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Abstract. Spiking neural P (in short, SNP) systems are computing
devices inspired by biological spiking neurons. In this work we consider
SNP systems with structural plasticity (in short, SNPSP systems) work-
ing in the asynchronous (in short, asyn mode). SNPSP systems represent
a class of SNP systems that have dynamic synapses, i.e. neurons can use
plasticity rules to create or remove synapses. We prove that for asyn
mode, bounded SNPSP systems (where any neuron produces at most
one spike each step) are not universal, while unbounded SNPSP systems
with weighted synapses (a weight associated with each synapse allows a
neuron to produce more than one spike each step) are universal. The lat-
ter systems are similar to SNP systems with extended rules in asyn mode
(known to be universal) while the former are similar to SNP systems with
standard rules only in asyn mode (conjectured not to be universal). Our
results thus provide support to the conjecture of the still open problem.

Keywords: Membrane computing · Spiking neural P systems · Struc-
tural plasticity · Asynchronous systems · Turing universality

1 Introduction

Spiking neural P systems (in short, SNP systems) are parallel, distributed,
and nondeterministic devices introduced into the area of membrane comput-
ing in [7]. Neurons are often drawn as ovals, and they process only one type
of object, the spike signal represented by a. Synapses between neurons are the
arcs between ovals: neurons are then placed on the vertices of a directed graph.
Since their introduction, several lines of investigations have been produced,
e.g. (non)deterministic computing power in [7,13]; language generation in [4];
function computing devices in [11]; solving computationally hard problems in
[9]. Many neuroscience inspirations have also been included for computing use,
producing several variants (to which the previous investigation lines are also
applied), e.g. use of weighted synapses [15], neuron division and budding [9], the
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use of astrocytes [10]. Furthermore, many restrictions have been applied to SNP
systems (and variants), e.g. asynchronous SNP systems as in [3,6] and [14], and
sequential SNP systems as in [6].

In this work the variant we consider are SNP systems with structural plas-
ticity, in short, SNPSP systems. SNPSP systems were first introduced in [1],
then extended and improved in [2]. The biological motivation for SNPSP sys-
tems is structural plasticity, one form of neural plasticity, and distinct from
the more common functional (Hebbian) plasticity. SNPSP systems represent a
class of SNP systems using plasticity rules: synapses can be created or deleted
so the synapse graph is dynamic. The restriction we apply to SNPSP systems
is asynchronous operation: imposing synchronization on biological functions is
sometimes “too much”, i.e. not alway realistic. Hence, the asynchronous mode
of operation is interesting to consider. Such restriction is also interesting math-
ematically, and we refer the readers again to [3,6] and [14] for further details.

In this work we prove that (i) asynchronous bounded (i.e. there exists a
bound on the number of stored spikes in any neuron) SNPSP systems are not
universal, (ii) asynchronous weighted (i.e. a positive integer weight is associ-
ated with each synapse) SNPSP systems, even under a normal form (provided
below), are universal. The open problem in [3] whether asynchronous bounded
SNP systems with standard rules are universal is conjectured to be false. Also,
asynchronous SNP systems with extended rules are known to be universal [5].
Our results provide some support to the conjecture, since neurons in SNPSP
systems produce at most one spike each step (similar to standard rules) while
synapses with weights function similar to extended rules (more than one spike
can be produced each step). This work is organized as follows: Section 2 provides
preliminaries for our results; syntax and semantics of SNPSP systems are given
in Sect. 3; our (non)universality results are given in Sect. 4. Lastly, we provide
final remarks and further directions in Sect. 5.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane com-
puting (a good introduction is [12] with recent results and information in the
P systems webpage (http://ppage.psystems.eu/) and a recent handbook [13] )
and formal language theory (available in many monographs). We only briefly
mention notions and notations which will be useful throughout the paper.

