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Abstract. In this paper, a recent computational methodology is
described. It has been introduced with the intention to allow one to work
with infinities and infinitesimals numerically in a unique computational
framework. It is based on the principle ‘The part is less than the whole’
applied to all quantities (finite, infinite, and infinitesimal) and to all sets
and processes (finite and infinite). The methodology uses as a computa-
tional device the Infinity Computer (patented in USA and EU) working
numerically with infinite and infinitesimal numbers that can be written
in a positional system with an infinite radix. On a number of examples
dealing mainly with infinite sets and Turing machines with different infi-
nite tapes it is shown that it becomes possible to execute a fine analysis
of these mathematical objects. The accuracy of the obtained results is
continuously compared with results obtained by traditional tools used to
work with mathematical objects involving infinity.

Keywords: Numbers and numerals · Numerical infinities and infinites-
imals · Infinite sets · Turing machines · Infinite sequences

1 Introduction

There exists an important distinction between numbers and numerals. A numeral
is a symbol (or a group of symbols) that represents a number. A number is a con-
cept that a numeral expresses. The same number can be represented by different
numerals. For example, the symbols ‘10’, ‘ten’, ‘IIIIIIIIII’,‘X’, ‘ .=’, and ‘̃I’ are
different numerals, but they all represent the same number1. Rules used to write
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1 The last two numerals,
.
= and Ĩ, are probably less known. The former belongs to

the Maya numeral system where one horizontal line indicates five and two lines one
above the other indicate ten. Dots are added above the lines to represent additional
units. For instance,

.
= means eleven in this numeral system. The latter symbol, Ĩ,

belongs to the Cyrillic numeral system derived from the Cyrillic script. This numeral
system was developed in the late Xth century and was used by South and East Slavic
peoples. The system was used in Russia as late as the early XV IIIth century when
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down numerals together with algorithms for executing arithmetical operations
form a numeral system.

In our everyday activities with finite numbers the same finite numerals are
used for different purposes (e.g., the same numeral 10 can be used to express the
number of elements of a set, to indicate the position of an element in a sequence,
and to execute practical computations). In contrast, when we face the necessity
to work with infinities or infinitesimals, the situation changes drastically. In fact,
in this case different numerals are used to work with infinities and infinitesimals
in different situations. To illustrate this fact it is sufficient to mention that we
use the symbol ∞ in standard analysis, ω for working with ordinals, ℵ0,ℵ1, ...
for dealing with cardinalities.

Many theories dealing with infinite and infinitesimal quantities have a sym-
bolic (not numerical) character. For instance, many versions of non-standard
analysis (see [23]) are symbolic, since they have no numeral systems to express
their numbers by a finite number of symbols (the finiteness of the number of
symbols is necessary for organizing numerical computations). Namely, if we con-
sider a finite n than it can be taken n = 134, or n = 65 or any other numeral
used to express finite quantities and consisting of a finite number of symbols.
In contrast, if we consider a non-standard infinite m then it is not clear which
numerals can be used to assign a concrete value to m.

Analogously, in non-standard analysis, if we consider an infinitesimal h then
it is not clear which numerals consisting of a finite number of symbols can be
used to assign a value to h and to write h = ... In fact, very often in non-
standard analysis texts, a generic infinitesimal h is used and it is considered as
a symbol, i.e., only symbolic computations can be done with it. Approaches of
this kind leave unclear such issues, e.g., whether the infinite 1/h is integer or
not or whether 1/h is the number of elements of an infinite set. If one wishes to
consider two infinitesimals h1 and h2 then it is not clear how to compare them
because numeral systems that can express infinitesimals are not provided by
non-standard analysis techniques. In fact, when we work with finite quantities,
then we can compare x and y if they assume numerical values, e.g., x = 25 and
y = 78 then, by using rules of the numeral system the symbols 25 and 78 belong
to, we can compute that y > x.

Even though there exist codes allowing one to work symbolically with ∞ and
other symbols related to the concepts of infinity and infinitesimals, traditional
computers work numerically only with finite numbers and situations where the
usage of infinite or infinitesimal quantities is required are studied mainly theo-
retically (see [2,3,8,10,11,15,16,23,45] and references given therein). The fact
that numerical computations with infinities and infinitesimals have not been
implemented so far on computers can be explained by several difficulties. Obvi-
ously, among them we can mention the fact that arithmetics developed for this
purpose are quite different with respect to the way of computing we use when

it was replaced with Arabic numerals. To distinguish numbers from text, a titlo, ,̃ is
drawn over the symbols showing so that this is a numeral and, therefore, it represents
a number and not just a character of text.
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we deal with finite quantities. For instance, there exist undetermined operations
(∞−∞, ∞

∞ , etc.) that are absent when we work with finite numbers. There exist
also practical difficulties that preclude an implementation of numerical compu-
tations with infinity and infinitesimals. For example, it is not clear how to store
an infinite quantity in a finite computer memory.

