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Preface

This volume contains the papers presented at The 14th International Conference
Unconventional Computation and Natural Computation (UCNC 2015), which was held
August 30–September 3, 2015 in Auckland, New Zealand.

The scope of the conference is to create a forum for the presentation of new results
in all areas that relate to theoretical and experimental unconventional computation and
natural computation and to foster collaboration between researchers working on these
topics. Typical, but not exclusive, topics are:

– Molecular (DNA) computing, quantum computing, chaos computing, optical
computing, physarum computing, computation in hyperbolic spaces, collision-
based computing.

– Cellular automata, neural computation, evolutionary computation, swarm intelli-
gence, nature-inspired algorithms, artificial immune systems, artificial life, mem-
brane computing, amorphous computing.

– Computational systems biology, genetic networks, protein-protein networks,
transport networks, synthetic biology, cellular (in vivo) computing.

– Computations beyond the Turing model and philosophical aspects of computing.

For this edition we received 38 submissions. Each submission was reviewed by at
least two Programme Committee members. The committee decided to accept 16
papers. The programme also includes six invited talks:

Invited Lectures

1. R. Freivalds: Ultrametric Algorithms and Automata.
2. G. Longo: Models, Simulations and “Reality”: A Comparison by Theoretical

Symmetries,
3. M. Sagar: Behavioural Animation.
4. Ya. D. Sergeyev: The Infinity Computer and Numerical Computations with

Infinities.

Invited Tutorials

1. J.P. Lewis: Textures and Realism: Turing Tests for Visual Computation.
2. K. Pudenz: Quantum Computing Meets the Real World.

The conference has included four satellite workshops:

1. Biological Cell Information Processing, organised by M. Cooling
2. Membrane Computing, organised by M.J. Dinneen
3. Physics and Computation, organised by A. Abbott, V. Kendon, and S. Stepney
4. Unconventional Computation in Europe, organised by M. Amos and S. Stepney

http://ucnc15.wordpress.fos.auckland.ac.nz


The first conference in the series was organised in Auckland New Zealand in
January 1998 by the Centre for Discrete Mathematics and Theoretical Computer
Science (University of Auckland) and the Santa Fe Institute, USA. The following
twelve editions followed: Brussels, Belgium (December 2000), Kobe, Japan (October
2002), Seville, Spain (October 2005), York, UK (September 2006), Kingston, Canada
(August 2007), Vienna, Austria (August 2008), Ponta Delgada, Portugal (September
2009), Tokyo, Japan (June 2010), Turku, Finland (June 2011), Orléans, France
(September 2012) Milano, Italy (June 2013) and London, Ontario, Canada (July 2014).

The UCNC conference series is overseen by a Steering Committee which includes
Thomas Back (Leiden University, The Netherlands), Cristian S. Calude (University of
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Western Ontario, Canada), Seth Llloyd (Massachusetts Institute of Technology, USA),
Giancarlo Mauri (University of Milano-Bicocca, Italy), Gheorghe Păun (Institute of
Mathematics of the Romanian Academy, Romania), Grzegorz Rozenberg (Leiden
University, The Netherlands), as emeritus chair, Arto Salomma (University of Turku,
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The Unconventionality of Nature: Biology,
from Noise to Functional Randomness

Barbara Bravi1(B) and Giuseppe Longo2,3

1 Department of Mathematics, King’s College London, London, UK
barbara.bravi@kcl.ac.uk

2 Centre Cavaillès, CNRS, École Normale Supérieure, Paris, France
3 Department of Integrative Physiology and Pathobiology,

Tufts University, Boston, USA
Giuseppe.Longo@ens.fr

Abstract. In biology, phenotypes’ variability stems from stochastic gene
expression as well as from extrinsic fluctuations that are largely based on
the contingency of developmental paths and on ecosystemic changes. Both
forms of randomness constructively contribute to biological robustness, as
resilience, far away from conventional computable dynamics, where elab-
oration and transmission of information are robust when they resist to
noise. We first survey how fluctuations may be inserted in biochemical
equations as probabilistic terms, in conjunction to diffusion or path inte-
grals, and treated by statistical approaches to physics. Further work allows
to better grasp the role of biological “resonance” (interactions between
different levels of organization) and plasticity, in a highly unconventional
frame that seems more suitable for biological processes. In contrast to
physical conservation properties, thus symmetries, symmetry breaking is
particularly relevant in biology; it provides another key component of bio-
logical historicity and of randomness as a source of diversity and, thus,
of onto-phylogenetic stability and organization as these are also based on
variation and adaptativity.

Keywords: Noise biology · Randomness · Resilience · Variability ·
Diversity

1 Introduction

Conventional computing is the result of a remarkable historical path that orig-
inated in the invention of the alphabet: discrete and meaningless signs evocate
meaning by composition and by phonemes, that is by sounds, and provide by
this a musical notation for the continuum of speech. This revolutionary step is an

B. Bravi—This author’s work is supported by the Marie Curie Training Network
NETADIS (FP7, grant 290038).
G. Longo—This author’s work is part of the project “Le lois des dieux, des hommes
et de la nature” at IEA–Nantes.

c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 3–34, 2015.
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4 B. Bravi and G. Longo

early form of dualism, an invention very far from natural phenomena: ideograms
carry or recall meaning in their form, while the signs of an alphabet are per-
fectly abstract and meaningless. They require phonemes and do not refer per se
to the sensible world. We enriched this stepping away from the world by more
passages, in history, such as the Cartesian dualism, which further separated a
human mental software from physical matter, and, later, by the coding of alpha-
betic signs by numbers, yet another radical separation of (coded) words from
meaning. Gödel and Turing brought to the limelight this later invention for the
purpose of . . . showing the internal limits of the (alphabetic) writing of axioms
and formal (meaningless) deductions. In order to prove their negative results, the
construction of undecidable sentences and functions, they had to formally define
computability and decidability. By well-known equivalence results, we know that
no finitistic (alpha-numeric) re-writing system computes more functions than the
ones invented by the founding fathers and, thus, that it is subject to the same
limitations and incompleteness. In these computational frames, which are our
fantastic, linguistic invention far away from nature and its material contingency,
randomness has no place and all is done to avoid it, as “noise”.

However, these limits of formal writing and signs’ manipulations may be viewed
also as a contribution to understanding the key role of randomness in describ-
ing natural phenomena. As a matter of fact, randomness, in all existing physi-
cal and computational theories, may be understood as unpredictability w.r.to the
intended theory. It is thus a form of (in time) undecidability w.r.to the given (more
or less) formal frame (see Calude and Longo 2015; Abbott et al. 2012; Gács et al.
2011 for analyses in relation to algorithmic randomness). In other words, the
(joint) analysis of (algorithmic, physical and biological) randomness crucially
helps to go beyond formal deductions and computations, as given by conven-
tional theories.

The understanding and the treatment of randomness and unpredictability
is at the core of dynamical (non-linear) systems, quantum mechanics, statis-
tical physics. We will discuss common tools for the analysis of unpredictabil-
ity within some mathematical formalisms, from the Langevin approach to the
Fokker-Planck equation for diffusion, from path integrals to limit theorems of
probability theory related to the Law of Large Numbers. In biology, though, ran-
domness acquires a peculiar status as it is inherent to the variability, adaptivity
and diversity of life, as crucial components of its structural stability. Stochas-
tic gene expression will be introduced as striking example that already provides
hints towards a novel, hopefully more proper, definition of biological randomness;
the notions of “bio-resonance” and plasticity will be further examples of this. In
particular, we will first refer to “noise” in various, very relevant, conventional
(physical) representations of randomness, extensively applied to biology. Then,
we will stress the essential role of random events in biological processes, whose
contribution to life’s dynamical stability goes well beyond “noise” and suggests
the need for an enriched perspective; that is, for a better, unconventional, con-
ceptualization (and terminology), or possibly mathematization of randomness,
encompassing biological variability and diversity. A comparison will be made
with the revolutionary change in the laws of causality, randomness and determi-
nation proposed by quantum mechanics in the analysis of matter in microphysics.



Biology, from Noise to Functional Randomness 5

This poses the question of the suitability of the notion of “law”, as inherited from
classical and quantum physics, for the investigation of the dynamics of the living
state of matter. A key issue for us is that physical laws are given in pre-defined
phase spaces.

2 Stochasticity Modelled by Noise

Stochasticity in biological systems is largely denoted as “noise”. The use of term
noise implicitly assumes a way of thinking about cells shaped by the metaphor
that compares genetic and metabolic pathways to signalling “circuits” (Monod
1970; Simpson et al. 2009; Maheshri and O’Shea 2007).

Models, for the sake of simplification and understanding, rely on the choice
of relevant objects, properties and some defined degree of detail. In particular,
a mathematical (equational) model requires the a priori choice of the pertinent
observables and parameters, that is of a “phase space”. In this context, invok-
ing analogies with better characterized systems can provide qualitative insights
but is not neutral in terms of conceptual implications: discussing the latter is
indispensable to assess the suitability of metaphors, including the transfer of
mathematical tools between scientific fields. In fact, analogies set the guiding
principles for building models (to be considered “representations” first of all),
in such a way to shape the mathematical formalism, and how experiments are
designed and interpreted. It is thus a matter of vocabulary and, more impor-
tantly, of conceptual frameworks that may hinder progress if they prevent from
formulating questions in a way pertinent to the intended domain, living beings
in our case.

Concepts for studying metabolic and genetic pathways are explicitly drawn
from electronic circuit theory (e.g. Bhalla 2003), the richest source of inspiration
among various metaphors for signalling. The essential point, in our view, is that
the emphasis is placed on particular levels of description, namely functionality
and the problem of optimal processing and transmission of information. This is
inherent in the very mechanism of a metaphor, which is a meta-fero, a transfer of
meanings, a mapping to more familiar domains, that does not necessarily imply
a complete superposition. Furhermore, the systematic transfer of methodology
and concepts from physics to biology should be reframed in terms of dualities
as well as (or rather than) similarities, as we will argue below. In the context
of this metaphor, “noise” is seen as something that disrupts the system, causes
a defective functioning or even the breakdown. Yet, as we will stress, biological
“noise” is meant to refer also to variability : as a consequence, one attributes
the meaning of “disturbance” to something intrinsic to life, as a component of
adaptivity and diversity (plasticity is yet another element of these aspects of
biology).

Next sections are devoted to a discussion of the mathematical role of this
particular notion, noise, in the quantitative investigation of stochastic effects
in biological systems. Our aim is to focus on its theoretically and practically
relevant implications once it acts as a principle to make experimental evidences
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intelligible, because it then contributes to modelling assumptions and to the con-
struction of the “objectivity” to which scientific analysis is applied, in particular
because it affects how we conceive the underlying causal structure.

3 Randomness and Its Mathematical Formulation

The dynamics of a biochemical reaction is believed to be properly treated as
a Markov jump process (i.e. changes are seen as discrete events occurring at
random times and regardless of the previous chemical history) in a state or
phase space specified by the number of molecules (it is a description at the level
of “copy numbers”). Typically the abundance of reactants allows a quantification
on a continuous scale in terms of concentrations (number/volume). We mention
this aspect as, in the following sections, we will discuss the relevance of defining
a pertinent phase space when laying the foundations of a theory: in existing
physical theories, the laws (of a dynamics, typically) are given in a pre-defined
phase space.

In the context of a deterministic macroscopic characterization of biochemical
networks, variations of concentrations are assumed to occur by a continuous
process and reactions are described in terms of rate equations for the species
involved. This temporal evolution can be obtained applying the law of mass
action, which states that the rate of a reaction is proportional to the product of
the concentrations of the reactants and leads to equations in the form:

Rate of change of concentrations = Total rate of production - Total rate of
consumption

Mathematically equivalent to:

dxi(t)
dt

=
R∑

j=1

Sijfj(x ) (3.1)

where i = 1, ..., N denotes the chemical species and j runs from 1 to R, the num-
ber of chemical reactions. Sij = sij − rij contains the stoichiometric coefficients
sij for the reactants and rij for the products, while fj(x ) is the macroscopic rate
function for the j-th reaction and accounts for its probability.

As exhaustively explained by Gillespie (1976), in this formulation the cell is
considered to be endowed with a well-mixed and spatially homogeneous environ-
ment: spatial components and inhomogeneities, compartmentalization of reac-
tions, diffusion phenomena should be then analyzed separately. Moreover, what
should be verified is that the occurrence of nonreactive (elastic) collisions or
other molecular motions responsible for the maintenance of these conditions of
random uniform distribution is more frequent than reactive collisions.

Differential equations for the temporal evolution of concentrations must be
interpreted as a deterministic description as, once a set of initial conditions x 0(t0)
is fixed, the future evolution will be univocal. On the other hand, heteroge-
neous cellular behaviors are thought to be appropriately captured by stochastic
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models: the lack of accuracy of the deterministic models for essential biologi-
cal features leads one to introduce stochasticity at the level of the description
(Wilkinson 2009). Once the need for a stochastic explanation has been recog-
nized, the first step is to resort to statistical analyses and probability theory.
This is presently the only quantitative framework for taking into account any
kind of unpredictability, either epistemic or intrinsic.

In this spirit, the primary source of stochasticity is identified with fluctuations
present in all biochemical systems, as reactions occur at random times and with a
random outcome: arguments based on Poisson statistics are then used to affirm
that the relative amplitude of fluctuations should scale as the inverse square
root of the chemical population. Stochasticity is thus expected to be enhanced
by small numbers, for which fluctuations can exceed, in magnitude, the mean
molecular level (Elowitz et al. 2002; Simpson et al. 2009; Swain et al. 2002; Raj
and Van Oudenaarden 2008).

In light of this expected crucial role, a growing interest towards stochas-
tic behaviors has emerged in the field of biological modelling. Stochastic mod-
elling has been acknowledged as a well-established solution only since late 1990s,
once experimental techniques gave precise results showing that including random
terms was fundamental in order to fit experimental findings (Arkin et al. 1998).

Molecular fluctuations are usually incorporated by adding a random force
term in rate equations according to the so-called Langevin approach (see the
textbook by Van Kampen 2007 for a discussion), as follows:

dxi(t)
dt

=
R∑

j=1

Sijfj(x ) + ξi(t) (3.2)

The Langevin approach consists of writing down the deterministic equations of
the macroscopic behavior with an additional Langevin force term that exhibits
certain properties:

– The average over an ensemble of identical (or similar) systems vanishes, i.e.
〈ξi(t)〉 = 0 for any i.

– It stems from the instantaneous collisions between particles, so that, if vari-
ations are sufficiently rapid, they are not correlated in successive times. As
a consequence, the autocorrelation is supposed to be represented by a delta
function, i.e. 〈ξi(t)ξj(t′)〉 = Σij(x )δ(t − t′).
This delta representation is an abstraction, but it is applied for the sake of
convenience whenever the time of a collision is negligible w.r.to the relevant
timescale of the dynamics.

– ξi(t) is Gaussian distributed (i.e. completely characterized by the first two
moments).

This term is often referred to as “noise” because of its unpredictable nature; on
the other hand, the above properties guarantee a regular behavior in terms of
averages. In particular, when the last two properties hold true, one can define
a Gaussian white noise (white refers to the fact that a δ-time correlation is
independent on frequency in the Fourier space).



8 B. Bravi and G. Longo

Remarkably, this approach represents a very recurrent strategy in stochastic
modelling and it has been adopted to include heuristically every type of fluctu-
ations, also not directly connected to thermal effects in biochemistry: the prop-
erties listed above are often given a priori, without connections to the physical
dynamics of the underlying process1. The structure of Langevin equation is taken
as conventional justification for affirming that, whenever fluctuations are not rel-
evant, the molecular population evolves deterministically according to the set of
macroscopic reaction rate equations. Also at the level of mathematical descrip-
tion, it has been often found convenient to invoke analogies from engineering: in
fact, Gaussian white noise is a useful model of noise in electronics engineering,
for example for instrument errors in filtering theory and for unknown forces in
control theory. The analogy in these cases connects the “noise” observed in bio-
chemical networks to what is called “shot noise” of charge carriers in electronic
devices, the random timing and discrete nature of molecular processes being the
common features (Simpson et al. 2009). Adding a noise term can be conceived
as a formal procedure to insert “randomness” in a deterministic equation and
the description it conveys is that of an external force contribution. The aim is,
in parallel, to switch from a deterministic description to a probabilistic one: in
this way, in fact, each value is associated with a probability distribution, which
is either a peaked or spread function depending on the amplitude of fluctuations,
and is characterized in terms of averages.

Adding fluctuations to a dynamics otherwise predictable, enlarging the width
of probability distributions reflect the first attempts along an intellectual path
going from invariant to structurally stable, from repetition of identical to rep-
etition of similar. In the resulting theoretical account of stochasticity, still a
“regularity” in the sense of physics can be found (by means of the average over
an hypothetical ensemble) while an always different outcome (that we would call
stochastic, unpredictable) can be interpreted as “regular” given an epistemol-
ogy based on variability as a major invariant, presumably more appropriate in
biology (Longo and Montévil 2013).

The Langevin approach is completely equivalent to a Fokker-Planck equation
(see Risken 1989), a diffusion equation for continuous Markov processes which
turns out to be generally more tractable:

∂

∂t
P (x , t) = −

N∑

i=1

∂

∂xi
(Sf )i(x )P (x , t) +

N∑

i,k=1

∂2

∂xi∂xk
Σik(x )P (x , t) (3.3)

The convective term (Sf )i(x ) corresponds to the macroscopic deterministic reac-
tion, while the diffusion term Σik(x ) is meant to mimic how the noise leads the

1 In this regard, Van Kampen critically claims an “indiscriminate application” of the
Langevin approach for internal sources of stochasticity, the main reason being that
fluctuations cannot be analyzed independently of the global evolution. From the
mathematical point of view, in fact, the Eq. (3.2) is rigorously defined only if one
specifies which integration rule is chosen (either the Itô or Stratonovich convention,
as explained in Van Kampen 2007).
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probability distribution to spread around the average value, which coincides with
the deterministic one (it is also referred to as “noise-generating” term).

Simplified assumptions are usually needed to solve analytically the Fokker-
Planck equation. In this regard, stochastic kinetics methods have been primarily
developed for biochemical reactions that exhibit macroscopically stable station-
ary (or steady) states. We remark that stationarity is a condition that requires
steady flows of energy and matter, thus it includes also some out-of-equilibrium,
but close to equilibrium, situations. In this perspective, one analyzes small fluc-
tuations w.r.to stationarity, for example by considering suitably large numbers of
molecules and by linearizing the dynamics around the stationary states, see the
Linear Noise Approximation (LNA) put forward by Van Kampen (2007). Accord-
ing to the solution of the Fokker-Planck equation in this case, deviations follow a
Gaussian distribution, thus in average they cancel out. However, in general, intra-
cellular biochemical processes can occur far from the thermodynamic equilibrium
and from stationarity, where the noise becomes extremely significant, regardless
of the average molecule copy number. Although approximations such as the LNA
are very valuable tools for characterizing fluctations in many scenarios, they still
fail to faithfully and accurately describe what we will highlight as “noise-induced”
phenomena, i.e. the rich set of dynamical behaviors that stem from the interplay
between fluctuations and nonlinearities (Elf and Ehrenberg 2003).

3.1 “Effective” Randomness

It is worth a brief discussion on the meaning of a random term and the corre-
sponding stochastic picture, as it does not necessarily imply the “pure” random-
ness of the physical underlying mechanism.

As a matter of fact, fluctuation terms can be also representative of a conven-
tional randomness in the description, canalizing the way in which the existence
of ignored variables manifests itself (we shall call it “effective” randomness).
This point can be exhaustively clarified through the application of projection
methods (Zwanzig 1961) or other methods for reduced statistical descriptions
(Bravi and Sollich 2015). More generally, the projection approach demonstrates
that, when a separation of timescales can be identified, the exact equation for
“relevant” (slow) variables may be mapped into a stochastic equation with a
“random” force stemming from “irrelevant” (fast) degrees of freedom that have
been traced out. In the context of this particular description, typically chosen for
a matter of convenience and tractability, fast variables act effectively as random
terms, regardless of the true physical mechanism by which they influence the
system (in principle they can act as deterministic forces). Coarse graining pro-
cedures, that allow to switch between different levels of detail, rely on the same
logic. Random terms indeed arise as a consequence of mapping a finer scale of
description into a coarser one where only certain relevant variables are retained.
For example, as explained both in conceptual and formal terms by Castiglione
et al. (2008) and in the references therein, a microscopically deterministic dynam-
ics, whose unique source of stochasticity is given by uncertain initial conditions,
can be translated into a mesoscopic stochastic evolution.
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A basic and powerful guiding idea of many models is to trace out degrees of
freedom, so that to end up with terms of effective randomness carrying memory
effects from the neglected components. This idea has been explicitly elaborated
within projection methods but typically underlies several statistical approaches:
it must be seen as a way of rearranging in a form suitable for further treatment
the complicated contribution of both predictable and intrinsically unpredictable
effects, as well as the overall uncertainty on conditions and on factors involved.

To sum up, terms of effective randomness appear as a consequence of the
choice to integrate out some levels of detail, in terms both of components and
dynamical processes. This randomness “intrinsic” to the formalism from the
mathematical point of view adds itself to the one “intrinsic” to the experimental
procedure, the unavoidable uncertainty that affects each physical measure and
forces one to express it by an interval.

3.2 Path Integrals

The Fokker-Planck equation is deterministic because the value of the solution is
fixed once we know the initial conditions, while stochasticity is included in the
fact that it determines the dynamics for a law of probability, in analogy with
the Schrödinger equation of quantum mechanics.

Quantum randomness manifests as unpredictable fluctuations in measure-
ments: if we repeat an experiment under exactly identical conditions, the out-
come of any measurement is found to vary with a random behavior that can
be assessed only by probabilistic tools. Importantly, this is due not only to our
ignorance (the epistemic randomness of classical dynamics), but also to Heisen-
berg principle. The latter states the non-commutativity of measurements (they
depend on the order) and it transforms uncertainty into a principle, at the very
root of the theory, intrinsically. On the other hand, fluctuations are not the
only aspect representing randomness, which in quantum theory is accounted for
by the complex nature of the wave function: remarkably, this allows a descrip-
tion for the interference phenomena that are observed in microscopic world and
whose explanation builds on the superposition principle. This principle is formal-
ized by the path integral formulation, which replaces, for calculating quantum
amplitudes, the classical notion of a unique trajectory with a sum, or functional
integral, over an infinity of possible trajectories.

Path integrals constitute a formalism intended to incorporate naturally inter-
ference effects stemming from wave-particle duality and the key intuition behind
is to express stochasticity as an intrinsic superposition of possibilities satisfying
certain given boundary conditions. This idea can be traced back to the theory
of stochastic processes and can be attributed to Wiener (1976), who introduced
the integral named after him for the study of Brownian motion and diffusion
processes.

The Wiener integral, involving Brownian walks, can be regarded as the first
historical evaluation of a statistical path integral and, as well, it provides the
basis for a rigorous formulation of quantum mechanics in terms of path integrals,
to which stochastic processes are related upon transition to imaginary time.
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In fact, quantum mechanics relies on real-time (Minkowskian-time) path inte-
grals: by performing a Wick rotation (i.e. an analytical continuation of the inte-
gral to an imaginary time variable) one recovers the Wiener integral, that in
this way can be immediately interpreted as an Euclidean-time (imaginary time)
path integral giving a transition probability for the process. In addition, once
integrated over boundary configurations, this path integral turns out to resemble
a statistical partition function: this connection between quantum mechanics and
statistical mechanics (globally discussed e.g. by Kleinert 2009) is deeply rooted in
the theory and not just dependent on the path integrals formulation. It is demon-
strated also by the fact (well known to Schrödinger) that the equation bearing his
name coincides with a diffusion equation with an imaginary diffusion constant
(or, analogously, in imaginary time). The complete path integral formalization
for non-relativistic quantum theory was developed by Feynman (1948), who also
showed the equivalence of this formulation to the one of Schrödinger differential
equation and to the algebraic one of Heisenberg matrices. In quantum mechan-
ics, the probability of an observable (a real quantity) is given by the squared
module of a complex number, the probability amplitude. As a consequence of
the superposition principle, Feynman’s conjecture theorizes that the probability
amplitude can be calculated by a sum of all conceivable and alternative ways of
evolution in configuration space, in other words, a sum over all histories of the
system. Each one is weighted by an exponential term whose imaginary phase is
given by the classical action for that history divided by the Planck constant �.
Thus, according to Feynman’s interpretation, the classical action is postulated
to contribute as a phase acquired by the system during the time evolution: quan-
tum path integrals are in fact denoted as oscillatory. This is in opposition to
Wiener integrals, where the action in the exponential still represents a particu-
lar history but is not multiplied by the imaginary unit: the probability of each
path is thus encoded by an exponential decay, the well-known Boltzmann factor
of statistical mechanics (Sethna 2006). By this idea of histories with varying
phases, the path integral formulation offers a convenient framework for deduc-
ing the classical limit of quantum theory. For instance, when the classical action
is much larger than the Planck constant, the exponent becomes a very rapidly
varying function, positive and negative deviations w.r.to the classical history are
suppressed by destructive interference and the path integral can be evaluated by
stationary phase method (therefore a justification of classical variational princi-
ple is also included). The classic limit of quantum path integrals corresponds to
the deterministic limit in stochastic path integrals, which is the one that selects
the most probable path by minimizing the action.

Both in the quantum and stochastic context, path integrals do no bring con-
ceptual novelties strictly speaking, they are rather a reformulation of the existing
theory in a different form2. Nevertheless such a different form looks suitable for
performing mathematical manipulations and in particular it frames in intuitive

2 Almost ironically, Feynman (1948) notices in this regard: “There are, therefore, no
fundamentally new results. However, there is a pleasure in recognizing old things
from a new point of view”.
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terms a common way of thinking about randomness. The interplay between
real and complex numbers, objectified by the Wick rotation, is fundamental in
transforming a representation of a properly quantum randomness to the one of
diffusive processes, but still the same formal framework can summarize both: an
inherent co-existence of possibilities is assumed to characterize quantum systems
as well as classical systems commonly denoted as stochastic.

4 Stochastic Gene Expression

Since the pioneering work by Kupiec (1983) and more recently (see Raj and Van
Oudenaarden 2008; Maheshri and O’Shea 2007; Swain et al. 2002), it has been
acknowledged that gene expression is best described as a stochastic process, the
evidence being that, even in presence of homogeneous and reproducible experi-
mental conditions, single-cell measurements display a significant degree of het-
erogeneity. This is interpreted as a phenomenon due to stochasticity, or “noise”,
intended as unpredictability about the outcome and occurrence of chemical reac-
tions: the idea that noise can influence cell fates was thus developed starting from
experimental observation of cell-to-cell differences in gene expression levels. In
1940 Delbrück put forward, for the first time, the hypothesis that fluctuations in
biological molecule populations, typically consisting of few copies, can have a rel-
evant impact on cellular physiology: later he proposed this might explain, in part,
the variability observed in the number of viruses produced per phage-infected
cell (Delbrück 1945). The notion of stochastic gene expression has become well
established and widely accepted only more recently, since means of a system-
atic experimental investigation became available (many of early experiments
were in fact limited by the difficulties inherent to measuring gene expression in
single cells and needed the development of new tools to manipulate organisms
genetically). Since then, it has motivated a great research effort and resulted in
a long series of publications in the context of “noise biology” (e.g. Rao et al.
2002; Simpson et al. 2009). Among the first experiments aimed at identifying
factors influencing gene expression, we recall the studies of Elowitz et al. (2002),
who introduced the distinction between extrinsic and intrinsic noise (see next
section).

From a quantitative point of view, a measure of the noise affecting a state
variable is given by the Coefficient of Variation (CV), a dimensionless quan-
tity defined as standard deviation of the distribution divided by the mean value
(we refer to Simpson et al. 2009; Swain et al. 2002 for formulas): this definition
implies examining an ensemble of trajectories at a single time or points of a sin-
gle trajectories over time, given that ergodicity holds true (i.e. time averages and
population averages are interchangeable). The “noise” of a stochastic variable
thus is identified with fluctuations with respect to the average over the whole
statistical ensemble, usually composed by different cells. Already this definition
implies that cells can be regarded as independent and identical realizations of the
same system, forcing then a symmetry that is far from being verified in biology,
as it will be discussed. By means of the Central Limit Theorem and the Law
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of Large Numbers (LLN), fluctuations are expected to scale as the inverse of
the square root of the number of molecules, thus they correspond only to small
corrections to the mean value and can be neglected with respect to the latter.
In other words, fluctuations average out as the numbers of molecules increases.
Once defined the CV as measure of stochasticity, it can be compared with the
noise-type term of the Langevin approach, a term, we remark, that reflects and
imposes a probabilistic description. Note that, in the context of experimental
characterization, noise is found to have a structure that consists of magnitude
(i.e. the size of excursions with respect to mean value) and autocorrelation
(a characteristic time scale that quantifies the duration of effects due to fluc-
tuations): both are important in determining biological consequences. However,
in biological systems, low copy numbers of crucial components, like DNA or of
some molecular types in a cell, prevent from the application of the same argu-
ment and motivates the interest for fluctuations, as we will acknwoledge below3.

4.1 Extrinsic-Intrinsic Noise

In the attempt to clarify and interpret results of experiments, two categories
have been defined: extrinsic noise and intrinsic noise. Both types of noise are
claimed to be necessary to justify the observed amount of variability and both
are suggested to appear in intracellular reactions involving small numbers of
reactants (see Elowitz et al. 2002; Wilkinson 2009; Raj and Van Oudenaarden
2008).

First of all, to make progress in terms of understanding and interpretation,
it is essential to provide a brief overview of the biological context in relation
to which the subdivision intrinsic-extrinsic has been introduced. In this regard,
the fundamental work was done by Elowitz et al. (2002), whose aim was to
proceed with a quantitative study of gene expression variability in Escherichia
Coli. They injected 2 copies of the same promoter into a single cell genome,
one responsible for the expression of the cyan fluorescent protein (CFP) and
the other for the yellow fluorescent protein (YFP). Under different experimen-
tal conditions, the two fluorescent species could either fluctuate indipendently
(something observable in the very diversified resulting colors of bacteria) or in
a correlated way, giving rise to a more homogenoeus population. According to
the definition of CV, noise can be quantified looking at the distribution of a
state variable (in this case, the relative number of proteins in living cells that
can be estimated from fluorescence intensity): uncorrelated fluctuations define
the intrinsic noise, the extrinsic component is detected through correlated flucu-
ations. Correlated changes in expression are believed to result from fluctuations
of global expression capacity, while uncorrelated variations in protein levels affect
copies independently. In this way, if both promoters can be reasonably assumed

3 The intuition beyond can be traced back to E. Schrödinger’s words: “Incredibly
small groups of atoms, much too small to display exact statistical laws, do play a
dominating role in the very orderly and lawful events within a living organism”,
What is Life (1944).
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independent and statistically equivalent in the expression, intrinsic noise is taken
as proportional to the difference in the number of each protein within a single
cell, while cell-to-cell differences in total fluorescent protein expression account
for the extrinsic noise. Both the intrinsic and extrinsic component of noise could
be thus determined from plots of CFP versus YFP fluorescence intensity in indi-
vidual cells, where correlated and uncorrelated deviations actually appear as
orthogonal contributions to total noise.

The intrinsic noise is classified as the one due to stochasticity of biochemistry
inherent in translation and transcription events: it incorporates and expresses
the stochastic nature of gene-specific biochemical reactions, which consist of
collisions occurring at random times.

On the other hand, cellular variation is known to be predominantly generated
by multiple interactions of the system of interest with other stochastic systems,
within the cell and in the environment, that become experimentally detectable
as extrinsic fluctuations. As a consequence, several studies (see Shahrezaei et al.
2008; Huang et al. 2010) have focused on models that include random terms of
both intrinsic and extrinsic type: in particular, the authors claim that extrin-
sic noise is essential for the sake of a biologically realistic picture. While the
treatment for intrinsic stochasticity is relatively well established, the attempts
of mathematical formalization of extrinsic stochasticity are still at the beginning.
A hypothesis widely accepted on the basis of experimental evidence (Shahrezaei
et al. 2008) is to characterize extrinsic noise as nonspecific (it affects equally
each component of the system, so that mathematically it modifies the dynamics
as multiplicative noise) and colored (the autocorrelation time is not negligible:
it exhibits a substantial lifetime, comparable to the cell cycle).

Many factors are believed to be sources of extrinsic noise: cell-to-cell dif-
ferences in morphology, organelle composition and molecular population struc-
ture, microenvironmental changes in temperature, pression, chemicals, radiation,
nutrients, influences from upstream regulators that are unknown or neglected at
a certain level of description. As a result, in stochastic representations includ-
ing extrinsic fluctuations, a connotation of “effective” for randomness should
be implicitly assumed: effective randomness, in fact, concentrates contributions
of unknown initial and boundary conditions. The idea is to focus on a certain
subsystem, so that external but connected degrees of freedom can be taken into
account as “random” terms in the equations of that particular subsystem, even if
in principle they act deterministically (Bravi and Sollich 2015). The importance,
in generating extrinsic fluctuations, of variation both in intracellular and extra-
cellular environments lays a great stress on the role of contexts (intracellular
crowding, tissue organization) and history (cell divisions cause an accumulation
of differences) in cell dynamics. In other words, extrinsic noise expresses the fact
that a cell is not an autonomous entity, it is embedded in an organism and main-
tains connections with it by regulation and integration mechanisms in several
directions. In fact, looking at the cells population level, variability is not found to
be simply the sum of independent stochastic events occuring at the intracellular
level, as it is not averaged out by large numbers: gene expression itself seems to
depend also on a collective dynamics of the whole population (see Stolovicki and
Braun 2011).
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To summarize, firstly we reconsider the importance of stochasticity on the
basis of the LLN, which provides an explanation for what in physics is called
“intrinsic” noise, as it stems from the very nature of components of the systems
and not from external perturbations. In biological data, additional sources of
heterogeneity force to introduce a “noise” accounting for the orthogonal con-
tribution in observations: to remark this opposition, it is called “extrinsic”.
Paradoxically, at a more detailed analysis, the discussion about the different
factors contributing to extrinsic noise reveals that, biologically speaking, it can
be regarded as more intrinsic than the “intrinsic” noise: in fact, it emerges
as an operational and mathematical way to take into account the fundamental
specificity of biological objects. It is thus be considered intrinsic to the theory by
remote analogy to its treatment in quantum mechanics. In addition, one is some-
how forced to resort to the (too) inclusive category of extrinsic noise because of
the lack of experimental techniques to isolate all the different factors we listed.

In the overall perspective, extrinsic noise seems a problem still to exhaustively
unravel and this, possibly, suggests a change of viewpoint, as we will propose
below: reframing the question itself into an alternative epistemology, the one of
the living beings, which accounts for the structures of determination inherent
to biology and for an autonomous definition of randomness. Sticking to this
idea, history and contexts, as well as internal constraints of integration and
regulation mechanisms, can be thought to constrain possible evolutionary paths
that dynamically arise in the interaction with the environment rather than to
determine the outcome (as determinism requires that the same effects derive
from the same causes). The role of constraints, in reference to “enablement”,
both to be defined below, seems crucial in biology, as we will hint in the sequel.

Our emphasis on the peculiar biological meaning of “noise” may become
particularly relevant in connection to the new discipline we mentioned, whose
denomination is exactly “noise biology”.

5 Noise Biology

Understanding the role of biological “noise” is in some sense an attempt to
address the interplay order-disorder, an unresolved problem in biology since
Schrödinger (1944): this constitutes the main focus of “noise biology”, a rapidly
expanding field. As we observed, noise biology relies on engineering approaches
to systems biology, in which networks of biochemical processes are conceptual-
ized as circuits. Noise as a disturbance effect is the consequence of the use (and,
let us say, abuse) of the electronic circuit metaphor: as we will discuss later, it
focuses on functionality features and thus tends to identify the action of factors
that do not fall into this category as a disruption. On the other hand, many
are the studies that offer alternative points of view with respect to the one of
noise as detrimental to organisms, the convincing argument being that, if what
is called noise exerted only perturbative effects, there wouldn’t be the interest-
ing “noise-induced” phenomena that we observe in metabolism, stress response,
growth (Raj and Van Oudenaarden 2008; Eldar and Elowitz 2010). Some exam-
ples are epigenetic influences in developmental processes (see Buiatti 2011)
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and “noise-driven” cell fates (see Arkin et al. 1998; Rao et al. 2002; Bhogale et al.
2014; Munsky et al. 2014). Among the most striking “noise-induced” phenom-
ena, we should then mention self-organizational properties and the spontaneous
emergence of patterns in morphogenesis (e.g. see Meyer and Roeder 2014 for a
review): random fluctuations, such as inhomogeneities in the spatial distribu-
tion of chemical species, can in fact initiate tissue differentiation and patterning
mechanisms by breaking the symmetry between cells. Interestingly this research
direction is in part reminiscent of what Prigogine (1984) introduced as “order
by fluctuations” and, in particular, it continues Turing’s studies on pattern for-
mation in reaction-diffusion systems (1952).

Even in this different perspective, the vocabulary often used still derives from
the electronic circuit metaphor and thus inherits some notion of “optimality” in
the design, a problematic notion itself when referred to organisms (Longo and
Montévil 2013). The basic assumption of noise biology is that natural selec-
tion has “optimized” the distribution of noise to populations, shaping molecular
processes in such a way to “resist” or to functionally “exploit” noise (Vilar et al.
2002; Rao et al. 2002): the aim of noise biology is to understand this distribu-
tion, statistical properties of random variables being informative about selective
mechanisms that drove such evolution.

The emerging scenario is consistent with the characterization of “canalized”
biological randomness previously proposed. In the noise biology literature, het-
erogeneity is often denoted as “biased by environmental and intracellular signals
[...] ordered” (Rao et al. 2002), “adjusted during functional evolution” (Snijder
and Pelkmans 2011). In particular, the integration of functional modules and
regulatory features are assumed to filter and shape noise, the result being a “cul-
tivated noise” or an “environmentally tuned heterogeneity in a cell population”
(Rao et al. 2002). For instance, stochastic behaviors are inevitably affected by the
crowded, diffusion-limiting, highly structured and compartmentalized intracel-
lular media and by molecular mechanisms of regulation and compensation, such
as feedback and feedforward loops (in feed-back loops the output comes back
as input, while in feed-forward information is unidirectional). Also at the tissue
level, mechanical stresses can either control or amplify cell growth heterogeneity,
as suggested by Uyttewaal et al. (2012). In general, noise takes part in the evo-
lutionary and adaptive dynamics thus its “functional role” has been extensively
claimed. In this context, the focus is on its interplay with nonlinearities, which
leads to phenomena of stochastic amplification, stochastic dumping and focus-
ing of oscillations (see Paulsson et al. 2000). An example worth mentioning is
the circadian rhythm, i.e. the biochemical mechanism oscillating in phase with
the photoperiod, for which stochastic models are shown (see Guerriero et al.
2012 for plant circadian clock) to better capture experimental observations. Sto-
chasticity ensures a faster, thus more efficient, synchronization to variations in
photoperiod and buffers fluctuations in various environmental factors, such as
light intensity and temperature. In summary, stochasticity, by facilitating the
response to external changes, provides organisms with an increased plasticity
and it is directly linked to metabolism and survival through the role played by
circadian rhythms in photosynthesis.
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Furthermore, fluctuations act in connection with positive feedbacks in cell
fate-selection mechanisms, yielding to the so called noise-mediated or stochastic
“switches” (Raj and Van Oudenaarden 2008): a positive feedback loop can lead
to multiple stationary solutions (multistability) and stochastic fluctuations have
the potential to switch between them, causing a variation in the phenotype.
Such mechanisms are considered an evidence of functional advantage of noise
to respond to environmental changes. The paradigmatic (and firstly studied)
system in this regard is the λ-phage lysis-lysogeny decision circuit, where the
“noise” canalizes the effect of the environment in such a way to enable the deci-
sion between the lytic and lysogenic pathway (Arkin et al. 1998). Other examples
can be listed in metabolism and nutrient uptake, such as the lactose-pathway
switch in E.coli (Bhogale et al. 2014), or in connection to fate selection in viral
infection, such as the Pyelonephritis-Associated Pili (PAP) epigenetic switch in
E. Coli (Munsky et al. 2014). Variability is thus enhanced by networks that
can produce multiple, mutually exclusive profiles of gene expression: this fact,
in combination with other processes of randomly expressing genes and silencing
others, is thought to have a selective advantage, as it allows organisms to dis-
play phenotypic variants also in uniform genetic and environmental conditions
(Wilkinson 2009). These phenomena can be thought to belong to the class of
“variability generators” introduced by Buiatti and Buiatti (2008) and described
as exploration tools of the phase space that are essential for the adaptation to
changing contexts. This is relevant in the perspective further developped below,
that the very phase space is co-constructed by the changing biological structures
and their interaction with the ecosystem.

6 Robustness from Noise and Beyond Noise

Dialectically, the problem of “noise” cannot be separated from the one of “robust-
ness”: this is often meant as an inherent noise-rejecting property, given implicitly
the assumption that a noise-resistant system is likely to exhibit robustness. Many
key properties of biological systems, from phenotypes to the capability of per-
forming some task, are recognized to be “robust” in the sense of relatively insen-
sitive to the precise values of biochemical parameters: the degree of robustness
can be thus quantitatively and systematically investigated by methods connected
to sensitivity analysis (Barkai et al. 1997). Relying on the analogy with an elec-
tronic circuit, robustness is described as crucial to ensure a proper functioning of
“signal” transduction networks in “noisy” conditions. The explanation of biolog-
ical robustness in absence of large numbers, not possible by invoking arguments
from physics, is attempted rather by focusing on “design” features of biochem-
ical networks (a way of proceeding more akin to engineering). The metaphor
biosystem-circuit provides thus the framework to accommodate the interplay
between robustness, noise and their respective roles for a reliable operational
outcome but, importantly, in such a framework they are conceived as seemingly
conflicting notions. “Noise”, by enlarging the range of parameters, contributes to
variability and, as a consequence, a potential advantage in terms of adaptiveness
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to changing environments can be argued for (see e.g. Rao et al. 2002): one can
indeed analyze robustness in close connection with organisms internal plasticity
(Buiatti and Buiatti 2008) and randomness as a key component of structural
stability (Longo and Montévil 2013).

Attempts to include a property of robustness into models account for the
“individuality” of living objects that strikingly emerges in observations: exam-
ples of this evidence are some features of chemotactic response (Barkai et al.
1997), such as adaptation time and steady state tumbling frequency, that vary
significantly from one bacterium to another in genetically identical populations,
or phyllotaxis (Mirabet et al. 2012), as the arrangement of leaves and flowers is
widely diversified both at inter and intra-plant scale. In our perspective, robust-
ness expresses and justifies a notion of organisms as systems endowed with a
high degree of historical specificity: it allows changes over time, while preserving
varying degrees of individuality, from bacteria to large vertebrates. By virtue
of this correspondence, robustness can be regarded as an intrinsic property, as
far as variability and individuality within the constraints of structural stabil-
ity are inherent to life. Thus, stochasticity, far from being just “noise”, plays a
constructive role towards robustness, by promoting and underlying the adaptive
responses of an organism to the environment. Remarkably, this potential positive
contribution of randomness is grounded not only in statistical properties but it
holds true both by large and by small numbers, in contrast to physics, as we will
argue below.

In biology one needs to enrich the notion of robustness with respect to other
disciplines (see Lesne 2008 for an extensive review of the notion of robustness in
biology): for example one should add forms of “functional”, “structural” robust-
ness that stem from regulation mechanisms and are shaped by the evolutionary
history (e.g. feedbacks in stochastic “switches” and in morphogenesis act towards
a stabilization and a reinforcement of the phenotypic path selected by fluctua-
tions). In particular, the definition of robustness should not be limited simply to
“feature persistence” but should include also the meaning of “resilience”, to be
intended as persistent dynamic reconstruction of a viable coherence structure,
viable also because adaptive and diverse, thus changing.

7 Proper Biological Randomness

It should be clear by now that the need to capture heterogeneity, which mani-
fests itself as unpredictability with respect to the deterministic formalism, leads
to resort to stochastic models. In particular, a description in probabilistic terms
of biochemistry has been the starting point for the physico-mathematical inves-
tigation and characterization of biological randomness.

In spite of the major interest of this investigation, we consider it still essen-
tially incomplete (where incompleteness does not mean at all useless). The per-
spective we want to hint here is based on an attempt to include randomness in
the “structure of determination” of biological dynamics, intrinsically. In a sense,
we can still refer to mathematical physics, methodologically, for a paradigmatic
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change of this kind: Schrödinger equation gives the deterministic dynamics of
. . . a law (an amplitude) of probability. By this, quantum randomness is inte-
grated in the mathematical determination. We are far from being able to propose
a similar mathematical novelty, in biology, as first a change in the theoretical
frame, including terminology, is required. A preliminary, apparently minor, point
is the idea of avoiding the reference to “noise”, when appreciating the role of
random events in biology. As we stressed and as we will further stress below,
in biology, randomness is an integral part of variability, thus of adaptation and
diversity, both in reference to small numbers and to large numbers. Random-
ness contributes by this to biological structural stability, as a peculiar form of
resilience. It is an evolutionary fact that a population of a few thousand animals
is more stable if diverse; but diversity in large populations as well, or in species,
contributes to stability, far away from the “averaging out” proper to noise in
stochastic dynamics in physics. That is, both within an organism and in the
ecosystem, diversity, variability and number of components play a diverse role,
as we will hint. And randomness, as a component of variability, adaptation and
diversity, becomes functional as such to biological dynamics.

7.1 Examples of the Functionality of Diversity in Large Numbers

Within an organism, variability may contribute in different ways to its structural
stability. It is largely claimed that the average functionality of hepathocytes (liver
cells) only matters (Pocock 2006). So, variability seems averaged out in this organ
made of a few hundred million cells, a number considered “large” in biological
applications of statistical physics. Similarly, as for the lungs’ function, only the
average functionality of lung’s cell seems to matter. Yet, at a closer insight, both
interindividual and intraindividual diversity of the fractal and alveoli’s structure
and cells’ diversity of lungs in mammals (about five hundred million alveoli,
in an adult human), contributes to the adaptivity of the lungs’ functionality
in different contexts: the direct interface with the atmosphere better adapts to
atmospheric changes by its diversity. Even more so, the about 109 leukocytes in
the immune system, yet another large number, are effective exactly because of
their variety and diversity: they are produced as a result of variability genera-
tors (Buiatti and Buiatti 2004) and subsequently selected when binding antigens.
The immune system is a true evolutionary system within an organism, where
diversity within each leukocytes’ population, and between populations, is at the
core of its functionality and is enhanced by selection (Thomas et al. 2008). Thus,
variability, which fluctuates over about 1015 potentially different cell receptors,
is the opposite of noise to be averaged out. In conclusion, the biological function-
ality of randomness is highly unconventional w.r.to physics, by the peculiar role
of adaptivity and diversity, and a reference to two out of these three examples,
say, just in terms of “noise” may be highly misleading.

In biology, a novel and specific notion of randomness has been claimed (see
Buiatti and Longo 2013; Longo and Montévil 2013, 2014). This is also due to the
need to work simultaneously at different levels of organization, that is to grasp, in
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a unified way, cellular, tissue, organ, organismal levels, possibly within an evolu-
tionary context. In physics, different scales are enough to force different theories,
so far: quantum and relativistic fields are still not unified to describe gravity;
classical and quantum randomness are treated differently (they are dealt with
different probabilities, in view of the violation of Bell inequalities, see Aspect
et al. 1982); hydrodynamics is far from being understood in terms of quantum
physics – in spite of water being formed by simple molecules (Chibbaro et al.
2014). This lack of unity, in physics, is relevant for biological theorizing, since
both quantum and classical randomness are present at the molecular level (see
Buiatti and Longo 2013 for references and a discussion); water, say, has also a rel-
evant role, including by its peculiar “coherence” in the highly compartmentalized
structures of eukariota, due to Quantum Electro-Dynamics effects (Del Giudice
and Preparata 1998). Moreover, many researchers analyze cell networks in terms
of statistical physics, while others work in morphogenesis of organs in terms of
non-linear dynamics, since Turing’s 1952 paper (Fleury and Gordon 2011).

From an epistemic perspective, these different levels of analysis may be
soundly called “different levels of organization” as they require, so far, differ-
ent mathematical, even conceptual, possibly incompatible, tools. The reduction
to the molecular level is a myth that is in contrast to the history of physics, where
theoreticians proposed “unifications” (Newton, Boltzmann) not reductions and
still search for unification (relativistic vs. quantum fields). Moreover, this myth
leads to incomplete theories even at the molecular level, as any relevant molec-
ular cascade, in an organism, be it just a cell, causally depends on the context.
In particular, macromolecular interactions are largely stochastic, must then be
given in probabilities and these probabilities depend on the context. For exam-
ple, macromolecular syntheses may be “constrained” by enzymes in different
ways; a simple pressure on the cell or its nucleus, “constrains” or “canalizes”
stochastic gene expression (Farge et al. 2009; Swain et al. 2002; Raj and Van
Oudenaarden 2008).

In order to deal with the physical singularity of these phenomena, the notions
of “bio-resonance” and “enablement” have been proposed (Buiatti and Longo
2013; Longo et al. 2012a). These notions are proper to organismal biology and
evolution and significantly change the biological “structure of determination”, in
particular in relation to randomness; they enrich by this the contribution by bio-
chemistry, summarized in the previous sections. Bio-resonance has been proposed
in analogy to the role of “planetary” resonance in the non-linear analyses of
the planetary system: it is the gravitational interaction between planets that
“destabilizes” the dynamics by a non-linear amplification of minor fluctuations
and perturbations, in particular when planets are aligned with the sun (a sort of
noise that destabilizes the perfect clockwork of Creation). This happens though
at just one scale, at one level of mathematical description. Bio-resonance instead
concerns the interactions, by integration and regulation, between different levels
of organization, thus possibly between different mathematical analyses, within
an organism. Moreover, on one side, (minor) fluctuations at one level may affect
other levels – an endocrine perturbation, say, may change the control of cell
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reproduction in a tissue, a possible cause of cancer (Soto and Sonnenschein 2010).
On the other, bio-resonance enhances regulation and correlates variations, by
integration of cells, in a tissue, in an organ, in an organism. By this, it contributes
to stabilization of an organism, which continually undergoes Darwin’s correlated
variations, also in ontogenesis, though in a more constrained way than at the
evolutionary space-time scale.

As for enablement (Longo et al. 2012a; Longo and Montévil 2013), its epis-
temological novelty resides in enriching deterministic causality: phylogenetic
and developmental paths are selected according to their “compatibility” in a
(phase) space of phylogenetic and morphogenetic trajectories dynamically “co-
constituted” with the environment (Longo and Montévil 2014). In short, an
ecosystem enables, does not causes, in general, the formation of a new pheno-
type (possibly a species). In light of Darwin’s first principle, the default state for
biological entities, since they are endowed with a replicative structure, is given
by “proliferation with variation”, as we will stress in the conclusion, following
Longo et al. (2015). Then, some variants, some hopeful monsters as suggested by
Goldsmith, often produced by sudden bursts of variability (Eldredge and Gould
1972) may be enabled by the (changing) environment. Note that, by modifying
the default state, from inertia to Darwin’s descent with modification, the causal
analysis of an evolutionary and ontogenetic dynamics must be extended to an
analysis of “what enables”. A doctor who understands the cause of a Pneumonia
in a bacterium, must also consider the state of the lungs or the general health
conditions of the patient that enabled the infection to develop – bacteria a priori
reproduce with variations and are generally present in an organism: a healthy
lung and immune system control their reproduction and do not enable them
beyond a viable level.

As for the dynamic nature of the enabling environment and of the organisms
that grow in it and compose it, note that, since a quantum event at a molecular
level may induce a phenotypic change, a possibility mentioned above, the latter
has at least the same nature of unpredictability as the quantum event, though
manifested at a very different scale and level of organization. Thus, if one takes
as observables the ones proposed since Darwin, namely organisms and pheno-
types, in a broad sense, these are a consequence of the dynamics and cannot be
pre-given, even not a space of possibilities. This is in sharp contrast with the
theoretical attitude in physics, where one of the major duties of theory building
is the preliminary invention of the “proper” phase space: the dynamics and its
laws will follow, possibly given by equations or evolution functions within those
spaces. It should be clear that these may be infinite or even infinite dimensional,
such as Hilbert spaces in quantum mechanics, yet they are mathematically pre-
defined to the dynamics (by their symmetries, they can be axiomatically defined,
by finitely many words). In some cases, in statistical physics, the (finite) dimen-
sion may change, yet the new dimensions have the same observable properties
as the others and the probabilities of each change of phase space are known
(Sethna 2006).
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Enablement, compatibility, dynamic and unpredictable co-constitution of the
phase space contribute to set up a new conceptual framework to understand and
justify variability and diversity as intrinsic properties of life: they are not just
“noise”, or perturbations within a pre-given frame. Also the analysis of the “liv-
ing state of the matter” proposed by Buiatti and Buiatti (2004) pays particular
attention to variability generators or internal random generators, a set of phe-
nomena and mechanisms that enable organisms to produce new possible paths
and variants on which selection processes act or that are enabled. These gener-
ators are at the core of plasticity, adaptiveness, evolvability. As we mentioned,
within an organism, the immune system is the most typical case of a contribu-
tion to biological viability and stability based on variability generators, thus on
diversity.

In summary, randomness in biology must be considered as a constitutive
component of stability, also or mostly by the peculiar biological role of adap-
tivity and diversity. It is a massive but “canalized” phenomenon, summarizing
the pressure due to internal constraints and to environmental conditions, in
such a way that the analysis cannot be performed regardless of the context.
Internal mechanisms of integration and regulation, to which upward and down-
ward processes contribute, establish an intertwining of local and global scales
in organisms and canalize biological evolutionary and developmental dynam-
ics. They appear as constitutive aspects of the concept of “bio-resonance”, pro-
posed in order to include in the description both constraints and amplification
of randomness between epistemic organizational levels. Furthermore, living sys-
tems are open, they continually interact with the ecosystem, exchanging energy
and matter and dynamically modifying their configuration jointly to the ever
changing environment. In biology, histories and contexts, “accidents” that are
usually neglected in physics, contribute to biological determination (Longo and
Montévil 2013): two books and several papers (see Longo’s web page) propose a
perspective on these aspects of organismal dynamics that need to be taken into
consideration, even in investigations at a molecular level.

Note, finally, that the law of large numbers (LLN), in physics, justifies the
interest in potential effects of randomness in small populations, as it indirectly
stresses the potential role of fluctuations for low numbers and the possibilities
of change as opposite to “averaging them out”, proper to fluctuations in large
numbers of entities. However, LLN does not provide tools for a satisfactory treat-
ment of this phenomenon for low numbers, while it precludes the understanding
of functional diversity by randomness in large numbers (see the immune system
above). In other words, the LLN implication that fluctuations are negligible is
rather a retrieval of the fully deterministic macroscopic model and its “classical”
stability. In addition, the statistical theory behind LLN subsumes indipendent
copy number fluctuations4 as sole source of “noise” and this is not sufficient in

4 As a preliminary evidence, recent experiments (see Salman et al. 2012) suggest that
the fitted curves for protein abundance resemble limit distributions of strongly cor-
related stochastic variables: this would reflect the spatial and temporal interdepen-
dence of processes regulating gene expression.
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biology, as we tried to make clear also by the description of intrinsic and extrinsic
components of noise in the previous section and by the examples and notions in
this section.

In summary, from our perspective, biological randomness plays an essential
explanatory role, in presence of both large and low numbers, by the role of
variability, diversity and adaptivity. By focusing on these randomness related
components of biological stability, we stressed a rather unconvential aspect of
life dynamics in comparison both to physical or computational ones. The math-
ematical form of randomness appropriate to biology reasonably needs a more
systematic elaboration and definition, as it should condense the conceptual nov-
elties briefly described here and be conceived as proper to the very dynamics
of life.

8 Symmetries

The role of symmetries, in mathematics and physics, is well-known. By symme-
try we mean both a regularity in a structure, which may present an invariance
with respect to some transformations, and a trasformation that preserves some
properties of the intended object. In a sense, in a discipline largely based on
invariants and invariance preserving transformations, mathematics, symmetries
have this peculiar double status of being both invariants and transformations. By
their definition, symmetries are organized as a group, in the intended space. In
mathematics and physics, from Euclid to Grothendieck, from Archimedes to Ein-
stein and Weyl or contemporary physics, symmetries are at the core of knowledge
construction. Our 3-dimensional continuum possesses a fundamental (rotational
and translational) symmetry (groups O(3) and R3) which permeates all physical
theories. Lorentz and Poincaré symmetry groups in relativity and gauge groups
for elementary particles are at the core of contemporary physics. Symmetries
appear in crystals and quasicrystals, in self-similarity for fractals, dynamical
systems and statistical mechanics, in monodromies for differential equations . . . .
Even more fundamentally, conservation properties, of energy and momentum,
are symmetries in the equations (Noether’s theorems): these properties allow to
write the Hamiltonian, an omnipresent tool in mathematical physics. Similarly,
in electromagnetism, inversing charges does not alter the equations (a symme-
try), or the aim of the recent experiments on the Higgs boson was to witness a
symmetry breaking in fundamental fields in particle physics.

In biology, symmetries allow to understand macromolecular interactions, as
well as global structures, such as organisms’ bauplans. Yet, symmetry breaking
as well has a crucial theoretical role in biology, as we will hint in the next section.
An interesting connection that may help to move from physics to biology, is given
by the notion of “critical transition”, where both symmetries and their breaking
play a key role. This notion has been used, in between physics and biology, since
the’80s (see Longo and Montévil 2014 for a survey and details on the following
remarks). The main idea is to split first the microscopic and the macroscopic
descriptions. The microscopic level may be described by the same equations in
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different macroscopic states and these equations satisfy certain symmetries (for
example, no particular direction in magnetization at high temperature, nor in a
fluid). At the transition point, i.e. at a given value of the control parameter (tem-
perature, say), these symmetries are broken and a precise direction dominates
in magnetization, in crystal formation . . . . The space of description changes, at
the pertinent scale, as well as its symmetries. Yet, in existing physical theories,
this space may be pre-given. Crystals and snow flakes, a typical formation of a
coherence structure at a critical transition, yield new, but pre-listable symme-
tries, in a new, but expected, space of observables, due to forces already present
in molecular interaction, but ineffective till the Brownian motion is above a cer-
tain threshold. At critical transitions, along the intended parameters, pertinent
objects change, yet they may be measured according to pre-given observables.

In the statistical approach to thermodynamics, one can observe a similarly
consistent role in the definition of a phase space, at the thermodynamic limit,
and this in connection to the “averaging out” of some key features which, in that
limit, can be regarded just as microscopic details. Note also that, in this app-
roach, the probability of deviating from the most probable state decreases expo-
nentially, depending on the number of lower-level entities (this result is known as
the “fluctuation theorem”). On the grounds of some fundamental assumptions,
such as the thermodynamic limit (the assumption of an infinite number of par-
ticles leads to a coincidence of averages and macroscopic states) and ergodicity
(that is a symmetry assumption between time average and phase space average),
the theory allows to go from the properties of a trajectory to the properties of
the phase space and vice versa5.

More generally, the description of a suitable phase space where “trajectories”,
in a broad sense, may be described, even in presence of critical transitions or
asymptotic constructions, is a key issue of the theoretical investigation in physics.
As we already observed, since Newton and Kant, we understood physical knowl-
edge as built in “a priori” defined (phase) spaces, where one can describe the
intended dynamics by equations and evolution functions, that is once fixed the
pertinent parameters and observables. Newton, in space and time, then in suit-
able, yet different, phase spaces, Hamilton, Poincaré, Gibbs, Boltzman, Einstein,
Schrödinger . . . gave us the beautiful theories that frame physical theories. Let us
see more closely a further key role of symmetries in this very robust methodology.

