This means, that events that can
be processed by Ss are processed first, as the interval endpoints themselves are
admissible transformations.

We use the two sweep-lines to simultaneously sweep over all sets of all admis-
sible regions Ip,Q for all p ∈ P . Events are left and right endpoints of these
admissible regions. The basic idea is to keep track of how many points of P
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have non-empty admissible regions within the common sweep strip of width δ.
For this purpose, we introduce counters c1, . . . , cn, where ci counts how many
connected admissible regions of point pi are currently intersected by the strip.
Counter ci is increased by one, whenever Ss encounters the left, and is decreased
by one whenever Se hits the right boundary of an interval of Ipi,Q. The first
event will be processed by Ss and is one of the smallest left endpoints of any
interval. Note, that this algorithm also produces a witness for a yes-instance.

Lemma 3. The answer to the decision problem is yes iff at some point during
the sweep process all counters are non-zero.

Theorem 2. The EGSM problem wrt. the Hausdorff distance for complete neigh-
borhood graphs under x-translations can be decided in O (nm (log n + log m)) time.

Due to space limitations, the proofs of Lemma 3 and Theorem 2 have been moved
to the appendix.

. . . for Neighborhood Graphs That Are Trees
In this section, we consider neighborhood graphs G = ([n], E) that are trees. We
start by picking an arbitrary node r ∈ V and look at Gr, the tree G rooted at
r. The nv many children of an internal node v ∈ V of Gr will be denoted by
c(v)1, . . . , c(v)nv

, the (rooted) subtree of Gr with root v by Bv.
In order to decide whether there is a set T of translations that satisfies con-

dition (1) (c.f., page 580) we proceed iteratively. The basic idea is to propagate
admissible transformations in the tree Gr from bottom-to-top by contracting
inner nodes with their children and by appropriately merging their admissible
transformations. I.e., starting with Gr, the algorithm chooses an inner node and
contracts it which leads to new tree. In each iteration of the algorithm, we call
the tree from which a node is selected the current tree.

In each step of the algorithm, a vertex v of the current tree is selected with
the property that all children of v are leaves. Then, v and the children of v are
contracted to a new node v′ which itself becomes a leaf in the resulting tree.
To compute the set Iv′,Q of admissible regions for the new leaf v′ we proceed as
follows: First, we inflate all regions Ic(v)i,Q by δ, i.e., for 1 ≤ i ≤ nv: Iδ

c(v)i,Q
:=

{
[s − δ, e + δ] | [s, e] ∈ Ic(v)i,Q

}
. The admissible regions for the new node v′ are

now defined as: Iv′,Q :=
(
∩i∈{1,...,nv}Iδ

c(v)i,Q

)
∩ Iv,Q. This process is iterated

until either of the following two cases occurs:

1. For some node v we have I(v,Q) = ∅ before or after contracting v:
The algorithm terminates returning no.

2. The root r is contracted and I(r′, Q) �= ∅:
The algorithm terminates returning yes.

Clearly, the strategy terminates, as at some point in time the root will be con-
tracted or case 1 is encountered earlier.

By contraction, subtrees are shrunk to nodes. The algorithm essentially
detects whether either the entire tree Gr can be shrunken to r′ or whether there



588 C. Knauer and F. Stehn

is a subtree Bv of Gr so that condition (1) (c.f., page 580) with respect to Bv can
not be satisfied. To clarify this notion, let Ev = E[Bv], Pv = {pi | {i, ·} ∈ Ev}
and Tv = {ti | pi ∈ Pv}. We say condition 1 can be satisfied with respect to Bv

(or simply Bv can be satisfied) if there is a set of translations Tv so that

max
(

d (Tv(Pv), Q) , max
{i,j}∈Ev

‖ti − tj‖
)

≤ δ.

If v′ is the result of contracting v with its children, then the subtree Bv is
shrunken to v′ and we define Bv′ = Bv. To prove the correctness of the algorithm,
we make use of the invariant stated in Lemma 4.

Lemma 4. After every iteration of the algorithm, the following holds:
Let v be a leaf of the current tree. If Iv,Q �= ∅ then Bv can be satisfied.

Theorem 3. The EGSM problem with respect to the Hausdorff distance
under x-translations for neighborhood graphs that are trees can be decided in
O (nm (n + log m)) time.

Due to space limitations, the proofs of Lemma 4 and Theorem 3 have been moved
to the appendix.

3.3 Considering the Bottleneck Distance for Complete Graphs

The algorithm to decide Problem 1 for the bottleneck distance uses the same
sweep-strip approach as described in Section 3.2 (for complete graphs). The main
difference is that events have to be handled in a different way.

Consider the bipartite graph GPQ = (P ∪ Q,E′), where E′ ⊂ P × Q. The
basic idea is to insert the edge (pi, qi) into E′ when Ss hits the left boundary
of an interval Ipi,qi,δ and to remove that edge, when Se encounters the right
boundary of this interval.Whenever an edge is deleted or removed from/into
GPQ we update the information of the size of the maximum matching in GPQ.
Clearly, the answer to the decision problem is yes, iff, during the course of the
sweep-strip algorithm, the size of the maximum matching becomes n at some
point.

Instead of recomputing the maximum matching from scratch whenever GPQ

is modified, we use the algorithm by Sankowski et al. [10]. Their strategy allows
to maintain the information of the size of the maximum matching in O

(|V |1.495
)

time per edge insertion/deletion operation in/from a (not necessarily bipartite)
graph.

Theorem 4. The EGSM problem for the bottleneck distance under x-translations
for complete neighborhood graphs can be decided in O

(
nm

(
log n (n + m)1.495

))

time.

Due to space limitations, the proof of Theorem 4 has been moved to the
appendix.
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4 Omitted Figures and Proofs

Proof (Proof of Lemma 2). For a fixed p, the set Ip,Q can be computed by insert-
ing, one-by-one for every q ∈ Q, all non-empty intervals Ip,q (each of which can
be computed in constant time) into a modified AVL-tree. Consider a standard
AVL-tree T that stores start- and endpoints of intervals at internal nodes and
pointers to intervals I or voids V at its leafs. Internal nodes v additionally store
a pointer to the leaf that corresponds to the interval that has v as an start- or
endpoint and vice versa. The structure T is initialized by setting its root to an
empty void V0 spanning the entire real line. To simplify the description of how
to insert an interval Ii = [si, ei] into T , we introduce two pointers l and r to
internal nodes of T which will be used after the insertion to perform a merge
operation causing T to store the interval corresponding to [l, r] ⊃ Ii by removing
obsolete endpoints within that interval.

First, we locate the endpoints x ∈ {si, ei} of Ii in T by a standard AVL-tree
search:

case 1 x ∈ Ij = [sj , ej ]: The search ends in a leaf, x lies within an interval Ij

if x = si store sj in l
if x = ei store ej in r

case 2 x ∈ Vj : The search ends in a leaf, x lies within a void Vj

if x = si locally replace Vj in T by a subtree with root si, whose left child
is Vj and whose right child is a dummy node that will be replaced later,
store si in l

if x = ei locally replace Vj in T by a subtree with root ei, whose right child
is Vj and whose left child is a dummy node that will be replaced later,
store ei in r

2

2 − 2δ > δ

di

di

δ

di+1

δ

≤ δ

Fig. 3. Illustration showing how to choose ε: In this illustration, di and di+1 are furthest
apart among all non-antipodal discs of a flower
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case 3 x = v: While searching, an internal node v is encountered that represents
an endpoint of an interval Ij = [sj , ej ] and that has the same value as x
if x = si store sj in l
if x = ei store ej in r

Until now, the structure of T only changed in the case that the search for one
or both endpoints of Ii ends in a leaf corresponding to a void. It remains to
perform a merge operation on T to remove obsolete endpoints and potential
super-covered intermediate intervals. The only case in which a merge operation
does not have to be performed is, when Ii is completely covered by an interval
already stored in T before the insertion of Ii (which is the case if l and r point
to the same interval).

To perform a merge operation, we find the lowest common ancestor v of l
and r in T (which might be either l or r itself). The node v will be replaced by
a tree with root l whose right child is r, the left child of r becomes a new leaf
storing the interval [l, r], the former left child (T1) of l and the right child (T4)
of r remain unchanged, see Figure 4.

Fig. 4. Illustration of how to merge the data structure to that [l, r] is stored in T

After inserting all non-empty intervals Ip,q an in-order traversal of T reports
Ip,Q in order of their (left) endpoints. Note, that by a merge the height of T
can only decrease, though T might not be balanced anymore. The total time to
perform m insert and merge operations however is equal to the time needed to
perform m insertions into a standard AVL-tree if the depths of inner nodes are
stored within the nodes and if re-balancing of T is performed according to these
pseudo-depths.

Proof (Proof of Lemma 3). Let the last counter become non-zero while x � Ss,
where x = si (counters are only increased, when events corresponding to left
endpoints of intervals are processed). This implies that for all points p ∈ P there
is an admissible translation in the range [x− δ, x]: ∀p ∈ P : [x− δ, x]∩ Ip,Q �= ∅.

The correctness of this algorithm follows from the fact that all admissible
regions (intervals) of Ip,Q are disjoint for all p ∈ P and by observing that admis-
sible regions start to become relevant exactly when the left boundary enters the
strip and that they end being relevant when their right boundary leaves the
strip.
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Proof (Proof of Theorem 2). Each set Ip,Q consists of O (m) intervals, hence
there are O (nm) events to be processed. Determining the next event that has
to be processed takes O (log n) time as the left and right endpoints are stored
in sorted order for every Ip,Q. This together with the time to compute the sets
Ip,Q (see Lemma 2) yields the stated running time.

Proof (Proof of Lemma 4). Recall, that every node x ∈ V [Gr] represents a
translation tx ∈ T that will be applied to point px ∈ P .

We proceed by induction on the number of iterations the algorithm has per-
formed. Before any contraction has been performed, the current tree is Gr. Let
v be any leaf of Gr: The subtree Bv only consists of v, hence Bv trivially can be
satisfied.

For the induction step, let v be a leaf of the current tree. If v was a leaf
before the contraction, then Bv can be satisfied by induction.

If v was not a leaf before the contraction, then the current tree was created
by contracting a subtree Bu into v. By induction we know for all children c(u)i

of u that Bc(u)i can be satisfied.
Now consider a translation t ∈ Iv,Q: We have that

– t ∈ Iv,Q, hence t will bring pu δ-close to some point of Q,
– t ∈ Iδ

c(u)i,Q
for all 1 ≤ i ≤ nu, implying that ∃[s, e] ∈ Ic(u)i,Q : [t − δ, t + δ]∩

[s, e] �= ∅. This means, that there is a translation in an admissible region of
Ic(u)i,Q at most δ-away from t for any t ∈ Iv,Q and for any 1 ≤ i ≤ nu.

Proof (Proof of Theorem 3). Computing all admissible regions IP,Q takes
O (mn log m) time. A single set Ip,Q for a point p ∈ P can consist of O (m)
disjoined intervals. The description complexity of the intersection of two inter-
val sets A,B can be the description complexity of the sum of both sets
|A ∩ B| ≤ |A| + |B|. As a consequence, the description complexity of the admis-
sible regions for an (inner) node can be the sum of the description complexity
of its children plus O (m) (the admissible regions of the node itself). An upper
bound of the complexity of an admissible region (which can be realized after col-
lapsing the root r of Gr) is O (mn) (there are n nodes each contributing O (m)
intervals). Assuming that the intersection of two ordered sets of segments can
be intersected in linear time, the stated runtime follows, as each edge of the tree
accounts for two merge operations.

Proof (Proof of Theorem 4). Each set Ip,Q consists of O (m) intervals, hence
there are O (nm) events to be processed. Determining the next event that has
to be processed takes O (log n) time as the left and right endpoints are stored
increasingly for every Ip,Q. This together with the time to compute the sets Ip,Q

(see Lemma 2) and the time for updating the size of the maximum matching in
GPQ (see [10]) yields the claimed running time.
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Constant Time Enumeration by Amortization
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Abstract. Enumeration algorithms have been one of recent hot topics
in theoretical computer science. Different from other problems, enumer-
ation has many interesting aspects, such as the computation time can be
shorter than the total output size, by sophisticated ordering of output
solutions. One more example is that the recursion of the enumeration
algorithm is often structured well, thus we can have good amortized
analysis, and interesting algorithms for reducing the amortized complex-
ity. However, there is a lack of deep studies from these points of views;
there are only few results on the fundamentals of enumeration, such
as a basic design of an algorithm that is applicable to many problems.
In this paper, we address new approaches on the complexity analysis,
and propose a new way of amortized analysis Push Out Amortization
for enumeration algorithms, where the computation time of an iteration
is amortized by using all its descendant iterations. We clarify sufficient
conditions on the enumeration algorithm so that the amortized analysis
works. By the amortization, we show that many elimination orderings,
matchings in a graph, connected vertex induced subgraphs in a graph,
and spanning trees can be enumerated in O(1) time for each solution by
simple algorithms with simple proofs.

1 Introduction

Suppose that there is a simple algorithm to solve a problem, and we have two
improvements on the time complexity; (a) is by developing a new algorithm
with a small complexity, and (b) proves that its complexity is actually small by
complexity analysis. Both types of improvements are important in theoretical
computer science, but these days almost all results are on the type of (a). Devel-
oping simple algorithms in (a) is non-trivial, thus many recent algorithms and
their complexity analysis are difficult to understand. Moreover, these types of
algorithms often require some structures in the input, hence the problem formu-
lations tend to be distant from the real world. On contrary, (b) type has a great
advantage on these points. Even though the analysis is complicated, we can hide
the difficulty by producing general statements applicable to many problems. At
least, we do not have to implement the complicated proofs in a program. Accord-
ing to this motivation, we study on complexity analysis in this paper, that is
amortized analysis for enumeration algorithms.

Amortized analysis is a paradigm of complexity analysis. In the paradigm, we
charge the cost of iterations with long computation time to those with shorter
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 593–605, 2015.
DOI: 10.1007/978-3-319-21840-3 49
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time, to make the upper bound of computation time of an iteration shorter.
Compared to usual complexity analysis considering the worst case, the amortized
analysis is often more powerful, for example dynamic tree, union find, and some
enumeration algorithms[7,13]. In the case of dynamic tree, the cost of changing
the shape of the tree is charged to the preceding changes with smaller costs, and
attains O(log n) average time complexity for each change where n is the size of
the tree. The time complexity is not attained by usual worst case analysis, and it
seems to be hard to obtain algorithms with the same complexity by the analysis.
This is similar to the union find algorithm, and the resulted time complexity is
O(nα(n)) while straightforward algorithms take O(n2) time. The concept of
“charging the cost” made a paradigm shift on the design of algorithms. Some
enumeration algorithms are designed so that the time complexity of an iteration
is linear in the number of subproblems, to make the average computation time
per child will be short[8,12].

Enumeration is now rapidly increasing its presence in theoretical computer
science. One of the biggest reasons comes from its importance in application
areas. An example is the pattern mining problems in data mining. The problem
is to find all the patterns belonging to a class of structures, such as subsets
and trees, such that the patterns satisfy some constraints in the given database,
such as appearing at least k times. One more motivation is that there have not
been many studies including simple problems, thus there is a great possibility.
On the other hand, enumeration has several interesting aspects which we can
not observe in other problems. For example, by dealing only with the difference
between output solutions, we can often attain the computation time shorter than
its output size, by outputting the solutions by the differences. Another example is
its well-structured recursion. We can frequently have several structural results on
enumeration, and it gives interesting algorithms and mathematical properties,
while it is hard to characterize when a brunch and bound algorithm cuts off
subproblems. Structured recursion often gives a good amortization. There is a
great interest on investigating amortized analysis on enumeration algorithms.