A computational methodology introduced recently in [26,32,36,40] allows
one to look at infinities and infinitesimals in a new way and to execute numer-
ical computations with infinities and infinitesimals on the Infinity Computer
patented in USA (see [30]) and other countries. Moreover, this approach proposes
a numeral system that uses the same numerals for several different purposes for
dealing with infinities and infinitesimals: for measuring infinite sets; for indicat-
ing positions of elements in ordered infinite sequences; for working with functions
and their derivatives that can assume different infinite, finite, and infinitesimal
values and can be defined over infinite and infinitesimal domains; for describing
Turing machines, etc.

An international scientific community developing a number of interesting
theoretical and practical applications in several research areas by using the new
methodology grows rapidly. Among these studies it is worthy to mention papers
connecting the new approach to the historical panorama of ideas dealing with
infinities and infinitesimals (see [17–19,41]). In particular, relations of the new
approach to bijections are studied in [19] and metamathematical investigations
on the new theory and its non-contradictory can be found in [18]. Then, the new
methodology has been applied for studying Euclidean and hyperbolic geometry
(see [20,21]), percolation (see [12,13,44]), fractals (see [25,27,35,44]), numer-
ical differentiation and optimization (see [4,28,33,47]), infinite series and the
Riemann zeta function (see [29,34,46]), the first Hilbert problem, Turing
machines, and lexicographic ordering (see [31,39,41–43]), cellular automata (see
[5–7]), ordinary differential equations (see [37,38]), etc. The interested reader is
invited to have a look also at surveys [26,32,36] and the book [24] written in a
popular way.

In this paper, we briefly describe the new methodology and the numeral
system showing how they can be used in a number of situations where infinities
and infinitesimals are useful. Infinite sets, bijections, and Turing machines are
mainly discussed.

2 Numeral Systems, their Accuracy, and Numbers
they can Express

It is necessary to remind that different numeral systems can express different
sets of numbers and they can be more or less suitable for executing arithmetical
operations. Even the powerful positional system is not able to express, e.g.,
the number

√
2 by a finite number of symbols (the finiteness is essential for

executing numerical computations) and this special numeral,
√

2, is deliberately
introduced to express the desired quantity. There exist many numeral systems
that are weaker than the positional one. For instance, Roman numeral system
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is not able to express zero and negative numbers and such expressions as III –
VIII or X-X are indeterminate forms in this numeral system. As a result, before
appearing the positional numeral system and inventing zero mathematicians
were not able to create theorems involving zero and negative numbers and to
execute computations with them. Thus, numeral systems seriously bound the
possibilities of human beings to compute and developing new, more powerful
than existing ones, numeral systems can help a lot both in theory and practice
of computations.

Even though Roman numeral system is weaker than the positional one it
is not the weakest numeral system. There exist really feeble numeral systems
allowing their users to express very few numbers and one of them is illuminating
for our study. This numeral system is used by a tribe, Pirahã, living in Amazonia
nowadays. A study published in Science in 2004 (see [9]) describes that these
people use an extremely simple numeral system for counting: one, two, many.
For Pirahã, all quantities larger than two are just ‘many’ and such operations
as 2+2 and 2+1 give the same result, i.e., ‘many’. Using their weak numeral
system Pirahã are not able to see, for instance, numbers 3, 4, and 5, to execute
arithmetical operations with them, and, in general, to say anything about these
numbers because in their language there are neither words nor concepts for that.

It is worthy to mention that the result ‘many’ is not wrong. It is just inaccu-
rate. Analogously, when we observe a garden with 343 trees, then both phrases:
‘There are 343 trees in the garden’ and ‘There are many trees in the garden’ are
correct. However, the accuracy of the former phrase is higher than the accuracy
of the latter one. Thus, the introduction of a numeral system having numerals
for expressing numbers 3 and 4 leads to a higher accuracy of computations and
allows one to distinguish results of operations 2+1 and 2+2.

The poverty of the numeral system of Pirahã leads also to the following
results

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’,

‘many’ − 1 = ‘many’, ‘many’ − 2 = ‘many’,

‘many’ + ‘many’ = ‘many’

that are crucial for changing our outlook on infinity. In fact, by changing in
these relations ‘many’ with ∞ we get relations used to work with infinity in the
traditional calculus and Cantor’s cardinals

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ − 1 = ∞, ∞ − 2 = ∞, ∞ + ∞ = ∞,

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 − 1 = ℵ0, ℵ0 − 2 = ℵ0, ℵ0 + ℵ0 = ℵ0.