5 In these contexts, mean values analyses (or central limit theorems) are generally
valid. However, in the complex case of second-order phase transitions, in thermody-
namics, these analyses fail. For example, the transition between macroscopic order
versus disorder in ferro-paramagnetic transitions, does not occur progressively but at
a precise (critical) temperature. At that point, fluctuations at every scale dominate
and this expresses a tendency to obtain magnetic alignments of every size. Moreover,
some physical quantities become infinite, such as susceptibility to an external field.
As a consequence of the dominating fluctuations, close or at the transition, mean
value analyses fail (Longo et al. 2012b; Toulouse et al. 1977). This may be of interest
for biological theoretizing, yet, in this case as well, the phase space is pre-given.
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Physical and mathematical objects are generic, that is they are invariants in
experiments and theories, in a given (abstract) space of observables and objects.
As for mathematics, it should be clear that a right triangle or a Banach space
are generic: a proof of their properties on one of them, gives them “for all”. In
physics, a measurement on a falling stone or an electron may be iterated identi-
cally, always, in any similar context, within physical approximation, for any stone
or electron. This is a theoretical symmetry (a invariance property of objects that
may be interchanged, are generic, in the theory – as given by equations, evolu-
tion functions . . . ), which is also crucial for measurement. As Galileo observed in
“Dialoghi sopra i massimi sistemi”: errors in measurement are unavoidable, yet
small errors are the most probable; errors distribute symmetrically around the
mean value; reliability increases with the number of measurements. The symme-
tries of a Gaussian and the genericity of the physical objects formalize Galileo’s
early insight.

9 Symmetry Breaking

9.1 Measurement

In order to stress the singularity of biological experiments and subsequent theo-
retizing, observe first that Galileo’s remarks are fundamentally wrong in biology,
from cells to plants and animals, and this constitutes a major challenge for exper-
imental work. Indeed, biological objects are specific, that is, they are the result of
a history, they are individuated and diverse, they are not interchangeable (sym-
metric). By an extraordinary attention to experimental protocols, biologists care
of the history of each organism they work on: its phylogeny, up to a very high
number of generations, and its ontogeny are closely considered in order to per-
form and compare experiments. So mice and cells are internationally numbered,
described and used according to these histories. Typically, when increasing the
number of experiments, one may be forced to go beyond the (limited) number of
organisms with the same phylogenetic history, and this may give very different
reactions in a given experiment. Then “errors” and their distance may increase
with the number of experiments. The point, of course, is that these are not errors,
a priori, but may correspond to increasing interindividual diversity, when a pop-
ulation increases. Similarly, exceptions to mean values are not to be discarded, as
they may correspond to an exploration by variability of new onto-phylogenetic
paths. As we observed, biologists “symmetrize” (a terminology by M. Montévil
in ongoing strongly needed theoretical reflections on biological measurement)
as much as they can the objects of experiments, typically by common histories
and strictly controlled environments, but the comparative analysis of variabil-
ity is also a component of the empirical investigation: the fact that Polynesian
and Polish patients may react very differently to a molecule is an important
information, per se. Specificity of organisms breaks a fundamental symmetry
assumption in mathematics and physics, genericity, an invariance under objects’
transformations, in experiments and in theories.
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9.2 Extended Criticality

A conceptualization of the permanent reconstruction of the coherence structure
of an organism, as a state of “extended critical transition” proper to biological
onto-phylogenetic trajectories is summarized in Longo and Montévil (2014), fol-
lowing some previous papers (downloadable). Each cell reproduction, in particu-
lar in a multicellular organism, yields a critical transition. At the “bifurcation”,
it produces a new coherence structure of intercellular context, where two similar
(almost symmetric, but inherently asymmetric) cells reorganize cell-to-cell con-
nections as well as collagen, tissue’s matrix . . . . The sensitivity to the context of
the new symmetries formed at the transition, plus the asymmetric distribution
of DNA and proteomes, facilitates cellular differentiation and variation: a minor
change in the context (different distance from the source of energy, different
pressure . . . ) may influence the cell fate. Adaptation is a further consequence
of this unstable/stable dynamics, as, at criticality, a cell, an organ may better
adjust to organismal or ecosystemic changes (see Mora and Bialek 2011, where
also some biological functions are described as poised at criticality6).

In this perspective, a biological trajectory of an organism is a cascade of sym-
metry changes of . . . a fundamentally symmetric, i.e. locally coherent, structure,
yet continually changing its proper coherence (its symmetries). This viewpoint
focuses on the contingency of structural stability in biology, but does not exclude
stability from the theoretical construction. We just stress the role of time and of
changes in an understanding of the resilience, thus of a form of stability, in bio-
logical dynamics, on the grounds of a permanent dialogue with physical theories,
both by a methodological transfer and by conceptual dualities. Note, typically,
that the continual changes of symmetries do not allow to describe biological
trajectories as the optimal result of conservation properties (energy, momen-
tum or alike), like in physics. As a consequence of these properties, in physics,
the trajectories are geodetics (optimal paths) in a pre-given phase space, thus
they are specific7. We claim instead that trajectories, in biology, in evolution
in particular, are generic, that is they are “possible” ones, as a consequence of
Darwin’s principle of descent with modification and of enablement or selection,
in a co-constructed ecosystem as phase space, where pertinent observables and
parameters are subject to change8. Moreover, a phylogenetic trajectory is the
“sum” of ontogenetic trajectories, where each of these trajectories is an extended
critical path (ontogeny is an extended critical interval, in the life span, with time
as a control parameter, see Longo and Montévil 2014).

6 In reference to a previous footnote, this situation is closer to second order criticality
than to the statistical “averaging out”.

7 Geodetics are usually derived by variational or equivalent methods that allow to
write a Hamiltonian or extremize a Lagrangian functional that are given in terms of
conservation properties.

8 Note that not only measurable phenotypes, as observables, may change, but perti-
nent parameters as well: air vibrations at audible frequencies were irrelevant before
the formation of hears, in early vertebrates with a double jaw (Allin 1975).
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Table 1, below, summarizes the conceptual dualities w.r.to physics that guide
the theoretical attempts in biology mentioned here. We already hinted to the
dualities in the first three lines that are extensively treated in the references. In
the next section, a few ideas will be given on the dualites not yet discussed. This
will allow to further stress the functional role of randomness in biology.

Table 1. A possible theoretical differentiation between inert and living state of mat-
ter is described through some conceptual dualities, based on the work in Longo and
Montévil (2014).

PHYSICS BIOLOGY

Randomness is non deterministic or
deterministic non predictability within
a pre-given phase space

Randomness is intrinsic indetermination
given also by changing phase spaces
(ontogenesis and phylogenesis)

Specific trajectories (geodetics) and
generic objects

Generic trajectories
(possible/compatible with
ecosystem) and specific objects

Point-wise criticality Extended criticality

Reversible time (or irreversible for
degradation-simplified
thermodynamics)

Double irreversibility of time
(thermodynamics and phenotypic
complexity constitution)

10 Symmetry Breaking, Randomness and Time

10.1 Biological Time

Longo and Montévil (2015) observe the co-existence, in existing physical the-
ories, of symmetry breaking, random events and (local) irreversibility of time.
In short, measurement as projection of the state vector in quantum mechanics,
bifurcations in classical non-linear dynamics, diffusions by random paths . . . , as
symmetry breakings, are all associated to random events (or probability values)
and are time irreversible. By a direct analogy, in this case, it should be clear
that the approach hinted here to biological trajectories in terms of cascades of
symmetry changes further stresses the omnipresent and constituive role of ran-
domness in biology. But also the irreversibility of time turns out to be crucial.
Of course, there are plenty of thermodynamic effects, in an unicellular organ-
isms as well as in elephants, since energy is used and transformed everywhere.
Yet and once more, the physical singularity of life pops out also by the peculiar
irreversibility of time that we consider needed for an appropiate theorizing.

First, energy dispersal, as understood in thermodynamics, has a major rele-
vance in biology. The decrease of entalpic oscillations of a macromolecule may
have little physical interest, in particular because, by pumping energy, one may
restaure the previous situation (like in two mixing gazes, where a centrifugue
may separate again the gazes). Yet, in a cell, decreasing oscillations of macro-
molecules may reduce stochastic interactions and biochemical activities, thus it
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may irreversibly affect gene expression and metabolic stability (the increasing
instability of the latter is often considered at the heart of aging, see Olshansky
and Rattan 2005). This stresses the relevance of the thermodynamic irreversibil-
ity in biological processes. Second, the very setting up and mantainance of bio-
logical organization is a highly irreversible process. Everybody understands that
a theory that would allow to conceive a backwards film of embryogenesis should
be immediately discarded. Let’s examine this point more closely.

As we recalled above, each cell division, on one side, increases order, as hav-
ing two cells instead of one enriches the order or the organization of the universe;
on the other, it produces a slight disorder. The asymmetric division of the pro-
teome, which, for many molecular types that are present in low numbers, does
not average out, similarly as for the differences in DNA copies, in the partitioned
membrane . . . yield irreversible symmetry breakings. This slight production of
disorder is also a form of entropy production, while it comes with the production
of order “per se”, not just by the use of energy. Now, cell division is not proper
only to embryogenesis, but it is a critical transition that continually occurs in
ontogenesis, by billions of times everyday in a large metazoan. A close analysis
of the relevance of this two forms of entropy production for aging is developped
by Bailly and Longo (2009). Let’s just mention here that this may help to stress
a difference between monocellular and multicellular organisms. In a monocel-
lular organism, the entropy produced by the energy transformation processes
or at asymmetric reproductions is mostly released in the exterior environment.
Some traces of aging are then found in asymmetries in the new membranes –
a new vs. an older part – which happens to be the border between interior
and exterior, where flows pass through, see (Lindner et al. 2008; Stewart et al.
2005)). In a metazoan, the entropy produced, under all of its forms, is also but
inevitably transferred to the environing cells, to the tissue, to the organism.
It may contribute to decrease collagen tension and the global tensegrity struc-
tures of tissues. It may affect metabolic stability in other cells as well as the
oxidative stress (Romano et al. 2010). As this is an additive effect, it increases
exponentially: while negligible in embryogenesis and youth, it prevails over the
slower reconstruction of organization with aging. Note, here, that we do not
want to ascribe aging entirely to this double form of entropy production, as the
debate on the nature of aging, a multifactorial process, is extremely open and
lively. We just propose a possible further element for the controversial role of
many factors, some of which may be unified by this analysis, which differs but
is compatible with other recent proposals. In particular, the generation of more
connective tissues, a possible biological response to degradation, is another chal-
lenging component of aging, (Miquel 2014). Note finally that even the analysis
of the entropic component of aging cannot be based on the averaging out of
fluctuations or the centrality of means. It is based instead on the key role of
reproductive variability as such and the slight creation of disorder associated to
it, also during the (re-)construction of order. Moreover, the distinction between
thermodynamic irreversibility and the irreversibility of the very setting up and
mantainance of organization, encourages to single-out a second observable time,
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in the same dimension of the physical arrow of time, yet proper to biological
investigations: the time of (re-)construction of the organization (in physics, the
dimension of energy contains different observable forms of energy). Biological
clocks and internal rhythms in organisms provide a natural measurement for
this second observable time, at least along metazoans’ life span, as they scan it
in a relatively independent way from thermodynamic time (Longo and Montévil
2014). Once more, random events are at the core of it and have a constitutive,
functional role.

10.2 Plasticity and Variation

So far, variability in biology has been implicitly assumed as the result of ran-
dom variation at some level of organization, beginning of course, with DNA,
from mutations to stochastic gene expression. However, there is an increasing
awareness of Lamarckian effects in phylogenesis. Acquired or epigenetic inheri-
tance has been observed in cyliates (Nowacki and Landweber 2009). Proteomic
changes due to different environmental levels in lactose are reportedly inherited
for several generations (Robert et al. 2010). It is well known that methylation
and demethylation, which affect gene expression, may be induced by environ-
mental factors, including emotional situations, from rats to humans. In other
words, Darwin’s principle of descent with modification is not only based on
random effects, but may also be induced by contextual interactions and result
in acquired inheritance. In this perspective, canalization by constraints may
be another suitable concept for the relation between biological dynamics and
their contour or internal conditions. Some recent experiences in microgravity
(Bizzarri et al. 2014) show that unicellular eukariota develop wild cytoskeleta
when they reproduce in geo-stationary satellites. The idea is that gravity con-
strains development: typically, it canalizes cytoskeletal growth towards relatively
flat structures as well as it selects negatively shapes that are unsuitable for sub-
sistance or movement. When this constraint is reduced or disappears, descent
with modification yields a larger variety of enabled structures. One may consider
then the resulting forms as due to the plasticity of organismal development, as
cytoskeleta seem shaped, not just selected, also by gravity. Biological plasticity, of
course, reaches its highest point in (large) brains, where the continual dynamics
of neurons and their connections undergoes deformations and even critical tran-
sitions (Werner 2007) as a consequence of brain’s interaction with the ecosystem.
In short, from individual eukariota to large organisms, their neural systems at
least, both phylogenesis and ontogenesis extensively present random variations
as well as forms of induced or canalized changes by plasticity, where selection or
enablement apply.

11 Conclusion and Opening: Some Principles
of Biological Organization

Cell proliferation has been called “ground state’ in the context of embryonic
stem cells, because it is inherent to the system, and does not require stimula-
tion (Wray et al. 2010). Morevoer, all cells move. In pioneering work on cancer



30 B. Bravi and G. Longo

(Soto and Sonnenschein 1999) proposed to consider proliferation and motility as
default state of all cells, also within organisms, where this default state is highly
constrained. Even neurons or heart’s cells, which are known not to reproduce or
to reproduce very rarely, when extracted from their organismal context prolifer-
ate at high pace. As we already mentioned, in Darwin’s theory, reproduction is
always with modification and will happen as long as there are sufficient available
nutrients – up to potentially covering Earth, says Darwin. The addition of “mod-
ification” is thus fundamental; variation begins at the cell division that generates
two overall similar, but not identical cells. Adding modification at reproduction
is at the core of this paper not just in view of random molecular events (Kupiec
1983; Raj and Van Oudenaarden 2008), but also by the plasticity mentioned
above. In Longo et al. (2015), this has been synthesized as a default state of all
organisms:

Proliferation with variation and motility

and as a Framing Principle:

Life phenomena are never identical iterations of a morphogenetic process

Generating diversity from a single cell, be it LUCA (Last Common Universal
Ancestor) or a zygote, is an essential component of phylogenesis and ontogenesis.
The Framing Principle is a way to express a principle of iterated organization at
all scales and levels, not just cells and organisms. For example, branching mor-
phogenesis in organs is an ubiquitous iterative process that generates a repetitive,
yet always changing pattern, e.g. branching angles vary (in vascular systems, in
ducts of all sorts). This is due to the combined action of the default state of the
cells producing the corresponding tissues and the varying pressures, frictions . . .
in the context.

An analysis of “organization with variation” has been recently proposed by
Montévil and Mossio (2015), where an explicit distinction betweeen causal rela-
tions and constraints provides a major conceptual clarification. By the intro-
duction of characteristic times for processes within an organism and by the role
given to variation and scales, their novel diagrammatic approach to ontogenesis
may open the way to new mathematical ideas, which may add relevant theo-
retical understanding to the transfer of tools from physics. We recall that the
work at the right scale of observation has been the key step originating all the-
ories in physics, from falling bodies and celestial mechanics to thermodynamics
and quantum mechanics or hydrodynamics, originally all based on very different
or incompatible principles (and many are still now). Then, new and suitable
principles and mathematical tools where invented, both for the analysis at the
intended scale or, later, for theoretical unifications, whenever possible, as there
has been no “reduction” in physics, but remarkable unifications – even the (par-
tial) understanding of some chemical laws in terms of quantum mechanics should
be viewed in this way (Chibbaro et al. 2014). Thus, we shouldn’t just use con-
ventional tools from mathematical physics in the analysis of the living state of
matter, but also develop intrinsic insights and possibly new mathematics, follow-
ing the methodology of physics along history, including the choice of a suitable
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scale – with the cell as least component, in this perspective. Unification will then
be possible, as a long term project, like within physics, but if one does not have
two or more theories, there is nothing to unify. The analysis of the conceptual
dualities summarized above (see also Table 1) and the peculiar yet comparable
role of randomness in different contexts may be a way to this.

Acknowledgements. We thank Angelo Vulpiani for stimulating remarks on a pre-
liminary draft and Peter Sollich for a careful reading of part of the manuscript.
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Abstract. We introduce a notion of ultrametric automata and Tur-
ing machines using p-adic numbers to describe random branching of
the process of computation. These automata have properties similar to
the properties of probabilistic automata but complexity of probabilistic
automata and complexity of ultrametric automata can differ very much.

1 Introduction

Irrational numbers can be represented by decimal digits

2.718281828 . . .

In this representation infinitely many digits are allowed on the right-hand
side but only a finite number of them on the left-hand side. Informally, non-
terminating decimals are easily understood, because it is clear that a real num-
ber can be approximated to any required degree of precision by a terminating
decimal. If two decimal expansions differ only after the 10th decimal place, they
are quite close to one another; and if they differ only after the 20th decimal
place, they are even closer.

10-adic numbers use a similar non-terminating expansion, but with a different
concept of “closeness”. Whereas two decimal expansions are close to one another
if their difference is a large negative power of 10, two 10-adic expansions are close
if their difference is a large positive power of 10.

Thus 3333 and 4333, which differ by 103, are close in the 10-adic world, and
33333333 and 43333333 are even closer, differing by 107.

More precisely, a rational number r can be expressed as 10a · p
q , where p and q

are positive integers and q is relatively prime to p and to 10. For each r �= 0 there
exists the maximal a such that this representation is possible. Let the 10-adic
norm of r to be

| r |10= 1
10a

,

| 0 |10= 0.
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Closeness in any number system is defined by a metric. Using the 10-adic
metric the distance between numbers x and y is given by | x − y |10 .

The “closeness” in the 10-adic metric may seem strange. This reminds me an
occasion in the seminar “Algebra and Logics” lead by Professor Anatoly Maltsev
in Novosibirsk University nearly 50 years ago. A young student was presenting a
paper on modifications of the Tarski-Kuratowski algorithm. I do not remember
whether the paper was by the student himself or whether he presented some
foreign paper. At some moment the presenter proudly announced that the best
earlier known version of the algorithm had time complexity exp exp . . . exp n
(9 times exponent) but the version in the paper was much better, namely,
exp exp . . . exp n ( 7 times exponent). Professor Maltsev immediately commented
that he did not see much difference there. Boris Trakhtenbrot came to the presen-
ter’s help and noticed that the improvement is not just exponential but exponent-
of-exponential. After short but emotional discussion the participants agreed that
the improvement is essential but the difference is negligible.

On that day I learned that humans do not distinguish between huge and very
huge numbers. Similarly, they not distinguish between small and very small num-
bers. The Archimedean metric is good in mathematics but not in the everyday
life.

An interesting consequence of the 10-adic metric (or of a p-adic metric) is
that there is no longer a need for the negative sign. As an example, by examining
the following sequence we can see how unsigned 10-adics can get progressively
closer and closer to the number 1:

9 = −1 + 10 | 9 − 1 |10 = 1
10

99 = −1 + 100 | 99 − 1 |10 = 1
100

999 = −1 + 1000 | 999 − 1 |10 = 1
1000

9999 = −1 + 10000 | 9999 − 1 |10 = 1
10000

99999 = −1 + 100000 | 99999 − 1 |10 = 1
100000

. . . 99999999999999999999999999999999999999 = −1

10-adic numbers have a major drawback. It is possible to find pairs of non-
zero 10-adic numbers (having an infinite number of digits, and thus not rational)
whose product is 0.

The reason for this property turns out to be that 10 is a composite number
which is not a power of a prime. This problem is simply avoided by using a prime
number p as the base of the number system instead of 10 and indeed for this
reason p in p-adic is usually taken to be prime.

Let p be an arbitrary prime number. We will call p-adic digit a natural
number between 0 and p − 1 (inclusive). A p-adic integer is by definition a
sequence (ai)i∈N of p-adic digits. We write this conventionally as

· · · ai · · · a2a1a0

(that is, the ai are written from left to right).
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If n is a natural number, and

n = ak−1ak−2 · · · a1a0

is its p-adic representation (in other words n =
∑k−1

i=0 aip
i with each ai a p-adic

digit) then we identify n with the p-adic integer (ai) with ai = 0 if i ≥ k. This
means that natural numbers are exactly the same thing as p-adic integer only a
finite number of whose digits are not 0. The number 0 is the p-adic integer all
of whose digits are 0, and that 1 is the p-adic integer all of whose digits are 0
except the right-most one (digit 0) which is 1.

If α = (ai) and β = (bi) are two p-adic integers, we will now define their
sum. To that effect, we define by induction a sequence (ci) of p-adic digits and
a sequence (εi) of elements of {0, 1} (the “carries”) as follows:

– ε0 is 0.
– ci is ai + bi + εi or ai + bi + εi − p according as which of these two is a p −

adic digit (in other words, is between 0 and p - 1). In the former case,εi+1 =
0 and in the latter, εi + 1 = 1.

Under those circumstances, we let α + β = (ci) and we call α + β the sum
of α and β. Note that the rules described above are exactly the rules used for
adding natural numbers in p-adic representation. In particular, if α and β turn
out to be natural numbers, then their sum as a p-adic integer is no different from
their sum as a natural number. So 2 + 2 = 4 remains valid (whatever p is but if
p = 2 it would be written · · · 010 + · · · 010 = · · · 100). Here is an example of a
7-adic addition:

This addition of p-adic integers is associative, commutative, and verifies α +
0 = α for all α (recall that 0 is the p-adic integer all of whose digits are 0).
Subtraction of p-adic integers is also performed in exactly the same way as that
of natural numbers in p-adic form. Note that this subtraction scheme gives us
the negative integers readily: for example, subtract 1 from 0 (in the 7-adics) :

(each column borrows a 1 from the next one on the left). So −1 = · · · 666 as
7-adics. More generally, −1 is the p-adic all of whose digits are p − 1, −2 has all
of its digits equal to p − 1 except the right-most which is p − 2, and so on. In
fact, (strictly) negative integers correspond exactly to those p-adics all of whose
digits except a finite number are equal to p − 1.

It can then be verified that p-adic integers, under addition, form an abelian
group.
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We now proceed to describe multiplication. First note that if n is a natural
number and α is a p-adic integer, then we have a naturally defined n · α =
α + α + . . . + α (n times, with 0 · α = 0, of course). This limited multiplication
satisfies some obvious equalities, such as (m + n)α = mα + nα, n(α + β) =
nα+nβ,m(nα) = (mn)α, and so on. Note also that multiplying by p = · · · 0010
is the same as adding a 0 on the right. Multiplying two p-adic integers on the
other hand requires some more work. To do that, we note that if α0, α1, α2, · · ·
are p-adic integers, with α1 ending in (at least) one zero, α2 ending in (at least)
two zeros, and so on, then we can define the sum of all the αi, even though
they are not finite in number. Indeed, the last digit of the sum is just the last
digit of α0 (since α1, α2, · · · all end in zero), the second-last is the second-last
digit of α0 + α1 (because α2, α3, · · · all end in 00), and so on: every digit of the
(infinite) sum can be calculated with just a finite sum. Now we suppose that we
want to multiply α and β = (bi) two p-adic integers. We then let α0 = b0α (we
know how to define this since b0 is just a natural number), α1 = pb1α, and so
on: αi = pibiα. Since αi is a p-adic integer multiplied by pi, it ends in i zeros,
and therefore the sum of all the αi can be defined. This procedure may sound
complicated, but, it is the usual algorithm to multiply two natural numbers.
Here is an example of a 7-adic multiplication:

To have p-adic representations of all rational numbers, 1
p is represented as

· · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have infinitely many (!) digits to the left of the “decimal” point but
only a finite number of digits to the right of it.

However, p-adic numbers is not merely one of generalizations of rational
numbers. They are related to the notion of absolute value of numbers.

If X is a nonempty set, a distance, or metric, on X is a function d from pairs
of elements (x, y) of X to the nonnegative real numbers such that

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

A set X together with a metric d is called a metric space. The same set X
can give rise to many different metric spaces.

The norm of an element x ∈ X is the distance from 0:



Ultrametric Algorithms and Automata 39

1. ‖ x ‖= 0 if and only if x = y,
2. ‖ x.y ‖=‖ x ‖ . ‖ xy ‖,
3. ‖ x + y ‖≤‖ x ‖ + ‖ y ‖.

We know one metric on Q induced by the ordinary absolute value. However,
there are other norms as well.

A norm is called ultrametric if the third requirement can be replaced by the
stronger statement: ‖ x + y ‖≤ max{‖ x ‖, ‖ y ‖}. Otherwise, the norm is called
Archimedean.

Definition 1. Let p ∈ {2, 3, 5, 7, 11, 13, · · · } be any prime number. For any
nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordpa, be the
highest power of p which divides a, i.e., the greatest m such that a ≡ 0(modpm).
For any rational number x = a/b, denote ordpx to be ordpa−ordpb. Additionally,
ordpx = ∞ if and only if x = 0.

Definition 2. Let p ∈ {2, 3, 5, 7, 11, 13, · · · } be any prime number. For arbitrary
rational number x, its p-norm is:

||x||p =

{
1

pordpx , if x �= 0,

¬pi, if x = 0 ;

Rational numbers are p-adic integers for all prime numbers p. The nature of
irrational numbers is more complicated. For instance,

√
2 just does not exist as a

p-adic number for some prime numbers p. More precisely,
√

a can be represented
as a p-adic number if and only if a is a quadratic residue modulo p, i.e. if the
congruence x2 = a(modp) has a solution. On the other hand, there is a continuum
of p-adic numbers not being real numbers. Moreover, there is a continuum of 3-
adic numbers not being 5-adic numbers, and vice versa.

p-adic numbers are described in much more detail in [7,11,14].
ascal and Fermat believed that every event of indeterminism can be described

by a real number between 0 and 1 called probability. Quantum physics introduced
a description in terms of complex numbers called amplitude of probabilities and
later in terms of probabilistic combinations of amplitudes most conveniently
described by density matrices.

String theory [18], chemistry [12] and molecular biology [2,10] have intro-
duced p-adic numbers to describe measures of indeterminism.

Popularity of usage of p-adic numbers can be explained easily. There is a well-
known difficulty to overcome the distinction between continuous and discrete
processes. For instance, according to Rutherford’s model of atoms, the electrons
can be situated only on specific orbits. When energy of an electron increases,
there is a quantum leap. Niels Bohr proposed, in 1913, what is now called the
Bohr model of the atom. He suggested that electrons could only have certain
classical motions:
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1. Electrons in atoms orbit the nucleus.
2. The electrons can only orbit stably, without radiating, in certain orbits (called

by Bohr the “stationary orbits”): at a certain discrete set of distances from
the nucleus. These orbits are associated with definite energy levels. In these
orbits, the electron’s acceleration does not result in radiation and energy loss
as required by classical electromagnetics.

3. Electrons can only gain and lose energy by jumping from one allowed orbit
to another, absorbing or emitting electromagnetic radiation with a frequency
determined by the energy difference of the levels according to the Planck
relation.

One of the methods to model such quantum leaps is to consider p-adic num-
bers and there norms. The p-adic numbers can have continuum distinct val-
ues but their norms can have only denumerable values. If a variable gradually
changes taking p-adic values, its norm performs quantum leaps. Hence usage of
p-adic numbers as measures of indeterminism provides a mechanism which is
similar to probabilistic model but mathematically different from it.

There were no difficulties to implement probabilistic automata and algo-
rithms practically. Quantum computation [9] has made a considerable theo-
retical progress but practical implementation has met considerable difficulties.
However, prototypes of quantum computers exist, some quantum algorithms are
implemented on these prototypes, quantum cryptography is already practically
used. Some people are skeptical concerning practicality of the initial spectac-
ular promises of quantum computation but nobody can deny the existence of
quantum computation.

We consider a new type of indeterministic algorithms called ultrametric algo-
rithms. They are very similar to probabilistic algorithms but while probabilistic
algorithms use real numbers r with 0 ≤ r ≤ 1 as parameters, ultrametric algo-
rithms use p-adic numbers as the parameters. Slightly simplifying the description
of the definitions one can say that ultrametric algorithms are the same proba-
bilistic algorithms, only the interpretation of the probabilities is different.

Our choice of p-adic numbers instead of real numbers is not quite arbitrary.
In 1916 Alexander Ostrowski [16] proved that any non-trivial absolute value on
the rational numbers Q is equivalent to either the usual real absolute value or a
p-adic absolute value. This result shows that using p-adic numbers is not merely
one of many possibilities to generalize the definition of deterministic algorithms
but rather the only remaining possibility not yet explored.

Moreover, Helmut Hasse’s local-global principle states that certain types of
equations have a rational solution if and only if they have a solution in the real
numbers and in the p-adic numbers for each prime p.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric.
Absolute values are needed to consider distances among objects. We have used to
rational and irrational numbers as measures for distances, and there is a psycho-
logical difficulty to imagine that something else can be used instead of irrational
numbers. However, there is an important feature that distinguishes p-adic num-
bers from real numbers. Real numbers (both rational and irrational) are linearly
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ordered. p-adic numbers cannot be linearly ordered. This is why valuations and
norms of p-adic numbers are considered.

The situation is similar in Quantum Computation. Quantum amplitudes are
complex numbers which also cannot be linearly ordered. The counterpart of
valuation for quantum algorithms is measurement translating a complex number
a+bi into a real number a2 +b2. Norms of p-adic numbers are rational numbers.

Ultrametric finite automata and ultrametric Turing machines are reasonably
similar to probabilistic finite automata and Turing machines.

2 First Examples

The notion of p-adic numbers widely used in mathematics but not so much in
Computer Science. It seems that the first author having proposed to use p-adic
numbers to analyze finite automata has been A.G.Lunts [13]. The first papers
containing definition of ultrametric finite automata in the sense used in this
survey were [5,6].

The aim of our next sections is to show that the notion of ultrametric
automata and ultrametric Turing machines is natural.

In mathematics, a stochastic matrix is a matrix used to describe the tran-
sitions of a Markov chain. A right stochastic matrix is a square matrix each of
whose rows consists of nonnegative real numbers, with each row summing to 1.
A stochastic vector is a vector whose elements consist of nonnegative real num-
bers which sum to 1. The finite probabilistic automaton is defined [3,4] as an
extension of a non-deterministic finite automaton (Q,Σ, δ, q0, F ), with the initial
state q0 replaced by a stochastic vector giving the probability of the automa-
ton being in a given initial state, and with stochastic matrices corresponding to
each symbol in the input alphabet describing the state transition probabilities.
It is important to note that if A is the stochastic matrix corresponding to the
input symbol a and B is the stochastic matrix corresponding to the input sym-
bol b, then the product AB describes the state transition probabilities when the
automaton reads the input word ab. Additionally, the probabilistic automaton
has a threshold λ being a real number between 0 and 1. If the probabilistic
automaton has only one accepting state then the input word x is said to be
accepted if after reading x the probability of the accepting state has a proba-
bility exceeding λ. If there are several accepting states, the word x is said to be
accepted the total of probabilities of the accepting states exceeds λ.

Ultrametric automata are defined exactly in the same way as probabilistic
automata, only the parameters called probabilities of transition from one state
to another one are real numbers between 0 and 1 in probabilistic automata, and
they are p-adic numbers called amplitudes in the ultrametric automata. Formulas
to calculate the amplitudes after one, two, three, · · · steps of computation are
exactly the same as the formulas to calculate the probabilities in the probabilistic
automata. Following the example of finite quantum automata, we demand that
the input word x is followed by a special end-marker. At the beginning of the
work, the states of the automaton get initial amplitudes being p-adic numbers.
When reading the current symbol of the input word, the automaton changes the
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amplitudes of all the states according to the transition matrix corresponding to
this input symbol. When the automaton reads the end-marker, the measurement
is performed, and the amplitudes of all the states are transformed into the p-
norms of these amplitudes. The norms are rational numbers and it is possible
to compare whether or not the norm exceeds the threshold λ. If total of the
norms for all the accepting states of the automaton exceeds λ, we say that the
automaton accepts the input word.

Ultrametric algorithms are described by finite directed acyclic graphs (DAG),
where exactly one node is marked as root. As usual, the root does not have any
incoming edge. Furthermore, every node having outdegree zero is said to be a
leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by a p-
adic number which we call amplitude. We require that the sum of all amplitudes
that correspond to v is 1. In order to determine the total amplitude along a
computation path, we need the following definition.

Definition 3. The total amplitude of the root is defined to be 1. Furthermore,
let v be a node at depth d in the DAG, let α be its total amplitude, and let
β1, β2, · · · , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek

of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the
total amplitude of v�, � ∈ {1, . . . , k}, is defined as follows.

(1) If the indegree of v� is one, then its total amplitude is αβ�.
(2) If the indegree of v� is bigger than one, i.e., if two or more computation paths

are joined, say m paths, then let α, γ2, . . . , γm be the corresponding total
amplitudes of the predecessors of v� and let β�, δ2, . . . , δm be the amplitudes
of the incoming edges The total amplitude of the node v� is then defined to
be αβ� + γ2δ2 + · · · + δmγm.

Note that the total amplitude is a p-adic integer.
It remains to define what is meant by saying that a p-ultrametric algorithm

produces a result with a certain probability. This is specified by performing a
so-called measurement at the leaves of the corresponding DAG. Here by mea-
surement we mean that we transform the total amplitude β of each leaf to βp.
We refer to βp as the p-probability of the corresponding computation path.

Definition 4. We say that a p-ultrametric algorithm produces a result m with a
probability q if the sum of the p-probabilities of all leaves which correctly produce
the result m is no less than q.

Comment. Just as in Quantum Computation, there is something counterin-
tuitive in ultrametric algorithms. The notion of probability which is the result
of measurement not always correspond to our expectations. It was not easy to
accept that L. Grover’s query algorithm [8] does not read all the input on any
computation path. There is a similar situation in ultrametric algorithms. It is
more easy to accept the definition of ultrametric algorithms in the case when
there is only one accepting state in the algorithm. The 2-ultrametric algorithm
in Theorem 10 has only one accepting state.
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Paavo Turakainen considered various generalizations of finite probabilistic
automata in 1969 and proved that there is no need to demand in cases of proba-
bilistic branchings that total of probabilities for all possible continuations equal
1. He defined generalized probabilistic finite automata where the “probabilities”
can be arbitrary real numbers, and that languages recognizable by these gen-
eralized probabilistic finite automata are the same as for ordinary probabilistic
finite automata. Hence we also allow usage of all possible p-adic numbers in p-
ultrametric machines. Remembering the theorem by P.Turakainen [17] we start
with the most general possible definition hoping to restrict it if we below find
examples of not so natural behavior of ultrametric automata. (Moreover, we
do not specify all the details of the definitions in Theorems 1–4, and make the
definition precise only afterwards. The reader may consider such a presentation
strange but we need some natural examples of ultrametric automata before we
concentrate on one standard definition.)

However, it is needed to note that if there is only one accepting state then the
possible probabilities of acceptance are discrete values 0, p1, p−1, p2, p−2, p3, · · · .
Hence there is no natural counterpart of isolated cut-point or bounded error for
ultrametric machines. On the other hand, a counterpart of Turakainen’s theorem
for probabilistic automata with isolated cut-point still does not exist. We also did
not succeed to prove such a theorem for ultrametric automata. Most probably,
there are certain objective difficulties.

Theorem 1. There is a continuum of languages recognizable by finite ultramet-
ric automata.

Proof. Let β = · · · 2a32a22a12a02 be an arbitrary p-adic number (not p-adic
integer) where p ≥ 3 and all ai ∈ {0, 1}. Denote by B the set of all possible such
β. Consider an automaton Aβ with 3 states, the initial amplitudes of the states
being (β,−1,−1). The automaton is constructed to have the following property.
If the input word is 2a02a12a22a32 · · · 2an2 then the amplitude of the first state
becomes · · · 2an+42an+32an+22an+12. To achieve this, the automaton adds −2,
multiplies to p, adds −an and again multiplies to p.

Now let β1 and β2 be two different p-adic numbers. Assume that they have
the same first symbols am · · · 2a32a22a12a02 but different symbols am+1 and
bm+1. Then the automaton accepts one of the words am+12am · · · 2a32a22a12a02
and rejects the other one bm+12am · · · 2a32a22a12a02. Hence the languages are
distinct. 
�
Definition 5. Finite p-ultrametric automaton is called integral if all the para-
meters of it are p-adic integers.

Automata recognizing nonrecursive languages cannot be considered natural.
Hence we are to restrict our definition.

Theorem 2. There exists a finite integral p-ultrametric automaton recognizing
the language {0n1n}.



44 R. Freivalds

Proof. When the automaton reads 0 it multiplies the amplitude to 2, and when
it reads 1 it multiplies it to 1

2 . The norm of the amplitude equals p0 iff the
number of zeros is equal to the number of ones. 
�

We consider the following language.

L = {w|w ∈ {0, 1}∗ and w = wrev}
Theorem 3. For every prime number p ≥ 5, there is an integral p-ultrametric
automaton recognizing L.

Proof. The automaton has two special states. If the input word is

a(1)a(2) · · · a(n)a(n + 1)a(n + 2) · · · a(2n + 1)

then one of these states has amplitude

a(1)pn+· · ·+a(n)p+1+a(n+1)p0+a(n+2)p−1+· · ·+a(2n)p−n+1+a(2n+1)p−n

and the other one has amplitude

−a(1)p−n−· · ·−a(n)p−1−a(n+1)p0−a(n+2)p+1−· · ·−a(2n)p+n−1+a(2n+1)p+n

If the sum of these two amplitudes equals 0 then the input word is a palindrome.
Otherwise, the sum of amplitudes has a norm removed from p0. 
�
Definition 6. A square matrix with elements being p-adic numbers is called
balanced if for arbitrary row of the matrix the product of p-norms of the ele-
ments equals 1.

Definition 7. A finite ultrametric automaton is called balanced if all the
matrices in its definition are balanced.

Theorem 4. If a language M can be recognized by a finite ultrametric automa-
ton then M can be recognized also by a balanced finite ultrametric automaton.

Proof. For every state of the automaton we add its duplicate. If the given state
has an amplitude γ then its duplicate has the amplitude 1

γ . Product of balanced
matrices is balanced. 
�
Definition 8. A balanced finite ultrametric automaton is called regulated if
there exist constants λ and c such that 0 < c < 1 and for arbitrary input word x
and for arbitrary state of the automaton the norm cλ <‖ γ ‖p<

λ
c . We say that

the word x is accepted if ‖ γ ‖p> λ and it is rejected if ‖ γ ‖p≤ λ.

Theorem 5. [6] (1) If a language M is recognized by a regulated finite ultra-
metric automaton then M is regular.
(2) For arbitrary prime number p there is a constant cp such that if a language
M is recognized by a regulated finite p-ultrametric automaton with k states then
there is a deterministic finite automaton with (cp)k.l̇ogk states recognizing the
language M .
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3 Non-regulated Finite Automata

Since the numbers 1 and 0 are also p-adic numbers, every deterministic finite
automaton can be described in terms of matrices for transformation of ampli-
tudes. Hence every regular language is recognizable by a regulated p-ultrametric
automaton. There is a natural problem : are there languages for which regu-
lated p-ultrametric automata can have smaller complexity, i.e. smaller number
of states.

The following 3 theorems seem to present such an example but there is a
catch: these automata are not regulated because the norm of the amplitude to
be measured can be arbitrary small (for lengthy input words).

Theorem 6. For arbitrary prime number p ≥ 3 the language

Lp−1 = {1n | n ≡ p − 1( mod p)}
is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. A primitive root modulo n is any number g with the property that any
number coprime to n is congruent to a power of g modulo n. In other words, g is a
generator of the multiplicative group of integers modulo n. Existence of primitive
roots modulo prime numbers was proved by Gauss. The initial amplitude 1 of
a special state in our automaton is multiplied to an arbitrary primitive root
modulo p. When the end-marker is read the amplitude −1 of the other state is
added to this amplitude. The result has p-norm p0 iff n ≡ p − 1. 
�
Theorem 7. For arbitrary prime number p ≥ 3 the language

Lp = {1n | n ≡ p( mod p)}
is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. The value 1 of the amplitude of the second state is added to the amplitude
of the accepting state at every step of reading the input word. The result has
p-norm p0 iff n ≡ p. 
�
Theorem 8. For arbitrary natural number m there are infinitely many prime
numbers p such that the language

Lm = {1n | n ≡ 0( mod m)}
is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. Dirichlet prime number theorem, states that for any two positive coprime
integers m and d, there are infinitely many primes of the form m + nd, where
n ≥ 0. In other words, there are infinitely many primes which are congruent to
m modulo d. The numbers of the form mn + d form an arithmetic progression

d, m + d, 2m + d, 3m + d, . . . ,
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and Dirichlet’s theorem states that this sequence contains infinitely many prime
numbers.

Let p be such a prime and g be a primitive root modulo p. Then the sequence
of remainders g, g2, g3, · · · modulo p has period m and n ≡ 0( mod m) is equiv-
alent to gn ≡ d( mod p). Hence the automaton multiplies the amplitude of the
special state to g and and adds −d when reading the end-marker. 
�

4 Regulated Finite Automata

We wish to complement Theorem 5 by a proof showing that the gap between the
complexity of regulated finite ultrametric automata and the complexity of deter-
ministic finite automata is not overestimated. It turns out that this comparison
is related to well-known open problems.

First, we consider a sequence of languages where the advantages of ultramet-
ric automata over deterministic ones are super-exponential but the advantages
are achieved only for specific values of the prime number p.

It is known that every p-permutation can be generated as a product of
sequence of two individual p-permutations:

a =
(

1 2 3 · · · p − 1 p
2 3 4 · · · p 1

)

b =
(

1 2 3 · · · p − 1 p
2 1 3 · · · p − 1 p

)

A string x ∈ {a, b}∗ is in the language Mp if the product of these p-permuta-
tions equals the trivial permutation.

Theorem 9. (1) For arbitrary prime p, the language Mp is recognized by a p-
ultrametric finite automaton with p + 2 states.
(2) If a deterministic finite automaton has less than p! = cp. log p states then it
does not recognize Mp.

Idea of the proof. The ultrametric automaton gives initial amplitudes
0, 1, 2, · · · , p − 1 to p states of the automaton and after reading any input letter
only permutes these amplitudes. After reading the endmarker from the input
the automaton subtracts the values 0, 1, 2, · · · , p − 1 from these amplitudes. 
�

5 Ambainis’ Function

A. Ambainis exhibited a function f that provides the first superlinear separation
between polynomial degree and quantum query complexity [1].

Ambainis’ function f of 4 Boolean variables is defined as follows:

f(x1, x2, x3, x4) = x1 + x2 + x3x4 − x1x4 − x2x3 − x1x2.
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It is easy to check that for arbitrary 4-tuple (x1, x2, x3, x4), if (x1, x2, x3, x4) ∈
{0, 1}4 then f(x1, x2, x3, x4) ∈ {0, 1}. To explore properties of the Ambainis’
function we introduce 6 auxiliary sets of variables.

By S we denote the class (S1, S2, S3) and by T we denote the class (T1, T2, T3).
By α(x1, x2, x3, x4) we denote the cardinality of those Si = (xj , xk) such that

xj = xk = 1. By β(x1, x2, x3, x4) we denote the cardinality of those Ti such that
it contains at least one element xj which equals 0.

Lemma 1. For arbitrary 4-tuple (x1, x2, x3, x4) ∈ {0, 1}4, f(x1, x2, x3, x4) = 0
iff α(x1, x2, x3, x4) + β(x1, x2, x3, x4) is congruent to 1 modulo 2.

Proof. Immediately from Table 1. 
�
Theorem 10. There exists a 2-ultrametric automaton with two one-way input
tapes recognizing the language L.

Proof. The desired algorithm branches its computation path into 6 branches at
the root. We assign to each starting edge of the computation path the ampli-
tude 1

7 .

Table 1. Values of the functions

x1 x2 x3 x4 α(x1, x2, x3, x4) β(x1, x2, x3, x4) f(x1, x2, x3, x4)

0 0 0 0 0 3 0

0 0 0 1 0 3 0

0 0 1 0 0 3 0

0 0 1 1 0 2 1

0 1 0 0 0 2 1

0 1 0 1 0 2 1

0 1 1 0 1 2 0

0 1 1 1 1 1 1

1 0 0 0 0 2 1

1 0 0 1 1 2 0

1 0 1 0 0 2 1

1 0 1 1 1 1 1

1 1 0 0 1 1 1

1 1 0 1 2 1 0

1 1 1 0 2 1 0

1 1 1 1 3 0 0
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The first 3 branches (labeled with numbers 1, 2, 3) correspond to exactly one
set Si.

Let Si consist of elements xj , xk. If the two computed values equal 1 then
the algorithm goes to the state q3. If at least one of the computed values equals
0 then the algorithm goes to the state q4.

The next 3 branches (labeled with numbers 4, 5, 6) correspond to exactly one
set Ti. Let Ti consist of elements xj , xk. If at least one of the results equals 0 then
the algorithm goes to the state q3. If all the results equal 1 then the algorithm
goes to the state q4.

1 branch (labeled with number 7) asks no query and the algorithm goes to
the state q3.

In result of this computation the amplitude A3 of the states q3 has become

A3 =
1
7
(1 + α(x1, x2, x3, x4) + α(x1, x2, x3, x4)),

The 2-ultrametric query algorithm performs measurement of the state q3. The
amplitude A3 is transformed into a rational number A3. 2-adic notation for the
number 7 is . . . 000111 and 2-adic notation for the number 1

7 is . . . 110110110111.
Hence, for every 2-adic integer γ, γ = 1

7γ.
By Lemma 1, 1 + α(x1, x2, x3, x4) + α(x1, x2, x3, x4)2 equals 1, if

f(x1, x2, x3, x4) = 0 and it equals 1
2 , if f(x1, x2, x3, x4) = 0 
�

6 Kushilevitz’s Function

E. Kushilevitz exhibited a function f that provides the largest gap in the expo-
nent of a polynomial in deg(f) that gives an upper bound on bs(f). Never pub-
lished by Kushilevitz, the function appears in footnote 1 of the Nisan-Wigderson
paper [15].

Kushilevitz’s function h of 6 Boolean variables is defined as follows:
h(z1, . . . , z6) = Σizi − Σi�=jzizj + z1z3z4 + z1z2z5 + z1z4z5 + z2z3z4 + z2z3z5 +
z1z2z6 + z1z3z6 + z2z4z6 + z3z5z6 + z4z5z6.

To explore properties of the Kushilevitz’s function we introduce 10 auxiliary
sets of variables.
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By S we denote the class (S1, . . . , S10) and by T we denote the class (T1, . . . , T10).

Lemma 2. For every i ∈ {1, . . . , 6}, the union Si ∪ Ti equals {1, . . . , 6}.
Lemma 3. For every i ∈ {1, . . . , 6}, the variable zi is a member of exactly 5
sets in S and a member of exactly 5 sets in T .

Lemma 4. For every i ∈ {1, . . . , 6}, the variable zi has an empty intersection
with exactly 5 sets in S and with exactly 5 sets in T .

Lemma 5. For every pair (i, j) such that i �= j and i ∈ {1, . . . , 6}, j ∈ {1, . . . , 6},
the pair of variables (zi, zj) is a member of exactly 2 sets in S and a member of
exactly 2 sets in T .

Lemma 6. For every pair (i, j) such that i �= j and i ∈ {1, . . . , 6}, j ∈ {1, . . . , 6},
the pair of variables (zi, zj) has an empty intersection with exactly 2 sets in S
and with exactly 2 sets in T .

Lemma 7. For every triple (i, j, k) of pairwise distinct elements of {1, . . . , 6},
the triple of variables (zi, zj , zk) coincides either with some set Si ∈ S or with
some set Tj.

Lemma 8. No triple (i, j, k) of pairwise distinct elements of {1, . . . , 6} is such
that the triple of variables (zi, zj , zk) is a member of both S and T .

Lemma 9. For every quadruple (i, j, k, l) of pairwise distinct elements of
{1, . . . , 6}, the quadruple of variables (zi, zj , zk, zl) contains exactly 2 sets Si ∈ S
and exactly 2 sets Ti ∈ T .

Proof. Immediately from Lemma 5. 
�
Lemma 10. For every quintuple (i, j, k, l,m) of pairwise distinct elements of
{1, . . . , 6}, the quintuple of variables (zi, zj , zk, zl, zm) contains exactly 5 sets
Si ∈ S and exactly 5 sets Ti ∈ T .

Proof. Immediately from Lemma 3. 
�
Lemma 11. (1) If Σizi = 0 then h(z1, . . . , z6) = 0.
(2) If Σizi = 1 then h(z1, . . . , z6) = 1,
(3) If Σizi = 2 then h(z1, . . . , z6) = 1,
(4) If Σizi = 4 then h(z1, . . . , z6) = 0,
(5) If Σizi = 5 then h(z1, . . . , z6) = 0,
(6) If Σizi = 6 then h(z1, . . . , z6) = 1,
(7) If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk =
zl = 1) and (zj , zk, zl) ∈ S then h(z1, . . . , z6) = 1,
(8) If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk =
zl = 1) and (zj , zk, zl) ∈ T then h(z1, . . . , z6) = 0.
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Proof. If Σizi = 0 then all monomials in the definition of h(z1, . . . , z6) equal
zero. If Σizi = 1 then Σizi = 1 but all the other monomials in the definition of
h(z1, . . . , z6) equal zero. If Σizi = 2 then h(z1, . . . , z6) = Σizi −Σi�=jzizj = 2−1.
If Σizi = 3 and (zj , zk, zl) ∈ S then h(z1, . . . , z6) = Σizi − Σi�=jzizj = 3 − 3 + 1.
If Σizi = 3 and (zj , zk, zl) ∈ T then h(z1, . . . , z6) = Σizi − Σi�=jzizj = 3 − 3 + 0.
If Σizi = 4 then, by Lemma 9, h(z1, . . . , z6) = Σizi − Σi�=jzizj = 4 − 6 + 2. If
Σizi = 5 then, by Lemma 10, h(z1, . . . , z6) = Σizi − Σi�=jzizj = 5 − 10 + 5. If
Σizi = 6 then h(z1, . . . , z6) = Σizi − Σi�=jzizj = 6 − 15 + 10. 
�
By α(z1, . . . , z6) we denote the cardinality of those Si = (zj , zk, zl) such that
zj = zk = zl = 1. By β(z1, . . . , z6) we denote the cardinality of those Si =
(zj , zk, zl) such that zj = zk = zl = 0.

Lemma 12. (1) For arbitrary 6-tuple (z1, . . . , z6) ∈ {0, 1}6, h(z1, . . . , z6) = 1
iff α(z1, . . . , z6) − β(z1, . . . , z6) is congruent to 1 modulo 3.
(2) For arbitrary 6-tuple (z1, . . . , z6) ∈ {0, 1}6, h(z1, . . . , z6) = 0 iff
α(z1, . . . , z6) − β(z1, . . . , z6) is congruent to 2 modulo 3.

Proof. If Σizi = 0 then α(z1, . . . , z6) − β(z1, . . . , z6) = 0 − 10 ≡ 2 (mod 3). If
Σizi = 1 then, by Lemma 4, α(z1, . . . , z6)−β(z1, . . . , z6) = 0−5 ≡ 1 (mod 3). If
Σizi = 2 then, by Lemma 6, α(z1, . . . , z6)−β(z1, . . . , z6) = 0−2 ≡ 1 (mod 3). If
Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that (zj = zk = zl = 1)
and (zj , zk, zl) ∈ S then, by Lemmas 7 and 8, α(z1, . . . , z6) − β(z1, . . . , z6) =
1−0 ≡ 1 (mod 3). If Σizi = 3 and there exist 3 pairwise distinct (j, k, l) such that
(zj = zk = zl = 1) and (zj , zk, zl) ∈ T then, by Lemmas 7 and 8, α(z1, . . . , z6) −
β(z1, . . . , z6) = 0−1 ≡ 2 (mod 3). If Σizi = 4 then, by Lemma 9, α(z1, . . . , z6)−
β(z1, . . . , z6) = 2−0 ≡ 2 (mod 3). If Σizi = 5 then, by Lemma 10, α(z1, . . . , z6)−
β(z1, . . . , z6) = 5−0 ≡ 2 (mod 3). If Σizi = 5 then α(z1, . . . , z6)−β(z1, . . . , z6) =
10 − 0 ≡ 1 (mod 3). These results correspond to Lemma 11. 
�
Theorem 11. There exists a 3-ultrametric query algorithm computing the
Kushilevitz’s function using 3 queries.

Proof. The desired algorithm branches its computation path into 31 branches at
the root.We assign to each starting edge of the computation path the amplitude 1
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The first 10 branches (labeled with numbers 1, . . . , 10) correspond to exactly one
set Si.

Let Si consist of elements zj , zk, zl. Then the algorithm queries zj , zk, zl. If
all the queried values equal 1 then the algorithm goes to the state q3. If all the
queried values equal 0 then the algorithm goes to the state q3 but multiplies the
amplitude to (−1). (For the proof it is important that for every 3-adic number
a the norm −a = a. ) If the queried values are not all equal then the algorithm
goes to the state q4.

The next 10 branches (labeled with numbers 11, . . . , 20) also correspond to
exactly one set Si. Let Si consist of elements zj , zk, zl. Then the algorithm queries
zj , zk, zl. If all the queried values equal 1 then the algorithm goes to the state q5.
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If all the queried values equal 0 then the algorithm goes to the state q3. If the
queried values are not all equal then the algorithm goes to the state q4 but
multiplies the amplitude to (−1).

11 branches (labeled with numbers 21, . . . , 31) ask no query and the algorithm
goes to the state q3.

In result of this computation the amplitude A3 of the states q3 has become

A3 =
1
31

(11 + α(z1, . . . , z6) − β(z1, . . . , z6)),

The 3-ultrametric query algorithm performs measurement of the state q3.
The amplitude A3 is transformed into a rational number A3. As it was noted in
Sect. 1, 3-adic notation for the number 31 is . . . 000112 and 3-adic notation for
the number 1

31 is . . . 0212111221021. Hence, for every 3-adic integer γ, γ = 1
31γ.

By Lemma 12, 11 + α(z1, . . . , z6) − β(z1, . . . , z6) = 1 if h(z1, . . . , z6) = 1 and
11 + α(z1, . . . , z6) − β(z1, . . . , z6) = 1

3 if h(z1, . . . , z6) = 0. 
�

7 Iterated Kushilevitz’s Function

The iterated Kushilevitz’s function is defined as follows. Let f1(x1, . . . , x6) be
the Kushilevitz’s function.

fd+1 = f(fd(x1, . . . , x6d), fd(x6d+1, . . . , x2.6d), . . . , fd(x5.6d+1, . . . , x6.6d)

Theorem 12. There exists a 3-ultrametric query algorithm computing the func-
tion gd using ·3d queries.
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Abstract. We consider the problems of the realistic image synthesis,
and texture synthesis, from the point of view of natural computation.
These problems provide an interesting and relatively simple setting for
considering issues such as the depth of simulation and the role of percep-
tion. We conclude with a discussion of recent results on the fundamen-
tal limits of image synthesis programs. Interpreting these results more
generally suggests that “natural” signals may be exactly those that are
compressible. This characterization provides a further link between the
fields of natural computation and algorithmic information theory.

1 Realism

The best current computer graphics images are sufficiently realistic that human
observers are sometimes unsure if they are photographs or synthetic scenes [2].
In other cases, the images are impressive, but observers can guess that they are
synthetic. Curiously, people are often not able to report exactly what is wrong–
different people may give different and vague answers, such as “something is
wrong with the lighting”.

Creating very realistic synthetic images requires simulating a small part of
a virtual universe. The transport of light is simulated with geometric optics
(although there have been alternative proposals [21]): a virtual book on a shelf
is illuminated by light from a window, but it is also illuminated by light that
first strikes the floor and then scatters, then hits the book, scattering again, and
finally arriving at the virtual camera or eye, and also by light that first hits the
ceiling, then the floor, then the book, and so on. These indirect bounces continue
indefinitely, though with rapidly diminishing strength.

With the simplifying assumption that light scatters from surfaces equally in
all directions (Lambert assumption), the steady-state lighting at a small surface
element can be described as

bi = ei + ρi

N∑

j=1

Fijbj

where bi is the radiosity (i.e. brightness) of the particular surface element, ei
is the light emitted from the surface (non-zero only if surface element i is part
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 53–65, 2015.
DOI: 10.1007/978-3-319-21819-9 3
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of a light source), Fij describes how much surface element i is illuminated by
surface element j, and ρi is the fraction of incident light that is reflected from
this surface patch. Rewriting this in vector-matrix form, and merging ρ and F
into a single light transfer operator R we have

b = e + Rb (1)

where b is the vector of brightness of each surface element, and e is the self-
illumination of each surface. This equation describes the complete light inter-
change between every surface in the scene. The multiple-bounce light scattering
can be identified by expanding this as

b = e + Re + R2e + R3e + · · ·

Here e is the emission, Re is direct illumination, R2e is the first bounce lighting,
and so on. Recognizing this as a Neumann series (or working directly from Eq. 1)
the scene lighting can be solved as

b = (I − R)−1e (2)

The Lambert assumption is very approximately accurate for some materials,
but is not true for glossy or shiny materials. A mirror is an extreme case, in
which an incoming ray of light reflects in a single direction. Other materials are
more complex. Skin is an interesting example: some portion of the incident light
directly scatters from the skin surface. Some of the remaining light penetrates
the skin, is scattered inside the body, and then may reemerge from the skin a
small distance away. Accurately simulating this “subsurface scattering” effect is
crucial for creating believable human and animal characters – without it, the
characters look as if they are made of wood or plastic [5,10,14].

Further aspects of the virtual scene must also be simulated. For example, it
is generally accepted that the motion of clothing and hair is too complicated to
manually specify, and so it must be created using a physically based computer
simulation. The motion of water is particularly complex and is often accom-
plished with physical simulation. Visual effects movies often portray buildings
and other objects that are destroyed [28]; physical simulations are used in these
cases as well.

There is an underlying issue of representation. We expect that an elegant
model of the virtual scene is one with a short description, and perhaps one that
allows the image to be generated with a short computation. Computer graphics
the rendering software (such as [4]) encodes some of the regularities of making an
image, such as the laws describing light scattering from common materials. The
input to the rendering software is a file that describes the particular scene. The
situation might be compared to the concept of a two-part code in algorithmic
information theory. However, unlike the two-part code, in practice the scene
description typically still has considerable regularity.

In fact, scene descriptions are larger than one would expect and require more
lengthy computations then might be initially imagined. The description of the
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scene generally contains descriptions of the geometry, for example as a mesh of
polygons. The size of this description (measured in bits) is often considerably
larger than the size of the final image. In part this is because the scene description
is sufficiently accurate to generate images from many viewpoints and distances.
The scene description becomes economical if a sufficiently long movie of the
scene is produced. The compute time involved in making a movie image is also
remarkable. It varies considerably depending on the particular image, but visual
effects companies generally require large compute clusters. Thinking of scene
descriptions as providing a compressed representation does not capture the situ-
ation. Laplace’s demon [24] provides an alternate analogy: the scene description
and computation allow multiple images at near future times to be computed
from a more fundamental description of the initial state of the virtual world.

Realism

Compute
time

Fig. 1. Hypothetical relation between image realism and compute time.

Comparison of synthetic images in movies and games might initially sug-
gest that the required compute time rises dramatically with rendering quality
(Fig. 1). A single image in a videogame can usually be computed in 1/60 of a
second, whereas a movie image requires minutes or even hours of computation.
A movie image that takes one hour of computation requires about 200,000 times
more computation than a game image. The image from the movie is certainly
of higher quality than a game image, but few would say that it is 200,000 times
better. One might object that this comparison is not strictly valid, since the
game images contain precomputed approximations of the light transport, and
the precomputation requires substantial time. However, this merely shifts the
focus onto the difference between the approximate precomputed transport and
the more exact calculations used in movies.