According to this motivation and interests, this paper addresses amortized
analysis of enumeration algorithms. One of our goals on this topic is to fill the
gap between theory and practice. In practice, enumeration algorithms are often
quite efficient and than the theoretical upper bound on the computation time.
Filling the gap gives understandings for both theoretical and practical properties
on data and algorithms; the properties of data accelerating algorithms, and the
mechanism of the algorithms that enable us to attain smaller bounds.

We have observed that the recursive structures of enumeration algorithms
satisfies a property which we call bottom-expanded. Iterations of enumeration
algorithms generate several recursive calls. Thus, the number of iterations expo-
nentially increases in deeper levels of the recursion. On the other hand, iterations
on deeper levels often have relatively small inputs compared to upper levels.
Thus, we can expect that iterations near by the root of the recursion are few
and spend a long time, and iterations near by the bottom of the recursions are
many and spend very short time. In practice, we can frequently observe this,
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especially in many kinds of pattern mining algorithms. This also implies that
the amortized computation time per iteration, or even per solution, is short.
This mechanism is what we call bottom-expanded. We can see this mechanism
not only in practice but also classic enumeration algorithms.

This mechanism motivated us to develop a good amortized analysis. How-
ever, amortization is not easy in general, since it is hard to globally estimate
the number of iterations and computation time. Thus, in many existing studies,
the computation time is amortized between a parent and its children, and some-
times its grandchildren[2–5,8,12]. These local structures are easier to analyze
than the global structures. Extensions of this idea to more global structures are
non-trivial. For example, if we want to amortize between iterations in different
subtrees of the recursion, we have to understand the relation and the correspon-
dence between all iterations in different subtrees. This is often difficult.

In this paper, we propose a new way of carrying out amortized analysis of
the time complexity of enumeration algorithms, and propose new algorithms for
enumeration of matchings, elimination orderings, and connected vertex induced
subgraphs. We also show that the amortized analysis can prove the existing
complexity results in very simple ways, for the enumerations of spanning trees,
perfect elimination orderings, and perfect sequences, while the existing algo-
rithms often need sophisticated algorithms or data structures. We can also see
that the condition in the analysis is often satisfied in practice, thus this amor-
tized analysis explains why the enumeration algorithms are efficient in practice.
These satisfy out basic motivations for this kind of studies.

Our amortization is done with all descendants of an iteration. We push out
the computation time of an iteration to its children so that the assigned time is
proportional to their computation time. By applying this from the root of the
recursion to deeper levels, the long computation time near the root is diffused to
deeper levels, that have shorter time on average. Since capturing the structure
of the recursion is hard, we give a condition called Push-out condition such that
the amortized computation time is bounded when the condition is satisfied. As
the condition is given to the relation between each iteration and its children,
proving the satisfiability of the condition is often not hard.

As a result, to give a bound to amortized time complexity, what we have
to do is to prove that the condition holds. In this way, we propose algorithms
for enumerating matchings, elimination orderings, and connected vertex induced
subgraphs, and prove that the condition holds for each. These lead that these
graph objects can be enumerated in constant time per solution. We also show
that the condition holds for the algorithm for spanning tree enumeration, and
this gives a very simple proof compared to the existing ones.

2 Preliminaries

Let A be an enumeration algorithm. Suppose that A is a recursive type algo-
rithm, i.e., composed of a subroutine that recursively calls itself several times
(or none). Thus, the recursion structure of the algorithm forms a tree. We call
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the subroutine, or the execution of the subroutine an iteration. Note that an
iteration does not include the computation done in the subroutines recursively
called by the iteration, thus no iteration is included in another. When the algo-
rithm is composed of several kinds of subroutines and operations, and thus the
recursion is a nest of several kind of subroutines. In such cases, we consider a
series of iterations of different types as an iteration.

When an iteration X recursively calls an iteration Y , X is called the parent
of Y , and Y is called a child of X. The root iteration is that with no parent.
For non-root iteration X, its parent is unique, and is denoted by P (X). The
set of the children of X is denoted by C(X). The parent-child relation between
iterations forms a tree structure called a recursion tree. An iteration is called a
leaf iteration if it has no child, and an inner iteration otherwise.

For iteration X, an upper bound of the execution time (the number of opera-
tions) of X is denoted by T (X). Here we exclude the computation for the output
process from the computation time. We remind that T (X) is the time for local
execution time, and thus does not included the computation time in the recur-
sive calls generated by X. For example, when T (X) = O(n2), T (X) is written
as cn2 for some constant c. T ∗ is the maximum T (X) among all leaf iterations
X. Here, T ∗ can be either constant, or a polynomial of the input size. If X is an
inner iteration, let T (X) =

∑
Y ∈C(X) T (Y ).

In this paper, we assume that a graph is stored in a style of adjacency list. For
a vertex subset U of a graph G = (V,E), the induced subgraph of U is the graph
whose vertex set is U , and whose edge set contains the edges of E connecting
two vertices of U . An edge is called a bridge if its removal increases the number
of connected components. An edge f is said to be parallel to e if e and f have
the same endpoints, and be series to e if e is a bridge in G \ f and not so in G.

For an edge e of a graph G, we denote the graph obtained by removing e
from G by G \ e, and that by removing e and edges adjacent to e by G+(e).
Similarly, for a vertex v of G, G \ v is the graph obtained from G by removing v
and edges incident to v. For an edge (u, v) of G, the graph contracted by (u, v),
denoted by G/(u, v), is the graph obtained by unifying the vertices u and v into
one. For an edge set F = {e1, . . . , ek}, G/F denotes the graph G/e1/e2/ · · · /ek.

3 Push Out Amortization

The size of the input of each iteration for a recursive algorithm often decreases
as the depth of the recursion. Thus, iterations near the root iteration take a
relatively long time, and iterations near leaf iterations take a relatively short
time. Motivated by this observation, we amortize the computation time by mov-
ing the computation time of each iteration to its children. We carry out this
move from the top to the bottom, so that the computation time of ancestors is
recursively diffused to their descendants. When we can obtain a short amortized
computation time in this way, iterations with long computation times have many
descendants at least proportional to their computation time; the average com-
putation time per iteration will be long only when they have few descendants.
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Fig. 1. An iteration, its children, and
their computation time represented
by rectangle lengths; seems to be inef-
ficient if children take long time, but
the descendants are many

Fig. 2. Push out rule; an iteration (center)
receives computation time from its parent
(while rectangle), and deliver it together with
its computation time (gray rectangle) to its
children, proportional to their computation
time

However, it is not easy to prove that any inner iteration has sufficiently many
descendants. Instead of that, we use some local conditions, related to a parent
and children. Let α > 1 and β ≥ 0 be constants, and X be an iteration.

Push Out (PO) Condition: T (X) ≥ αT (X) − β(|C(X)| + 1)T ∗.

Fig. 1 is an example. After the assignment of the computation time of
αβ(|C(X)| + 1)T ∗ to children and the remaining to itself, the inequation
T (X) ≥ αT (X) holds. This implies that the computation time of one level
of recursion intuitively increases as the depth, unless there are not so many leaf
iterations. Considering that enumeration algorithms usually spend less time in
deeper levels of the recursion, we can see that this implies that each iteration
has many children on average. This is in some sense not a typical condition to
bound the time complexity of recursive algorithms; usually we want to decrease
the total computation time in deeper levels. However, in the enumeration, the
number of leaf iterations is fixed, and thereby the total computation time in the
bottom level is also fixed. Thus, this condition implies that the total computation
time is short.

Theorem 1. If any inner iteration of an enumeration algorithm satisfies PO
condition, the amortized computation time of an iteration is O(T ∗).

Proof. To prove the lemma, we charge the computation time. We neither move
the operations nor modify the algorithm, but just charge the computation time;
the computation time can be considered as tokens, and we move the tokens so
that each iteration has a small number of tokens. We charge the computation
time from an iteration to its children, i.e., from the top of the recursion tree to
the bottom. Thus, an iteration receives computation time from its parent. We
charge (push out) its computation time and that received from its parent to its
children. The computation time is charged to the children, in proportion of their
individual computation time, using the following rule.
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Push Out Rule: Suppose that iteration X receives computation time of S(X)
from its parent, thus X has computation time of S(X) + T (X) in total. We
fix β

α−1 (|C(X)| + 1)T ∗ of the computation time to X, and charge (push out)
the remaining computation time of S(X) + T (X) − β

α−1 (|C(X)| + 1)T ∗ to its
children. Each child Z of X receives computation time proportional to T (Z),
i.e.,

S(Z) = (S(X) + T (X) − β

α − 1
(|C(X)| + 1)T ∗)

T (Z)
T (X)

.

See Fig. 2 as an example. According to this rule, we charge the computation
time from the root iteration to leaf iterations, so that each inner iteration has
O((|C(X)| + 1)T ∗) computation time. Since the sum of the number of children
over all nodes in a tree is no greater than the number of nodes in a tree, this
is equivalent to that each iteration has O(T ∗) time. The remaining issue is to
prove the statement of the lemma by showing that each leaf iteration receives
computation time of O(T ∗), and it is sufficient to prove the statement. To show
that, we state the following claim.

Claim: if we charge computation time in the manner of the push out rule, each
iteration X receives computation time of at most T (X)/(α − 1) from its parent,
i.e., S(X) ≤ T (X)/(α − 1)

The root iteration satisfies this condition. Suppose that an iteration X satisfies
it. Then, for any child Z of X, Z receives computation time of

(S(X) + T (X) − β

α − 1
(|C(X)| + 1)T ∗)

T (Z)
T (X)

≤ (T (X)/(α − 1) + T (X) − β

α − 1
(|C(X)| + 1)T ∗)

T (Z)
T (X)

=
αT (X) − β(|C(X)| + 1)T ∗

α − 1
× T (Z)

T (X)

=
αT (X) − β(|C(X)| + 1)T ∗

T (X)
× T (Z)

α − 1
.

Since PO condition is satisfied, T (X) ≥ αT (X) − β(|C(X)| + 1)T ∗. Thus,

αT (X) − β(|C(X)| + 1)T ∗

T (X)
T (Z)
α − 1

≤ T (Z)
α − 1

.

By induction, any iteration satisfies the condition in the claim. ��
Note that PO condition does not require for the iterations to have at least

two children.

4 Enumeration of Elimination Ordering

Let L be a class of structures such as sets, graphs, and sequences. Suppose that
any structure Z ∈ L consists of a set of elements called an ground set, that is
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denoted by V (Z). Examples of ground sets are the vertex set of a graph, the
edge set of a graph, the cells of a matrix, and the letters of a string. The empty
structure ⊥ is the unique structure that has V (⊥) = ∅, and hereafter we consider
only L including the empty structure. For each Z ∈ L, Z 	=⊥, we define the set
of removable elements R(Z), such that for each removable element e ∈ R(Z),
the removal of e from Z results in a structure Z ′ ∈ L, V (Z ′) = V (Z) \ {e}. We
denote the removal of e from Z by Z \ e, and we assume that no two different
structures can be generated by the removal of e. By using removable elements, we
define elimination orderings. An elimination ordering is an ordering (z1, . . . , zn)
of elements in V (Z) iteratively removed from Z until Z is ⊥, i.e., any zi is
removable in the structure Zi that is obtained by repeatedly removing z1 to
zi−1 from Z. Example of elimination ordering are removing leaves from a tree,
and perfect elimination ordering of a chordal graph. A simple algorithm for
enumerating elimination orderings can be described as follows.

Algorithm. EnumElimOrdering (Z, S)
1. if |V (Z)| = 1, output S + z where V (Z) = {z}; return
2. for each element z ∈ V (Z) do

if z ∈ R(Z), call EnumElimOrdering (Z \ z, S + z)

Suppose that we are given a structure Z in a class L and removable ground
set R for ground set V (Z). We suppose that for any z ∈ V (Z), we can list all
z ∈ R(Z) in Θ(p(|V (Z)|)q(n)) time, where p(|V (Z)|) is a polynomial of |V (Z)|,
and q(n) is a function where n is an invariant of the input structure, such as the
number of edges in the original graph. We also assume that a removal of element
takes Θ(p(|V (Z)|)q(n)) time.

Theorem 2. Elimination orderings of a class L can be enumerated in O(q(n))
time for each, if |R(Z)| ≥ 2 holds for each Z ∈ L such that |V (Z)| is larger than
a constant number c.

Proof. We first bound the computation time except for the output processes,
that is, step 1 of EnumElimOrdering. First, we choose two constants δ > c and
α > 1 such that 2p(i−1)

p(i) > α holds for any i > δ. Since p is a polynomial function,
p(i)

p(i−1) converges to 1, thus such α always exists. Let X be an iteration. When X

inputs Z with |V (Z)| ≤ δ, the computation time is q(n), except for the output
process. Hence, we have T ∗ = O(q(n)). For the case |V (Z)| ≤ δ, the computation
time of X is bounded by q(n). For the case |V (Z)| > δ, we have

T (X) ≥ 2(|V (Z)| − 1)p(|V (Z)| − 1)q(n) > α|V (Z)|p(|V (Z)|)q(n),

since X has at least two children. Thus, X satisfies PO condition with any
constant β > 0. From Theorem 1, except for the output process, the computation
time is bounded by O(q(n)) time for each iteration whose input has at least δ
elements. Since any inner iteration Y has exactly one child only if |V (Y )| ≤ c,
the number of inner iterations is bounded by the number of leaf iterations,
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multiplied by c. Therefore, the computation time for each elimination ordering
can be bounded by O(cq(n)) = O(q(n)) time.

Next, let us consider the output process. Instead of explicitly outputting
elimination orderings, we output each elimination ordering S by the difference
from S′ that is output just before S. We can output them compactly in this way.
Although the difference can be large up to |V (Z)|, we can see that it is bounded
by the number of operations done from the previous output process. Thus, the
size of all output differences, except for the first one output in the usual way, is
at most proportional to the total computation time. Therefore, the computation
time for the output process is also bounded by O(q(n)) time for each. ��

The next corollary immediately follows from the theorem.

Corollary 1. For a given set class, elimination ordering can be enumerated
by EnumElimOrdering in O(1) amortized time for each, if each inner iteration
generates at least two recursive calls, and takes O(p(|V (Z)|)) time, where p is a
polynomial of |V (Z)|. ��

There are actually several elimination orderings to which this theorem can
be applied, and they are listed below. For conciseness, we have described each
by their structures and removable elements.

Example (a): perfect elimination orderings of a chordal graph[2]
For a graph, a vertex is called simplicial if the vertices adjacent to it form a
clique. An elimination orderings of simplicial vertex is called perfect elimination
ordering[11], and a graph is chordal if it has a perfect elimination ordering. We
define L by the set of chordal graphs, V (Z) by the vertex set of Z ∈ L, and
R(Z) by the set of its simplicial vertices.

