
Efficient Card-Based Protocols for Generating
a Hidden Random Permutation Without

Fixed Points

Rie Ishikawa1, Eikoh Chida1, and Takaaki Mizuki2(B)

1 Electrical and Computer Engineering, National Institute of Technology,
Ichinoseki College, Takanashi, Hagisho, Ichinoseki 021–8511, Japan

{g10205,chida}@g.ichinoseki.ac.jp
2 Cyberscience Center, Tohoku University, 6–3 Aramaki-Aza-Aoba,

Aoba-ku, Sendai 980–8578, Japan
tm-paper+cardperm@g-mail.tohoku-university.jp

Abstract. Consider the holiday season, where there are n players who
would like to exchange gifts. That is, we would like to generate a ran-
dom permutation having no fixed point. It is known that such a random
permutation can be obtained in a hidden form by using a number of
physical cards of four colors with identical backs, guaranteeing that it
has no fixed point (without revealing the permutation itself). This paper
deals with such a problem and improves the known result: whereas the
known protocol needs O(n2) cards of four colors, our efficient protocol
uses only O(n logn) cards of two colors.

1 Introduction

Consider the holiday season, where there are n players who would like to
exchange gifts. We wish to avoid the undesirable situation in which a player
must buy a present for himself/herself. That is, we need to produce a random
permutation π ∈ Sn that has no fixed point, where Sn denotes the symmetric
group of degree n (throughout this paper). There is an unconventional solution
to the “no fixed point” problem, i.e., it is known that such a random permuta-
tion can be obtained in a hidden form by using a number of physical cards of
four colors, say ♣ , ♥ , ♦ , and ♠ ,1 with identical backs ? , guaranteeing that
it has no fixed point (without revealing the permutation itself) [3]. This paper
deals with such a problem and proposes an efficient approach that improves the
known result.

1.1 Known Method for Generating a Random Permutation

In 1993, Crépeau and Kilian gave a card-based protocol for generating a random
permutation π ∈ Sn without any fixed point [3]. Their protocol produces a pile
1 Throughout this paper, we say that a card has the same “color” as another one if

they have the same pattern on their face sides.

c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 215–226, 2015.
DOI: 10.1007/978-3-319-21819-9 16

216 R. Ishikawa et al.

of n cards that consists of (n − 1) ♣ s and one ♥ with their faces down (on the
table) for every player pi, 1 ≤ i ≤ n:

pi : ? ? · · · ? · · · ? .

The position of card ♥ corresponds to the value of π(i) when all the n cards
are revealed:

pi :
1

♣
2

♣ · · ·
π(i)

♥ · · ·
n

♣ .

Thus, if player pi looks at his/her pile privately, then the information about who
pi is going to buy a present for will be kept secret.

Because the protocol produces a pile of such cards for each of the n players, as
seen above, it uses n(n − 1) ♣ s and n ♥ s. In addition, it requires a number of
cards of different colors, namely n2/2 ♦ s and n2/2 ♠ s. Thus, the known method
needs 2n2 cards of four colors in total2. Further details are given in Sect. 2.

1.2 Our Results and Related Work

Table 1 summarizes both the known result and our results. As mentioned above,
to generate a random permutation without fixed points, the known method
[3] requires 2n2 cards of four colors. In this paper, we reduce the number of
required colors and cards. First, we devise a new shuffling operation called a
“pile-scramble shuffle” in Sect. 3. Using this new shuffle, we can enhance the
efficiency of the known protocol, and consequently, we can show that n2 cards
of two colors are sufficient. We then show in Sect. 4 that (2n�log n	 + 6) cards3

of two colors are sufficient to solve the “no fixed point” problem by considering
another expression of each player’s index.

Table 1. Performance of each protocol

No. of colors No. of cards

Known protocol [3] (§2) 4 2n2

Improvement with pile-scramble shuffle (§3) 2 n2

Our main protocol (§4) 2 2n�logn� + 6

Before presenting our protocols, we present a complete description of the
known protocol [3] in Sect. 2. Section 5 concludes this paper with some discussion.

