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Abstract. The throughput stability is concerned with how much traf-
fic load can be sustained in a network, and has been a research hotspot.
Recent studies on the stability in 802.11 networks have arrived at contra-
dictory conclusions. This paper delves into the reasons behind these con-
tradictions. Our study manifests that the maximum stable-throughput
is not simply larger than, less than, or equal to the saturation through-
put as argued in previous works. Instead, there exists two intervals, over
which the maximum stable-throughput follows different rules: over one
interval, it may be far larger than the saturated throughput; over the
other, it is tightly bounded by the saturated throughput. Most existing
related research fails to differentiate the two intervals, implying that the
derived results are inaccurate or hold true partially. Finally, we verify
our study results via extensive simulations.
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1 Introduction

The stability of CSMA networks is a notorious problem due to their distrib-
uted, random-access nature. From Aloha [3] to IEEE 802.11 Wi-Fi networks [1],
we cannot even answer a very simple problem: what is the maximum stable-
throughput (i.e., the network throughput equalling the aggregate input traffic
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load). For example, even for the simplest network version (such as buffered aloha
networks), the throughput stability is still in discussion [7]. Therefore, this prob-
lem has attracted a great deal of attention such as [7–9,12,14,16,18].

Recent studies [8,13,17,18] considered the throughput stability problem in
a one-hop 802.11 DCF network, and arrived at contradictory conclusions. In
[17], the authors asserted that (a) the maximum stable throughput can only be
achieved in the nonsaturation regime (where nodes do not always have packets
to transmit), and that (b) it can be much higher than the saturation throughput
while providing satisfactory quality of service (QoS). In [13], the authors also
observed that the stable throughput may rise higher than the saturation through-
put before the network is saturated. However, in [18], the authors argued that to
ensure stability, the throughput should not be allowed to exceed the level of the
saturation throughput. They recommended operating a DCF network far below
the saturation load to achieve stable throughput and to avoid unbounded mean
packet delay and delay jitter. Finally, the research results in [8] indicated that
the maximum stable throughput in a DCF network is approximately the same
as the saturation throughput.

In this paper, we investigate this contradictory in general IEEE 802.11 EDCA
[1] wireless LANs. 802.11 DCF (that provides a uniform channel contention
access) is a special case of 802.11 EDCA (that provides a prioritized channel
contention access). Compared with DCF, EDCA can support quality of service
for real-time applications and therefore has received continuing attention [11,15].
In EDCA, nodes belonging to high-priority (HP) access categories (ACs) are
configured with a maximum contention window (CW) as small as 16, while nodes
belonging to low-priority (LP) ACs are configured with a maximum CW as large
as 1024. Such configurations enable HP nodes to enjoy a high opportunity to
access the channel. In this paper, we consider an EDCA network with one HP
AC and one LP AC (note that when the LP AC does not exist, the EDCA
system reduces to the DCF system). Each AC behaves like a DCF network, and
has two configurable CWs: the minimum and maximum CWs (i.e., Wmin and
Wmax). For simplicity, we assume that Wmin = Wmax; [5] showed that the
802.11 system with such a configuration is similar to the slotted p-persistent
CSMA system and can successfully emulate the 802.11 system with Wmin �=
Wmax.

Our study manifests that the maximum stable throughput is not simply
larger than, less than, or equal to the saturation throughput as argued in
[8,13,17,18]. We show that given the node number, there exists a unique opti-
mal HP CW. The HP throughput is only achieved at the optimal HP CW in
the saturation regime. The optimal HP CW partitions the whole HP CW range
into two intervals: over one interval, the maximum stable HP throughput may
be significantly higher than the saturation throughput; over the other, the max-
imum stable HP throughput is tightly bounded by the saturation throughput.
Most existing related research fails to differentiate the two intervals, implying
that the derived results are inaccurate or hold true partially. This study helps
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utilize the system resources fully; in particular, it shows that the HP AC can
acquire more bandwidth allocations even when it coexists with the LP AC.

The rest of this paper is organized as follows. Section 2 models the exact
and asymptotic HP throughput. Section 3 investigates the maximum stable HP
throughput. Section 4 illustrates the maximum stable HP throughput and verifies
our augments via simulation. Section 6 concludes this paper.

2 HP Throughput

The considered EDCA system, running in the basic mode and ideal channel
conditions, consists of one HP AC and one LP AC. Each node has an infinite
buffer size. All data packets from HP and LP nodes are transmitted to the AP,
and the AP acts purely as the receiver of data packets.