It is known that any chordal graph Z admits a clique tree whose vertices
are maximal cliques of Z. If Z is a clique, all vertices in Z are simplicial. If
not, it is known that there are at least two cliques that has a vertex that is not
included in the other maximal cliques. Note that these cliques are leaf cliques of a
clique tree, where the vertices of a clique tree are maximal cliques of Z, each edge
connects overlapping cliques, and the maximal cliques including any vertex forms
a subtree of the clique tree. The vertex is simplicial, hence |R(Z)| ≥ 2 always
holds. Since we can check whether a vertex is simplicial or not in (|V (X)|2) time,
we can enumerate all perfect elimination orderings in O(1) time for each. Note
that although the algorithm in [2] already attained the same time complexity,
our analysis yields much simpler algorithm and proof. Example (b): perfect

sequence[9]
L is the class of chordal graphs Z, and V (Z) is the set of maximal cliques in
Z. A maximal clique is removable if it is a leaf of some clique trees of Z, and
the removal of a maximal clique z from Z is the removal of all vertices of z that
do not belong to another maximal clique. The removal of the vertices results in
the graph that includes remaining maximal cliques, and no new maximal clique
appears in the graph. Note that a clique tree has at least two leaves if it has
more than one vertex, thus |R(Z)| ≥ 2. An elimination ordering is called a perfect
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sequence. Since all removable maximal cliques can be found in polynomial time
in the number of maximal cliques[9], all perfect sequences are enumerated in
O(1) time for each.

The elimination orderings induced by following removable elements can be
also enumerated in O(1) time for each, such as non-cut vertices of connected
graph, points on surface of convex hull of a point set in plane, leaves of a tree,
and vertices of degrees less than seven of a simple planar graph.

5 Enumeration of Matchings

A matching of a graph is an edge subset of a graph G = (V,E) such that no two
edges are adjacent. The matchings are enumerated by the following algorithm.

Algorithm. EnumMatching (G = (V,E),M)
1: choose an edge e from E; if E = ∅ then output M ; return
2: call EnumMatching (G \ e,M) and EnumMatching (G+(e),M ∪ {e})

The time complexity of an iteration of EnumMatching is O(|V |). Since each
inner iteration generates two children, the computation time for each matching
is O(|V |), and no better algorithm has been proposed in the literature. A leaf
iteration takes O(1) time, thus T ∗ = O(1). However, PO condition may not hold
for some iterations. This cannot be better than O(|V |) in straightforward ways.

PO condition does not hold when many edges are adjacent to e, since G+(e)
has few edges, thus the subproblem of G+(e) takes short time. To avoid this
situation, we modify the way of recursion as follows so that in such cases the
iteration has many children. Let u1, . . . , uk be the vertices adjacent to v, and
ei = (v, ui). We partition the matchings to be enumerated into

– matchings including e1
– matchings including e2
– · · ·
– matchings including ek

– matchings including no edge incident to v.

We see that any matching belongs to exactly one of these groups. To recur,
we derive G+(e1), . . . , G+(ek) and G \ v. G \ v and G+(e1) can be derived in
O(|E|) time. To shorten the computation time for G+(ei) for i ≥ 2, we construct
G+(ei) from G+(ei−1). We add all edges of G incident to ui−1 to G+(ei−1),
and remove all edges adjacent to ui, and obtain G+(ei). This can be done in
O(d(ui−1) + d(ui)) time. To construct G+(ei) for all i = 2, . . . , k, we need

O( (d(u1) + d(u2)) + (d(u2) + d(u3)) + · · · + (d(uk−1) + d(uk)) ) = O(|E|)

time. Thus, the computation time of an iteration is bounded by c|E| with a
constant c. The algorithm is described as follows.
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Algorithm. EnumMatching2 (G = (V,E),M)
1: v := a vertex of the maximum degree; if E = ∅ then output M ; return
2: call EnumMatching2 (G \ v,M)
3: for each edge e incident to v, call EnumMatching2 (G+(e),M ∪ {e})

Theorem 3. All matchings in a graph can be enumerated in O(1) time for each,
with O(|E| + |V |) space.

Proof. The amortized computation time for outputting process is bounded by
O(1) for each by using difference as elimination ordering. Let us consider an
inner iteration X. In the iteration X, if d(v) ≥ |E|/4, we generate at least |E|/4
recursive calls, thus we have |C(X)| = Ω(|E|) and PO condition is satisfied by
choosing sufficiently large β. If d(v) < |E|/4, the subproblems of G \ v take at
least Θ(3c|E|/4) time, and the subproblems of G+(e1) take at least c|E|/2 time.
Hence, by setting α = 1.25, we have

T (X) ≥ 3c|E|/4 + c|E|/2 = 5c|E|/4 ≥ αT (X) − β|C(X)|T ∗

thereby PO condition holds. Remind that each inner iteration generates two
or more recursive calls, the number of iterations does not exceed the twice the
number of matchings. Since any inner iteration satisfies PO condition and T ∗ =
O(1), the statement holds. We remind that we assumed that there is no isolated
vertex in the input graph, and thus the number of matchings in the graph is
greater than the number of vertices, and the number of edges. ��

6 Enumeration of Connected Vertex Induced Subgraphs

We consider enumeration of all vertex sets of the given graph G = (V,E) inducing
connected subgraphs (connected induced subgraphs in short). In literature, an
algorithm is proposed that runs in O(|V |) time for each[1]. For the enumeration,
it is sufficient to enumerate all connected induced subgraphs including the given
vertex r. For a vertex v adjacent to r, the connected induced subgraphs including
r are partitioned into those including v and those not including v. The former
subgraphs are connected induced subgraphs in G/(r, v) and the latter subgraphs
are those in G \ v. We have the following algorithm according to this partition,
and we prove that this algorithm satisfies PO condition.

Algorithm. EnumConnect (G = (V,E), S, r)
1: choose a vertex v adjacent to r; if d(r) = 0 then output S; return
2: call EnumConnect (G/(r, v), S ∪ {v}, r), and EnumConnect (G \ v, S, r)

Theorem 4. All connected vertex induced subgraphs in a graph can be enumer-
ated in O(1) time for each, with O(|E| + |V |) space.

Proof. The correctness and the bound for memory usage are clear. Since each
inner iteration generates exactly two recursive calls, the number of iterations is
linearly bounded by the number of connected induced subgraphs, and T ∗ = O(1).
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Same as Theorem 3, the amortized time for outputting process is O(1) for
each. An inner iteration X of the algorithm takes O(d(r)+d(v)) time. We assume
that T (X) = c(3d(r) + d(v)) for a constant c, and leaf iteration takes 3c time,
since T ∗ = O(1). The constant factor of three is a key to PO condition.

The degree of r is at least (d(r) + d(v))/2 − 1 in G/(r, v), and d(r) − 1 in
G\v. Note that d(r) and d(v) are degrees of r and v in G. From this, we can see
that the child iteration of G/(r, v) takes at least 3c((d(r) + d(v))/2 − 1) time,
and that of G \ v takes at least 3c(d(r) − 1) time. Their sum is at least

3c((d(r) + d(v))/2 − 1) + 3c(d(r) − 1) =
3
2
c(3d(r) + d(v)) − 6c =

3
2
T (X) − 6c.

Setting β = 6, we can see that X satisfies PO condition. Thanks to Theorem 1,
the computation time for each connected induced subgraph is O(1). ��

7 Spanning Trees

A subtree T of a graph G = (V,E) is called a spanning tree if any vertex of
G is incident to at least one edge of T . Any spanning tree has |V | − 1 edges.
There have already been several studies on this problem[8,12,14], and [14] is the
simplest and uses an amortized analysis similar to us. Without loss of generality,
we assume that the input graph does not have any bridge.

Let e1 be an edge of G. If several edges e2, . . . , ek are parallel to e1, let
F = {e1, . . . , ek} and Fi = F \ {ei}. At most one edge from F can be included
in a spanning tree, thus we enumerate spanning trees in (G \ F1)/e1, . . . , (G \
Fk)/ek. We further enumerate spanning trees in G \ F if it is connected. Any
spanning tree is enumerated in exactly one of these. When e1 has no parallel
edges, e1 can have series edges. If there are several edges e2, . . . , ek series to e1,
again let F = {e1, . . . , ek} and Fi = F \ {ei}. We also see that any spanning
tree includes at least k − 1 edges of F , thus we enumerate spanning trees in
(G/F1) \ e1, . . . , (G/Fk) \ ek. We further enumerate spanning trees in G/F if F
is not the edges of a cycle. Also in this case, any spanning tree is enumerated once
among these. By using these subdivisions, we construct the following algorithm.

Algorithm. EnumSpanningTree (G = (V,E), T )
1: choose an edge e1 from E; if E = ∅ then output T ; return
2: F p := {e1} ∪ {e|e is parallel to e1} ; F s := {e1} ∪ {e|e is series to e1} \ F p

3: for each ei ∈ F p, call EnumSpanningTree ((G \ (F p \ {ei})/ei, T ∪ {ei})
4: for each ei ∈ F s, call EnumSpanningTree ((G/(F s \ {ei}) \ ei, T ∪ (F s \ {ei}))

We observe that these k subgraphs are actually isomorphic in both cases except
for the edge label ei, thus constructing these graphs takes O(|V | + |E|) time.

Theorem 5. All spanning trees in a graph can be enumerated in O(1) time for
each, with O(|E| + |V |) space.
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Proof. The space complexity of the algorithm is O(|E| + |V |) and an iteration
takes Θ(|V | + |E|) time since all edges parallel/series to an edge can be found
by two connected component decomposition in O(|V | + |E|) time. If no edge is
parallel or series to e1, we generate two subproblems of |E| − 1 edges, thus PO
condition holds. If k edges are parallel or series to e1, we have at least k + 1 ≥ 2
subproblems of |E| − (k + 1) edges. When k + 1 ≥ |E|/4, T (X) − β(|C(X)| +
1)T ∗ = 0 holds for some β > 0, and PO condition holds. When k + 1 < |E|/4,
(k + 1)(|E| − (k + 1)) ≥ 1.5|E| holds, PO condition holds for α = 1.5 and some
β > 0. Since each iteration generates at least two recursive calls or outputs
a solution, the number of iterations is at most twice the number of solutions,
therefore the statement holds. ��

8 Conclusion

We introduced a new way of looking at amortizing the computation time of
enumeration algorithms, by local conditions of recursion trees. We clarified the
conditions that are sufficient to give non-trivial upper bounds for the average
computation time of iterations that only depended on the relation between the
computation time of a parent iteration and that of its child iterations. We showed
that many algorithms for elimination orderings have good properties so that
the conditions are satisfied, and thus enumerated in constant time for each.
Several other enumeration algorithms for matchings, connected vertex induced
subgraphs, and spanning trees were also described, whose time complexities are
O(1) for each solution.

There are many problems for those enumeration algorithms that do not sat-
isfy the conditions. An interesting future work is to develop new algorithms for
these problems, that satisfy the conditions. Another direction is to study other
conditions for bounding amortized computation time. Further studies on amor-
tized analysis will possibly fill the gaps between theory and practice, and clarify
the mechanisms of enumeration algorithms.
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Abstract. Uncertain data has been very common in many applications.
In this paper, we consider the one-center problem for uncertain data on
tree networks. In this problem, we are given a tree T and n (weighted)
uncertain points each of which has m possible locations on T associated
with probabilities. The goal is to find a point x∗ on T such that the
maximum (weighted) expected distance from x∗ to all uncertain points
is minimized. To the best of our knowledge, this problem has not been
studied before. We propose a refined prune-and-search technique that
solves the problem in linear time.

1 Introduction

In the real world, data is often associated with uncertainty because of measure-
ment inaccuracy, sampling discrepancy, outdated data sources, resource limita-
tion, etc. This is especially true due to the wide deployment of sensor monitoring
infrastructure and increasing prevalence of technologies, such as data integration
and cleaning. Hence, problems with uncertain data have been studied extensively
[1–3,10,11,18,19]. In this paper, we consider the one-center problem for uncer-
tain data on trees, where the existence (presence) of each uncertain point is
described probabilistically, defined as follows.

We borrow some terminology on trees from the literature (e.g., [12,14]). Let
T be a tree. Each edge e = (u, v) of T has a positive length l(e). We consider e as
a line segment of length l(e) so that we can talk about “points” on e. Formally,
a point p = (u, v, t) is characterized by being located at a distance of t ≤ l(e)
from the vertex u. The distance of any two points p and q on T , denoted by
d(p, q), is defined as the length of the simple path from p to q on T .

Let P = {P1, P2, . . . , Pn} be a set of n uncertain points on T . Each uncertain
point Pi has m possible locations on T , denoted by {pi1, pi2, · · · , pim}, and each
location pij is associated with a probability fij ≥ 0 that is the probability of Pi

being at pij (which is independent of other locations), with
∑m

j=1 fij = 1; e.g.,
see Fig. 1. Further, each uncertain point Pi has a weight wi > 0.

Consider any point x on T . For any Pi ∈ P, the (weighted) expected distance
from x to Pi, denoted by Ed(x, Pi), is defined as wi · ∑m

j=1{fij · d(x, pij)}.
In the following, for simplicity, we use “expected distance” to refer to

“weighted expected distance”. We define R(x) as the maximum expected dis-
tance from x to all uncertain points of P, i.e., R(x) = max1≤i≤n Ed(x, Pi).
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Fig. 1. Illustrating three uncertain points
P1, P2, P3, each with three possible loca-
tions (their probabilities are also shown)

x
T1(x) T2(x)

Fig. 2. The point x has two split subtrees
T1(x) and T2(x)

The center of T with respect to P is defined to be a point x∗ that minimizes
the value R(x) among all points x ∈ T . Our goal is to compute x∗.

For any edge e of T , we assume the locations of the uncertain points of P on
e are already given sorted on e. This means that if we traverse the edge e from
one end to the other, then we can encounter those locations in order.

If T is a path network, the problem has been studied in [21], where a linear
time is given for computing the center. However, if T is a tree, to the best of our
knowledge, the problem has not been studied before. In this paper, we give an
O(|T |+mn) time algorithm for the problem, where |T | is the number of vertices
of T . Note that since |T | + mn is essentially the input size, the time complexity
of our algorithm is linear, and thus our algorithm is optimal.

1.1 Related Work

Two uncertain models have been commonly considered: the existential model
[3,10,11,18,19] and the locational model [1,2,19]. In the existential model, an
uncertain point has a specific location but its existence is uncertain. In the loca-
tional model, an uncertain point always exists but its location is uncertain. Our
one-center problem belongs to the locational model. In fact, the same problem
under existential model is essentially the weighted one-center problem for deter-
ministic data, which can be solved in linear time [14].

As mentioned before, if T is a path network, the uncertain one-center problem
has been solved in linear time [21]. Algorithms for the more general uncertain
k-center problems on path networks have also been given in [21].

The one-center and the more general k-center problems for the deterministic
case where all data are certain have been studied extensively, as discussed below.

Megiddo [14] solved the (weighted) one-center problem on trees in linear
time. For the more general k-center problem on trees, Megiddo and Tamir [16]
presented an O(n log2 n log log n) time algorithm for the weighted case, where n
is the number of vertices of the tree, and later the running time of the algorithm
was reduced to O(n log2 n) by Cole [6]. The unweighted case was solved in linear
time by Frederickson [8]. If all points are on the two-dimensional plane, the
unweighted one-center problem becomes the minimum enclosing circle problem,
which is solvable in linear time [15]; the weighted one-center problem can be
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solved in O(n log n) time by the techniques in [6,17], where n is the number of
input points. The general k-center problem in the plane is NP-hard [15].