Analysis of rendering algorithms indicates that the relation suggested in
Fig. 1 is not correct. For example, the matrix inverse in Eq. 2 indicates an O(N3)
compute time as a function of the geometric scene complexity N (e.g. triangle
count). In classic ray tracing algorithms a dominant cost is the ray-triangle inter-
section, leading to an expected N log N dependence on scene complexity due to
the role of sorting in finding the closest triangle. In general, we expect that
compute time does not rise dramatically with scene complexity.

This issue might be resolved if Fig. 1 describes the relationship between per-
ceived realism and compute time, whereas increasing objective realism requires
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more reasonable and modest investment in computation. We propose that this
difference between the objective and perceived character of computational proce-
sses may be a suitable subject of enquiry for the field of natural computation. In
the next section we consider how this question arises with the particular subject
of texture.

2 Texture

Texture generally refers to the appearance and feel of the surface. The fields of
computer graphics, computer vision, and image processing use the word in a
more general sense, as an image of an object that would satisfy the traditional
definition. In this usage the requirement for textures to have a tactile component
is omitted.

At present there does not appear to be a definition of texture suitable for
formal discussion, nor even a clear idea as to why the concept is necessary. For
example, [9] surveyed existing definitions and concluded

“Texture is an apparently paradoxical notion. On the one hand, it is
commonly used in early processing of visual information, especially for
practical classification purposes. On the other hand, no one has suc-
ceeded in producing a commonly accepted definition of texture.”

One common example of a working definition is that a texture consists of
a primitive and a placement rule [1,25]. An image of a brick wall satisfies this
definition: an individual brick is the primitive, with the placement rule describing
how the bricks are stacked to create the wall. Similarly, an image of a field of
grass satisfies the definition, with the primitive being an individual blade of grass,
and the placement rule being an appropriate random process. This definition is
overly inclusive however. We might choose “sock” as the primitive, and “in the
drawer” as the placement rule, but few people would say that a drawer of socks
is a texture.

Despite the lack of a formal definition, we believe that the concept of texture
involves perception. Early investigation of perception of textures resulted in
the Julesz conjecture [15], which asserted that humans cannot “preattentively”
(i.e. without close scrutiny) distinguish textures that differ only in their higher-
order statistics.

For an image I(p) indexed by pixel location p, and assuming stationary
(translation-invariant) statistics, the nth-order statistics are

P (I(p + 0) = g1, I(p + Δ2) = g2, I(p + Δ3) = g3, · · · )

over n-tuples of pixels {I(p + 0), I(p + Δ2), I(p + Δ3), · · · } and grey values
gk, where Δk = (xk, yk) are offsets within the image. (The first-order statistics
comprise the probability density of the image pixels).

The nth-order statistics require considerable information to specify. For exam-
ple, for a grayscale image that is quantized to 256 code values, representing
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Fig. 2. Landscape images created with a texture-synthesis process using second-order
moments [18].

the 2nd order statistics over a neighborhood of N pixels requires (N − 1) · 2562

probabilities. The 2nd or 3rd order statistics may easily be more voluminous
than the image itself.

Because of this, the statistics are usually summarized for the purpose of com-
putation. Gray level co-occurrence matrices (GLCM) [13] represent the second-
order statistics, but typically over small neighborhoods or with heavily quan-
tized luminance values (e.g. two bits per pixel). For the purpose of texture
classification the full GCLM are often further summarized with a set of com-
puted statistics [3]. An alternate approach is to use the nth-order moments (or
expectations) rather than the full nth-order density. The 2nd order moments
(with the mean removed) are the autocovariance (also called autocorrelation).
An example of texture synthesis using second-order moments is shown in Fig. 2.
By the Wiener-Khinchin theorem the autocovariance is the Fourier transform
of the power spectrum. This relation indicates that texture modeling with the
second-order moments is somewhat limited – it can capture only “random phase”
textures.

Julesz and collaborators found that the original statement of the conjecture
is not strictly correct – while there are texture pairs with identical second-order
statistics that cannot be distinguished [17], certain texture pairs with identical
third-order statistics can be distinguished [16]. Nevertheless the approximate
conclusion that humans have limited ability to recognize increasingly high order
statistics is plausible and supported by evidence.

In general, however, both the nth-order statistics and their moments may be
the wrong representation of the problem. To this author, they seem analogous
to trying to represent a square wave using a Taylor series. The failure of the
Julesz conjecture reveals that these statistics do not correspond in a simple way
to perception.

Another approach to texture synthesis involves sampling from an example
of the desired texture [11,12,27]. Specifically, a neighborhood of pixels at the
edge of a partially synthesized texture is compared to all neighborhoods in the
reference texture image. The k neighborhoods that are most similar are noted.
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The partially synthesized texture is then expanded by including pixels bordering
one of these k neighborhoods, chosen at random. The basic algorithm can be
regarded as sampling from the probability of the new pixels conditioned on the
neighborhood, where the conditional probability is estimated from the histogram
of border regions of the k neighbors.

This general approach is often successful, and has inspired a number of
specific methods that accelerate the high-dimensional nearest neighbor lookup
required by the neighborhood search. However, these methods are also some-
times “brittle”, in that seemingly small changes in the choice of reference image
can cause the synthesis to fail. Also, these methods do not provide a model of
texture – they can be applied to any image (texture or not).

As discussed above, directly modeling pixel statistics is currently intractable
except over small neighborhoods. The most promising approaches instead model
the statistics of features that characterize a texture. The features then implicitly
provide a larger neighborhood and the possibility of long-range interactions.
Reference [29] defined a Markov random field (MRF) via the Gibbs energy on
the histograms of predefined (e.g. Gabor) filter responses. Reference [26] builds
higher-order MRFs over a hierarchy of texture-specific features, thus allowing
the unique structure of each texture to be economically modeled.

2.1 Texture from an AIT Point of View

Most of the existing texture modeling approaches do not give an explicit defi-
nition of texture, nor do they motivate why this concept is needed. We would
like to consider texture from an alternate point of view, that of algorithmic
information theory (AIT) [6], in hopes of making progress towards a definition.
Informally, AIT defines the algorithmic complexity (AC) of the digital object
as (approximately) the length of the shortest computer program that generates
that object.1 The complexity does not depend on the choice of programming lan-
guage, other than through an additive constant: any language can emulate any
other language by way of an interpreter, and among the possible languages there
is a language that can express an optimal compression of a particular object.
The length of the interpreter is a constant that becomes in unimportant in the
limit of increasingly large objects. The AC is not computable, but it can be
bounded from above. In fact, even the use of crude approximate upper bounds
has occasionally resulted in useful algorithms [8].

Figure 3 considers possible functional relationships between AC and the per-
ceived complexity (PC) of images. Figure 3(a) and (b) depict polynomial or
other functional relationships. Figure 3(c) depicts the situation where there is
no relationship between AC and PC. Figure 3(d) depicts a situation where there
is a relationship below some threshold in AC, but no relationship above that
threshold.
1 Important technical considerations such as the means by which programs are delim-

ited are omitted in this brief description.
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a b c d

Fig. 3. Hypothetical relationships between objective complexity (horizontal axis) and
perceived visual complexity (vertical axis).

Fig. 4. Abstract patterns differing in their distribution of edges.

subjective
rating

(low)       objective complexity         (high)

(complex)

(simple)

Fig. 5. Plot of subjective rating versus objective complexity for the patterns in Fig. 4.
Darker values indicate more people selected the particular rating.

Establishing such a relationship initially seems not easy, since PC is sub-
jective, while AC is not computable! Nevertheless, we obtain suggestive results
using the following approach: First, patterns are generated using an approx-
imate complexity measure. The subjective complexity of the patterns is then
estimated using a psychological survey, i.e. by averaging the ratings of a number
of observers. Figures 4 and 5 show patterns and results from a small exploratory
study.



60 J.P. Lewis

The patterns vary according to their distribution of edges. Specifically, we
sample from a probability density with specified entropy, and gather the results
into a histogram. The entries in histogram are interpreted as as edge strengths,
and edge polarity is assigned at random. Lastly, the edges are wrapped around
a circle to create a shape. The entropy of the distribution of edges provides the
approximate objective complexity measure.

To obtain the subjective complexity, viewers were given the following instruc-
tions that provide an operational definition of PC: You will see pairs of shapes
that resemble evil spaceships. Imagine that you have to pick one of each pair and
describe it to a police artist. For each pair, quickly pick the shape that would be
easier to describe.

Table 1. Subjective/objective chi-square significance and association strength

All patterns Low complexity High complexity

χ2 probability .0000 .0061 0.14

Viewers were shown randomly generated patterns from each of 10 complexity
levels, resulting in 45 pair comparisons. 23 people completed the study. The χ2

association between subjective ratings (PC) and objective complexity (approx-
imate AC) is shown in Table 1. There is a significant association overall, and
at low complexity. The association breaks down for high complexity patterns,
tentatively suggesting a relationship of the form in Fig. 3(d). We speculatively
propose that this finding may lead to a definition of texture, as a signal that has
too much complexity for the human visual system to fully process.

3 Image Synthesis

In the final section of the paper we step back and take a deeper and more
philosophical look at the problem of computer graphics: is it possible to simply
create a program that can generate all possible images? Can such a program
even exist?

Before considering the answer to that question, we will mention examples
of existing algorithms that invent images. A wide variety of pattern synthesis
algorithms have been devised. These include L-systems [22], fractals [20], shape
grammars [23], and others.

Figure 6 shows examples of randomly synthesized images created using a
“meta” shape grammar [19]. As can be seen in the figure, the approach can
be adapted to generate a variety of image classes. This approach is elegantly
express using the closure concept in functional languages such as Lisp. Consider
the example:
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Fig. 6. A variety of images invented by a “meta shape grammar” approach [19]:
Radiolaria-like shapes, futuristic buildings, doodles, toy robots. Please enlarge to see
details.
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Fig. 7. A typical (incompressible) image.

(define gen-radial

(lambda (recursion-level)

(let ((child (generate-child

(+ 1 recursion-level)))

(vc-scale (rndin 0.15 0.7))

(n (rndin-lowbias 3 12))))

(lambda ()

(dotimes (i n)

(save-transform

(rotate (/ (* i 2PI) n))

(scale vc-scale)

(child))))))

Here, gen-radial is a function that defines and returns another anonymous
(lambda) function. The constructed inner function executes a loop with n iter-
ations, at each iteration performing a rotation, scale, and calling some child
function that is randomly generated. Notice that while the iteration count n is
randomly chosen, it is chosen in the closure (lexical environment) of the inner
function. Thus, the same value of n is used each time the anonymous func-
tion is called. This construct provides a clean separation between choices that
are intended to be random (which can be effected through a pseudo-random
generator called inside the inner function), and “structural” inventions, that
are pseudo-randomly chosen in the outer scope. In simple situations the inner
function(s) can be seen as rewrite rules in a shape grammar, while the outer
function(s) serves to invent that grammar.

This is an example of an image synthesis approach that can produce a fairly
wide range of images (Fig. 6). Can this (or some other program) produce all
possible images?

3.1 A Universal Image Synthesizer?

Reference [7] considered the question of whether there is a single program than
can generate all possible “natural” images. There are certainly programs that
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generate all possible images, for example, by enumerating all combinations of
pixel values, or by choosing pixels randomly or pseudo-randomly. However, from
AIT arguments we know that almost all images look like Fig. 7. While a pro-
gram that enumerates all possible images will eventually produce images that
document all aspects of your life, one would have to wait a very long time before
seeing anything that resembles a real-world image. Thus, the restriction in [7]
that we would like a program that produces all and only “natural” images.

The issue is that almost all images are incompressible, and (equivalently)
lack structure. Is there a program that produces all images except those that
lack structure? [7] proposes that:

“Natural” images are exactly those that can be compressed.

With this definition, the natural images are computably enumerable (c.e.), but
not computable.2

Reference [7] considered a further requirement on admissible “natural” images.
This requirement starts from the reasonable assumption that large images should
contain more information than small ones. Simple programs such as fractal
generators can produce an image of arbitrary size. The AC of such images is
C(x) ≈ log |x| + constant where |x| denotes the size of the image x and the
constant reflects the encoding of the program. Running a fractal generator to
produce a large image does in some sense produce more detail, but one might
argue that this detail is merely an effect of the increased number of pixels, rather
than truly additional information. As a comparison, plotting a step function

H(x) =

{
0 x < π

1 x ≥ π

on a series of images of increasing size provides increasing resolution on the exact
location of the discontinuity at π, but a large image of the step function might
not be considered as more complex than a smaller image. Indeed, the change in
AC in each case reflects only the cost of encoding the size of the image.

The second requirement in [7] is thus that large images have more complexity
than small images (i.e. beyond that generated by the encoding of the image size
itself), expressed as C(x) > log |x| + constant. With this requirement, and a
precise definition of what a compressible image is, “natural” images are not even
computably enumerable. Specifically, they are an infinite subset of an immune
set, i.e. a set containing no infinite c.e. subset [7]. The natural images are in a
sense much less computable than the halting set!

4 Conclusions

Considering computer graphics from the point of view of natural computation
highlights several fundamental issues, including the role of perception, and the
2 That is, they are not computable in the same sense that the set of programs that

halt is not computable.



64 J.P. Lewis

depth of simulation of physical and natural processes. While exploring the ulti-
mate limits of computer graphics programs, we arrived at a definition of natural
images as those that are compressible. We propose that this definition may hold
for other types of signals, suggesting a further link between natural computation
and the field of algorithmic information theory.

Acknowledgements. Thanks to Cris Calude for discussion of several topics.
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1 Practical Quantum Information Processing

Quantum information processing as a scalable experimental pursuit has experi-
enced significant progress in recent years. Multiple laboratories at large research
organizations have constructed working systems with multiple interacting qubits,
focused on the implementation of small-scale computational problems or the
demonstration of quantum error correction techniques. This stage of develop-
ment is particularly interesting because the engineering issues related to con-
trolling multiple quantum systems in a noisy environment are being clarified
as the various systems progress, illuminating where the best hopes for quan-
tum computation may lie. These practical pathways are not always the same
as what has been predicted in the closed-system theoretical context, so creative
algorithmic thinking is needed to unlock the potential of the real devices.

2 Models and Implementations

2.1 Circuit Model

The circuit model is the first scheme proposed for a quantum computer, and
the closest to the architecture and operation of classical computing system. In a
circuit model computation, the qubits are initialized into some quantum state,
then operated on by a series of discrete gates, which may introduce quantum
effects such as entanglement into the system. Many of the canonical quantum
algorithms were developed for the circuit model of quantum computation.

Several circuit model quantum information processing systems are currently
under development. IBM recently announced a four-qubit system based on super-
conducting technology; the interactions between their four qubits were designed
for the purpose of state preservation on two of the qubits, while measurement
of the other two allows the detection of an arbitrary quantum error [1]. The
National Institute for Standards and Technology (NIST) has been working on
quantum computation using trapped ions for many years, and has been able to
generate entangled states of at least six atoms in the laboratory [2].
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2.2 Adiabatic

Most of the recent efforts to construct a scalable quantum processor, however,
have focused on the adiabatic model of quantum computation (AQC). AQC
involves initializing a set of qubits to a known state, then slowly and continuously
changing the parameters of the experimental Hamiltonian. If the noise is low
enough and the changes are sufficiently slow, the state of the qubits at the end
of the computation will represent the low-energy state of an entirely different
energy function than that which initialized the computation [3]. Both the circuit
model and the adiabatic model are universal for quantum computation, and a
translation with polynomial overhead exists for mapping circuit-model quantum
algorithms to adiabatic target energy functions [4].

The best-known implementation of the adiabatic model is the D-Wave Sys-
tems quantum optimization processor. Their commercially available quantum
chips have grown in size from 128 to over 1000 superconducting qubits, which
interact via a fixed local connectivity structure [5]. Google is also developing a
superconducting quantum information processing system based on the adiabatic
model. Their most recent chip has nine qubits fabricated in a row, allowing users
to study dynamics of chained quantum systems or do limited error correction
[6]. Other groups working on experimental AQC systems include the University
of Maryland (trapped ions) [7] and Sandia National Laboratories (supercon-
ducting) [8].

2.3 Limitations

None of the currently available experimental systems is a universal quantum
computer; each has its own limitations. Coupling between qubits is difficult for
superconducting systems because of space and routing limitations on the chip.
All of the superconducting implementations have a specific connectivity struc-
ture that is much more sparse than a complete graph connecting all qubits; most
are limited to nearest-neighbor interactions. Of the superconducting circuits, the
IBM chip is the only one to incorporate all of the coupler types necessary for uni-
versal quantum computation, but currently is still limited to state preservation
rather than computation. The ion trap implementations have more flexibility
in the interactions available to them because all of the ions reside in the same
trap and can be coupled with laser pulses. However, these systems face a serious
scalability hurdle because the number of ions that a trap can hold is limited, so
a way to move ions between traps while preserving their state must be developed
and integrated.

3 Applications

3.1 Factoring

Shor’s algorithm for factoring numbers is the most famous example of an appli-
cation for quantum computers [9]. The algorithm is attractive because it offers
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an exponential quantum speed advantage over the best known classical algorithm
and it solves a cryptographic problem that is widely used. It may not be the first
application to be realized on a large scale, however, because it demands much of
a quantum information processor. A device to solve the factoring problem must
be able to implement universal interactions between qubits, and be extremely
low-noise in order to preserve small variations in quantum states. Other, more
flexible applications will be needed to take advantage of the initial generations
of quantum information processors.

3.2 Quantum Simulation

The application that inspired the concept of a quantum computer was the sim-
ulation of quantum systems, once it became clear that solving the Schrodinger
equation using classical computers becomes intractable very quickly as the sys-
tem size increases [10]. The idea is to build a quantum system that is controllable
and measurable in the laboratory, yet will naturally undergo the same processes
as the system we wish to study. Of course a universal quantum computer can
simulate an arbitrary quantum system, but perhaps of more immediate inter-
est is the idea of a special-purpose quantum simulator, constructed to emulate a
particular system or class of systems. This idea is particularly appealing because
the constraints that hamper the construction of a universal quantum computer
also apply to natural systems (particularly locality of interactions and restric-
tions on the number of particles that may interact significantly at once). If such
a quantum simulator is built for the right quantum system, it may become the
first great success for quantum computing.

3.3 Optimization

The largest and most functional quantum processor currently in existence, the D-
Wave chip, is an optimizer by design. It uses the adiabatic model to solve an Ising
spin glass (or, equivalently, a quadratic binary optimization) problem, finding
the configuration of spins that minimizes the energy of the system. Because
the adiabatic model is probabilistic and the process occurs in a system with
noise, approximate solutions may be generated in addition to or, under certain
conditions, in lieu of the global optimum [11]. This will also be true for the other
adiabatic systems under development that were discussed in Sect. 2.2. Though
many efforts have been made to develop applications for [12–14] and characterize
the performance of the D-Wave family of processors, whether and for what type
of problem these systems can offer a genuine quantum speed-up is still an open
question [15,16].

3.4 Error Correction

Efforts are also beginning to implement error correction for quantum informa-
tion systems, which will be an essential component of any quantum computer
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operating at large scale in a real environment, and therefore must be a concern
for any group seeking to implement quantum computation. The circuit model
system at IBM and the adiabatic system at Google are addressing the problem
directly in their small-scale devices, designing from the ground up to implement
a robust quantum error correction scheme known as the surface code [1,6]. D-
Wave has not incorporated error correction in the design of their systems, but
there are user-side constructions that provide some amount of error suppres-
sion and correction [17,18], which would also be applicable to future adiabatic
implementations.

4 A Path Forward

The new generation of quantum computing systems is producing novel open
questions for the field at a rapid pace and creating opportunities for work which
will have a real impact on computation. Of particular importance among these
open problems is the creation of new algorithms for practical devices which are
useful at small scales, robust to noise, and capable of taking advantage of the
special features of implemented systems (e.g. the distribution of approximate
solutions returned by adiabatic devices). Such development should keep in mind
the capabilities of classical computing, and use the quantum processor as a
complement and enhancement to the resources we already have available to us. In
this way, classical and quantum algorithms will advance together, each providing
feedback to the other, to the overall enhancement of useful computation.
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1 Introduction

Our behaviour emerges as the result of many systems interacting at different
scales, from low level biology to high level social interaction. Is it possible to cre-
ate naturalistic explanatory models which can integrate these factors? This paper
describes the general approach and design of a framework to create autonomous
expressive embodied models of behaviour based on affective and cognitive neu-
roscience theories. The goal of our research is to integrate many different current
theories and models to create a large functioning sketch of several fundamental
aspects of human behaviour including face to face interaction, to explore how it
may emerge from interaction of low level and high level systems in a top-down
bottom up approach. A key feature of the approach is (given the constraints
of the medium), to create as naturalistic models as possible in order to elicit
and respond to the appropriate behaviours from the user, involving both sens-
ing and synthesis of visual and auditory stimuli. The models are intended to
be as autonomous as possible, so interactions are unscripted and co-created. In
order to develop an overall generative model of behaviour that, where possible,
remains grounded in biologically plausible models and thus has more explanatory
power than statistical approaches, we are developing BL, a modular Lego-like
neural network modelling language, sensing and visual simulation framework, to
facilitate integration of a range of emerging and established models from diverse
sources such as cognitive science, developmental psychology, computational neu-
roscience and physiology with high quality interactive computer graphics. While
some models are still highly theoretical it is still beneficial to explore how these
can be integrated with more established models to see the contribution each
sub-process has to the overall system. As a result of combining many diverse
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 71–88, 2015.
DOI: 10.1007/978-3-319-21819-9 5



72 M. Sagar et al.

models, the neurobehavioural architectures created in BL often form large, com-
plex networks and simulations form complex dynamic systems justifying a visual
computing approach in which systems and subsystems can be explored visually
as the simulation proceeds. As the users behaviour as an interactive partner is a
key factor in social learning, it is important to capture and visualize the effect of
internal and external events on the network.In this overview we describe BL and
its user interface, before detailing some simple test cases utilizing the various
features of the interface, and then illustrate a more complex application in a
psychobiological simulation of an infant Baby X currently under development,
which aims to combine models of the facial motor system and models of basic
neural systems involved in early interactive behaviour and learning.

2 Background and Related Work

Our research integrates a wide range of fields, so due to space requirements a
brief summary is given here of key areas.

2.1 Embodied Cognition and Social Learning

Embodied Cognition and Grounded Cognition theories suggest our cognitive
activity is grounded in sensorimotor processes situated in specific contexts and
situations [8]. The embodied cognition hypothesis suggests. The brain is not the
sole cognitive resource we have available to us to solve problems. Our bodies
and their perceptually guided motions through the world do much of the work
required to achieve our goals, replacing the need for complex internal mental rep-
resentations [56]. Social learning is the primary process through which knowledge
and behaviour central to successful functioning in human groups is transmitted
[6,13,14,19,25,26,28,56,59].

2.2 Developmental and Social Robotics

The importance of embodied and grounded cognition and social learning is being
explored in the fields of developmental and social robotics [10]. Interactive robots
or intelligent virtual agents share many of the same components, such as computer
vision based object tracking, speech recognition, memory and cognition, reactive
behavior, reasoning, planning, action scheduling, and articulation enabling them
to participate autonomously in real-time in dynamic environments [5].

2.3 Affective Computing and Social Signal Processing

The study of emotion is a vast field [52] still under considerable debate. Recent
higher level approaches to synthesis of social emotion are surveyed in [58]. Affec-
tive computing [44] aims to enable machines to interpret the emotional state of
humans and adapt their behaviour to give an appropriate response, and facilitate
social learning [43]. Incorporating developmental learning processes is thought to
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be fundamental in achieving intelligent embodied agents [3,4]. A relatively recent
survey of the detection and synthesis of social signals using virtual humans, and
the challenges faced can be found in [58]. Simulating conversational interaction
and social reasoning [11,42] requiring higher levels of abstraction is not our focus
here (we are concerned with the lower level building blocks of basic behaviour)
but our system has been designed to be efficiently integrated with higher level
cognitive architectures and conversational systems.

2.4 Affective Neuroscience

Affective neuroscience is the study of the neural mechanisms of emotion. Panksepp
[39] has described the core emotional systems in mammals based on their neuro-
chemistries, many of which likely have human analogies. Emotional circuits
discovered to date are complex and also have many redundant features [21]. Effec-
tively simulating complexity of emotions is likely to require a dynamic architec-
ture [51], and dynamic systems modelling of emotion using neurobiological models
have been proposed [34,47].

2.5 Neural Networks and Cognitive System Simulators

Computational Neuroscience [16,57] encompasses biologically based neural mod-
els of information processing, cognition and behaviour with numerical models.
Although much work involves specific modelling of isolated components, a range
of more general biological neural network simulators have been developed (with
various specializations) to study systems. Publically available neural network
simulators are summarized in [9,35]. A range of biologically inspired cognitive
architectures [50] have been developed for both explanatory purposes and also
for the potential flexibility they can offer. A good example is the “Leabra” frame-
work [38] which covers many aspects of cognition using biologically based models
including goal driven learning and behaviour.

2.6 Autonomous Behaviour

Autonomy is viewed in the context of our work as an emergent property of
low level biological processes based on homeostasis, incentive salience, novelty,
action discovery and self organization modulated by higher level goal directed
process [7,15,22,29,30,37]. Rich behaviour can emerge from physical (or virtual)
constraints and fundamental low level mechanisms. For example, intrinsic goal
free motor activity which underlies babbling may lay an essential foundation
for play and cognitive development [33]. Intrinsically motivated behaviour has
arguably been demonstrated in biologically based models of action discovery [22].

2.7 Visual Simulation Frameworks

Various visual simulation environments for biological models have been
developed, from problem solving environments such to simulation architectures.
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An example of an established problem solving environment is SCIRun [41] which
is described as a “computational workbench” in which a user selects software
modules that can be connected in a visual programing environment to create a
high level workflow for experimentation. Each module exposes all the available
parameters necessary for scientists to adjust the outcome of their simulation or
visualization. An example simulation architecture is SOFA (Simulation Open
Framework Architecture) [1], which is an Open Source framework primarily tar-
geted at real-time physical simulation, with an emphasis on medical simulation.

2.8 Face to Face Interaction

A vital component of effective social interaction is dynamic facial expression.
To capture the user’s affect, interactive virtual humans and robots commonly
use computer vision (and audio analysis) as key components of the system. For
agents interacting with humans, detailed tracking of the face is still challenging
and is still an active area of research. A wide range of techniques have been
developed for video face tracking. A survey of affect recognition methods is
given in [61,62].

The other critical side of the interaction involves the generation of facial
expression which is difficult to achieve realistically in both robotics and com-
puter graphics. Facial animation is a complex task which must account for both
extremely subtle and also dramatic changes in appearance, form and movement.
In virtual human models animatable faces are typically represented through
deforming geometry using weighted joints, blendshape methods or hybrids [40].
Joint based methods suffer from loss of detail, whereas blendshape based mod-
els suffer from combinatorial explosion in representing the complex manifold of
facial expression. The highest quality models used in the visual effects indus-
try currently incorporate a large number of blendshapes to form piecewise lin-
ear approximations to non-linear deformations. Creating these models is labour
intensive, especially accurately representing material point motion. A small num-
ber of researchers have approached this problem using physically based simula-
tion [48,53,55,60].

The neural control of facial movements is complex and uses multiple parallel
systems (including voluntary and emotive systems), which are anatomically and
functionally distinct up to the facial nucleus [12]. To our knowledge no previ-
ous work has been done to generate facial animation through modelling neural
control over the face.

3 BL: Brain Language Overview

While a range of range of a neural simulation software packages and architectures
exist [9,35,38,50] few if any of these have an intimate link with realistic com-
puter graphics and animation as an output. In order to allow models from diverse
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sources to communicate with one another and drive realistic real time computer
graphics animation and visualization we have developed a specialized framework
called Brain Language (BL). BL is focused on creating psychobiologically-driven
animation models, combining neural systems modelling with advanced interac-
tive computer graphics. In creating BL we have adopted a modular approach
which facilitates model modification and comparison, as well as allowing models
from diverse sources to communicate with one another and drive the required
graphical elements. BL allows users to create and control real-time interactive
visualizations and realistic animations driven by neural network models.

Given the highly visual environment of BL, there is a natural link between
simulation visualization and model development. BL supports both abstract
and anatomically-based data visualization and gives real-time feedback in many
forms. This is valuable for model development as it enables “soft exploration”
of model parameter spaces.

Models in BL are created by linking modular computation units together.
Each computation unit, or module, functions as a self-contained black-box and
may implement virtually any model at any scale (e.g. from a single neuron to
a network). The inputs and outputs of the model are exposed as a module’s
“variables” which can then be connected to the variables of other modules or
used to drive animation parameters. BL supports algorithmic model generation
and modification. Within a module, the behaviour of the encapsulated model
may change in response to external stimuli and internal feedback. As a simple
example, consider a module encapsulating a neural network model. Within the
module, the synaptic strengths between neurons are subject to plasticity and
may change according to a specified (e.g. Hebbian) learning algorithm. These
synaptic strengths may be influenced by feedback as well as external modulatory
signals such as phasic dopamine activity.

BL also enables more direct model modification. A user interface system
allows users to directly change the values of model parameters using a set of
widgets which link to different variables in the system. Variables may directly
control the behaviour of an underlying model. As an example, consider the omni-
pause neurons of the oculomotor system [36]. By changing the time constant of
the neuron model, the firing frequency can be adjusted, which in turn affects the
nature of saccadic motion. This also may serve as an example of the previously
mentioned “soft exploration” of parameter space; the firing rate of the omni-
pause neuron can be adjusted with reference to the observed behaviour until
realistic saccadic motion is observed that is consistent with measurement. The
user may do this without having to previously know the exact numerical value
of the firing rate or the time constant.

BL is written purely in C for speed and compatibility. It is designed to com-
municate with other programs via custom interface modules. It can also com-
municate over sockets and has been successfully used to control remote devices
and software systems.
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3.1 Modules

The fundamental computational unit of BL is the module. Modules in BL are
treated as “black boxes” implementing a time-stepped model. A range of different
modules have been implemented in BL embodying relatively simple models such
as Leaky-Integrate-and-Fire or Izhikevich-type [27] point neurons to more com-
plex recurrent networks and larger scale models such as a Deep Learning module
based on LeCun et al. [31]. There is no theoretical limit on the complexity of
a the model contained within a module; BL only requires that the model may
be time-stepped. BL provides a range of modules but is intended to be user-
extensible; e.g. specific module types can be developed on an as-needed basis.

3.2 Variables

Variables provide access points to modules in BL. Any model input or output
may be be accessed as a variable, be it a single value or a multi-dimensional
array. In the case of module inputs, the associated variable can be written to
and read, while module outputs may only be read (as they are written by the
module’s internal model).

3.3 Connectors

Connectors link variables together to enable both intra- and inter-module com-
munication. Aside from direct connections, one connector can link several vari-
ables and may also perform intermediate calculations on variables. An example
of this is the linear transformation connector, which reads one or more variables
and combines them in a linear combination before writing the result of this
calculation to its destination variable.

3.4 Model Definition

Models in BL are defined by a set of text-based configuration files in a directory
structure. This directory structure becomes a hierarchical model structure based
on a scene graph; a single root module contains all the modules and connectors as
children, grandchildren, great-grandchildren etc. Module files contain parameter
and initial values for a module’s model, while connector files contain “equations”
of variable paths.

3.5 Geometry Definition

Geometry, textures and shaders are also specified in text/image files and are
attached to specific modules (and sometimes connectors). Shader uniforms and
geometry transformations are accessible to the model as variables of the associ-
ated module allowing a tight link between the neurobehavioural model and its
visualisation.
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4 BL: Interface

The 3D visualisation linked to a BL model can be thought of as the primary end-
user interface. Users can see and react to a high quality 3D character (or other
visualisation). BL contains modules to receive audio and video input as well
as standard keyboard/mouse input, so the model can in turn react to external
stimuli.

BL’s 3D graphics models are constructed externally, in standard computer
graphics formats, and are incorporated into model design. When developing BL
models, a user might wish to change the structure of the model, trace/visualise
a range of variables or tweak various model parameters and observe the effect
on the 3D visualisation. There is hence a definite need for an interface which
can visualise and modify any valid BL scene without the need for extensive prior
planning.

The user interface developed for BL addresses these needs by providing:

– a general visualisation of any scene’s underlying model as a node-graph
network

– a general visualisation of any module/connector type and a listing of its asso-
ciated variables

– tools to view and edit variables
– tools to add new modules and connectors to a scene

The central view of the user interface is a node-graph network visualisation
of the scene. Both hierarchical and connector-based relationships are visualised
between modules (orange and blue lines respectively). Various graph layout algo-
rithms are used to produce different network layouts. The combination of a
hierarchical tree and a directed graph (the hierarchy and “connectome” of a
scene) presents challenges in choosing a layout algorithm, as does the potential
size and connection density of typical scenes. Presently the hierarchy is taken
into account when computing a layout; layouts computed using a force-directed
algorithm based on the Fruchterman-Rheingold algorithm [18] have also been
experimented with but further work is needed to determine which algorithms
may be best suited to BL, and we aim to provide a variety of choices. We also
give the user control over direct graphical placement of modules to mimic text-
book diagrams of neural circuits.

Larger networks are best visualised using a simple “dots and lines” view,
however each module and connector may also be viewed in a more expanded form
where each variable is a node on a larger icon. The module icon in particular
also contains a visualisation feature allowing any of a module’s variables to be
viewed, either as a time trace (for a single value) or as a dynamic 2D texture
(for arrays). By viewing different variables across several modules the effects of
a stimulus can be viewed and traced through a network in real time.

Each module’s variables are visible in a collapsible tree view separate from
the main network view. By navigating to the appropriate entry in this view,
a user may edit single values directly by entering the desired value in a text
box or by adjusting a slider. We have found the slider feature to be particularly
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useful when attempting “soft exploration” of a parameter space, that is, moving
a slider within a desired range until the appropriate behaviour is observed, either
in a 3D visualisation or in variable time traces.

Modules and connectors may be added to a scene via a wizard interface. In
the case of a module, a user specifies where in the hierarchy the module is to be
inserted, provides and name and a type, and specifies any necessary parameter
values. For a connector, the user must provide a name and a type, and then
specify the connections by either searching in the hierarchy for the relevant
variables or by manually entering an expression. The interface determines the
correct location in the hierarchy for a connector based on the variables used.

The user interface is built using the Qt library. The choice of Qt was moti-
vated by several factors including a need for cross-platform compatibility and
extensive and well-developed feature set. Qt also offered extensive documenta-
tion and ongoing development as well as an established track record including
use in large-scale commercial applications (e.g. Autodesk Maya). Using Qt has
also enabled us to add access points to BL for use with a separate interface based
on the QML engine. QML user interfaces are interpreted from a set of text files
at runtime which allows them to be developed independently of BL’s source code
making them ideal for end-user-developed interfaces.

5 BL: Examples

This section presents examples in BL of increasing complexity intended to illus-
trate some of the features previously discussed.

5.1 Simple Oscillator

This model (Fig. 1) implements a simple oscillator circuit using leaky integrator
neurons in an excitatory-inhibitory loop. Neuron 1 also has a tonic excitatory
input. The neurons are connected using a simple connector type which does
not perform any extra mathematical operations on its input variables. In this
example there is no 3D geometry supplied so no 3D visualisation appears.

Fig. 1. Simple two neuron circuit (left). Editing the membrane constant of the neurons
using a slider. The time trace shows the gradual change in oscillation amplitude as
the membrane constant is increased (Centre). Creating a new connection linking the
membrane constants of both neurons (Right).
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5.2 Knee Jerk

This model (Fig. 2) is an implementation of the patellar reflex as found in [45]. As
in the simple oscillator example, the neurons are all modeled as leaky integrators.
As the circuit is only described qualitatively in [45], exact parameter values had
to be chosen to give reasonable behaviour. There is a 3D visualisation whose
movement is controlled linking simulated neuronal voltages to activation weights
controlling animation parameters. The relative activation of the two muscles
is further visualised by linking a shader uniform controlling brightness to the
activation voltages. This connection is achieved using the same syntax (and in
fact the same connector) as is used to link the neurons’ voltages and inputs.

Fig. 2. A network visualisation of the patellar reflex circuit in which the modules
have been placed by hand. Custom network layouts in BL can be saved and loaded
at a later time. This layout is intended to approximate the layout in the original
schematic found in [45] (left) Before and during stimulation of the reflex. Note the
time traces showing the stimulus on the muscle spindle (left), the membrane voltages
of the extensor (middle) and flexor (right) muscles as well as the 3D visualisation on the
left, with the extensor and flexor muscles changing brightness in relation to activation
(right).

Fig. 3. The full model hierarchy (orange) and connectome (cyan) of a virtual 3D avatar
viewed as a hierarchical tree with two different layout configurations (centre and right).
Note the high degree of ‘between layers’ and long range connections. A small subcircuit
is highlighted (left) (Color figure online).

5.3 Virtual Infant Model Baby X

This section gives an overview the demonstrates how the simulation framework
applies to a more complex interactive system, an experimental computer gen-
erated psychobiological simulation of an infant (BabyX) currently under devel-
opment, which aims to combine models of the facial motor system and models
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of basic neural systems involved in early interactive behaviour and learning.The
neural models implemented so far in the virtual infant model span the neuroaxis
and create muscle activation based animation as motor output from continuously
integrated neural models (Fig. 3).

Neural Models. The neural models implemented so far in the virtual infant
model span the neuroaxis and create muscle activation based animation as motor
output from continuously integrated neural models.

Sensory input is taken live from camera, microphone and other devices.
Details of the various computational models from the literature incorporated
to date are outside the scope of this overview, but the models have been selected
for their wider acceptance and their numerical efficiency, and currently cover key
elements of motor control, behaviour selection, reflex, visual attention, learning,
salience, emotion and motivation. Neural systems being modelled include the
Basal Ganglia, Hippocampus, Hypothalamus, Amygdala, Oculomotor system,
Superior Colliculus, Facial Nucleus, and other brainstem nuclei, Cortico-Basal
and Cortico-Thalamic Loops, Dopaminergic and other neuromodulatory sys-
tems, and higher level models of episodic and working memory.

An example of the interconnected systems in the virtual infant model in
action: The camera maps to the simulated retina which detects luminance change
and maps to activity on the superior colliculus which resolves competing inputs
and directs the oculomotor system (comprised of multiple nuclei) to generate
saccadic eye motion which is sent to the animation system. Unexpected stimuli
causes dopamine release via the tectonigral pathway. The eyes foveate on the
stimuli and if novel or rewarding dopamine is released which affects the Basal
Ganglia modifying current motor activity and future response through hebbian
plasticity. The amygdala associates the current emotional state with the stimuli,
and may trigger hormone release in the hypothalamus and activation of brain-
stem motor circuits driving facial muscles which produce animation by activating
precomputed biomechanically simulated deformations. The response and plas-
ticity of the subsystems are affected by the levels of different neuromodulators
and hormones, which also influence the affective state. Because the behaviour
of the model is affected by its history as well as external events, the virtual
infants’s animation results from complex nonlinear system dynamics, self regu-
lated through parametric physiological constraints.

The virtual infant incorporates multiple learning models including unsu-
pervised learning, reinforcement learning, temporal learning, conditioning and
action discovery. The microdynamics of early social learning [46] are key in
developing realistic interaction, and in related collaborations with the School
of Psychology and the Early Learning Laboratory (ELLA) at the University of
Auckland we are analyzing and modelling the nuances of more complex behav-
iours of parent-child interaction which will inform the quality of simulation over
time.
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Facial Animation. The facial animation of the virtual infant is driven through
a neuroanatomical model based on the known architecture of the facial motor
system (See [12] for an overview). The model includes both voluntary and emo-
tional facial motor systems. Facial Motor signals are generated by multiple differ-
ent areas of the brain which project directly or indirectly to the facial nucleus,
including the motor cortex, amygdala, hypothalamus, and various brainstem
nuclei. The effects of the various drivers can be seen through ‘synthetic lesions’,
for example disabling cortical control of the face. Brainstem pattern generators
are modeled using biologically plausible recurrent neural network models and
produce activity which is resolved in the facial nucleus before being output as
animation weights. For more details of the facial simulation model see [49].

Sensing. A core part of the BL framework is its ability to support sensory
input. BL provides connections to a variety of sensors for input to neural network
and computer vision models of perception. The virtual infant model uses both
video and audio input, and can analyze affect using real time facial tracking,
pitch analysis and pattern recognition. For efficiency and accuracy the facial
landmarks tracked with computer vision are passed to a specialized solver for
facial expression activation weights. In general, most facial expressions can be
parameterized using the Facial Action Coding System (FACS) where each AU
corresponds to skin motion caused by the contraction of individual or group of
muscles [17]. For more details see [49]. For more general object recognition we
are using deep convolutional neural networks which exhibit good performance.

Visualization. BL has been designed to visualize simulated neural circuits
through multiple modalities including 3D neuroanatomical models. This allows
the viewer to see the neural circuits giving rise to behaviour in action in neu-
roanatomical context at any given time, or in more schematic displays. A key
feature of the virtual infant is to graphically look below the skin, to see the activ-
ity of the neural circuit models contributing to the activation the facial muscles
in action in real-time.

A range of visualisation modalities are available in BL, each being suited to
examining different aspects of a simulation. These include time traces and spike
raster plots, which may be integrated into the 3D scene or viewed separately,
and detailed 3D geometry of anatomical and neuroanatomical features (Fig. 4).

The range of viewing modalities available in BL allows users to viewer various
parts of a model in a neuroanatomical context at will as well as offering more
traditional “numerically focused” displays which may be better suited for more
abstract models and for live model parameter modification.

Realistic facial simulation (Fig. 5) is one of the core objectives of BL’s visual-
ization system. BL’s rendering engine is based on OpenGL and supports multi-
pass rendering for advanced state of the art shading effects. Custom shaders can
be used for the anatomy to add richness to users’ visual feedback for example
neuroanatomical circuits and regions light up according to their activation.
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Fig. 4. Different angles of interactive Brain model (left). BL visualization screenshot
showing Spike Raster (Centre Top Left) and Neuromodulator Levels (Centre Top Left).
Basal Ganglia Model showing a Thalamo-Cortical-BG Feedback Loop (Far Right).

Learning. Various biologically based learning models can be implemented in
BL. BL gives the flexibility to view these in different user-definable ways allow-
ing the user a direct insight into the activity and progress of learning circuits,
and their inputs and outputs. For example the user can see how various synap-
tic weights are changing as a result of events during a simulation essentially
getting live feedback from the low-level components of a neural network while
simultaneously interacting with the high level model.

Example: Facial Mimicry. An example of a fundamental learning mechanism
we are exploring is facial mimicry. Facial mimicry is a key example used in the
debate over the mirror neuron system [24]. The emergence of Facial mimicry
behaviour in the virtual infant is modeled using motor babbling, sensorimotor
association and reinforcement learning (Fig. 5, Top).

Intrinsic motor babbling activity is thought to be a fundamental way by
which an animal can bootstrap exploration of its motor space (e.g. a special-
ized circuit for vocal babbling has been discovered in the Songbird [2]) and it is
argued that babbling is a fundamental to cognitive development in autonomous
intelligent agents [33]. In the model, motor babbling is produced by a specialized
recurrent neural network which forms part of the basal ganglia thalamic circuit
[20]. The babbling is modulated by the degree of novelty and activity and other
physiological parameters. Babbling input contributes to the activation of motor
pattern generators which produce a facial animation via the facial nucleus. If the
caregiver responds to the virtual infant’s expression by mimicking it, intrinsic
sensory novelty of the sensed facial activity in the caregiver’s response causes
phasic DA release in the model modulating the plasticity of the sensorimotor
association of the virtual infant’s active expression with the caregiver’s. Changes
in striatal plasticity in the BG model increase the likelihood of the mimicked
expression. All of the elements can be visualized simultaneously in BL during
a learning session, from dopamine levels to individual synaptic weights to cam-
era input. Without substantial use of visualization constructing and testing an
interactive learning model of this nature would be difficult to achieve.
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Fig. 5. Sensorimotor learning session screenshot in which multiple inputs and outputs
of the model can be viewed simultaneously including: scrolling displays, spike rasters,
plasticity, activity of specific neurons, camera input, animated output. This gives the
user insight into the performance of the potentially complex system and low level
neural circuits during an interaction (Top). Learning to play the classic video game
Pong through action discovery. The Bat and Ball are superimposed onto the camera
input so no modification to the visual architecture is made, and Motor channels are
connected to the bat, so the avatar discovers through motor babbling the control of the
bat. The reward from hitting the ball gives the model intrinsic enjoyment (Bottom).
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Example: Learning a Video Game Through Intrinsic Motivation. As a
simplistic but fun example to demonstrate action discovery and learning through
intrinsic motivation we set up the virtual infant to learn to play the classic video
game ‘Pong’ (Fig. 5). The initial setup involved connecting Motor CPGs in the
virtual infant to the bat controls, and the mapping the visual input of the pong
game to the virtual infant’s retina. Motor babbling causes the virtual infant to
inadvertently move the bat, much like a baby may flail its arms and hit a rat-
tle. Moving the bat causes a novel change in the visual field and causes phasic
dopamine activity, which modulates the plasticity of the striatum and sensori-
motor associative neural networks. If the bat hits the ball further environmental
response is caused by action, leading to further dopamine release reinforcing
the producing behaviour selection associated with the sensory context (Fig. 5,
Bottom).

Emotion. Our approach to emotion synthesis is a relatively low level biologi-
cally based one, and involves modeling where possible fundamental physiologi-
cal systems which influence and trigger behaviour. Where available biologically
inspired models based on current knowledge or theories of core emotional sys-
tems and circuits are being implemented in BL to constitute an initial dynamic
systems model of emotion which regulates fundamental behaviour. For example
our model of the amygdala has both synaptic connections to the facial nuclei
[32,54], but also to the hypothalamus which modulates the release of Corti-
cotrophin releasing hormone (CRH) which triggers a feedback system involving
three endrocrine glands, the hypothalamic-pituitary-adrenal (HPA) axis [23].
These determine the production of adrenocorticotrophic hormone (ACTH) and
then cortisol, which form a physiological correlation of stress in the model, and
modulate various behaviours. The use of such low level models means that the
user can change the levels (or the receptor weights) of various physiological
parameters (such as CRH or tonic Dopamine) to adjust behavioural dynamics
and sensitivities (even temperament). The BL architecture allows for low level
emotional responses to be driven by higher level cognitive models.

6 Conclusion

We have started to tackle the complexity of interactive expressive facial behav-
iours involved in autonomous behaviour, social interaction and learning using a
bottom up top down approach, through the use of generative low level neurobi-
ological models which are be modulated by higher level neural system models.

We have been able to construct complex (yet relatively simple) interactive
neurobehavioural models which are able to be investigated visually in real time
using a novel framework, Brain Language (BL). Because of the modular nature
of BL we are able to easily modify and update existing subsystems and add new
models representing new functionality and anatomy.

An application of the framework has been described in the construction of
a virtual infant model, which is an example of a complex system incorporating
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and embodying a wide range of biologically-based models. This is an example
of a bottom up top down approach to represent a complex system, in order to
lay the foundations for emergent highly expressive autonomous facial animation
involved in social learning and behaviour. We are continuously updating both
the graphics and behavioural models.

The BL language and its visual interface are under active development,
including the ability for users to dynamically create systems models from scratch
as well as modify existing models using intuitive tools. Design goals include the
ability to support a wide range of neural models, and to connect with higher
level cognitive architectures. The BL architecture may also be suitable for use in
other biological system modeling. Developers can add their own custom modules
to interface with existing software or devices, and we are interested in collabora-
tions with researchers who wish to implement their models in the BL framework
or form live connections with BL based models.

The enormous complexity of modeling human behaviour and dyadic interac-
tion cannot be underestimated, but through developing naturalistic autonomous
virtual humans who can embody and process theoretical models of our behaviour
and reflect them back at us may give us new insight into fundamental aspects
of our nature and interaction with other people.
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Abstract. In this paper, a recent computational methodology is
described. It has been introduced with the intention to allow one to work
with infinities and infinitesimals numerically in a unique computational
framework. It is based on the principle ‘The part is less than the whole’
applied to all quantities (finite, infinite, and infinitesimal) and to all sets
and processes (finite and infinite). The methodology uses as a computa-
tional device the Infinity Computer (patented in USA and EU) working
numerically with infinite and infinitesimal numbers that can be written
in a positional system with an infinite radix. On a number of examples
dealing mainly with infinite sets and Turing machines with different infi-
nite tapes it is shown that it becomes possible to execute a fine analysis
of these mathematical objects. The accuracy of the obtained results is
continuously compared with results obtained by traditional tools used to
work with mathematical objects involving infinity.

Keywords: Numbers and numerals · Numerical infinities and infinites-
imals · Infinite sets · Turing machines · Infinite sequences

1 Introduction

There exists an important distinction between numbers and numerals. A numeral
is a symbol (or a group of symbols) that represents a number. A number is a con-
cept that a numeral expresses. The same number can be represented by different
numerals. For example, the symbols ‘10’, ‘ten’, ‘IIIIIIIIII’,‘X’, ‘ .=’, and ‘̃I’ are
different numerals, but they all represent the same number1. Rules used to write

Y.D. Sergeyev—This research was partially supported by the Russian Foundation
for Basic Research, grant no. 15-01-06612.

1 The last two numerals,
.
= and Ĩ, are probably less known. The former belongs to

the Maya numeral system where one horizontal line indicates five and two lines one
above the other indicate ten. Dots are added above the lines to represent additional
units. For instance,

.
= means eleven in this numeral system. The latter symbol, Ĩ,

belongs to the Cyrillic numeral system derived from the Cyrillic script. This numeral
system was developed in the late Xth century and was used by South and East Slavic
peoples. The system was used in Russia as late as the early XV IIIth century when
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down numerals together with algorithms for executing arithmetical operations
form a numeral system.

In our everyday activities with finite numbers the same finite numerals are
used for different purposes (e.g., the same numeral 10 can be used to express the
number of elements of a set, to indicate the position of an element in a sequence,
and to execute practical computations). In contrast, when we face the necessity
to work with infinities or infinitesimals, the situation changes drastically. In fact,
in this case different numerals are used to work with infinities and infinitesimals
in different situations. To illustrate this fact it is sufficient to mention that we
use the symbol ∞ in standard analysis, ω for working with ordinals, ℵ0,ℵ1, ...
for dealing with cardinalities.

Many theories dealing with infinite and infinitesimal quantities have a sym-
bolic (not numerical) character. For instance, many versions of non-standard
analysis (see [23]) are symbolic, since they have no numeral systems to express
their numbers by a finite number of symbols (the finiteness of the number of
symbols is necessary for organizing numerical computations). Namely, if we con-
sider a finite n than it can be taken n = 134, or n = 65 or any other numeral
used to express finite quantities and consisting of a finite number of symbols.
In contrast, if we consider a non-standard infinite m then it is not clear which
numerals can be used to assign a concrete value to m.

Analogously, in non-standard analysis, if we consider an infinitesimal h then
it is not clear which numerals consisting of a finite number of symbols can be
used to assign a value to h and to write h = ... In fact, very often in non-
standard analysis texts, a generic infinitesimal h is used and it is considered as
a symbol, i.e., only symbolic computations can be done with it. Approaches of
this kind leave unclear such issues, e.g., whether the infinite 1/h is integer or
not or whether 1/h is the number of elements of an infinite set. If one wishes to
consider two infinitesimals h1 and h2 then it is not clear how to compare them
because numeral systems that can express infinitesimals are not provided by
non-standard analysis techniques. In fact, when we work with finite quantities,
then we can compare x and y if they assume numerical values, e.g., x = 25 and
y = 78 then, by using rules of the numeral system the symbols 25 and 78 belong
to, we can compute that y > x.

Even though there exist codes allowing one to work symbolically with ∞ and
other symbols related to the concepts of infinity and infinitesimals, traditional
computers work numerically only with finite numbers and situations where the
usage of infinite or infinitesimal quantities is required are studied mainly theo-
retically (see [2,3,8,10,11,15,16,23,45] and references given therein). The fact
that numerical computations with infinities and infinitesimals have not been
implemented so far on computers can be explained by several difficulties. Obvi-
ously, among them we can mention the fact that arithmetics developed for this
purpose are quite different with respect to the way of computing we use when

it was replaced with Arabic numerals. To distinguish numbers from text, a titlo, ,̃ is
drawn over the symbols showing so that this is a numeral and, therefore, it represents
a number and not just a character of text.
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we deal with finite quantities. For instance, there exist undetermined operations
(∞−∞, ∞

∞ , etc.) that are absent when we work with finite numbers. There exist
also practical difficulties that preclude an implementation of numerical compu-
tations with infinity and infinitesimals. For example, it is not clear how to store
an infinite quantity in a finite computer memory.

A computational methodology introduced recently in [26,32,36,40] allows
one to look at infinities and infinitesimals in a new way and to execute numer-
ical computations with infinities and infinitesimals on the Infinity Computer
patented in USA (see [30]) and other countries. Moreover, this approach proposes
a numeral system that uses the same numerals for several different purposes for
dealing with infinities and infinitesimals: for measuring infinite sets; for indicat-
ing positions of elements in ordered infinite sequences; for working with functions
and their derivatives that can assume different infinite, finite, and infinitesimal
values and can be defined over infinite and infinitesimal domains; for describing
Turing machines, etc.

An international scientific community developing a number of interesting
theoretical and practical applications in several research areas by using the new
methodology grows rapidly. Among these studies it is worthy to mention papers
connecting the new approach to the historical panorama of ideas dealing with
infinities and infinitesimals (see [17–19,41]). In particular, relations of the new
approach to bijections are studied in [19] and metamathematical investigations
on the new theory and its non-contradictory can be found in [18]. Then, the new
methodology has been applied for studying Euclidean and hyperbolic geometry
(see [20,21]), percolation (see [12,13,44]), fractals (see [25,27,35,44]), numer-
ical differentiation and optimization (see [4,28,33,47]), infinite series and the
Riemann zeta function (see [29,34,46]), the first Hilbert problem, Turing
machines, and lexicographic ordering (see [31,39,41–43]), cellular automata (see
[5–7]), ordinary differential equations (see [37,38]), etc. The interested reader is
invited to have a look also at surveys [26,32,36] and the book [24] written in a
popular way.

In this paper, we briefly describe the new methodology and the numeral
system showing how they can be used in a number of situations where infinities
and infinitesimals are useful. Infinite sets, bijections, and Turing machines are
mainly discussed.

2 Numeral Systems, their Accuracy, and Numbers
they can Express

It is necessary to remind that different numeral systems can express different
sets of numbers and they can be more or less suitable for executing arithmetical
operations. Even the powerful positional system is not able to express, e.g.,
the number

√
2 by a finite number of symbols (the finiteness is essential for

executing numerical computations) and this special numeral,
√

2, is deliberately
introduced to express the desired quantity. There exist many numeral systems
that are weaker than the positional one. For instance, Roman numeral system
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is not able to express zero and negative numbers and such expressions as III –
VIII or X-X are indeterminate forms in this numeral system. As a result, before
appearing the positional numeral system and inventing zero mathematicians
were not able to create theorems involving zero and negative numbers and to
execute computations with them. Thus, numeral systems seriously bound the
possibilities of human beings to compute and developing new, more powerful
than existing ones, numeral systems can help a lot both in theory and practice
of computations.

Even though Roman numeral system is weaker than the positional one it
is not the weakest numeral system. There exist really feeble numeral systems
allowing their users to express very few numbers and one of them is illuminating
for our study. This numeral system is used by a tribe, Pirahã, living in Amazonia
nowadays. A study published in Science in 2004 (see [9]) describes that these
people use an extremely simple numeral system for counting: one, two, many.
For Pirahã, all quantities larger than two are just ‘many’ and such operations
as 2+2 and 2+1 give the same result, i.e., ‘many’. Using their weak numeral
system Pirahã are not able to see, for instance, numbers 3, 4, and 5, to execute
arithmetical operations with them, and, in general, to say anything about these
numbers because in their language there are neither words nor concepts for that.

It is worthy to mention that the result ‘many’ is not wrong. It is just inaccu-
rate. Analogously, when we observe a garden with 343 trees, then both phrases:
‘There are 343 trees in the garden’ and ‘There are many trees in the garden’ are
correct. However, the accuracy of the former phrase is higher than the accuracy
of the latter one. Thus, the introduction of a numeral system having numerals
for expressing numbers 3 and 4 leads to a higher accuracy of computations and
allows one to distinguish results of operations 2+1 and 2+2.

The poverty of the numeral system of Pirahã leads also to the following
results

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’,

‘many’ − 1 = ‘many’, ‘many’ − 2 = ‘many’,

‘many’ + ‘many’ = ‘many’

that are crucial for changing our outlook on infinity. In fact, by changing in
these relations ‘many’ with ∞ we get relations used to work with infinity in the
traditional calculus and Cantor’s cardinals

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ − 1 = ∞, ∞ − 2 = ∞, ∞ + ∞ = ∞,

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 − 1 = ℵ0, ℵ0 − 2 = ℵ0, ℵ0 + ℵ0 = ℵ0.

It should be mentioned that the astonishing numeral system of Pirahã is not
an isolated example of this way of counting. In fact, the same counting system,
one, two, many, is used by the Warlpiri people, aborigines living in the Northern
Territory of Australia (see [1]). The Pitjantjatjara people living in the Central
Australian desert use numerals one, two, three, big mob (see [14]) where ‘big
mob’ works as ‘many’. It makes sense to remind also another Amazonian tribe –
Mundurukú (see [22]) who fail in exact arithmetic with numbers larger than 5



Computations with Grossone-Based Infinities 93

but are able to compare and add large approximate numbers that are far beyond
their naming range. Particularly, they use the words ‘some, not many’ and ‘many,
really many’ to distinguish two types of large numbers. Their arithmetic with
‘some, not many’ and ‘many, really many’ reminds strongly the rules Cantor
uses to work with ℵ0 and ℵ1, respectively. For instance, compare

‘some, not many’+ ‘many, really many’ = ‘many, really many’

with

ℵ0 + ℵ1 = ℵ1.

This comparison suggests that our difficulty in working with infinity is not
connected to the nature of infinity but is a result of inadequate numeral sys-
tems used to express infinite numbers. Traditional numeral systems have been
developed to express finite quantities and they simply have no sufficiently high
number of numerals to express different infinities (and infinitesimals). In other
words, the difficulty we face is not connected to the object of our study – infinity –
but is the result of weak instruments – numeral systems – used for our study.

The way of reasoning where the object of the study is separated from the tool
used by the investigator is very common in natural sciences where researchers
use tools to describe the object of their study and the used instrument influences
the results of the observations and determine their accuracy. When a physicist
uses a weak lens A and sees two black dots in his/her microscope he/she does not
say: The object of the observation is two black dots. The physicist is obliged to
say: the lens used in the microscope allows us to see two black dots and it is not
possible to say anything more about the nature of the object of the observation
until we change the instrument - the lens or the microscope itself - by a more
precise one. Suppose that he/she changes the lens and uses a stronger lens B and
is able to observe that the object of the observation is viewed as eleven (smaller)
black dots. Thus, we have two different answers: (i) the object is viewed as two
dots if the lens A is used; (ii) the object is viewed as eleven dots by applying the
lens B. Both answers are correct but with the different accuracies that depend
on the lens used for the observation.

The same happens in Mathematics studying natural phenomena, numbers,
objects that can be constructed by using numbers, sets, etc. Numeral systems
used to express numbers are among the instruments of observations used by
mathematicians. As we have illustrated above, the usage of powerful numeral
systems gives the possibility to obtain more precise results in Mathematics in
the same way as usage of a good microscope gives the possibility of obtaining
more precise results in Physics.

3 Grossone-Based Numerals

In order to increase the accuracy of computations with infinities and infini-
tesimals, the computational methodology developed in [24,26,32] proposes a
numeral system that allows one to observe infinities and infinitesimals with
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a higher accuracy. This numeral system avoids situations similar to ‘many’+1 =
‘many’ and ∞−1 = ∞ providing results ensuring that if a is a numeral written in
this numeral system then for any a (i.e., a can be finite, infinite, or infinitesimal)
it follows a + 1 > a and a − 1 < a.