The LP AC has n0 nodes. Each LP node has the same packet size L0 and
always generates a random backoff count uniformly distributed in [0,W0] for each
new transmission or retransmission, where W0 > 1. We assume that each LP
node is in saturation operation (i.e., the node always has packets to transmit)
because here we study the maximum stable throughput that the HP AC can
achieve, regardless of how the LP offered load varies.

The HP AC has n nodes. Each HP node has the same packet size L and
packet arrival rate λ, and always generates a random backoff count uniformly
distributed in [0,W ] for each new transmission or retransmission, where W > 1.

When n0 = 0, the considered EDCA system reduces to a DCF system without
a backoff mechanism.

2.1 Exact HP Throughput

We now express the total throughput of HP nodes.
Let β0 ∈ (0, 1) be the saturated attempt rate (i.e., the number of transmission

attempts per slot) for each LP node and then we have β0 = 2/(W0 +1) from [4].
Let C0 = (1 − β0)n0 be the probability that none of the n0 LP nodes transmits
packets.

Let β ∈ (0, 1) be the general (i.e., saturated or nonsaturated) attempt rate
for each HP node. Let Ω be the mean time that elapses for one decrement of the
backoff counter. Then, we have

Ω = Peσ + PbTb + Pb0Tb0 + PcTc, (1)
where Pe = (1 − β)nC0,

Pb = [1 − (1 − β)n]C0,

Pb0 = (1 − β)n[1 − C0],
Pc = 1 − Pe − Pb − Pb0 .

In (1), Pe is the probability of an idle slot; Pb (Pb0) is the probability that at
least one of the n HP (n0 LP) nodes transmits when none of the n0 LP (n
HP) nodes transmits packets; Pc is the probability of a collision involving both
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Table 1. Parameters for 802.11b basic mode.

HP and LP nodes. σ = 1 slot. Tb (Tb0) � σ is the mean time of a successful
transmission for each HP (LP) node and is assumed to equal the mean time of
a collision involving HP (LP) nodes only; we adopt this assumption for simpli-
fying the analysis and this assumption can be removed easily [20]; Tb (Tb0) can
be calculated by Tpkt(L) in Table 1, where L denotes the packet size of HP or
LP nodes. Tc (= max(Tb, Tb0)) is the mean time for a collision involving both
HP and LP nodes.

Exact HP Throughput : Given the HP node number n and the general HP attempt
rate β, the total HP throughput, Γ (n, β), is defined to be the number of bits
transmitted successfully by HP nodes in the time interval of Ω. Then Γ (n, β) is
expressed as

Γ (n, β) =
PsL

Ω
, (2)

where Ps = nβ(1 − β)n−1C0 is the probability of a successful transmission from
any of the n HP nodes, when none of the n0 LP nodes transmits packets.

Saturated HP Throughput : Let βs be the saturated HP attempt rate, which is
equal to βs = 2/(W + 1) from [4]. We then call Γ (n, βs) the saturated HP
throughput.

2.2 Asymptotic HP Throughput

We call k � nβ ∈ [0,∞) the total HP attempt rate and define a constant η as
follows:

η � − (Tb0 − Tc) + C0(σ − Tb − Tb0 + Tc)
Tc + C0(Tb − Tc)

. (3)

Asymptotic HP Throughput : Let Γ (k) � lim
n→∞ Γ (n, β) be the asymptotic HP

throughput. Theorem 1 below expresses Γ (k) and shows that Γ (k) has a unique
maximum value Γ (kopt), where kopt = argmaxk∈[0,∞) Γ (k) is called the optimal
total HP attempt rate.

Theorem 1. (a) Γ (k) ≥ 0 is continuous in [0,∞) and is given by

Γ (k) =
k

ek − η

C0L

Tc + C0(Tb − Tc)
, (4)

where η ∈ (0, 1).
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Fig. 1. Γ (n, β) and Γ (k) as n and W vary, where k = nβ and β = 1/(W + 1).

(b) Γ (k) is increasing in [0, kopt] and is decreasing (kopt,∞), where

kopt = W0(
−η

e
) + 1, (5)

where W0(·) is one branch of the Lambert W(z) function [6], W (z)eW (z) = z,
for any complex number z.

Proof: Please refer to the Appendix.