Facility location or related problems under other uncertain models have also
been considered. Foul [7] studied the problem of finding the center in the plane
to minimize the maximum expected distance from the center to all uncertain
points, where each uncertain point has a uniform distribution in a given rect-
angle. Jørgenson et al. [9] considered the problem of computing the distribution
of the radius of the smallest enclosing ball for a set of indecisive points each of
which has multiple locations associated with probabilities in the plane. Löffler
and van Kreveld [13] studied the problem of finding the smallest enclosing circle
and other related problems for imprecise points each of which is known to be
contained in a planar region (e.g., a circle or a square). Berg. et al. [5] proposed
an approximation algorithm to dynamically maintain Euclidean 2-centers for a
set of moving points in the plane (the moving points are considered uncertain).
See also the minmax regret problems, e.g., [4,20].

1.2 Our Techniques

Note that the uncertain points of P may have locations in the interior of some
edges of T . A vertex-constrained case happens when all locations of P are at
vertices of T and each vertex of T contains at least one location of P. We show
that the general case can be reduced to the vertex-constrained case in O(|T | +
mn) time. In the following, we focus our discussion on the vertex-constrained
case (i.e., we assume our problem on T and P is a vertex-constrained case); even
in this case, the center x∗ may still not be at a vertex of T .

To solve our problem, one immediate option is to see whether Meggido’s
prune-and-search techniques [14] for solving the deterministic one-center problem
on trees can be applied. However, as discussed below, there are some “enormous”
difficulties to apply Meggido’s techniques directly. To overcome these difficulties,
we propose new techniques, which can be viewed as a refinement of Megiddo’s
techniques and which we call the refined prune-and-search.

Megiddo’s algorithm [14] is used to find the center x∗ for a tree T of n vertices,
where each vertex v has a weight wv. Megiddo’s algorithm first computes the
centroid c of T (each of c’s subtree has at most n/2 vertices), and then based on
the weighted distances from all vertices to c, one can determine which subtree of
c contains the center x∗. Suppose T ′ is a subtree containing x∗. The number of
vertices outside T (i.e., those in T \T ′) is at least n/2. Consider any two vertices u
and v in T \T ′. In general, by solving the equation wu(d(u, c)+t) = wv(d(v, c)+t),
one can obtain a value tuv such that for every point x in T ′ at a distance t from
c, wu(d(u, x)) ≥ wv(d(v, x)) if and only if 0 ≤ t ≤ tuv. Based on this observation,
the vertices in T \ T ′ are arbitrarily arranged in roughly at least n/4 disjoint
pairs, and for each pair u and v, the value tuv is computed. Let t∗ be the median
of these tuv values. Depending on whether x∗ is within distance t∗ from c, at
least n/8 vertices of T can be pruned.

In our problem, the tree T has O(mn) vertices, and we do the same thing
and first find the centroid c of T . Although now we have uncertain points, by
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observations, we can still efficiently determine the subtree T ′ of c that contains
the center x∗. However, we cannot proceed as above in Megiddo’s algorithm.
The reason is that for each uncertain point Pi, it may have locations in both
T ′ and T \ T ′, which prevents us from having an equation for two uncertain
points and further prevents us from pruning uncertain points as in Megiddo’s
algorithm. Indeed, this is one of the major difficulties for us to apply Megiddo’s
algorithmic scheme. To overcome the difficulty, we continue to find the centroid
c′ of T ′ and determine which subtree of T ′ (rooted at c′) containing x∗. One key
idea is that we repeat this for log m + 1 times, after which we obtain a subtree
T ′′ with at most nm/(2logm+1) = n/2 vertices. One observation is that there are
at most n/2 uncertain points that have locations in T ′′, and thus, at least n/2
uncertain points have all locations outside T ′′. At this moment, we show that if
T ′′ is connected with T \ T ′′ by only one vertex, then we can apply Megiddo’s
pruning scheme. However, another major difficulty is that T ′′ may be connected
with T \T ′′ by more than one vertex (indeed, there may be as many as log m+1
such vertices), in which case we introduce new pruning techniques to further
reduce T ′′ to a smaller subtree T ′′′ such that x∗ ∈ T ′′′ and T ′′′ is connected
with T \T ′′′ by either one or two vertices. For either case, we develop algorithms
for the pruning. All above procedures are carefully implemented so that they
together take O(mn) time and eventually prune at least n/8 uncertain points.
The total time for computing the center x∗ is thus O(mn).

Note that although we have assumed
∑m

j=1 fij = 1 for each Pi ∈ P, our
algorithm also works if

∑m
j=1 fij �= 1. But for ease of exposition, our follow-

ing discussion assumes
∑m

j=1 fij = 1. Due to the space limit, many details are
omitted but can be found in the full version of the paper.

2 Preliminaries

In the following paper, unless otherwise stated, we assume our problem is the
vertex-constrained case, i.e., all locations of P are at vertices of T and each vertex
of T has at least one location. Later in Theorem 1, we will show that the general
problem can be reduced to this case in linear time. For ease of exposition, we
further assume every vertex of T has only one location of P, and thus |T | = mn.

In this section, we discuss a few observations, which are mainly for determin-
ing which subtree of x contains the center x∗ for any given point x on T .

For any two points p and q on T , denote by π(p, q) the simple path on T
from p to q. For any subtree T ′ of T and any uncertain point Pi, we call the sum
of the probabilities of the locations of Pi in T ′ the probability sum of Pi in T ′.

Consider any point x on T . Removing x from T will produce several subtrees
of T , and we call them the split subtrees of x in T . More specifically, if x is in the
interior of an edge, then there are two split subtrees (e.g., see Fig. 2); otherwise
the number of subtrees is equal to the degree of x. We consider x as a vertex in
each of these subtrees. However, we assign x to be contained in only one (and an
arbitrary one) split subtree, but consider x as an “open vertex” in each of other
subtrees. In this way, every point of T is in one and only one split subtree of x.
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Let π be any simple path on T and x be any point on π. Consider any
uncertain point Pi. For any location pij of Pi, the distance d(x, pij) is a convex
(and piecewise linear) function as x changes on π [14]. Recall that the expected
distance Ed(x, Pi) = wi · ∑m

j=1 fij · d(x, pij). Since the sum of convex functions
is also convex, Ed(x, Pi) is convex (and piecewise linear) on π. Therefore, in
general, as x moves from one end of π to the other end, the value Ed(x, Pi) first
monotonically decreases and then monotonically increases. Further, recall that
R(x) = max1≤i≤n Ed(x, Pi). Since the max of convex functions is also convex,
R(x) is convex (and piecewise linear) on π.

For each uncertain Pi, let p∗
i be a point x ∈ T that minimizes Ed(x, Pi). In

fact, if we consider wi · fij as the weight of pij , p∗
i is the weighted median of the

points pij for all j = 1, 2, . . . ,m. Hence, we call p∗
i the median of Pi. Note that

p∗
i may not be unique (in which case we use p∗

i to denote an arbitrary median of
Pi). This case happens when there is an edge dividing T into two subtrees such
that the probability sum of Pi in either subtree is exactly 0.5. Indeed, the above
“degenerate case” also possibly makes the center x∗ of T not unique, in which
case we use x∗ to refer to an arbitrary center of T .

The following lemma can be obtained readily from Kariv and Hakimi [12].

Lemma 1. Consider any point x on T and any uncertain point Pi of P.

1. If x has a split subtree whose probability sum of Pi is greater than 0.5, then
p∗
i must be in that split subtree.

2. The point x is p∗
i if the probability sum of Pi in each of x’s split subtree is

less than 0.5.
3. The point x is p∗

i if x has a split subtree in which the probability sum of Pi

is equal to 0.5.

Consider any point x on T . If R(x) = Ed(x, Pi) for some uncertain point
Pi, then Pi is called a dominating point of x. Note that x may have multiple
dominating points. We have the following results.

Lemma 2. If x has a dominating point Pi with median p∗
i at x or x has two

dominating points Pi and Pj whose medians p∗
i and p∗

j are in two different split
subtrees of x, then x is x∗; otherwise, x∗ is in the same split subtree of x as p∗

i .

Lemma 3. Given any point x on T , we can determine whether x is x∗, and if
not, determine which split subtree of x contains x∗ in O(|T |) time.

3 The Refined Prune-and-Search

In this section, we present our algorithm for computing x∗. As discussed in
Section 1.2, each round of our algorithm will prune at least n

8 uncertain points
of P in O(mn) time. After O(log n) rounds, only a constant number of uncertain
points remain, and then we can compute x∗ in additional O(m) time.
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T2

c1
c T (c)

T1

T (c1)

Fig. 3. Illustrating the subtrees T (c), T1, T2, and T (c1), where c is in T2

3.1 The Initial Pruning

A vertex c of T is called a centroid if every split subtree of c has no more than
|T |/2 vertices. We first compute the centroid c of T in O(|T |) time [12,14].

By Lemma 3, we determine whether c is x∗, and if not, determine which split
subtree of c contains x∗. If c is x∗, we are done with the algorithm. Otherwise,
let T1 be the split subtree of c that contains x∗. To avoid repeatedly traversing
T \ T1 in future, we associate with c two information arrays Dc[1 · · · n] and
Fc[1 · · · n], defined as follows. Note that |T1| ≤ |T |/2+1 (we assume |T1| ≤ |T |/2
for simplicity of the time analysis). Let T (c) = (T \T1)∪{c}. For each 1 ≤ i ≤ n,
we define Fc[i] to be the probability sum of Pi in T (c), i.e., Fc[i] =

∑
pij∈Pi∩T1

fij ,
and we define Dc[i] to be the expected distance from c to the locations of Pi in
T1, i.e., Dc[i] = wi ·

∑
pij∈Pi∩T1

fij ·d(c, pij). We can compute the two information
arrays in O(mn) time by traversing T (c).

Our algorithm will continue working on T1. For any point p ∈ T1 and q ∈
T (c), the path π(p, q) contains c. We call c a connector of T1 since it connects
T1 with T (c). We call T (c) the connector subtree of c with respect to T1.

As discussed in Section 1.2, since each uncertain point may have locations in
both T1 and T \ T1, we cannot proceed as Megiddo’s algorithm [14]. Instead, we
continue to find the centroid of T1, denoted by c1, which can be done in O(|T1|)
time. Similarly, c1 has many split subtrees in T1, and we want to determine
whether c1 is the center x∗, and if not, which split subtree of c1 contains x∗. This
can be done in O(mn) time by Lemma 3. However, we can do faster in O(|T1|+n)
time by using the two information arrays associated with the connector c without
traversing the subtree T (c) again. The algorithm is omitted.

If c1 is x∗, we are done. Otherwise let T2 denote the split subtree of c1 in
T1 that contains x∗. Note that c may or may not be in T2. Define T (c1) to be
the subtree of T induced by c1 and the vertices v ∈ T such that the simple path
from v to any vertex of T2 contains c1. In fact, T (c1) = (T1 \ T2) ∪ {c1} if c is in
T2 (e.g., see Fig. 3) and T (c1) = T (c) ∪ (T1 \ T2) ∪ {c1} otherwise.

Similarly, we associate c1 with two information arrays Fc1 [1 · · · n] and
Dc1 [1 · · · n] with respect to T (c1). Specifically, for each 1 ≤ i ≤ n, Fc1 [i] =∑

pij∈Pi∩T (c1)
fij and Dc1 [i] = wi · ∑

pij∈Pi∩T (c1)
fijd(c1, pij). We can compute

the above two arrays in O(|T1| + n) time. We call c1 a connector of T2 and call
T (c1) the connector subtree of c1. If c is in T2, c is also a connector of T2. Hence,
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T2 may have at most two connectors. Note that each connector of T2 must be a
leaf of T2.

Next we continue the above procedure recursively on T2. In general, suppose
we have performed the above procedure for h recursive steps and obtain a subtree
Th, which has at most h connectors. Each connector of Th is a leaf of Th and
is associated with two information arrays. Then, we compute the centroid ch
of Th in |Th| time. Using the information arrays, in O(|Th| + nh) time we can
determine whether ch is x∗, and if not, which split subtree of ch in Th contains
x∗ (i.e., the algorithm spends O(n) time on each connector and O(1) time on
each of other vertices of Th). If ch is x∗, we are done. Otherwise, let Th+1 be
the split subtree of ch containing x∗. The vertex ch is a connector of Th+1, and
the connectors of Th that are in Th+1 are also connectors of Th+1. Hence, Th+1

has at most h + 1 connectors, each of which is a leaf of Th+1. We define the
connector subtree T (ch) of ch similarly (i.e., T (ch) is the subtree of T induced
by ch and the vertices v ∈ T such that the simple path from v to any vertex of
Th+1 contains ch). We associate ch with two information arrays Fch [1 · · · n] and
Dch [1 · · · n] with respect to T (ch), which can be computed in O(|Th|+nh) time.

We perform the above procedure for h = 1+log m recursive steps, after which
we obtain a tree Th. By the definition of centroids, |Th| ≤ |T |/2h = (mn)/2h =
n/2. Therefore, if we let T0 = T , the running time of all above recursive steps is
O(

∑h
k=1(|Tk−1|+n(k−1))), which is O(mn+nh2) = O(mn+n log2 m) = O(mn)

since |T | = mn and |Tk| ≤ |Tk−1|/2 for each 1 ≤ k ≤ h.
We refer to the above algorithm as the initial pruning step.
Since |Th| ≤ n/2, there are at most n/2 uncertain points of P that have

locations in Th. In other words, we have the following observation.

Observation 1. There are at least n/2 uncertain points Pi ∈ P such that Pi

does not have any location in Th.

Let C denote the number of connectors in Th. Depending on the value of
C, our algorithm will proceed accordingly for three cases: C = 1, C = 2, and
C > 2. We first present our algorithm for the case C = 1. Let P ′ denote the set
of uncertain points Pi ∈ P such that Pi does not have any location in Th. We can
easily find P ′ in O(nm) time by traversing Th. By Observation 1, |P ′| ≥ n/2.

3.2 The Case C = 1

In this case, the subtree Th has only one connector, denoted by ĉ. Although the
implementation details are quite different, we can still apply Meggido’s pruning
scheme [14] due to the following key property: if an uncertain point Pi does not
have any location in Th, then all its locations must be in the connector subtree
T (ĉ). Recall that ĉ has two information arrays Dĉ[1 · · · n] and Fĉ[1 · · · n].

For each Pi ∈ P ′, since all locations of Pi are in T (ĉ), it holds that Ed(x, Pi) =
Ed(ĉ, Pi) + wi · t, where x is a point in Th at a distance t from ĉ. Note that
Ed(ĉ, Pi) is essentially Dĉ[i], and thus it is already known.

Consider any pair Pi and Pj of uncertain points in P ′. Without of loss gen-
erality, assume Ed(ĉ, Pi) ≥ Ed(ĉ, Pj). If wi < wj , then by solving the equation
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Fig. 4. Illustrating an example for the center-detecting problem: Y = {y1, y2, . . . , y6}
and T (Y ) = {T ′

1, . . . , T
′
8} shown with triangles. Note that although T ′

2 and T ′
3 share a

common point y2, since y2 is considered as an open vertex in each of them, T ′
2 and T ′

3

are disjoint. This is also the case for T ′
6 and T ′

8.