It should be mentioned that the astonishing numeral system of Pirahã is not
an isolated example of this way of counting. In fact, the same counting system,
one, two, many, is used by the Warlpiri people, aborigines living in the Northern
Territory of Australia (see [1]). The Pitjantjatjara people living in the Central
Australian desert use numerals one, two, three, big mob (see [14]) where ‘big
mob’ works as ‘many’. It makes sense to remind also another Amazonian tribe –
Mundurukú (see [22]) who fail in exact arithmetic with numbers larger than 5
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but are able to compare and add large approximate numbers that are far beyond
their naming range. Particularly, they use the words ‘some, not many’ and ‘many,
really many’ to distinguish two types of large numbers. Their arithmetic with
‘some, not many’ and ‘many, really many’ reminds strongly the rules Cantor
uses to work with ℵ0 and ℵ1, respectively. For instance, compare

‘some, not many’+ ‘many, really many’ = ‘many, really many’

with

ℵ0 + ℵ1 = ℵ1.

This comparison suggests that our difficulty in working with infinity is not
connected to the nature of infinity but is a result of inadequate numeral sys-
tems used to express infinite numbers. Traditional numeral systems have been
developed to express finite quantities and they simply have no sufficiently high
number of numerals to express different infinities (and infinitesimals). In other
words, the difficulty we face is not connected to the object of our study – infinity –
but is the result of weak instruments – numeral systems – used for our study.

The way of reasoning where the object of the study is separated from the tool
used by the investigator is very common in natural sciences where researchers
use tools to describe the object of their study and the used instrument influences
the results of the observations and determine their accuracy. When a physicist
uses a weak lens A and sees two black dots in his/her microscope he/she does not
say: The object of the observation is two black dots. The physicist is obliged to
say: the lens used in the microscope allows us to see two black dots and it is not
possible to say anything more about the nature of the object of the observation
until we change the instrument - the lens or the microscope itself - by a more
precise one. Suppose that he/she changes the lens and uses a stronger lens B and
is able to observe that the object of the observation is viewed as eleven (smaller)
black dots. Thus, we have two different answers: (i) the object is viewed as two
dots if the lens A is used; (ii) the object is viewed as eleven dots by applying the
lens B. Both answers are correct but with the different accuracies that depend
on the lens used for the observation.

The same happens in Mathematics studying natural phenomena, numbers,
objects that can be constructed by using numbers, sets, etc. Numeral systems
used to express numbers are among the instruments of observations used by
mathematicians. As we have illustrated above, the usage of powerful numeral
systems gives the possibility to obtain more precise results in Mathematics in
the same way as usage of a good microscope gives the possibility of obtaining
more precise results in Physics.

3 Grossone-Based Numerals

In order to increase the accuracy of computations with infinities and infini-
tesimals, the computational methodology developed in [24,26,32] proposes a
numeral system that allows one to observe infinities and infinitesimals with
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a higher accuracy. This numeral system avoids situations similar to ‘many’+1 =
‘many’ and ∞−1 = ∞ providing results ensuring that if a is a numeral written in
this numeral system then for any a (i.e., a can be finite, infinite, or infinitesimal)
it follows a + 1 > a and a − 1 < a.

The numeral system is based on a new infinite unit of measure expressed by
the numeral ① called grossone that is introduced as the number of elements of
the set of natural2 numbers

N = {1, 2, 3, . . . }. (1)

Concurrently with the introduction of ① in the mathematical language all
other symbols (like ∞, Cantor’s ω, ℵ0,ℵ1, ..., etc.) traditionally used to deal
with infinities and infinitesimals are excluded from the language because ① and
other numbers constructed with its help not only can be used instead of all of
them but can be used with a higher accuracy. Analogously, when zero and the
positional numeral system had been introduced in Europe, Roman numerals I,
V, X, etc. had not been involved and new symbols 0, 1, 2, etc. had been used to
express numbers. The new element – zero expressed by the numeral 0 – had been
introduced by describing its properties in the form of axioms. Analogously, ①
is introduced by describing its properties postulated by the Infinite Unit Axiom
added to axioms for real numbers (see [26,32] for a detailed discussion). Let us
comment upon some of properties of ①.

If we consider a finite integer k, then the number of elements of the set
{1, 2, 3, . . . k − 1, k } is its largest element, i.e., k. For instance, the number 4 in
the set

A = {1, 2, 3, 4} (2)

is the largest element in the set A and the number of elements of A. Grossone
has been introduced as the number of elements of the set of natural numbers and,
therefore, we have the same situation as in (2), i.e., ① ∈ N. As a consequence,
the introduction of ① allows us to write down the set of natural numbers as
follows

N = {1, 2, . . .
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2, . . . ① − 2, ① − 1, ①}. (3)

Infinite natural numbers

. . .
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2, . . . ① − 2, ① − 1, ① (4)

that are invisible if traditional numeral systems are used to observe the set of
natural numbers can be viewed now thanks to the introduction of ①. The two
records, (1) and (3), refer to the same set – the set of natural numbers – and

2 Notice that nowadays not only positive integers but also zero is frequently included
in N. However, since zero has been invented significantly later than positive integers
used for counting objects, zero is not include in N in this text.
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infinite numbers (4) also take part3 of N. Both records, (1) and (3), are correct
and do not contradict each other. They just use two different numeral systems
to express N. Traditional numeral systems do not allow us to see infinite natural
numbers that we can observe now thanks to grossone. Thus, we have the same
object of observation – the set N – that can be observed by different instruments
– numeral systems – with different accuracies.