The numeral system is based on a new infinite unit of measure expressed by
the numeral ① called grossone that is introduced as the number of elements of
the set of natural2 numbers

N = {1, 2, 3, . . . }. (1)

Concurrently with the introduction of ① in the mathematical language all
other symbols (like ∞, Cantor’s ω, ℵ0,ℵ1, ..., etc.) traditionally used to deal
with infinities and infinitesimals are excluded from the language because ① and
other numbers constructed with its help not only can be used instead of all of
them but can be used with a higher accuracy. Analogously, when zero and the
positional numeral system had been introduced in Europe, Roman numerals I,
V, X, etc. had not been involved and new symbols 0, 1, 2, etc. had been used to
express numbers. The new element – zero expressed by the numeral 0 – had been
introduced by describing its properties in the form of axioms. Analogously, ①
is introduced by describing its properties postulated by the Infinite Unit Axiom
added to axioms for real numbers (see [26,32] for a detailed discussion). Let us
comment upon some of properties of ①.

If we consider a finite integer k, then the number of elements of the set
{1, 2, 3, . . . k − 1, k } is its largest element, i.e., k. For instance, the number 4 in
the set

A = {1, 2, 3, 4} (2)

is the largest element in the set A and the number of elements of A. Grossone
has been introduced as the number of elements of the set of natural numbers and,
therefore, we have the same situation as in (2), i.e., ① ∈ N. As a consequence,
the introduction of ① allows us to write down the set of natural numbers as
follows

N = {1, 2, . . .
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2, . . . ① − 2, ① − 1, ①}. (3)

Infinite natural numbers

. . .
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2, . . . ① − 2, ① − 1, ① (4)

that are invisible if traditional numeral systems are used to observe the set of
natural numbers can be viewed now thanks to the introduction of ①. The two
records, (1) and (3), refer to the same set – the set of natural numbers – and

2 Notice that nowadays not only positive integers but also zero is frequently included
in N. However, since zero has been invented significantly later than positive integers
used for counting objects, zero is not include in N in this text.
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infinite numbers (4) also take part3 of N. Both records, (1) and (3), are correct
and do not contradict each other. They just use two different numeral systems
to express N. Traditional numeral systems do not allow us to see infinite natural
numbers that we can observe now thanks to grossone. Thus, we have the same
object of observation – the set N – that can be observed by different instruments
– numeral systems – with different accuracies.

Similarly, Pirahã are not able to see finite natural numbers 3, 4, and 5. In
spite of the fact that Pirahã do not see them, these numbers 3, 4, and 5, belong to
N and are visible if one uses a more powerful numeral system. Even the numeral
system of Mundurukú is sufficient to observe 3, 4, and 5. Notice also that the
weakness of their numeral system does not allow Pirahã to define the set (2)
while Mundurukú would be able to do this.

In general, in the new methodology it is necessary always to indicate
a numeral system used for computations and theoretical investigations. For
instance, the words ‘the set of all finite numbers’ do not define a set completely in
this methodology. It is always necessary to specify which instruments (numeral
systems) are used to describe (and to observe) the required set and, as a con-
sequence, to speak about ‘the set of all finite numbers expressible in a fixed
numeral system’. For instance, for Pirahã and Warlpiri ‘the set of all finite num-
bers’ is the set {1, 2}, for the Pitjantjatjara people ‘the set of all finite numbers’
is the set {1, 2, 3} and for Mundurukú ‘the set of all finite numbers’ is the set
{1, 2, 3, 4, 5}. We stress again that in Mathematics, as it happens in Physics, the
instrument used for an observation bounds the possibility of the observation and
defines the accuracy of this observation. It is not possible to say how we shall
see the object of our observation if we have not clarified which instruments will
be used to execute the observation.

Let us see now how one can write down different numerals expressing different
infinities and infinitesimals and to execute computations with all of them. Instead
of the usual symbol ∞ different infinite and/or infinitesimal numerals can be used
thanks to ①. Indeterminate forms are not present and, for example, the following
relations hold for infinite numbers ①, ①2 and ①−1, ①−2 (that are infinitesimals),
as for any other (finite, infinite, or infinitesimal) number expressible in the new
numeral system

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0,

0 · ①−1 = ①−1 · 0 = 0, ①−1 > 0, ①−2 > 0, ①−1 − ①−1 = 0,

①−1

①−1 = 1, (①−1)0 = 1, ① · ①−1 = 1, ① · ①−2 = ①−1,

①−2

①−2 = 1,
①2

①
= ①,

①−1

①−2 = ①, ①2 · ①−1 = ①, ①2 · ①−2 = 1.

3 This is a difference with respect to non-standard analysis where infinities it works
with do not belong to N.
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The introduction of the numeral ① allows us to represent infinite and infin-
itesimal numbers in a unique framework. For this purpose a numeral system
similar to traditional positional numeral systems was introduced in [24,26]. To
construct a number C in the numeral positional system with the radix grossone,
we subdivide C into groups corresponding to powers of①:

C = cpm
①pm + . . . + cp1①p1 + cp0①p0 + cp−1①p−1 + . . . + cp−k

①p−k . (5)

Then, the record

C = cpm
①pm . . . cp1①p1cp0①p0cp−1①p−1 . . . cp−k

①p−k (6)

represents the number C, where all numerals ci �= 0, they belong to a traditional
numeral system and are called grossdigits. They express finite positive or neg-
ative numbers and show how many corresponding units ①pi should be added
or subtracted in order to form the number C. Note that in order to have a
possibility to store C in the computer memory, values k and m should be finite.

Numbers pi in (6) are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k.

They are called grosspowers and they themselves can be written in the form (6).
In the record (6), we write ①pi explicitly because in the new numeral positional
system the number i in general is not equal to the grosspower pi. This gives the
possibility to write down numerals without indicating grossdigits equal to zero.

The term having p0 = 0 represents the finite part of C since c0①0 = c0. Terms
having finite positive grosspowers represent the simplest infinite parts of C.
Analogously, terms having negative finite grosspowers represent the simplest
infinitesimal parts of C. For instance, the number ①−1 = 1

①
mentioned above

is infinitesimal. Note that all infinitesimals are not equal to zero. In particular,
1
①

> 0 since it is a result of division of two positive numbers.
A number represented by a numeral in the form (6) is called purely finite if it

has neither infinite nor infinitesimals parts. For instance, 14 is purely finite and
14 + 5.3①−1.5 is not. All grossdigits ci are supposed to be purely finite. Purely
finite numbers are used on traditional computers and for obvious reasons have
a special importance for applications. All of the numbers introduced above can
be grosspowers, as well, giving thus a possibility to have various combinations
of quantities and to construct terms having a more complex structure.

We conclude this section by emphasizing that different numeral systems, if
they have different accuracies, cannot be used together. For instance, the usage
of ‘many’ from the language of Pirahã in the record 5+‘many’ has no any sense
because for Pirahã it is not clear what 5 is and for people knowing what 5 is the
accuracy of the answer ‘many’ is too low. Analogously, the records of the type
①+ω, ①−ℵ0, ①/∞, etc. have no sense because they include numerals developed
under different methodological assumptions, in different mathematical contests,
for different purposes, and, finally, numeral systems these numerals belong to
have different accuracies.
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4 Measuring Infinite Sets and Relations to Bijections

By using the ①-based numeral system it becomes possible to measure certain
infinite sets. As we have seen above, relations of the type ‘many’ + 1 = ‘many’
and ℵ0 − 1 = ℵ0 are consequences of the weakness of numeral systems applied
to express numbers (finite or infinite). Thus, one of the principles of the new
computational methodology consists of adopting the principle ‘The part is less
than the whole’ to all numbers (finite, infinite, and infinitesimal) and to all sets
and processes (finite and infinite). Notice that this principle is a reformulation
of Euclid’s Common Notion 5 saying ‘The whole is greater than the part’.

Let us show how, in comparison to the traditional mathematical tools used
to work with infinity, the new numeral system allows one to obtain more precise
answers in certain cases. For instance, Table 1 compares results obtained by
the traditional Cantor’s cardinals and the new numeral system with respect to
the measure of a dozen of infinite sets (for a detailed discussion regarding the
results presented in Table 1 and for more examples dealing with infinite sets see
[18,19,31,32,41]). Notice, that in Q and Q

′ we calculate different numerals and
not numbers. For instance, numerals 4

1 and 8
2 have been counted two times even

though they represent the same number 4. Then, four sets of numerals having
the cardinality of continuum are shown in Table 1 (these results are discussed
more in detail in the next section). Among them we denote by A2 the set of
numbers x ∈ [0, 1) expressed in the binary positional numeral system, by A′

2 the
set being the same as A2 but with x belonging to the closed interval [0, 1], by A10

the set of numbers x ∈ [0, 1) expressed in the decimal positional numeral system,
and finally we have the set C10 = A10 ∪ B10, where B10 is the set of numbers

Table 1. Measuring infinite sets using ①-based numerals allows one in certain cases to
obtain more precise answers in comparison with the traditional cardinalities, ℵ0 and C,
of Cantor.

Description of sets Cardinality Number of

elements

the set of natural numbers N countable, ℵ0 ①

N
⋃ {0} countable, ℵ0 ① + 1

N \ {3, 5, 10, 23, 114} countable, ℵ0 ① − 5

the set of even numbers E countable, ℵ0
①
2

the set of odd numbers O countable, ℵ0
①
2

the set of integers Z countable, ℵ0 2① + 1

Z \ {0} countable, ℵ0 2①

the set of square natural numbers G = {x : x = n2, x ∈ N, n ∈ N} countable, ℵ0 �√
①	

the set of pairs of natural numbers P = {(p, q) : p ∈ N, q ∈ N} countable, ℵ0 ①2

the set of numerals Q
′ = {− p

q ,
p
q : p ∈ N, q ∈ N} countable, ℵ0 2①2

the set of numerals Q = {0,− p
q ,

p
q : p ∈ N, q ∈ N} countable, ℵ0 2①2 + 1

the set of numerals A2 continuum, C 2①

the set of numerals A′
2 continuum, C 2① + 1

the set of numerals A10 continuum, C 10①

the set of numerals C10 continuum, C 2 · 10①
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x ∈ [1, 2) expressed in the decimal positional numeral system. It is worthwhile to
notice also that grossone-based numbers from Table 1 can be ordered as follows

�
√

①	 <
①

2
< ① − 5 < ① < 2① < 2① + 1 <

①2 < 2①2 + 1 < 2① < 2① + 1 < 10① < 2 · 10①.

It can be seen from Table 1 that Cantor’s cardinalities say only whether a set
is countable or uncountable while the ①-based numerals allow us to express the
exact number of elements of the infinite sets. However, both numeral systems –
the new one and the numeral system of infinite cardinals – do not contradict one
another. Both Cantor’s numeral system and the new one give correct answers,
but their answers have different accuracies. By using an analogy from physics we
can say that the lens of our new ‘telescope’ used to observe infinities and infini-
tesimals is stronger and where Cantor’s ‘telescope’ allows one to distinguish just
two dots (countable sets and the continuum) we are able to see many different
dots (infinite sets having different number of elements).

The ①-base numeral system, as all numeral systems, cannot express all num-
bers and give answers to all questions. Let us consider, for instance, the set of
extended natural numbers indicated as N̂ and including N as a proper subset

N̂ = {1, 2, . . . , ① − 1, ①︸ ︷︷ ︸
Natural numbers

, ① + 1, ① + 2, . . . , 2① − 1, 2①, 2① + 1, . . .

①2 − 1, ①2, ①2 + 1, . . . 3①① − 1, 3①①, 3①① + 1, . . .}. (7)

What can we say with respect to the number of elements of the set N̂? The

introduced numeral system based on grossone is too weak to give an answer to
this question. It is necessary to introduce in a way a more powerful numeral
system by defining new numerals (for instance, ②, ③, etc.).

In order to see how the principle ‘The part is less than the whole’ agrees with
traditional views on infinite sets, let us consider two illustrative examples. The
first of them is related to the one-to-one correspondence that can be established
between the sets of natural and odd numerus. Namely, odd numbers can be put
in a one-to-one correspondence with all natural numbers in spite of the fact that
O is a proper subset of N

odd numbers: 1, 3, 5, 7, 9, 11, . . .

 
 
 
 
 


natural numbers: 1, 2, 3, 4 5, 6, . . .
(8)

The usual conclusion is that both sets are countable and they have the same
cardinality ℵ0.

Let us see now what we can say from the new methodological positions. We
know now that when one executes the operation of counting, the accuracy of the
result depends on the numeral system used for counting. Proposing to Pirahã to
measure sets consisting of four apples and five apples would give us the answer
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that both sets of apples have many elements. This answer is correct but its
precision is low due to the weakness of the numeral system used to measure
the sets.

Thus, the introduction of the notion of accuracy for measuring sets is very
important and should be applied for infinite sets also. Since for cardinal numbers
it follows

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 + ℵ0 = ℵ0,

these relations suggest that the accuracy of the cardinal numeral system of
Alephs an is not sufficiently high to see the difference with respect to the number
of elements of the two sets from (8).

In order to look at the record (8) using the new numeral system we need the
following fact from [24]: the sets of even and odd numbers have ①/2 elements each
and, therefore, ① grossone is even. It is also necessary to remind that numbers
that are larger than ① are not natural, they are extended natural numbers. For
instance, ① + 1 is odd but not natural, it is extended natural, see (7). Thus, the
last odd natural number is ①−1. Since the number of elements of the set of odd
numbers is equal to ①

2 , we can write down not only initial (as it is usually done
traditionally) but also the final part of (8)

1, 3, 5, 7, 9, 11, . . . ① − 5, ① − 3, ① − 1

 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . ①

2 − 2, ①
2 − 1, ①

2

(9)

concluding so (8) in a complete accordance with the principle ‘The part is less
than the whole’. Both records, (8) and (9), are correct but (9) is more accurate,
since it allows us to observe the final part of the correspondence that is invisible
if (8) is used.

The accuracy of the ①-based numeral system allows us to measure also,
for instance, such sets as O

′ = O\{3} and O
′′ = O\{1, ① − 1}. The set O

′ is
constructed by excluding one element from O and the set O′′ by excluding from
O two elements. Thus, O′ and O

′′ have ①
2 −1 and ①

2 −2 elements, respectively. In
case one wishes to establish the corresponding bijections, starting with natural
numbers 1, 2, 3, . . . we obtain for these two sets

1, 5, 7, 9, 11, 13, . . . ①−5, ①−3, ①−1

 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . ①

2 − 3, ①
2 − 2, ①

2 − 1
(10)

3, 5, 7, 9, 11, 13, . . . ① − 7, ① − 5, ① − 3

 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . ①

2 − 4, ①
2 − 3, ①

2 − 2
(11)

In order to become more familiar with natural and extended natural num-
bers let us consider one more example where we multiply each element of the
set of natural numbers, N, by 2. We would like to study the resulting set, that
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is called E
2 hereinafter, to calculate the number of its elements, and to spec-

ify which among its elements are natural and which ones are extended natural
numbers and how many they are.

The introduction of the new numeral system allows us to write down the set,
N, of natural numbers in the form (7). By definition, the number of elements of
N is equal to ①. Thus, after multiplication of each of the elements of N by 2,
the resulting set, E2, will also have grossone elements. In particular, the number
①
2 multiplied by 2 gives us ① and ①

2 + 1 multiplied by 2 gives us ① + 2 that is
even extended natural number, see (7). Analogously, the last element of N, i.e.,
①, multiplied by 2 gives us 2①. Thus, the set of even numbers E2 can be written
as follows

E
2 = {2, 4, 6, . . . ① − 4, ① − 2, ①, ① + 2, ① + 4, . . . 2① − 4, 2① − 2, 2①},

where numbers {2, 4, 6, . . . ①−4, ① − 2, ①} are even and natural (they are ①
2 )

and numbers {① + 2, ① + 4, . . . 2① − 4, 2① − 2, 2①} are even and extended
natural, they also are ①

2 .

5 Turing Machines and Infinite Sequences

In this section we present some results related to Turing machines with infinite
tapes (the presentation has been simplified, see [41,42] for a comprehensive dis-
cussion). Traditionally, an infinite sequence {an}, an ∈ A, n ∈ N, is defined as a
function having the set of natural numbers, N, as the domain and a set A as the
codomain. A subsequence {bn} is defined as a sequence {an} from which some
of its elements have been removed. In spite of the fact that the removal of the
elements from {an} can be directly observed, the traditional point of view on
sequences does not allow one to register, in the case where the obtained sub-
sequence {bn} is infinite, the fact that {bn} has less elements than the original
infinite sequence {an}.

Let us study what happens when the new approach is used. The definition
of infinite sequences should be done more precise in a complete analogy to finite
sequences. In the finite case, to define a sequence a1, a2, . . . , an the number, n, of
its elements should be explicitly declared. Thanks to the introduction of ①-based
numerals we are able to express infinite numbers, as well and, as a consequence,
we extend this definition directly to the infinite case, i.e., to define an infinite
sequence a1, a2, . . . , an its infinite number of elements, n, should be provided.

Since the new numeral system allows us to express the number of elements
of the set N as ① grossone and due to the sequence definition given above,
any sequence having N as the domain has grossone elements. Such sequences
are called complete. Notice that, among other things, this definition states that
there cannot exist infinite sequences having more than ① elements. However,
since we can express infinite integers less than ①, infinite sequences having less
than ① elements can exist and can be described using ①-based numerals. In
fact, the notion of subsequence is introduced as a sequence from which some of
its elements have been removed. This means that the resulting subsequence will
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have less elements than the original sequence and the infinite number of elements
of infinite subsequences can be expressed.

For instance, let us consider two infinite sequences: {an} and {bn}. The first
sequence {an}, 1 ≤ n ≤ ①, with an = n − 1. This sequence has ① elements
and it is, therefore, complete. Its first element is a1 = 0 and its last element is
a① = ① − 1. The second infinite sequence, {bn}, that is a subsequence of the
first one is defined as follows: {bn}, 1 ≤ n ≤ 0.5①, with bn = n − 1. Thus, both
sequences, {an} and {bn}, have the same general element, an = bn = n − 1, the
same first element, a1 = b1 = 0, and both are infinite but the first sequence is
complete and the second one is not since it has 0.5① < ① elements and its last
element is b0.5① = 0.5① − 1.

Suppose now that we have a Turing machine with an infinite tape that con-
tains an output written using symbols {0, 1, . . . b − 2, b − 1} with a finite b. The
traditional point of view allows us to distinguish neither tapes having different
infinite lengths nor machines using different alphabets, i.e., {0, 1, . . . B−2, B−1}
with B �= b. The question of the possibility to have different infinite tapes is not
discussed and it is supposed that machines with all output alphabets have the
same computational power if their tapes are infinite. This happens because the
traditional numeral systems used to describe Turing machines do not allow us
to see these differences. The new numeral system offers such a possibility giving
a chance to describe Turing machines in a more precise way and to distinguish
them at infinity.

In the new framework, it is not sufficient to say that the tape is infinite. It is
necessary to define the infinite length of the tape explicitly. As an example, let us
consider a Turing machine having the tape ① positions long. Output sequences
are written on the tape using symbols from an output alphabet, let it be again
{0, 1, . . . b − 2, b − 1} with a finite b. The importance of the discussion on the
infinite sequences provided above for Turing machines becomes clear now: the
output sequences of symbols, as all sequences, though infinite cannot have more
than ① elements.

Moreover, we can make a more accurate analysis and count the precise num-
ber of infinite output sequences of symbols that the machine can produce. It is
obvious that its outputs can be viewed as numerals in the positional numeral
system with the finite radix b

(a1a2 . . . a①−1a①)b, ai ∈ {0, 1, . . . b − 2, b − 1}, 1 ≤ i ≤ ①. (12)

This means that we have ① positions that can be filled in with b symbols each,
i.e., this machine called hereinafter T1 can produce b① different outputs. Then,
if we consider another machine, T2, having the tape with ① − 1 positions and
outputs written using the same base, b, the number of its outputs is b①−1 < b①

and each of them is one position shorter than outputs of T1. Moreover, if we
consider the third machine, T3, having the tape with ① positions and outputs
written using a base B > b, the number of its outputs is B① > b①. In other words,
the machine T3 is more powerful then the machine T1 that, in its turn, is more
powerful than the machine T2.
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Let us give a couple of illustrations. We start by considering a Turing machine
T4 working with the alphabet {0, 1, 2}, the tape with ①/2 positions, and com-
puting the following output

0, 1, 2, 0, 1, 2, 0, 1, 2, . . . 0, 1, 2, 0, 1, 2︸ ︷︷ ︸
①/2 positions

. (13)

Then a Turing machine T5 working with the output alphabet {0, 1} and the tape
with ①/2 positions cannot produce a sequence of symbols computing (13). In
fact, since the numeral 2 does not belong to the alphabet {0, 1} it should be coded
by more than one symbol. One of codifications using the minimal number of sym-
bols in the alphabet {0, 1} necessary to code numbers 0, 1, 2 is {00, 01, 10}. Then
the output corresponding to (13) and computed in this codification should be

00, 01, 10, 00, 01, 10, 00, 01, 10, . . . 00, 01, 10, 00, 01, 10. (14)

Since the output (13) contains ①/2 positions, the output (14) should contain
① positions. However, by the definition of T5 it can produce outputs that have
only ①/2 positions.

Let us consider now a Turing machine T6 working with the alphabet {0, 1, 2}
as T4 but the infinite tape of T6 is one position longer than the tape of T4, i.e.,
it has ①/2+1 positions, and T6 computes the following output

0, 1, 2, 0, 1, 2, 0, 1, 2, . . . 0, 1, 2, 0, 1, 2, 0︸ ︷︷ ︸
①/2+1 positions

. (15)

Then there is no a Turing machine working with the output alphabet {0, 1} and
coding the numbers 0, 1, 2 as {00, 01, 10} such that it is able to compute the
output corresponding to (15) in this codification. The proof is very easy and is
based on the fact that infinite sequences cannot have more than ① elements.
Since the output (15) contains ①/2 + 1 positions, the output

00, 01, 10, 00, 01, 10, 00, 01, 10, . . . 00, 01, 10, 00, 01, 10, 00.

should contain ① + 2 positions. However, infinite sequences cannot have more
than ① elements. Notice that significantly more sophisticated results for deter-
ministic and non-deterministic Turing machines can be found in [41–43].

6 Concluding Remarks

In this paper infinite sets and Turing machines with different infinite tapes have
been studied using a recently introduced positional numeral system with the infi-
nite radix ①. It has been shown that in certain cases the new numerals allow one
to obtain more precise results in dealing with infinite quantities in comparison
to numeral systems traditionally used for this purpose.
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In particular, the following observation (see [31] for a detailed discussion) can
be made for the set Ck

b of numerals expressible in the positional numeral system
with the finite radix b and k digits {0, 1, . . . b − 2, b − 1} where k is infinite

(a1a2 . . . ak−1ak)b, ai ∈ {0, 1, . . . b − 2, b − 1}, 1 ≤ i ≤ k. (16)

Clearly, this is a simple generalization of the record (12) where we have k = ①.
Analogously to the analysis made above it follows that the number of numerals
expressible in the system (16) is bk and for infinite values of k the set Ck

b should
have the cardinality of continuum in the traditional language. Let us consider
now k1 = �logb ①	 where �x	 is the integer part of x. Note that k1 is infinite
since ① is infinite. It follows then that

b�logb ①	 < blogb ① = ①,

i.e., with respect to the traditional language the set C
logb ①

b would be countable.
Analogously, many different instances of infinite sets that are constructed start-
ing from the continuum framework and resulting at the end to be countable
can be exhibited. For example, for infinite k = 3�logb ①	 and k = 0.5�logb ①	 it
follows that

b3�logb ①	 < b3 logb ① = ①3 < b①, b0.5�logb ①	 < b0.5 logb ① =
√

① < b①,

i.e., the sets C
3 logb ①

b and C
0.5 logb ①

b would be also countable from the traditional
point of view.

Thus, the ①-based numeral system allows us to distinguish new infinite sets
that were invisible using traditional instruments both within continuum and
numerable sets. Thanks to the ①-based numerals it becomes possible to calcu-
late the exact number of elements of old (see Table 1) and new sets and to exhibit
sets that were constructed as continuum but are indeed countable bridging so
the gap between the two groups of sets (see [31] for a detailed discussion). This
fact, among other things, allows us to see that the computational power of Tur-
ing machines with different infinite tapes is different. Reminding our example
with the microscope we are able now to see instead of two dots (countable and
continuum) many different dots.

In this paper only two applications where ①-based numerals are useful
have been discussed: infinite sets and Turing machines. More examples show-
ing how these numerals can be successfully used can be found in the following
publications: Euclidean and hyperbolic geometry (see [20,21]), percolation (see
[12,13,44]), fractals (see [25,27,35,44]), infinite series and the Riemann zeta
function (see [29,34,46]), the first Hilbert problem and lexicographic ordering
(see [31,39,41–43]), cellular automata (see [5–7]).

In particular, numerical computations with infinities and infinitesimals
expressed by ①-based numerals are discussed in the following papers: numer-
ical differentiation, solutions of systems of linear equations, and optimization
(see [4,28,33,47]), ordinary differential equations (see [37,38]).
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Abstract. We explore some aspects of cell population dynamics in a
wound-healing environment using a three-dimensional simulation model
for multicellular tissue growth. The computational model uses a dis-
crete approach based on cellular automata to simulate wound-healing
times and tissue growth rates of multiple populations of proliferating and
migrating cells. Each population of cells has its own division, motion, col-
lision, and aggregation characteristics resulting in a number of useful sys-
tem parameters that allow us to investigate their emergent effects. These
random dynamic processes can be modeled by appropriately choosing the
governing rules of the state transitions of each computational site. Dis-
crete systems of this kind constitute an important approach for studying
the temporal dynamics of complex biological systems.

Keywords: 3D model · Multicellular · Tissue growth · Wound healing ·
Cellular automata

1 Introduction

Natural tissues are multicellular and have a specific three-dimensional architec-
ture [1]. This structure is supported by an extracellular matrix (ECM). The
ECM often has the form of a three-dimensional network of cross-linked protein
strands (see Fig. 1, for an example). In addition to determining the mechanical
properties of a tissue, the ECM plays many important roles in tissue develop-
ment. Biochemical and biophysical signals from the ECM modulate fundamental
cellular activities, including adhesion, migration, proliferation, differentiation,
and programmed cell death [2]. Scaffold properties, cell activities like adhesion
or migration, and external stimuli that modulate cellular functions are among
the many factors that affect the growth rate of tissues [3]. For these reasons,
the development of bio-artificial tissue substitutes involves extensive and time-
consuming experimentation. The availability of computational models with pre-
dictive abilities may greatly speed up progress in this area.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-21819-9 7
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Fig. 1. A scanning electron micrograph displaying the three-dimensional structure of
an extracellular matrix. A scale of 0.1µm is shown

This research describes a three-dimensional cellular automata (CA) model
to simulate the growth of three-dimensional tissues consisting of more than one
cell type in a wound-healing environment. The corresponding discrete model is
an extension of a previously developed base model that accounted for only a
single type of cells [4]. The model incorporates all the elementary features of cell
division and locomotion including the complicated dynamic phenomena occur-
ring when cells collide and aggregate. Each computational element is represented
by a site within a cubic lattice. While the assumption of cubic living cells does
not reflect the true morphology of migrating or confluent mammalian cells, it
allows us to use data structures that minimize memory and computational time
requirements. Here, each computational site interacts with its neighbors that
are to its north, east, west, south, and immediately above it or below it. This is
known as the von Neumann neighborhood in three dimensions [5].

We analyze the effects of key system parameters on the tissue growth rate
and wound-healing time, the latter being approximated by the time to reach full
volume coverage, in the context of two wound-seeding topologies employing two
types of cell populations. In particular, we explore the following two questions:

1. What are the effects of cell heterogeneity on the wound-healing time and
tissue growth rate?

2. Under what circumstances, a given type of wound-seeding mode may be the
better choice of cell seeding distribution for faster wound healing?

We begin the paper by defining cellular automata in the next section. This
is followed by a short review of related work and a concise description of the
development of the model. We then present the corresponding sequential algo-
rithm. Before concluding, we give an overview of the important parameters and
inputs of the model and discuss our simulation results.
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2 Cellular Automata Concepts

Cellular automata were originally introduced by John von Neumann and Stanis-
law Ulam as a possible idealization of biological systems with a particular
purpose of modeling biological self-reproduction [6]. This approach has been
used since then to study a wide variety of physical, chemical, biological, and
other complex natural systems [6].

We consider d-dimensional cellular automata consisting of an array D of
lattice cells covering a finite domain. Any cell c is uniquely identified by d integer
coordinates (i1, i2, . . . , id), where 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2, . . ., and 1 ≤ id ≤
Nd. Let Ω be the set of all computational sites in the cellular space and N be
the total number of such sites such that N = N1 × N2 × . . . × Nd. A cellular
automaton satisfies the following properties:

1. Each cell c interacts only with its neighbor cells defined by a neighborhood
relation that associates with the cell c a finite list of neighbor cells c+ ν1, c+
ν2, . . . , c + νk. In general, the neighborhood vector (or neighborhood index),
V = [ν1, ν2, . . . , νk], may vary from one cell to another.

2. Each cell can exist in one of a finite number of states. This finite list of states
will be listed by Q. In the simplest case of two-state automata, Q = {0, 1}.

3. Each function X : Ω −→ Q defining an assignment of states to all cells in the
cellular space Ω is called a configuration. Then, xc is called the state of the
cell c under configuration X.

4. For any cell c in the cellular space, there exists a local transition function
(or rule) fc, from Qk to Q, specifying the state of the cell at time level
t + 1 as a function of the states of its neighbors at time level t. That is,
xt+1

c = qt+1(c) = fc(xt
c+ν1

, xt
c+ν2

, . . . , xt
c+νk

).
5. The simultaneous application of the local transition functions fc to all the

cells in a cellular space defines a global transition function F which acts on
the entire array transforming any configuration Xt to a new configuration
Xt+1 according to Xt+1 = F (Xt).

These properties imply that each cellular automaton is a discrete dynamical
system. Starting from an initial configuration X0, the cellular array follows a tra-
jectory of configurations defined by the global transition function F . All possible
configurations of the cellular automaton define a set Φ, whose cardinality can be
quite large. For instance, using N1 = N2 = N3 = 5 and Q = {0, 1}, the number
of configurations in Φ would be equal to 25×5×5 ≈ 4.254 × 1037 configurations.

We can now define parallel discrete iterations for a cellular automaton as
follows:

{
X0 is given in Φ
Xt+1 = F (Xt), (1)

for t = 0, 1, 2, . . . or equivalently:
{

X0 = (x0
1, x

0
2, . . . .x

0
N ) is given in Φ

Xt+1
f = fi(xt

1, x
t
2, . . . , x

t
N ), (2)
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for t = 0, 1, 2, . . . and i = 1, 2, 3, . . . , N . The preceding two equations, or rules,
imply that the parallel discrete iterations update the states of all cells at the same
time. It should be noted here that the transition functions of cellular automata
need not be algebraic in form and may be rule-based. A potentially important
feature of cellular automata is the capability for self-reproduction through which
the evolution of a configuration yields several separated, yet identical copies of
the configuration. Moreover, cellular automata rules may map several initial
configurations into the same final configuration, thus leading to microscopically
irreversible time evolution in which trajectories of different states may merge [7].

3 Related Work

Various modeling approaches have been used to simulate the population dynam-
ics of proliferating cells. These models can be classified as: deterministic, stochas-
tic, or based on cellular automata and agents. We briefly review a few of the
agent-based lattice-free models to simulate tissue growth [8]. These models apply
the dynamics of cell proliferation and death to describe tissue pattern formation
and growth. Other related models are suitable for describing the locomotion of
a fixed number of cells where cells move relatively slowly with respect to other
processes like the diffusion of soluble substances [9]. Additional models employ
feedback mechanisms between cells and the substrate to model cells entering
and leaving the tissue and to establish homeostasis in such systems [10]. Some of
the agent-based models use regular triangulation to generate the neighborhood
topology for the cells, thus allowing for a continuous representation of cell sizes
and locations in contrast to grid-based models [11]. Others utilize multiscale
approaches to model collective phenomena in multicellular assemblies, including
inflammation and wound healing [12].

4 The Computational Model

The growth of tissues is a complex biological process. In this model, the migration
and proliferation of mammalian cells are considered to be mainly characterized
by the following four subprocesses: cell division, cell motion, cell collision, and
cell aggregation. For a detailed account of the modeling steps of each of these
subprocesses, we refer the reader to related reference [4].

4.1 States of the Cellular Automaton

The model is a discrete system operating in a cellular space containing N =
Nx ×Ny ×Nz computational sites. Cells in the cellular space interact with their
neighbors at equally spaced time intervals t1, t2, . . . , tr, tr+1, . . . where tr+1 =
tr +Δt for all r. An occupied computational site must describe the current state
of a given cell using a set of values. These values must describe the asynchronous
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proliferation and persistent random walks of multiple cell types. In building an
adequate state definition, sufficient information must be provided about the
history so that given the current state, the past is statistically irrelevant for
predicting all future behavior pertinent to the application at hand [13]. Based
on these specifications, the state xi of an automaton containing a living cell must
specify the following set of parameters:

1. The cell type.
2. The direction of cell motion.
3. The cell speed.
4. The time remaining until the next direction change.
5. The time remaining until the next cell division.

The average speed of migrating cells is controlled by varying the value of
the time interval, . This is due to the fact that migrating cells cover a fixed
distance in each step. Another means of regulating the speed of locomotion is the
ability to adjust the transition probability for the stationary state. Therefore,
a migrating cell of type j in automaton i must only specify the direction of
locomotion and the times which remain until the next direction change and
the next cell division in its state xi. The state of an arbitrary automaton i,
thus, takes values from the following set of eight-digit integer numbers Ψ =
{klmnpqrs/k, l,m, n, p, q, r, and s ∈ N}, where k is the cell type. The direction
of motion is identified by the direction index l. When l is equal to 0, the cell is
in the collision stationary state. When the value of l is in the range of 1 to 6, it
represents one of six directions the cell is currently moving in. When the value of
l is 7, it enters an aggregation stationary state where it “sticks” to another cell
of the same type potentially forming cellular aggregates. The digits mn denote
the persistence counter. This counter represents the time remaining until the
next change in the direction of cell movement. The cell phase counter is given
by the remaining four digits pqrs and holds the time remaining before the cell
divides.

5 Sequential Algorithm

5.1 Initial Conditions

The initial parameters for the simulation are first read from the input data
file. Then, the computational sites to be occupied by the cells at the start of
this simulation run are selected based on the seeding mode of the initial cell
distribution. For each occupied site, we assign a cell state based on the population
characteristics of that cell type. The direction index is randomly selected, the
persistence counter is assigned a properly chosen value, and the cell phase counter
is set based on experimentally determined cell division data.
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5.2 Iterative Operations

At each time step tr+1 = tr + Δt, for r = 0, 1, 2, . . .

1. Randomly select a computational site.
2. If this site is occupied by a cell c and the phase counter is zero then it is time

for this cell to divide and the division routine is called.
3. If this site is occupied by a cell c and the persistence counter is zero, then it

is time for this cell to change directions and the direction change routine is
called.

4. If this site is occupied by a cell c and both the phase and persistence counters
are not zero, attempt to move this cell to a neighboring site in the direction
indicated by the direction index of its current state.
(a) If this neighboring site is free, then mark it for cell c and decrement the

phase and persistence counters by one.
(b) If this neighboring site is occupied by a cell from a different type, then

cell c remains in the current site and both cells enter the stationary state
due to collision. Their persistence counters are set accordingly while their
respective phase counters are decremented by one.

(c) If this neighboring site is occupied by a cell from the same type, then cell c
remains in the current site and both cells enter the aggregation stationary
state. The persistence counters for both cells are set to the appropriate
waiting time and their phase counters are decremented by one.

5. Select another site (randomly) and repeat Steps 2–4 until all sites have been
processed.

6. Update the states of all sites so that the new locations of all cells are com-
puted.

7. If confluence has not been reached, proceed to the next time step.

In regards to the details of the division and direction change routines, we refer
the reader to [4].

6 Simulation Parameters for Wound Healing

6.1 Cell Seeding Distributions

In this study, we consider a wound-seeding topology where a wound in the shape
of an empty cylinder is centered in the cellular grid with all surrounding sites
occupied by two types of cells. This topology simulates the cell migration and
proliferation phase of wound healing. This model does not attempt to describe
all the steps of the complicated wound-healing process [14]. We associate two
types of cell distributions with this seeding topology:

– Segmented Distribution: Each cell type is seeded in a separate area of the
cellular space around the denuded area of the wound environment. During
the simulation, cells can migrate freely in the wound area, and can enter
spaces that were initially seeded with a different cell type.

– Mixed Distribution: All cell types are seeded together in all areas surrounding
the wound using a uniformly random placement of cells. Figure 2 illustrates
an example of each distribution.
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Fig. 2. Two examples of a wound-seeding topology, displaying two cell types in a
segmented distribution (a) and a mixed one (b), are depicted. In both, a wound of
cylindrical shape, with a diameter of 10 and a height of 20, inside a 20 × 20 × 20
cellular grid is exhibited

6.2 Cell Population Dynamics

Starting with a total number of seed cells equal to N0, the cellular automata rules
transform the cellular array to simulate the dynamic process of tissue growth
inside the wound environment. At some time t after the start of the simulation,
Nc(t) sites of the cellular automaton are occupied by cells. We define a measure
to indicate the volume coverage at time t inside the wound area as the cell
volume fraction k(t), as follows:

k(t) =
Nc(t) − N0

N − N0
=

n∑
i=1

(Nci(t) − Nci(0))

N −
n∑

i=1

Nci(0)
,

with N0 = Nc(0) =
n∑

i=1

Nci(0) and where N(= Nx × Ny × Nz) is the size of

the cellular space, Nci(t) is the number of occupied computational sites by cell
type i at time t, Nci(0) is the number of seed cells of type i surrounding the
wound, and n is the number of cell types (n ≥ 1). For the wound seeding, the
cell volume fraction indicates the fraction of cells occupying the wound area at
a given time. The overall tissue growth rate represents the increase in volume
coverage, within the wound area, with respect to time. To this end, the tissue
growth rate measure is given by the following formula:

dk(t)
dt

=

n∑
i=1

(Nci(t) − Nci(t − Δt))

Δt × (N − N0)
=

n∑
i=1

(Nci(t) − Nci(t − Δt))

Δt × (N −
n∑

i=1

Nci(0))
.
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Here, k(t) is the cell volume fraction at time t as given above and Δt is the time
step in hours or days, depending on the resolution of the time scale utilized in
the model. The simulation continues until all sites are occupied by cells, that is
until k(t) equals one.

6.3 Additional Simulation Inputs

The simulation results of the proliferation of multiple cell types are obtained
for a 200 × 200 × 200 cellular array where two cell populations are used with a
wound diameter of 100 and a height of 200. Cells of population 1 are considered
to be the faster moving cells with an assigned “swimming” speed of 10µm per
hour while cells of population 2 are the slower moving ones with a speed set
to 1μm per hour. We define the cell heterogeneity measure as the ratio of the
initially seeded number of cells from population 1 to that from population 2.
This is given by:

H =
initial number of (faster) cells from population 1
initial number of (slower) cells from population 2

.

That is, when H = 9 there are 9 cells from population 1 for every cell from
population 2. Throughout these simulations, a confluence parameter of 100 %
and an average waiting time of 2 hours for the six directions of motion and 1
hour for the two stationary states are utilized. For the purposes of this study, the
time to reach confluence is estimated to be nearly equal to the time necessary
for the wound to heal. Each cell is modeled as a cubic computational element
whose sides are assumed to be equal to 10µm in length. We also employ different
division time distributions for these two cell populations. Their division times
are given in Table 1.

Table 1. Division time distributions for the two cell populations

Cell Populations

Division Times Cell Population 1 Cell Population 2

12 - 18 hrs 64 % 4 %

18 - 24 hrs 32 % 32 %

24 - 30 hrs 4 % 64 %

7 Simulation Results and Discussion

We discuss our results that simulate the effect of varying the cell heterogeneity
ratio on the wound-healing time and the tissue growth rate, and then compare
the results of the two seeding modes.



Exploring the Effect of Cell Heterogeneity in Wound Healing 117

)b()a(

Fig. 3. Effect of varying the cell heterogeneity ratio, H, on the cell volume fraction for
the segmented (a) and mixed (b) cell distribution modes of wound seeding

7.1 Effect of Cell Heterogeneity on Wound-Healing
Time and Tissue Growth Rate

Figure 3 shows the temporal evolution of volume coverage as the heterogene-
ity measure, H, is varied for both the segmented and mixed wound-seeding
modes. In these simulation runs, the value of H is varied according to the set
{1, 3, 5, 7, 9}. We observe that volume coverage inside the wound increases with
time until it reaches confluence for all values of H and that as H is increased,
wound healing is achieved sooner. This is because an increase in the value of this
ratio results in a larger number of fast cells initially seeded in the part of the
cellular space surrounding the wound; thus, allowing these cells to dominate the
proliferation process as they go through their mitotic cycle. Faster moving cells
are the first to enter the denuded wound areas seeking empty sites, which delays
the formation of cell colonies and leads to faster proliferation by mitigating the
impact of contact inhibition. This also results in an increase in the overall tissue
growth rate as depicted in Fig. 4. Such an impact is more pronounced in the
segmented distribution for values of 1 ≤ H ≤ 5. This indicates that fast mov-
ing cells tend to seek the nearby empty sites initially neighboring the cellular
space segment containing the slower cells in order to divide. In all cases, the
tissue growth rate increases initially, reaches a maximum and then decreases as
a result of contact inhibition brought about by the formation of cell colonies and
their associated merging events.

7.2 Comparison of the Two Wound-Seeding Modes

Figure 5 shows comparisons between the cell volume fraction and tissue growth
rates obtained by using the segmented and mixed modes of wound seeding. Here,
two different values of the ratio H were used, H = 1 and H = 9, respectively. We
also observe that when H = 1, the mixed seeding mode takes less time to reach
full volume coverage and thus, heals the wound faster (7 days vs. 13 days for the
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Fig. 4. The temporal evolution of the overall tissue growth rate for wound seeding as
the cell heterogeneity ratio, H, is varied from 1–5 (top), then 7–9 (bottom) for the
segmented seeding mode ((a) and (c)) and the mixed mode ((b) and (d)).

segmented mode). It also yields a higher tissue growth rate reaching a maximum
value of 0.35 versus 0.21 for the segmented mode. This may be attributed to the
fact that contact inhibition has less of an effect in the mixed seeding mode where
faster cells can access nearby empty spaces faster to move and divide into which
in turn frees up sites for the slower-moving cells as well. Increasing the value
of H to 9 shows a stronger positive impact on the time to heal the wound and
the tissue growth rate for the segmented wound-seeding mode than the mixed
one. In the former, the increased number of faster moving cells affords them
the opportunity to rapidly move into the empty sites of the wound area and
eventually dominate the proliferation process. This results in a nearly similar
overall tissue growth behavior for both seeding modes when H = 9. As parts (c)
and (d) of Fig. 5 clearly illustrate, the distinction between the two wound-seeding
modes of cell distribution becomes less apparent when the faster moving cells
constitute at least 90 % of the total seeded cells around the wound site. Hence,
we observe that when using equal proportions of seed cell types, the mixed mode
may be chosen over the segmented one. In the event that larger cell heterogeneity
ratios are employed, the segmented mode could be beneficial in yielding a high
tissue growth rate and a reasonably reduced wound-healing time.
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Fig. 5. Comparison of the cell volume fraction ((a) and (c)) and the overall tissue
growth rate ((b) and (d)) between the segmented and mixed wound-seeding modes for
two cell heterogeneity ratios: H = 1 (top) and H = 9 (bottom)

8 Conclusion

We presented in this paper the description of a three-dimensional computational
model for the growth of multicellular tissues based on the concept of cellular
automata to simulate wound healing. The model incorporates many aspects of
cell behavior involving cell migration, division, collision, and aggregation while
including multiple cell types. The flexibility of the model permits the exploration
of the influence of several system parameters on the wound healing time and tis-
sue growth rate. We presented simulation results from the serial implementation
of the model using two wound-seeding distribution modes. Our results indicate
that the use of a mixed wound-seeding mode may be more advantageous when
using equal proportions of fast and slow moving cell types seeded around the
wound area. This advantage diminishes, however, when a much larger propor-
tion of fast cells are employed. In that case, the segmented seeding mode could
be used as a reasonable alternative.
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Abstract. Based solely on the dengue confirmed-cases of six densely
populated urban areas in Brazil, distributed along the country, we pro-
pose in this paper regularized linear and nonlinear autoregressive models
for one-week ahead prediction of the future behaviour of each time series.
Though exhibiting distinct temporal behaviour, all the time series were
properly predicted, with a consistently better performance of the nonlin-
ear predictors, based on MLP neural networks. Additional local informa-
tion associated with environmental conditions will possibly improve the
performance of the predictors. However, without including such local
environmental variables, such as temperature and rainfall, the perfor-
mance was proven to be acceptable and the applicability of the
methodology can then be directly extended to endemic areas around the
world characterized by a poor monitoring of environmental conditions.
For tropical countries, predicting the short-term evolution of dengue
confirmed-cases may represent a decisive feedback to guide the defini-
tion of effective sanitary policies.

Keywords: Regularized linear predictor · Regularized nonlinear
predictor · MLP neural network · Dengue time series

1 Introduction

Learning from data [8] is a powerful machine learning technique whose main
purpose is to automatically obtain mathematical models capable of synthesizing
the intrinsic relationships exhibit by data collected from processes under inves-
tigation. When the process evolves with time and there is a fixed sample period,
the obtained data is denoted a time series [26]. Box and Jenkins [5] properly for-
malized mathematical models to describe time series and since then the study
of time series gained much more attention. The analysis of time series can be
divided into two main branches [6]: (1) A more qualitative approach, devoted
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 121–131, 2015.
DOI: 10.1007/978-3-319-21819-9 8
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to extracting statistical properties and temporal attributes of the time series,
such as predictability and stationarity [1]; (2) A more quantitative viewpoint,
mainly concentrated in obtaining a regression model capable of predicting one-
step ahead, given the historical evolution of the time series [26]. This paper
is devoted to the more quantitative perspective, looking for high-performance
prediction of one-week ahead dengue confirmed-cases time series of densely pop-
ulated urban areas in Brazil.

Linear and nonlinear prediction models have been proposed in the literature.
The advantage of linear models is the simplicity associated with the parame-
ter setting, and the disadvantage is the absence of flexibility to represent more
complex behaviours [5]. On the other hand, the flexibility of nonlinear models
characterizes their main advantage, at the price of a more challenging computa-
tional procedure to determine the parameters of the predictor. Besides, having
enough flexibility is not a guarantee of high performance, because the obtained
model should exhibit a suitable degree of flexibility, according to the demands of
the application. Even linear models with many parameters may overfit the data.
That is why we are going to develop linear and nonlinear predictors endowed
with regularization procedures [11,24], in an attempt to improve the perfor-
mance of the predictor for data not used to synthesize the predictor. In machine
learning terms, the purpose is to maximize the generalization capability of the
predictor [20].

The paper is organized as follows: Sect. 2 is devoted to the motivation of the
research and data collection, and Sect. 3 presents a brief review of linear and
nonlinear models for time series prediction. Section 4 discusses the experimental
setup. The experimental results are outlined in Sect. 5. Concluding remarks are
given in Sect. 6.

2 Motivation for Predicting Dengue Confirmed-Cases
Time Series and Procedure for Data Collection

Dengue is a major public health problem in many tropical regions, being reported
to the World Health Organization about a million confirmed cases per year, all
around the world, but with estimates of over 50 million cases annually, without
notification [9]. Between 2001 and 2009 there were more than six million cases,
in more than 30 countries in the regions of the Americas, and over 2,000 deaths
by DHF (Dengue Haemorrhagic Fever) reported in the same period. Especially,
in Brazil, 591,080 cases were registered only in 2014 [4]. Totally eradicated in
Brazil in the 50 s, period when the Brazilian government has developed numerous
campaigns for control cases of yellow fever (present in urban areas by the same
vector of dengue), dengue again expressed cases of disease in the 80’s, and since
then the increase in the number of cases has been significant [19,23].

Dengue is an acute fever disease caused by virus representatives of the genus
Flavivirus. Currently, there are four known different dengue serotypes, DEN-
1, DEN-2, DEN-3 and DEN-4, wherein the clinical presentation may vary from
asymptomatic to serious cases of dengue hemorrhagic fever, which can be
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fatal [10]. In 2013, it was described a fifth serotype disease, discovered in Malaysia,
the DEN-5. In Brazil, this arbovirus infection is transmitted to humans by
the bite of Aedes (Stegomyia) aegypti. The disease has caused great concern
for international health authorities in the last 60 years; the increase in cases is
strongly associated with human habit changes, such as population and urbaniza-
tion increase and the society’s living standards, that have benefited environments
conducive to the development of favourable conditions for the mosquito vector.
Furthermore, increased air travel has allowed the transport of different serotypes
of dengue to other localities [18].

The dynamics of dengue transmission involves a complex relationship between
climate, human and environment. Its main vector, Ae. aegypti, develops mainly
in urban environments, using artificial water reservoirs as breeding [13]. Accord-
ing to the World Health Organization (WHO) (2010), dengue is in the list of
neglected tropical diseases. Because it is a present disease mostly in poor coun-
tries, it offers little incentive for industries to develop new products for control
and treatment. Thus, methods of prevention mainly involve monitoring tech-
niques and combating the vector.

The reported cases of dengue data for the period 2000–2014 were obtained
through the Brazilian Unified Health System database (SUS), from previous
registration in the portal Electronics Information to citizen service. The data
were organized according to the 52 weeks of the year (epidemiological weeks),
over 15 years in the comprehensive study. Six densely populated Brazilian cities
were selected for the study: São Paulo, Porto Alegre, Manaus, Goiânia, Salvador
and Fortaleza. All selected municipalities are capitals of their respective states
and have a high number of inhabitants, besides having great airports and thus
promoting a high flow of people. Moreover, apart from Porto Alegre, they are
cities that have shown a high number of cases of the disease in recent years [4].

Table 1. Reorganization of the time series to produce the input-output dataset.

3 Linear and Nonlinear Models for Time
Series Prediction

In this section, we are going to properly formalize the mathematical models that
will characterize the time series predictors. The main notation is:
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– sk: Real value of the time series at the k -th sample instant;
– xk: Predicted value of the time series at the k -th sample instant;
– N : Number of samples that compose the available time series.

3.1 Linear Models

Linear models will be directly based on the Box and Jenkins proposals [5]. Basi-
cally, they assert that the next value of the time series is a linear combination
of p precedent values and q previous random impacts, plus the current random
impact. The p precedent values compose the autoregressive (AR) components
and the q previous impacts compose the moving average (MA) components. We
then have the well-known ARMA models. The modelling procedure is thus char-
acterized by setting p and q, followed by the estimation of the coefficients of
the linear combination. Here, we will simplify the approach and work with AR
models as follows:

xk = b1sk−1 + b2sk−2 + ... + bpsk−p + bp+1. (1)

To estimate the vector of coefficients b =
[
b1 b2 · · · bp bp+1

]T , it is necessary
to reorganize the time series to produce the configuration of Table 1. Matrix A
can thus be built as follows:

A =
[
a1 · · · ap 1

]
(2)

where 1 is a column vector of ones. It is now possible to interpret vector b∗ as
the optimal solution of the following linear optimization problem:

b∗ = arg min
b∈Rp+1

‖Ab − y‖22 (3)

that has a single global optimal solution given by:

b∗ = (ATA)−1AT y. (4)

3.2 Definition of the Parameter p for Linear Models

The number p of precedent values is generally defined by the degree of correla-
tion between each column vector a i and the column vector y . The correlation
[22] belongs to the interval [−1;+1], and it is possible to specify a threshold
so that the columns to be considered exhibit correlations above (in absolute
value) the threshold. In this way, it is possible to define a subset of columns
among the p candidates, given that the behaviour of the correlation may be non
monotonic and some columns with index below p may violate the threshold and
be excluded.
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3.3 Regularization of the Linear Model

Depending on the value of p, the linear model may be too flexible so that there is
a high risk of overfitting. To obtain a proper regularization of the linear model,
a penalization term may be added to the linear optimization problem, with the
purpose of enforcing the reduction of the norm of vector b:

b∗ = arg min
b∈Rp+1

‖Ab − y‖22 + c × ‖b‖22, (5)

where c ≥ 0 is a parameter to be further defined. A vector with a reduced norm
tends to regularize better [24]. The solution of this regularized version of the
linear optimization problem is given by:

b∗ = (ATA + cI)−1ATy . (6)

There is no systematic way to define parameter c, and it is usual to evaluate
the performance of the predictor considering the following set of candidate values
for c:{0, 2−24,2−23,...,2+24,2+25} as suggested by Huang et al. [15]. To do that,
the N − p samples of Table 1 should be divided into training and validation set.
Subsequently, problem (5) is then solved by considering the training set and the
performance of the obtained vector b is evaluated considering the validation set.
Given that c = 0 is taken as a candidate solution, this means that the regularized
version includes the non-regularized solution as a special case.

Fig. 1. Illustration of a one-hidden-layer MLP architecture.
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3.4 Nonlinear Models

Nonlinear models may be conceived by a multitude of alternative mathemati-
cal structures. However, neural networks are generally adopted in the context
of time series prediction, motivated by two main aspects of the design: (1)
There are powerful techniques to train neural networks given a training dataset
[2,16]; (2) Neural networks are universal approximators [14], so that the nec-
essary nonlinear input-output mapping that will characterize the predictor can
assume any configuration. The practical consequence is the popularization of
neural network as nonlinear prediction models [7,12,26]. The multilayer percep-
tron (MLP) is the usual neural network model [3] and Fig. 1 presents the main
aspects of the MLP architecture. The synaptic weights vij(i = 1,...,n; j = 0,...,p)
and wqi (i = 0,...,n; q = 1) are the parameters to be adjusted during the learning
phase. The activation function of the hidden neurons, f(·), is generally taken as
the hyperbolic tangent function. The constant input received by each neuron is
denoted the bias input. The number of neurons at the output layer may vary
depending on the application. In the case of time series prediction, a single out-
put is sufficient to provide the one-step ahead estimation. The output neuron
has the identity function as the activation function, so that there is no restriction
to the interval of values at the output.

3.5 Definition of the Parameter p for Nonlinear Models

For nonlinear models, mutual information is generally considered in replacement
to linear correlation indices [27]. However, given that we are going to perform a
comparative analysis involving linear and nonlinear models, it seems reasonable
to adopt the same regression vector (input vector) for all the contenders. That
is why we are going to consider linear correlation in the definition of p for both
types of models.

3.6 Regularization of the Nonlinear Model

By regularizing the neural network we mean the definition of a proper number n
of hidden neurons and a proper stopping criterion for the training phase. Given
the training and the validation dataset, both extracted from the input-output
dataset presented in Table 1, e.g. following the proportions of 70 % for training
and 30 % for validation, the definition of the number of hidden neurons may be
achieved by an exhaustive search, testing candidate values for n in the interval
1,2,...,20. Of course, the maximum number 20 was arbitrarily defined and may
vary depending on the demands of the application. For each candidate value of
n (the number of hidden neurons), 30 neural networks with randomly initialized
weights are trained using the training dataset and the average validation error
is taken as the figure of merit. The stopping condition for the training phase
is the minimization of the validation error [21]. The value of n that resulted
in the best figure of merit will be selected. Due to computational restrictions,
particularly the necessity of training 30 neural networks for each value of n, in
the experiments we are going to consider n ∈ {5,10} and not n ∈ {1,2,...,20}.
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4 Experimental Setup

The experimental setup was defined as follows:

– Six time series were selected. They represent weekly confirmed-cases of dengue,
from the year 2000 to the year 2014 of six densely populated urban areas in
Brazil, distributed along the five official regions that compose the Brazilian
Federation. The Northeast Region contributed two time series, given that the
geographical conditions of both areas are divergent.

– The time series were scaled to fit the interval [0,+1] (see Fig. 2).
– After the definition of parameter p, using the Pearson correlation [22], the

dataset was split into training and validation, following the proportions of
70–30 %, respectively. This partition was kept the same for all the models.
Notice that, from Table 1, there is no necessity of performing a contiguous
partition. Any row at Table 1 may belong to the training or to the validation
dataset.

– Performance was measured using RMSE (root mean square error), and it is
given by the average value produced by 30 independent executions for each
time series. For each one of those 30 execution, the 70–30 % partition is dis-
tinct. Notice that the 30 distinct partitions for the linear predictors are the
same 30 distinct partitions for the nonlinear predictors.

– All the algorithms were implemented by the authors using Matlab R© and
executed in an CPU Intel R© CORE i7-3520M of 2.90 GHz with 6 Gb of RAM.
The MLPs were trained with the conjugate gradient algorithm [2,17,25].

Figure 2 presents the six rescaled time series, indicating that they exhibit
distinct temporal behaviours, particularly in the location of the most prominent
picks.

5 Experimental Results

The first analytical procedure is to determine parameter p, more specifically, the
number of precedent values of the time series that hold a significant correlation
with the one-week ahead value to be predicted (see Fig. 3). Though exhibiting
a slightly distinct behaviour for each of the six time series, it is reasonable to
take p = 5 for all time series, including all the lags, from k − 1 to k − 5, being
k the current instant of time. Hence, the regression vector will be composed of
the most recent five lags, for all the time series. The autocorrelation with index
0 and unitary value is the correlation of the vector to be predicted with itself,
just to serve as a reference for the other points of the curve.

Given that we have 30 distinct partitions for the training and validation
datasets, we have to synthesize:
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Fig. 2. Time series being investigated in the experiment.

– 30 × 51 linear predictors for each time series, because we have 51 possible
values for the parameter c (see Eq. (6) and the text that follows it).

– 30 × 2 nonlinear predictors for each time series, because we are going to con-
sider 2 distinct values for the number of hidden nodes in the MLP neural
network: 5 and 10.

Table 2 indicates the number of times that some regularized linear predic-
tor (c > 0 in Eq. (6)), among the tested ones, performed better than the non-
regularized linear predictor (c = 0 in Eq. (6)), for each time series and considering
30 execution with distinct partitions for training and validation datasets. Notice
that, in the literature, generally the non-regularized predictor is adopted and
this initiative should be revised.

Table 2. Number of times, in 30 possibilities, that the regularization shows to be
effective in producing linear predictors of better performance.

Sao Paulo Porto Alegre Manaus Goiania Salvador Fortaleza

No. of times 24 26 27 15 24 20

Table 3 indicates the number of times that the 5- and 10-hidden-nodes MLP
neural networks produced a better performance, for each time series and consid-
ering 30 execution with distinct partitions for training and validation datasets
(the same partitions adopted in the linear case). There is an equilibrium, indicat-
ing that the initialization of the weights is probably determining the regulariza-
tion capability of both neural network architectures. Those results are indicating
that both choices for the number of hidden nodes are suitable for the intended
application
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Fig. 3. Sample autocorrelation for the time series being investigated.

Table 3. Number of times, in 30 possibilities, that the 5- and 10-hidden-nodes MLP
neural networks were chosen to be the predictors with the best performance for that
specifc partition of the dataset.

Sao Paulo Porto Alegre Manaus Goiania Salvador Fortaleza

5-hidden nodes 19 18 15 18 15 19

10-hidden nodes 11 12 15 12 15 11

Table 4. Root mean square error (RMSE) for the average result of linear and nonlinear
best predictors, considering the best results of 30 independent executions.

Sao Paulo Porto Alegre Manaus Goiania Salvador Fortaleza

Linear pred. 0.016938 0.055457 0.018188 0.036097 0.029619 0.025131

Nonlinear pred. 0.013244 0.052979 0.015378 0.034378 0.023746 0.018791

Finally, Table 4 presents the average performance of the best linear predictors
against the best nonlinear predictors, for each time series, and considering the
root mean square error (RMSE).