We denote the set of positive integers as N = {1, 2, . . .}. Let V be an alphabet,
V ∗ is the set of all finite strings over V with respect to concatenation and the
identity element λ (the empty string). The set of all non-empty strings over V
is denoted as V + so V + = V ∗ − {λ}. If V = {a}, we simply write a∗ and a+

instead of {a}∗ and {a}+. If a is a symbol in V , we write a0 = λ and we write
the language generated by a regular expression E over V as L(E).

In proving computational universality, we use the notion of register machines.
A register machine is a construct M = (m, I, l0, lh, R), where m is the number
of registers, I is the set of instruction labels, l0 is the start label, lh is the halt

http://ppage.psystems.eu/
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label, and R is the set of instructions. Every label li ∈ I uniquely labels only
one instruction in R. Register machine instructions have the following forms:

– li : (ADD(r), lj , lk), increase n by 1, then nondeterministically go to lj or lk;
– li : (SUB(r), lj , lk), if n ≥ 1, then subtract 1 from n and go to lj , otherwise

perform no operation on r and go to lk;
– lh : HALT, the halt instruction.

Given a register machine M , we say M computes or generates a number
n as follows: M starts with all its registers empty. The register machine then
applies its instructions starting with the instruction labeled l0. Without loss of
generality, we assume that l0 labels an ADD instruction, and that the content of
the output register is never decremented, only added to during computation, i.e.
no SUB instruction is applied to it. If M reaches the halt instruction lh, then
the number n stored during this time in the first (also the output) register is
said to be computed by M . We denote the set of all numbers computed by M
as N(M). It was proven that register machines compute all sets of numbers
computed by a Turing machine, therefore characterizing NRE [8]. A strongly
monotonic register machine is one restricted variant: it has only one register
which is also the output register. The register initially stores zero, and can only
be incremented by 1 at each step. Once the machine halts, the value stored in
the register is said to be computed. It is known that strongly monotonic register
machines characterize SLIN , the family of length sets of regular languages.

3 Spiking Neural P Systems with Structural Plasticity

In this section we define SNP systems with structural plasticity. Initial moti-
vations and results for SNP systems are included in the seminal paper in [7].
A spiking neural P system with structural plasticity (SNPSP system) of degree
m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over

O, c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . , m} − {i};
– syn ⊆ {1, . . . , m} × {1, . . . , m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
– out ∈ {1, . . . , m} indicate the output neuron.

Given neuron σi (we also say neuron i or simply σi) we define the set of
presynaptic (postsynaptic, resp.) neurons pres(i) = {j|(i, j) ∈ syn} (as pos(i) =
{j|(j, i) ∈ syn}, resp.). Spiking rule semantics in SNPSP systems are similar
with SNP systems in [7]. In this work we do not use forgetting rules (rules of
the form as → λ) or rules with delays of the form E/ac → a; d for some d ≥ 1.
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Spiking rules (also known as standard rules) are applied as follows: If neuron σi

contains b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri can
be applied. Applying such a rule means consuming c spikes from σi, thus only
b− c spikes remain in σi. Neuron i sends one spike to every neuron with label in
pres(i) at the same step as rule application. A nonzero delay d means that if σi

spikes at step t, then neurons receive the spike at t + d. Spikes sent to σi from t
to t + d − 1 are lost (i.e. σi is closed), and σi can receive spikes (i.e. σi is open)
and apply a rule again at t + d and t + d + 1, respectively. If a rule E/ac → a
has L(E) = {ac}, we simply write this as ac → a. Extended rules are of the form
E/ac → ap, p ≥ 1, where more than one spike can be produced.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N
is a collection of neurons to which σi can connect to or disconnect from using
the applied plasticity rule. The rule application consumes c spikes and performs
one of the following, depending on α:

– If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created or
removed. Notice that with these semantics, a plasticity rule functions similar
to a forgetting rule, i.e. the former can be used to consume spikes without
producing any spike.

– for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every
σl, l ∈ Nj − pres(i). If however |N − pres(i)| > k, nondeterministically select
k neurons in N − pres(i), and create one synapse to each selected neuron.