Card-based cryptography allows us not only to generate a random permuta-
tion, but also to have various kinds of cryptographic protocols such as secure mul-
tiparty computations and zero-knowledge proof. For example, there are known

2 Note that we cannot use a standard deck of playing cards because each of them has
a unique pattern on its face side.

3 All logarithms are base 2 throughout this paper.

Generating a Hidden Random Permutation Without Fixed Points 217

protocols for securely computing AND [1,3,7,8,10,13], XOR [3,8,9], adder [6],
3-variable symmetric functions [12], and so on. Furthermore, the relationship
between playing cards and cryptography has been explored in the literature
(e.g., [2,4,5,14]).

2 Known Protocol

In this section, we present a complete description of the Crépeau-Kilian
protocol [3] that generates a hidden random permutation having no fixed point.

Assume that n players p1, p2, . . . , pn would like to produce a random permu-
tation π ∈ Sn without any fixed point. Their protocol consists of two phases, the
Random-Permutation Generating phase and the Fixed-Point Checking phase, as
follows.
[Random-Permutation Generating phase]

1-1. Using n(n − 1) ♣ s and n ♥ s, arrange the cards as below (putting each
♥ on the diagonal), and insert a “marker” after each row, where a marker
consists of n/2 ♦ s and n/2 ♠ s (for simplicity, n is assumed to be an even
number):

♥ ♣ · · · ♣ · · · ♣ ♣ ♦ ♦ ♦ · · · ♠ ♠ ♠
♣ ♥ · · · ♣ · · · ♣ ♣ ♦ ♦ ♦ · · · ♠ ♠ ♠

...
♣ ♣ · · · ♥ · · · ♣ ♣ ♦ ♦ ♦ · · · ♠ ♠ ♠

...
♣ ♣ · · · ♣ · · · ♣ ♥ ♦ ♦ ♦ · · · ♠ ♠ ♠ .

1-2. Turn over the cards so that they are all face down, and apply a random
cut, i.e., a cyclic shuffle, to the sequence of 2n2 cards (obtained by row-wise
concatenation).

1-3. Reveal the first card. If the face-up card is either ♣ or ♥ , go back to step
(1–2). If it is either ♦ or ♠ , i.e., a marker, then proceed to the next step.
Note that the probability of returning to step (1–2) is exactly 1/2.

1-4. Assume that the face-up card is ♦ :

♦ ? · · · ? · · · ? ? ? ? ? · · · ? ? ?
? ? · · · ? · · · ? ? ? ? ? · · · ? ? ?

...
? ? · · · ? · · · ? ? ? ? ? · · · ? ? ? .

Its right-hand card must also be a marker. Reveal the markers right next to it
one by one. After all the makers on the right side (which are � ♦ s for some �

218 R. Ishikawa et al.

and n/2 ♠ s) are face up, reveal the remaining markers on the left side (where
the first card’s “left” is the last card), namely (n/2 − � − 1) ♦ s.
For the case where the first card is ♠ , we manipulate the sequence of
cards similarly to the ♦ case. Note that in this case, we start revealing the
markers toward the left side first.
Remove all of the (face-up) n markers.

1-5. After all of the n markers are removed, we regard the first n cards as the
value of π(1). That is, the pile of these n cards is assigned to player p1 and
corresponds to π(1):

p1 : ? ? · · · ? · · · ? .

1-6. Similarly, for the remaining cards, repeat steps (1-2)–(1-4) so that we obtain
piles corresponding to π(2), π(3), . . . , π(n).

[Fixed-Point Checking phase]

2-1. To verify that the generated permutation π has no fixed point, arrange the
piles of cards assigned to p1, p2, . . . , pn as below:

p1 : ? ? · · · ? · · · ? ?
p2 : ? ? · · · ? · · · ? ?

...
pn : ? ? · · · ? · · · ? ? .

2-2. Reveal all the cards on the diagonal to determine if they are all ♣ . If so,
π has no fixed point. If one of them is ♥ , then the pile corresponds to a
fixed point and in this case, we must return to the Random-Permutation
Generating phase.