The nonlinear predictors produced a result in average 19 % better than the
linear predictors. Given that the variance of the RMSE along the executions is
low, there is a statistical significance in the observed difference in performance
for all the time series, using the Wilcoxon test.

Taking into account that the time series are restricted to the interval [0,+1],
the RMSE shows that the error is between 1,5 % and 3,5 %, except for the Porto
Alegre time series, for which the RMSE achieved 5,5 %. It is not possible to see
in Fig. 2 (due to rescaling) that the number of dengue confirmed-cases in Porto
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Alegre is much lower than what happens in the other localities, thus making it
more difficult to capture tendencies. Notice that Porto Alegre is the only location
considered in the experiments that is outside the Tropical Zone.

6 Concluding Remarks

This paper contributes in three directions. Firstly, the obtained results, though
restricted to a particular endemic scenario, indicate that non-regularized predic-
tors, even linear ones, should be avoided. In other words, regularization tends
to promote significant gain in performance. The design becomes more elaborate
and generally requires more computational resources, but we have formalized
the whole procedure, both for the linear and the nonlinear cases, and the actual
computational power of personal computers is enough to support the burden.
The authors believe that the technical procedures adopted along the experimen-
tal phase of the research have been presented in a manner so that the reader is
capable of reproducing all the fundamental steps. Notice that the non-regularized
predictor is considered a candidate solution in our regularized strategy, so that
our results will never be inferior to the ones produced by purely non-regularized
approaches. Secondly, following other similar remarks in the literature [7,26], we
have demonstrated that there are relevant applications in time series prediction
in which nonlinear models are capable of guiding to consistently better results
when compared to linear models. The average gain in performance of 19 % is
a reasonable quantitative indicator of the merit of adopting nonlinear models
for time series prediction. However, it is necessary to control the high flexibility
of those nonlinear models toward good regularization of the proposed model.
Finally, the obtained results suggest that it is possible to achieve good predic-
tors for dengue confirmed-cases based solely on the time series itself, without
enriching the model with additional environmental conditions. The applicabil-
ity of our methodology is thus much higher and the computational approach is
general enough to admit an immediate application to other areas of the world
where dengue and/or other diseases are endemic.
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Abstract. Spiking neural P (in short, SNP) systems are computing
devices inspired by biological spiking neurons. In this work we consider
SNP systems with structural plasticity (in short, SNPSP systems) work-
ing in the asynchronous (in short, asyn mode). SNPSP systems represent
a class of SNP systems that have dynamic synapses, i.e. neurons can use
plasticity rules to create or remove synapses. We prove that for asyn
mode, bounded SNPSP systems (where any neuron produces at most
one spike each step) are not universal, while unbounded SNPSP systems
with weighted synapses (a weight associated with each synapse allows a
neuron to produce more than one spike each step) are universal. The lat-
ter systems are similar to SNP systems with extended rules in asyn mode
(known to be universal) while the former are similar to SNP systems with
standard rules only in asyn mode (conjectured not to be universal). Our
results thus provide support to the conjecture of the still open problem.

Keywords: Membrane computing · Spiking neural P systems · Struc-
tural plasticity · Asynchronous systems · Turing universality

1 Introduction

Spiking neural P systems (in short, SNP systems) are parallel, distributed,
and nondeterministic devices introduced into the area of membrane comput-
ing in [7]. Neurons are often drawn as ovals, and they process only one type
of object, the spike signal represented by a. Synapses between neurons are the
arcs between ovals: neurons are then placed on the vertices of a directed graph.
Since their introduction, several lines of investigations have been produced,
e.g. (non)deterministic computing power in [7,13]; language generation in [4];
function computing devices in [11]; solving computationally hard problems in
[9]. Many neuroscience inspirations have also been included for computing use,
producing several variants (to which the previous investigation lines are also
applied), e.g. use of weighted synapses [15], neuron division and budding [9], the
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 132–143, 2015.
DOI: 10.1007/978-3-319-21819-9 9
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use of astrocytes [10]. Furthermore, many restrictions have been applied to SNP
systems (and variants), e.g. asynchronous SNP systems as in [3,6] and [14], and
sequential SNP systems as in [6].

In this work the variant we consider are SNP systems with structural plas-
ticity, in short, SNPSP systems. SNPSP systems were first introduced in [1],
then extended and improved in [2]. The biological motivation for SNPSP sys-
tems is structural plasticity, one form of neural plasticity, and distinct from
the more common functional (Hebbian) plasticity. SNPSP systems represent a
class of SNP systems using plasticity rules: synapses can be created or deleted
so the synapse graph is dynamic. The restriction we apply to SNPSP systems
is asynchronous operation: imposing synchronization on biological functions is
sometimes “too much”, i.e. not alway realistic. Hence, the asynchronous mode
of operation is interesting to consider. Such restriction is also interesting math-
ematically, and we refer the readers again to [3,6] and [14] for further details.

In this work we prove that (i) asynchronous bounded (i.e. there exists a
bound on the number of stored spikes in any neuron) SNPSP systems are not
universal, (ii) asynchronous weighted (i.e. a positive integer weight is associ-
ated with each synapse) SNPSP systems, even under a normal form (provided
below), are universal. The open problem in [3] whether asynchronous bounded
SNP systems with standard rules are universal is conjectured to be false. Also,
asynchronous SNP systems with extended rules are known to be universal [5].
Our results provide some support to the conjecture, since neurons in SNPSP
systems produce at most one spike each step (similar to standard rules) while
synapses with weights function similar to extended rules (more than one spike
can be produced each step). This work is organized as follows: Section 2 provides
preliminaries for our results; syntax and semantics of SNPSP systems are given
in Sect. 3; our (non)universality results are given in Sect. 4. Lastly, we provide
final remarks and further directions in Sect. 5.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane com-
puting (a good introduction is [12] with recent results and information in the
P systems webpage (http://ppage.psystems.eu/) and a recent handbook [13] )
and formal language theory (available in many monographs). We only briefly
mention notions and notations which will be useful throughout the paper.

We denote the set of positive integers as N = {1, 2, . . .}. Let V be an alphabet,
V ∗ is the set of all finite strings over V with respect to concatenation and the
identity element λ (the empty string). The set of all non-empty strings over V
is denoted as V + so V + = V ∗ − {λ}. If V = {a}, we simply write a∗ and a+

instead of {a}∗ and {a}+. If a is a symbol in V , we write a0 = λ and we write
the language generated by a regular expression E over V as L(E).

In proving computational universality, we use the notion of register machines.
A register machine is a construct M = (m, I, l0, lh, R), where m is the number
of registers, I is the set of instruction labels, l0 is the start label, lh is the halt

http://ppage.psystems.eu/
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label, and R is the set of instructions. Every label li ∈ I uniquely labels only
one instruction in R. Register machine instructions have the following forms:

– li : (ADD(r), lj , lk), increase n by 1, then nondeterministically go to lj or lk;
– li : (SUB(r), lj , lk), if n ≥ 1, then subtract 1 from n and go to lj , otherwise

perform no operation on r and go to lk;
– lh : HALT, the halt instruction.

Given a register machine M , we say M computes or generates a number
n as follows: M starts with all its registers empty. The register machine then
applies its instructions starting with the instruction labeled l0. Without loss of
generality, we assume that l0 labels an ADD instruction, and that the content of
the output register is never decremented, only added to during computation, i.e.
no SUB instruction is applied to it. If M reaches the halt instruction lh, then
the number n stored during this time in the first (also the output) register is
said to be computed by M . We denote the set of all numbers computed by M
as N(M). It was proven that register machines compute all sets of numbers
computed by a Turing machine, therefore characterizing NRE [8]. A strongly
monotonic register machine is one restricted variant: it has only one register
which is also the output register. The register initially stores zero, and can only
be incremented by 1 at each step. Once the machine halts, the value stored in
the register is said to be computed. It is known that strongly monotonic register
machines characterize SLIN , the family of length sets of regular languages.

3 Spiking Neural P Systems with Structural Plasticity

In this section we define SNP systems with structural plasticity. Initial moti-
vations and results for SNP systems are included in the seminal paper in [7].
A spiking neural P system with structural plasticity (SNPSP system) of degree
m ≥ 1 is a construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over

O, c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . , m} − {i};
– syn ⊆ {1, . . . , m} × {1, . . . , m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
– out ∈ {1, . . . , m} indicate the output neuron.

Given neuron σi (we also say neuron i or simply σi) we define the set of
presynaptic (postsynaptic, resp.) neurons pres(i) = {j|(i, j) ∈ syn} (as pos(i) =
{j|(j, i) ∈ syn}, resp.). Spiking rule semantics in SNPSP systems are similar
with SNP systems in [7]. In this work we do not use forgetting rules (rules of
the form as → λ) or rules with delays of the form E/ac → a; d for some d ≥ 1.
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Spiking rules (also known as standard rules) are applied as follows: If neuron σi

contains b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri can
be applied. Applying such a rule means consuming c spikes from σi, thus only
b− c spikes remain in σi. Neuron i sends one spike to every neuron with label in
pres(i) at the same step as rule application. A nonzero delay d means that if σi

spikes at step t, then neurons receive the spike at t + d. Spikes sent to σi from t
to t + d − 1 are lost (i.e. σi is closed), and σi can receive spikes (i.e. σi is open)
and apply a rule again at t + d and t + d + 1, respectively. If a rule E/ac → a
has L(E) = {ac}, we simply write this as ac → a. Extended rules are of the form
E/ac → ap, p ≥ 1, where more than one spike can be produced.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N
is a collection of neurons to which σi can connect to or disconnect from using
the applied plasticity rule. The rule application consumes c spikes and performs
one of the following, depending on α:

– If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created or
removed. Notice that with these semantics, a plasticity rule functions similar
to a forgetting rule, i.e. the former can be used to consume spikes without
producing any spike.

– for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every
σl, l ∈ Nj − pres(i). If however |N − pres(i)| > k, nondeterministically select
k neurons in N − pres(i), and create one synapse to each selected neuron.

– for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i). If
however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If α ∈ {±,∓} : create (respectively, delete) synapses at step t and then delete
(respectively, create) synapses at step t + 1. Only the priority of application
of synapse creation or deletion is changed, but the application is similar to
α ∈ {+,−}. Neuron i is always open from t until t + 1, but σi can only apply
another rule at time t + 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves an embedded sending of one spike when σi connects to
a neuron. This single spike is sent at the time the synapse creation is applied,
i.e. whenever σi attaches to σj using a synapse during synapse creation, we have
σi immediately transferring one spike to σj .

Let t be a step during a computation: we say a σi is activated at step t
if there is at least one r ∈ Ri that can be applied; σi is simple if |Ri| = 1,
with a nice biological and computing interpretation, i.e. some neurons do not
need to be complex, but merely act as spike repositories or relays. We have
the following nondeterminism levels: rule-level, if at least one neuron has at
least two rules with regular expressions E1 and E2 such that E1 	= E2 and
L(E1) ∩ L(E2) 	= ∅; synapse-level, if initially Π has at least one σi with a
plasticity rule where k < |N − pres(i)|; neuron-level, if at least one activated
neuron with rule r can choose to apply its rule r or not (i.e. asynchronous).
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By default SNP and SNPSP systems are locally sequential (at most one
rule is applied per neuron) but globally parallel (all activated neurons must
apply a rule). The application of rules in neurons is usually synchronous, i.e. a
global clock is assumed. However, in the asynchronous (asyn, in short) mode
we release this synchronization so that neuron-level nondeterminism is implied.
A configuration of an SNPSP system is based on (a) distribution of spikes in
neurons, and (b) neuron connections based on syn. For some step t, we can
represent: (a) as 〈s1, . . . , sm〉 where si, 1 ≤ i ≤ m, is the number of spikes
contained in σi; for (b) we can derive pres(i) and pos(i) from syn, for a given
σi. The initial configuration therefore is represented as 〈n1, . . . , nm〉, with the
possibility of a disconnected graph, or syn = ∅. A computation is defined as a
sequence of configuration transitions, from an initial configuration, and following
rule application semantics. A computation halts if the system reaches a halting
configuration, i.e. no rules can be applied and all neurons are open.

A result of a computation can be defined in several ways in SNP systems
literature. For SNP systems in asyn mode however, and as in [3,5,14], the output
is obtained by counting the total number of spikes sent out by σout to the
environment (in short, Env) upon reaching a halting configuration. We refer
to Π as generator, if Π computes in this asynchronous manner. Π can also work
as an acceptor but this is not given in this work.

For our universality results, the following simplifying features are used in our
systems as the normal form: (i) plasticity rules can only be found in purely plas-
tic neurons (i.e. neurons with plasticity rules only), (ii) neurons with standard
rules are simple, and (iii) we do not use forgetting rules or rules with delays.
We denote the family of sets computed by asynchronous SNPSP systems (under
the mentioned normal form) as generators as NtotSNPSP asyn: subscript tot
indicates the total number of spikes sent to Env as the result; Other parameters
are as follows: +synk (−synj , respectively) where at most k (j, resp.) synapses
are created (deleted, resp.) each step; ndβ , β ∈ {syn, rule, neur} indicate addi-
tional levels of nondeterminism source; rulem indicates at most m rules (either
standard or plasticity) per neuron; Since our results for k and j for +synk and
−synj are equal, we write them instead in the compressed form ±synk, where
± in this sense is not the same as when α := ±. A bound p on the number of
spikes stored in any neuron of the system is denoted as boundp. We omit ndneur

from writing since it is implied in asyn mode.

Fig. 1. An SNPSP system Πej .

To illustrate the notions and semantics in SNPSP systems, we take as an
example the SNPSP system Πej of degree 4 in Fig. 1, and describe its compu-
tations. The initial configuration is as follows: spike distribution is 〈1, 0, 0, 1〉 for
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the neuron order σi, σj , σk, σl, respectively; syn = {(j, k), (k, l)}; output neuron
is σl, indicated by the outgoing synapse to Env.

Given the initial configuration, σi and σl can become activated. Due to asyn
mode however, they can decide to apply their rules at a later step. If σl applies
its rule before it receives a spike from σi, then it will spike to Env twice so that
Ntot(Πej) = {2}. Since k = 1 < |{j, k}| and pres(i) = ∅, σi nondeterministically
selects whether to create synapse (i, j) or (i, k); if (i, j) ((i, k), resp.) is created;
a spike is sent from σi to σj (σk, resp.) due to the embedded sending of a spike
during synapse creation. Let this be step t. If (i, j) is created then syn′ :=
syn ∪ {(i, j)}, otherwise syn′′ := syn ∪ {(i, k)}. At t + 1, σi deletes the created
synapse at t (since α := ±), and we have syn again. Note that if σl does not
apply its rule and collects two spikes (one spike from σi), the computation is
aborted or blocked, i.e. no output is produced since a2 /∈ L(a).

4 Main Results

In this section we use at most two nondeterminism sources: ndneur (in asyn
mode), and ndsyn. Recall that in asyn mode, if σi is activated at step t so that
an r ∈ Ri can be applied, σi can choose to apply r or not. If σi did not choose
to apply r, σi can continue to receive spikes so that for some t′ > t, it is possible
that: r can never be applied again, or some r′ ∈ Ri, r

′ 	= r, is applied.
For the next result, each neuron can store only a bounded number of spikes

(see for example [3,6,7] and references therein). In [6], it is known that bounded
SNP systems with extended rules in asyn mode characterize SLIN , but it is open
whether such result holds for systems with standard rules only. In [3], a negative
answer was conjectured for the following open problem: are asynchronous SNP
systems with standard rules universal? First, we prove that bounded SNPSP
systems in asyn mode characterize SLIN , hence they are not universal.

Lemma 1. NtotSNPSP asyn(boundp, ndsyn) ⊆ SLIN, p ≥ 1.

Proof. Taking any asynchronous SNPSP system Π with a given bound p on the
number of spikes stored in any neuron, we observe that the number of possible
configurations is finite: Π has a constant number of neurons, and that the number
of spikes stored in each neuron are bounded. We then construct a right-linear
grammar G, such that Π generates the length set of the regular language L(G).
Let us denote by C the set of all possible configurations of Π, with C0 being the
initial configuration. The right-linear grammar G = (C, {a}, C0, P ), where the
production rules in P are as follows:

(1) C → C ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron does not spike;

(2) C → aC ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron spikes;

(3) C → λ, for any C ∈ C in which Π halts.
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Due to the construction of G, Π generates the length set of L(G), hence the
set is semilinear. ��
Lemma 2. SLIN ⊆ NtotSNPSP asyn(boundp, ndsyn), p ≥ 1.

The proof is based on the following observation: A set Q is semilinear if and
only if Q is generated by a strongly monotonic register machine M . It suffices to
construct an SNPSP system Π with restrictions given in the theorem statement,
such that Π simulates M . Recall that M has precisely register 1 only (it is also
the output register) and addition instructions of the form li : (ADD(1), lj , lk). The
ADD module for Π is given in Fig. 2. Next, we describe the computations in Π.

Fig. 2. Module ADD simulating li : (ADD(1) : lj , lk) in the proof of Lemma 2

Once ADD instruction li of M is applied, σli is activated and it sends one spike
each to σ1 and σl1i

. At this point we have two possible cases due to asyn mode,
i.e. either σ1 spikes to Env before σl1i

spikes, or after. If σ1 spikes before σl1i
,

then the number of spikes in Env is immediately incremented by 1. After some
time, the computation will proceed if σl1i

applies its only (plasticity) rule. Once
σl1i

applies its rule, either σlj or σlk becomes nondeterministically activated.
However, if σ1 spikes after σl1i

spikes, then the number of spikes in Env is not
immediately incremented by 1 since σ1 does not consume a spike and fire to Env.
The next instruction, either lj or lk, is then simulated by Π. Furthermore, due
to asyn mode, the following “worst case” computation is possible: σlh becomes
activated (corresponding to lh in M being applied, thus halting M) before σ1

spikes. In this computation, M has halted and has applied an m number of
ADD instructions since the application of li. Without loss of generality we can
have the arbitrary bound p > m, for some positive integer p. We then have
the output neuron σ1 storing m spikes. Since the rules in σ1 are of the form
aq/a → a, 1 ≤ q ≤ p, σ1 consumes one spike at each step it decides to apply a
rule, starting with rule am/a → a, until rule a → a. Thus, Π will only halt once
σ1 has emptied all spikes it stores, sending m spikes to Env in the process.

The FIN module is not necessary, and we add σlh without any rule (or main-
tain pres(lh) = ∅). Once M halts by reaching instruction lh, a spike in Π is sent
to neuron lh. Π is clearly bounded: every neuron in Π can only store at most p
spikes, at any step. We then have Π correctly simulating the strongly monotonic
register machine M . This completes the proof. ��

From Lemmas 1 and 2, we can have the next result.
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Theorem 1. SLIN = NtotSNPSP asyn(boundp, ndsyn), p ≥ 1.

Next, in order to achieve universality, we add an additional ingredient to asynchro-
nous SNPSP systems: weighted synapses. The ingredient of weighted synapses has
already been introduced in SNP systems literature, and we refer the reader to [15]
(and references therein) for computing and biological motivations. In particular,
if σi applies a rule E/ac → ap, and the weighted synapse (i, j, r) exists (i.e. the
weight of synapse (i, j) is r) then σj receives p × r spikes.

It seems natural to consider weighted synapses for asynchronous SNPSP
systems: since asynchronous SNPSP systems are not universal, we look for other
ways to improve their power. SNPSP systems with weighted synapses (in short,
WSNPSP systems) are defined in a similar way as SNPSP systems, except for
the plasticity rules and the synapse set. Plasticity rules in σi are now of the form

E/ac → αk(i,N, r),

where r ≥ 1, and E, c, α, k,N are as previously defined. Every synapse created
by σi using a plasticity rule with weight r receives the weight r. Instead of one
spike sent from σi to a σj during synapse creation, j ∈ N , r spikes are sent to
σj . The synapse set is now of the form

syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × N.

We note that SNPSP systems are special cases of SNPSP systems with
weighted synapses where r = 1, and when r = 1 we omit it from writing. In
weighted SNP systems with standard rules, the weights can allow neurons to
produce more than one spike each step, similar to having extended rules. In this
way, our next result parallels the result that asynchronous SNP systems with
extended rules are universal in [5]. However, our next result uses ndsyn with
asyn mode, while in [5] their systems use ndrule with asyn mode. We also add
the additional parameter l in our universality result, where the synapse weight
in the system is at most l. Our universality result also makes use of the normal
form given in Sect. 3.

Theorem 2. NtotWSNPSP asyn(rulem,±synk, weightl, ndsyn) = NRE,m ≥
9, k ≥ 1, l ≥ 3.

Proof. We construct an asynchronous SNPSP system with weighted synapses Π,
with restrictions given in the theorem statement, to simulate a register machine
M . The general description of the simulation is as follows: each register r of
M corresponds to σr in Π. If register r stores the value n, σr stores 2n spikes.
Simulating instruction li : (OP(r) : lj , lk) of M in Π corresponds to σli becoming
activated. After σli is activated, the operation OP is performed on σr, and σlj

or σlk becomes activated. We make use of modules in Π to perform addition,
subtraction, and halting of the computation.

Module ADD: The module is shown in Fig. 3. At some step t, σli sends a spike
to σl1i

. At some t′ > t, σl1i
sends a spike: the spike sent to σr is multiplied by two,
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while 1 spike is received by σl2i
. For now we omit further details for σr, since it

is never activated with an even number of spikes.
At some t′′ > t′, σl2i

nondeterministically creates (then deletes) either (l2i , lj)
or (l2i , lk). The chosen synapse then allows either σlj or σlk to become acti-
vated. The ADD module thus increments the contents of σr by 2, simulating the
increment by 1 of register r. Next, only one among σlj or σlk becomes nonde-
terministically activated. The addition operation is correctly simulated.

Fig. 3. Module ADD simulating li : (ADD(r) : lj , lk) in the proof of Theorem 2.

Module SUB: The module is shown in Fig. 4. Let |Sr| be the number of instruc-
tions with form li : (SUB(r), lj , lk), and 1 ≤ s ≤ |Sr|. |Sr| is the number of SUB
instructions operating on register r, and we explain in a moment why we use a
size of a set for this number. Clearly, when no SUB operation is performed on r,
then |Sr| = 0, as in the case of register 1. At some step t, σli spikes, sending 1
spike to σr, and 4|Sr| − s spikes to σl1i

(the weight of synapse (li, l1i )).

Fig. 4. Module SUB simulating li : (SUB(r) : lj , lk) in the proof of Theorem 2.

σl1i
has rules of the form ap → −1(l1i , {r}, 1), for 3|Sr| ≤ p < 8|Sr|. When

one of these rules is applied, it performs similar to a forgetting rule: p spikes are
consumed and deletes a nonexisting synapse (l1i , r). Since σl1i

received 4|Sr| − s
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spikes from σli , and 3|Sr| ≤ 4|Sr| − s < 8|Sr|, then one of these rules can be
applied. If σl1i

applies one of these rules at t′ > t, no spike remains. Otherwise,
the 4|Sr| − s spikes can combine with the spikes from σr at a later step.

In the case where register r stores n = 0 (respectively, n ≥ 1), then instruc-
tion lk (respectively, lj) is applied next. This case corresponds to σr applying
the rule with E = a (respectively, E = a(a2)+), which at some later step allows
σlk (respectively, σlj ) to be activated.

For the moment let us simply define Sr = {l1i }. For case n = 0 (respectively,
n ≥ 1), σr stores 0 spikes (respectively, at least 2 spikes), so that at some t′′ > t
the synapse (r, l1i , 5|Sr| + s) (respectively, (r, l1i , 4|Sr| + s)) is created and then
deleted. σl1i

then receives 5|Sr| + s spikes (respectively, 4|Sr| + s spikes) from
σr. Note that we can have t′′ ≥ t′ or t′′ ≤ t′, due to asyn mode, where t′ is
again the step that σl1i

applies a rule. If σl1i
previously removed all of its spikes

using its rules with E = ap, then it again removes all spikes from σr because
3|Sr| ≤ x < 8|Sr|, where x ∈ {4|Sr| + s, 5|Sr| + s}. At this point, no further
rules can be applied, and the computation aborts, i.e. no output is produced. If
however σl1i

did not remove its spikes previously, then it collects a total of either
8|Sr| or 9|Sr| spikes. Either σlj or σlk is then activated by σl1i

at a step after t′′.
To remove the possibility of “wrong” simulations when at least two SUB

instructions operate on register r, we give the general definition of Sr: Sr = {l1v|lv
is a SUB instruction on register r}. In the SUB module, a rule application in σr

creates (and then deletes) an |Sr| number of synapses: one synapse from σr to all
neurons with label l1v ∈ Sr. Again, each neuron with label l1v can receive either
4|Sr| + s, or 5|Sr| + s spikes from σr, and 4|Sr| − s spikes from σlv .

Let li be the SUB instruction that is currently being simulated in Π. In order
for the correct computation to continue, only σl1i

must not apply a rule with
E = ap, i.e. it must not remove any spikes from σr or σli . The remaining |Sr|−1
neurons of the form l1v must apply their rules with E = ap and remove the spikes
from σr. Due to asyn mode, the |Sr| − 1 neurons can choose not to remove
the spikes from σr: these neurons can then receive further spikes from σr in
future steps, in particular they receive either 4|Sr| + s′ or 5|Sr| + s′ spikes, for
1 ≤ s′ ≤ Sr; these neurons then accumulate a number of spikes greater than
8|Sr| (hence, no rule with E = ap can be applied), but not equal to 8|Sr| or
9|Sr| (hence, no plasticity rule can be applied). Similarly, if these spikes are
not removed, and spikes from σlv′ are received, v 	= v′ and lv′ ∈ Sr, no rule
can again be applied: if lv′ is the s′th SUB instruction operating on register r,
then s 	= s′ and σlv′ accumulates a number of spikes greater than 8|Sr| (the
synapse weight of (lv′ , l1v′) is 4|Sr| − s′), but not equal to 8|Sr| or 9|Sr|. No
computation can continue if the |Sr| − 1 neurons do not remove their spikes
from σr, so computation aborts and no output is produced. This means that
only the computations in Π that are allowed to continue are the computations
that correctly simulate a SUB instruction in M .

The SUB module correctly simulates a SUB instruction: instruction lj is sim-
ulated only if r stores a positive value (after decrementing by 1 the value of r),
otherwise instruction lk is simulated (the value of r is not decremented).
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Module FIN: The module FIN for halting the computation of Π is shown
in Fig. 5. The operation of the module is clear: once M reaches instruction lh
and halts, σlh becomes activated. Neuron lh sends a spike to σ1, the neuron
corresponding to register 1 of M . Once the number of spikes in σ1 become odd
(of the form 2n + 1, where n is the value stored in register 1), σ1 keeps applying
its only rule: at every step, 2 spikes are consumed, and 1 spike is sent to Env. In
this way, the number n is computed since σ1 will send precisely n spikes to Env.

The ADD module has ndsyn: initially it has pres(l2i ) = ∅, and its k = 1 < |N |.
We also observe the parameter values: m is at least 9 by setting |Sr| = 1, then
adding the two additional rules in σl1i

; k is clearly at least 1; lastly, the synapse
weight l is at least 3 by again setting |Sr| = 1. This completes the proof. ��

Fig. 5. Module FIN in the proof of Theorem 2.

5 Conclusions and Final Remarks

In [5] it is known that asynchronous SNP systems with extended rules are uni-
versal, while the conjecture is that asynchronous SNP systems with standard
rules are not [3]. In Theorem 1, we showed that asynchronous bounded SNPSP
systems are not universal where, similar to standard rules, each neuron can only
produce at most one spike each step. In Theorem 2, asynchronous WSNPSP
systems are shown to be universal. In WSNPSP systems, the synapse weights
perform a function similar to extended rules in the sense that a neuron can pro-
duce more than one spike each step. Our results thus provide support to the
conjecture about the nonuniversality of asynchronous SNP systems with stan-
dard rules. It is also interesting to realize the computing power of asynchronous
unbounded (in spikes) SNPSP systems.

It can be argued that when α ∈ {±,∓}, the synapse creation (resp., deletion)
immediately followed by a synapse deletion (resp., creation) is another form of
synchronization. Can asynchronous WSNPSP systems maintain their computing
power, if we further restrict them by removing such semantic? Another inter-
esting question is as follows: in the ADD module in Theorem 2, we have ndsyn.
Can we still maintain universality if we remove this level, so that ndneur in asyn
mode is the only source of nondeterminism? In [5] for example, the modules used
asyn mode and ndrule, while in [14], only asyn mode was used (but with the
use of a new ingredient called local synchronization).

In Theorem 2, the construction is based on the value |Sr|. Can we have a
uniform construction while maintaining universality? i.e. can we construct a Π
such that N(Π) = NRE, but is independent on the number of SUB instructions
of M? Then perhaps parameters m and l in Theorem 2 can be reduced.
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Abstract. We introduce a model of nondeterministic hybrid recurrent
neural networks – made up of Boolean input and output cells as well
as internal sigmoid neurons, and equipped with the possibility to have
their synaptic weights evolve over time, in a nondeterministic manner.
When subjected to some infinite input stream and some specific synap-
tic evolution, the networks necessarily exhibit some attractor dynamics
in their Boolean output cells, and accordingly, recognize some specific
neural ω -languages. The expressive power of these networks is measured
via the topological complexity of their underlying neural ω-languages.
In this context, we prove that the two models of rational-weighted and
real-weighted nondeterministic hybrid neural networks are computation-
ally equivalent, and recognize precisely the set of all analytic neural
ω-languages. They are therefore strictly more expressive than the non-
deterministic Büchi and Muller Turing machines.

Keywords: Recurrent neural networks · Neural computation · Analog
computation · Evolving systems · Attractors · Turing machines · Expres-
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1 Introduction

The understanding of the computational and dynamical capabilities of brain-like
models of computation represents an issue of central importance. In this context,
much attention has been focused on comparing the computational powers of
various neural models to those of diverse abstract machines, see for instance [2,4,
13–16,18–20,23]. As a consequence, the computational power of neural networks
has been shown to be intimately related to the nature of their synaptic weights
and activation functions, and able to range from finite state automata [13–15]
up to super-Turing capabilities [2,4,18–20].

Following this global line of thought, the first author initiated the study
of the expressive power of recurrent neural networks from the perspective of
c© Springer International Publishing Switzerland 2015
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their attractor dynamics [7,10]. This approach is motivated by the fact that,
in their model, the attractor dynamics of the neural networks are the precise
phenomena that underly the arising of spatiotemporal patterns of discharges –
a feature considered to be significantly involved in the processing and coding of
information in the brain [24,25].

In this context, they proved that Boolean recurrent neural networks pro-
vided with some assignment of their attractors into two different kinds are com-
putationally equivalent to Muller automata, and hence recognize precisely the
so-called ω-regular neural languages. Consequently, the most refined topologi-
cal classification of ω-languages [26] can be transposed from the automaton to
the neural network context, and yields to some transfinite hierarchical classifica-
tion of Boolean neural networks according to their attractor dynamics [6], which
in turn represents a new attractor-based complexity measurement for Boolean
recurrent neural networks [10].

More recently, they considered a model of so-called hybrid recurrent neural net-
works composed with Boolean input and output cells as well as internal sigmoid
neurons. They showed that the rational and real-weighted hybrid neural networks
are computationally equivalent to and strictly more powerful than deterministic
Muller Turing machines, respectively [5]. Furthermore, the evolving hybrid neural
nets are equivalent to the real-weighted ones, irrespective of whether their synap-
tic weights are modelled by rational or real numbers [5]. These results provide
a generalization to this specific computational context of those obtained for the
cases of classical [2,4] and interactive computation [1,3,9,11].

Here, we provide the nondeterministic counterpart of these results. We con-
sider a model of nondeterministic hybrid recurrent neural networks, which consist
of hybrid neural nets equipped with the possibility to have their synaptic weights
evolve over time – in a nondeterministic manner. When subjected to some infinite
input stream as well as to some specific evolution of their synaptic weights, the
networks necessarily exhibit some attractor dynamics in their Boolean output
cells, which is assumed to be of two possible kinds, either meaningful or spurious.
The neural ω-language of a network corresponds to the set of all input streams
which induce a meaningful attractor dynamics, for some possible evolution of its
synaptic weights. The expressive power of the networks is then measured via the
topological complexity of their underlying neural ω-languages. In this context,
we prove that the two models of rational-weighted and real-weighted nondeter-
ministic hybrid neural networks are computationally equivalent, and recognize
precisely the set of all analytic neural ω-languages. They are therefore strictly
more expressive than the nondeterministic Büchi and Muller Turing machines.
These results are discussed in the last section.

2 Preliminaries

A topological space is a pair (S, T ) where S is a set and T is a collection of
subsets of S such that ∅ ∈ T , S ∈ T , and T is closed under arbitrary unions and
finite intersections. The collection T is called a topology on S, and its members
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are called open sets. Given some topological space (S, T ), the class Borel subsets
of S, denoted by Δ1

1, consists of the smallest collection of subsets of S containing
all open sets and closed under countable union and complementation. For every
ordinal α, one defines by transfinite induction the following Borel classes:

• Σ0
1 = {X ⊆ S : X is open},

• Π0
α = {X ⊆ S : X� ∈ Σ0

α},
• Σ0

α = {X ⊆ S : X =
⋃

n≥0 Xn, Xn ∈ Π0
αn

, αn < α, n ∈ N}, for α > 1,
• Δ0

α = Σ0
α ∩ Π0

α.

The collection of all classes Σ0
α, Π0

α, and Δ0
α provides a stratification of the

whole class of Borel sets known as the Borel hierarchy. The rank of a Borel set
X ⊆ S is the smallest ordinal α such that X ∈ Σ0

α∪Π0
α∪Δ0

α, and represents the
minimal number of complementation and countable union operations that are
needed in order to obtain X from an initial collection of open sets. It is commonly
considered as a relevant measure of the topological complexity of Borel sets.

Besides, given any set A, we let A∗, A+ and Aω denote respectively the sets of
finite sequences, non-empty finite sequences and infinite sequences of elements
of A. For any x ∈ A∗ ∪ Aω, the length of x is denoted by |x|, the (i + 1)-th
element of x will be denoted by x(i) for any 0 ≤ i < |x|, and the subsequence
of the n-th first elements of x is denoted by x[0:n], with the convention that
x[0:0] = λ, the empty sequence. Hence, any x ∈ A+ and y ∈ Aω can be written
as x = x(0)x(1) · · · x(|x|−1) and y = y(0)y(1)y(2) · · · , respectively. The fact that
x is a prefix (resp. strict prefix) of y will be denoted by x ⊆ y (resp. x � y). The
concatenation of x and y is denoted x ·y, and for any X ⊆ A∗ and Y ⊆ A∗ ∪Aω,
one sets X · Y = {z ∈ A∗ ∪ Aω : z = x · y for some x ∈ X and y ∈ Y }. A set of
the form {x} ·Aω is generally denoted x ·Aω. Finally, a sequence of A∗ ∪Aω will
also be called a word, and a subset of Aω is generally called an ω-language.

In the sequel, the spaces of N -dimensional Boolean, rational and real vectors
will be denoted by B

N , Q
N and R

N , respectively. The space (BN )ω is naturally
assumed to be equipped with the product topology of the discrete topology
on B

N . Accordingly, the basic open sets are of the form p · (BN )ω, for some
p ∈ (BN )∗. The general open sets are countable unions of basic open sets. This
space is Polish (i.e., separable and completely metrizable) [12]. The spaces (QN )ω

and (RN )ω are assumed to be equipped with the product topologies of the usual
topologies on Q

N and R
N , respectively. Accordingly, the basic open sets are of

the form X0 · . . . · Xn · (QN )ω or X0 · . . . · Xn · (RN )ω, for some n ≥ 0, where
each Xi is an open set of Q

N or R
N for their usual topologies, respectively. The

general open sets are arbitrary unions of basic open sets. These two spaces are
also Polish [12].

An ω-language L ⊆ (BN )ω is analytic iff there exists some Π0
2-set X ⊆

(BN )ω × {0, 1}ω such that L = π1(X) = {s ∈ (BN )ω : ∃ e ∈ {0, 1}ω s.t. (s, e) ∈
X} [12, Exercise14.3]. This fact will be used in forthcoming Proposition 1. Equiv-
alently, L ⊆ (BN )ω is analytic iff there exists some Polish space E and some Borel
set X ⊆ (BN )ω × E such that L = π1(X) [12, Exercise14.3]. This fact will be
used in forthcoming Proposition 2. The class of analytic sets, denoted by Σ1

1,
strictly contains that of Borel sets, namely Δ1

1 � Σ1
1 [12, Theorem 14.2].
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3 Büchi and Muller Turing Machines

The study of the behavior of reactive systems has led to the emergence of a
theory of automata working on infinite objects [17,22]. In this context, a Büchi
(resp. a Muller) Turing machine can be defined as a pair (M,F) (resp. a pair
(M′, T )), where M (resp. M′) is a classical Turing machine and F is a subset
of the states of M (resp. T is a collection of subsets of the states of M′). In the
case of M (resp. M′) being deterministic, an infinite input stream s is said to be
recognized by M (resp. by M′) if the set of states visited infinitely often by M
(resp. by M′) during the processing of s intersects the set F (resp. belongs to
the collection T ). In the non-deterministic case, s is said to be recognized by each
such machine if there exists a computational path which satisfies the required
condition. The ω-language associated with each such machine consists of the set
of all words that it recognizes.

The deterministic Büchi Turing machines are strictly less powerful than the
deterministic Muller ones. Indeed, every ω-language recognized by some deter-
ministic Büchi Turing machine belongs to the topological class Π0

2, whereas
the ones recognized by Muller Turing machine belong to the topological class
BC(Π0

2), i.e., the finite Boolean combinations of Π0
2-sets [21, Corollaries 3.3 and

3.4]. Moreover, one can easily show the existence of infinitely many ω-languages
which are recognizable by some Muller Turing machines but by no Büchi Tur-
ing machine. In the non-deterministic case, Büchi and Muller Turing machines
are computationally equivalent. They recognize precisely the class of effectively
analytic ω-languages [21, Theorem 3.5].

The class of effectively analytic sets is usually denoted by Σ1
1 (lightface), and

for the sequel, we recall that the relation Σ1
1 � Σ1

1 trivially holds [12].

4 The Model

We introduce a model of so-called hybrid evolving recurrent neural network. The
term hybrid refers to the fact that the network involves both Boolean and sigmoid
cells. The term evolving refers to the fact that the synaptic weights are able to
evolve over time. The expressive power of the networks will be related to the
attractor dynamics of their Boolean output cells.

A hybrid (or Boolean/sigmoid) evolving recurrent neural network (denoted
by Ev-RNN) consists of a synchronous network of neurons related together in a
general architecture. The network contains N internal sigmoid neurons (xi)N

i=1,
M Boolean input cells (ui)M

i=1, and P Boolean output cells (yi)P
i=1. The dynamics

of the network is computed as follows: given the activation values of the internal
and input neurons (xj)N

j=1 and (uj)M
j=1 at time t, the activation values of each

internal neuron xi and each output neuron yi at time t + 1 are updated by the
following equations, respectively:

xi(t+1) = σ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , N (1)
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yi(t + 1) = θ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , P (2)

Here, aij(t), bij(t), and ci(t) are time dependent values describing the evolving
weighted synaptic connections and weighted bias of the network, and σ and θ are
the classical sigmoid-linear and hard-threshold activation functions respectively
defined by:

σ(x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,

x if 0≤ x ≤1,
1 if x > 1

and θ(x) =

{
0 if x < 1,

1 if x ≥ 1.

We further assume that the synaptic weights aij(t), bij(t), ci(t) might evolve
between two designated bounds S and S′ imposed by the biological constitution
of the synapses.

Throughout this paper, two models of Ev-RNNs are considered according to
the nature of their synaptic weights. In fact, an Ev-RNN will be called rational
(denoted by Ev-RNN[Q]) or real (denoted by Ev-RNN[R]) if its synaptic weights
aij(t), bij(t), ci(t) are modelled by rational or real numbers at any time step t,
respectively. Note that any Ev-RNN[Q] is also an Ev-RNN[R] by definition.

Let N be some Ev-RNN N . For each time step t ≥ 0, the Boolean vector

u(t) = (u1(t), . . . , uM (t)) ∈ B
M

describing the activation values of the M input units of N at time t is the input
submitted to N at time t. The pair

〈x (t),y(t)〉 ∈ [0, 1]N × B
P

describing the activation values of the internal and output cells at time t is the
state of N at time t. The second element of this pair, namely y(t), is the Boolean
state of N at time t.

Assuming the initial state of the network to be 〈x (0),y(0)〉 = 〈0 ,0 〉, any
infinite input stream

s = (u(t))t∈N
= u(0)u(1)u(2) · · · ∈ (BM )ω

induces via Eqs. (1) and (2) an infinite sequence of consecutive states

cs = (〈x (t),y(t)〉)t∈N
= 〈x (0),y(0)〉〈x (1),y(1)〉 · · · ∈ ([0, 1]N × B

P )ω

called the computation of N induced by s. The corresponding infinite sequence
of Boolean states

c′
s = (y(t))t∈N

= y(0)y(1)y(2) · · · ∈ (BP )ω

is the Boolean computation of N induced by s.
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Note that any Ev-RNN N (with P Boolean output cells) can only have 2P –
i.e., finitely many – possible distinct Boolean states. Consequently, for any infi-
nite Boolean computation c′

s, there necessarily exists at least one Boolean state
that recurs infinitely often in c′

s. In fact, any Boolean computation c′
s necessar-

ily consists of a finite prefix of Boolean states followed by an infinite suffix of
Boolean states that repeat infinitely often – yet not necessarily in a periodic
manner. The non-empty set of all the Boolean states that repeat infinitely often
in c′

s will be denoted by inf(c′
s). According to these considerations, a set of

states of the form inf(c′
s) for some computation c′

s will be called an attractor
for N . A precise definition can be given as follows [10]:

Definition 1. Let N be some Ev-RNN. A set A = {y0 , . . . ,yk} ⊆ B
P is an

attractor for N if there exists some infinite input stream s such that the corre-
sponding Boolean computation c′

s satisfies inf(c′
s) = A.

In words, an attractor of N is a set of Boolean states into which the computation
of the network could become forever trapped – yet not necessarily in a periodic
manner –, for some infinite input stream s.

In this work, we suppose that attractors can be of two distinct types, namely
either meaningful or spurious. The type of each attractor could be determined
by its neurophysiological significance with respect to measurable observations,
e.g. associated with certain behaviors or sensory discriminations. The classifica-
tion of these attractors into meaningful or spurious types is not the subject of this
paper. Hence, from this point onwards, we assume any Ev-RNN to be equipped
with a corresponding classification of all of its attractors into meaningful and
spurious types.

According to these considerations, an infinite input stream s ∈ (BM )ω of N
is called meaningful if inf(c′

s) is a meaningful attractor, and it is called spurious
if inf(c′

s) is a spurious attractor. The set of all meaningful input streams of N
is called the neural ω-language of N and is denoted by L(N ). An arbitrary set
of input streams L ⊆ (BM )ω is said to be recognizable by some Ev-RNN if there
exists a network N such that L(N ) = L.

We now introduce a natural notion of a nondeterministic Ev-RNN, where the
nondeterminism is expressed as a set of possible infinite evolving patterns of the
synaptic weights. At the beginning of a computation, the network chooses one
such possible evolution in a nondeterministic manner, and sticks to it throughout
its whole computational process.

A nondeterministic Ev-RNN consists of a pair (N , E), where N is an Ev-RNN
with K evolving synaptic connections, and E ⊆ ([S, S′]K)ω is a set of infinite
sequences of K-dimensional vectors – describing the possible infinite evolutions
for the K synaptic connections of N . Every element e of E is called a possible
evolution for N , and if the evolution e = e(0)e(1)e(2) · · · ∈ E is followed by
N , each vector e(t) describes the values of the K synaptic weights of N at time
step t.1 In this context, the Boolean computation produced by (N , E) when it
1 By contrast, a deterministic Ev-RNN has only one possible evolution for its synaptic

weights, and hence corresponds to a nondeterministic Ev-RNN where the set E is
reduced to a singleton.
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receives the input stream s ∈ (BM )ω and follows the evolution e ∈ E is denoted
by c′

(s,e).
According to these considerations, a nondeterministic Ev-RNN[Q] is a pair

(N , E) such that E ⊆ ((Q ∩ [S, S′])K)ω, and a nondeterministic Ev-RNN[R] is
a pair (N , E) such that E ⊆ ((R ∩ [S, S′])K)ω. We assume from now on that
(Q ∩ [S, S′])K and (R ∩ [S, S′])K are equipped with the induced topologies of
Q

K and R
K , and that ((Q ∩ [S, S′])K)ω and ((R ∩ [S, S′])K)ω are equipped with

the product topologies of these induced topologies, respectively. Moreover, E is
always assumed to be a closed subset of these Polish subspaces, and hence is
also Polish [12].2

Finally, given some nondeterministic Ev-RNN N , an infinite input stream
s ∈ (BM )ω is called meaningful if there exists some evolution e ∈ E such that
inf(c′

(s,e)) is a meaningful attractor, and it is called spurious otherwise, i.e., if
for all evolution e ∈ E, the set inf(c′

(s,e)) is a spurious attractor. The set of
all meaningful input streams of N is called the neural ω-language of N and is
denoted by L(N ). An arbitrary set of input streams L ⊆ (BM )ω is said to be
recognizable by some nondeterministic Ev-RNN if there exists a nondeterministic
network (N , E) such that L(N ) = L.

5 Results

Following considerations from ω-languages and automata theory [17], the expres-
sive power of hybrid neural networks is characterized as the topological com-
plexity of their underlying neural ω-language. For the sake of clarity, we first
recall the results obtained in the deterministic context [5]. In this case, the sta-
tic rational-weighted hybrid neural networks are computationally equivalent to
deterministic Muller Turing machines, hence recognize neural ω-languages inside
the class of finite Boolean combinations of Π0

2-sets (BC(Π0
2)). The other mod-

els of static real-weighted, evolving rational-weighted, and evolving real-weighted
hybrid networks are all computationally equivalent. They recognize precisely all
the BC(Π0

2) neural ω-languages and, therefore, are strictly more powerful than
deterministic Büchi and Muller Turing machines, since these later cannot recog-
nize the whole class of BC(Π0

2)-sets (cf. Sect. 3).
Here, we show that both models of rational- and real-weighted nondeter-

ministic hybrid neural networks are computationally equivalent, and recognize
precisely the class of all analytic sets (Σ1

1 boldface). Therefore, their expressive
powers strictly encompass those of Büchi and Muller Turing machines, which
are restricted to the effectively analytic sets (Σ1

1 lightface) (cf. Sect. 3).
We first show that any analytic neural ω-language L can be recognized by

some nondeterministic rational Ev-RNN N . The idea of the proof is the follow-
ing. First, we note that the analytic set L can be written as the first projection π1

of some Π0
2-set X ⊆ (BM )ω ×{0, 1}ω (cf. Sect. 2). Next, we consider some recur-

sive encoding of X by an infinite word wX ∈ {0, 1}ω. Afterwards, we consider a

2 The results of the paper hold equally true even with E taken as Π0
2.
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nondeterministic Ev-RNN[Q] N equipped with only two possible evolving synap-
tic connections: one which might follow any possible binary evolution e ∈ {0, 1}ω,
and the other one which always follows the same binary evolution wX ∈ {0, 1}ω.
We then design the static part of N such that N visits a meaningful attractor iff
the current input s and evolving synaptic pattern e ∈ {0, 1}ω are such that (s, e)
belongs the set encoded by wX , namely X. In this way, L(N ) = π1(X) = L, and
thus L is recognized by N .

Proposition 1. Let L ⊆ (BM )ω such that L ∈ Σ1
1. Then there exists some

nondeterministic Ev-RNN[Q] (N , E) such that L(N ) = L.

Proof. Since L ∈ Σ1
1, there exists some X ⊆ (BM )ω ×{0, 1}ω such that X ∈ Π0

2

and L = π1(X). Since X ∈ Π0
2, it can be written as X =

⋂
i≥0

⋃
j≥0(pi,j ·

(BM )ω × qi,j · {0, 1}ω), where each (pi,j , qi,j) ∈ (BM )∗ × {0, 1}∗. Consequently,
the set X (and hence also L) is completely determined by the countable sequence
of pairs of finite prefixes ((pi,j , qi,j))i,j≥0. We can thus consider some encoding
wX ∈ {0, 1}ω of the sequence ((pi,j , qi,j))i,j≥0 such that, for any pair of indices
(i, j) ∈ N×N, the decoding procedure (wX , i, j) �→ (pi,j , qi,j) is actually recursive.

We now consider the infinite procedure given by Algorithm 1 below. This pro-
cedure requires as input and auxiliary items the following three infinite sequences
delivered step by step: an infinite input stream s ∈ (BM )ω, an infinite word
e ∈ {0, 1}ω chosen arbitrarily, and the precise infinite word wX ∈ {0, 1}ω. Note
that provided that these three items are correctly supplied by some external
source, every instruction of the procedure is actually recursive. Farther note
that, by construction, the procedure returns infinitely many 1’s iff the pair of
infinite sequences (s, e) belongs to X.

Based on the infinite procedure, we provide the description of a nondeter-
ministic Ev-RNN[Q] (N , E) such that L(N ) = L. The network (N , E) contains
only two evolving synaptic weights w1(t) and w2(t) which evolve among only two
possible values, 0 or 1. All other synaptic weights are static. The weight w1(t)
might follow every possible evolution in {0, 1}ω, while w2(t) always follows the
same evolution, which are the successive letters of wX . Formally, one has the
following closed set of possible evolutions:

E = {ẽ ∈ ({0, 1}2)ω : (ẽ(t))0 ∈ {0, 1} and (ẽ(t))1 = wX(t), for any t ≥ 0}.

We then consider a neural circuit which stores the incoming values of the
input stream s ∈ (BM )ω into M designated neurons, as well as two neural circuits
which store the successive bits of w1(t) and w2(t) into two designated neurons
(see [20] for further technical details). Afterwards, according to the real time
computational equivalence between static RNN[Q] and Turing machines [20],
we consider a static RNN[Q] which is suitably designed and connected to the
above mentioned circuits in order to simulate all the recursive instructions of
Algorithm 1. We finally add a single Boolean output neuron y and update the
whole construction in order that y takes an activation value of 1 precisely when
the simulation of Algorithm 1 by our network enters the instruction “returns 1”.
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In this way, one has the description of a nondeterministic Ev-RNN[Q] (N , E)
which suitably simulates the behavior of Algorithm 1.

Besides, the single output cell y leads to the existence of only three possible
attractors, namely {(0)}, {(0), (1)}, and {(1)}. We set {(0)} as spurious, and
{(0), (1)} and {(1)} as meaningful. This means that (N , E) visits a meaningful
attractor iff the simulation of Algorithm 1 returns infinitely many 1’s.

According to all the previous considerations, one has that s ∈ L(N ) iff, by
definition, there exists some ẽ ∈ E such that inf(c′

(s,ẽ)) is meaningful, iff there
exists e ∈ {0, 1}ω such that the simulation of Algorithm 1 returns infinitely many
1’s, iff there exists e ∈ {0, 1}ω such that the pair (s, e) ∈ X, iff, by definition,
s ∈ π1(X) = L. In other words, L(N ) = L, showing that L is recognized by the
nondeterministic Ev-RNN[Q] (N , E). ��

Algorithm 1. Infinite procedure
Require:

1. Input s = s(0)s(1)s(2) · · · ∈ (BM )ω supplied step by step at successive time
steps t = 0, 1, 2, . . .

2. some auxiliary infinite word e = e(0)e(1)e(2) · · · ∈ {0, 1}ω supplied step by
step at successive time steps t = 0, 1, 2, . . .

3. the specific auxiliary infinite word wX = wX(0)wX(1)wX(2) · · · ∈ {0, 1}ω sup-
plied step by step at successive time steps t = 0, 1, 2, . . .

1: SUBROUTINE 1
2: c ← 0 // c counts the number of letters provided so far
3: for all time step t ≥ 0 do
4: store each incoming Boolean vector s(t) ∈ B

M

5: store each incoming bit e(t) ∈ {0, 1}
6: store each incoming bit wX(t) ∈ {0, 1}
7: c ← c + 1
8: end for
9: END SUBROUTINE 1

10: SUBROUTINE 2
11: i ← 0, j ← 0
12: loop
13: wait until c ≥ max{|pi,j |, |qi,j |}
14: wait until wX [0:c] becomes long enough to contain the encoding of (pi,j , qi,j)
15: decode (pi,j , qi,j) from wX [0:c] // recursive procedure
16: if pi,j ⊆ s[0:c] and qi,j ⊆ e[0:c] then // (s, e) ∈ pi,j · (BM )ω × qi,j · {0, 1}ω

17: return 1 // ∃ j s.t. (s, e) ∈ pi,j · (BM )ω × qi,j · {0, 1}ω

18: i ← i+1, j ← 0 // test if (s, e) ∈ pi+1,0 ·(BM )ω ×qi+1,0 ·{0, 1}ω

19: else // (s, e) �∈ pi,j · (BM )ω × qi,j · {0, 1}ω

20: return 0 // ¬∃j′ ≤ j s.t. (s, e) ∈ pi,j′ · (BM )ω × qi,j′ · {0, 1}ω

21: i ← i, j ← j + 1 // test if (s, e) ∈ pi,j+1 · (BM )ω × qi,j+1 · {0, 1}ω

22: end if
23: end loop
24: END SUBROUTINE 2
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We now conversely show that every ω-language recognized by some nonde-
terministic Ev-RNN is analytic.

Proposition 2. Let (N , E) be some nondeterministic Ev-RNN[R]. Then
L(N ) ∈ Σ1

1.

Proof. First of all, note that the dynamics of (N , E) can naturally be associated
with the function f(N,E) : (BM )ω × E → (BP )ω defined by f(N,E)(s, e) = c′

(s,e).
The nature of our dynamics ensures that this function is sequential, i.e., for any
time step t ≥ 0, the vectors s(t), e(t) and y(t) are generated simultaneously.
Therefore, given any basic open set w · (BP )ω, with w ∈ (BP )∗, one has that
f−1
(N,E)(w ·(BP )ω) is of the form Θw =

⋃
i∈I

[
ui · (BM )ω × (vR,i · ([S, S′]K)ω ∩ E)

]

with each ui ∈ (BM )|w| and vR,i ∈ ([S, S′]K)|w|. Notice that for each i ∈ I,
vR,i · ([S, S′]K)ω ∩ E is closed (inside E) and ui · (BM )ω is clopen, and hence
(ui · (BM )ω) × (vR,i · ([S, S′]K)ω ∩ E) is closed. By [4, Lemma 9], it follows that
given any ui and vR,i as above, there exists IQ,i = (

∏K
k=1 ]aj,k, bj,k[)j<|w|, where

each aj,k, bj,k ∈ Q and vR,i ∈ IQ,i, and such that

f(N,E)

[
ui · (BM )ω × (IQ,i · ([S, S′]K)ω ∩ E)

] ⊆ w · (BP )ω.

One thus has Θw =
⋃

i∈I

[
ui · (BM )ω × (IQ,i · ([S, S′]K)ω ∩ E)

]
. Since there exist

only countably many ui and IQ,i, it turns out that Θw is a countable union of
closed sets, i.e. a Σ0

2 set, which shows that f(N,E) is of Baire class 1, cf. [12].3

Furthermore, note that since N contains finitely many output cells, is also
has finitely many possible Boolean states, and therefore also finitely many pos-
sible attractors. This feature is independent from the nondeterministic behavior
associated with the set of possible evolutions E. Hence, suppose that N con-
tains the I meaningful attractors Ai = {bi1 , . . . , bik(i)}, for i = 1, . . . , I, where
1 ≤ i1 < . . . < ik(i) ≤ 2P , and where bn denotes the n-th Boolean vector of B

P

according to the lexicographic order.
According to these considerations, the ω-language L(N ) can be expressed by

the following sequence of equalities:

L(N ) =
{
s ∈ (BM )ω : there exists e ∈ E s.t. inf(c′

(s,e))is a meaningful attractor
}

=
{
s ∈ (BM )ω : there exists e ∈ E s.t. inf(c′

(s,e)) = Ai, for some i = 1, . . . , I
}

= π1

({
(s, e) ∈ (BM )ω × E : inf(c′

(s,e)) = Ai, for some i = 1, . . . , I
})

= π1

( I⋃

i=1

{
(s, e) ∈ (BM )ω × E : inf(c′

(s,e)) = Ai

})

= π1

( I⋃

i=1

{
(s, e) ∈ (BM )ω × E : ∀j ∈ {i1, . . . , ik(i)}, f(N,E)(s, e) has ∞-many b′

js

and ∀j ∈ {1, . . . , 2P }\{i1, . . . , ik(i)}, f(N,E)(s, e) has finitely many b′
js
})

3 We recall that the preimage by a Baire class 1 function of a set in Σ0
n (resp. Π0

n) is
in Σ0

n+1 (resp. Π0
n+1).
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= π1

( I⋃

i=1

[ ⋂

j∈{i1,...,ik(i)}

{
(s, e) ∈ (B

M
)
ω × E :

f(N,E)(s, e) ∈
⋂

n≥0

⋃

m≥0

(B
P
)
n+m · bj · (BP

)
ω

︸ ︷︷ ︸

c′
(s,e) contains infinitely many b′

j s, i.e.

∀n≥0 ∃m≥n y(n+m) = bj , thus in Π0
2

} ∩

⋂

j∈ {1,...,2P }\
{i1,...,ik(i)}

{
(s, e) ∈ (B

M
)
ω × E :

f(N,E)(s, e) ∈
( ⋂

n≥0

⋃

m≥0

(B
P
)
n+m · bj · (BP

)
ω
)�

︸ ︷︷ ︸

c′
(s,e) contains only finitely many b′

j s, i.e.

complement of a Π0
2 -set, thus in Σ0

2

}])

= π1

( I⋃

i=1

[ ⋂

j∈{i1,...,ik(i)}
f

−1
(N,E)

( ⋂

n≥0

⋃

m≥0

(B
P
)
n+m · bj · (BP

)
ω
)

︸ ︷︷ ︸

preimage by a Baire class 1 function of a Π0
2 -set, thus in Π0

3[12]

∩

⋂

j∈ {1,...,2P }\
{i1,...,ik(i)}

f
−1
(N,E)

(( ⋂

n≥0

⋃

m≥0

(B
P
)
n+m · bj · (BP

)
ω
)�)

︸ ︷︷ ︸

preimage by a Baire class 1 function of a Σ0
2 -set, thus in Σ0

3[12]

])

It follows that L(N ) is a projection of a finite union and intersection of Π0
3 and

Σ0
3 subsets of the Polish space (BM )ω × E, and therefore, L(N ) ∈ Σ1

1. ��
Finally, Propositions 1 and 2 allow to conclude that nondeterministic evolving

neural networks recognize precisely the set of all analytic sets, irrespective of
whether their synaptic weights are modelled by rational or real numbers.

Theorem 1. Let L ⊆ (BM )ω. The following conditions are equivalent:

1. L ∈ Σ1
1;

2. L is recognizable by some nondeterministic Ev-RNN[Q] (N , E);
3. L is recognizable by some nondeterministic Ev-RNN[R] (N , E).

Proof. (1) → (2) is provided by Proposition 1. (2) → (3) holds by definition.
(3) → (1) is provided by Proposition 2. ��

6 Discussion

We have introduced a model of nondeterministic hybrid recurrent neural net-
works. The nondeterminism is expressed as a set of possible synaptic evolutions
associated with each neural network. The network chooses one of these in a non-
deterministic manner, and then sticks to it throughout its whole computational
process. In this context, we have proven that the two models of rational-weighted
and real-weighted nondeterministic hybrid neural networks are computation-
ally equivalent, and recognize precisely the class of all Σ1

1 neural ω-languages.