In general, Γ (k) can well approximate Γ (n, β) as shown in Fig. 1. Hereafter, we
use Γ (k) as a theoretical proxy for Γ (n, β). The dashed circle curve in Fig. 1
illustrates Γ (k). Note that (i) when k = ks � nβs, we call Γ (ks) the asymptotic
saturated HP throughput and have Γ (ks) ≤ Γ (kopt) obviously, and (ii) when
C0 = 1 and Tb = Tb0 (i.e., no LP nodes exist), kopt reduces to the solution to
(10) in [10].

3 Maximum Stable HP Throughput

Let us define the stable HP throughput first.

Stable HP throughput : The HP throughput Γ (k) is said to be stable if for a given
aggregate input traffic load, nλL, (a) there exists a theoretical k > 0 so that
the total HP throughput Γ (k) = nλL, and (b) the theoretical k is achievable,
namely, all HP nodes are able to jointly and spontaneously tune their respective
CWs to produce such a k.

Remarks: (i) The statement that k is achievable implies Γ (k) = nλL, but the
converse is not true; the difference is that the k in the original statement repre-
sents a realistic value while the k in the converse statement would represent a
theoretical value. (ii) We give an example where k is unachievable. Consider



750 Q. Zhao et al.

Fig. 2. (a) Maximum stable HP throughput and (b) total packet delay in ms when
W varies and Wopt = 348 for a two-AC EDCA network without a backoff mechanism.
Note that W < Wopt corresponds to k > kopt.

the settings n = 50, W = 5 and L = 1000, as shown in Fig. 2. We have
ks = 2n/(W + 1) ≈ 16.7 > kopt = 0.2866. Theoretically, k may assume the
value kopt since k ∈ [0, ks] = [0, kopt]∪ (kopt, ks]. However, k = kopt is unachiev-
able, because the throughput is increasing in k ∈ [0, kopt] and the simulated
maximum stable throughput is about 2.18 Mbps, which is far less than 4.3 Mbps
corresponding to k = kopt. (iii) The statement that k is achievable implies that
the nodes can produce such a k, but not vice versa, because producing a k (say,
k = 0.2866) possibly requires that the offered load should be far larger than the
throughput Γ (k).

Proposition 1 below presents a conjecture about the achievable interval of k.

Proposition 1: there exists a kmax ∈ (0, kopt] ∩ (0, ks] so that k ∈ [0, kmax) is
achievable, k = kmax is not necessarily achievable, and k ∈ (kmax, ks] is unachiev-
able.

From Proposition 1, Γ (kmax) is a tight upper bound on the stable HP
throughput, namely, any traffic load below Γ (kmax) is stable. Note that (i) the
throughput Γ (kmax) might be unstable, meaning that we possibly need to inject
a much higher traffic load than Γ (kmax) in order to attain Γ (kmax); (ii) Γ (kmax)
≤ Γ (kopt) and Γ (kmax) is different from Γ (ks), but they might be equal some-
times, for example, when (0, ks] ⊂ (0, kopt], which will explained later. In the
following, we investigate Γ (kmax) when the HP CW is either statically configured
or dynamically adjustable.

3.1 Two Cases of Maximum Stable HP Throughput

From Theorem 1, given n, there exists an optimal attempt rate, βopt = kopt/n,
where kopt is given by (5). Further, we can calculate the optimal contention
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window, Wopt, as follows.

Wopt =
2

βopt
− 1 =

2n

kopt
− 1.

We point out that Wopt partitions the whole contention window range into
two intervals: [1, Wopt) and (Wopt,∞); for W ∈ [1,Wopt), the maximum sta-
ble HP throughput Γ (kmax) may be significantly higher than the saturation
throughput, while for (Wopt,∞), the maximum stable HP throughput Γ (kmax)
is tightly bounded by the saturation throughput.

We now explain our arguments as follow. Given n and W , the per-node and
total saturated attempt rates are βs = 2/(W + 1) and ks = nβs, respectively.
Γ (kmax) varies depending on the relationship between ks and kopt.

The Case of ks ≤ kopt. When ks ≤ kopt, we conjecture Γ (kmax) = Γ (ks)
because (i) Γ (k) ≤ Γ (ks) for any k ≤ ks from Theorem 1 (b), and (ii) any HP
node can really transmit packets at the attempt rate of βs in saturated operation.