Thus, the first phase of this protocol produces a random permutation π ∈ Sn,
and then the second phase checks that π has no fixed point. In the first phase,
we need to repeat the steps until markers are found, and hence it is a Las Vegas
algorithm taking 2n trials on average. With respect to the second phase, note
that in general, the probability that a random permutation π ∈ Sn has no fixed
point is

∑n
i=0(−1)i/i!, which is approximately 1/e, where e is the base of the

natural logarithm [3]. Therefore, the average number of how many times we need
to execute the Fixed-Point Checking phase is approximately e ≈ 2.7.

This is the existing protocol for solving the “no fixed point” problem. It uses
2n2 cards of four colors, as detailed above. We improve on this efficiency in the
succeeding sections.

3 Pile-Scramble Shuffle

In this section, we focus on the process of producing a random permutation and
propose an efficient method for achieving this.

Generating a Hidden Random Permutation Without Fixed Points 219

Remember that the known protocol [3] uses random cuts and markers to
generate a random permutation, as shown in the preceding section. That is, in
order to shuffle n piles (each of which consists of n cards and is assigned to a
player), we repeatedly apply a random cut to create each value of π(i) one by
one, while markers are used as “delimiters.” Here, instead of using markers, we
consider a somewhat more direct way of shuffling piles.

Assume that there are a number of face-down cards that are divided into n
piles of the same size. We denote each pile by pilei, 1 ≤ i ≤ n. Given a sequence
of piles (pile1, pile2, pile3, ..., pilen), consider a shuffle operation that outputs
(pileπ(1), pileπ(2), pileπ(3), ..., pileπ(n)), where π ∈ Sn is a random permutation.
As we now have n piles, a permutation is randomly chosen from the n! possi-
bilities. We call such a shuffling operation a pile-scramble shuffle. We believe
that the pile-scramble shuffle can be easily implemented by human beings using
rubber bands, clips, envelopes, or something similar.

If steps (1-2)–(1-6) in the Random-Permutation Generating phase of the
known protocol [3] introduced in Sect. 2 are replaced with the pile-scramble
shuffle, it is obvious that n2 cards of two colors are sufficient to produce a
random permutation. That is, we can generate a random permutation without
any marker, meaning that we do not require any trials, and hence can output
a random permutation after exactly one pile-scramble shuffle. Therefore, taking
the Fixed-Point Checking phase into account, such an improved protocol needs
only n2 cards of two colors and takes an average number of about 2.7 trials
to generate a random permutation having no fixed point. Thus, we are able to
reduce the numbers of required cards and colors by half (see Table 1 again).

In the next section, we further reduce the number of required cards.

4 Our Main Protocol

In this section, we propose a more efficient method than those mentioned pre-
viously. Our main protocol requires only (2n�log n	 + 6) cards to generate a
random permutation having no fixed point.

First, in Sect. 4.1, we show that considering a binary representation of play-
ers’ indices dramatically reduces the number of required cards. Next, in Sect. 4.2,
we present a sub-protocol to check for fixed points under such a binary repre-
sentation. Finally, in Sect. 4.3, by combining these components, we present a
complete description of our protocol.

4.1 Binary Representation

In the Crépeau-Kilian protocol [3] presented in Sect. 2, each player’s index i ∈
{1, 2, . . . , n} and its permuted position π(i) are represented by a pile of n cards,
i.e., (n − 1) ♣ s and one ♥ , say

pi :
1

♣
2

♣ · · ·
i

♥ · · ·
n

♣ or
1

♣
2

♣ · · ·
π(i)

♥ · · ·
n

♣ .

220 R. Ishikawa et al.

In contrast, we represent this information using a binary representation with
2�log n	 cards as follows.

To deal with Boolean values, following the previous studies (e.g., [1,3,10,13]),
we use the encoding rule with a pair of cards:

♣ ♥ = 0, ♥ ♣ = 1. (1)

For a bit x ∈ {0, 1}, when two face-down cards ? ? have a value equaling
x according to encoding (1) above, the pair of these face-down cards is called a
commitment to x, and is written as

? ?
︸ ︷︷ ︸

x

.

Under such an encoding rule, each player’s index can be represented by �log n	
commitments, namely 2�log n	 cards. Therefore, n players’ indices are repre-
sented naturally by 2n�log n	 cards. Thus, we can greatly reduce the number of
required cards to express players’ indices.

It is obvious that we can easily produce a random permutation by applying
a pile-scramble shuffle (explained in Sect. 3) to these n piles that are based on
this binary expression.