Expressive Power of Non-deterministic Evolving Recurrent Neural Networks 155

They are therefore strictly more expressive than the nondeterministic Büchi and
Muller Turing machines, which recognize the Σ1

1 (lighface) ω-languages.
These results together with those of [5] show that nondeterminism injects

an extensive amount of computational power – from BC(Π0
2) to Σ1

1 – to the
hybrid neural systems. Besides, as opposed to the deterministic case, the con-
sideration of real synaptic weights in the present nondeterministic context does
actually not add any additional computational power to the neural networks.
The added value of the power of the continuum is somehow absorbed by the
nondeterminism, and any kind of analog assumption can therefore be dropped
without compromizing the achievement of a maximal computational power. More
generally, these achievements support the idea that the nondeterminism plays a
crucial role in neural information processing. They also support the claim that
recurrent neural networks represent a natural model of computation beyond the
Turing limits [8].

For future work, the study of the computational capabilities of more biolo-
gically-oriented neural models involved in more bio-inspired paradigms of com-
putation is expected to be pursued.

Finally, we hope that such comparative studies between the computational
capabilities of neural models and abstract machines might eventually bring fur-
ther insight to the understanding of the intrinsic natures of both biological as
well as artificial intelligences.
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Abstract. A duplication is basic phenomenon that occurs through mole-
cular evolution on a biological sequence. A duplication on a string copies
any substring of the string. We define k-pseudo-duplication of a string w
that consists, roughly speaking, of all strings obtained from w by inserting
after a substring u another substring obtained from u by at most k edit
operations. We consider three variants of duplication operations, dupli-
cation, k-pseudo-duplication and reverse-duplication. First, we give the
necessary and sufficient number of states that a nondeterministic finite
automaton needs to recognize duplications on a string. Then, we show
that regular languages and context-free languages are not closed under
the duplication, k-pseudo-duplication and reverse-duplication operations.
Furthermore, we show that the class of context-sensitive languages is
closed under duplication, pseudo-duplication and reverse-duplication.

Keywords: Bio-inspired operations · State complexity · Finite
automata · Context-free grammars · Context-sensitive grammars

1 Introduction

A DNA sequence undergoes various transformations from the primitive sequence
through several biological operations such as insertion, deletion, substitution,
inversion, translocation and duplication. This phenomena on DNA sequence
lead many researchers to study theoretical properties of them [4,5,15,16,18].
Some researchers considered string matching problems with bio-inspired opera-
tions [3,5,25]. Moreover, one of the important problems in biology is sequence
comparison and there are several tools for sequence searching such that BLAST
and FASTA [22,23]. This leads some researchers to consider finite state methods
that are useful for the sequence searching problems to improve search times in
the face of exponentially increasing size of DNA sequences [2,13].

A duplicated segment of a chromosome occurs as a result of genetic recombi-
nation named chromosomal crossover [8] (see Fig. 1 for an example). Depending
on the position of cutting somewhere within two chromosomes, the first segment
of the first sequence and the last segment of the second sequence combine and
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 157–168, 2015.
DOI: 10.1007/978-3-319-21819-9 11
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B C D EA

A B C D E A B C B C D E

A D E

crossing over

Fig. 1. An example of chromosomal crossover between two sequences. The last segment
BCDE of the second sequence is attached to the first segment ABC of the first sequence.
As a consequence of this crossing over, a subsequence BC occurs twice.

a new sequence with duplicated region may be obtained. Moreover, duplication
of gene sequence may cause replication slippage during DNA replication and
this phenomenon is closely linked with hereditary human diseases [12,28]. Kong
et al. [19] indeed considered 736 complete chromosomes and showed that inverse
segmental duplications are an important mechanism in the growth and evolution
of genomes.

From a formal language theoretic framework, duplication leads a string
w1w2w3 to transform to the string w1w2w2w3, and this is one of the well-
studied operations in both DNA computing and formal language theory. Many
researchers have considered a variant of duplication operations. For other vari-
ants of duplication we refer the reader to the literature [9,10,17,20,26,30].
Searls [26] introduced linguistic formulations of rearrangement that occur in
evolution such as duplication, inversion, transposition and deletion. Yokomori
and Kobayashi [30] showed new representation for duplication using a set of
basic operations, primitive language operation and mapping operations. Dassow
et al. [9] defined an iterated duplication and considered closure properties of
iterated version of duplication languages in the Chomsky hierarchy. Moreover,
Dassow et al. [10] considered several operations arising from the genome evolu-
tion and noticed the result that a family of languages in the Chomsky hierarchy
is closed under duplication. Leupold et al. [20] considered two types of lan-
guages defined by a string through iterated duplications and showed the formal
language theoretical properties concerning two types of iterated duplications.
Ito et al. [17] showed closure properties for bounded iterative duplication over
alphabets of several sizes. Furthermore, some researchers considered duplication
grammars [11,21].

For the DNA evolutionary analysis, an iterated version of duplication is
regarded as multiple steps of evolutions, thus concerning the operation is natural
to study their linguistic properties. We consider general duplication operation
that occurs only once within a generation. Moreover, we introduce a new oper-
ation k-pseudo-duplication that copies any part of an input sequence allowing
a certain amount of errors. We also consider reverse-duplication, and establish
their properties. Note that Dassow et al. [10] presented similar closure properties
for inversion, transposition and duplication: They considered a pre-specified set,
and a operation works when a language contains a string in the pre-specified
set. Recently, Cho et al. [4,6] showed similar results for the pseudo-inversion
operation defined as an incomplete inversion, and estimated state complexity of
inversion operations.
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In Sect. 2, we briefly recall several notations. Then, we introduce the definitions
of duplication and reverse-duplication and we define the k-pseudo-duplication in
Sect. 3. Moreover, we give tight upper and lower bounds for the number of states
that finite automaton needs to recognize the set of (pseudo-) duplications of a
given string in Sect. 3.1. We establish some closure properties for three variants
of duplication operation in Sect. 3.2. We mention a possible future direction and
conclude the paper in Sect. 4.

2 Preliminaries

We briefly give definitions and notations used throughout the paper. The reader
may refer to the textbooks [14,27,29] for more details on formal language theory.

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. For
any positive integer n we use [n] to denote the set {1, 2, . . . , n}. The symbol ∅
denotes the empty language, the symbol λ denotes the empty string and Σ+

denotes Σ∗ \ {λ}. Given a string w, we denote the reversal of w by wR and the
length of w by |w|.

A nondeterministic finite automaton (NFA) is a five tuple A = (Q,Σ, δ, S, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ is a multi-valued
transition function from Q × (Σ ∪ {λ}) into 2Q, S ⊆ Q is the set of initial
states and F ⊆ Q is the set of final states. Our definition of NFAs allows the
use of λ-transitions. It is well known [29] that an NFA with λ-transitions can
be converted to an equivalent NFA without λ-transitions and having the same
number of states. The automaton A is deterministic (DFA) if S is a singleton set
and δ is a single-valued transition function from Q × Σ → Q. It is well known
the NFAs and DFAs recognize the regular language [24,27].

A context-free grammar (CFG) is four tuple G = (V, T, P, S), where V a set
of non-terminal symbols, Σ is a set of final symbols, P is a set of production
rules of the form N → α for N ∈ V and α ∈ (V ∪ T )∗, and S is the initial
symbol. A language L generated by CFG is known as context-free language.

A grammar G = (V, T, P, S) is context-sensitive (CSG) if P has a set of
production rules of the form αNβ → αγβ for α, β ∈ (V ∪Σ)∗, γ ∈ (V ∪T )+ and
N ∈ V . A language L generated by CSG is said to be context-sensitive language.

The edit-distance between two strings x and y is the smallest number of
basic operations that transform x to y [1,7]. We use three operations insertion,
deletion and substitution: Given an alphabet Σ, an insertion operation that
inserts a ∈ Σ is denoted as (λ → a), a deletion operation that deletes a ∈ Σ
is denoted as (a → λ) and a substitution operation that substitutes b for a is
denoted as (a → b). We denote the edit-distance between two string x and y by
d(x, y). The Hamming distance is the number of positions in which two strings of
same length differ. Note that we use only a substitution operation for computing
Hamming distance. We denote the Hamming distance between two strings x and
y by dH(x, y).

For finding the nondeterministic state complexity of given languages, we use
a technique called the extended fooling set technique. This technique gives us a
lower bound on the size of any NFA recognizing a given language.
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Proposition 1 (Extended Fooling set technique [27]). Let L ⊆ Σ∗ be a
regular language. Suppose that there exists a set P = {(xi, wi) | 1 ≤ i ≤ n} of
pairs such that

(i) xiwi ∈ L for 1 ≤ i ≤ n,
(ii) if i �= j, then xiwj �∈ L or xjwi �∈ L, 1 ≤ i, j ≤ n.

Then, a minimal NFA for L has at least n states.

Note that a set P satisfying the conditions (i) and (ii) of Proposition 1 is called
fooling set for the language L.

3 Duplication and Pseudo-duplication

The duplication operation occurs in a bio sequence w when a substring of w is
copied abnormally. We give the formal definition of the duplication operation.

Definition 1 (Searls [26]). Let w ∈ Σ∗ be a string over the alphabet Σ, the
duplication of w is the set

D(w) = {x1x2x2x3 | w = x1x2x3, x1, x2, x3 ∈ Σ∗.}
Furthermore, Dassow et al. [9] considered the iterated duplication operation

D
∗(L) =

⋃

i≥0

D
i(L).

Note that Dassow et al. [9] considered a duplication operation (defined by
a duplication scheme) that is, roughly speaking, as in Definition 1 except that
the repeated substring is restricted to belong to a pre-specified finite set. The
language theoretic properties for the operation defined by a duplication scheme
as in Dassow et al. [9] are significantly different from our results.

We define the k-pseudo-duplication that allows k errors on the resulting
sequence. Note that during the process of DNA replication in practice some
mutations such as insertion, deletion and substitution may occur.

Definition 2. Let w ∈ Σ∗ be a string and k ≥ 0 a non-negative integer, we
define the k-pseudo-duplication of w to be

PDk(w) = {x1x2x
′
2x3 | w = x1x2x3, x1, x2, x3 ∈ Σ∗, d(x2, x

′
2) ≤ k}.

When the value of k is known from the context, or is not important, we sometimes
call the operation simply pseudo-duplication.

We also consider the reverse-duplication operation.

Definition 3 (Dassow et al. [9]). Let w ∈ Σ∗ be a string, we define the
reverse-duplication of w to be

RD(w) = {x1x2x
R
2 x3 | w = x1x2x3, x1, x2, x3 ∈ Σ∗}.
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The duplication operation, the pseudo-duplication operation and the reverse-
duplication operation are extended to languages in the following way:

(i) D(L) =
⋃

w∈L

D(w),

(ii) PDk(L) =
⋃

w∈L

PDk(w),

(iii) RD(L) =
⋃

w∈L

RD(w).

3.1 State Complexity of Duplication Operations

As we will see that the regular languages are not closed under the duplication,
pseudo-duplication or reverse-duplication operation, here we consider the state
complexity of the sets of (pseudo-) duplications of an individual string. For a
string w ∈ Σ∗, it is obvious that the languages D(w), PDk(w), and RD(w) are
regular, since all are finite. Thus we focus on the nondeterministic state com-
plexity of duplication, pseudo-duplication, and reverse-duplication operations.
We give a matching upper and lower bound for the duplication operation of a
string w.

Theorem 1. Let w ∈ Σ∗ be a string of length n, for a positive integer n. Then,
D(w) is recognized by a DFA with 2n+1 states.

Moreover, any NFA recognizing the language D(w) needs at least 2n+1 states.

Proof. Let a string w = w1 . . . wn, where wi ∈ Σ, for 1 ≤ i ≤ n. We can
also assume than n ≥ 2, since, if n = 1 we can check easily that the claim is
true. Then, we can construct the NFA Aw = (Q,Σ, δ, p1, F ) that recognizes the
language D(w). We first define the set of states Q.

Q = {p′
i | 1 ≤ i ≤ n} ∪ {pi | 1 ≤ i ≤ n + 1}

Now the transitions of the NFA Aw are as follows; δ(pi, wi) = pi+1 for all 1 ≤
i ≤ n, δ(p′

i, wi+1) = p′
i+1 for all 1 ≤ i ≤ n − 1, and δ(pi, wj) = p′

j for all
1 ≤ j < i ≤ n. The final states of Aw are the states pn+1 and p′

n. We give an
example in Fig. 2, in the case where w = x1x2x3x4.

Now, we easily verify the lower bound for the state complexity of duplication.
We note that D(w) is a finite language where the length of the longest string
is 2n. This implies that any NFA recognizing the language D(w) needs at least
2n+1 states. 
�

With similar ideas we can find the state complexity bounds for the pseudo-
duplication and reverse-duplication of a given word. We formalize these bounds
in the next two theorems.

Theorem 2. Let w ∈ Σ∗ be a string of length n, for a positive integer n. Then,
the language PDk(w), for k ≥ 1, is recognized by an NFA with k· (n+1)(n+2)

2 +n+1
states.
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x1 x2 x3 x4

p2′
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x1

x2

x2
x2

x2

x3

x3 x3

x4

x4

Fig. 2. An illustrative example of constructing an NFA recognizing D(w), where w =
x1x2x3x4 for x1, x2, x3, x4 ∈ Σ.

Moreover, for every n0 positive integer, there is a word w0 over an alphabet
Σ with |w0| = n0 and |Σ| = |w0|, such that any NFA recognizing the language
PDk(w0), needs at least k · (|w0|+1)(|w0|+2)

2 + |w0| + 1 states.

Proof. Let a string w = x1 . . . xn, where xi ∈ Σ, for 1 ≤ i ≤ n. We can also
assume than n ≥ 2, since, if n = 1 we can check easily that the claim is true.
Then, we can construct the NFA, with λ-transitions, Bw = (Q,Σ, δ, p(0,0,k), F )
that recognizes the language PDk(w). We first define the set of states Q.

Q = {pi | 0 ≤ i ≤ n} ∪ {p(j,i,h) | 0 ≤ i ≤ n, 0 ≤ j ≤ i, and 1 ≤ h ≤ k}

Now the transitions of the NFA Bw are as follows;

(i) p(0,i,k) ∈ δ(p(0,i−1,k), xi), for all 1 ≤ i ≤ n,
(ii) p(j,i,k) ∈ δ(p(j−1,i,k), xj), for all 1 ≤ i ≤ n, 1 ≤ j ≤ i, and 1 ≤ h ≤ k,
(iii) p(j,i,k) ∈ δ(p(0,i,k), xj), for 2 ≤ i ≤ n, and 2 ≤ j ≤ i,
(iv) p(j,i,k−1) ∈ δ(p(0,i,k), ∗), for ∗ ∈ Σ ∪ {λ}, 1 ≤ i ≤ n, and 1 ≤ j ≤ i, if

k ≥ 2,
(if k = 1, then we have pj ∈ δ(p(0,i,k), ∗), for ∗ ∈ Σ ∪ {λ}, 1 ≤ i ≤ n, and
1 ≤ j ≤ i)

(v) p(j,i,h−1) ∈ δ(p(j,i,h), ∗), for ∗ ∈ Σ ∪ {λ}, 0 ≤ i ≤ n, 0 ≤ j ≤ i, and
2 ≤ h ≤ k,

(vi) p(j+1,i,h−1) ∈ δ(p(j,i,h), ∗), for ∗ ∈ Σ ∪ {λ}, 1 ≤ i ≤ n, 0 ≤ j < i, and
2 ≤ h ≤ k,

(vii) pj ∈ δ(p(j,i,1), ∗), for ∗ ∈ Σ ∪ {λ}, 0 ≤ i ≤ n, 0 ≤ j ≤ i, and 2 ≤ h ≤ k,
(viii) pj+1 ∈ δ(p(j,i,1), ∗), for ∗ ∈ Σ ∪ {λ}, 1 ≤ i ≤ n, 0 ≤ j < i, and 2 ≤ h ≤ k.

The final state of Bw is the states pn. Additionally, it is not hard to transform
the λ-NFA Bw to an equivalent NFA B′

w without λ transitions which has the
same states as Bw. We give an example of the NFA Bw in Fig. 3, in the case
where w = x1x2x3 and k = 2.

Now we will give an informal explanation of how the transitions of the NFA
Bw work. A state p(j,i,h) represents that the pseudo-duplication appears in the
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Fig. 3. An illustrative example of constructing an NFA recognizing PDk(w), where
w = x1x2x3 for x1, x2, x3 ∈ Σ and k = 2.

i-th position of w, there are i−j characters left from the inserted word, and that
h errors remain. In more details from the definition of pseudo-duplication of w,
we have all the words x1x2x

′
2x3 where w = x1x2x3, for some x1, x2, x3 ∈ Σ∗

and d(x2, x
′
2) ≤ k. The transitions that appear in (i) read the prefix of w x1x2.

The transitions in (iii) and (iv) nondeterministically split the string x1x2 to the
strings x1 and x2. The transitions in (ii) read the parts of the word x′

2 that do
not differ from the word x2. The transitions in (v) and (vii) introduce an inserted
character, in (vi) and (viii) substitute or delete a character.

Similar we can work for the correctness of the above construction. We can
prove that every word x ∈ PDk(w), it is also in L(Bw) from the construction of
Bw. Moreover, we can easily prove that for every word x ∈ L(Bw) we have that
w also belongs in PDk(w).

The number of states of the NFA Bw are n+1 from the states pi, 0 ≤ i ≤ n,
and there are k · (1+2+ . . . +(n+1)), then it has k (n+1)(n+2)

2 +n+1 states.
For the lower bound, let as have a word w0 over an alphabet Σ0 with |w0|

letters. Let assume also that every letter of the alphabet Σ0 appears in the word
w0. Then, let w0 be the word x1x2 . . . xn, for |w0| = n. Now, for defining the
extended fooling set, first let us have the following n + 1 pairs:

P ′ = {(x1x2 . . . xn(x2)kx0x1 . . . xi, xi+1 . . . xn) | 0 ≤ i ≤ n and x0 = λ}
Now, we want to transform any triple of numbers (j, i, h) to a pair of strings,
for 0 ≤ i ≤ n, 0 ≤ j ≤ i, and 1 ≤ h ≤ k. We associate the triple (j, i, h) to the
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pair (x1x2 . . . xi(xn)k−hx1 . . . xj , (xn)hxj+1 . . . xn). The P ′′ be the set of pairs
that we get by all triples (j, i, h) for 0 ≤ i ≤ n, 0 ≤ j ≤ i, and 1 ≤ h ≤ k. Now,
the fooling set will be the set of pairs P = P ′ ∪ P ′′. We notice that for any two
distinct pairs (x, y), (x′, y′) ∈ P the string xy′ or the string x′y does not belong
in PDk(w0), since the pseudo-duplication will appear in a different position or
one of these strings will have more than k errors. 
�
Theorem 3. Let w ∈ Σ∗ be a string of length n, for a positive integer n. Then,
the language RD(w) is recognized by an NFA with n2+3n+2

2 states.
Moreover, for every n ∈ N, there exists a string w of length n over an alpha-

bet of size n such that any NFA recognizing the language RD(w) needs at least
n2+3n+2

2 states.

We omit the proof of Theorem3 due to the page limitation, but Fig. 4 gives an
insight on how we compute the nondeterministic state complexity for reverse-
duplication of a string.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(1, 1) (2, 1) (3, 1) (4, 1)

(2, 2) (3, 2) (4, 2)

(3, 3) (4, 3)

(4, 4)

w1

w0

w2

w0

w0

w0

w2

w3

w1

w3

w2

w2

w2

w1

w3

w0
w1

w1w0

w3

w3

Fig. 4. An illustrative example of constructing an NFA recognizing RD(w), where
w = w0w1w2w3 for wi ∈ Σ, 0 ≤ i ≤ 3.

3.2 Closure Properties of Duplication Operations

Next, we study the closure properties of duplication and pseudo-duplication for
regular and context-free languages. We first show that regular and context-free
languages are not closed under the duplication operation.

Theorem 4. Regular languages are not closed under the duplication operation.

Theorem 5. Context-free languages are not closed under the duplication
operation.
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Before we consider the closure properties of the pseudo-duplication operation,
we mention that regular languages and context-free languages over unary alpha-
bet are closed under the duplication, pseudo-duplication and reverse-duplication
operations.

Proposition 2. The unary regular languages are closed under the duplication,
pseudo-duplication and reverse-duplication operations.

Theorem 6. Regular languages are not closed under the pseudo-duplication
operation.

Theorem 7. Context-free languages are not closed under the pseudo-duplication
operation.

Theorems 6 and 7 show that regular and context-free languages are not closed
under the pseudo-duplication operation. On the other hand, regular and context-
free languages are closed under the pseudo-duplication operation when Σ is a
unary alphabet.

Theorem 8. Regular languages are not closed under the reverse-duplication
operation.

Theorem 9. Context-free languages are not closed under the reverse-
duplication operation.

Now, we show that the class of context-sensitive languages is closed under the
operations of duplication, pseudo-duplication and reverse-duplication. For clar-
ity, we start with the following example.

Example 1. There is a context-sensitive grammar G recognizing the copy lan-
guage L = {ww | w ∈ Σ+} over the alphabet Σ = {a, b}. We now give a
grammar with the following rules:

S → A1A
S
2 SE | B1B

S
2 SE | aa | bb B2B

E
1 → BE

1 B2

SE → A1A2S
E | B1B2S

E | AE
1 A2 | BE

1 B2 AS
2 AE

1 → AE
1 AS

2

A2A1 → A1A2 BS
2 AE

1 → AE
1 BS

2

B2A1 → A1B2 AS
2 BE

1 → BE
1 AS

2

A2B1 → B1A2 BS
2 BE

1 → BE
1 BS

2

B2B1 → B1B2 AE
1 AS

2 → aa
AS

2 A1 → A1A
S
2 BE

1 AS
2 → ba

BS
2 A1 → A1B

S
2 AE

1 BS
2 → ab

AS
2 B1 → B1A

S
2 BE

1 BS
2 → bb

BS
2 B1 → B1B

S
2 γA2 → γa, γ ∈ {a, b}

A2A
E
1 → AE

1 A2 γB2 → γb, γ ∈ {a, b}
B2A

E
1 → AE

1 B2 A1γ → aγ, γ ∈ {a, b}
A2B

E
1 → BE

1 A2 B1γ → bγ, γ ∈ {a, b}
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Where the symbols S, SE , A1, A
S
1 , AE

1 , B1, B
S
1 , and BE

1 are the non-terminal
symbols of the grammar.

Now for the correctness of the grammar, we notice that in the grammar the
non-terminal symbol A corresponds to the final symbol a and the non-terminal
symbol B corresponds to the final symbol b. Every time that the grammar pro-
duces a non-terminal symbol A for the first string, represented by A1, A

S
1 , or

AE
1 , it also produces a non-terminal symbol A for the second string, A2, A

S
2 , or

AE
2 , and vice versa. From the third rule of the first column up to the fifth rule

of the second column, the grammar makes sure that the symbols corresponding
to letters of the first string to be followed be symbols corresponding to letters
of the second string. Notice that the grammar does not change the order of
symbols which correspond to the same string. Finally, before any non-terminal
transforms into a final symbol the grammar makes sure that all non-terminal
symbols are in their correct positions. We do that by checking that the symbol
corresponding to the last letter of the first string to be before the symbol cor-
responding to the first letter of the second string. This happens with the sixth
to ninth rules of the second column and by these rules being the only rules who
can start the transformation of non-terminals to final symbols.

The careful reader may notice that in Example 1, occasionally, we use rules of
the form AB → BA which strictly speaking, they do not follow the definition of
context-sensitive grammars. Such rules could be replaced with the rules AB →
NB, NB → NA, and NA → BA by adding a new non-terminal symbol N .
We allow rules of the above form in order to keep the number of rules low and
increase readability.

Proposition 3. Let G be a context-sensitive grammar. There is a context-
sensitive grammar G′ recognizing the copy language L = {ww | w ∈ L(G)}.
Proposition 3 shows that given a context-sensitive grammar G we build a new
context-sensitive grammar that recognizes the copy language L = {ww | w ∈
L(G)}. Based on the grammar of Proposition 3 we can construct a context-
sensitive grammar that recognizes the language D(L(G)).

Theorem 10. The class of context-sensitive languages is closed under the dupli-
cation operation.

With a similar technique with Theorem10, we have the following theorem.

Theorem 11. The class of context-sensitive languages is closed under the
reverse-duplication and pseudo-duplication operations.

4 Conclusions

We have considered biologically inspired operations called the duplication and
reverse-duplication. The duplication operation on a string copies a substring
and the reverse-duplication operation copies a substring in reverse. We have
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defined the pseudo-duplication operation as an extended variant of duplication
where a substring can be repeated with some errors, and the number of errors
is specified by an integer parameter. Then, we have estimated state complexity
for these operations of a string and showed closure properties.

We have shown that the state complexity for duplication, pseudo-duplication
and reverse-duplication of a string are 2n+1, k · (n+1)(n+2)

2 +n+1 and n2+3n+2
2

respectively, where n is length of a string and k ≥ 1. Moreover, we have obtained
the closure properties of the families of languages in the Chomsky hierarchy under
three variants of duplication: Regular languages and context-free languages are
not closed under duplication, pseudo-duplication and reverse-duplication whereas
context-sensitive languages are closed under these operations.

A problem for further research is the complexity of determining whether or
not a given language L has a string that belongs to the duplication, pseudo-
duplication and reverse-duplication of another string in L. Moreover, it is also
our future work to look for deterministic, nondeterministic state complexity of
duplication and pseudo-duplication on unary regular languages.
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Abstract. In this paper we investigate several variants of P automata
having infinite runs on finite inputs. By imposing specific conditions on
the infinite evolution of the systems, it is easy to find ways for going
beyond Turing if we are watching the behavior of the systems on infi-
nite runs. As specific variants we introduce a new halting variant for P
automata which we call partial adult halting with the meaning that a
specific predefined part of the P automaton does not change any more
from some moment on during the infinite run. In a more general way, we
can assign ω-languages as observer languages to the infinite runs of a P
automaton. Specific variants of regular ω-languages then, for example,
characterize the red-green P automata.

1 Introduction

Various possibilities how one may “go beyond Turing” are discussed in [11], for
example, the definitions and results for red-green Turing machines can be found
there. In [2] the notion of red-green automata for register machines with input
strings given on an input tape (often also called counter automata) was intro-
duced and the concept of red-green P automata for several specific models of
membrane systems was explained. Via red-green counter automata, the results
for acceptance and recognizability of finite strings by red-green Turing machines
were carried over to red-green P automata. The basic idea of red-green automata
is to distinguish between two different sets of states (red and green states) and
to consider infinite runs of the automaton on finite input objects (strings, multi-
sets); allowed to change between red and green states more than once, red-green
automata can recognize more than the recursively enumerable sets (of strings,
multisets), i.e., in that way we can “go beyond Turing”. In the area of P systems,
first attempts to do that can be found in [4] and [18]. Computations with infinite
words by P automata were investigated in [9].

In this paper, we also consider infinite runs of P automata, but in a more gen-
eral way take into account the existence/non-existence of a recursive feature of
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 169–180, 2015.
DOI: 10.1007/978-3-319-21819-9 12
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the current sequence of configurations. In that way, we obtain infinite sequences
over {0, 1} which we call “observer languages” where 1 indicates that the spe-
cific feature is fulfilled by the current configuration and 0 indicates that this
specific feature is not fulfilled. The recognizing runs of red-green automata then
correspond with ω-regular languages over {0, 1} of a specific form ending with
1ω as observer languages. A very special observer language is {0, 1}∗ {1}ω which
corresponds with a very special acceptance condition for P automata which we
call “partial adult halting”. This special acceptance variant for P automata with
infinite runs on finite multisets is motivated by an observation we make for the
evolution of time lines described by P systems – at some moment, a specific
part of the evolving time lines, for example, the part describing time 0, shall not
change any more.

2 Definitions

We assume the reader to be familiar with the underlying notions and concepts
from formal language theory, e.g., see [17], as well as from the area of P systems,
e.g., see [13–15]; we also refer the reader to [25] for actual news.

2.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by
N. Given an alphabet V , a finite non-empty set of abstract symbols, the free
monoid generated by V under the operation of concatenation is denoted by
V ∗. The elements of V ∗ are called strings, the empty string is denoted by λ,
and V ∗ \ {λ} is denoted by V +. For an arbitrary alphabet V = {a1, . . . , an},
the number of occurrences of a symbol ai in a string x is denoted by |x|ai

,
while the length of a string x is denoted by |x| =

∑
ai∈V |x|ai

. A (finite)
multiset over a (finite) alphabet V = {a1, . . . , an} is a mapping f : V → N

and can be represented by
〈
a

f(a1)
1 , . . . , a

f(an)
n

〉
or by any string x for which

(|x|a1 , . . . , |x|an
) = (f(a1), . . . , f(an)). The families of regular and recursively

enumerable string languages are denoted by REG and RE, respectively.

2.2 The Arithmetical Hierarchy

The Arithmetical Hierarchy (e.g., see [3]) is usually developed with the univer-
sal (∀) and existential (∃) quantifiers restricted to the integers. Levels in the
Arithmetical Hierarchy are labeled as Σn if they can be defined by expressions
beginning with a sequence of n alternating quantifiers starting with ∃; levels
are labeled as Πn if they can be defined by such expressions of n alternating
quantifiers that start with ∀. Σ0 and Π0 are defined as having no quantifiers and
are equivalent. Σ1 and Π1 only have the single quantifier ∃ and ∀, respectively.
We only need to consider alternating pairs of the quantifiers ∀ and ∃ because
two quantifiers of the same type occurring together are equivalent to a single
quantifier.
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3 Time Travel P Systems

In the most general case, we can think of P systems as devices manipulating
multisets in a hierarchical membrane structure. The membranes can have labels
and polarizations both eventually changing with the application of rules. Mem-
branes may be divided, generated or deleted. Together with the division or the
generation of a new membrane the whole contents of another membrane may be
copied. For a general framework of P systems we refer to [7].

Usually, configurations in P systems (and other systems like Turing machines)
evolve step by step through time, see Fig. 1.

0 1 2 30 1 2 3

Time configurations

Time axis

Fig. 1. Standard time line evolution.

Without time travel option, we need only consider the evolution of the system
on one time axis from time n to time n+1. The situation becomes more difficult
if we follow the idea of parallel worlds (time axes), which means that we have
another time dimension, described by the vertical evolution in Fig. 2, i.e., the
time configurations at time n may be altered depending on future evolutions.

−1 0 1 2

⇓

−1 0 1 2

⇓

Time configurations

Time axis

Evolution
of time axes

Fig. 2. Time lines evolution.
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an Y es
-1

an−1 Y es
-1

· · ·

a Y es
-1

⇓

⇓

⇓

Y es
0

⇓

Fig. 3. Sending back an answer from time n to time 0.

For example, we can consider membrane systems with polarizations assigned
to the membranes. The usual polarization of the whole time configuration in
the normal case is +1, indicating that the evolution of the membrane(s) goes
from time configuration n to time configuration n + 1. Now assume we allow
polarization −1 indicating that the corresponding membrane evolves from time
configuration n to time configuration n − 1. Having kept trace of the number of
computation steps, e.g., by the multiplicity of a specific object a, we are able
to send back information – like the answer yes to a question we have posed at
time 0 which then is sent back to time configuration 0, i.e., to the time we have
posed the question. In that way, on a specific time line we can have answers to
questions in zero time, see Fig. 3.

During its travel through the time back, the time capsule with polarization
−1 can be assumed not to be affected by the other membranes in the intermediate
time configurations. Obviously, this restriction can be alleviated for even more
complex systems.

Putting a new skin membrane around all the current time configurations of
one time axis, we again obtain a conventional evolution model, yet now with
a vertical time evolution as depicted in Fig. 4. The only assumption we have
to do for making this variant possible is that at the beginning only a finite
number of time configurations exists (in fact, we usually will start with the time
configuration at time 0).

3.1 Partial Adult Halting

Going back to the time travel model of Fig. 2 the question that arises is what
kind of results we may obtain and how. For example, given a specific input
in time configuration 0, we may request that from some moment on this time
configuration becomes stable, i.e., it is not changed any more (by time capsules
arriving there).
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0 :

⇓
1 :

⇓
2 :

⇓

Time levels

Fig. 4. Conventional evolution model.

So the specific feature an external observer would see is that the time con-
figuration at time 0 is not changing any more starting from some specific time
line at level tl0 on, i.e., for all time levels tl ≥ tl0 the time configuration at time
0 stays stable.

With respect to the situation described in Fig. 4 this means that one specific
part (one membrane and all its contents) does not change any more.

In that way we obtain a new variant of a halting condition in P systems
which we call partial adult halting :

Adult halting :
means that the configuration does not change any more

Partial :
we only look at some part of the configuration

3.2 Partial Adult Halting for Turing Machines

The idea of partial adult halting can also be applied to Turing machines:

z0 z1 z2 z3 · · ·Tape :

∃t ∀n ≥ t tape(1) does not change

On tape cell 1 we want to obtain an “answer” whether the given input word
is accepted – 1 – or not – 0. We first put 0 there, and if the computation
ends saying “accept” we go back to tape cell 1 and write 1 there. Hence, with
looking to infinity in that way we obtain a “decider” for recursively enumerable
languages.
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4 Variants of P Automata

In this section, we shortly describe some variants of P automata.

4.1 The Basic Model of P Automata with Antiport Rules

The basic model of P automata as introduced in [6] and in a similar way in [8]
is based on antiport rules, i.e., on rules of the form u/v, which means that the
multiset u goes out through the membrane and v comes in instead.

A P automaton (with antiport rules) is a construct

Π = (O, T, μ,w1, . . . , wm, R1, . . . , Rm) where

– O is the alphabet of objects;
– T ⊂ O is the alphabet of terminal objects;
– μ is the hierarchical membrane structure, with the membranes uniquely

labeled by the numbers from 1 to m;
– wi ∈ (O \ T )∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
– Ri, 1 ≤ i ≤ m, is a finite set of antiport rules assigned to membrane i.

Given a multiset of terminal symbols in the skin membrane 1, it is usually
accepted by Π via a halting computation.

Now consider the situation of partial adult halting for a P automaton

Π = (O, T, [1[2 ]2]1, q0, n,R1, R2)

which – with the input multiset in addition given in the skin membrane – simu-
lates, in a deterministic way, a register machine defining a recursively enumerable
set L of multisets (see [12]), by the rules in R1. If the computation stops in the
final state qh, i.e., the multiset is accepted, we add the rules qh/y and n/n in R1.
R2 only contains the rule n/y. In case the multiset is accepted, n in the second
membrane is replaced by y, while the rule n/n in R1 guarantees an infinite com-
putation. In case the input multiset is not accepted, the register machine already
guarantees an infinite computation by the simulating P automaton, too. Hence,
as in the case of the Turing machine with partial adult halting we get a “decider”
for L, with the result from some moment on to be found in membrane 2.

4.2 P Automata with Anti-Matter

In P automata with anti-matter, for each object a we may have its anti-matter
object a−. If an object a meets its anti-matter object a−, then these two objects
annihilate each other, which corresponds to the application of the cooperative
erasing rule aa− → λ. In the following, we shall only consider the variant where
these annihilation rules have weak priority over all other rules, which allows for
a deterministic simulation of deterministic register machines, see [1].

A P automaton with anti-matter is a construct

Π = (O, T, μ,w1, . . . , wm, R1, . . . , Rm) where
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– O is the alphabet of objects;
– T ⊂ O is the alphabet of terminal objects;
– μ is the hierarchical membrane structure, with the membranes uniquely

labeled by the numbers from 1 to m;
– wi ∈ (O \ T )∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
– Ri, 1 ≤ i ≤ m, is a finite set of

Non-cooperative Rules: are rules of the form u → v where u ∈ O and
v ∈ (O × {here, in, out})∗;

Matter/Anti-matter Annihilation Rules: are cooperative rules of the
form aa− → λ, i.e., the matter object a and its anti-matter object a− annihi-
late each other, and these annihilation rules have weak priority over all other
rules.

With the target indications {here, in, out} we can leave an object in the
current membrane (here), whereas with {in} we send it into an inner membrane
and with {out} we send it into the surrounding membrane region.

In a similar way as in the preceding subsection we may consider the situation
of partial adult halting for a P automaton

Π = (O, T, [1[2 ]2]1, q0, n,R1, R2)

where following the proof from [1] the register machine actions are simulated in
the skin membrane; if the input multiset is accepted, by using the rules qh →
(f, here)(n−, in), f → f , we obtain an infinite computation with the contents of
membrane 2 being empty indicating the acceptance, as by the annihilation rule
nn− → λ the original object n is annihilated.

5 Red-Green Automata

In general, a red-green automaton M is an automaton whose set of internal states
Q is partitioned into two subsets, Qred and Qgreen, and M operates without
halting. Qred is called the set of “red states”, Qgreen the set of “green states”.
Moreover, we shall assume M to be deterministic, i.e., for each configuration
there exists exactly one transition to the next one.

5.1 Red-Green Turing Machines

Red-green Turing machines, see [11], can be seen as a type of ω-Turing machines
on finite inputs with a recognition criterion based on some property of the set(s)
of states visited (in)finitely often, in the tradition of ω-automata (see [9]), i.e.,
we call an infinite run of the Turing machine M on input w recognizing if and
only if

– no red state is visited infinitely often and
– some green states (one or more) are visited infinitely often.
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A set of strings L ⊂ Σ∗ is said to be accepted by M if and only if the following
two conditions are satisfied:

(a) L = {w | w is recognized by M}.
(b) For every string w /∈ L, the computation of M on input w eventually stabi-

lizes in red; in this case w is said to be rejected.

The phrase “mind change” is used in the sense of changing the color, i.e.,
changing from red to green or vice versa.

The following results were established in [11]:

Theorem 1. A set of strings L is recognized by a red-green Turing machine
with one mind change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Theorem 2. (Computational power of red-green Turing machines)

(a) Red-green Turing machines recognize exactly the Σ2-sets of the Arithmetical
Hierarchy.

(b) Red-green Turing machines accept exactly those sets which simultaneously
are Σ2- and Π2-sets of the Arithmetical Hierarchy.

In [2], similar results were shown for red-green counter automata and register
machines, respectively.

5.2 Red-Green P Automata

As it was shown in [2], P automata with antiport rules and with anti-matter can
simulate the infinite computations of any red-green register machine, even with a
clearly specified finite set of “states” having the same color as the corresponding
labels (“states”) of the instructions of the red-green register machine.

Hence, as a consequence, similar results as for red-green Turing machines also
hold for red-green P automata with antiport rules and with anti-matter. From
the results shown in [2] we therefore infer:

Theorem 3. (Computational power of red-green P automata)

(i) A set of multisets L is recognized by a red-green P automaton (with antiport
rules, with anti-matter) with one mind change if and only if L is recursively
enumerable.

(ii) Red-green P automata (with antiport rules, with anti-matter) recognize
exactly the Σ2-sets.

(iii) Red-green P automata (with antiport rules, with anti-matter) accept exactly
those sets which simultaneously are Σ2- and Π2-sets of the Arithmetical
Hierarchy.

6 Observer Languages

An observer language for infinite computations is an ω-language over {0, 1}
where 1 indicates that a specific feature of the current configuration in the infinite
computation sequence is fulfilled and 0 indicates that this specific feature of the
current configuration is not fulfilled.
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6.1 Expressing Partial Adult Halting as Observer Language

If we define the specific feature to be that no rule is applicable in the specified
“observed” membrane, then acceptance by partial adult halting can be described
by the (regular) ω-language {0, 1}∗{1}ω.

6.2 Expressing Recognition by Red-Green P Automata Using
Observer Languages

As observer languages for infinite computations in red-green P automata we
again use ω-languages over {0, 1} where now 1 indicates that we will have to
apply a green multiset of rules to the current configuration in the infinite com-
putation sequence and 0 indicates that we will have to apply a red multiset of
rules to the current configuration.

So for recognizing a language from RE we use the the ω-language {0}+{1}ω,
for a language from co-RE we use the the ω-language {0}{1}ω.

The corresponding regular ω-languages for the recognition by red-green
automata (Turing machines, P automata) with multiple mind-changes are
described as follows:

exactly 2k + 1 mind-changes, k ≥ 0: {0}+ {1}+{0}+)k{1}ω

at most 2k + 1 mind-changes, k ≥ 0:
⋃k

i=0{0}+ {1}+{0}+)i{1}ω

The upper bound for languages recognized by red-green P automata (with
antiport rules, with anti-matter) with k mind-changes for some k ≥ 0 is Σ2,
see [2].

These results will be refined in the next section.

7 Recognition Using Regular Observer Languages

In this section we investigate which languages are recognized by red-green P
automata using observer languages defined by finite automata. This class of ω-
languages defined by finite automata is well-understood and has widely been
investigated (see [16,21,23,24]). We follow the line of [20] where for Turing
machines infinite computations accepting finite words were investigated in detail
(see also [5]). In this paper a word w was accepted by a Turing machine when the
sequence (si)i∈N of states the machine runs through during its accepting process
fulfills certain simple conditions known from the acceptance of ω-languages. This
can be seen as w to be accepted if the observed state sequence (si)i∈N belongs
to a certain (regular) observer language. We have to point out that usually the
notion acceptance is used here instead of the notion recognition as used by van
Leeuwen and Wiedermann for the red-green Turing machines.
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7.1 Observer Languages of the Form W · {1}ω with W ∈ REG

The observer languages in Sect. 6 all were of the form W ·{1}ω where W ⊆ {0, 1}∗

is a regular language. In this section we investigate which languages can be
accepted by red-green P automata using observer languages of this form. Here
we follow the line of the papers [20] and [11] where the influence of regular
observer languages on the acceptance and recognition, respectively, behavior of
Turing machines was investigated.

To this end we use the following theorem which follows from a general clas-
sification of regular ω-languages (see [19,22] and also the survey [21]).

Theorem 4. If F ⊆ {0, 1}ω is a regular ω-language, then

1. F is in the Boolean closure of Σ2, and
2. if F ∈ Σ2 ∩ Π2, then F is in the Boolean closure of Σ1.

Since every regular F ⊆ {0, 1}∗ · {1}ω as a countable set is in Σ2, we imme-
diately obtain the following.

Corollary 1. If W ⊆ {0, 1}∗ is a regular language then W · {1}ω satisfies one
of the following conditions:

1. W · {1}ω ∈ Σ2 \ Π2, or
2. W · {1}ω is a Boolean combination of ω-languages in Σ1.

Remark 1. In the second case we can obtain an even sharper result:

W · {1}ω =
⋃k

i=0
(Wi · {0, 1}ω \ Vi · {0, 1}ω)

for suitable k ∈ N and regular languages Wi, Vi ⊆ {0, 1}∗, 0 ≤ i ≤ k. In partic-
ular, this is true for the ω-languages representing a bounded number of mind-
changes from Subsect. 6.2:

⋃k
i=0{0}+

({1}+{0}+)i{1}ω =
⋃k

i=0

(
{0}+({1}+{0}+)i{1} · {0, 1}ω \ {0}+({1}+{0}+)i{1}+{0} · {0, 1}ω

)

From Corollary 1 we immediately infer:

Theorem 5. Let L be recognized by a red-green P automaton (with antiport
rules, with anti-matter) using an observer language W · {1}ω where W ⊆ {0, 1}∗

is regular.

1. Then L ∈ Σ2.

2. If W · {1}ω =
⋃k

i=0(Fi \Ei) is a Boolean combination of ω-languages Fi, Ei ∈
Σ1, 0 ≤ i ≤ k, then L =

⋃k
i=0(Ki \ Li) where Ki, Li ∈ RE, 0 ≤ i ≤ k.

The converse of Theorem 5 is also true. In particular, it shows that we can
restrict ourselves to the observer languages of Subsects. 6.1 and 6.2.
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Theorem 6. Let L ∈ Σ2.

1. Then L is recognized by a red-green P automaton Π using the observer lan-
guage {0, 1}∗ · {1}ω, i.e., L is accepted by Π by partial adult halting.

2. Let L =
⋃k

i=0(Ki \ Li) where Ki, Li ∈ RE, 0 ≤ i ≤ k. Then there exists a
red-green P automaton which recognizes L using an observer language with a
bounded number of mind-changes.

7.2 Regular Observer Languages

Admitting all regular ω-languages as observer languages extends the range of
recognizable languages. In view of Theorem 4 we obtain a result extending what
was shown in Theorem 5.

Theorem 7. Let L be recognized by a red-green P automaton using an observer
language F ⊆ {0, 1}ω. Then

1. if F is a Boolean combination of ω-languages Fi, Ei ∈ Σ2, 0 ≤ i ≤ k, then
L =

⋃k
i=0(Ki \ Li) where Ki, Li ∈ Σ2, 0 ≤ i ≤ k,

2. if F ∈ Σ2, then L ∈ Σ2,

3. if F ∈ Π2, then L ∈ Π2, and

4. if F is regular and F ∈ Σ2 ∩Π2, then L =
⋃k

i=0(Ki \Li) where Ki, Li ∈ RE,
0 ≤ i ≤ k.

The converse of Theorem 7 is also true:

Theorem 8. Let L be a Boolean combination of languages in Σ2. Then L is
recognized by a red-green P automaton using a regular observer language F ⊆
{0, 1}ω.

8 Conclusion

In this paper we have investigated the computational power of P automata work-
ing with infinite runs on finite input multisets. With regular observer languages
W · {1}ω, W ∈ REG, we obtain the Σ2-sets, the same as with red-green P
automata. Moreover, the Σ2-sets are already obtained by the special observer
language {0, 1}∗ · {1}ω, which corresponds to the special acceptance condition
of partial adult halting.
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2. Aman, B., Csuhaj-Varjú, E., Freund, R.: Red–green P automata. In: [10], pp. 139–

157



180 R. Freund et al.

3. Budnik, P.: What Is and What Will Be. Mountain Math Software, Los Gatos
(2006)
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Abstract. In bacterial populations, cells are able to cooperate in order
to yield complex collective functionalities. Interest in population-level
cellular behaviour is increasing, due to both our expanding knowledge
of the underlying biological principles, and the growing range of possi-
ble applications for engineered microbial consortia. The ability of cells
to interact through small signalling molecules (a mechanism known as
quorum sensing) is the basis for the majority of existing engineered sys-
tems. However, horizontal gene transfer (or conjugation) offers the pos-
sibility of cells exchanging messages (using DNA) that are much more
information-rich. The potential of engineering this conjugation mecha-
nism to suit specific goals will guide future developments in this area.
Motivated by a lack of computational models for examining the specific
dynamics of conjugation, we present a simulation framework for its fur-
ther study.

(This paper was first presented at the Spatial Computing Workshop
of the 13th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), Paris, France, May 5–9 2014. There were no
published proceedings).

1 Introduction

“Imagine a discipline of cellular engineering that tailor-makes biological cells to
function as sensors and actuators, as programmable delivery vehicles for pharme-
ceuticals, or as chemical factories for the assembly of nanoscale structures” (Abel-
son, et al., talking about amorphous computing, in the year 2000 [1]).

This growing discipline is now known as synthetic biology [3,12,22], and
researchers in the field have successfully demonstrated the construction of sev-
eral types of device based on populations of engineered microbes [29]. Recent
work has focussed attention on the combination of single-cell intracellular devices
[5,17] with intercellular engineering, in order to build increasingly complex sys-
tems [6,11]. As Beal argues, “Biological systems can often be viewed as spa-
tial computers: space-filling collections of computational devices with strongly
localized communication.” [9] This is precisely the view of living cells that we

c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 181–191, 2015.
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take here; that is, microbes may be engineered to both implement some “pro-
gram”, and share information with other cells in order to implement distributed
computations. This concept has already been successfully demonstrated in the
laboratory (see [2] for a review), with applications including programmed pat-
tern formation [8], edge detection [35], distributed evaluation of Boolean logic
[32,36], and a synthetic “predator-prey” ecosystem [7]. These papers (and many
others) clearly demonstrate how engineered living cells extend, beyond tradi-
tional silicon-based machines, the definition of what it means to “compute”.

To date, most work on engineered cell-cell communication has focussed on
quorum-sensing (QS) [4], which may be thought of as a communication proto-
col to facilitate inter-bacterial communication via the generation and receiving
of small signal molecules. However, recent studies on DNA messaging [31] high-
light the importance and utility of transferring whole sets of DNA molecules from
one cell (the so-called donor) to another (the recipient). Bacterial conjugation
is a cell-to-cell communication mechanism [13,14] that enables such transfers to
occur. We have recently proposed the notion of conjugation computing: multicel-
lular computation that uses conjugation as its fundamental mode of information
transfer [19]. In this paper, we expand on this result, and present full implemen-
tation details of our simulation platform for conjugation computing. DiSCUS
(Discrete Simulation of Conjugation Using Springs) realistically simulates (in a
modular fashion) both intracellular genetic networks and intercellular communi-
cation via conjugation. To our knowledge, this is the first such platform to offer
both of these facilities. We first review previous work on cell simulation, before
presenting the details of our model. We validate it against previous experimental
work, and then discuss possible applications of our method.

2 Previous Work

The rapid development of bacterial-based devices is accompanied by a need for
computational simulations and mathematical modelling to facilitate the charac-
terisation and design of such systems. A number of platforms and methods are
available for this purpose. Agent-based models (AbMs) are widely used [20], and
were first used to study microbial growth in BacSim [26]. Continuous models
have also been proposed [30], and recent developments make use of hardware
optimisation, by using GPUs (Graphics Processing Units) in order to scale up
the number of cells simulated [33].

Because of the complexity of the system under study, several computational
platforms focus on either specific cellular behaviours (e.g., bacterial chemotaxis
[15], morphogenesis of dense tissue like systems [24]) , or on specific organisms
(e.g., Myxococcus xanthus [23]). Platforms that incorporate cell-cell communica-
tion generally focus their attention on quorum-sensing. Simulations of conjuga-
tion do exist, but these consider cells as abstracted circular objects [27,34]. We
demonstrate in this paper how a consideration of the shape of cells is an essen-
tial feature for understanding the conjugation behaviour of the population. We
now describe our model for bacterial growth, in which conjugation is handled
explicitly.
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3 Methods

We apply an individual-based modelling approach [28] to the study of conjuga-
tion dynamics. This models each cell as an individual, mobile entity, each of
which is subject to physical forces arising from contact with other cells and the
environment (e.g., surfaces). Each cell has a number of different attributes, listed
in Table 1, which correspond to various physiological states and characteristics.

Table 1. Cell attributes.

Attribute Type Definition

shape pymunk.Shape Shape of the cell

program [m0 . . . mi] List of the i regulatory network molecules (m)

elongation [int,int] Elongation values (one per cell pole)

position [x,y] Coordinates of centre point, x and y

speed float Velocity

conjugating Boolean Conjugation state

plasmid Boolean Program state (present/not present)

role int Donor (0), recipient (1) or transconjugant (2)

partner int Role of plasmid transfer cell

Bacteria are modelled as rod-shaped cells with a constant radius (parameter
width in Table 2). Elongation processes occur along the longitudinal axis, which
has a minimum dimension of length, and division takes place whenever the cell
measures 2*length. The division of a cell into two new daughter cells is also
controlled by max overlap, which monitors the physical pressure affecting each
cell; if the pressure exceeds this parameter value, the cell delays its growth and
division. Thus, a cell with pressure grows slower than without it. The global para-
meter growth speed (Table 2) also helps us simulate cell flexibility in a realistic
fashion. This parameter defines a “cut off” value for the number of iterations in
which the physics engine must resolve all the current forces and collisions. Thus,
smaller values will cause the solver to be effectively “overloaded”, and some col-
lisions may, as a result, be partially undetected. This means that cells behave as
flexible shapes, which gives the simulation a more realistic performance.

Horizontal genetic transfer (or conjugation) is modelled using an elastic
spring to connect donor and recipient cells [25]. Parameter c time defines the
duration of that linkage, which determines the time in which the DNA is trans-
ferred. The springs are constantly monitored to ensure that they physically
connect both cells during conjugation. Importantly, during conjugation, the res-
olution of collisions involving relevant cells considers the forces produced by the
spring connection, in order to calculate the final movement of the bacteria. By
coupling cells in this way, we obtain realistic population-level physical patterns
that emerge as a result of large numbers of conjugation events. This agent-based
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Table 2. Global simulation parameters.

Parameter Definition

screenview Size of the simulated world

width Width of each cell (lattice squares)

network steps Number of steps of the ODEs per Gt

number donors Initial number of donor cells

real Gt Real doubling time of the studied cells (minutes)

Gt Doubling time of the simulated cells (iterations)

number recipients Initial number of recipient cells

length Length of each cell (lattice squares)

max overlap Pressure tolerance of cells

bac friction Friction coefficient (Coulomb friction model)

spring damping The amount of viscous damping to apply

bac mass Mass of the cell (for calculating the moment)

c time Duration of the conjugation process

p d Probability of conjugation event (donors)

p t1 Probability of conjugation event (transconj.1)

p t2 Probability of conjugation event (transconj.2)

spring rest length Natural sprint expansion/contraction

growth speed Iterations between elongation processes

spring stiffness The tensile modulus of the spring

cell infancy Time lag (percentage)

pymunk steps Update the space for the given time step

pymunk clock ticks Frame frequency (FPS - frames per second)

algorithm has an iteration-driven structure, where - after initialisation of the
main global parameters - it repeatedly performs the following steps for each cell:
(1) Update springs (position and timing); (2) Perform cell division (if cell is
ready); (3) Elongate cell (every growth speed steps); (4) Handle conjugation;
(5) Update physical position.

Conjugation decisions (step 4) made by cells are driven by three sequential
steps: (1) Decide, following a probability distribution, whether or not to conju-
gate (one trial per iteration); (2) If conjugating, randomly select a mate from
surrounding bacteria (if present); (3) If valid mate is found, effect conjugation
transfer.

The discrete probability distribution used for the conjugation process is
C(N, p, c time), where N is the number of trials in a cell lifetime (width *
length), p is the success probability in each trial (with p ∈ [0. . .1]) and c time
is the time interval during p = 0.0 (i.e., when the cell is already conjugating).
As stated in [34], p can vary, depending on whether the cell is a donor (p d),
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a transconjugant that received the DNA message from a donor (p t1), or a
transconjugant that received the DNA from another transconjugant (p t2).

Intracellular circuits (that is, any new genetic components that are intro-
duced into the cells in order to implement a computation) are modelled sepa-
rately, and then held in each cell by storing the state (i.e., protein concentrations,
etc.) of the circuit in an attribute of the cell (program). Thus, there are effec-
tively as many copies of the circuit as cells in the simulation (the number of
cells we currently handle can range from single digits to around two thousand
before we hit significant performance issues). This circuit simulation is imple-
mented in a modular fashion, so that the internal cellular “program” may be
easily replaced with any other. In this paper we demonstrate the principle using a
two-component genetic oscillator as the DNA message that is exchanged through
conjugation. The ordinary differential equations (ODEs) for this circuit are:

dx

dt
= Δ

(
β

1 + αx2

1 + x2 + σy2
− x

)
(1)

dy

dt
= Δγ

1 + αx2

1 + x2
− y (2)

which are detailed in [21], as well as the meaning and value of the parameters
(we use the same values in the code provided). We recently used our software
platform to investigate the spatial behaviour of a reconfigurable genetic logic
circuit (without conjugation) [18], which demonstrates (1) how it may easily be
modified to accommodate different sets of equations, and (2) how it may be
used as a “general purpose” cell simulation platform, with conjugation “turned
off”. The actions controlling the growth rates of cells occur on a longer time
scale than the integration steps that control molecular reactions (as Eqs. 1 and
2). In order to ensure synchronisation, the parameter network steps defines
the number of integration steps of the ODEs that run per Gt. Thus, a number
of network steps/Gt integration steps will update the attribute network of
each cell every iteration. Other important physical parameters listed in Table
2 are spring rest length, spring stiffness and spring damping; these are
three parameters to model the material and behaviour of the bacterial pilus
(i.e. the spring) during conjugation. Parameter cell infancy is a delay period,
during which a cell is considered to be too young to conjugate (as observed
experimentally [34]). Parameters pymunk steps and pymunk clock ticks are
used by the physics engine to update the world, and may be adjusted by the
user in order to alter the performance of the simulation (machine dependent).
Parameters bac mass and bac friction play a role in collision handling. Our
platform is written in Python, and makes use of the physics engine pymunk
(www.pymunk.org) as a wrapper for the 2D physics library Chipmunk, which
is written in C (www.chipmunk-physics.net/). As cells are represented as semi-
rigid bodies in a 2D lattice, pymunk handles the physical environment on our
behalf. For monitoring purposes, parameters Gt and real Gt allow us to stablise
the relation between iterations and clock minutes: minute =Gt/real Gt (units:
iterations).

www.pymunk.org
www.chipmunk-physics.net/
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4 Results

We now describe the results of experiments to validate our conjugation model,
using three sets of simulations. We first validate individual conjugation dynamics;
then we validate the biomechanical properties of the simulation; the final set of
experiments studies the effects of mixing on conjugation dynamics.

4.1 Conjugation Dynamics

The objective of the first set of experiments is to validate the software in terms
of conjugation dynamics. For that purpose, we first focus on conjugation, using
images of a Pseudomonas putida population (Fig. 1A) extracted, with permis-
sion, from [34]. These show donor cells (dark red) growing in contact with recip-
ients (yellow). The DNA information they share after conjugation makes the

Fig. 1. Validation of cell movement and conjugation dynamics using real data. (A):
Figure extracted from [34] where a colony of Pseudomonas putida is divided into dark
red donor cells (DsRed), yellow recipient cells (YFP) and transconjugants, expressing
both yellow and green light (YFP and GFP). The upper row shows the transconjugant
signal, and the bottom row shows the whole community. (B and C): Simulation results.
Two simulations of similar colonies are recorded over exactly the same time intervals
(min). The colours of the cells match the colours observed in (A). Graphs (D), (F)
and( H) are extracted from [37], and show experimental results of Escherichia Coli
growth regarding density, velocity and ordering (respectively). Graphs (E), (G) and (I)
correspond to our simulation results, using similar conditions to [37], for the same
parameters (density, velocity and ordering respectively). Tests 1, 2 and 3 in graphs
correspond to different spatial distribution of cells inside the microfluidic chanel (details
in text). This figure first appeared as Supporting Information Figure S7 in [19] (i.e.,
not as part of the main paper) (Color figure online).
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transconjugant cells display GFP (green fluorescent protein). We adjusted the
parameters of our simulations until the behaviour matched the images of real cells
(two simulations shown: Figures 1B and C), in terms of both time-series behav-
iour and the type of physical pattern displayed. The algorithm for this adjust-
ment used information on the number of transconjugants, donors and recipients
at a particular time (taken from images of actual colonies), and then explored
(in the simulation) the space of conjugation probabilities until values were found
that gave rise to the observed numbers). It is important to note that the dif-
ferential probabilities of conjugation of donors and transconjugants (higher in
the latter) causes directional spreading of the DNA information. After the first
transconjugant appears (160 min), the newly-formed transconjugants appear -
most probably - in the immediate neighbourhood. The final parameter values
used to reproduce this experiment are: width=5, length=15, growth speed=30,
p d=0.001, p t1=0.02, p t2=0.05 and c time=450 (the rest of the parameters
are as defined in the DiSCUS distribution). Movie DemoConjugation1 (found
in the project repository) shows a simulation of a similar experiment where the
transconjugants do not act as new donors.

4.2 Biomechanical Properties

The second set of validation experiments focuses on biomechanical movement.
We use experimental data from [37], which describe an Escherichia coli colony
growing in a microfluidic channel (30 * 50 * 1 μm3) (Figs. 1D, F and H). Using
exactly the same setup (width=5, length=24, growth speed=30) we highlight
how different initial positioning of cells inside the channel can affect the final
result (test1, with more cells observed in the centre than at the edges; test2
with all cells initially in the centre; test3 with all cells homogeneously spread
along the channel). Density graphs (Figs. 1D and E) show the increasing curve
as the channel becomes more populated (results vary depending on which area
is considered for monitoring). Velocity gradients (Figs. 1F and G) depict the
differential velocity across the longitudinal axis of the channel with respect to
the centre (we see negative values when the cells in the centre move faster than
the rest). The difference in the y axis is due to our considering different spacial
intervals in the velocity gradient calculation. Ordering graphs (Figs. 1H and I) are
based on calculating the cosine of a cell’s angle with respect to the longitudinal
axis of the channel (e.g. angle 0, cos(0)=1, completely aligned). As time increases,
we see that the cells tend to align themselves.