Similarly, Pirahã are not able to see finite natural numbers 3, 4, and 5. In
spite of the fact that Pirahã do not see them, these numbers 3, 4, and 5, belong to
N and are visible if one uses a more powerful numeral system. Even the numeral
system of Mundurukú is sufficient to observe 3, 4, and 5. Notice also that the
weakness of their numeral system does not allow Pirahã to define the set (2)
while Mundurukú would be able to do this.

In general, in the new methodology it is necessary always to indicate
a numeral system used for computations and theoretical investigations. For
instance, the words ‘the set of all finite numbers’ do not define a set completely in
this methodology. It is always necessary to specify which instruments (numeral
systems) are used to describe (and to observe) the required set and, as a con-
sequence, to speak about ‘the set of all finite numbers expressible in a fixed
numeral system’. For instance, for Pirahã and Warlpiri ‘the set of all finite num-
bers’ is the set {1, 2}, for the Pitjantjatjara people ‘the set of all finite numbers’
is the set {1, 2, 3} and for Mundurukú ‘the set of all finite numbers’ is the set
{1, 2, 3, 4, 5}. We stress again that in Mathematics, as it happens in Physics, the
instrument used for an observation bounds the possibility of the observation and
defines the accuracy of this observation. It is not possible to say how we shall
see the object of our observation if we have not clarified which instruments will
be used to execute the observation.

Let us see now how one can write down different numerals expressing different
infinities and infinitesimals and to execute computations with all of them. Instead
of the usual symbol ∞ different infinite and/or infinitesimal numerals can be used
thanks to ①. Indeterminate forms are not present and, for example, the following
relations hold for infinite numbers ①, ①2 and ①−1, ①−2 (that are infinitesimals),
as for any other (finite, infinite, or infinitesimal) number expressible in the new
numeral system

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0,

0 · ①−1 = ①−1 · 0 = 0, ①−1 > 0, ①−2 > 0, ①−1 − ①−1 = 0,

①−1

①−1 = 1, (①−1)0 = 1, ① · ①−1 = 1, ① · ①−2 = ①−1,

①−2

①−2 = 1,
①2

①
= ①,

①−1

①−2 = ①, ①2 · ①−1 = ①, ①2 · ①−2 = 1.

3 This is a difference with respect to non-standard analysis where infinities it works
with do not belong to N.
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The introduction of the numeral ① allows us to represent infinite and infin-
itesimal numbers in a unique framework. For this purpose a numeral system
similar to traditional positional numeral systems was introduced in [24,26]. To
construct a number C in the numeral positional system with the radix grossone,
we subdivide C into groups corresponding to powers of ①:

C = cpm
①pm + . . . + cp1①p1 + cp0①p0 + cp−1①p−1 + . . . + cp−k

①p−k . (5)

Then, the record

C = cpm
①pm . . . cp1①p1cp0①p0cp−1①p−1 . . . cp−k

①p−k (6)

represents the number C, where all numerals ci �= 0, they belong to a traditional
numeral system and are called grossdigits. They express finite positive or neg-
ative numbers and show how many corresponding units ①pi should be added
or subtracted in order to form the number C. Note that in order to have a
possibility to store C in the computer memory, values k and m should be finite.

Numbers pi in (6) are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k.

They are called grosspowers and they themselves can be written in the form (6).
In the record (6), we write ①pi explicitly because in the new numeral positional
system the number i in general is not equal to the grosspower pi. This gives the
possibility to write down numerals without indicating grossdigits equal to zero.

The term having p0 = 0 represents the finite part of C since c0①0 = c0. Terms
having finite positive grosspowers represent the simplest infinite parts of C.
Analogously, terms having negative finite grosspowers represent the simplest
infinitesimal parts of C. For instance, the number ①−1 = 1

①
mentioned above

is infinitesimal. Note that all infinitesimals are not equal to zero. In particular,
1
①

> 0 since it is a result of division of two positive numbers.
A number represented by a numeral in the form (6) is called purely finite if it

has neither infinite nor infinitesimals parts. For instance, 14 is purely finite and
14 + 5.3①−1.5 is not. All grossdigits ci are supposed to be purely finite. Purely
finite numbers are used on traditional computers and for obvious reasons have
a special importance for applications. All of the numbers introduced above can
be grosspowers, as well, giving thus a possibility to have various combinations
of quantities and to construct terms having a more complex structure.