4.2 How to Check for Fixed Points

In this subsection, we present a sub-protocol to check that a random permutation
in the form of binary representation has no fixed point.

Assume that a random permutation π ∈ Sn has been generated by a pile-
scramble shuffle, as shown in Sect. 3, based on the binary representation shown
in Sect. 4.1. That is, a pile of �log n	 commitments is assigned to each player pi:

pi : ? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

,

where and hereafter, log n in the subscript means �log n	. Because the pile above
corresponds to π(i), we have

(π(i) − 1)10 = (alog n · · · a2a1)2.

In order to verify that the pile is not a fixed point, namely π(i) �= i, we check
whether the equation below holds:

(a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ · · · ∧ (alog n ⊕ blog n) = 0 , (2)

where ⊕ denotes the exclusive-or (XOR) operation and bits b1, b2, · · · , blog n are
defined as

(i − 1)10 = (blog n · · · b2b1)2.

Generating a Hidden Random Permutation Without Fixed Points 221

Aiming to compute Eq. (2) efficiently without revealing values ai, 1 ≤ i ≤
�log n	, we first introduce the existing copy protocol [8], and then present a “one-
input-preserving” AND protocol. Finally we describe a sub-protocol for checking
that Eq. (2) holds.

Copy Protocol. Give a commitment to a bit x together with four additional
cards, the known copy protocol [8] generates two copied commitments to x, as
follows.

1. Arrange two commitments to 0:

? ?
︸ ︷︷ ︸

x

♣ ♥ ♣ ♥ → ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

0

.

2. Rearrange the order of the sequence as:

? ? ? ? ? ?
�

������ ���
�

��	
? ? ? ? ? ? .

3. Bisect the sequence of six cards and switch the two portions randomly (we
call this a random bisection cut [8] and denote it by [· | ·]):

[
? ? ?

∣
∣
∣ ? ? ?

]
→ ? ? ? ? ? ? .

4. Rearrange the order of the sequence as:

? ? ? ? ? ?
���

�
���

�
��	 ���

? ? ? ? ? ? .

We then have
? ?
︸ ︷︷ ︸
x⊕r

? ?
︸ ︷︷ ︸

r

? ?
︸ ︷︷ ︸

r

,

where r is a (uniformly distributed) random bit because of the random bisec-
tion cut.

5. Reveal the first two cards from the left. We then have

♣ ♥ ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

x

or ♥ ♣ ? ?
︸ ︷︷ ︸

x̄

? ?
︸ ︷︷ ︸

x̄

.

Thus, we obtain two copied commitments to x. In the latter case, we can easily
convert x to x using the NOT operation that swaps the left and right cards. In
addition, the two face-up cards ♣ ♥ are available for another computation.

222 R. Ishikawa et al.

One-input-preserving AND Protocol. We present a one-input-preserving
AND protocol that can keep one of input commitments after the AND computa-
tion. The protocol can be constructed immediately based on two known ideas:
the AND protocol [8] and the half-adder protocol [6].

First, we present some notation. For a pair of bits (x, y), define operations
get and shift as

get0(x, y) = x; get1(x, y) = y,

shift0(x, y) = (x, y); shift1(x, y) = (y, x).

Note that
a ∧ b = geta⊕r(shiftr(0, b)) (3)

for an arbitrary bit r ∈ {0, 1}. In addition, for two bits x and y, the expression

? ? ? ?
︸ ︷︷ ︸

(x,y)

means
? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

y

.

The following is a one-input-preserving AND protocol that produces not only
a commitment to a ∧ b but also a commitment to the input a using eight cards.

1. In addition to the input commitments to a and b, arrange two commitments
to 0 as follows:

? ?
︸ ︷︷ ︸

a

♣ ♥ ♣ ♥ ? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

b

.

2. Rearrange the order of the sequence as:

? ? ? ? ? ? ? ?

����

�
���

�
��	

�
��	

? ? ? ? ? ? ? ? .

3. Apply a random bisection cut:
[
? ? ? ?

∣
∣
∣ ? ? ? ?

]
→ ? ? ? ? ? ? ? ? .