– for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i). If
however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If α ∈ {±,∓} : create (respectively, delete) synapses at step t and then delete
(respectively, create) synapses at step t + 1. Only the priority of application
of synapse creation or deletion is changed, but the application is similar to
α ∈ {+,−}. Neuron i is always open from t until t + 1, but σi can only apply
another rule at time t + 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves an embedded sending of one spike when σi connects to
a neuron. This single spike is sent at the time the synapse creation is applied,
i.e. whenever σi attaches to σj using a synapse during synapse creation, we have
σi immediately transferring one spike to σj .

Let t be a step during a computation: we say a σi is activated at step t
if there is at least one r ∈ Ri that can be applied; σi is simple if |Ri| = 1,
with a nice biological and computing interpretation, i.e. some neurons do not
need to be complex, but merely act as spike repositories or relays. We have
the following nondeterminism levels: rule-level, if at least one neuron has at
least two rules with regular expressions E1 and E2 such that E1 	= E2 and
L(E1) ∩ L(E2) 	= ∅; synapse-level, if initially Π has at least one σi with a
plasticity rule where k < |N − pres(i)|; neuron-level, if at least one activated
neuron with rule r can choose to apply its rule r or not (i.e. asynchronous).
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By default SNP and SNPSP systems are locally sequential (at most one
rule is applied per neuron) but globally parallel (all activated neurons must
apply a rule). The application of rules in neurons is usually synchronous, i.e. a
global clock is assumed. However, in the asynchronous (asyn, in short) mode
we release this synchronization so that neuron-level nondeterminism is implied.
A configuration of an SNPSP system is based on (a) distribution of spikes in
neurons, and (b) neuron connections based on syn. For some step t, we can
represent: (a) as 〈s1, . . . , sm〉 where si, 1 ≤ i ≤ m, is the number of spikes
contained in σi; for (b) we can derive pres(i) and pos(i) from syn, for a given
σi. The initial configuration therefore is represented as 〈n1, . . . , nm〉, with the
possibility of a disconnected graph, or syn = ∅. A computation is defined as a
sequence of configuration transitions, from an initial configuration, and following
rule application semantics. A computation halts if the system reaches a halting
configuration, i.e. no rules can be applied and all neurons are open.

A result of a computation can be defined in several ways in SNP systems
literature. For SNP systems in asyn mode however, and as in [3,5,14], the output
is obtained by counting the total number of spikes sent out by σout to the
environment (in short, Env) upon reaching a halting configuration. We refer
to Π as generator, if Π computes in this asynchronous manner. Π can also work
as an acceptor but this is not given in this work.

For our universality results, the following simplifying features are used in our
systems as the normal form: (i) plasticity rules can only be found in purely plas-
tic neurons (i.e. neurons with plasticity rules only), (ii) neurons with standard
rules are simple, and (iii) we do not use forgetting rules or rules with delays.
We denote the family of sets computed by asynchronous SNPSP systems (under
the mentioned normal form) as generators as NtotSNPSP asyn: subscript tot
indicates the total number of spikes sent to Env as the result; Other parameters
are as follows: +synk (−synj , respectively) where at most k (j, resp.) synapses
are created (deleted, resp.) each step; ndβ , β ∈ {syn, rule, neur} indicate addi-
tional levels of nondeterminism source; rulem indicates at most m rules (either
standard or plasticity) per neuron; Since our results for k and j for +synk and
−synj are equal, we write them instead in the compressed form ±synk, where
± in this sense is not the same as when α := ±. A bound p on the number of
spikes stored in any neuron of the system is denoted as boundp. We omit ndneur

from writing since it is implied in asyn mode.

Fig. 1. An SNPSP system Πej .

To illustrate the notions and semantics in SNPSP systems, we take as an
example the SNPSP system Πej of degree 4 in Fig. 1, and describe its compu-
tations. The initial configuration is as follows: spike distribution is 〈1, 0, 0, 1〉 for
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the neuron order σi, σj , σk, σl, respectively; syn = {(j, k), (k, l)}; output neuron
is σl, indicated by the outgoing synapse to Env.