The Case of ks > kopt. When ks > kopt, there exists k0 ∈ [0, kopt] such that
Γ (k0) = Γ (ks) from the intermediate value theorem, since Γ (k) ≥ 0 is continuous
and 0 ≤ Γ (ks) ≤ Γ (kopt). Consequently, we have Γ (k) ≥ Γ (k0) = Γ (ks) for any
k ∈ [k0, kopt] ⊂ [0, ks] since Γ (k) is increasing over [k0, kopt].

Consider the possible situation where kmax ∈ [k0, kopt]. This would imply
that Γ (kmax) ≥ Γ (ks) and that Γ (kmax) would appear before the saturation
operation since kmax ≤ ks. Such a phenomenon has been observed in Fig. 5 in our
previous paper [20] and such a maximum throughput is called the “presaturation
throughput peak” in [18].

However, contrary to the opinion expressed in [18] that such a presaturation
throughput peak might not be sustainable and therefore the traffic load should
be maintained far below the saturation load for DCF with a backoff mechanism,
our simulation results show that for some CW settings, such a presaturation
throughput peak is sustainable. Furthermore, it can be far above the saturation
load, while the total packet delay can be very low. For example, as illustrated
in Fig. 2, when CW = 20 (which is a case of ks > kopt), the simulated maximum
stable throughput = 2.65 Mbps is far larger than the saturation throughput of
0.24 Mbps, while the mean total packet delay is only about 2 ms.

An intuitive explanation is as follows. A very large attempt rate such as that
required for saturated operation can cause too many collisions and lead to a
reduced throughput. By limiting the attempt rate, we can potentially achieve a
higher throughput than the saturated throughput, whilst maintaining stability.
Nevertheless, finding Γ (kmax) is a challenging task in the case when ks > kopt

and we leave this topic for future research.

4 Model Verification

In this section, we validate the effectiveness of the prediction of the maximum
stable HP throughput. We use the TU-Berlin 802.11e simulator [2] in ns2 ver-
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sion 2.28 as a validation tool. In the 802.11e simulator, we disable the binary
exponential backoff algorithm by letting the maximum CW be equal to the min-
imum CW (i.e., Wmax = Wmin), set the retry limit to 7 (setting a larger retry
limit, say 100, just produces a negligible impact on the simulation results by
our experiments), and use the DumbAgent routing protocol, whose header is
40 bytes. The other protocol parameter settings are listed in Table 1. In addi-
tion, we set W0 = 400, n0 = 10, and L0 = 500 bytes for the LP AC unless
otherwise specified.

The target of the simulation is to obtain the maximum stable throughput as
the CW varies. In simulation, the HP throughput Γ (k) is said to be stable if the
error between the input traffic load nλL and the obtained throughput Γ (k) is
less than 1 %, namely,

|Γ (k) − nλL|
nλL

< 1%. (6)

For each simulation value, the running time is 200 seconds when k ≤ kopt,
whereas it is 1000 seconds otherwise to exclude the phenomenon that the sys-
tem once evolves to saturation operation and will never get out of it again, as
explained in Fig. 6 in [18]. Note, however, that we do not observe a distinct
change in simulation results when the simulation time is set to 1000 seconds, in
comparison with 200 seconds. In addition, for readability, we only plot the theo-
retical saturated throughput in Fig. 2, but its accuracy has been widely validated
in [4,19,20].

We ran two experiments to verify our augments. We now explain the two
experiments.

Experiment 1 to illustrate the error between Γ (k) and Γ (n, β): In the first exper-
iment, we demonstrate that the asymptotic throughput Γ (k) can well approxi-
mate the exact throughput Γ (n, β). Theoretically, the approximation condition
is n � β. In practise, the approximation is already good when n is moderately
larger than β, which is readily satisfied. Figure 1 plots Γ (k) and Γ (n, β) for a
two-AC wireless LAN when n = 2, 3, . . . , 20, W = 10, 30, 100 and L = 1000
bytes, where k = nβ = 2n/(W + 1). From this figure, we can see that the
Γ (k) curve closely matches the Γ (n, β) curve for each W even when n = 2.
For example, for n = 2, β = 0.1818, 0.0645, and 0.0198, and the approximation
error = 9 %, 4 %, and 1.5 % when W = 10, 30, 100, respectively. This indicates
that (i) the approximation condition is not restrictive and (ii) the approximation
accuracy increases as W increases.