Ed(ĉ, Pi)+wi ·t = Ed(ĉ, Pj)+wj ·t, we can obtain a value tij such that for every
x in Th at a distance t from ĉ, Ed(x, Pi) ≥ Ed(x, Pj) if and only if 0 ≤ t ≤ tij .
If wi ≥ wj , Ed(x, Pi) ≥ Ed(x, Pj) holds for any x in Th, and thus Pj can be
pruned immediately (since it is “dominated” by Pi).

Based on the above discussions, we arbitrarily arrange the uncertain points
of P ′ into a set Σ of |P ′|/2 disjoint pairs, and for each pair (Pi, Pj), we compute
the value tij . Let t∗ denote the median of these tij values. Suppose we have
already known whether x∗ is within the distance t∗ from ĉ on Th (we will discuss
this step later); in either case, we can prune exactly one uncertain point from
each pair of Σ. Since |P ′| ≥ n/2 and |Σ| ≥ n/4, the total number of pruned
uncertain points is at least n/8. At this point, we have reduced our problem to
the same problem on a tree T+ of at most 7n/8 uncertain points, defined as
follows. First, let T+ = Th. Then, consider any pair (Pi, Pj) of Σ. Without of
loss of generality, assume Pi is not pruned. For each location pij of Pi, we create
a vertex for T+ connecting to ĉ directly by an edge of length d(pij , ĉ). Also let
wi still be the weight of Pi. In this way, the tree T+ has at most 7n/8 uncertain
points and at most 7nm/8 vertices. Based on our above pruning procedure, the
center of T+ is also the center of the original tree T . Note that the above way
of constructing T+ can be easily done in O(mn) time.

It remains to determine whether x∗ is within distance t∗ from ĉ on Th. As in
[14], by traversing Th from ĉ, in |Th| time we can find all points q ∈ Th such that
d(ĉ, q) = t∗, and we use Q(ĉ, Th) to denote the set of these points. Note that
each point q ∈ Q(ĉ, Th) has a split subtree that contains ĉ, and we assign q to
be contained in that split subtree; for any point x in other split subtrees of q, it
holds that d(ĉ, x) > t∗. Hence, the set of all points x of Th with d(ĉ, x) > t∗ can
be represented as the union of split subtrees of the points in Q(ĉ, Th) that do not
contain ĉ, and we use T (ĉ, Th) to denote the above set of split subtrees. Our goal
is to determine whether x∗ is in any subtree of T (ĉ, Th). To this end, we solve
a more general problem, called a center-detecting problem, defined as follows.
Another reason for solving this more general problem is that our algorithms for
the other two cases C = 2 and C > 2 will need it.

Consider the input tree T . Let y be any vertex of T . Consider any point x ∈ T
with x �= y. One split subtree of x, denoted by τ(x), contains y, and we assign
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Fig. 5. Illustrating the tree Th for the case C = 2, where T (V ) = {T ′
1, . . . T

′
8} are

shown with triangles

x to be in τ(x). We call other split subtrees of x than τ(x) the y-exclusive split
subtrees of x. Note that since the y-exclusive split subtrees of x each contain
x as an “open vertex”, they are pairwise disjoint. Let Y be a set of points on
T with y �∈ Y and T (Y ) be any subset of the set of all y-exclusive subtrees of
all points of Y with the following disjoint property: any two subtrees of T (Y )
are disjoint (e.g., see Fig. 4). The center-detecting problem on (y, Y, T (Y )) is to
determine whether the center x∗ is located in one of the subtrees of T (Y ). The
algorithm for Lemma 4 is omitted.

Lemma 4. The center-detecting problem on T can be solved in O(|T |) time.

By Lemma 4, in O(|T |) time, we can solve the above problem of determining
whether x∗ is in the subtrees of T (ĉ, Th), as follows. Recall that T = T (ĉ) ∪ Th

and ĉ is a leaf of Th. By the definition of Q(ĉ, Th), T (ĉ, Th) is actually the set
of the ĉ-exclusive subtrees of all points of Q(ĉ, Th) in T and any two subtrees in
T (ĉ, Th) are disjoint. Hence, although our problem is on the subtree Th, we can
actually work on T . Thus, to determine whether x∗ is in the subtrees of T (ĉ, Th)
is to solve the center-detecting problem on (ĉ, Q(ĉ, Th), T (ĉ, Th)) and T .

3.3 The Case C = 2

In this case, the subtree Th has two connectors, denoted by ĉ1 and ĉ2. Recall that
each ĉk is associated with two arrays Dĉk and Fĉk for k = 1, 2. The techniques
for the previous case C = 1 do not work here. The reason is that although every
uncertain point in P ′ does not have any location in Th, it may have locations in
both connector subtrees T (ĉ1) and T (ĉ2). We use a different approach.

Consider the path π(ĉ1, ĉ2). Recall that ĉ1 and ĉ2 are leaves of Th because
they are connectors. Let V denote the set of vertices of π(ĉ1, ĉ2) except ĉ1 and ĉ2.
Consider any vertex v of V . Let T (v) be the set of the split subtrees of v that do
not contain either ĉ1 or ĉ2. We assume that v is not contained in any subtree of
T (v). Let T (V ) = ∪v∈V T (v) (e.g., see Fig. 5). Note that Th = T (V ) ∪ π(ĉ1, ĉ2).

First, we want to determine whether the center x∗ is in one of the subtrees of
T (V ). To this end, notice that each subtree of T (V ) is a ĉ1-exclusive split subtree
of some point in V , and any two subtrees of T (V ) are disjoint. Further, ĉ1 is a
leaf of Th. Hence, the problem is an instance of the center-detecting problem on
(ĉ1, V, T (V )), which can be solved in O(mn) time by Lemma 4.



Computing the Center of Uncertain Points on Tree Networks 615

If x∗ is contained in a subtree τ of T (V ), and assume τ is the split subtree
of v ∈ V . Then, the problem essentially becomes the first case where C = 1.
Indeed, we can consider v as the “connector” of τ . For each uncertain point in
P ′, since it does not have any location in Th, it does not have any location in τ .
Because τ has only one connector, by using the same techniques as for the case
C = 1, we can prune at least n/8 uncertain points.

If x∗ is not contained in any subtree of T (V ), then x∗ must be in the path
π(ĉ1, ĉ2). Consider any uncertain point Pi ∈ P ′. Since Pi does not have any
location in Th, Pi does not have any location in π(ĉ1, ĉ2). Hence, if x is a point
on π(ĉ1, ĉ2) at a distance t from ĉ1, then it is not difficult to see that Ed(x, Pi) =
Ed(ĉ1, Pi) + wi · (Fĉ1 [i] − Fĉ2 [i]) · t (recall that Fĉk [i] is the probability sum of
Pi in T (ĉk) for k = 1, 2). Note that Fĉ1 [i] − Fĉ2 [i] is constant as long as x is in
π(ĉ1, ĉ2) since Pi does not have any location in π(ĉ1, ĉ2). Hence, as x moves from
ĉ1 to ĉ2 along π(ĉ1, ĉ2), the value Ed(x, Pi) changes linearly.

Based on the above observation, we do the pruning as follows. We arbitrarily
arrange the points of P ′ into |P ′|/2 pairs. In general, for each such pair (Pi, Pj),
by solving the equation Ed(ĉ1, Pi) + wi · (Fĉ1 [i] − Fĉ2 [i]) · t = Ed(ĉ1, Pj) + wj ·
(Fĉ1 [j]−Fĉ2 [j])·t, we can determine a value tij such that for a point x in π(ĉ1, ĉ2)
at a distance t from ĉ1, Ed(x, Pi) ≥ Ed(x, Pj) if and only if 0 ≤ t ≤ tij . In this
way, we can obtain |P ′|/2 such values tij , and let t∗ be the median of them. Let
q∗ be the point on π(ĉ1, ĉ2) at distance t∗ from ĉ1. Again, by Lemma 3, we can
determine in O(mn) time whether q∗ is x∗, and if not, which split subtree of q∗

contains x∗ (and thus determine whether x∗ is within the distance t∗ from ĉ1).
In either case, we can prune an uncertain point from each of the above pairs of
P ′, and thus prune a total of at least n/8 uncertain points due to |P ′| ≥ n/2.

3.4 The Case C > 2

In this case, Th has more than two connectors. Indeed, this is the most general
case. Clearly, the techniques for the case C = 2, which reply on a path π(ĉ1, ĉ2),
are not applicable any more. We use a new approach by “shrinking” Th until the
problem is reduced to one of the previous two cases.

A vertex z of Th is called a connector-centroid if each split subtree of z has
no more than C/2 connectors (z may not be unique). The main idea of our
algorithm is similar to the scheme of the initial pruning in Section 3.1. We first
find a connector-centroid z of Th and then remove the split subtrees of z that do
not contain the center x∗. We work on the remaining split subtree of z recursively
until there are at most two connectors left, at which moment we have reduced
the problem to the case of either C = 2 or C = 1. The details are given below.

We first find a connector-centroid z of Th. This can be done in O(|Th|) time
by a traversal of Th, always moving in the direction in which the number of
connectors, in the subtree entered into, is being maximized. As the algorithm in
Section 3.1, by traversing Th and using the information arrays associated with
the connectors, we can determine in O(Cn+|Th|) time whether z is the center x∗,
and if not, which split subtree of z contains x∗. If z is x∗, we are done. Otherwise,
let T 1

h (z) denote the split subtree of z in Th that contains x∗. Further, we consider



616 H. Wang and J. Zhang

z as a “connector” of T 1
h (z). By the definition of the connector-centroid, T 1

h (z)
has at most C/2+1 connectors. As in Section 3.1, we define the connector subtree
T (z) for z as the subtree of T induced by z and the vertices v ∈ T such that
the simple path from v to any vertex of T 1

h (z) contains z. Similarly, we associate
two information arrays Fz[1 · · · n] and Dz[1 · · · n] with z (i.e., for each 1 ≤ i ≤ n,
Fz[i] =

∑
pij∈Pi∩T (z) fij and Dz[i] = wi ·

∑
pij∈Pi∩T (z) fijd(z, pij)). As in Section

3.1, the two arrays can be computed in O(Cn + |Th|) time by traversing Th.
We continue the above algorithm recursively on T 1

h (z) until after l steps we
obtain a subtree T l

h(z) of at most two connectors, at which moment we have
reduced the problem to one of the previous two cases. Clearly, l = O(log C).
For the running time, suppose for each 1 ≤ k ≤ l, we refer to the k-th step
as for determining the subtree T k

h (z). As discussed above, the first step takes
O(nC + |Th|) time, and similarly, the second step can be done in O(nC/2+ |Th|)
time because there are only at most C/2+1 connectors in T 1

h (z). In general, the
k-th step can be done in O(nC/2k−1 + |Th|) time for each 1 ≤ k ≤ l. Recall that
Th was obtained in the initial pruning step in Section 3.1 and |Th| ≤ n/2. Since
l = O(log C) and C = O(log m), the total running time for obtaining the subtree
T l
h(z) (and thus reducing the problem to the previous two cases) is bounded by

∑l
k=1(nC/2k−1 + n/2) = O(nC + nl) = O(n log m). Hence, for the case C > 2,

within O(mn) time we can also prune at least n/8 uncertain points.
The above gives an O(mn) time algorithm that computes a tree T+ of at

most 7n/8 uncertain points and at most 7mn/8 vertices, such that the center of
T+ is x∗. We continue the same procedure recursively on T+ until we obtain a
tree T ∗ with only a constant number of uncertain points (hence T ∗ has O(m)
vertices). The total time is O(mn). Finally we compute x∗ on T ∗ in O(m) time.
The algorithm is similar to the scheme of the initial pruning step and we omit
it. We conclude that the center x∗ on T can be found in O(|T |) = O(mn) time.

Recall that the above only considered the vertex-constrained case. For the
general case, the following theorem solves it in O(mn + |T |) time.

Theorem 1. The center x∗ of T and P can be found in O(mn + |T |) time.

Proof. Recall that P consists of n uncertain points, each of which has m locations
on T . We reduce the problem to a problem instance of the vertex-constrained case
and then apply our algorithm for the vertex-constrained case. More specifically,
we modify the tree T to obtain another tree T ′ of size O(mn). We also compute
another set P ′ of n uncertain points on T ′, which correspond to the uncertain
points of P with the same weights, but each uncertain point of P ′ has at most 2m
locations on T ′ (some locations have zero probabilities). Further, each location
of P ′ is at a vertex of T ′ and each vertex of T ′ holds at least one location of P ′.
We can construct T ′ and P ′ in O(mn + |T |) time. Finally, given the center x′ of
T ′ and P ′, we can find x∗ on T in O(mn + |T |) time. The details of the above
problem reduction are omitted. ��
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Abstract. We investigate the computational complexity of the following
problem. We are given a graph in which each vertex has the current and
target colors. Each pair of adjacent vertices can swap their current colors.
Our goal is to perform the minimum number of swaps so that the current
and target colors agree at each vertex. When the colors are chosen from
{1, 2, . . . , c}, we call this problem c-Colored Token Swapping since
the current color of a vertex can be seen as a colored token placed on
the vertex. We show that c-Colored Token Swapping is NP-complete
for every constant c ≥ 3 even if input graphs are restricted to con-
nected planar bipartite graphs of maximum degree 3. We then show that
2-Colored Token Swapping can be solved in polynomial time for gen-
eral graphs and in linear time for trees.

1 Introduction

Sorting problems are fundamental and important in computer science. In this
paper, we consider a problem of sorting on graphs. Let G = (V,E) be an undi-
rected unweighted graph with vertex set V and edge set E. Suppose that each
vertex in G has a color in C = {1, 2, . . . , c}. A token is placed on each vertex in
G, and each token also has a color in C. Then, we wish to transform the current
token-placement into the one such that a token of color i is placed on a vertex
of color i for all vertices by swapping tokens on adjacent vertices in G. See Fig.1
for an example. If there exists a color i such that the number of vertices of color
i is not equal to the number of tokens of color i in the current token-placement,
then we cannot transform the current token-placement into the target one. Thus,
without loss of generality, we assume that the number of vertices of color i for
each i = 1, 2, . . . , c is equal to the number of tokens of the same color. As we
c© Springer International Publishing Switzerland 2015
F. Dehne et al. (Eds.): WADS 2015, LNCS 9214, pp. 619–628, 2015.
DOI: 10.1007/978-3-319-21840-3 51
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Fig. 1. An example of 4-Colored Token Swapping. Colors of vertices are written
inside circles and tokens are drawn as rectangles with their colors. We swap the two
tokens along each thick edge. (a) An initial token-placement. (b)–(d) Intermediate
token-placements. (e) The target token-placement.

will see in the next section, any token-placement can be transformed into the
target one by O(n2) token-swappings, where n is the number of vertices in G.
We thus consider the problem of minimizing the number of token-swappings to
obtain the target token-placement.