We conclude this section by emphasizing that different numeral systems, if
they have different accuracies, cannot be used together. For instance, the usage
of ‘many’ from the language of Pirahã in the record 5+‘many’ has no any sense
because for Pirahã it is not clear what 5 is and for people knowing what 5 is the
accuracy of the answer ‘many’ is too low. Analogously, the records of the type
①+ω, ①−ℵ0, ①/∞, etc. have no sense because they include numerals developed
under different methodological assumptions, in different mathematical contests,
for different purposes, and, finally, numeral systems these numerals belong to
have different accuracies.
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4 Measuring Infinite Sets and Relations to Bijections

By using the ①-based numeral system it becomes possible to measure certain
infinite sets. As we have seen above, relations of the type ‘many’ + 1 = ‘many’
and ℵ0 − 1 = ℵ0 are consequences of the weakness of numeral systems applied
to express numbers (finite or infinite). Thus, one of the principles of the new
computational methodology consists of adopting the principle ‘The part is less
than the whole’ to all numbers (finite, infinite, and infinitesimal) and to all sets
and processes (finite and infinite). Notice that this principle is a reformulation
of Euclid’s Common Notion 5 saying ‘The whole is greater than the part’.

Let us show how, in comparison to the traditional mathematical tools used
to work with infinity, the new numeral system allows one to obtain more precise
answers in certain cases. For instance, Table 1 compares results obtained by
the traditional Cantor’s cardinals and the new numeral system with respect to
the measure of a dozen of infinite sets (for a detailed discussion regarding the
results presented in Table 1 and for more examples dealing with infinite sets see
[18,19,31,32,41]). Notice, that in Q and Q

′ we calculate different numerals and
not numbers. For instance, numerals 4

1 and 8
2 have been counted two times even

though they represent the same number 4. Then, four sets of numerals having
the cardinality of continuum are shown in Table 1 (these results are discussed
more in detail in the next section). Among them we denote by A2 the set of
numbers x ∈ [0, 1) expressed in the binary positional numeral system, by A′

2 the
set being the same as A2 but with x belonging to the closed interval [0, 1], by A10

the set of numbers x ∈ [0, 1) expressed in the decimal positional numeral system,
and finally we have the set C10 = A10 ∪ B10, where B10 is the set of numbers

Table 1. Measuring infinite sets using ①-based numerals allows one in certain cases to
obtain more precise answers in comparison with the traditional cardinalities, ℵ0 and C,
of Cantor.

Description of sets Cardinality Number of

elements

the set of natural numbers N countable, ℵ0 ①

N
⋃ {0} countable, ℵ0 ① + 1

N \ {3, 5, 10, 23, 114} countable, ℵ0 ① − 5

the set of even numbers E countable, ℵ0
①
2

the set of odd numbers O countable, ℵ0
①
2

the set of integers Z countable, ℵ0 2① + 1

Z \ {0} countable, ℵ0 2①

the set of square natural numbers G = {x : x = n2, x ∈ N, n ∈ N} countable, ℵ0 �√
①	

the set of pairs of natural numbers P = {(p, q) : p ∈ N, q ∈ N} countable, ℵ0 ①2

the set of numerals Q
′ = {− p

q ,
p
q : p ∈ N, q ∈ N} countable, ℵ0 2①2

the set of numerals Q = {0,− p
q ,

p
q : p ∈ N, q ∈ N} countable, ℵ0 2①2 + 1

the set of numerals A2 continuum, C 2①

the set of numerals A′
2 continuum, C 2① + 1

the set of numerals A10 continuum, C 10①

the set of numerals C10 continuum, C 2 · 10①
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x ∈ [1, 2) expressed in the decimal positional numeral system. It is worthwhile to
notice also that grossone-based numbers from Table 1 can be ordered as follows

�
√

①	 <
①

2
< ① − 5 < ① < 2① < 2① + 1 <

①2 < 2①2 + 1 < 2① < 2① + 1 < 10① < 2 · 10①.

It can be seen from Table 1 that Cantor’s cardinalities say only whether a set
is countable or uncountable while the ①-based numerals allow us to express the
exact number of elements of the infinite sets. However, both numeral systems –
the new one and the numeral system of infinite cardinals – do not contradict one
another. Both Cantor’s numeral system and the new one give correct answers,
but their answers have different accuracies. By using an analogy from physics we
can say that the lens of our new ‘telescope’ used to observe infinities and infini-
tesimals is stronger and where Cantor’s ‘telescope’ allows one to distinguish just
two dots (countable sets and the continuum) we are able to see many different
dots (infinite sets having different number of elements).

The ①-base numeral system, as all numeral systems, cannot express all num-
bers and give answers to all questions. Let us consider, for instance, the set of
extended natural numbers indicated as ̂N and including N as a proper subset

̂N = {1, 2, . . . , ① − 1, ①
︸ ︷︷ ︸

Natural numbers

, ① + 1, ① + 2, . . . , 2① − 1, 2①, 2① + 1, . . .

①2 − 1, ①2, ①2 + 1, . . . 3①① − 1, 3①①, 3①① + 1, . . .}. (7)

What can we say with respect to the number of elements of the set ̂N? The

introduced numeral system based on grossone is too weak to give an answer to
this question. It is necessary to introduce in a way a more powerful numeral
system by defining new numerals (for instance, ②, ③, etc.).