4.3 Effects of Mixing

Conjugation behaviour within a population may be altered in different ways to
achieve different behaviours, depending on the desired application. For exam-
ple, in the previous experiments described in this paper, transconjugants are
unable to act as recipients (simulating a radical entry exclusion [16]). That is
to say, they will not receive more plasmids (genetic circuits) from either donors
or transconjugants. Furthermore, we may also engineer the transconjugants to
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Fig. 2. Effects of manual mixing on conjugation frequency. (A): Recipient-trapping
behaviour of a population with donors (red), transconjugants (green) and recipients
(yellow). Two snapshots depict clearly-observed clusters. (B): Population after random
mixing, where the clusters are automatically dissolved. (C): Graph showing conjugation
frequencies (Y = T/(R + T)) of 560-minute experiments (ratio D/R = 50 %). Blue
bars represent Y on an untouched population, while red bars represent Y when the
population is mixed at 420 min. The two sets of bars correspond to experiments with
different cell dimensions (1x3 -left- and 1x2 -right). Error bars show variation across 15
experiments of each class. This figure first appeared as Supporting Information Figure
S8 in [19] (i.e., not as part of the main paper) (Color figure online).

stop acting as new donors [14], so that only the original donors have the ability
to transfer the DNA message. Mixing of the cell population becomes essential
in this last scenario, in order to ensure maximal contact between donors and
recipients.

Investigations of how manual mixing can affect conjugation frequencies are
described in in [14], using an Escherichia coli population. We now reproduce those
results using our software, and give valuable insight into the reasons for that
behaviour: the isolation of the recipients. For that purpose (Fig. 2) we grow a
population of donors (D, red) and recipients (R, yellow) in which the ratio D/R
is 50 % and the transconjungants (T, green) are unable to act as new donors.
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The frequency of conjugation, Y, is measured as Y = T/(R + T). The graph in
Fig. 2C shows the frequency after 560 min of untouched populations (not mixed,
blue bars) and populations that have been manually mixed at 420 min (red bars).
The difference that the mixing produces is based on the isolation of the recipients
in untouched populations. Figure 2A shows two different occasions in which clus-
ters of recipients are formed, where the transconjugants do not allow donors to
reach new possible mates. After the population is completely “shuffled” (Fig. 2B),
the clusters are dissolved, and new pairs of donor-recipient can arise in the new
topology.

An interesting result from Fig. 2C is the fact that the smaller the size of
the cell, the higher results we observe for conjugation frequencies. This may
be due to the fact that smaller cells are able to slip through physical gaps,
and the biomechanical ordering of the population becomes more “fuzzy”. This
underlines the importance of considering the physical shape of cells, since circle-
shaped cells would not give valid results. Importantly, all of these results are
entirely consistent with the behaviour observed in the laboratory study [14].

5 Discussion

The conjugation model presented here is the first agent-based model to explic-
itly simulate conjugation processes with growing rod-shaped cells. Full validation
against real data is performed, which shows the capacity of the software to repro-
duce observed behaviour. In addition, the mixing study offers valuable insights
into the design of multi-strain populations. The software also allows for genetic
programs to be installed inside cells; the potential for horizontal gene transfer to
recreate distributed information processing within a microbial consortium is of
significant interest in synthetic biology/spatial computing [10], and the software
presented will aid the design and testing of systems before their wet-lab imple-
mentation. Possible future work may focus on further validation of the model
through (1) studying the frequency of conjugation in different bacterial strains,
and under different conditions, (2) studying the effect of the cell’s shape and/or
doubling (reproduction) time, and (3) investigating mixing effects caused by the
topology of the region(s) bounding the cell colony. The computational cost of
the simulations may also prove to be a limiting factor, so it may be useful to
investigate parallelisation of the code (either on GPUs, or by using a platform
such as MPI). This may, in the future, open up the possibility of using the code
for three-dimensional biofilm studies.

Simulation code and movies are available at http://www.bactocom.eu.
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Abstract. We present a KL-control treatment of the fundamental prob-
lem of erasing a bit. We introduce notions of reliability of informa-
tion storage via a reliability timescale τr, and speed of erasing via
an erasing timescale τe. Our problem formulation captures the tradeoff
between speed, reliability, and the Kullback-Leibler (KL) cost required
to erase a bit. We show that erasing a reliable bit fast costs at least

log 2 − log
(
1 − e

− τe
τr

)
> log 2, which goes to 1

2
log 2τr

τe
when τr >> τe.

1 Motivation

Szilard [24] and later Landauer [16] have argued from the second law of ther-
modynamics that erasing at temperature T requires at least kBT log 2 units
of energy, where kB is Boltzmann’s constant. The Szilard engine is a simple
illustration of this result. Imagine a single molecule of ideal gas in a cylindrical
vessel. If this molecule is in the left half of the vessel, think of that as encoding
the bit “0,” and the bit “1” otherwise. Erasing this Brownian bit corresponds to
ensuring that the molecule lies on the left half, for example by compressing the
ideal gas to half its volume. For a heuristic analysis we may use the ideal gas
law PV = kBT , integrating the expression dW = −PdV for work from limits
V to V/2 to obtain W = kBT log 2. More rigorous and general versions of this
calculation are known, which also clarify why this is a lower bound [8,11,19].

In practice, one finds that both man-made and biological instrumentation
often require energy several orders of magnitude more than kBT log 2 to per-
form erasing [17,18]. John von Neumann remarked on this large gap in his 1949
lectures at the University of Illinois [29].

How does one explain this large gap? Note that the result of kBT log 2 holds
only in the isothermal limit, which takes infinite time. In practice, we want
erasing to be performed fast, which requires extra entropy production. For intu-
ition, suppose one wants to compress a gas fast, it heats up, and pushes back,
increasing the work required. One hypothesis is that part of this large gap can
be addressed by explicitly introducing such a speed requirement.

Several groups [3,5,32] have recognized that rapid erasing requires entropy
production which pushes up the cost of erasing beyond kBT log 2, and have
obtained bounds for this problem. A grossly oversimplified, yet qualitatively
accurate, sketch of these various results is obtained by considering the energy
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 192–201, 2015.
DOI: 10.1007/978-3-319-21819-9 14



A Cost/Speed/Reliability Tradeoff to Erasing 193

cost of compressing the Szilard engine fast. Specializing a result from finite-time
thermodynamics [20] to the case of the Szilard engine, one obtains an energy
cost kBT log 2

(
1 + kB log 2

στe−kB log 2

)
where σ is the coefficient of heat conductivity

of the vessel.
The bounds obtained by such considerations depend on technological para-

meters like the heat conductivity σ, and not just on fundamental constants of
physics. If one varies over the technological parameters as well, e.g. allowing
σ → ∞, these bounds do not improve on kBT log 2.

Our Contribution: We follow up on von Neumann’s suggestion [29] that the gap
was “due to something like a desire for reliability of operation”. Swanson [23]
and Alicki [2] have also looked into issues of reliability. We introduce the notion
of “reliability timescale”, and explicitly consider the three-way trade-off between
speed, reliability, and cost.

The other novelty of our approach is in bringing the tools of KL control [9,27]
to bear on the problem of erasing a bit. The intuitive idea is that the control can
reshape the dynamics as it pleases, but pays for the deviation from the uncon-
trolled dynamics. The cost of reshaping the dynamics is a relative entropy or
Kullback-Leibler divergence between the controlled and uncontrolled dynamics.

We find the optimal control for erasing a reliable bit fast, and argue that it
requires cost of at least log 2 − log

(
1 − e− τe

τr

)
> log 2, which goes to 1

2 log 2τr

τe

when τr >> τe. Importantly, our answer does not depend on any technological
parameters, but only on fundamental constants and requirement specifications
of the problem.

2 The Erasing Problem

As a model of a bit, consider a two-state continuous-time Markov chain with
states 0 and 1 and the passive or uncontrolled dynamics given by transition
rates k01 from state 0 to state 1 and k10 from state 1 to state 0.

k01

k10
0 1

The transition rates k01 and k10 model spontaneous transitions between the
states when no one is looking at the bit or trying to erase it. The time inde-
pendence of these rates represents the physical fact that the system is not being
driven.

Such finite Markov chain models often arise in physics by “coarse-graining.”
For example, for the case of the Szilard engine, the transition rate k10 models
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the rate at which the molecule enters the left side, conditioned on it currently
being on the right side.1

Suppose the distribution at time t is (p0(t), p1(t)) with p1(t) = 1 − p0(t).
Then the time evolution of the bit is described by the ODE

ṗ0(t) = −k01p0(t) + k10(1 − p0(t)). (1)

Setting π0 = k10/(k01 + k10) and the reliability timescale τr := 1/(k01 + k10),
this admits the solution

p0(t) = π0 + e−t/τr (p0(0) − π0) (2)

Here τr represents the time scale on which memory is preserved. The smaller
the rates k01 and k10, the larger is the value of τr, and the slower the decay to
equilibrium, so that the system remembers information for longer.

Fix a required erasing time τe. Fix p(0) = π0. We want to control the
dynamics with transition rates u01(t) and u10(t) to achieve p(τe) = (1, 0), where

ṗ0(t) = −u01(t)p0(t) + u10(t)(1 − p0(t)) (3)

We want to find the cost of the optimal protocol u∗
01(t) and u∗

10(t) to achieve this
objective, according to a cost function which we introduce next. In particular,
when k01 = k10, the equilibrium distribution π = (π0, 1 − π0) takes the value
(1/2, 1/2) and we can interpret this task as erasing a bit of reliability τr =
1/(k01 + k10) in time τe.

2.1 Kullback Leibler Cost

Define the path space P := {0, 1}[0,τe] of the two-state Markov chain. This
is the set of all paths in the time interval [0, τe] that jump between states 0
and 1 of the Markov chain. Each path can also be succinctly described by its
initial state, and the times at which jumps occur. We can also effectively think
of the path space as the limit as h → 0 of the space Ph := {0, 1}{0,h,2h,...,Nh=τe}

corresponding to the discrete-time Markov chain that can only jump at clock
ticks of h units.

Once the rates u01(t), u10(t) and the initial distribution p(0) = p for the
Markov chain are fixed, there is a unique probability measure μu,p on path space
which intuitively assigns to every path the probability of occurrence of that path
according to the Markov chain evolution (Eq. 3) with initial conditions p.

For pedagogic reasons, we first describe the discrete-time measure μh
u,p for a

single path i = (i0, i1, . . . , iN ) ∈ Ph. First we describe the transition probabilities
1 Apart from their importance in approximating the behavior of real physical systems,

finite Markov chains are also important to thermodynamics from a logical point of
view. They may be viewed as finite models of a mathematical theory of thermody-
namics. The terms “theory” and “model” are to be understood in their technical
sense as used in mathematical logic. We develop this remark no further here since
doing so would take us far afield.
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Fig. 1. The discrete-time path space Ph. A specific path is labeled in red (Color figure
online).

of the discrete-time Markov chain. For a, b ∈ {0, 1} with a �= b, for all times t,
define uh

aa(t) := 1 − huab(t) and uh
ab(t) := huab(t) as the probability of jumping

to a and to b respectively in the time step t, conditioned on being in state a.
Then the probability of the path i under control u is given by:

μu,p(i) := pi0

N−1∏

j=0

uh
ij ,ij+1

(jh)

We describe the continous-time case now. We could obtain the measure
μu,p from μh

u,p by sending h → 0, but it can also be described more directly.
Fix i0 ∈ {0, 1}, and consider the set of paths S = Si0,t1,t2,...,tn

starting at i0
with jumps occurring at times t1 < t2 < · · · < tn within infinitesimal intervals
dt1, dt2, . . . , dtn and leading to the trajectory (i0, i1, . . . , in) ∈ {0, 1}n+1. Setting
t0 = 0:

μu,p(S) := pi0

n−1∏

j=0

e− ∫ tj+1
tj

uijij+1 (s)ds
uijij+1(tj+1)dtj+1

where pi0 is the probability of starting at i0, e− ∫ t1
0 ui0i1 (s)ds is the probability of

not jumping in the time interval (0, t1), ui0i1(t1)dt1 is the probability of jumping
from i0 to i1 in the interval (t1, t1 + dt1) and so on.

Specializing to u01(t) = k01 and u10(t) = k10, we obtain the probability mea-
sure μk,p induced on P by the passive dynamics (Eq. 1) with initial conditions p.

We declare the Kullback Leibler (KL) cost D(μu,p ‖μk,p) as the cost for
implementing the control u. More generally, for a physical system with path
space P, passive dynamics corresponding to a measure ν on P, and a controlled
dynamics with a control corresponding to a measure μ on P, we declare D(μ‖ν)
as the cost for implementing the control. This cost function has been widely used
in control theory [7,9,12–15,22,25–28,30]. In Sect. 4 we will explore some other
interpretations of this cost function.
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3 Solution to the Erasing Problem

Out of all controls u(t), we want to find a control u∗(t) that starts from p(0) =
π = (k10/(k01 +k10), k01/(k01 +k10)), and achieves p(τe) = (1, 0) while minimiz-
ing the relative entropy D(μu∗,π ‖μk,π).

To find: u∗ = arg inf
u

D(μu,π ‖μk,π)

Subject to: μu,π(τe) = (1, 0)

Section 3 can be described within the framework of a well-studied prob-
lem in optimal control theory that has a closed-form solution [6,9,27]. Fol-
lowing Todorov [27], we introduce the optimal cost-to-go function v(t) =
(v0(t), v1(t)). We intend vi(t) to denote the expected cumulative cost for start-
ing at state i at time t < τe, and reaching a distribution close to (1, 0) at time τe.

To discourage the system from being in state 1 at time τe, define v1(τe) = +∞
and v0(τe) = 0.

Suppose the control performs actions u01(t) and u10(t) at time t. Fix a small
time h > 0. Define the transition probability uh

ij(t) as the probability that a
trajectory starting in state i at time t will be found in state j at time t + h.
When i �= j, uh

ij(t) ≈ huij(t), where as uh
ii(t) ≈ 1 − uh

ij(t) ignoring terms of size
O(h2). We define kh

ij similarly.
Let log denote the natural logarithm. To derive the law satisfied by the

optimal cost-to-go v(t), we approximate v(t) by the backward recursion relations:

v0(t) = min
u01(t)

E

[
vi(t + h) + log

uh
0i(t)
kh
0i

]

v1(t) = min
u10(t)

E

[
vi(t + h) + log

uh
1i(t)
kh
1i

]

where the first expectation is over i ∼law (uh
00(t), u

h
01(t)), and the second is over

i ∼law (uh
10(t), u

h
11(t)), and the approximation ignores terms of size O(h2). As

h → 0 the second terms E log uh
ji(t)

kh
ji

approach the relative entropy cost in path

space over the time interval (t, t + h).
In words, Eq. 3 says that the cost-to-go from state 0 at time t equals the cost

of the control u(t) plus the expected cost-to-go in the new state i reached at
time t+h. The cost of the control is measured by relative entropy of the control
dynamics relative to the passive dynamics, over the time interval (t, t + h).

Define the desirability z0(t) = e−v0(t) and z1(t) = e−v1(t). Define

G0[z](t) = kh
00z0(t) + kh

01z1(t),

G1[z](t) = kh
10z0(t) + kh

11z1(t).
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We can rewrite (3) as

log z0(t) = log G0[z](t + h) − min
u01(t)

E

[
log

uh
0i(t)G0[z](t + h)

kh
0izi(t + h)

]

log z1(t) = log G1[z](t + h) − min
u10(t)

E

[
log

uh
1i(t)G1[z](t + h)

kh
1izi(t + h)

]

Since the last term is the relative entropy of (uh
j0(t), u

h
j1(t)) relative to the

probability distribution (kh
j0z0(t+h)/Gj [z](t+h), kh

j1z1(t+h)/Gj [z](t+h)), its
minimum value is 0, and is achieved by the protocol u∗ given by:

u∗
ji(t)
kji

= lim
h→0

e−vi(t+h)

Gj [z](t + h)
=

e−vi(t)

e−vj(t)
(4)

when i �= j.
It remains to solve for z(t) and the optimal cost. From (3), at the optimal

control u∗ the desirability z(t) must satisfy the equation − log z(t) = − log G[z]
(t + h) + 0, so that:

(
z0(t)
z1(t)

)
=

(
1 − k01h k01h

k10h 1 − k10h

)(
z0(t + h)
z1(t + h)

)

which simplifies to dz
dt = −Kz in the limit h → 0, where K =

( −k01 k10
k10 −k10

)
is

the infinitesimal generator of the Markov chain. This equation has the formal
solution z(τe − t) = eKt z(τe) where z(τe) =

(
1
0

)
by (3).

In the symmetric case k01 = k10,

z(t) = eH(0)

((
1/2
1/2

)
+ e− τe−t

τr

(
1/2

−1/2

))

where τr = 1/(k01 + k10). Substituting t = 0 and taking logarithms, we find the
cost-to-go function at time 0:

v(0) =
(

log 2
log 2

)
−

(
log

(
1 + e−τe/τr

)

log
(
1 − e−τe/τr

)
)

When ν(0) = (1/2, 1/2) with k01 = k10, the cost Cerase(τr, τe, T ) required for
erasing a bit of reliability τr = 1/(k01 + k10) in time τe at temperature T is at
least:

log 2 − 1
2

log
(
1 − e−2τe/τr

)
(5)

Note that Cerase ≥ log 2 with equality when τe/τr → ∞, since 1 − e−2τe/τr ≤ 1.
From Eq. 5, Cerase ≥ 1

2 log 2τr

τe
when τr >> τe.



198 M. Gopalkrishnan

4 Other Meanings to the KL Cost

The motivation for our cost function comes from the field of KL control theory.
We now compare other possible meanings to this cost function.

1. The relative entropy D(μ‖ν) counts the number of nats2 erased by the control
in path space, relative to the passive dynamics. Since the Szilard-Landauer
principle asserts that erasing one bit requires at least kBT log 2 units of energy,
our cost function may be viewed as a formal extension of this principle to path
space.

2. We wish to compare the cost D(μ‖ν) with the usual thermodynamic expected
work. Before doing so, we will find it convenient to define the time reversal
Markov chain. Given a distribution q at time τe, the time reversal Markov
chain of the Markov chain in Eq. 3 evolves backward in time according to the
ODE:

q̇0(t) = u01(t)q0(t) − u10(t)(1 − q0(t))
q(τe) = q.

(6)

The measure μrev
u,q is the measure on path space described by Eq. 6.

The usual thermodynamic expected work can be defined as follows. Run the
control dynamics Eq. 3 forward from initial condition p(0) upto time τe to
obtain the distribution p(τe). Now consider the measure μrev

u,p(τe)
. By the First

Law of Thermodynamics,

ΔW = ΔF + kBTD(μu,p‖μrev
u,p(τe)

) (7)

where the increase in free energy of the system

ΔF = kBT (D(p(τe)‖π) − D(p(0)‖π))

and D(μu,p‖μrev
u,p(τe)

) is the total entropy production during the time interval
[0, τe].

Now to compare our cost function with ΔW . We first recognize the time
reversal μrev

k,q as a specialization of μrev
u,q. After some algebra, we obtain

D(μu,p ‖μk,p) =
ΔF

kBT
+ D(μu,p‖μrev

k,p(τe)
) (8)

where p(τe) is — as in Eq. 7 — the solution to the control dynamics Eq. 3
at time τe. Comparing 7 and 8, a KL control treatment replaces the total
entropy production D(μu,p‖μrev

u,p(τe)
) in 7 by D(μu,p‖μrev

k,p(τe)
).

2 A nat is the unit of information when logarithms are taken to the base of Euler’s
constant. 1 bit = log 2 nats.
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3. Our cost function D(μ‖ν) also admits a large deviation interpretation which
was, remarkably, already noted by Schrödinger in 1931 [1,4,10,21]. Moti-
vated by quantum mechanics, Schrödinger asked: conditioned on a more or
less astonishing observation of a system at two extremes of a time interval,
what is the least astonishing way in which the dynamics in the interval could
have proceeded? Specializing to our problem of erasing, suppose an ensemble
of two-state Markov chain with passive dynamics given by Eq. 1 was observed
at time 0 and at time τe. Suppose the empirical state distribution over the
ensemble was found to be the equilibrium distribution π at time 0, and (1, 0)
at time τe respectively. This would be astonishing because no control has
been applied, yet the ensemble has arrived at a state of higher free energy.
Conditioned on this rare event having taken place, what is the least unlikely
measure μ∗ on path space via which the process took place?
By a statistical treatment of multiple single particle trajectories, Schrödinger
found that the likelihood of an empirical measure μ on path space falls
exponentially fast with the relative entropy D(μ‖ν) where ν is the measure
induced by the passive dynamics. In particular, the least unlikely measure μ∗

is that measure which — among all μ whose marginals at time 0 and time τe

respect the observations — minimizes D(μ‖ν). So for the problem of erasing
where k01 = k10, the measure μ varies over all measures that have marginal
(1/2, 1/2) at time 0 and marginal (1, 0) at time τe, and μ∗ is that measure
among all such μ that minimizes D(μ‖μk,(1/2,1/2)). Thus our optimal control
produces in expectation the least surprising trajectory among all controls that
perform rapid erasing.

4. Eq. 4 is not accidental for this example, but is in fact a general feature when
the cost function is relative entropy [6]. More abstractly, the Radon-Nikodym
derivative (i.e., “probability density”) d μ∗

d ν of the measure μ∗ induced on path
space by the optimal control u∗ with respect to the measure ν induced by
the passive dynamics is a Gibbs measure, with the cost-to-go function v(t)
playing the role of an energy function. In other words, mathematically our
problem is precisely the free energy minimization problem so familiar from
statistical mechanics. There is also a possible physical interpretation: we are
choosing paths in P as microstates, instead of points in phase space. The idea
of paths as microstates has occurred before [31].

5 Concluding Remarks

Since charging a battery can also be thought of as erasing a bit [11], our result
may also hold insights into the limits of efficiencies of batteries that must be
rapidly charged, and must hold their energy for a long time.

So long as the noise is Markovian, we conjecture that the KL cost for erasing
the two-state Markov chain is a lower bound for more general cases – for example
for bits with Langevin dynamics [33], which is a stochastic differential equation
expressing Newton’s laws of motion with Brownian noise perturbations.
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Abstract. In this paper, we investigate the abilities of systems of self-
assembling tiles which can each pass a constant number of signals to their
immediate neighbors to create replicas of input shapes. Namely, we work
within the Signal-passing Tile Assembly Model (STAM), and we provide
a universal STAM tile set which is capable of creating unbounded num-
bers of assemblies of shapes identical to those of input assemblies. The
shapes of the input assemblies can be arbitrary 2-dimensional hole-free
shapes at scale factor 2. This improves previous shape replication results
in self-assembly that required models in which multiple assembly stages
and/or bins were required, and the shapes which could be replicated were
more constrained.

1 Introduction

As a process by which molecular systems can organize themselves, autonomously
forming complex structures and even performing computations, self-assembly
has been shown both theoretically [5,11,15,16,19,21] and experimentally
[2,6,10,12,18,20] to be an extremely powerful process. In fact, it is even the
basis of many natural, especially biological, systems. In an effort to further
understand the capabilities of self-assembling systems, computational theory has
been applied to design systems which perform algorithmic self-assembly, namely
self-assembly in which the constituent components are intrinsically guided by
algorithmic behavior. The systems developed have been capable of everything
from extremely efficient (in terms of the numbers of unique building blocks nec-
essary) building of shapes [15,21], Turing machine simulations [11,16,22], and
intrinsically universal constructions [5]. In fact, those examples were all devel-
oped in a very simple model of self-assembling systems known as the abstract Tile
Assembly Model (aTAM) [22], in which the basic components are square tiles
which bind together, one at a time via glues on their edges, to form assemblies.
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However, in order to gain more insight into various properties of self-assembling
systems, models have been developed which are extensions of the aTAM and
which allow behaviors like combinations of arbitrarily large assemblies [3], glues
with repulsive forces [14], and many others.

In this paper, we work in one such (relatively new) model, the Signal-passing
Tile Assembly Model (STAM) [13]. This model allows for the individual tiles,
rather than being static and unchanging as in the aTAM, to each perform a
constant number of operations which change the glues with which they can bind.
With these changes being spurred by binding events of the tiles, the changes of
glues on individual tiles can be propagated across entire assemblies, which can be
thought of as analogous to sending signals which help direct the self-assembly
process. While the STAM has been shown to be quite powerful by previous
results [13], here we apply the strength of the model to a problem which has been
previously studied in other models, namely the replication of shapes [1], and we
prove yet more aspects of its power. (Note that, additionally, the replication of
2-D patterns of symbols encoded onto rectangular assemblies using the STAM
was studied in [9].)

In this paper, we show how sets of arbitrary 2-dimensional hole-free shapes
can be provided (at scale factor 2) to self-assembling systems within the STAM,
using a single universal replicator tile set, and the resulting system will perform
the parallel and exponentially increasing, unbounded replication of those shapes.
This is a dramatic improvement over previous results [1,4] which required a
model where multiple standalone stages and multiple assembly bins are required,
since these STAM systems are single stage, single bin systems. Furthermore,
these previous results placed significant restrictions on the shapes which could
be replicated. As a significant additional result which we use to produce our
replication result, we provide a construction which is able to perform a compli-
cated form of distributed leader election, namely it is able to take as input an
arbitrary 2-dimensional, hole-free shape with perfectly uniform glues on its exte-
rior and produce an assembly which surrounds it but does so in a way in which
all the portions of the shape’s perimeter are covered and exactly one location on
the perimeter is uniquely marked, or identified as the “leader”. This is especially
difficult given the distributed, parallel, and asynchronous nature of tile assem-
bly in the STAM combined with the fact that absolutely no assumptions can
be made about the input shapes. The techniques of this construction, as well as
several other gadgets used in the full shape replication result, are likely to be
useful in future work with the STAM.

We first present a high-level introduction to the models used in this paper,
then provide our leader election construction (which we refer to as frame building,
and finally present the shape replication result. Due to space constraints, many of
the technical details of the constructions and proofs are located in the appendix.

2 Preliminaries

Here we provide informal descriptions of the models and terms used in this paper.
Due to space limitations, the formal definitions can be found in [7].
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2.1 Informal Description of the STAM

The STAM, as formulated, is intended to provide a model based on experi-
mentally plausible mechanisms for glue activation and deactivation. A detailed,
technical definition of the STAM model is provided in [7].

(Note that the STAM is an extension of the 2HAM, and an informal descrip-
tion of the 2HAM can be found in the appendix.) In the STAM, tiles are allowed
to have sets of glues on each edge (as opposed to only one glue per side as in the
TAM and 2HAM). Tiles have an initial state in which each glue is either “on” or
“latent” (i.e. can be switched on later). Tiles also each implement a transition
function which is executed upon the binding of any glue on any edge of that tile.
The transition function specifies, for each glue g on a tile, a set of glues (along
with the sides on which those glues are located) and an action, or signal which
is fired by g’s binding, for each glue in the set. The actions specified may be
to: 1. turn the glue on (only valid if it is currently latent), or 2. turn the glue
off (valid if it is currently on or latent). This means that glues can only be on
once (although may remain so for an arbitrary amount of time or permanently),
either by starting in that state or being switched on from latent (which we call
activation), and if they are ever switched to off (called deactivation) then no
further transitions are allowed for that glue. This essentially provides a single
“use” of a glue (and the signal sent by its binding). Note that turning a glue off
breaks any bond that glue may have formed with a neighboring tile. Also, since
tile edges can have multiple active glues, when tile edges with multiple glues are
adjacent, it is assumed that all matching glues in the on state bind (for a total
binding strength equal to the sum of the strengths of the individually bound
glues). The transition function defined for a tile type is allowed a unique set of
output actions for the binding event of each glue along its edges, meaning that
the binding of any particular glue on a tile’s edge can initiate a set of actions to
turn an arbitrary set of the glues on the sides of the same tile on or off.

As the STAM is an extension of the 2HAM, binding and breaking can occur
between tiles contained in pairs of arbitrarily sized supertiles. It was designed to
model physical mechanisms which implement the transition functions of tiles but
are arbitrarily slower or faster than the average rates of (super)tile attachments
and detachments. Therefore, rather than immediately enacting the outputs of
transition functions, each output action is put into a set of “pending actions”
which includes all actions which have not yet been enacted for that glue (since
it is technically possible for more than one action to have been initiated, but
not yet enacted, for a particular glue). Any event can be randomly selected
from the set, regardless of the order of arrival in the set, and the ordering of
either selecting some action from the set or the combination of two supertiles is
also completely arbitrary. This provides fully asynchronous timing between the
initiation, or firing, of signals (i.e. the execution of the transition function which
puts them in the pending set) and their execution (i.e. the changing of the state
of the target glue), as an arbitrary number of supertile binding events may occur
before any signal is executed from the pending set, and vice versa.
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An STAM system consists of a set of tiles and a temperature value. To define
what is producible from such a system, we use a recursive definition of pro-
ducible assemblies which starts with the initial tiles and then contains any super-
tiles which can be formed by doing the following to any producible assembly:
1. executing any entry from the pending actions of any one glue within a tile
within that supertile (and then that action is removed from the pending set),
2. binding with another supertile if they are able to form a τ -stable supertile, or
3. breaking into 2 separate supertiles along a cut whose total strength is < τ .

Throughout this paper, we will use the following definitions and conventions.
We define a shape as a finite, connected subset of Z2. Following [17], we say that
a shape s is hole-free if the complement of s is an infinite connected subset of
Z
2. We say that an assembly α is hole-free if (α) is hole-free. Then, an input

assembly is a non-empty, τ -stable, hole-free assembly α such that every glue on
the perimeter of α is strength 1 and of the same type. Throughout this section, we
denote an input assembly by α and the type of the glue exposed on the perimeter
of α by x. Furthermore, a side of a shape is any segment of the perimeter which
connects two vertices (each of which can be convex or concave).

3 Frame Building

Throughout this paper, we provide constructions which take as input assemblies
of arbitrary 2D hole-free shapes. For the frame building construction described
in this section, no scale factor is necessary. For the replication construction of
Sect. 4, the shapes require a scale factor of 2. All input assemblies have com-
pletely uniform perimeters in terms of glue labels, meaning that no location on
a perimeter is marked any differently from the others. Given the local nature of
the self-assembly process, namely that tiles bind based only on local interactions
of matching glues, and also with the order and locations of tile attachments being
nondeterministic and growth of assemblies massively in parallel, a distributed
problem such as “leader election” can be quite difficult, and similarly so is the
problem of uniquely identifying exactly one point on the perimeter of an input
assembly when no assumptions can be made about the shape other than the
facts that it (1) is connected and (2) has no interior holes which are completely
surrounded by the assembly. Therefore, in this section we provide a construction
which is a single universal STAM system capable of forming frames, or sim-
ply borders composed of tiles, completely surrounding input assemblies in such
a way that the growth of the frames performs a distributed algorithm which
uniquely identifies exactly one perimeter location on each input shape. While
this algorithm and STAM system, as well as several of the novel techniques, are
of independent interest, they also play integral roles in the remaining construc-
tions of this paper and will potentially also provide a useful toolkit for future
constructions in others.

At a very high-level, the frame building construction can be broken into three
main components. First, a series of layers of tiles attach to the input assembly
α, each slowly helping to fill in the openings to any concavities, until eventually
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α is enclosed in an assembly which has a rectangular outer layer. Second, that
rectangular layer is able to detach after its unique southeast corner tile “gadget”
initiates the propagation of a signal inward through all of the layers to the east-
ernmost of the southernmost tiles which have attached directly to α. The tile
that is immediately to the left of this tile is elected the “leader” of the frame.
Third, the leader initiates a signal which propagates in a counterclockwise direc-
tion around α, carefully ensuring that the entire perimeter of α is surrounded
by tiles which have bound to it and made a complete “mold” of the shape. After
this is accomplished, the entire frame detaches from α. The result is a perfect
mold of α, with generic glues exposed around its entire interior surface except
for one specific location, the leader, which exposes a unique glue. It is from this
unique glue that the frame assembly will then be able to initiate the growth
which fills it in and makes a replica of α.

3.1 Building Layers of the Frame

We now give an extremely high-level sketch of the formation of the frame. (See [8]
for more details.) Essentially, the frame grows as a series of layers of tiles which
begin on (possibly many) southeast convex corners of α (depending on its shape)
and grow counterclockwise (CCW) around α. A greatly simplified example of
the basic tiles which can form a layer of the frame can be seen in Fig. 1. Each
path which forms a layer can grow only CCW, and therefore, depending on α’s
shape, may crash into a concavity of α (or one formed by a previous layer that
the current is growing on top of). Such collisions are detected by a specialized
set of collision detection tiles, and an example of a collision and its detection is
shown in Fig. 2. The need for collision detection tiles is technical and related to
the need for the exposed glues on all parts of the growing frame assembly to be
minimized and carefully controlled so that multiple shapes and copies of shapes
can be replicated in parallel, without separate assemblies interfering with each
other.

The growth of frame layers is carefully designed so that it is guaranteed to
proceed until all external openings to concavities of α have been filled in by par-
tially completed layers, resulting in layers which are more and more rectangular,
and eventually an exactly rectangular layer. At this point, and only at this point,
we are guaranteed to have a layer which has exactly one convex southeast corner.
Due to the distributed and asynchronous nature of the assembly process, and the
fact that each tile only has local information, throughout layer formation it is
necessary for some layers to make local “guesses” that they are rectangular, and
in order for that not to cause errors, a mechanism of layer detachment is used.
Basically, layers which guess they may be rectangular attempt to disconnect,
but only the first truly rectangular layer can successfully detach. At this point
it activates glues on the layer immediately interior of it, which it has primed to
receive a signal from a tile which will now be free to attach since the covering
exterior layer dissociates. This is then used in the unique leader election. It is
by the careful use of the “global” information provided by the layer detachment
that the construction can proceed correctly.
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Fig. 1. A simplified version of the tile set which grows layer 1 of the frame around α.
The darker grey tiles represent corner gadgets (CG) which form as duples (or a triple
for the southeast corner gadget, CGSE). Growth begins with the initial attachment of
a CGSE and proceeds CCW. There is also an analogous set with x2′ glues instead of
x′ glues to form layer 2 (and all subsequent layers). Note that this is a basic, beginning
tile set to which we will add additional signals and tiles throughout the construction.

Fig. 2. Depiction of a path colliding into a concavity, which is detected by the attach-
ment of a collision detection tile. Upon connecting, the collision detection tile initiates
a q message which causes all outward c glues to deactivate and x2 glues to turn on.
This also causes the collision detection tile to fall off.

3.2 Electing a Leader and Casting a Mold of α

In this section, we assume that the last added layer F of the frame has completed
growth and is rectangular. Here we give a high-level description of what it means
to elect a leader tile of layer 1 and how this is achieved. (See [8] for more details.)
When F completes the growth of a rectangle, it will pass a detach message CW
through each tile of F back to the only CGSE belonging to F , which we denote by
CGF . When the d message is received along the north edge of the northernmost
tile of CGF , it initiates a series of signals so that after F detaches, the remaining
assembly exposes a strength-2 glue. This strength-2 glue is exposed so that a
singleton tile can bind to it. This binding event initiates the signals that “scan”
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Fig. 3. An example of electing a CGSE . The particular CGSE that is elected has a
corner tile that is the easternmost tile of the southernmost tiles of layer 1.

from right to left for the first corner tile of a CGSE belonging to layer 1. Notice
that this will be the easternmost tile of the southernmost tiles belonging to
layer 1. The tile directly to the west of this tile is called the leader tile of layer 1.
For an overview see Fig. 3.

Now that a leader is elected, note that layer 1 need not completely surround
α. In other words, there may be some empty tile locations adjacent to tiles of
α. In the next section, we show how to “complete” layer 1 so that for every
tile location adjacent to a tile of α, this location contains a tile of layer 1. At
a high-level, we describe signals and tiles that “extend” layer 1 of the frame to
completely surround α by passing a g message CCW around α. Starting with the
leader tile, as this message is passed, it activates glues which we use to replicate
α. The leader tile exposes a unique glue.

Once we have exposed glues that will allow for the replication of α, we prop-
agate a br message through layer 1 of the frame that deactivates all of the x′

glues of layer 1 except for the x′ glue on the north edges of the leader tile. This
will allow α to disassociate from the frame and allow the frame to be used to
replicate α.

3.3 Correctness of the Frame Construction

The goal of the frame construction is to result in an assembly which completely
encases α, making a perfect mold of its shape, and then detaches. Furthermore,
and extremely importantly, that mold must have uniquely identified exactly one
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tile on its interior (i.e. its “elected leader”). We now state the properties which
are guaranteed by the frame construction. Their proofs can be found in [8].

First, for notation we will refer to the collision detections tiles as TCD ⊂ T ,
the tile type(s) which make up α as Tα, and the remaining tiles as Tframe =
(T − TCD)-Tα.

Lemma 1. For each STAM system T = (T, α, 2) with tile set T (i.e. the frame
building tile set) and input assembly α, there exists some constant cα such that
regardless of the assembly sequence, after c tile attachments a rectangular frame
layer of tiles in Tframe will have grown around α.

Lemma 2. For each STAM system T = (T, α, 2) with tile set T (i.e. the frame
building tile set) and input assembly α, as a frame assembly grows, no subassem-
bly containing tiles of Tframe can completely detach from the assembly unless it
consists of a path which forms a complete and exact rectangle. Furthermore, the
first such rectangular path will detach and then no further layers will grow.

Lemma 3. For each STAM system T = (T, α, 2) with tile set T (i.e. the frame
building tile set) and input assembly α, as a frame assembly grows, the eventual
detachment of the rectangular layer will result in a single tile of the frame (the
leader), which is adjacent to a location of α, activating a z glue.

Lemma 4. The leader tile will initiate a message which will propagate around
α and guarantee that for every location directly or diagonally adjacent to a tile
in α, layer 1 contains a tile in this location. Moreover, after all pending signals
of the br message have fired, the entire frame assembly detaches from α exposing
on its interior a unique glue activated on only the leader.

Lemma 5. Let β and γ be distinct producible assemblies of T that each have
an input assembly as a subassembly. Then β and γ cannot bind.

In Theorem 1, let T = (T, σ, 2) be a STAM system such that T is the frame
building tile set given by the construction in Sect. 3 and σ is a set of input
shape assemblies. Given an input shape assembly α, and a TAS T , we say that a
terminal assembly β is a completed frame assembly for α that exposes a unique
glue, z say, if (after some translation of the locations in dom (β)) there is a single
finite connected component of the complement of dom (β) in Z

2 that is equal to
dom (α), and moreover, the tiles of β at locations adjacent to locations of dom
(α) expose glues on the perimeter of β such that there is a single tile (a leader
tile) which exposes z on a single edge of the perimeter of β.

Theorem 1. For any finite set σ of input shape assemblies, if β∈ A��[T ], then
either β is in σ, β is a completed frame assembly for α that exposes a unique
glue, which we denote by z, or β does not expose z on its perimeter (for example,
the rectangular frame layer that detaches in our frame construction).

Proof. This follows directly from the Lemmas 1, 2, 3, 4, and 5.
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4 Replication

In this section, we provide a construction in the STAM which is capable of
replicating the shapes of a given set of input assemblies with the restriction that
the shapes of the input assembly cannot be disconnected by removing a single
tile, i.e. shapes with minimum width (min-width) 2. Furthermore, we show this
replication can be done in an exponential manner.

4.1 Exponential, Unbounded Replication

We now define what it means for an STAM system to replicate a shape P . In
the following definition, we assume that the input assemblies σ1, σ2, ..., σn all
have the same glue on each edge of their perimeter and there is only one of
each in the system. We say that an STAM system T = (T, {σ1, σ2, ..., σn}, τ)
infinitely replicates the shapes P1, P2, ..., Pn provided that 1) dom σi = Pi for all
i, 2) there are a bounded number of different terminal assemblies, and 3) there
are an infinite number of assemblies of shape Pi for all i. We call assemblies
σ1, σ2, ..., σn replicable supertiles. In general, a replicable supertile in a system
T is a supertile which can be “replicated”.

In the replication process for a shape P , we consider a time step to be pro-
ducing a new assembly α with dom α = P . We say that an STAM system T
exponentially replicates without bound the shapes P1, P2, ..., Pn provided that
(1) the system T infinitely replicates the shapes P1, P2, ..., Pn, (2) the number
of (super)tile attachment and/or detachments required in the creation of a copy
of shape Pi (i.e. one time step) is bounded by poly(|Pi|), (3) every (super)tile
attachment involves a singleton tile or a two tile assembly and an existing assem-
bly that is replicating Pi for some i (i.e. tiles either attach to a frame layer or
attach as filler tiles); and moreover, all supertile detachment involves either a
single tile wide rectangle detaching from a frame, a completed frame detach-
ing from a seed shape assembly Pi for some i, or a completed frame detaching
from a replicated shape assembly Pi for some i, and (4) if there are n copies of
the shape Pi at time step t, then there are 2n copies of the shape Pi at time
step t + 1. Though this definition is specific to the replication technique given
by our construction, it is motivated by the observation that for a single shape
P , if a system T exponentially replicates without bound the shape P , then T
exponentially replicates the shape P according to the more general definition of
exponential replication given in [9] (Definition 3).

Theorem 2. For any finite set of hole-free, min-width 2 shapes P = {P1, P2, ...,
Pn}, there exists an STAM system T = (T, σP , 2), with σP a set of n assemblies,
one of each shape in P , and T exponentially replicates without bound all shapes
in P .

We now provide a high level overview of the construction. Let P be a connected,
hole-free, min-width 2 shape. Our construction begins with designing a tile set
that builds a frame around σ where dom (σ) = P which detaches upon comple-
tion. Next, we design tiles so that an inner ring forms within the completed ring.
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Once this ring within a ring is complete, it detaches and fills in its interior.
The outer ring is then free to make another copy while the interior of the inner
ring can host the growth of another frame.

Our construction begins with adding tiles to our tile set which build a frame
around σ using the machinery from the previous sections. We design our tile
set for this frame system so that once the frame completes, it detaches from σ
with (1) exactly one south east corner of the frame which exposes a z glue on
the north of the west most tile and a y glue on the west side of the north most
tile of that corner, and (2) on every other interior side of the frame, a y glue is
exposed. We refer to this frame as the outer frame.

To construct the set of tiles which forms an inner ring inside the outer frame,
we begin by adding to our tile set the tiles shown in Fig. 4.

(a) The tile
which begins
the growth
of the inner
frame.

(b) A north
crawler tile
which prop-
agates the w
signal north.

(c) The “duple” which al-
lows the w signal to propa-
gate to the east when there
is not a y glue for a north
crawler tile to cooperatively
bind to.

(d) The “filler”
tile.

Fig. 4. The partial tile set which builds an inner frame and fills it.

To complete the tile set for the inner frame, we add rotated versions of
each of the tiles discussed so far to T (except for the start tile) so that the w
signal may be propagated to the north, east, west, and south of the frame in a
counterclockwise fashion.

We now modify the tiles discussed above, so that (1) the inner frame separates
from the outer frame, (2) the inner frame fills its interior with tiles and (3) the
inner frame exposes x glues along its border like the original shape. To allow
the inner frame to detach, we overlay signals on all of the tiles which turn off
all of the y′ glues on the inner frame. We add these signals so that this cascade
of signals is triggered once the w signal reaches the start tile. To ensure we do
not have any extra exposed glues after our frame detaches, we add these signals
so that they follow the w signal (see [8]for signal following gadgetry). To fill in
the shape, we once again overlay signals on the existing tile set so that when
the signal returns to the initial tile, it initiates a signal which exposes strength 2
fill glues allowing for the attachment of “filler tiles” on the interior of the inner
frame. These filler tiles simply attach and trigger signals on all 3 remaining sides
which allow for the attachment of more filler tiles. Next, we add signals to the
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y′ glues on the tiles in the inner frame so that when a y′ glue attaches to a y
glue on the outer frame, it activates an x glue on the same side.

Frame Example. Figure 5 shows a schematic diagram of the propagation of the
w signal. Notice that the w signal always attempts to take the counterclockwise
most path. It does this by “bouncing” off of glues of existing tiles until it finds
an edge which does not have a tile abutting it.

(a) (b)

Fig. 5. A schematic view of how the w signal is passed through the inner frame. The
darkly shaded tiles represent the outer frame and the lightly shaded tiles represent the
tiles composing the inner frame. The path through the tiles indicates the flow of the w
signals through the inner frame.

Exponential, Unbounded Replication of Shapes at Scale Factor 2. Since
all shapes at scale factor 2 are min-width 2 shapes, Theorem 2 yields the following
corollary.

Corollary 1. For any finite set of hole-free shapes P = {P1, P2, ..., Pn}, let
P ′ = {P ′

1, P
′
2, ..., P

′
n} be the shapes of P at scale factor 2. Then, there exists an

STAM system T = (T, σ′
P , 2), with σ′

P a set of n assemblies, one of each shape
in P ′, and T exponentially replicates without bound all shapes in P ′.
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Abstract. Consider the holiday season, where there are n players who
would like to exchange gifts. That is, we would like to generate a ran-
dom permutation having no fixed point. It is known that such a random
permutation can be obtained in a hidden form by using a number of
physical cards of four colors with identical backs, guaranteeing that it
has no fixed point (without revealing the permutation itself). This paper
deals with such a problem and improves the known result: whereas the
known protocol needs O(n2) cards of four colors, our efficient protocol
uses only O(n logn) cards of two colors.

1 Introduction

Consider the holiday season, where there are n players who would like to
exchange gifts. We wish to avoid the undesirable situation in which a player
must buy a present for himself/herself. That is, we need to produce a random
permutation π ∈ Sn that has no fixed point, where Sn denotes the symmetric
group of degree n (throughout this paper). There is an unconventional solution
to the “no fixed point” problem, i.e., it is known that such a random permuta-
tion can be obtained in a hidden form by using a number of physical cards of
four colors, say ♣ , ♥ , ♦ , and ♠ ,1 with identical backs ? , guaranteeing that
it has no fixed point (without revealing the permutation itself) [3]. This paper
deals with such a problem and proposes an efficient approach that improves the
known result.

1.1 Known Method for Generating a Random Permutation

In 1993, Crépeau and Kilian gave a card-based protocol for generating a random
permutation π ∈ Sn without any fixed point [3]. Their protocol produces a pile
1 Throughout this paper, we say that a card has the same “color” as another one if

they have the same pattern on their face sides.
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of n cards that consists of (n − 1) ♣ s and one ♥ with their faces down (on the
table) for every player pi, 1 ≤ i ≤ n:

pi : ? ? · · · ? · · · ? .

The position of card ♥ corresponds to the value of π(i) when all the n cards
are revealed:

pi :
1

♣
2

♣ · · ·
π(i)

♥ · · ·
n

♣ .

Thus, if player pi looks at his/her pile privately, then the information about who
pi is going to buy a present for will be kept secret.

Because the protocol produces a pile of such cards for each of the n players, as
seen above, it uses n(n − 1) ♣ s and n ♥ s. In addition, it requires a number of
cards of different colors, namely n2/2 ♦ s and n2/2 ♠ s. Thus, the known method
needs 2n2 cards of four colors in total2. Further details are given in Sect. 2.

1.2 Our Results and Related Work

Table 1 summarizes both the known result and our results. As mentioned above,
to generate a random permutation without fixed points, the known method
[3] requires 2n2 cards of four colors. In this paper, we reduce the number of
required colors and cards. First, we devise a new shuffling operation called a
“pile-scramble shuffle” in Sect. 3. Using this new shuffle, we can enhance the
efficiency of the known protocol, and consequently, we can show that n2 cards
of two colors are sufficient. We then show in Sect. 4 that (2n�log n	 + 6) cards3

of two colors are sufficient to solve the “no fixed point” problem by considering
another expression of each player’s index.

Table 1. Performance of each protocol

No. of colors No. of cards

Known protocol [3] (§2) 4 2n2

Improvement with pile-scramble shuffle (§3) 2 n2

Our main protocol (§4) 2 2n�logn� + 6

Before presenting our protocols, we present a complete description of the
known protocol [3] in Sect. 2. Section 5 concludes this paper with some discussion.

Card-based cryptography allows us not only to generate a random permuta-
tion, but also to have various kinds of cryptographic protocols such as secure mul-
tiparty computations and zero-knowledge proof. For example, there are known

2 Note that we cannot use a standard deck of playing cards because each of them has
a unique pattern on its face side.

3 All logarithms are base 2 throughout this paper.
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protocols for securely computing AND [1,3,7,8,10,13], XOR [3,8,9], adder [6],
3-variable symmetric functions [12], and so on. Furthermore, the relationship
between playing cards and cryptography has been explored in the literature
(e.g., [2,4,5,14]).

2 Known Protocol

In this section, we present a complete description of the Crépeau-Kilian
protocol [3] that generates a hidden random permutation having no fixed point.

Assume that n players p1, p2, . . . , pn would like to produce a random permu-
tation π ∈ Sn without any fixed point. Their protocol consists of two phases, the
Random-Permutation Generating phase and the Fixed-Point Checking phase, as
follows.
[ Random-Permutation Generating phase ]

1-1. Using n(n − 1) ♣ s and n ♥ s, arrange the cards as below (putting each
♥ on the diagonal), and insert a “marker” after each row, where a marker
consists of n/2 ♦ s and n/2 ♠ s (for simplicity, n is assumed to be an even
number):

♥ ♣ · · · ♣ · · · ♣ ♣ ♦ ♦ ♦ · · · ♠ ♠ ♠
♣ ♥ · · · ♣ · · · ♣ ♣ ♦ ♦ ♦ · · · ♠ ♠ ♠

...
♣ ♣ · · · ♥ · · · ♣ ♣ ♦ ♦ ♦ · · · ♠ ♠ ♠

...
♣ ♣ · · · ♣ · · · ♣ ♥ ♦ ♦ ♦ · · · ♠ ♠ ♠ .

1-2. Turn over the cards so that they are all face down, and apply a random
cut, i.e., a cyclic shuffle, to the sequence of 2n2 cards (obtained by row-wise
concatenation).

1-3. Reveal the first card. If the face-up card is either ♣ or ♥ , go back to step
(1–2). If it is either ♦ or ♠ , i.e., a marker, then proceed to the next step.
Note that the probability of returning to step (1–2) is exactly 1/2.

1-4. Assume that the face-up card is ♦ :

♦ ? · · · ? · · · ? ? ? ? ? · · · ? ? ?
? ? · · · ? · · · ? ? ? ? ? · · · ? ? ?

...
? ? · · · ? · · · ? ? ? ? ? · · · ? ? ? .

Its right-hand card must also be a marker. Reveal the markers right next to it
one by one. After all the makers on the right side (which are � ♦ s for some �
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and n/2 ♠ s) are face up, reveal the remaining markers on the left side (where
the first card’s “left” is the last card), namely (n/2 − � − 1) ♦ s.
For the case where the first card is ♠ , we manipulate the sequence of
cards similarly to the ♦ case. Note that in this case, we start revealing the
markers toward the left side first.
Remove all of the (face-up) n markers.

1-5. After all of the n markers are removed, we regard the first n cards as the
value of π(1). That is, the pile of these n cards is assigned to player p1 and
corresponds to π(1):

p1 : ? ? · · · ? · · · ? .

1-6. Similarly, for the remaining cards, repeat steps (1-2)–(1-4) so that we obtain
piles corresponding to π(2), π(3), . . . , π(n).

[ Fixed-Point Checking phase ]

2-1. To verify that the generated permutation π has no fixed point, arrange the
piles of cards assigned to p1, p2, . . . , pn as below:

p1 : ? ? · · · ? · · · ? ?
p2 : ? ? · · · ? · · · ? ?

...
pn : ? ? · · · ? · · · ? ? .

2-2. Reveal all the cards on the diagonal to determine if they are all ♣ . If so,
π has no fixed point. If one of them is ♥ , then the pile corresponds to a
fixed point and in this case, we must return to the Random-Permutation
Generating phase.

Thus, the first phase of this protocol produces a random permutation π ∈ Sn,
and then the second phase checks that π has no fixed point. In the first phase,
we need to repeat the steps until markers are found, and hence it is a Las Vegas
algorithm taking 2n trials on average. With respect to the second phase, note
that in general, the probability that a random permutation π ∈ Sn has no fixed
point is

∑n
i=0(−1)i/i!, which is approximately 1/e, where e is the base of the

natural logarithm [3]. Therefore, the average number of how many times we need
to execute the Fixed-Point Checking phase is approximately e ≈ 2.7.

This is the existing protocol for solving the “no fixed point” problem. It uses
2n2 cards of four colors, as detailed above. We improve on this efficiency in the
succeeding sections.

3 Pile-Scramble Shuffle

In this section, we focus on the process of producing a random permutation and
propose an efficient method for achieving this.
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Remember that the known protocol [3] uses random cuts and markers to
generate a random permutation, as shown in the preceding section. That is, in
order to shuffle n piles (each of which consists of n cards and is assigned to a
player), we repeatedly apply a random cut to create each value of π(i) one by
one, while markers are used as “delimiters.” Here, instead of using markers, we
consider a somewhat more direct way of shuffling piles.

Assume that there are a number of face-down cards that are divided into n
piles of the same size. We denote each pile by pilei, 1 ≤ i ≤ n. Given a sequence
of piles (pile1, pile2, pile3, ..., pilen), consider a shuffle operation that outputs
(pileπ(1), pileπ(2), pileπ(3), ..., pileπ(n)), where π ∈ Sn is a random permutation.
As we now have n piles, a permutation is randomly chosen from the n! possi-
bilities. We call such a shuffling operation a pile-scramble shuffle. We believe
that the pile-scramble shuffle can be easily implemented by human beings using
rubber bands, clips, envelopes, or something similar.

If steps (1-2)–(1-6) in the Random-Permutation Generating phase of the
known protocol [3] introduced in Sect. 2 are replaced with the pile-scramble
shuffle, it is obvious that n2 cards of two colors are sufficient to produce a
random permutation. That is, we can generate a random permutation without
any marker, meaning that we do not require any trials, and hence can output
a random permutation after exactly one pile-scramble shuffle. Therefore, taking
the Fixed-Point Checking phase into account, such an improved protocol needs
only n2 cards of two colors and takes an average number of about 2.7 trials
to generate a random permutation having no fixed point. Thus, we are able to
reduce the numbers of required cards and colors by half (see Table 1 again).

In the next section, we further reduce the number of required cards.

4 Our Main Protocol

In this section, we propose a more efficient method than those mentioned pre-
viously. Our main protocol requires only (2n�log n	 + 6) cards to generate a
random permutation having no fixed point.

First, in Sect. 4.1, we show that considering a binary representation of play-
ers’ indices dramatically reduces the number of required cards. Next, in Sect. 4.2,
we present a sub-protocol to check for fixed points under such a binary repre-
sentation. Finally, in Sect. 4.3, by combining these components, we present a
complete description of our protocol.

4.1 Binary Representation

In the Crépeau-Kilian protocol [3] presented in Sect. 2, each player’s index i ∈
{1, 2, . . . , n} and its permuted position π(i) are represented by a pile of n cards,
i.e., (n − 1) ♣ s and one ♥ , say

pi :
1

♣
2

♣ · · ·
i

♥ · · ·
n

♣ or
1

♣
2

♣ · · ·
π(i)

♥ · · ·
n

♣ .
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In contrast, we represent this information using a binary representation with
2�log n	 cards as follows.

To deal with Boolean values, following the previous studies (e.g., [1,3,10,13]),
we use the encoding rule with a pair of cards:

♣ ♥ = 0, ♥ ♣ = 1. (1)

For a bit x ∈ {0, 1}, when two face-down cards ? ? have a value equaling
x according to encoding (1) above, the pair of these face-down cards is called a
commitment to x, and is written as

? ?︸ ︷︷ ︸
x

.

Under such an encoding rule, each player’s index can be represented by �log n	
commitments, namely 2�log n	 cards. Therefore, n players’ indices are repre-
sented naturally by 2n�log n	 cards. Thus, we can greatly reduce the number of
required cards to express players’ indices.

It is obvious that we can easily produce a random permutation by applying
a pile-scramble shuffle (explained in Sect. 3) to these n piles that are based on
this binary expression.

4.2 How to Check for Fixed Points

In this subsection, we present a sub-protocol to check that a random permutation
in the form of binary representation has no fixed point.

Assume that a random permutation π ∈ Sn has been generated by a pile-
scramble shuffle, as shown in Sect. 3, based on the binary representation shown
in Sect. 4.1. That is, a pile of �log n	 commitments is assigned to each player pi:

pi : ? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

,

where and hereafter, log n in the subscript means �log n	. Because the pile above
corresponds to π(i), we have

(π(i) − 1)10 = (alog n · · · a2a1)2.

In order to verify that the pile is not a fixed point, namely π(i) �= i, we check
whether the equation below holds:

(a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ · · · ∧ (alog n ⊕ blog n) = 0 , (2)

where ⊕ denotes the exclusive-or (XOR) operation and bits b1, b2, · · · , blog n are
defined as

(i − 1)10 = (blog n · · · b2b1)2.
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Aiming to compute Eq. (2) efficiently without revealing values ai, 1 ≤ i ≤
�log n	, we first introduce the existing copy protocol [8], and then present a “one-
input-preserving” AND protocol. Finally we describe a sub-protocol for checking
that Eq. (2) holds.

Copy Protocol. Give a commitment to a bit x together with four additional
cards, the known copy protocol [8] generates two copied commitments to x, as
follows.

1. Arrange two commitments to 0:

? ?︸ ︷︷ ︸
x

♣ ♥ ♣ ♥ → ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

.

2. Rearrange the order of the sequence as:

? ? ? ? ? ?
�

������ ���
�

��	
? ? ? ? ? ? .

3. Bisect the sequence of six cards and switch the two portions randomly (we
call this a random bisection cut [8] and denote it by [ · | · ] ):

[
? ? ?

∣∣∣ ? ? ?
]

→ ? ? ? ? ? ? .

4. Rearrange the order of the sequence as:

? ? ? ? ? ?
���

�
���

�
��	 ���

? ? ? ? ? ? .

We then have
? ?︸ ︷︷ ︸
x⊕r

? ?︸ ︷︷ ︸
r

? ?︸ ︷︷ ︸
r

,

where r is a (uniformly distributed) random bit because of the random bisec-
tion cut.

5. Reveal the first two cards from the left. We then have

♣ ♥ ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
x

or ♥ ♣ ? ?︸ ︷︷ ︸
x̄

? ?︸ ︷︷ ︸
x̄

.

Thus, we obtain two copied commitments to x. In the latter case, we can easily
convert x to x using the NOT operation that swaps the left and right cards. In
addition, the two face-up cards ♣ ♥ are available for another computation.



222 R. Ishikawa et al.

One-input-preserving AND Protocol. We present a one-input-preserving
AND protocol that can keep one of input commitments after the AND computa-
tion. The protocol can be constructed immediately based on two known ideas:
the AND protocol [8] and the half-adder protocol [6].

First, we present some notation. For a pair of bits (x, y), define operations
get and shift as

get0(x, y) = x; get1(x, y) = y,

shift0(x, y) = (x, y); shift1(x, y) = (y, x).

Note that
a ∧ b = geta⊕r(shiftr(0, b)) (3)

for an arbitrary bit r ∈ {0, 1}. In addition, for two bits x and y, the expression

? ? ? ?︸ ︷︷ ︸
(x,y)

means
? ?︸ ︷︷ ︸

x

? ?︸ ︷︷ ︸
y

.

The following is a one-input-preserving AND protocol that produces not only
a commitment to a ∧ b but also a commitment to the input a using eight cards.