If vertices have distinct colors and tokens also have distinct colors, then the
problem is called Token Swapping [11]. This has been investigated for several
graph classes. Token Swapping can be solved in polynomial time for paths [7,
8], cycles [7], stars [10], complete graphs [1,7], and complete bipartite graphs [11].
Heath and Vergara [6] gave a polynomial-time 2-approximation algorithm for
squares of paths, where the square of a path is the graph obtained from the
path by adding a new edge between two vertices with distance exactly two in
the path. For squares of paths, some upper bounds of the minimum number
of token-swappings are known [3,4,6]. Yamanaka et al. [11] gave a polynomial-
time 2-approximation algorithm for trees. Token Swapping is solved for only
restricted graph classes. However no hardness result is known, even if input
graphs are general graphs, to the best of our knowledge.

The c-Colored Token Swapping problem is a generalization of Token
Swapping. We investigate c-Colored Token Swapping and clarify its com-
putational complexity in the sense that we found the boundary of easy and hard
cases with respect to the number of colors. For c = 2, the problem can be solved
in polynomial time for general graphs and in linear time for trees. However, the
problem for c = 3 is hard even if input graphs are quite restricted. We show
that the problem is NP-complete for connected planar bipartite graphs with
maximum degree 3.
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2 Preliminaries

In this paper, we assume without loss of generality that graphs are simple and
connected. Let G = (V,E) be an undirected unweighted graph with vertex set
V and edge set E. We sometimes denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We always denote |V | by n. For a vertex v in G,
let N(v) be the set of all neighbors of v. Each vertex of a graph G has a color
in C = {1, 2, . . . , c}. We denote by c(v) the color of a vertex v ∈ V . A token is
placed on each vertex in G, and each token also has a color in C. For a vertex v,
we denote by f(v) the color of the token placed on v. Then, we call the function
f : V → C a token-placement of G. Two token-placements f and f ′ of G are
said to be adjacent if the following two conditions (a) and (b) hold:

(a) there exists exactly one edge (u, v) ∈ E such that f ′(u) = f(v) and f ′(v) =
f(u); and

(b) f ′(w) = f(w) for all vertices w ∈ V \ {u, v}.
In other words, the token-placement f ′ is obtained from f by swapping the tokens
on the two adjacent vertices u and v. Note that swapping two tokens of the same
color gives the same token-placement. Thus, to eliminate redundancy, we assume
that tokens of the same color are never swapped. For two token-placements f
and f ′ of G, a sequence S = 〈f0, f1, . . . , fh〉 of token-placements is a swapping
sequence between f and f ′ if the following three conditions (1)–(3) hold:

(1) f0 = f and fh = f ′;
(2) fk is a token-placement of G for each k = 0, 1, . . . , h; and
(3) fk−1 and fk are adjacent for every k = 1, 2, . . . , h.

The length of a swapping sequence S, denoted by len(S), is defined to be the
number of token-placements in S minus one, that is, len(S) indicates the number
of token swappings in S. For two token-placements f and f ′ of G, we denote
by OPT(f, f ′) the minimum length of a swapping sequence between f and f ′.
As we will prove in Lemma 1, there always exists a swapping sequence between
any two token-placements f and f ′ if the number of vertices of color i for each
i = 1, 2, . . . , c is equal to the number of tokens of the same color. For the two
token-placement f and f ′, OPT(f, f ′) is well-defined.

Given two token-placements f and f ′ of a graph G and a nonnegative integer
�, the c-Colored Token Swapping problem is to determine whether or not
OPT(f, f ′) ≤ � holds. From now on, we always denote by f and f ′ the initial
and target token-placements of G, respectively, and we may assume without loss
of generality that f ′ is a token-placement of G such that f ′(v) = c(v) for all
vertices v ∈ V .

We show that the length of any swapping sequence need never exceed n2.
This claim is derived by slightly modifying the proof of Theorem 1 in [11].

Lemma 1. For any pair of token-placements f and f ′ of a graph G,
OPT(f, f ′) ≤ n2.

Proof. Let T be any spanning tree of a graph G. Choose an arbitrary leaf v of
T . Then, we move a nearest token of color c(v) in T from the current position
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u to its target position v. Note that there is no token of color c(v) placed on a
vertex of the path in T from u to v except u. Let (p1, p2, . . . , pq) be a unique
path in T from p1 = u to pq = v. Then, we swap the tokens on pk and pk+1

for each k = 1, 2, . . . , q − 1 in this order, and obtain the token-placement f of G
such that f(v) = c(v). We then delete the vertex v from G and T , and repeat
the process until we obtain f ′.

Each vertex obtains a token of the same color via a swapping sub-sequence of
length in n. Therefore, the swapping sequence S above between f and f ′ satisfies
len(S) ≤ n2. Since OPT(f, f ′) ≤ len(S), we have OPT(f, f ′) ≤ n2. ��
From Lemma 1, any token-placement for an input graph can be transformed into
the target one by O(n2) token-swappings, and a swapping sequence of length
O(n2) can be computed in polynomial time.

3 Hardness Results

In this section, we show that c-Colored Token Swapping problem is NP-
complete for any constant c ≥ 3 by constructing a polynomial-time reduction
from Planar 3DM [2]. To define Planar 3DM, we first introduce the following
well-known NP-complete problem.

Problem: 3-Dimensional Matching (3DM) [5, SP1]
Instance: Set T ⊆ X × Y × Z, where X, Y , and Z are disjoint sets having the
same number m of elements.
Question: Does T contain a matching, i.e., a subset T ′ ⊆ T such that |T ′| = m
and it contains all elements of X, Y , and Z?

Planar 3DM is a restricted version of 3DM in which the following bipartite
graph G is planar. The graph G has the vertex set V (G) = T ∪X ∪Y ∪Z with a
bipartition (T,X ∪ Y ∪ Z). Two vertices t ∈ T and w ∈ X ∪ Y ∪ Z are adjacent
in G if and only if w ∈ t. Planar 3DM is NP-complete even if G is a connected
graph of maximum degree 3 [2].

Theorem 1. 3-Colored Token Swapping is NP-complete even for con-
nected planar bipartite graphs of maximum degree 3.

Proof. By Lemma 1, there is a polynomial-length swapping sequence for any
initial token-placement, and thus 3-Colored Token Swapping is in NP.

Now we present a reduction from Planar 3DM. Let (X,Y,Z;T ) be an
instance of Planar 3DM and m = |X| = |Y | = |Z|. As mentioned above, we
construct a bipartite graph G = (T,X ∪ Y ∪ Z;E) from (X,Y,Z;T ). We set
c(x) = 1 and f(x) = 2 for every x ∈ X, set c(y) = 2 and f(y) = 3 for every
y ∈ Y , set c(z) = 3 and f(z) = 1 for every z ∈ Z, and set c(t) = 1 and f(t) = 1
for every t ∈ T . See Fig.2. From the assumptions, G is a planar bipartite graph
of maximum degree 3. The reduction can be done in polynomial time. We prove
that the instance (X,Y,Z;T ) is a yes-instance if and only if OPT(f, f ′) ≤ 3m.
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x1 x2 x3 y1 y2 y3 z1 z2 z3

t1 t2 t3 t4 t5

X Y Z

T

1 1 1 2 2 2 3 3 3

1 1 1 1 1

1 1 111

2 2 2 3 3 3 1 1 1

Fig. 2. The graph constructed from an instance (X = {x1, x2, x3}, Y =
{y1, y2, y3}, Z = {z1, z2, z3}, T = {t1 = (x1, y1, z3), t2 = (x3, y2, z1), t3 =
(x1, y1, z2), t4 = (x3, y3, z2), t5 = (x2, y2, z1)})
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Fig. 3. A swapping sequence to resolve the token-placement of a triple

To show the only-if part, assume that there exists a subset T ′ of T such that
|T ′| = m and T ′ contains all elements of X, Y , and Z. Since the elements of T ′

are pairwise disjoint, we can cover the subgraph of G induced by T ′ ∪X ∪Y ∪Z
with m disjoint stars of four vertices, where each star is induced by an element
t of T ′ and its three elements. To locally move the tokens on the target place
in such a star, we need only three swappings. See Fig.3. This implies that a
swapping sequence of length 3m exists.

To show the if part, assume that there is a swapping sequence S from f to
f ′ with at most 3m token-swappings. Let T ′ ⊆ T be the set of vertices such that
the tokens on them are moved in S. Let G′ be the subgraph of G induced by
T ′ ∪ X ∪ Y ∪ Z. Let w ∈ X ∪ Y ∪ Z. Since c(w) �= f(w) and N(w) ⊆ T , the
sequence S swaps the tokens on w and on a neighbor t ∈ T ′ of w at least once.
This implies that w has degree at least 1 in G′. Since each t ∈ T ′ has degree at
most 3 in G′, we can conclude that |T ′| ≥ 1

3 |X ∪ Y ∪ Z| = m. In S, the token
placed on a vertex in X ∪ Y in the initial token-placement is moved at least
twice, while the token placed on a vertex in Z ∪ T ′ is moved at least once. As a
token-swapping moves two tokens at the same time,

len(S) ≥ 1
2
(2 |X| + 2 |Y | + |Z| + |T ′|) ≥ 3m.
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From the assumption that len(S) ≤ 3m, it follows that |T ′| = m, and hence each
w ∈ X ∪ Y ∪ Z has degree exactly 1 in G′. Therefore, G′ consists of m disjoint
stars centered at the vertices of T ′ which form a solution of Planar 3DM. ��

The proof above can be extended for any constant number of colors. It is
known that we can assume that G has a degree-2 vertex [2]. We add a path
(p4, p5, . . . , pc) to G, and connect p4 to a degree-2 vertex in G. We set c(pi) = i
and f(pi) = i. The proof still works for the new graph, and hence we obtain the
following corollary.

Corollary 1. For every constant c ≥ 3, c-Colored Token Swapping is NP-
complete even for connected planar bipartite graphs of maximum degree 3.

Note that the degree bound in the corollary above is tight. If a graph has
maximum degree 2, then we can solve c-Colored Token Swapping in polyno-
mial time for every constant c as follows. A graph of maximum degree 2 consists
of disjoint paths and cycles. Observe that a shortest swapping sequence does
not swap tokens of the same color. This immediately gives a unique matching
between tokens and target vertices for a path component. For a cycle compo-
nent, observe that each color class has at most n candidates for such a matching
restricted to the color class. This is because after we guess the target of a token
in a color class, the targets of the other tokens in the color class can be uniquely
determined. In total, there are at most nc matchings between tokens and tar-
get vertices. By guessing such a matching, we can reduce c-Colored Token
Swapping to Token Swapping. Now we can apply Jerrum’s O(n2)-time algo-
rithms for solving Token Swapping on paths and cycles [7]. Therefore, we can
solve c-Colored Token Swapping in O(nc+2) time for graphs of maximum
degree 2.

Theorem 2. For every constant c ≥ 1, c-Colored Token Swapping is solv-
able in polynomial time for graphs of maximum degree 2.

4 Polynomial-Time Algorithms

In this section, we give some positive results. We first show that 2-Colored
Token Swapping for general graphs can be solved in polynomial time. We
next show that 2-Colored Token Swapping problem for trees can be solved
in linear time without constructing a swapping sequence.

4.1 General Graphs

Let C = {1, 2} be the color set. Let G = (V,E) be a graph, and let f and f ′

be an initial token-placement and the target token-placement. We construct a
weighted complete bipartite graph GB = (X,Y,EB , w), as follows. The vertex
sets X,Y and the edge set EB are defined as follows:

X = {xv | v ∈ V and f(v) = 1}
Y = {yv | v ∈ V and c(v) = 1}

EB = {(x, y) | x ∈ X and y ∈ Y }.
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Fig. 4. (a) An initial token-placement. (b) The target token-placement. (c) The
weighted complete bipartite graph constructed from (a) and (b) (the weight of each
edge is omitted).

Intuitively, X is the copies of vertices in V having tokens of color 1, and Y is
the copies of vertices in V of color 1. The weight function w is a mapping from
EB to positive integers. For x ∈ X and y ∈ Y , the weight w(e) of the edge
e = (x, y) is defined as the length of a shortest path from x to y in G. Fig.4 gives
an example of an initial token-placement, the target token-placement, and the
associated weighted complete bipartite graph.

We bound OPT(f, f ′) from below, as follows. Let S be a swapping sequence
between f and f ′. The swapping sequence gives a perfect matching of GB , as
follows. For each token of color 1, we choose an edge (x, y) of GB if the token
is placed on x ∈ X in f and on y ∈ Y in f ′. The obtained set is a perfect
matching of GB . A token corresponding to an edge e in the matching needs w(e)
token-swappings, and two tokens of color 1 are never swapped in S. Therefore,
for a minimum weight matching M of GB , we have the following lower bound:

OPT(f, f ′) ≥
∑

e∈M

w(e).

Now we describe our algorithm. First we find a minimum weight perfect
matching M of GB . We choose an edge e in M . Let Pe = 〈p1, p2, . . . , pq〉 of G
be a shortest path corresponding to e. We have the following lemma.

Lemma 2. Suppose that the two tokens on endpoints of Pe have different colors.
The two tokens can be swapped by w(e) token-swappings such that the color of
the token on each internal vertex does not change.

Proof. Without loss of generality, we assume that f(p1) = 2 and f(pq) = 1 hold.
We first choose the minimum i such that f(pi) = 1 holds. We next move the
token on pi to p1 by i − 1 token-swappings. We repeat the same process to the
subpath 〈pi, pi+1, . . . , pq〉. Finally, we obtain the desired token-placement. Recall
that there are only two colors on graphs, and so the above “color shift” operation
works. Since each edge of Pe is used by one token-swapping, the total number
of token-swapping is w(e) = q − 1. ��
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This lemma permits to move the two tokens on the two endpoints p1 and
pq of Pe to their target positions in w(e) token-swappings. Let g be the token-
placement obtained after the token-swappings. We can observe that f(v) = g(v)
for every v ∈ V \ {p1, pq} and g(v) = c(v) for v ∈ {p1, pq}. Then we remove
e from the matching M . We repeat the same process until M becomes empty.
Our algorithm always exchanges tokens on two vertices using a shortest path
between the vertices. Hence, the length of the swapping sequence constructed
by our algorithm is equal to the lower bound.

Now we estimate the running time of our algorithm. The algorithm first
constructs the weighted complete bipartite graph. This can be done using Floyd-
Warshall algorithm in O(n3) time. Then, our algorithm constructs a minimum
weight perfect matching. This can be done in O(n3) time [9, p.252]. Finally, for
each of the O(n) paths in the matching, our algorithm moves the tokens on the
endpoints of the path in linear time. We have the following theorem.

Theorem 3. 2-Colored Token Swapping is solvable in O(n3) time. Fur-
thermore, a swapping sequence of the minimum length can be constructed in the
same running time.

4.2 Trees

In this subsection, we show that 2-Colored Token Swapping for trees can
be solved in linear time without constructing a swapping sequence.

Let T be an input tree, and let f and f ′ be an initial token-placement and
the target token-placement of T . Let e = (x, y) be an edge of T . Removal of e
disconnects T into the two subtrees. We denote by T (x) the subtree containing
x and denote by T (y) the subtree containing y.