Given the initial configuration, σi and σl can become activated. Due to asyn
mode however, they can decide to apply their rules at a later step. If σl applies
its rule before it receives a spike from σi, then it will spike to Env twice so that
Ntot(Πej) = {2}. Since k = 1 < |{j, k}| and pres(i) = ∅, σi nondeterministically
selects whether to create synapse (i, j) or (i, k); if (i, j) ((i, k), resp.) is created;
a spike is sent from σi to σj (σk, resp.) due to the embedded sending of a spike
during synapse creation. Let this be step t. If (i, j) is created then syn′ :=
syn ∪ {(i, j)}, otherwise syn′′ := syn ∪ {(i, k)}. At t + 1, σi deletes the created
synapse at t (since α := ±), and we have syn again. Note that if σl does not
apply its rule and collects two spikes (one spike from σi), the computation is
aborted or blocked, i.e. no output is produced since a2 /∈ L(a).

4 Main Results

In this section we use at most two nondeterminism sources: ndneur (in asyn
mode), and ndsyn. Recall that in asyn mode, if σi is activated at step t so that
an r ∈ Ri can be applied, σi can choose to apply r or not. If σi did not choose
to apply r, σi can continue to receive spikes so that for some t′ > t, it is possible
that: r can never be applied again, or some r′ ∈ Ri, r

′ 	= r, is applied.
For the next result, each neuron can store only a bounded number of spikes

(see for example [3,6,7] and references therein). In [6], it is known that bounded
SNP systems with extended rules in asyn mode characterize SLIN , but it is open
whether such result holds for systems with standard rules only. In [3], a negative
answer was conjectured for the following open problem: are asynchronous SNP
systems with standard rules universal? First, we prove that bounded SNPSP
systems in asyn mode characterize SLIN , hence they are not universal.

Lemma 1. NtotSNPSP asyn(boundp, ndsyn) ⊆ SLIN, p ≥ 1.

Proof. Taking any asynchronous SNPSP system Π with a given bound p on the
number of spikes stored in any neuron, we observe that the number of possible
configurations is finite: Π has a constant number of neurons, and that the number
of spikes stored in each neuron are bounded. We then construct a right-linear
grammar G, such that Π generates the length set of the regular language L(G).
Let us denote by C the set of all possible configurations of Π, with C0 being the
initial configuration. The right-linear grammar G = (C, {a}, C0, P ), where the
production rules in P are as follows:

(1) C → C ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron does not spike;

(2) C → aC ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron spikes;

(3) C → λ, for any C ∈ C in which Π halts.
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Due to the construction of G, Π generates the length set of L(G), hence the
set is semilinear. ��
Lemma 2. SLIN ⊆ NtotSNPSP asyn(boundp, ndsyn), p ≥ 1.

The proof is based on the following observation: A set Q is semilinear if and
only if Q is generated by a strongly monotonic register machine M . It suffices to
construct an SNPSP system Π with restrictions given in the theorem statement,
such that Π simulates M . Recall that M has precisely register 1 only (it is also
the output register) and addition instructions of the form li : (ADD(1), lj , lk). The
ADD module for Π is given in Fig. 2. Next, we describe the computations in Π.

Fig. 2. Module ADD simulating li : (ADD(1) : lj , lk) in the proof of Lemma 2

Once ADD instruction li of M is applied, σli is activated and it sends one spike
each to σ1 and σl1i

. At this point we have two possible cases due to asyn mode,
i.e. either σ1 spikes to Env before σl1i

spikes, or after. If σ1 spikes before σl1i
,

then the number of spikes in Env is immediately incremented by 1. After some
time, the computation will proceed if σl1i

applies its only (plasticity) rule. Once
σl1i

applies its rule, either σlj or σlk becomes nondeterministically activated.
However, if σ1 spikes after σl1i

spikes, then the number of spikes in Env is not
immediately incremented by 1 since σ1 does not consume a spike and fire to Env.
The next instruction, either lj or lk, is then simulated by Π. Furthermore, due
to asyn mode, the following “worst case” computation is possible: σlh becomes
activated (corresponding to lh in M being applied, thus halting M) before σ1