In order to see how the principle ‘The part is less than the whole’ agrees with
traditional views on infinite sets, let us consider two illustrative examples. The
first of them is related to the one-to-one correspondence that can be established
between the sets of natural and odd numerus. Namely, odd numbers can be put
in a one-to-one correspondence with all natural numbers in spite of the fact that
O is a proper subset of N

odd numbers: 1, 3, 5, 7, 9, 11, . . .

 
 
 
 
 


natural numbers: 1, 2, 3, 4 5, 6, . . .
(8)

The usual conclusion is that both sets are countable and they have the same
cardinality ℵ0.

Let us see now what we can say from the new methodological positions. We
know now that when one executes the operation of counting, the accuracy of the
result depends on the numeral system used for counting. Proposing to Pirahã to
measure sets consisting of four apples and five apples would give us the answer



Computations with Grossone-Based Infinities 99

that both sets of apples have many elements. This answer is correct but its
precision is low due to the weakness of the numeral system used to measure
the sets.

Thus, the introduction of the notion of accuracy for measuring sets is very
important and should be applied for infinite sets also. Since for cardinal numbers
it follows

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 + ℵ0 = ℵ0,

these relations suggest that the accuracy of the cardinal numeral system of
Alephs an is not sufficiently high to see the difference with respect to the number
of elements of the two sets from (8).

In order to look at the record (8) using the new numeral system we need the
following fact from [24]: the sets of even and odd numbers have ①/2 elements
each and, therefore, grossone is even. It is also necessary to remind that numbers
that are larger than ① are not natural, they are extended natural numbers. For
instance, ① + 1 is odd but not natural, it is extended natural, see (7). Thus, the
last odd natural number is ①−1. Since the number of elements of the set of odd
numbers is equal to ①

2 , we can write down not only initial (as it is usually done
traditionally) but also the final part of (8)

1, 3, 5, 7, 9, 11, . . . ① − 5, ① − 3, ① − 1

 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . ①

2 − 2, ①
2 − 1, ①

2

(9)

concluding so (8) in a complete accordance with the principle ‘The part is less
than the whole’. Both records, (8) and (9), are correct but (9) is more accurate,
since it allows us to observe the final part of the correspondence that is invisible
if (8) is used.

The accuracy of the ①-based numeral system allows us to measure also,
for instance, such sets as O

′ = O\{3} and O
′′ = O\{1, ① − 1}. The set O

′ is
constructed by excluding one element from O and the set O′′ by excluding from
O two elements. Thus, O′ and O

′′ have ①
2 −1 and ①

2 −2 elements, respectively. In
case one wishes to establish the corresponding bijections, starting with natural
numbers 1, 2, 3, . . . we obtain for these two sets

1, 5, 7, 9, 11, 13, . . . ①−5, ①−3, ①−1

 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . ①

2 − 3, ①
2 − 2, ①

2 − 1
(10)

3, 5, 7, 9, 11, 13, . . . ① − 7, ① − 5, ① − 3

 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . ①

2 − 4, ①
2 − 3, ①

2 − 2
(11)

In order to become more familiar with natural and extended natural num-
bers let us consider one more example where we multiply each element of the
set of natural numbers, N, by 2. We would like to study the resulting set, that
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is called E
2 hereinafter, to calculate the number of its elements, and to spec-

ify which among its elements are natural and which ones are extended natural
numbers and how many they are.

The introduction of the new numeral system allows us to write down the set,
N, of natural numbers in the form (7). By definition, the number of elements of
N is equal to ①. Thus, after multiplication of each of the elements of N by 2,
the resulting set, E2, will also have grossone elements. In particular, the number
①
2 multiplied by 2 gives us ① and ①

2 + 1 multiplied by 2 gives us ① + 2 that is
even extended natural number, see (7). Analogously, the last element of N, i.e.,
①, multiplied by 2 gives us 2①. Thus, the set of even numbers E2 can be written
as follows

E
2 = {2, 4, 6, . . . ① − 4, ① − 2, ①, ① + 2, ① + 4, . . . 2① − 4, 2① − 2, 2①},

where numbers {2, 4, 6, . . . ①−4, ① − 2, ①} are even and natural (they are ①
2 )

and numbers {① + 2, ① + 4, . . . 2① − 4, 2① − 2, 2①} are even and extended
natural, they also are ①

2 .

5 Turing Machines and Infinite Sequences

In this section we present some results related to Turing machines with infinite
tapes (the presentation has been simplified, see [41,42] for a comprehensive dis-
cussion). Traditionally, an infinite sequence {an}, an ∈ A, n ∈ N, is defined as a
function having the set of natural numbers, N, as the domain and a set A as the
codomain. A subsequence {bn} is defined as a sequence {an} from which some
of its elements have been removed. In spite of the fact that the removal of the
elements from {an} can be directly observed, the traditional point of view on
sequences does not allow one to register, in the case where the obtained sub-
sequence {bn} is infinite, the fact that {bn} has less elements than the original
infinite sequence {an}.