4. Rearrange the order of the sequence as:

? ? ? ? ? ? ? ?
���

�
���
�

���
�����

�
��	

? ? ? ? ? ? ? ? .

We then have
? ?
︸ ︷︷ ︸
a⊕r

? ?
︸ ︷︷ ︸

r

? ? ? ?
︸ ︷︷ ︸

shiftr(0,b)

,

where r is a (uniformly distributed) random bit.

Generating a Hidden Random Permutation Without Fixed Points 223

5. Reveal the first two cards. If they are ♣ ♥ , we have a ⊕ r = 0, i.e., r = a.
Therefore, the output is (see Eq. (3)):

♣ ♥ ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a∧b

? ? .

If they are ♥ ♣ , we have a ⊕ r = 1, i.e., r = ā. Therefore, the output is:

♥ ♣ ? ?
︸ ︷︷ ︸

a

? ? ? ?
︸ ︷︷ ︸

a∧b

.

In this way, we can obtain commitments to both a ∧ b and a. The two face-
up cards ♣ ♥ are still available for another computation. In addition, the two
cards of the remaining commitment can also be available after they are shuffled.

Sub-protocol for Checking Eq. (2). Given the discussion above, we are ready
to present a procedure for checking Eq. (2) to determine if there are fixed points.
Given a pile

pi : ? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

,

the following sub-protocol computes the value of

(a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ · · · ∧ (alog n ⊕ blog n),

where
(i − 1)10 = (blog n · · · b2b1)2.

1. Arrange �log n	 input commitments and six additional cards as follows:

? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a3

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

♣ ♥ ♣ ♥ ♣ ♥ .

2. Copy the commitment to a1 using the copy protocol [8] mentioned above:

? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a3

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

? ?
︸ ︷︷ ︸

a1

♣ ♥ ♣ ♥ .

3. Apply the NOT computation depending on the values of b1 and b2 so that
we have

? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a3

? ?
︸ ︷︷ ︸
a2⊕b2

? ?
︸ ︷︷ ︸
a1⊕b1

? ?
︸ ︷︷ ︸

a1

♣ ♥ ♣ ♥ .

Note that each value of bi is public.

224 R. Ishikawa et al.

4. Apply the one-input-preserving AND protocol presented above to obtain com-
mitments to (a1 ⊕ b1) ∧ (a2 ⊕ b2) and (a2 ⊕ b2). Furthermore, apply the NOT
computation to the latter commitment depending on the value of b2. We then
have

? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a3

? ?
︸ ︷︷ ︸

(a1⊕b1)∧(a2⊕b2)

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

♣ ♥ ♣ ♥ .

5. Similarly, obtain commitments to (a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ (a3 ⊕ b3) and a3:

? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

(a1⊕b1)∧(a2⊕b2)∧(a3⊕b3)

? ?
︸ ︷︷ ︸

a3

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

♣ ♥ ♣ ♥ .

Repeat this until we have

? ?
︸ ︷︷ ︸

(a1⊕b1)∧(a2⊕b2)∧···∧(alog n⊕blog n)

? ?
︸ ︷︷ ︸
alog n

· · · ? ?
︸ ︷︷ ︸

a3

? ?
︸ ︷︷ ︸

a2

? ?
︸ ︷︷ ︸

a1

♣ ♥ ♣ ♥ .

6. Reveal the commitment to (a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ · · · ∧ (alog n ⊕ blog n). If the
value is 1, then this is a fixed point. Otherwise, it is not a fixed point. It
should be noted that in either case, any commitments to a1, a2, . . . , alog n are
not lost.

4.3 Description of Our Proposed Protocol

We are now ready to present an efficient protocol for generating a random permu-
tation having no fixed point. Our protocol uses (2n�log n	+6) cards to produce
n piles corresponding to this random permutation.

1. Using n�log n	 ♣ s and n�log n	 ♥ s, arrange n�log n	 commitments accord-
ing to players’ indices based on the binary representation:

p1 : ? ?
︸ ︷︷ ︸

0

· · · ? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

0

p2 : ? ?
︸ ︷︷ ︸

0

· · · ? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

1

...

pn : ? ?
︸ ︷︷ ︸

1

· · · ? ?
︸ ︷︷ ︸

1

? ?
︸ ︷︷ ︸

1

.