Experiment 2 to illustrate the relationship between the maximum stable through-
put and the saturation throughput : In the second experiment, we consider Poisson
arrivals and demonstrate the maximum stable HP throughput and the mean total
packet delay when the HP CW is statically configured. In this experiment, we
set n = 50 and L = 1000 bytes. The optimal total HP attempt rate kopt is 0.2866
and therefore the optimal per-node HP CW is Wopt = 348. Figure 2(a) plots the
saturated HP throughput and the simulated maximum stable HP throughput,
while Fig. 2(b) plots the corresponding total packet delay, when W = 5, 10, 20,
60, 100, 348, 360, 400, 700, 1000, 1300, 1600, and 1900. In two subfigure, we
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plot W on a log-scale for readability, but we label the corresponding W value in
linear units near the curve points. Note that since ks = 2n/(W + 1), W < Wopt

implies ks > kopt and, conversely, W > Wopt implies ks < kopt. We now explain
how the experiment was conducted and discuss its result.

– When W ≥ 348, for each W , we increase the input offered load according to
(0.9+j0.05)Γ (k) Mbps as j increases from 1 to 3, and then find the maximum
stable throughput and the corresponding total delay. From the figure, we see
that when W increases from 348 to 1900, the simulated maximum stable HP
throughput decreases while the corresponding delay increases quickly. The
simulation curve of the maximum stable throughput is slightly below the
theoretical curve of the saturation throughput, confirming that the saturation
throughput is a tight upper bound on the stable throughput.

– When W < 348, for each W , we increase the input offered load according to
jΓ (kopt)/8 Mbps as j increases from 1 to 8, and then find the maximum stable
throughput and the corresponding total delay. From the figure, we see that
when W increases from 5 to 100, the simulated throughput increases from
2.1 Mbps to 3.8 Mbps while the corresponding delay increases from 2 ms to
16 ms. In contrast, the theoretical saturation throughput underestimates the
simulation result, especially when W is small. For example, when W = 20,
the predicted throughput value is 0.19 Mbsp while the simulated throughput
is 2.68 Mbps and the simulated delay is 3.8 ms only. This observation suggests
that for some CW settings, the recommendation in [18] calling for operating
a wireless LAN far below the saturation load might be too conservative.

The recommended settings for voice transmission in EDCA are backoff factor =
2, Wmin = 8, and Wmax = 16. As a result, the corresponding mean CW is less
than 20. Even if we were to adopt such Wmin and Wmax settings (including a
backoff mechanism) for HP nodes in our simulations, we can safely deduce that the
saturation throughput will still significantly underestimate the maximum stable
throughput, from the huge gap between the simulated stable throughput and the
theoretical saturation throughput when W ≤ 20 in Fig. 2.

5 Conclusion

In this paper, we investigate the throughput stability in 802.11 networks, and
point out the reasons behinds existing contradictory results. This study pro-
vides new insights on the unsaturation performance and helps utilize the system
resources fully.

6 Appendix

Proof of Theorem 1: We first prove that 0 < η < 1. Note that Tc = max(Tb, Tb0)
� σ and 0 < C0 < 1. If Tb ≥ Tb0 , then 0 < η = (Tb−Tb0 )+C0(Tb0−σ)

Tb
< Tb−σ

Tb
< 1.
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If Tb < Tb0 , then 0 < η = C0(Tb−σ)
(1−C0)Tb0+C0Tb

< C0Tb

(1−C0)Tb0+C0Tb
< 1. Next we prove

(a) and (b).
(a) When n → ∞, noting k = lim

n→∞(n − 1)β if k exists, and applying the

Poisson distribution to approximate the binomial distributions in (1), we have

lim
n→∞ Pe = e−kC0, lim

n→∞ Ps = ke−kC0,

lim
n→∞ Pb = (1 − e−k)C0, lim

n→∞ Pb0 = e−k(1 − C0),

lim
n→∞ Pc = (1 − C0)(1 − e−k),

lim
n→∞ Ω = Tc + C0(Tb − Tc) +

C0(σ − Tb) + (1 − C0)(Tb0 − Tc)
ek

.

Then, (4) is derived from Γ (k) = lim
n→∞ PsL/Ω.

(b) To maximize Γ (k), we set the first derivative of Γ (k) to zero and have
k = 1 − ηe−k, and hence (k − 1)ek−1 = −ηe−1. Then k − 1 = W0(−ηe−1) or
W−1(−η

e ). We have kopt = W0(−ηe−1) + 1 ≥ 0, since only W0(−ηe−1) > −1 for
−ηe−1 ∈ (−1/e, 0). �
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