spikes. In this computation, M has halted and has applied an m number of
ADD instructions since the application of li. Without loss of generality we can
have the arbitrary bound p > m, for some positive integer p. We then have
the output neuron σ1 storing m spikes. Since the rules in σ1 are of the form
aq/a → a, 1 ≤ q ≤ p, σ1 consumes one spike at each step it decides to apply a
rule, starting with rule am/a → a, until rule a → a. Thus, Π will only halt once
σ1 has emptied all spikes it stores, sending m spikes to Env in the process.

The FIN module is not necessary, and we add σlh without any rule (or main-
tain pres(lh) = ∅). Once M halts by reaching instruction lh, a spike in Π is sent
to neuron lh. Π is clearly bounded: every neuron in Π can only store at most p
spikes, at any step. We then have Π correctly simulating the strongly monotonic
register machine M . This completes the proof. ��

From Lemmas 1 and 2, we can have the next result.
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Theorem 1. SLIN = NtotSNPSP asyn(boundp, ndsyn), p ≥ 1.

Next, in order to achieve universality, we add an additional ingredient to asynchro-
nous SNPSP systems: weighted synapses. The ingredient of weighted synapses has
already been introduced in SNP systems literature, and we refer the reader to [15]
(and references therein) for computing and biological motivations. In particular,
if σi applies a rule E/ac → ap, and the weighted synapse (i, j, r) exists (i.e. the
weight of synapse (i, j) is r) then σj receives p × r spikes.

It seems natural to consider weighted synapses for asynchronous SNPSP
systems: since asynchronous SNPSP systems are not universal, we look for other
ways to improve their power. SNPSP systems with weighted synapses (in short,
WSNPSP systems) are defined in a similar way as SNPSP systems, except for
the plasticity rules and the synapse set. Plasticity rules in σi are now of the form

E/ac → αk(i,N, r),

where r ≥ 1, and E, c, α, k,N are as previously defined. Every synapse created
by σi using a plasticity rule with weight r receives the weight r. Instead of one
spike sent from σi to a σj during synapse creation, j ∈ N , r spikes are sent to
σj . The synapse set is now of the form

syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × N.

We note that SNPSP systems are special cases of SNPSP systems with
weighted synapses where r = 1, and when r = 1 we omit it from writing. In
weighted SNP systems with standard rules, the weights can allow neurons to
produce more than one spike each step, similar to having extended rules. In this
way, our next result parallels the result that asynchronous SNP systems with
extended rules are universal in [5]. However, our next result uses ndsyn with
asyn mode, while in [5] their systems use ndrule with asyn mode. We also add
the additional parameter l in our universality result, where the synapse weight
in the system is at most l. Our universality result also makes use of the normal
form given in Sect. 3.

Theorem 2. NtotWSNPSP asyn(rulem,±synk, weightl, ndsyn) = NRE,m ≥
9, k ≥ 1, l ≥ 3.

Proof. We construct an asynchronous SNPSP system with weighted synapses Π,
with restrictions given in the theorem statement, to simulate a register machine
M . The general description of the simulation is as follows: each register r of
M corresponds to σr in Π. If register r stores the value n, σr stores 2n spikes.
Simulating instruction li : (OP(r) : lj , lk) of M in Π corresponds to σli becoming
activated. After σli is activated, the operation OP is performed on σr, and σlj

or σlk becomes activated. We make use of modules in Π to perform addition,
subtraction, and halting of the computation.

Module ADD: The module is shown in Fig. 3. At some step t, σli sends a spike
to σl1i

. At some t′ > t, σl1i
sends a spike: the spike sent to σr is multiplied by two,
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while 1 spike is received by σl2i
. For now we omit further details for σr, since it

is never activated with an even number of spikes.
At some t′′ > t′, σl2i

nondeterministically creates (then deletes) either (l2i , lj)
or (l2i , lk). The chosen synapse then allows either σlj or σlk to become acti-
vated. The ADD module thus increments the contents of σr by 2, simulating the
increment by 1 of register r. Next, only one among σlj or σlk becomes nonde-
terministically activated. The addition operation is correctly simulated.