Now we define the value diff(e) for each edge e of T . Intuitively, diff(e) is the
number of tokens of color 1 which we wish to move from T (x) to T (y) along e.
More formally, we give the definition of diff(e), as follows. Let n1

t be the number
of tokens of color 1 in T (x), and let n1

v be the number of vertices of color 1 in
T (x). Then, we define diff(e) =

∣
∣n1

t − n1
v

∣
∣. (Note that, even if we count tokens

and vertices of color 1 in T (y) instead of T (x), the value diff(e) takes the same
value.) See Fig.5 for an example. For each edge e of T , we need to move at
least diff(e) tokens of color 1 from a subtree to the other one along e. Therefore,
OPT(f, f ′) is lower bounded by the sum D =

∑
e∈E(T ) diff(e).
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Fig. 5. An example of diff(e). For each edge e, the value diff(e) is written beside e.
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To give an upper bound of OPT(f, f ′), we next show that there exists a
swapping sequence of length D. The following lemma is key to construct the
swapping sequence.

Lemma 3. If D �= 0, then there exists an edge e such that the token-swapping
on e decreases D by one.

Proof. We first give an orientation of edges of T . For each edge e = (x, y), we
orient e from x to y if the number of tokens of color 1 in T (x) is greater than
the number of vertices of color 1 in T (x). Intuitively, the direction of an edge
means that we need to move one or more tokens of color 1 from T (x) to T (y). If
the two numbers are equal, we remove e from T . Let T ′ be the obtained directed
tree. For an edge e = (x, y) oriented from x to y, if x has a token of color 1 and
y has a token of color 2, swapping the two token decreases D by one. We call
such an edge a desired edge. We now show that there exists a desired edge in T ′.
Observe that if no vertex u with f(u) = 1 is incident to a directed edge in T ′,
then indeed T ′ has no edge and D = 0. Let u be a vertex with f(u) = 1 that
has at least one incident edge in T ′. If u has no out-going edge, then the number
of the color-1 tokens in T exceeds the number of the color-1 vertices in T . Thus
we can choose an edge (u, v) oriented from u to v. If f(v) = 2 holds, the edge
is desired. Now we assume that f(v) = 1 holds. We apply the same process for
v, then an edge (v, w) oriented from v to w can be found. Since trees have no
cycle, by repeating the process, we always find a desired edge. ��

From Lemma 3, we can find a desired edge, and we swap the two tokens on
the endpoints of the edge. Since a token-swapping on a desired edge decreases
D by one, by repeatedly swapping on desired edges, we obtain the swapping
sequence of length D. Note that D = 0 if and only if c(v) = f(v) for every
v ∈ V (T ). Hence, we have OPT(f, f ′) ≤ D.

Therefore OPT(f, f ′) = D holds, and so we can solve 2-Colored Token
Swapping by calculating D. The value diff(e) for every edge e, and thus the
value D, can be calculated in a bottom-up manner in linear time in total. We
have the following theorem.

Theorem 4. 2-Colored Token Swapping is solvable in linear time for trees.

5 Conclusions

We have investigated computational complexity of c-Colored Token Swap-
ping. We first showed the NP-completeness for 3-Colored Token Swapping
by a reduction from Planar 3DM, even for connected planar bipartite graphs
of maximum degree 3. We next showed that 2-Colored Token Swapping can
be solved in O(n3) time for general graphs and in linear time for trees.

We showed that c-Colored Token Swapping for every constant c can be
solved in polynomial time for graphs of maximum degree 2 (disjoint paths and
cycles). If c is not a constant, can we solve c-Colored Token Swapping for
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such graphs in polynomial time? For Token Swapping on cycles, Jerrum [7]
proposed an O(n2)-time algorithm. As mentioned in [7], the proof of the cor-
rectness of the algorithm needs complex discussions.
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Abstract. The positive semidefinite zero forcing number of a graph is a
parameter that is important in the study of minimum rank problems. In
this paper, we focus on the algorithmic aspects of computing this parame-
ter. We prove that it is NP-complete to find the positive semidefinite zero
forcing number of a given graph, and this problem remains NP-complete
even for graphs with maximum vertex degree 7. We present a linear time
algorithm for computing the positive semidefinite zero forcing number
of generalized series-parallel graphs. We introduce the constrained tree
cover number and apply it to improve lower bounds for positive semidef-
inite zero forcing. We also give formulas for the constrained tree cover
number and the tree cover number on graphs with special structures.

1 Introduction

The zero forcing number was introduced in [1]. The interest in this parameter is
to apply zero forcing as upper bounds on the maximum nullities (or, equivalently,
the minimum ranks) of certain symmetric matrices associated with graphs. Inde-
pendently, this parameter has been studied in physics, referring to it as the graph
infection number [7], and it has also been studied in the field of graph searching
within the context of fast-mixed search number [20].

The most widely-studied variant of the zero forcing, called the positive
semidefinite zero forcing (PSZF for short), was introduced in [3] (see also
[9–11] for recent results). Similar to the zero forcing number, a primary rea-
son to study the PSZF number of a graph is its relationship to the maximum
positive semidefinite nullity of certain positive semidefinite symmetric matrices
associated with the graph.

Let G be a finite graph with no loops or multiple edges. In the zero forcing
process or the positive semidefinite zero forcing process, we begin by specifying
a set of vertices of G that are colored black initially, while all other vertices are
colored white. Then, using a color change rule to these vertices, we progressively
change the color of white vertices in the graph to black. Our objective is to color
all vertices black by repeated application of the color change rule. In general,
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we want to determine the smallest set of vertices needed to be black initially, to
eventually change all of the vertices in the graph to black.

The zero forcing (resp. positive semidefinite zero forcing) rule results in a
partition of the vertices of G into sets, so that each such set induces a path
(resp. tree) in G.

As mentioned above, one of the original motivations for studying these
parameters is that they provide upper bounds on the maximum nullities of
symmetric or positive semidefinite matrices associated with graphs (see [2,3]).
Let Sn(R) denote the set of n × n real symmetric matrices. The graph of
A = [aij ] ∈ Sn(R), denoted by G(A), is the graph with vertex set {1, 2, . . . , n}
and edge set {{i, j} : aij �= 0, 1 ≤ i < j ≤ n}. For a given graph G, the set of sym-
metric matrices described by G is defined to be S(G) = {A ∈ Sn(R) : G(A) = G}.
Let S+(G) denote the subset of positive semidefinite matrices in S(G). For a
matrix B, we use null(B) to denote its nullity. The maximum positive semidefi-
nite nullity of G is defined to be M+(G) = max{null(B) : B ∈ S+(G)}.

Another motivation for investigating the zero forcing number and the positive
semidefinite zero forcing number are that they provide parameters to measure
some graph structures, just like pathwidth and treewidth [16,17]. At its most
basic level, edge search and node search models represent two significant graph
search problems [13,15], where the node search number of a graph G is equal to
the pathwidth of G plus one and the edge search number is at least the pathwidth
and is at most the pathwidth plus two. Bienstock and Seymour [5] introduced
the mixed search problem that combines the edge search and the node search
problems. The mixed search number of G is at least the pathwidth of G and
is at most the pathwidth plus one [13,21]. Dyer et al. [8] introduced the fast
search problem, and Yang [20] introduced the fast-mixed search model that is
a combination of the fast search and mixed search models [20]. Note that the
fast-mixed search number of G is equal to the zero forcing number of G [11].
Since the fast-mixed searching is a variant of the mixed searching, we know that
the zero forcing number can be considered as a variant of pathwidth (or the
mixed search number). From the relation of zero forcing to positive semidefinite
zero forcing and the relation of pathwidth to treewidth, the positive semidefinite
zero forcing number can be considered as a variant of treewidth, which is one
of the most important parameters in structural graph theory and it plays an
important role in graph algorithms.

2 Preliminaries

Throughout this paper, we only consider finite graphs with no loops or multiple
edges. We use G = (V,E) to denote a graph with vertex set V and edge set
E, and we also use V (G) and E(G) to denote the vertex set and edge set of G
respectively. For V ′ ⊆ V , the vertex set {u : uv ∈ E, u ∈ V \V ′ and v ∈ V ′} is the
neighborhood of V ′, denoted as NG(V ′). We use G[V ′] to denote the subgraph
induced by V ′, which consists of all vertices of V ′ and all of the edges that
connect vertices of V ′ in G. We use G − V ′ to denote the induced subgraph
G[V \ V ′]. Definitions omitted here can be found in [19].
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The positive semidefinite zero forcing, or simply PSZF, is based on a color
change rule. Let G be a graph in which every vertex is initially colored either
black or white. Let B be the set of black vertices and W1, . . . , Wk be the sets
of white vertices in each of the connected components of G − B (note that it is
possible that k = 1). The PSZF color change rule is: If v is a black vertex in B
and w is the only white neighbor of v in the graph G[Wi ∪ B], than change the
color of w to black; in this case we say “v forces w” and write v → w. Given an
initial coloring of G, in which a set of the vertices is black and all other vertices
are white, if all white vertices are forced to black after repeatedly applying the
PSZF color change rule, then the set of initial black vertices is called a PSZF
set ; it is called a minimum PSZF set if the initial set of black vertices is a PSZF
set of the smallest possible size. The PSZF number of a graph G, denoted by
Z+(G), is the size of the smallest PSZF set of G. The procedure of coloring
a graph using the PSZF color change rule is called a PSZF process. A PSZF
process is called optimal if the initial set of black vertices is a minimum PSZF
set.

The zero forcing number, denoted Z(G), has a different color change rule.
Let B be the set of black vertices in G and all other vertices are white. The zero
forcing color change rule is: If v is a black vertex in B and w is the only white
neighbor of v in G − B, then change the color of w to black.

If B is a PSZF set of a graph G, then we can produce a set of rooted trees that
give us the order in which forces are performed in the PSZF process. When we
apply the PSZF color change rule once, a black vertex in B can force multiple
white vertices from different connected components Wi to black at the same
time. Then we update the black vertex set and apply the PSZF color change
rule again. We repeat this process until all vertices are black. So, for each initial
black vertex v, the forces determine an induced rooted-tree T , referred to as a
forcing tree. The root of the forcing tree T is the vertex v and a vertex w is on
T if and only if there is a sequence of vertices (v1, . . . , vk), where v = v1 and
vk = w, on T such that vi → vi+1, for i = 1, . . . , k−1. In this case we use v ⇒ T
to denote that the vertex v produces the forcing tree T in the PSZF process. If
B is a PSZF set of G, then the set of rooted-trees {T : v ∈ B, v ⇒ T} is called
a PSZF tree cover of G; furthermore, if B is a minimum PSZF set of G, then
this set is called a minimum PSZF tree cover of G. Observe that every vertex
not in the PSZF set B is forced by exactly one vertex. Thus {T : v ∈ B, v ⇒ T}
is a set of vertex-disjoint induced rooted-trees that partition V (G). In a PSZF
tree cover, we will use terms “rooted-tree” and “forcing tree” interchangeably if
there is no ambiguity.

Given a PSZF tree cover F of G, a forcing chain is a path v1 . . . vk on a
forcing tree in F satisfying vi → vi+1, 1 ≤ i ≤ k − 1. Such a forcing chain is
denoted by v1 → · · · → vk.

More generally, a tree cover of a graph G is a family of vertex-disjoint induced
trees in G that cover all vertices of G [4]. The minimum number of such trees
is called the tree cover number of G and is denoted by tc(G). A minimum tree
cover of G is a tree cover of G whose cardinality equals to tc(G). Barioli et al.
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[4] showed that for any outerplanar graph G, M+(G) = tc(G); and Ekstrand et
al. [9] showed that for any graph G, tc(G) ≤ Z+(G).

We will consider series-parallel graphs and generalized series-parallel graphs.
The class of two-terminal series-parallel graphs are defined inductively as follows:

1. The graph with the single edge st is a two-terminal series-parallel graph,
where the distinguished vertices s and t are terminals.

2. If G1 is a two-terminal series-parallel graph with terminals s1 and t1, and
G2 is a two-terminal series-parallel graph with terminals s2 and t2, then
(a) Create a new two-terminal series-parallel graph G by identifying t1 with

s2. Define s1 and t2 as two terminals of G. This is known as the series
composition of G1 and G2, denoted by G1

⊕
G2.

(b) Create a new two-terminal series-parallel graph G by identifying s =
s1 = s2 and t = t1 = t2. Define s and t as two terminals of G. This is
known as the parallel composition of G1 and G2, denoted by G1‖G2.

A graph G is series-parallel if there is a pair of vertices s and t on G such
that G is a two-terminal series-parallel graph with terminals {s, t}.

A connected graph is called biconnected if the graph remains connected after
the deletion of any vertex. A biconnected component of a graph is a maximal
biconnected subgraph. Note that an edge could be a biconnected component.
A vertex whose removal produces a graph with more connected components is
called a cut vertex.

A connected graph is called a generalized series-parallel graph if all its bicon-
nected components are two-terminal series-parallel graphs such that any two
such series-parallel graphs can only share a vertex that is a terminal of both of
them.

3 The Complexity of PSZF

In [20], Yang proved that finding the fast-mixed search number of a given graph
is NP-complete. Since the fast-mixed search number of a graph is equal to its
zero forcing number, this NP-completeness result is also held for the zero forc-
ing problem [11]. In this section we investigate the complexity of finding PSZF
numbers. The decision version of this problem is as follows.

Positive Zero Forcing
Instance: A graph G and a positive integer k.
Question: Is Z+(G) ≤ k?

We can prove the NP-completeness of this problem by a reduction from the
following problem [14] (The proof is omitted due to space constraints).

Positive Not-All-Equal 3SAT
Instance: A boolean formula φ in 3-CNF such that no clause contains a
negated literal.
Question: Is there a satisfying assignment for φ such that each clause
has at least one true literal and at least one false literal?
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Theorem 1. Positive Zero Forcing is NP-complete. The problem remains
NP-complete even for graphs with maximum vertex degree 7.

4 Series-Parallel Graphs

In this section we will establish properties of PSZF numbers on series-parallel
graphs. As mentioned in Section 2, we only consider graphs with no multiple
edges or loops.

Definition 1. (Terminal-unlinked, -semi-linked, and -linked.) A series-
parallel graph G with terminals {s, t} is called terminal-unlinked if there is a
minimum PSZF tree cover of G which contains two different rooted-trees T1 and
T2 such that s ⇒ T1, t ⇒ T2 and NG(V (T1)) ∩ V (T2) = ∅; G is called terminal-
semi-linked if G is not terminal-unlinked and there is a minimum PSZF tree cover
of G which contains two different rooted-trees T1 and T2 such that s ⇒ T1, and
t ⇒ T2; and G is called terminal-linked if every minimum PSZF tree cover of G
contains a rooted-tree T such that s ⇒ T and t ∈ V (T ) or t ⇒ T and s ∈ V (T ).

Lemma 1. Let G be a terminal-linked series-parallel graph with terminals {s, t}.
Let F ∗ be a minimum PSZF tree cover of G that contains a rooted-tree T such
that t ⇒ T and s ∈ V (T ). If we change the root of T from t to s, then the new F ∗

is still a minimum PSZF tree cover of G that contains the modified rooted-tree
T such that s ⇒ T and t ∈ V (T ).

Theorem 2. Let G1 and G2 be two series-parallel graphs with terminals {s1, t1}
and {s2, t2}, respectively, and let G = G1‖G2 with terminals s(= s1 = s2) and
t(= t1 = t2).

(i) If both G1 and G2 are terminal-unlinked, then G is terminal-unlinked and
Z+(G) = Z+(G1) + Z+(G2) − 2.