Let us study what happens when the new approach is used. The definition
of infinite sequences should be done more precise in a complete analogy to finite
sequences. In the finite case, to define a sequence a1, a2, . . . , an the number, n, of
its elements should be explicitly declared. Thanks to the introduction of ①-based
numerals we are able to express infinite numbers, as well and, as a consequence,
we extend this definition directly to the infinite case, i.e., to define an infinite
sequence a1, a2, . . . , an its infinite number of elements, n, should be provided.

Since the new numeral system allows us to express the number of elements
of the set N as grossone and due to the sequence definition given above, any
sequence having N as the domain has grossone elements. Such sequences are
called complete. Notice that, among other things, this definition states that there
cannot exist infinite sequences having more than ① elements. However, since we
can express infinite integers less than ①, infinite sequences having less than
① elements can exist and can be described using ①-based numerals. In fact,
the notion of subsequence is introduced as a sequence from which some of its
elements have been removed. This means that the resulting subsequence will have
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less elements than the original sequence and the infinite number of elements of
infinite subsequences can be expressed.

For instance, let us consider two infinite sequences: {an} and {bn}. The first
sequence {an}, 1 ≤ n ≤ ①, with an = n − 1. This sequence has ① elements
and it is, therefore, complete. Its first element is a1 = 0 and its last element is
a① = ① − 1. The second infinite sequence, {bn}, that is a subsequence of the
first one is defined as follows: {bn}, 1 ≤ n ≤ 0.5①, with bn = n − 1. Thus, both
sequences, {an} and {bn}, have the same general element, an = bn = n − 1, the
same first element, a1 = b1 = 0, and both are infinite but the first sequence is
complete and the second one is not since it has 0.5① < ① elements and its last
element is b0.5① = 0.5① − 1.

Suppose now that we have a Turing machine with an infinite tape that con-
tains an output written using symbols {0, 1, . . . b − 2, b − 1} with a finite b. The
traditional point of view allows us to distinguish neither tapes having different
infinite lengths nor machines using different alphabets, i.e., {0, 1, . . . B−2, B−1}
with B �= b. The question of the possibility to have different infinite tapes is not
discussed and it is supposed that machines with all output alphabets have the
same computational power if their tapes are infinite. This happens because the
traditional numeral systems used to describe Turing machines do not allow us
to see these differences. The new numeral system offers such a possibility giving
a chance to describe Turing machines in a more precise way and to distinguish
them at infinity.

In the new framework, it is not sufficient to say that the tape is infinite. It is
necessary to define the infinite length of the tape explicitly. As an example, let us
consider a Turing machine having the tape ① positions long. Output sequences
are written on the tape using symbols from an output alphabet, let it be again
{0, 1, . . . b − 2, b − 1} with a finite b. The importance of the discussion on the
infinite sequences provided above for Turing machines becomes clear now: the
output sequences of symbols, as all sequences, though infinite cannot have more
than ① elements.

Moreover, we can make a more accurate analysis and count the precise num-
ber of infinite output sequences of symbols that the machine can produce. It is
obvious that its outputs can be viewed as numerals in the positional numeral
system with the finite radix b

(a1a2 . . . a①−1a①)b, ai ∈ {0, 1, . . . b − 2, b − 1}, 1 ≤ i ≤ ①. (12)

This means that we have ① positions that can be filled in with b symbols each,
i.e., this machine called hereinafter T1 can produce b① different outputs. Then,
if we consider another machine, T2, having the tape with ① − 1 positions and
outputs written using the same base, b, the number of its outputs is b①−1 < b①

and each of them is one position shorter than outputs of T1. Moreover, if we
consider the third machine, T3, having the tape with ① positions and outputs
written using a base B > b, the number of its outputs is B① > b①. In other words,
the machine T3 is more powerful then the machine T1 that, in its turn, is more
powerful than the machine T2.
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Let us give a couple of illustrations. We start by considering a Turing machine
T4 working with the alphabet {0, 1, 2}, the tape with ①/2 positions, and com-
puting the following output

0, 1, 2, 0, 1, 2, 0, 1, 2, . . . 0, 1, 2, 0, 1, 2
︸ ︷︷ ︸

①/2 positions

. (13)

Then a Turing machine T5 working with the output alphabet {0, 1} and the tape
with ①/2 positions cannot produce a sequence of symbols computing (13). In
fact, since the numeral 2 does not belong to the alphabet {0, 1} it should be coded
by more than one symbol. One of codifications using the minimal number of sym-
bols in the alphabet {0, 1} necessary to code numbers 0, 1, 2 is {00, 01, 10}. Then
the output corresponding to (13) and computed in this codification should be

00, 01, 10, 00, 01, 10, 00, 01, 10, . . . 00, 01, 10, 00, 01, 10. (14)

Since the output (13) contains ①/2 positions, the output (14) should contain
① positions. However, by the definition of T5 it can produce outputs that have
only ①/2 positions.