Fig. 3. Module ADD simulating li : (ADD(r) : lj , lk) in the proof of Theorem 2.

Module SUB: The module is shown in Fig. 4. Let |Sr| be the number of instruc-
tions with form li : (SUB(r), lj , lk), and 1 ≤ s ≤ |Sr|. |Sr| is the number of SUB
instructions operating on register r, and we explain in a moment why we use a
size of a set for this number. Clearly, when no SUB operation is performed on r,
then |Sr| = 0, as in the case of register 1. At some step t, σli spikes, sending 1
spike to σr, and 4|Sr| − s spikes to σl1i

(the weight of synapse (li, l1i )).

Fig. 4. Module SUB simulating li : (SUB(r) : lj , lk) in the proof of Theorem 2.

σl1i
has rules of the form ap → −1(l1i , {r}, 1), for 3|Sr| ≤ p < 8|Sr|. When

one of these rules is applied, it performs similar to a forgetting rule: p spikes are
consumed and deletes a nonexisting synapse (l1i , r). Since σl1i

received 4|Sr| − s
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spikes from σli , and 3|Sr| ≤ 4|Sr| − s < 8|Sr|, then one of these rules can be
applied. If σl1i

applies one of these rules at t′ > t, no spike remains. Otherwise,
the 4|Sr| − s spikes can combine with the spikes from σr at a later step.

In the case where register r stores n = 0 (respectively, n ≥ 1), then instruc-
tion lk (respectively, lj) is applied next. This case corresponds to σr applying
the rule with E = a (respectively, E = a(a2)+), which at some later step allows
σlk (respectively, σlj ) to be activated.

For the moment let us simply define Sr = {l1i }. For case n = 0 (respectively,
n ≥ 1), σr stores 0 spikes (respectively, at least 2 spikes), so that at some t′′ > t
the synapse (r, l1i , 5|Sr| + s) (respectively, (r, l1i , 4|Sr| + s)) is created and then
deleted. σl1i

then receives 5|Sr| + s spikes (respectively, 4|Sr| + s spikes) from
σr. Note that we can have t′′ ≥ t′ or t′′ ≤ t′, due to asyn mode, where t′ is
again the step that σl1i

applies a rule. If σl1i
previously removed all of its spikes

using its rules with E = ap, then it again removes all spikes from σr because
3|Sr| ≤ x < 8|Sr|, where x ∈ {4|Sr| + s, 5|Sr| + s}. At this point, no further
rules can be applied, and the computation aborts, i.e. no output is produced. If
however σl1i

did not remove its spikes previously, then it collects a total of either
8|Sr| or 9|Sr| spikes. Either σlj or σlk is then activated by σl1i

at a step after t′′.
To remove the possibility of “wrong” simulations when at least two SUB

instructions operate on register r, we give the general definition of Sr: Sr = {l1v|lv
is a SUB instruction on register r}. In the SUB module, a rule application in σr

creates (and then deletes) an |Sr| number of synapses: one synapse from σr to all
neurons with label l1v ∈ Sr. Again, each neuron with label l1v can receive either
4|Sr| + s, or 5|Sr| + s spikes from σr, and 4|Sr| − s spikes from σlv .