(ii) If one of G1 and G2 is terminal-linked and the other is terminal-semi-
linked, then G is terminal-semi-linked and Z+(G) = Z+(G1)+Z+(G2)−1.

(iii) If one of G1 and G2 is terminal-linked and the other is terminal-unlinked,
then G is terminal-linked and Z+(G) = Z+(G1) + Z+(G2) − 2.

(iv) If both G1 and G2 are terminal-linked, then G is terminal-semi-linked and
Z+(G) = Z+(G1) + Z+(G2).

(v) If one of G1 and G2 is terminal-unlinked and the other is terminal-semi-
linked, then G is terminal-semi-linked and Z+(G) = Z+(G1)+Z+(G2)−2.

(vi) If both G1 and G2 are terminal-semi-linked, then G is terminal-semi-linked
and Z+(G) = Z+(G1) + Z+(G2) − 2.

When a group of series-parallel graphs share two terminals, we have the
following results.

Corollary 1. Let Gi, 1 ≤ i ≤ k, be series-parallel graphs with terminals {si, ti},
and let G = G1‖ · · · ‖Gk with terminals s(= s1 = · · · = sk) and t(= t1 = · · · = tk).
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(i) If all Gi, 1 ≤ i ≤ k, are terminal-unlinked, then G is terminal-unlinked
and Z+(G) =

∑k
i=1 Z+(Gi) − 2k + 2.

(ii) If only one of G1, . . . , Gk is terminal-linked and at least another one
is terminal-semi-linked, then G is terminal-semi-linked and Z+(G) =
∑k

i=1 Z+(Gi) − 2k + 3.
(iii) If only one of G1, . . . , Gk is terminal-linked and all others are terminal-

unlinked, then G is terminal-linked and Z+(G) =
∑k

i=1 Z+(Gi) − 2k + 2.
(iv) If k1 (k1 ≥ 2) of G1, . . . , Gk are terminal-linked, then G is terminal-semi-

linked and Z+(G) =
∑k

i=1 Z+(Gi) − k1 − 2(k − k1) + 2.
(v) If none of G1, . . . , Gk is terminal-linked and at least one of them

is terminal-semi-linked, then G is terminal-semi-linked and Z+(G) =
∑k

i=1 Z+(Gi) − 2k + 2.

Theorem 3. Let G1 and G2 be two series-parallel graphs with terminals {s1, t1}
and {s2, t2}, respectively, and let G = G1

⊕
G2 with terminals s(= s1) and

t(= t2). Then Z+(G) = Z+(G1) + Z+(G2) − 1; and furthermore,

(i) if both G1 and G2 are terminal-linked, then G is terminal-linked;
(ii) if one of G1 and G2 is terminal-linked and the other is terminal-semi-

linked, then G is terminal-semi-linked;
(iii) if both G1 and G2 are terminal-semi-linked, then G is terminal-unlinked;
(iv) if at least one of G1 and G2 is terminal-unlinked, then G is terminal-

unlinked.

5 Algorithm

In this section, we give a linear time algorithm for finding PSZF numbers of
series-parallel graphs.

A series-parallel graph can be decomposed into a set of primitive graphs (e.g.,
single edges) by series compositions and parallel compositions. The decomposi-
tion structure of a series-parallel graph G can be represented by a decomposition
tree, denoted as DT (G), which is a rooted binary tree having the following prop-
erties:

1. Each leaf corresponds to an edge of G.
2. Each internal node is called an S-node or a P-node.
3. Each S-node corresponds to a series-parallel graph that is obtained from

the two series-parallel graphs corresponding to its two children by a series
composition.

4. Each P-node corresponds to a series-parallel graph that is obtained from
the two series-parallel graphs corresponding to its two children by a parallel
composition.

In our algorithm, we first construct a decomposition tree DT (G). Let r be
the root of DT (G). Each node of DT (G) except r is a descendant of r. For any
two nodes v1 and v2 in DT (G), if there is a directed path from r to v2 containing
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v1, then we say that v2 is a descendant of v1; specifically, if v2 is adjacent to
v1, we say v2 is a child of v1. For a node v of DT (G), let DT [v] be the subtree
of DT (G) induced by v and all its descendants. We will use Gv to denote the
series-parallel graph whose decomposition tree is DT [v]. So Gv is a subgraph of
G. Note that DT [r] = DT (G) and Gr = G.

After we construct a decomposition tree DT (G), we assign labels to all nodes
of DT (G). The label of a node v records the essential structural information of
the subgraph Gv. The label of a node v consists of two components (type(Gv),
Z+(Gv)), where the first component indicates the type of Gv, which is one of
the three types: terminal-unlinked, terminal-semi-linked or terminal-linked.
Algorithm. Zplus-SP
Input: a series-parallel graph G.
Output: Z+(G).

1. Construct a decomposition tree DT (G).
2. Use the post-order traversal to visit each node v of DT (G) and label it in

one of the following three cases:
(a) If v is a leaf of DT (G), label it as (terminal-linked, 1).
(b) If v is a P-node, then compute the label of v using theorem 2.
(c) If v is an S-node, then compute the label of v using theorem 3.

3. Return the label of the root of DT (G).

Using mathematical induction, we can prove the correctness of the above
algorithm, that is, the second component of the label of the root is equal to
Z+(G). We now consider the running time.

Theorem 4. For any series-parallel graph G with n vertices and m edges,
Z+(G) can be computed in O(n + m) time.

Note that Ekstrand et al. [10] showed that Z+(G) = tc(G) = M+(G) for any
graph that is a partial 2-tree. Since every series-parallel graph is a partial 2-tree,
we have the following.

Corollary 2. For any series-parallel graph G with n vertices and m edges, tc(G)
and M+(G) can be computed in O(n + m) time.

6 Lower Bounds on Z+(G)

In [9], Ekstrand et al. showed that for any graph G, Z+(G) ≥ tc(G). In this
section, we will introduce the constrained tree cover number which can be applied
to improve lower bounds for Z+(G). We will use the set of all cut vertices to
determine the PSZF number of cacti, simply-linked “clique” graphs and gener-
alized series-parallel graphs.

Similar to Corollary 3.9 in [20], we can prove the following lemma that
describes a structural property between two forcing chains.
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a Fig. 1. The forbidden graphs induced by the vertices

of the two forcing chains a′ → · · · → a and b′ →
· · · → b, where any edge marked by a dashed line
can be replaced by a path of length at least one

Lemma 2. Let G be a graph and F be a PSZF tree cover of G. For any two
forcing chains a′ → · · · → a and b′ → · · · → b in F , the subgraph of G induced
by the vertices of the two chains cannot contain any graph illustrated in Figure 1
as a subgraph.

We now introduce the constrained tree cover which is an extension of the
tree cover.

Definition 2. (Constrained tree cover.) A constrained tree cover of a graph
G is a set of trees {T1, . . . , Tk} in G satisfying the following conditions: (1)
each Ti, 1 ≤ i ≤ k, is an induced subgraph of G, (2) ∪k

i=1V (Ti) = V (G), (3)
V (Ti) ∩ V (Tj) = ∅, for any 1 ≤ i < j ≤ k, and (4) for any two paths P1 in Ti

and P2 in Tj , 1 ≤ i < j ≤ k, the induced subgraph G[V (P1) ∪ V (P2)] is K4-
minor-free. A minimum constrained tree cover of G is a constrained tree cover
of G that has the smallest possible size. The constrained tree cover number of
G, denoted by ctc(G), is the size of a minimum constrained tree cover of G.

Lemma 3. For any graph G, Z+(G) ≥ ctc(G) ≥ tc(G).

Although we only need formulas for ctc(G) in the following theorems and
corollaries, we will also give formulas for tc(G) because the minimum tree cover is
interesting in its own right. Note that our formula for tc(G) improves Proposition
2.5 in [9].

Theorem 5. Let G be a connected graph, X be the set of all cut vertices
of G, and G1, . . . , Gk be all biconnected components of G. Then ctc(G) =
∑k

i=1 ctc(Gi) − ∑
v∈X δ(v) + |X|, and tc(G) =

∑k
i=1 tc(Gi) − ∑

v∈X δ(v) + |X|,
where δ(v) = |{Gi : Gi contains v, 1 ≤ i ≤ k}|.
Corollary 3. Let G be a connected graph, and Gi = (Vi, Ei), 1 ≤ i ≤ k, be all
biconnected components of G. Suppose that F ∗ is a minimum (constrained) tree
cover of G and F ∗[Vi] is a (constrained) tree cover of Gi induced by Vi. Then
each F ∗[Vi], 1 ≤ i ≤ k, is a minimum (constrained) tree cover of Gi.

While Theorem 5 characterizes tc(G) and ctc(G) using the number of cut
vertices, the next theorem characterizes tc(G) and ctc(G) using the number of
biconnected components.

Theorem 6. Let G be a connected graph, and G1, . . . , Gk be all biconnected
components of G. Then ctc(G) =

∑k
i=1 ctc(Gi) − k + 1, and tc(G) =

∑k
i=1 tc(Gi) − k + 1.
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Ekstrand et al. [10] showed that Z+(G) = tc(G) = M+(G) for any graph
that is a partial 2-tree. Since each cactus is a partial 2-tree, we have Z+(G) =
tc(G) = M+(G) for any cactus G. The following corollary enhances this result
by establishing a relation between Z+(G) and the number of simple cycles in G.

Corollary 4. For a cactus G with � simple cycles, Z+(G) = ctc(G) = tc(G) =
M+(G) = � + 1.

For a complete graph Kn, n ≥ 4, it is easy to see that Z+(Kn) = ctc(Kn) =
n − 1 while tc(Kn) = n/2�. Since the gap between Z+(Kn) and tc(Kn) can be
arbitrarily large, we know if a graph contains large cliques, then ctc(G) usually
gives us a better lower bound than tc(G). This is the reason that we can use
ctc(G) as a lower bound for Z+(G) to show Corollaries 5 and 8, but it would be
hard to prove them if we use tc(Kn) as a lower bound.

Corollary 5. Let G = (V,E) be a connected graph and G1, . . . , Gk be all bicon-
nected components of G. If each Gi, 1 ≤ i ≤ k, is a clique, then Z+(G) =
ctc(G) = M+(G) = |V | − k.

From Theorem 6, we have the following result for generalized series-parallel
graphs.

Corollary 6. Let G be a generalized series-parallel graph and G1, . . . , Gk be all
biconnected components of G. Then Z+(G) = ctc(G) = tc(G) =

∑k
i=1 Z+(Gi) −

k + 1.

Corollary 7. For any generalized series-parallel graph G with n vertices and m
edges, Z+(G) can be computed in O(n + m) time.

In order to use the constrained tree cover as lower bounds on Z+(G) for
more graphs, we weaken the condition of Theorem 5 to obtain a lower bound for
ctc(G) and tc(G).

Lemma 4. Let G = (V,E) be a connected graph and G = {G1, . . . , Gk} be a set
of connected subgraphs of G such that these subgraphs include all vertices and
edges of G and any two distinct subgraphs in G can share at most one vertex.
Let χ(V ) = {v ∈ V : v is contained in at least two subgraphs of G}. Then
ctc(G) ≥ ∑k

i=1 ctc(Gi) − ∑
v∈χ(V ) δ(v) + |χ(V )|, and tc(G) ≥ ∑k

i=1 tc(Gi) −
∑

v∈χ(V ) δ(v) + |χ(V )|, where δ(v) = |{Gi : Gi contains v, 1 ≤ i ≤ k}|.

Corollary 8. Let G = (V,E) be a connected graph and Gi = (Vi, Ei), 1 ≤ i ≤ k,
be maximal cliques of G satisfying the following conditions: (1) ∪k

i=1Vi = V and
∪k

i=1Ei = E, (2) for any 1 ≤ i < j ≤ k, |Vi ∩ Vj | ≤ 1, and (3) each Gi,
1 ≤ i ≤ k, contains a vertex vi that is not in any Gj, j �= i. Then Z+(G) =
ctc(G) = M+(G) = |V | − k.
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Corollary 9. Let G = (V,E) be a connected graph and G = {G1, . . . , Gk}
be a set of series-parallel graphs of G satisfying the following conditions: (1)
∪k

i=1V (Gi) = V and ∪k
i=1E(Gi) = E, (2) for any Gi and Gj, 1 ≤ i < j ≤ k,

they can share at most one vertex and this vertex must be their common termi-
nal, and (3) each Gi (1 ≤ i ≤ k) is terminal-unlinked or terminal-semi-linked.
Let Y = {v ∈ V : v is a terminal of some Gi}. Then Z+(G) = ctc(G) = tc(G) =
∑k

i=1 Z+(Gi) − 2k + |Y |.
Corollary 10. Let H be a connected graph. Let GH be a graph obtained from
H by replacing every edge e of H by a terminal-semi-linked series-parallel graph
Ge with Z+(Ge) = 2 such that the two endpoints of e correspond to the two
terminals of Ge. Then Z+(GH) = ctc(GH) = tc(GH) = |V (H)|.
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For decades, social scientists have been studying people’s social behaviors by utiliz-
ing sparse datasets obtained by observations and surveys. These studies received a 
major boost in the past decade due to the availability of web data (e.g., social net-
works, blogs and review web sites). However, due to the nature of the utilized dataset, 
these studies were confined to behaviors that were observed mostly in the virtual 
world. Differing from all the earlier work, here, we aim to study social behaviors by 
observing people’s behaviors in the real world.  This is now possible due to the 
availability of large high-resolution spatiotemporal location data collected by GPS-
enabled mobile devices through mobile apps (Google’s Map/Navigation/ 
Search/Chrome, Facebook, Foursquare, WhatsApp, Twitter) or through online ser-
vices, such as geo-tagged contents (tweets from Twitter, pictures from Instagram, 
Flickr or Google+ Photo), etc. 

In particular, we focus on inferring and quantifying two specific social measures: 
1) pairwise strength -- the strength of social connections between a pair of users, and 
2) pairwise influence - the amount of influence that an individual exerts on another, 
by utilizing the available high-fidelity location data representing people’s movements.  

To compute pairwise strength, we study an Entropy-Based model (EBM) [1] to in-
fer social strength (the closeness of friendships) between two people based on the 
knowledge that two people were at the same places and at the same time, called co-
occurrences. The model considers the impact on social strength by different factors, 
including the frequency and the diversity of co-occurrences, the popularity of loca-
tions and coincidences. 

To compute pairwise influence, we try to identify when an individual visits a loca-
tion (e.g., a restaurant) due to the influence of another individual who visited that 
same location in the past. We define this behavior as followship. Hence, followship is 
an indication of pair-wise influence between people in the real world. Subsequently, 
we introduce and study spatial influence - a concept of inferring pairwise influence 
from spatiotemporal data by quantifying the followship influence that an individual 
exerts on another in the real world.  Quantifying spatial influence has many challeng-
es. First, we need to distinguish actual followship from other successive visits that are 
not due to influence, which we call coincidences. Second, even if we can identify 
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successive visits as followship, how should we quantify followship? What are the 
factors that impact it? Should it be a function of location, the participants and/or the 
time delay (the time interval) between visits? Third, how should we measure the indi-
vidual contribution of each factor and then combine them in a meaningful manner? 
Among the above-mentioned issues, the impact of locations and the issues related to 
coincidences are critical to spatial influence particularly due to the inclusion of users’ 
locations. 
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