Let us consider now a Turing machine T6 working with the alphabet {0, 1, 2}
as T4 but the infinite tape of T6 is one position longer than the tape of T4, i.e.,
it has ①/2+1 positions, and T6 computes the following output

0, 1, 2, 0, 1, 2, 0, 1, 2, . . . 0, 1, 2, 0, 1, 2, 0
︸ ︷︷ ︸

①/2+1 positions

. (15)

Then there is no a Turing machine working with the output alphabet {0, 1} and
coding the numbers 0, 1, 2 as {00, 01, 10} such that it is able to compute the
output corresponding to (15) in this codification. The proof is very easy and is
based on the fact that infinite sequences cannot have more than ① elements.
Since the output (15) contains ①/2 + 1 positions, the output

00, 01, 10, 00, 01, 10, 00, 01, 10, . . . 00, 01, 10, 00, 01, 10, 00.

should contain ① + 2 positions. However, infinite sequences cannot have more
than ① elements. Notice that significantly more sophisticated results for deter-
ministic and non-deterministic Turing machines can be found in [41–43].

6 Concluding Remarks

In this paper infinite sets and Turing machines with different infinite tapes have
been studied using a recently introduced positional numeral system with the infi-
nite radix ①. It has been shown that in certain cases the new numerals allow one
to obtain more precise results in dealing with infinite quantities in comparison
to numeral systems traditionally used for this purpose.
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In particular, the following observation (see [31] for a detailed discussion) can
be made for the set Ck

b of numerals expressible in the positional numeral system
with the finite radix b and k digits {0, 1, . . . b − 2, b − 1} where k is infinite

(a1a2 . . . ak−1ak)b, ai ∈ {0, 1, . . . b − 2, b − 1}, 1 ≤ i ≤ k. (16)

Clearly, this is a simple generalization of the record (12) where we have k = ①.
Analogously to the analysis made above it follows that the number of numerals
expressible in the system (16) is bk and for infinite values of k the set Ck

b should
have the cardinality of continuum in the traditional language. Let us consider
now k1 = �logb ①	 where �x	 is the integer part of x. Note that k1 is infinite
since ① is infinite. It follows then that

b�logb ①	 < blogb ① = ①,

i.e., with respect to the traditional language the set C
logb ①

b would be countable.
Analogously, many different instances of infinite sets that are constructed start-
ing from the continuum framework and resulting at the end to be countable
can be exhibited. For example, for infinite k = 3�logb ①	 and k = 0.5�logb ①	 it
follows that

b3�logb ①	 < b3 logb ① = ①3 < b①, b0.5�logb ①	 < b0.5 logb ① =
√

① < b①,

i.e., the sets C
3 logb ①

b and C
0.5 logb ①

b would be also countable from the traditional
point of view.

Thus, the ①-based numeral system allows us to distinguish new infinite sets
that were invisible using traditional instruments both within continuum and
numerable sets. Thanks to the ①-based numerals it becomes possible to calcu-
late the exact number of elements of old (see Table 1) and new sets and to exhibit
sets that were constructed as continuum but are indeed countable bridging so
the gap between the two groups of sets (see [31] for a detailed discussion). This
fact, among other things, allows us to see that the computational power of Tur-
ing machines with different infinite tapes is different. Reminding our example
with the microscope we are able now to see instead of two dots (countable and
continuum) many different dots.

In this paper only two applications where ①-based numerals are useful
have been discussed: infinite sets and Turing machines. More examples show-
ing how these numerals can be successfully used can be found in the following
publications: Euclidean and hyperbolic geometry (see [20,21]), percolation (see
[12,13,44]), fractals (see [25,27,35,44]), infinite series and the Riemann zeta
function (see [29,34,46]), the first Hilbert problem and lexicographic ordering
(see [31,39,41–43]), cellular automata (see [5–7]).

In particular, numerical computations with infinities and infinitesimals
expressed by ①-based numerals are discussed in the following papers: numer-
ical differentiation, solutions of systems of linear equations, and optimization
(see [4,28,33,47]), ordinary differential equations (see [37,38]).



104 Y.D. Sergeyev

References

1. Butterworth, B., Reeve, R., Reynolds, F., Lloyd, D.: Numerical thought with
and without words: Evidence from indigenous Australian children. Proc. National
Acad. Sci. United States Am. 105(35), 13179–13184 (2008)

2. Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers.
Dover Publications, New York (1955)

3. Conway, J.H., Guy, R.K.: The Book of Numbers. Springer-Verlag, New York (1996)
4. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming

and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)
5. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput.

218(16), 8077–8082 (2012)
6. D’Alotto, L.: A classification of two-dimensional cellular automata using infinite

computations. Indian J. Math. 55, 143–158 (2013)
7. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite

computations. Appl. Math. Comput. 255, 15–24 (2015)
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