Generating a Hidden Random Permutation Without Fixed Points 225

2. Regarding each row as a pile, apply a pile-scramble shuffle to the n piles; we
then obtain a random permutation π in which the i-th pile corresponds to
π(i):

p1 : ? ? · · · ? ? ? ?

p2 : ? ? · · · ? ? ? ?
...

pn : ? ? · · · ? ? ? ? .

3. Using six additional cards, apply the sub-protocol presented in Sect. 4.2 to
confirm that π has no fixed point, that is, to verify that pi is not a fixed point
for every i, 1 ≤ i ≤ n, in turns. If we find a fixed point, then we go back to
step (2). If we confirm that there is no fixed point, the permutation π is a
desired one.

This is our main protocol for solving the “no fixed point” problem with
O(n log n) cards.

5 Conclusions

The known protocol [3] requires 2n2 cards of four colors to generate a random
permutation having no fixed point. In this paper, we first devised a new shuffle
operation called a pile-scramble shuffle that immediately enabled us to achieve
the same task using only n2 cards of two colors. Furthermore, we showed that
using a binary representation dramatically reduces the number of required cards,
that is, (2n�log n	 + 6) cards of two colors are sufficient.

In our protocol, the 2n�log n	 cards are used to hold each players’ index, and
the remaining six cards correspond to the additional cards ♣ ♥ ♣ ♥ ♣ ♥
required to execute the sub-protocol for checking fixed points. This comes from
the fact that the one-input-preserving AND protocol given in Sect. 4.2 requires
four additional cards. Recently, it was shown that such a one-input-preserving
AND computation can be done with only two additional cards [11]. There-
fore, applying this recently invented protocol [11], we can reduce the number
of required cards to 2n�log n	 + 4.

In addition to the protocol solving the “no fixed point” problem, Crépeau
and Kilian designed a general protocol for producing a random permutation that
satisfies a predetermined condition such as having no short cycle of length at
most k, and showed that it can be applied to the “Discreet Solitary Games” [3].
Thus, it is intriguing future work to design an efficient way to determine whether
a given permutation based on our binary representation has k-cycles.

Although the card-based protocol is an unconventional way to secure multi-
party computations, this approach has many advantages. The most important
feature is that even nonspecialists are able to easily understand why the com-
putation is secure.

226 R. Ishikawa et al.

Acknowledgments. We thank the anonymous referees whose comments helped us to
improve the presentation of the paper. This work was supported by JSPS KAKENHI
Grant Number 26330001.

References

1. den Boer, B.: More efficient match-making and satisfiability. In: Quisquater, J.J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer,
Heidelberg (1990)

2. Cordón-Franco, A., Van Ditmarsch, H., Fernández-Duque, D., Soler-Toscano, F.:
A colouring protocol for the generalized Russian cards problem. Theor. Comput.
Sci. 495, 81–95 (2013)

3. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994)

4. Duan, Z., Yang, C.: Unconditional secure communication: a Russian cards protocol.
J. Comb. Optim. 19(4), 501–530 (2010)

5. Fischer, M.J., Wright, R.N.: Bounds on secret key exchange using a random deal
of cards. J. Cryptology 9(2), 71–99 (1996)

6. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013)

7. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
598–606. Springer, Heidelberg (2012)

8. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009)

9. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralas. J. Comb. 36, 279–293 (2006)

10. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191(1–2), 173–183 (1998)

11. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
Boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Heidelberg (2015)

12. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013)

13. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2),
671–678 (2001)

14. Swanson, C.M., Stinson, D.R.: Combinatorial solutions providing improved secu-
rity for the generalized Russian cards problem. Des. Codes Crypt. 72(2), 345–367
(2014)

	Efficient Card-Based Protocols for Generating a Hidden Random Permutation Without Fixed Points
	1 Introduction
	1.1 Known Method for Generating a Random Permutation
	1.2 Our Results and Related Work

	2 Known Protocol
	3 Pile-Scramble Shuffle
	4 Our Main Protocol
	4.1 Binary Representation
	4.2 How to Check for Fixed Points
	4.3 Description of Our Proposed Protocol

	5 Conclusions
	References