Let li be the SUB instruction that is currently being simulated in Π. In order
for the correct computation to continue, only σl1i

must not apply a rule with
E = ap, i.e. it must not remove any spikes from σr or σli . The remaining |Sr|−1
neurons of the form l1v must apply their rules with E = ap and remove the spikes
from σr. Due to asyn mode, the |Sr| − 1 neurons can choose not to remove
the spikes from σr: these neurons can then receive further spikes from σr in
future steps, in particular they receive either 4|Sr| + s′ or 5|Sr| + s′ spikes, for
1 ≤ s′ ≤ Sr; these neurons then accumulate a number of spikes greater than
8|Sr| (hence, no rule with E = ap can be applied), but not equal to 8|Sr| or
9|Sr| (hence, no plasticity rule can be applied). Similarly, if these spikes are
not removed, and spikes from σlv′ are received, v 	= v′ and lv′ ∈ Sr, no rule
can again be applied: if lv′ is the s′th SUB instruction operating on register r,
then s 	= s′ and σlv′ accumulates a number of spikes greater than 8|Sr| (the
synapse weight of (lv′ , l1v′) is 4|Sr| − s′), but not equal to 8|Sr| or 9|Sr|. No
computation can continue if the |Sr| − 1 neurons do not remove their spikes
from σr, so computation aborts and no output is produced. This means that
only the computations in Π that are allowed to continue are the computations
that correctly simulate a SUB instruction in M .

The SUB module correctly simulates a SUB instruction: instruction lj is sim-
ulated only if r stores a positive value (after decrementing by 1 the value of r),
otherwise instruction lk is simulated (the value of r is not decremented).
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Module FIN: The module FIN for halting the computation of Π is shown
in Fig. 5. The operation of the module is clear: once M reaches instruction lh
and halts, σlh becomes activated. Neuron lh sends a spike to σ1, the neuron
corresponding to register 1 of M . Once the number of spikes in σ1 become odd
(of the form 2n + 1, where n is the value stored in register 1), σ1 keeps applying
its only rule: at every step, 2 spikes are consumed, and 1 spike is sent to Env. In
this way, the number n is computed since σ1 will send precisely n spikes to Env.

The ADD module has ndsyn: initially it has pres(l2i ) = ∅, and its k = 1 < |N |.
We also observe the parameter values: m is at least 9 by setting |Sr| = 1, then
adding the two additional rules in σl1i

; k is clearly at least 1; lastly, the synapse
weight l is at least 3 by again setting |Sr| = 1. This completes the proof. ��

Fig. 5. Module FIN in the proof of Theorem 2.

5 Conclusions and Final Remarks

In [5] it is known that asynchronous SNP systems with extended rules are uni-
versal, while the conjecture is that asynchronous SNP systems with standard
rules are not [3]. In Theorem 1, we showed that asynchronous bounded SNPSP
systems are not universal where, similar to standard rules, each neuron can only
produce at most one spike each step. In Theorem 2, asynchronous WSNPSP
systems are shown to be universal. In WSNPSP systems, the synapse weights
perform a function similar to extended rules in the sense that a neuron can pro-
duce more than one spike each step. Our results thus provide support to the
conjecture about the nonuniversality of asynchronous SNP systems with stan-
dard rules. It is also interesting to realize the computing power of asynchronous
unbounded (in spikes) SNPSP systems.

It can be argued that when α ∈ {±,∓}, the synapse creation (resp., deletion)
immediately followed by a synapse deletion (resp., creation) is another form of
synchronization. Can asynchronous WSNPSP systems maintain their computing
power, if we further restrict them by removing such semantic? Another inter-
esting question is as follows: in the ADD module in Theorem 2, we have ndsyn.
Can we still maintain universality if we remove this level, so that ndneur in asyn
mode is the only source of nondeterminism? In [5] for example, the modules used
asyn mode and ndrule, while in [14], only asyn mode was used (but with the
use of a new ingredient called local synchronization).

In Theorem 2, the construction is based on the value |Sr|. Can we have a
uniform construction while maintaining universality? i.e. can we construct a Π
such that N(Π) = NRE, but is independent on the number of SUB instructions
of M? Then perhaps parameters m and l in Theorem 2 can be reduced.
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5. Cavaliere, M., Ibarra, O., Păun, G., Egecioglu, O., Ionescu, M., Woodworth, S.:
Asynchronous spiking neural P systems. Theor. Com. Sci. 410, 2352–2364 (2009)

6. Ibarra, O.H., Woodworth, S.: Spiking neural P systems: some characterizations. In:
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