1. In addition to the input commitments to a and b, arrange two commitments
to 0 as follows:

? ?︸ ︷︷ ︸
a

♣ ♥ ♣ ♥ ? ?︸ ︷︷ ︸
b

→ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

2. Rearrange the order of the sequence as:

? ? ? ? ? ? ? ?





����

�
���

�
��	

�
��	

? ? ? ? ? ? ? ? .

3. Apply a random bisection cut:
[
? ? ? ?

∣∣∣ ? ? ? ?
]

→ ? ? ? ? ? ? ? ? .

4. Rearrange the order of the sequence as:

? ? ? ? ? ? ? ?
���

�
���
�

���
�����

�
��	

? ? ? ? ? ? ? ? .

We then have
? ?︸ ︷︷ ︸
a⊕r

? ?︸ ︷︷ ︸
r

? ? ? ?︸ ︷︷ ︸
shiftr(0,b)

,

where r is a (uniformly distributed) random bit.
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5. Reveal the first two cards. If they are ♣ ♥ , we have a ⊕ r = 0, i.e., r = a.
Therefore, the output is (see Eq. (3)):

♣ ♥ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
a∧b

? ? .

If they are ♥ ♣ , we have a ⊕ r = 1, i.e., r = ā. Therefore, the output is:

♥ ♣ ? ?︸ ︷︷ ︸
a

? ? ? ?︸ ︷︷ ︸
a∧b

.

In this way, we can obtain commitments to both a ∧ b and a. The two face-
up cards ♣ ♥ are still available for another computation. In addition, the two
cards of the remaining commitment can also be available after they are shuffled.

Sub-protocol for Checking Eq. (2). Given the discussion above, we are ready
to present a procedure for checking Eq. (2) to determine if there are fixed points.
Given a pile

pi : ? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

,

the following sub-protocol computes the value of

(a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ · · · ∧ (alog n ⊕ blog n),

where
(i − 1)10 = (blog n · · · b2b1)2.

1. Arrange �log n	 input commitments and six additional cards as follows:

? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

♣ ♥ ♣ ♥ ♣ ♥ .

2. Copy the commitment to a1 using the copy protocol [8] mentioned above:

? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

? ?︸ ︷︷ ︸
a1

♣ ♥ ♣ ♥ .

3. Apply the NOT computation depending on the values of b1 and b2 so that
we have

? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
a2⊕b2

? ?︸ ︷︷ ︸
a1⊕b1

? ?︸ ︷︷ ︸
a1

♣ ♥ ♣ ♥ .

Note that each value of bi is public.
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4. Apply the one-input-preserving AND protocol presented above to obtain com-
mitments to (a1 ⊕ b1) ∧ (a2 ⊕ b2) and (a2 ⊕ b2). Furthermore, apply the NOT
computation to the latter commitment depending on the value of b2. We then
have

? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
(a1⊕b1)∧(a2⊕b2)

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

♣ ♥ ♣ ♥ .

5. Similarly, obtain commitments to (a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ (a3 ⊕ b3) and a3:

? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
(a1⊕b1)∧(a2⊕b2)∧(a3⊕b3)

? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

♣ ♥ ♣ ♥ .

Repeat this until we have

? ?︸ ︷︷ ︸
(a1⊕b1)∧(a2⊕b2)∧···∧(alog n⊕blog n)

? ?︸ ︷︷ ︸
alog n

· · · ? ?︸ ︷︷ ︸
a3

? ?︸ ︷︷ ︸
a2

? ?︸ ︷︷ ︸
a1

♣ ♥ ♣ ♥ .

6. Reveal the commitment to (a1 ⊕ b1) ∧ (a2 ⊕ b2) ∧ · · · ∧ (alog n ⊕ blog n). If the
value is 1, then this is a fixed point. Otherwise, it is not a fixed point. It
should be noted that in either case, any commitments to a1, a2, . . . , alog n are
not lost.

4.3 Description of Our Proposed Protocol

We are now ready to present an efficient protocol for generating a random permu-
tation having no fixed point. Our protocol uses (2n�log n	+6) cards to produce
n piles corresponding to this random permutation.

1. Using n�log n	 ♣ s and n�log n	 ♥ s, arrange n�log n	 commitments accord-
ing to players’ indices based on the binary representation:

p1 : ? ?︸ ︷︷ ︸
0

· · · ? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

p2 : ? ?︸ ︷︷ ︸
0

· · · ? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
1

...

pn : ? ?︸ ︷︷ ︸
1

· · · ? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
1

.
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2. Regarding each row as a pile, apply a pile-scramble shuffle to the n piles; we
then obtain a random permutation π in which the i-th pile corresponds to
π(i):

p1 : ? ? · · · ? ? ? ?

p2 : ? ? · · · ? ? ? ?
...

pn : ? ? · · · ? ? ? ? .

3. Using six additional cards, apply the sub-protocol presented in Sect. 4.2 to
confirm that π has no fixed point, that is, to verify that pi is not a fixed point
for every i, 1 ≤ i ≤ n, in turns. If we find a fixed point, then we go back to
step (2). If we confirm that there is no fixed point, the permutation π is a
desired one.

This is our main protocol for solving the “no fixed point” problem with
O(n log n) cards.

5 Conclusions

The known protocol [3] requires 2n2 cards of four colors to generate a random
permutation having no fixed point. In this paper, we first devised a new shuffle
operation called a pile-scramble shuffle that immediately enabled us to achieve
the same task using only n2 cards of two colors. Furthermore, we showed that
using a binary representation dramatically reduces the number of required cards,
that is, (2n�log n	 + 6) cards of two colors are sufficient.

In our protocol, the 2n�log n	 cards are used to hold each players’ index, and
the remaining six cards correspond to the additional cards ♣ ♥ ♣ ♥ ♣ ♥
required to execute the sub-protocol for checking fixed points. This comes from
the fact that the one-input-preserving AND protocol given in Sect. 4.2 requires
four additional cards. Recently, it was shown that such a one-input-preserving
AND computation can be done with only two additional cards [11]. There-
fore, applying this recently invented protocol [11], we can reduce the number
of required cards to 2n�log n	 + 4.

In addition to the protocol solving the “no fixed point” problem, Crépeau
and Kilian designed a general protocol for producing a random permutation that
satisfies a predetermined condition such as having no short cycle of length at
most k, and showed that it can be applied to the “Discreet Solitary Games” [3].
Thus, it is intriguing future work to design an efficient way to determine whether
a given permutation based on our binary representation has k-cycles.

Although the card-based protocol is an unconventional way to secure multi-
party computations, this approach has many advantages. The most important
feature is that even nonspecialists are able to easily understand why the com-
putation is secure.
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Abstract. The gene assembly process in ciliates consists of a mas-
sive amount of DNA excision from the micronucleus and sometimes the
rearrangement of the rest of the DNA sequences. Several models exist
that describe certain parts of this process. In this research, a simulation
is created and tested with real data to test the feasibility of the 2JLP
model. Several parameters are introduced in the model that are used to
test ambiguities or edge cases of the biological model. Parameters are
systematically varied within the simulation to try to find their optimal
values. Interestingly, a negative correlation is found between the degree
to which the simulation successfully descrambles genes, and a parame-
ter that is used to filter out scnRNAs that are similar to IES specific
sequences from the macronucleus. This provides in silico evidence that
if a scnRNA consists of both a portion of MDS and IES, then from the
perspective of maximizing the accuracy of the descrambling, it is desir-
able to filter out this scnRNA. The simulator successfully performs the
gene assembly process whether the inputs are scrambled or unscrambled
DNA sequences. On average, before the proof checking stage that is in
the model, the descrambling intermediate genes are 91.1 % similar to the
descrambled genes. After the proof checking stage, the intermediate genes
are 99.4 % similar. We hope that this work and further simulations can
serve as a foundation for future computational and mathematical study
of descrambling, and to help inform and refine the biological model.

Keywords: Biological simulation · Template guided recombination ·
Scan RNAs · Scrambled genes · Gene assembly · Ciliates · Natural
computing

1 Introduction

Ciliates are a group of unicellular protozoa characterized by the presence of hair-
like organelles called cilia. Worldwide, 4,500 different species of ciliates are
known [1]. Two distinct types of nuclei are present in each cell, called the micronu-
cleus and the macronucleus [14]. The macronucleus produces all the RNA

This research was supported by a grant from the Natural Sciences and Engineering
Research Council of Canada.

c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 227–238, 2015.
DOI: 10.1007/978-3-319-21819-9 17



228 Md.S.I. Mahmud and I. McQuillan

and proteins needed for day-to-day operations, and the micronucleus remains silent
functionally, except after conjugation when certain micronucleus specific genes get
expressed [3]. During the period of conjugation, ciliates destroy their macronu-
clei and exchange haploid micronuclei. Each then constructs a fully functional
macronucleus from the micronuclear genome by doing a massive quantity of DNA
excision and rearrangement [6,8,13].

Micronuclear genes have two classes of DNA sequences— non-coding DNA
segments that get excised in the conversion, known as IESs (internal eliminated
sequences) and segments that are retained, known as MDSs (macronuclear des-
tined DNA sequences). A functional macronucleus can be constructed by deleting
IESs and merging MDSs from the micronucleus. Different ciliates perform the
gene assembly process in different ways. In the case of two genera of ciliates
Tetrahymena and Euplotes, the MDSs of the micronucleus are interrupted by
IESs but the MDSs occur in the same order as in the macronucleus. But in the
case of stichotrichs (containing genera Stylonychia and Oxytricha), the MDSs
are not only interrupted by IESs, but the MDSs can also occur in a scrambled
order.

Figure 1 shows a diagram of a scrambled micronuclear gene, and the descram-
bled variant.

Fig. 1. During macronuclear development, IESs (the lines between the boxes) are
excised from the micronucleus and the MDSs are joined in the correct order to yield a
macronuclear gene.

In stichotrichous ciliates, IESs are flanked by repeat sequences called
pointers [18]. These pointers are less than 20 bp in size with one copy of the
pointer at the 3′-end of one MDS and the other copy at the 5′-end of the next
MDS (next MDS according to the correct ordering in the macronucleus) [15,17].
IESs are excised between two adjacent MDSs along with one copy of the pointer.

There are a variety of biological models and hypotheses that have been cre-
ated to model the gene assembly process in ciliates, such as the intramolecular
model [16], the intermolecular model [7], the scnRNA model [9], the template
guided model [17], and the 2JLP model [5] (to be described in Sect. 2). And from
a number of those, formal models have been created in an attempt to capture
the biological models. All the existing models appear to capture at least part of
the gene assembly process, even though some have experimentally verified limi-
tations in scope [10]. More recently, the 2JLP model [5] was created, and involves
a combination of the scnRNA model for excising IESs from the micronucleus,
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and the template-guided model for removing the remaining IESs, for rearranging
MDSs, and for a proofreading process.

This paper briefly describes existing formal and biological models as well as
known limitations in Sect. 2. Then, a simulation is presented together with the
algorithms to capture and analyze the 2JLP model. The implemented algorithms
are provided and discussed in Sect. 3. Later on, the outcome of the simulation
is discussed based on its use with real micronuclear and macronuclear genes.
In the simulator, some important parameters are considered such as the mini-
mum value needed for sufficient similarity between scnRNAs (small RNAs) and
MDSs, and the minimum value to needed for sufficient similarity between filtered
scnRNAs and the new micronucleus in order to identify subwords for deletion.
These parameters are used to deal with ambiguities in the biological model and
to determine optimal values according to the simulation. Indeed, the primary
motivation of the work lies in its potential towards:

– unifying existing models and new aspects into well-defined algorithms while
capturing the biological 2JLP model, thereby establishing which aspects of
existing models are compatible with each other,

– building simulations to test the feasibility of the model and its consistency
with real micronuclear and macronuclear genes,

– and testing and resolving ambiguities of existing models through systematic
variation of parameters.

Furthermore, as far as the authors are aware, the use of computer simulations
to test a gene assembly model is novel, and may contribute techniques towards
new biological models such as the more recent piRNA model [1] for Oxytricha,
which has some similar aspects.

2 Existing Models

A variety of biological and formal models have emerged that attempt to explain
different parts of the gene assembly process. In this section, we briefly describe
some of the models, as they relate to the 2JLP model.

Landweber and Kari proposed a model for gene assembly known as the inter-
molecular model [7]. It consists of one unary intramolecular and two binary inter-
molecular operations of DNA recombination on pointers. Another model for gene
assembly was introduced by Prescott et al. [16] and Ehrenfeucht et al. [4] called
the intramolecular model. It consists of three unary molecular operations based
on pointers. One of the major limitations in scope of these models is that they
do not discuss the process of pointer identification, as pointers are too short to
uniquely identify their other copy.

A model for the gene assembly process was proposed by Mochizuki et al. in
2002 based on small RNAs, called the scan RNA (scnRNA) model [9]. They pro-
posed that during the early conjugation period, a RNAi-related pathway starts
with a bi-directional transcription of the micronucleus. From that, it generates
small RNAs of size 28 − 29 bp also known as scnRNAs. These localize to the
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parental macronucleus where all scnRNAs that are similar to some segment of
the parental macronucleus degrades. The rest of the scnRNAs that fail to degrade
are therefore likely similar to IES-specific sequences. Then these IES-specific scn-
RNAs travel to the developing macronucleus where they eliminate subsequences
that are similar. A limitation of this model is that it does not address MDS
reordering. Moreover, the model does not easily explain IES removal for cases
where IESs are smaller than scnRNAs.

In a key experiment on the ciliate Paramecium tetraurelia (that does not
have scrambling, but does have IESs), an IES was injected into a macronucleus
before mating (so that a portion of the macronuclear gene “looked like” the
micronuclear version, with two MDSs separated by an IES) [15]. Then, the cili-
ate was allowed to traverse into the sexual cycle, after which it was found that
this particular IES was present in the structure of the new macronucleus. As a
result of this experiment, it was thought that some sequence-specific information
must be transferred from the parental macronucleus to the new macronucleus.
Hence, a biological model of gene assembly was introduced by Prescott et al. in
2003 and is known as the template guided model [17]. In this model a molecule
(later determined to be RNA [12]) that has been generated from the parental
macronucleus is used as a template to guide both IES removal and MDS reorder-
ing in the developing macronucleus. A limitation of this model can be seen by
examining the notion of cryptic pointers, which are direct repeats of length 1–8
that are in proximity to real pointers. In fact, despite not being the real pointers,
ciliates frequently use cryptic pointers for splicing. It was observed in an experi-
ment [10] that IESs are deleted randomly and sometimes imprecisely (when IESs
are removed based on cryptic pointers) at the middle-late stage of macronuclear
development. These become corrected at a later stage.

Despite the limitations of these models, there is indeed evidence that the
scnRNA model does filter out IESs from the new micronucleus. There is also
other evidence that some parts of the template model must also be true, with
template molecules being present, and influencing the resulting macronucleus.
Based on this, a biological model of gene assembly was proposed by Jönsson
et al. [5]. It is known as the 2JLP model, and it unifies portions of the previous
models, which all occur within a temporal procedure (Fig. 2) summarized as
follows:

Definition 1 (2JLP Model). This model can be defined by the following steps:

1. During the early period after conjugation, each ciliate generates scnRNAs.
The genome of the micronucleus is transcribed bi-directionally and the result-
ing transcripts generate double-stranded RNA molecules which are eventually
processed into scnRNAs.

2. These scnRNAs travel to the parental macronucleus and any scnRNAs similar
to DNA sequences in the parental macronucleus are degraded.

3. In the late conjugation stages, the remaining portion of the scnRNAs (that are
similar to IESs) are transferred to the developing new macronucleus, where
they target and identify IESs to be eliminated by base pairing between repeats
(either real or cryptic pointers).
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4. At the same time, the template guided model generates template RNAs from
the parental macronucleus to guide the alignment of MDSs and their pointer
sequences, and produces the new macronucleus.

5. In the case of scrambled genes, the template RNAs perform unscrambling of
MDSs according to their order in the macronuclear chromosomes. Homol-
ogous recombination between the aligned pointers splice out IESs. For IES
excision, if cryptic pointers are used instead of real pointers, a proofreading
mechanism guided by the template ensures the missing sequences are filled in
and the extra sequences are removed to create full-length chromosomes.

More recently the procedure has been discovered to be different between
Tetrahymena and Oxytricha, where Tetrahymena uses scnRNAs from the old
micronucleus as in the 2JLP model, whereas Oxytricha uses 27bp small RNAs
(called piRNAs) from the old macronucleus to mark MDS regions in the develop-
ing macronucleus. A simulation involving the latter model is left as future work.

Fig. 2. The 2JLP model combines aspects from the scanRNA model and the template-
guided model to explain the gene assembly in ciliates: the whole micronuclear genome is
transcribed early in macronuclear development into long double-stranded transcripts,
which are processed into small RNAs (scnRNAs). These invade the old macronucleus.
There, scnRNAs similar to macronuclear sequences (dark blue) degrade. The rest of the
scnRNAs (red) are sent to the new micronucleus for marking and excision of IESs by
recruiting chromatin-modifying proteins to the micronuclear-specific sequences. Impre-
cisely processed sequences will be corrected by a proofreading mechanism that is guided
by template RNAs (gray). These template RNAs originate from the old macronucleus.
In scrambled genes, the template RNAs guide alignment of micronuclear MDSs in the
correct order of the template, creating a new macronucleus (Color figure online).
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3 Simulation

This section describes the implementation for the simulation of the 2JLP model.
The purpose of developing the simulation is to test the model’s feasibility, and
determine additional important aspects regarding the gene assembly process by
analysing the results with real data. These findings can be helpful for refining the
2JLP model. For example, in the algorithm, certain values are parameterized that
were left ambiguous or not described in the biological model of Definition 1. Then,
it can be tested which values for the parameters give optimal results.

Figure 3 shows the flow diagram of the pipeline used to simulate the 2JLP
model (each part explained in Sect. 3.1). Global sequence alignment and semi-
global alignment are used within, which are the standard Needleman-Wunsch
algorithm to compute the optimal global sequence alignment and its semi-global
variant [11]. For scoring alignments, a match score of 1, mismatch score of −1,
and gap penalty of −2 are used.

Fig. 3. Flow diagram of the simulator. Major functions of the simulator are represented
by green shaded rectangles. The parameters are explained in Table 1. Each part of the
pipeline will be explained in Sect. 3.1 (Color figure online).

From Fig. 3, it is shown that the simulator has five major functions (green
shaded rectangles). These are scnRNA, IES, IES deletion, rearrangement, and
correction. Among these, the scnRNA function closely simulates the construc-
tion process of scnRNAs (first step of Definition 1). The IES function sim-
ulates the mechanism of finding putative IESs (second step of Definition 1).
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The IES deletion function simulates the mechanism of deleting IESs from the
new micronucleus (third step of Definition 1). For simulating the construction
process of the new macronucleus (forth and fifth steps of Definition 1), both the
rearrangement and the correction (simulating the proof-checking step) functions
are used.

3.1 Important Parameters, Algorithms, and Methods of Evaluation

Three important parameters, threshold MDS, threshold IES, and nh are consid-
ered. They can take on a range of possible values, and all integer values within
the range are simulated for each. Their meaning and ranges are described below.

It is possible to determine “how much” of the gene has been descrambled
after each stage of the simulation by computing the similarity of the develop-
ing gene to the macronuclear gene. If the percent similarity (computed from a
global sequence alignment) between the string computed thus far shows similar-
ity to the fully descrambled variant, then it has been largely descrambled. Hence,
three percentages are calculated throughout the simulation: acc1 is computed
after deleting IESs from the micronucleus (dev mac1 ), acc2 is computed after
rearrangment based on templates (dev mac2 ), and acc3 is computed after proof
checking (new mac).

Table 1. List of the important parameters

Parameter name Range Purpose of parameter

threshold MDS 1 to 28 The minimum score of the semi-global alignment needed
for sufficient similarity between scnRNAs and old mac.

threshold IES 1 to 28 The minimum score of the semi-global alignment needed
for sufficient similarity between filtered scnRNAs and
new mic.

nh 1 to 20 The size of the neighbourhood indicates the area around
where filtered scnRNAs match the developing
macronucleus

The implemented algorithm takes three input strings: old mic, old mac, and
new mic. Of these, old mic and old mac are a single matching micronuclear gene
and macronuclear gene, respectively.

The scnRNA function generates all possible scnRNAs through a “sliding win-
dow” technique. In the scnRNA function, old mic is divided into all subwords of
length 28, as is done in step 1 of Definition 1. The output, an array called scn-
RNAs is taken along with old mac as inputs to the IES function to generate an
array called IESs. This function compares each element from scnRNAs with the
parental macronucleus, and if there is a match that is “similar enough”, it gets fil-
tered out as it will largely be MDS specific. However, “similar enough” is ambigu-
ous, and therefore a semi-global alignment between the scnRNA of length 28
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and the macronuclear gene is used with the parameter threshold MDS. This is
the parameter representing the minimum score needed to classify as “similar”.
Ultimately, the simulation is tested for all values of this parameter between 1
and 28, as there is no indication in the model as to what degree of similarity is
needed.

Then, new mic, IESs, and threshold IES are inputs to the IES deletion func-
tion to generate dev mac1 (the gene obtained after IES removal in step 3 of
Definition 1). This function has two parts. In the first part, it compares all
strings of IESs with new mic and performs a “marking of matched subwords”
(simulated by keeping track of the start and end positions in new mic of where
it matches any string in IESs). In the second part, it removes each subword from
new mic if it has a repeated segment of length between 2 and 20 “close to” the
ends of the marked portion. The range of between 2 and 20 is chosen as these are
the allowable lengths of pointers. An important aspect of this simulation is that
these repeated strings do not need to be the real pointers. Indeed, Möllenbeck
et al. [10] show that often cryptic pointers are used for splicing in proximity to
the MDS-IES junctions (see Definition 1 and the preceding discussion). Also, it
is possible that the repeated sequence is a part of an IES (which would result
in a portion of the IES remaining after deletion), but it is also possible that
the repeated sequence could be part of an MDS as well (which would result in
part of that MDS being missing). That is why in the algorithm, a parameter
named “neighbourhood (nh)” is taken to address the range of possible distances
of cryptic or real pointers to the marked portion. The model dictates that this is
close to the MDS-IES junctions and thus the parameter nh represents the largest
distance allowed, which is simulated for all values up to 20. As the selection of
repeats used for splicing is not always the same, we select repeats randomly
within the neighbourhood. However, the final descrambled gene will depend on
the random values chosen. Therefore, this step is simulated four times (repre-
sented by maxNum in Fig. 3) for each pointer, and for each value of nh to select
different repeats from new mic, eventually generating many different values of
dev mac1. The value acc1 measuring the percent similarity is stored at this
stage, for each value of dev mac1.

Then, the rearrangement function is used to generate dev mac2 by tak-
ing dev mac1, and old mac as inputs. The main purpose of this function is to
rearrange MDSs from dev mac1 based on the old macronucleus (old mac). A pre-
cise method to predict the order in which MDSs descramble is not known, and
therefore, our simulation of this stage is a simplification of the actual biolog-
ical procedure. Indeed, our method randomly picks a locus from the template
(which is the same as the parental macronuclear gene), finds a similar segment
in dev mac1 (on either the sense or antisense strand), extends in both direc-
tions, and repeats until all segments of the template are matched, and then the
matched segments are rearranged, creating dev mac2. At this stage, the second
percent identity acc2 is calculated to quantify the degree to which the gene has
been descrambled.
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At this point, the correction function is applied. In this function, the final
macronucleus (new mac) is generated by comparing dev mac2 and the template,
simulated with a sequence alignment. Based on the alignment, extra characters
are removed from dev mac2 (from gaps along the template) and missing charac-
ters are inserted (from gaps in dev mac2 ) into dev mac2. Then, the final percent
identity acc3 is calculated from the resulting descrambled gene new mac.

4 Results and Analysis

In the simulation, for each set of fixed parameters for threshold MDS, thresh-
old IES, and neighbourhood, results are calculated at three different stages to
measure the change from the new micronucleus to the new macronucleus. These
three different stages are after the IES deletion function, after the rearrangement
function, and finally after the correction function. The term accuracy is defined
to represent the degree to which descrambling has occurred at the various stages.

Input data was collected from the IES MDS Database [2]. From there, 13
real micronucleus and macronucleus matching gene pairs of the ciliate Oxytricha
trifallax are used in the simulation. Although this is a limited number of pairs
of genes, the micronuclear data contains 40,844 base pairs and the macronuclear
data contains 32,770 base pairs, and also the simulation is run many times
randomly choosing different repeats within each neighbourhood, and by trying
all combinations of parameters.

Among these 13 input pairs, pair number 7 (the Actin I gene) has a smaller
micronuclear sequence (989 bp) than its macronuclear sequence (1553 bp) due
to incomplete data. This pair will indeed appear differently in the results. There
is a very recent paper [3] on the sequencing and analysis of the micronuclear
genome of the ciliate Oxytricha trifallax. However, as it is still in draft status,
has not been used as further verification of the simulation.

For each input pair, the 15,680 different parameter combination are tested,
each generating an average value for acc1, acc2, and acc3 across all micronucleus
and macronucleus gene pairs. The combination of three parameters that gives
the maximum average acc2 score is considered to be the optimal parameters.
The reason the acc2 accuracy value (after the rearrangement function) is used
to define and to determine the optimal parameter values is because using the
accuracy after the IES deletion function (acc1 ) always gives low accuracies in
the case of scrambled genes, as rearrangement has not yet occurred, and tak-
ing the accuracies after the correction function (acc3 ) often can fix otherwise
bad alignments as the templates are used in this stage. Ideally, one would expect
that for scrambled genes, acc2 (used to determine optimal parameters) be “quite
high” to account for cryptic pointers occurring in proximity of MDS-IES junc-
tions, but not perfect as cryptic pointers do indeed occur (recall Definition 1
and preceding discussion on cryptic pointers, as sometimes IESs are eliminating
around repeats nearby to the real pointers instead of the pointers themselves).
Further, acc3 should be almost perfect to account for proof checking from tem-
plates. Thus, using the accuracy after the rearrangement function seems to be
the best way to calculate the optimal parameters and success of the simulation.
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The maximum accuracy values using acc2, occurs when the parameters of
threshold MDS is 5, threshold IES is 9, and nh is 15 (these are the values of
the parameters for which the average acc2 output is maximized across all data).
For these optimal parameters, the simulation is run multiple times (at step 3 of
Definition 1 was simulated maxNum times for each pointer selection) to calculate
the average and standard deviation of the accuracies. Table 2 shows, on average
over all gene pairs, the acc1 value is 60.5%, acc2 value is 88.5%, and acc3
value is 99.5%. Removing gene pair number 7 (due to having incomplete data)
increases the average acc2 value to 91.1%. Indeed, this number is “quite high”
but not perfect as was desirable.

Table 2. For each gene pair (indexed by the first column), the average (Avg) and
standard deviation (STD) of acc1, acc2, and acc3 are shown for the optimal parameters.
The final two rows summarize the average over all 13 genes, and over the 12 genes
without gene 7 that has incomplete data, respectively.

pair no Avg acc1 STD acc1 Avg acc2 STD acc2 Avg acc3 STD acc3

1 43 1.4 92.9 1.9 99.9 0.1

2 87.2 1.6 94.4 0.4 99.8 0.2

3 53.5 1 84.6 0.4 98.8 0.2

4 61.2 0.8 93.5 0.7 99.6 0.4

5 61.9 0.9 89.4 0.7 99.7 0.3

6 70.1 1 93.3 0.6 99.9 0.1

7 57.6 1.6 58.2 1.8 99.9 0.1

8 43.1 1.5 90.3 1.2 98.9 0.5

9 69.9 0.9 92.6 0.4 99.9 0.1

10 62.4 1 93.3 0.6 99.8 0.3

11 73.1 0.8 89.8 0.3 99.8 0.2

12 46.5 0.5 94.4 0.3 99.8 0.3

13 56.8 1.9 84.4 1.9 97.3 1.5

average 60.5 0.41 88.5 0.61 99.5 0.39

average-7 60.7 0.41 91.1 0.57 99.4 0.4

From the 2JLP model, it can be seen that the macronucleus is generated from
the micronucleus in a successive manner. Table 2 shows that acc2 is greater than
acc1 and acc3 is greater than acc2 for all input pairs, and the values of acc2 are
quite high, but not perfect, which is exactly what we expect given the nature
of cryptic pointers. And indeed, the values of acc3 are almost perfect as proof
checking can add in missing, or remove excessive information.

Of interest, in Fig. 4, a scatter plot is shown that shows the relationship
between threshold MDS and average alignment scores between the descrambled
and parental macronucleus. Here, an alignment score is calculated by dividing
it by the size of old mac and multiplying it by 100. Average alignment scores
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are calculated by the scores after the rearrangement function for all input pairs.
In the same way, the average alignment scores are calculated for each value
of threshold MDS (from 1 to 28) where threshold IES and neighbourhood (nh)
are fixed with their optimal values. The scatter plot is generated by plotting
threshold MDS on the x-axis and average alignment scores on the y-axis. The
trend-line equation is y = −1.3576x + 76.105 and the square of the correla-
tion coefficient (R2) value is 0.7435. The slope value is negative which indicates
that there is a negative correlation present in between these two variables. If
the value of threshold MDS is increased it eventually degrades the value of the
alignment score. As the R2 value is 0.7435, this indicates approximately 74% of
the variation in accuracy can be explained by threshold MDS.

Figure 4 shows that a lower value of threshold MDS is good from the perspec-
tive of maximizing the alignment score for the simulation. These lower scores for
threshold MDS occur when shorter pieces of scnRNAs are matched to the old
macronucleus at the time of filtering, similar to IES specific sequences from the
set of scnRNAs. Thus, if a scnRNA contains part of an MDS and part of an IES,
from the perspective of maximizing the alignment score of the simulation, it is
desirable to filter out this scnRNA at this stage. This is because if it does not
get filtered out then the simulation may discard the matching portion of that
scnRNA from the new micronucleus. This may result in an erroneous deletion
of an MDS from the micronucleus.

Fig. 4. Relationship between threshold MDS and average alignment scores (acc2, after
the rearrangement function, for all 13 input pairs). Here, threshold IES and nh are
fixed with the optimal values of threshold IES as 9 and nh as 15.

5 Future Directions

Currently, the simulator has been tested only for thirteen pairs of real genes.
After the assembly of the micronuclear genome emerges from draft status,
a more extensive analysis will be possible. As mentioned is Sect. 3, a new simu-
lation to capture piRNAs is desirable for Oxytricha. Furthermore, a simulation
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using scnRNAs as done in this paper using Tetrahymena data would help to
validate the hypothesized model.
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Abstract. A new variant of tissue P systems called tissue P system with
protein on cells is used in this paper. It has the ability to move proteins
between cells. It is inspired from the biology that the cells communicate
by sending and receiving signals. Signals most often move through the
cell by passing from protein to protein. In tissue P systems with protein
on cells, multisets of objects together with proteins between cells are
exchanged. We present in this paper a linear solution of the 3-coloring
problem, a well known NP-complete problem. In this new variant, these
objects called proteins are used to obtain a new solution where the num-
ber of rules is lesser than that appears in the original solution with tissue
P systems. The number of steps to obtain the solution is lesser than the
conventional tissue P system. This is a strong point when someone wants
to implement a solution in a practical way.

1 Introduction

Membrane computing is an emergent cross-disciplinary branch of Natural Com-
puting, introduced by Paun in [16]. It has received important attention from the
scientific community since then, with contributions from computer scientists,
biologists, formal linguists and complexity theoreticians, enriching each other
with results, open problems and promising new research lines.

The distinct feature of membrane computing is its distributed parallel com-
puting models in the form of membrane systems, also called P systems. The main
ingredients of a P system are the structure of the membrane, multisets of objects
and the rules that cause the objects to evolve and pass through membranes from
time to time. The three variants of P-systems considered mainly are known as
cell-like P systems [16], tissue-like P systems [14] and neural-like P systems [17].

From the seminal definition of Tissue P systems [14,15], several research
lines have been developed and other variants have been defined(see, for example,
[1,4,6,10]). One of the most interesting variants of Tissue P systems was pre-
sented in [18]. In that paper, the definition of Tissue P systems is combined with
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the one of P systems with active membranes, yielding Tissue P systems with cell
division.

A class of tissue P systems with protein on cells was proposed in [11] which
abstracts the idea from the biological fact as follows: In addition to the lipid
bilayer, the cell membrane also contains a number of proteins. While the lipid
bilayer provides the structure for the cell membrane, membrane proteins allow
for many of the interactions that occur between cells. Membrane proteins are free
to move within the lipid bilayer and they perform various functions. They are
generally classified as integral proteins or peripheral proteins. Integral proteins
are embedded within the lipid bilayer and cannot be easily removed from the cell
membrane. Peripheral proteins are attached to the exterior of the lipid bilayer
and can be easily removed from the lipid bilayer, without harming the bilayer in
any way. Tissue P systems with protein on cells contain one and only one copy
of protein on each cell. The multisets of objects together with the proteins are
exchanged if communication takes place between two cells and only proteins are
exchanged if communication takes place between the cell and the environment.

In this paper we are going to present a NP-complete problem namely
3-coloring problem. This problem is related to the famous Four Color Conjec-
ture (proved by Appel and Haken [2,3]. It is a special case of the problem of
k−colorability of a graph, in which the range of C (color) is {1, . . . , k} with k
being specified as part of the instance. The NP-completeness of the 3−coloring
problem was proved by Stockmeyer [21] (see [7]). The solution of this problem
is already obtained using different variants of P systems like simple kernel P
systems [9] and Tissue P system with cell division [5]. In [11], a polynomial-time
solution to the NP-complete problem SAT is shown using tissue like P system
with protein on cells and cell division. In this paper the same variant of tissue
P system is used to find a linear-time solution to the 3–coloring problem.

This paper is organized as follows: First we recall some preliminaries and
the definition of Tissue P systems with protein on cells and cell division. Next,
recognizer of this variant of Tissue P systems is briefly described. A linear–time
solution to the 3-coloring problem is presented in the following section, including
a short overview of the computation and of the necessary resources. Finally, the
main results and conclusion are presented.

2 Preliminaries

In this section, some of the concepts used in this paper are given briefly. The
definitions are taken from [16,19].

An alphabet, Σ, is a non empty set, whose elements are called symbols.
A finite sequence of symbols is a string. The number of symbols of a string
u is the length of the string, and it is denoted by |u|. As usual, the empty string
(with length 0) will be denoted by λ. The set of strings of length n built with
symbols from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language
over Σ is a subset from Σ∗.
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A multiset m over an alphabet A is a pair (A, f) where f : A → N is a
mapping. Given m = (A, f) a multiset, its support is defined as supp(m) =
{x ∈ A | f(x) > 0} and its size is defined as

∑
x∈A f(x). A multiset is empty

(resp. finite) if its support is the empty set (resp. finite). The union of two
multisets m1 = (A, f1) and m2 = (A, f2) is defined as m1 + m2 = (A, f), where
f(a) = f1(a) + f2(a), for every a ∈ A. Given two multisets m1 = (A, f1) and
m2 = (A, f2), m1 is contained in m2, m1 ≤ m2, if and only if f1(a) ≤ f2(a), for
every a ∈ A. If m = (A, f) is a finite multiset over A, then it will be denoted as
m = a

f(a1)
1 a

f(a2)
2 · · · af(ak)

k , where supp(m) = {a1, . . . , ak}, and for each element
ai, f(ai) is called the multiplicity of ai.

A graph G consists of a finite set V of objects called vertices, a finite set E of
objects called edges and a function γ that assigns to each edge a subset {v, w},
where v and w are vertices. It is denoted by G = (V,E, γ).

3 Formal Framework

Bosheng Song and Linqiang Pan introduced in [11] a new variant of Tissue
P systems where a single protein is placed on each cell at the beginning of
the computation. If a communication rule between two cells is applied then the
multisets of objects together with the proteins are exchanged. If a communication
rule between a cell and the environment is applied, then only the multisets
of objects between the cell and the environment are exchanged. The following
definitions are from [11].

Definition 1. A tissue P system with protein on cells of degree q ≥ 1 is a tuple
Π = (Γ, P, E ,M1/p1, . . . ,Mq/pq,R, iout), where:

• Γ, P are finite non–empty alphabets such that Γ ∩ P = φ;
• E is a finite alphabet such that E ⊆ Γ ;
• Mi, 1 ≤ i ≤ q, are finite multisets over Γ ;
• pi, 1 ≤ i ≤ q, are elements in P;
• R is a finite set of rules of the following forms:

– Communication Rules
(a) (i, (pi, u)/(pj , v), j), for i, j ∈ 1, . . . , q, i 	= j, pi, pj ∈ P, u, v ∈ Γ ∗.
(b) (i, (pi, u)/v, 0), for i ∈ 1, . . . , q, pi ∈ P, u, v ∈ Γ ∗, |uv| > 0

• iout ∈ {0, 1, . . . , q}.
Definition 2. A tissue P system with protein on cells and cell division of degree
q ≥ 1 is a tuple Π = (Γ, P, E ,M1/p1, . . . ,Mq/pq,R, iout), where all components
are as mentioned in previous definition and R is the finite set of rules, which
contains communication rules of the forms mentioned in Definition 1 (a & b),
and division rules of the form

[pi|a]i → [p′
i|b]i [p′′

i |c]i, for i ∈ {1, . . . , q}, pi, p
′
i, p

′′
i ∈ P, a, b, c ∈ Γ, i 	= iout



242 T. Mathu et al.

A tissue P system with protein on cells (and cell division) of degree q ≥ 1 can
be viewed as a set of q cells, labeled by 1, . . . , q, such that: (a) M1, . . . ,Mq

represent the finite multisets of objects (symbols of the alphabet Γ ) initially
placed in the q cells of the system; (b) p1, . . . , pq represent one and only one
copy of protein (symbols of the alphabet P) initially placed on the q cells
of the system; (c) E is the set of objects initially located in the environment
of the system, all of them available in an arbitrary number of copies; and (d)
iout represents a distinguished zone which will encode the output of the system.
The term zone i(0 ≤ i ≤ m) refers to cell i in the case of 1 ≤ i ≤ m and the
environment in the case of i = 0. The length of a communication rule is the total
number of objects and proteins involved in that rule.

A configuration of a tissue P system with protein on cells (and cell division)
at any instant is described by all multisets of objects over Γ associated with all
the cells present in the system, all the proteins presented on all cells, and the
multiset of objects over Γ\E associated with the environment at that moment.
Bearing in mind the objects from E have infinite copies in the environment,
they are not properly changed along the computation. The initial configuration
is (M1/p1, . . . ,Mq/pq;φ)

A communication rule of type (i, (pi, u)/(pj , v), j) is applicable to a configu-
ration at an instant if cell i contains the protein pi and the multiset u of objects,
cell j contains the pj and the multiset v of objects (multisets u,v may be empty).
When applying such a rule, under the control of the proteins pi on cell i and pj

on cell j, both the protein pi and the multiset u of objects are sent from region
i to region j, and simultaneously, the protein pj and the multiset v of objects
are sent from region j to region i; a particular case is (i, (pi, λ)/(pj , λ), j), where
only proteins change their places. A communication rule of type (i, (pi, u)/(v, 0))
is applicable to a configuration at an instant if cell i contains the protein pi and
the multiset u of objects, the environment contains the multiset v of objects (at
least one of multisets u,v is non-empty). When applying such a rule, under the
control of the protein pi on cell i, the multiset u of objects are sent from region i
to the environment, and simultaneously, the multisets v of objects are sent from
the environment to region i.

A division rule [pi|a]i → [p′
i|b]i [p′′

i |c]i is applicable to a configuration at an
instant if cell i contains the protein pi and the object a. When applying such a
rule, under the influence of protein pi on cell i, the cell is divided into two cells
with the same label; in the first copy the protein pi is replaced by p′

i and the
object a is replaced by b, in the second copy the protein pi is replaced by p′′

i and
the object a is replaced by c; all the remaining objects in the original cell are
replicated and copied in each of the new cells.

Rules of a system like the above one are used in a maximally parallel way: at
each step, all cells which can evolve must evolve (at each step we apply a multiset
of rules which is maximal, no further rule can be added being applicable). This
way of applying rules has only one restriction: when a cell is divided, the division
rule is the only one which is applied to that cell at that step. In other words,
division rule for that cell interrupts all its communication channels with the
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other cells and with the environment. The new cells resulting from division could
participate in the interaction with other cells or the environment by means of
communication rules at the next step - providing that they are not divided once
again. The label of a cell precisely identifies the rules which can be applied to it.

Let us fix a tissue P system with protein on cells (and cell division) Π, we
denote C1 ⇒Π C2 meaning that configuration C1 yields C2 in one transition step
by a maximally parallel application of rules as described above. A configuration is
a halting configuration if no rule of the system is applicable to it. A computation
is a (finite or infinite) sequence of configurations such that: (1) the first term of
the sequence is the initial configuration of the system; (2) each non–first term
of the sequence is obtained from the previous configuration by applying rules
of the system in a maximally parallel manner with the restrictions previously
mentioned; and (3) if the sequence is finite (called halting Computation then the
last term of the sequence is a halting configuration.

All the computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output zone iout associated with the halting configuration.

3.1 Recognizer Tissue P Systems with Protein on Cells
and Cell Division

In order to study the computational efficiency, the notions from classical com-
putational complexity theory are adapted for membrane computing. A class of
cell-like P systems, recognizer P systems, is introduced in [20]. With the same
idea for recognizer cell-like P systems, recognizer tissue P systems are introduced
in [18]. The following definitions follows from [11].

Definition 3. A recognizer tissue P system with protein on cells and cell divi-
sion of degree q ≥ 1 is a tuple Π = (Γ, P, E ,M1/p1, . . . ,Mq/pq,R, iin, iout),
where:

• the tuple (Γ, P, E ,M1/p1, . . . ,Mq/pq,R, iout) is a tissue P system with protein
on cells and cell division of degree q ≥ 1;

• the working alphabet Γ has two distinguished objects yes and no, with at least
one copy of them presents in some initial multisets M1, . . . ,Mq, but none of
them present in E;

• Σ is an (input) alphabet strictly contained in Γ , and such that E ⊆ Γ\Σ;
• M1, . . . ,Mq are finite multisets over Γ\Σ;
• iin ∈ {1, . . . , q} is the input cell;
• the output zone iout is the environment;
• all computations halt;
• if C is a computation of Π, then either object yes or object no (but not both)
must have been released into the environment, and only at the last step of the
computation.

For each multiset w over Σ, the computation of the system Π with input w starts
from the configuration of the form (M1/p1, . . . , (Min + w)/pin, . . . ,Mq/pq, φ),
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that is, the input mutiset w has been added to the contents of the input cell iin.
Therefore, we have an initial configuration associated with each input multiset w
(over the input alphabet Σ) in this kind of systems.

We denote by TPDC(k) the class of recognizer tissue P systems with protein
on cells and cell division with communication rules of length atmost k.

Definition 4. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue-like P systems
with protein on cells and cell division in uniform way if the following conditions
holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an
input multiset of the system Π(s(u));

– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists k ∈ N a polynomial function, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most k(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

We denote by PMCTPDC(k) the set of all decision problems which can be
solved by means of recognizer tissue-like P systems TPDC(k) in polynomial
time. It is easy to prove that this class is closed under polynomial time reduction
and under complement.

4 Solving the 3−coloring Problem by Using TPDC

Let G be a graph with V (G) as set of vertices and E(G) as set of edges.
A k−coloring of a graph G is a function C : V (G) → {1, . . . , k} such that
for all v, w ∈ V (G), if C(v) = C(w), then ((v, w) /∈ E(G)). The k−coloring
problem is to determine the number of such k-colorings for G.

Next, we will see that the 3-coloring problem can be solved by tissue P
systems with protein on cells and cellular division in linear time. Let us consider
a graph G = (U, V ), where U = {ui|1 ≤ i ≤ n} is the set of vertices and
V = {vj |vj = uj1uj2 ∧ 1 ≤ j ≤ m ∧ 1 ≤ j1 < j2 ≤ n} is the set of edges.
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Let us consider (n, (Aij)n) in order to denote a generic instance of the prob-
lem, with n the size of the graph G, i.e., the number of vertices in G and let A
be the set of the edges in the graph G, with

(Aij)n = (Aij : AiAj ∈ V ∧ 1 ≤ i < j ≤ n)

We will address the resolution via a brute force algorithm, which consists in
the following stages:

• Generation stage: The initial cell labeled by 6 is divided into two new cells
and the divisions are iterated until a cell has been produced for each possible
candidate solution (3− colorings). Also cells 4 and 5 are divided to produce
enough number of p4 and p5 proteins which are needed in the checking stage.
Simultaneously, counter in the cell labeled by 1 that will be used for the output
stage.

• Pre-checking stage: After obtaining all possible 3-colorings encoded in cells
labeled by 6, in this stage we provide colors to the edges. So, from each object
Aij , we generate three objects Rij , Gij and Bij .

• Checking stage: Objects Ri, Gi, Bi will be used in cells labeled by 6 to check if
there exists a pair of adjacent vertices with the same color in the corresponding
candidate solution. If this happens, the protein is changed to p4 from cell 4.

• Output stage: The system sends to the cell labeled 2 the right answer according
to the results of the previous stage.

1. Answer yes : There exists a cell labeled 6 such that its protein is p4 at the
end of the step 4n + 4. In this case, an object yes is sent to the cell 2.

2. Answer no: It is the converse case. If all the cells labeled by 6 has p5 as
protein at the end of the step 4n+4, then the cell 1 does not receive any
object T and an object no is sent to the cell 2.

Here, we present a family of recognizer tissue P systems with protein on cells
and cell division where at the initial configuration each system of the family has
6 regions (labeled by 1, 2, 3, 4, 5 and 6).

For each n ∈ N, we shall consider the system

Π = (Γ, P,Σ, E ,M1/p1,M2/p2,M3/p3,M4/p4,M5/p5,M6/p6,R, iin, iout),

• Γ = Σ ∪ {Ai, Bi, Ri, Gi, Ti, R
′
i, G

′
i, B

′
i : 1 ≤ i ≤ n}

∪ {ai : 0 ≤ i ≤ 3n + 3}
∪ {ci : 1 ≤ i ≤ 2n + 3}
∪ {di : 1 ≤ i ≤ 3n + 4}
∪ {Rij , Bij , Gij , TijRij , Gij , Bij , T

′
ij , T

′′
ijR

′
ij , G

′
ij , B

′
ij : 1 ≤ i < j ≤ n}

∪ {b, T, yes, no}
• Σ = {Aij : 1 ≤ i < j ≤ n}
• P = {Pi : 1 ≤ i ≤ 2n + 6}
• E = Γ\Σ
• M1 = {a1, yes, no}
• M2 = {b}
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• M3 = {e1}
• M4 = {c1}
• M5 = {d1}
• M6 = {T,A1, . . . , An}
• R is the following set of rules:

1. Division rules:
r1,i ≡ [pk|Ai]6 → [pk+1|Ri]6[pk+1|Ti]6 for i = 1, . . . , n, k = 6, . . . , 2n + 6
r2,i ≡ [pk|Ti]6 → [pk+1|Gi]6[pk+1|Bi]6 for i = 1, . . . , n, k = 6, . . . , 2n + 6
r3,i ≡ [p4|ci]4 → [p4|ci+1]4[p4|ci+1]4 for i = 1 . . . 2n
r4,i ≡ [p5|di]5 → [p5|di+1]5[p5|di+1]5 for i = 1 . . . 2n

2. Communication rules:
r5,i ≡ (1, (p1, ai)/ai+1, 0) for i = 1 ≤ 4n + 4
r6,i ≡ (3, (p3, ei)/ei+1, 0) for i = 1 ≤ 4n + 5
r7,i,j ≡ (6, (p2n+6, Aij)/RijTij , 0) for 1 ≤ i < j ≤ n
r8,i,j ≡ (6, (p2n+6, Tij)/GijT

′
ij , 0) for 1 ≤ i < j ≤ n

r9,i,j ≡ (6, (p2n+6, T
′
ij)/BijT

′′
ij , 0) for 1 ≤ i < j ≤ n

r10,i,j ≡ (6, (p2n+6, T
′′
ij)/(p4, λ), 4) for 1 ≤ i < j ≤ n

r11,i,j ≡ (6, (p4,KiKij)/Kij , 0) for 1 ≤ i < j ≤ n, K = R,G,B
r12,i,j ≡ (6, (p4,Kij/KiK

′
j , 0) for 1 ≤ i < j ≤ n, K = R,G,B

r13,i,j ≡ (6, (p4,K ′
jKj)/(p5, λ), 5) for 1 ≤ i < j ≤ n, K = R,G,B

r14 ≡ (1, (p1, a4n+5)/(p4, T ), 6)
r15 ≡ (1, (p4, yes)/(p2, b), 2)
r16 ≡ (3, (p3, e4n+6)/(p1, a4n+5), 1)
r17 ≡ (1, (p3, no)/(p2, b), 2)

• iin = 6, is the input cell

• iout = 2, is the output cell

4.1 An Overview of the Computation

A family of recognizer tissue P systems with protein on cells and cell division
for solving 3-coloring problem is constructed above. Given an instance u of the
problem, with size s(u) = n, and the codification of the instance will be the
multiset cod(u) = {Aij |1 ≤ i < j ≤ n}.
At the initial configuration, we have objects {a1, yes, no}, {b}, {d1}, {T,A1, . . . ,
An}, {N, c1} in cells 1, 2, 3, 4, 5 and 6 respectively along with respective proteins
p1, p2, p3, p4, p5 and p6.

The input of the above defined family of tissue P system with protein on
cells and cell division for a graph with n vertices is encoded by its edges (objects
Aij). The input cell is labeled by 6.

The computation starts with two computational threads. On one hand we
divide the cell 4 (rules r3,i), cell 5 (rules r4,i) and cell 6 (rules r1,i and r2,i).
Technical issues compel to divide cells 4, 5 and cell 6 is divided to generate
all the possible solutions of our problem. The vertices with colors red, green
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and blue are codified by objects Ri, Gi and Bi . Moreover the protein of cell 6
evolves from p6 to p2n+6 at the end of division phase.

We finish all the division rules in 2n steps. We proceed to change the color of
the edges in the next steps using rules r7,i,j , r8,i,j and r9,i,j in 3 steps. Then the
protein p4 arrives to cell 6 from cell 4 in 2n + 4th step and the checking phase
starts.

We use three rules r11,i,j , r12,i,j and r13,i,j for checking. In the worst case (com-
plete graph), we need 2n steps to complete the computation. It is not possible to
apply the rules r13,i,j to all the cells labeled 4 without division on cell 5. So, we
have two possible types of cells labeled 6 in the 4n + 4th step. Some of these has
the protein p5 and the remaining cells conserve the protein p4. The first type repre-
sents wrong 3−coloring (i.e. those cells containing p5 protein) and the second type
gives the affirmative coloring (i.e., the cells containing p4 protein).

Consequently, we have two possible options. The first type implies all the
colorings are wrong. Then the rules r16 and r17 are applied and the solution is
sent to cell 2. The second type implies at least one 3−coloring is correct. So the
rules r14 and r15 are applied and solution is sent to cell 2. In all possible cases,
we need at most 4n + 7 steps to complete the computation of the above system.

4.2 Necessary Resources

The presented family of tissue P systems solves the 3-coloring problem in poly-
nomially uniform time by Turing machines. It can be observed that the definition
of the family is done in a recursive manner from a given instance, in particular
from the constant n. Furthermore the necessary resources to build an element
of family are:

• Size of the alphabet: 6n2 + 19n + 24 ∈ θ(n2)
• Initial number of cells: 6 ∈ θ(1),
• Initial number of objects: n + m + 10 ∈ θ(n)
• Number of rules: 5n2 + 14n + 13 ∈ θ(n2),
• Maximal length of a rule is 4.

4.3 Comparison with Other Variants

In the following table, we have compared our system with the tissue P system
([5]) and simple kernel P system ([9]). We can easily compare the values of the
necessary resources.

Our solution presents a lesser number of rules with respect to the first solution
but higher number with respect to the second. But, in this last case, our rules are
shorter and the difference is really big. With respect to the size of the alphabet,
our solution requires more of objects but this size has the same order than the
other two solutions. There is no big difference in this case. If we see the initial
number of objects, they are almost same in all the cases (Table 1).
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Table 1. Comparison with other variants

Tissue P systems skP systems Tissue P systems with

Protein on cells

Size of the alphabet 3n2+9n+2m+3�log m�+
28 ∈ θ(n2 + m)

n(n − 1)/2 + 7n + 10 6n2+19n+24 ∈ θ(n2)

Initial No. of cells 2 ∈ θ(1) 6 ∈ θ(1)

Initial No. of Objects n + m + 6 ∈ θ(n + m) n + m + 10 ∈ θ(n)

No. of Rules 18n2 − 9n + 2m +

3�log m�+24 ∈ θ(n2 +m)

2n, 2n + 7 5n2+14n+13 ∈ θ(n2)

Max. length of a rule 4 3n(n − 1)/2 4

No. of Steps 2n + m + �log m� + 11 2n + 3 4n + 7

4.4 Main Results

From the discussion in the previous sections and according to the definition of
solvability given in Sect. 3, we deduce the following result:

Theorem 1. 3–coloring ∈ PMCTPDC .

As a consequence of this result we have:

Theorem 2. NP ∪ co − NP ⊆ PMCTPDC .

Proof It suffices to make the following observations: the 3–coloring problem
is NP-complete, 3–coloring ∈ PMCTPDC and the class PMCTPDC is stable
under polynomial-time reduction, and also closed under complement.

5 Conclusion

In this paper the system introduced by [11] has been used to solve the NP-
complete 3−coloring problem and the overview of the computation is also given
with needed resources. Also we propose here, a new solution to an NP-complete
problem which can be used as a scheme for designing solutions to other problems
from Graph Theory as the Vertex Cover Problem, Clique, etc. Moreover, the type
of solution presented can be also adapted for solving numerical problems.
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Abstract. Because interaction networks occupy more and more space
in our current life (social networks) and in our understanding of living
systems(biological regulation networks), it seems necessary to develop
the knowledge regarding them. By using Boolean automata networks as
models of interaction networks, we present new results about the influ-
ence of cycles on their dynamics. Cycles in the architecture of boolean
networks are known to be the primary engine of dynamical complexity.
As a first particular case, we focus on cycle intersections and provide
a characterisation of the dynamics of asynchronous Boolean automata
networks composed of two cycles that intersect at one automaton. To do
so, we introduce an efficient formalism inspired by algorithms to define
long sequences of updates, which allows a more efficient description of
their dynamics.

Keywords: Interaction networks · Boolean automata networks ·
Double-cycles · Asynchronous dynamics

1 Introduction

An increasing number of systems of our daily life is being understood as computa-
tional processes. At the foundation of these, interactions and dynamics combine
in a fascinating, ever changing way. Our knowledge of these processes will condi-
tion our understanding of biological systems, such as gene regulatory networks
or neural networks, and enable us to engineer a variety of things, from genetic
cures to neuronal computers, or chemical computational devices. To tackle the
overwhelming complexity of these challenges, we use a highly abstract model
of interaction networks called Boolean automata networks (BANs). Despite its
(deliberate) simplicity, this model is adequate for the computational study of
interaction networks, as it can at the same time simulate Turing machines oper-
ating in constant space, and properly model interaction dynamics as observed in
actual networks. The origins of this model are to be found in computer science
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and some variants have been applied to physics, biology and sociology [5,8,20].
Moreover, although it has also been studied from a computational point of view
since the original work of McCulloch and Pitts [10], lots of its algorithmic prop-
erties are yet to be understood.

The present work takes place exactly at the frontier of theoretical computer
science and fundamental bio-informatics, that aims at analysing and explaining
formally the dynamics of biological regulations, that are at the core of molecular
biology [6,7]. Since the seminal works of Kauffman [8,9] and Thomas [21,22] in
theoretical biology, computer scientists have been trying to formalise the intu-
itions coming from biology. One of the most fundamental questions raised by
these studies was formulated by Thomas and addressed the role of interact-
ing cycles in BANs on their dynamics. Recent studies [16–18] have started to
produce formal answers to this question. Their main results, first envisioned
by Robert [19], are necessary conditions on the architectures of networks to
generate complex dynamics, i.e. syntactic conditions for the appearance of com-
plex semantics. However, even though interacting cycles are well identified as
the primary engine of complex dynamics, we are far from a full understanding
of these phenomena. This explains why many recent studies focused on these
specific patterns. Among them, [1] provided a complete characterisation of the
dynamical behaviours of Boolean automata cycles (BACs), under the parallel
updating mode. Once the cycle dynamics were finely understood, it seemed nat-
ural to divide them into networks in order to make a step towards generality.
But to obtain general results for any kind of network remains an open problem
that seems intractable for the moment. So, following a constructive approach
and as a first step, studies have been led on specific patterns combining cycles,
such as the parallel double-cycles [1] and the asynchronous flower-graphs [2] for
instance. In addition, other studies have dealt with the convergence time of spe-
cific classes of BANs, like circulant xor networks [15] and networks without
negative cycles [12].

This paper follows the same lines and solves a question that remained open
until now: how do Boolean automata double-cycles that evolve asynchronously
over time behave? We give here an answer by means of original methods relating
algorithmic complexity to natural dynamical systems. We show that every kind
of double-cycle admits a very limited number of attractors, either one or two.
Also, we prove that recurrent configurations are not all similar in the sense that
some of them have peculiar features in terms of reachability. Some of them can be
reached by following paths of linear size according to the network sizes whereas
other need quadratic sequences of updates to be reached.

The paper is organised as follows: Sect. 2 gives the main definitions and nota-
tions used in the paper, in particular those related to the double-cycles and the
asynchronous updating mode; Sect. 3 gives the definition of the tools and meth-
ods developed here; finally, Sect. 4 is dedicated to the main contributions of this
paper. Notice that, due to lack of space, the proofs (that reveal the intricacies of
this work) are not given in the paper but are detailed in arXiv:1310.5747 [11].
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2 Definitions and Notations

BANs. Consider B = {0, 1} and V = {0, . . . , n−1} a set of n Boolean automata
so that ∀i ∈ V, xi ∈ B denotes the state of i. A configuration of a BAN N
of size n instantiates the state of any i of V and is classically denoted as a
vector, such that x ∈ B

n, or as a binary word. Formally, a BAN N , whose
automata set is V, is a set of n Boolean functions, which means that N =
{fi : B

n → B | i ∈ V }. Given i ∈ V, fi is the local transition function of i
that predetermines its evolution for any configuration x. Actually, that means
that if i is updated in x, its state switches from xi to fi(x). Let us define now
the sign of an interaction from j to i (i, j ∈ V) in configuration x ∈ B

n with
signx(j, i) = s(xj)·(fi(x)−fi(x̄j)), where s : B → 1l, with 1l = {−1, 1}, is defined as
s(b) = b − ¬b, and ∀i ∈ V, x̄i = (x0, . . . , xi−1,¬xi, xi+1, . . . , xn−1). Interactions
that are effective in x belongs to the set A(x) = {(j, i) ∈ V2 | signx(j, i) �= 0}.
From this is derived the interaction graph of N that is the digraph G = (V,A),
where A =

⋃
x∈Bn A(x) is the set of interactions.

In this paper, the focus is put on BANs associated with simple interaction
graphs: if there exists (i, j) ∈ A such that signx(i, j) �= 0 for configuration x then
�y �= x such that signy(i, j) = −signx(i, j). Thus, sign(i, j) ∈ 1l. If sign(i, j) = +1
(resp. sign(i, j) = −1), (i, j) is an activating (resp. inhibiting) interaction so
that the state of j tends to mimic (resp. negate) that of i. We call the signed
interaction graph of N the digraph obtained by labelling each arc (i, j) ∈ A with
sign(i, j). In order not to burden the reading, we also denote it by G. Abusing
notations, a cycle C of G is said to be positive (resp. negative) if the product of
the signs of the interactions that compose it equals +1 (resp. −1).

Asynchronous Transition Graphs. In a BAN N , a pair of configurations
(x, y) ∈ B

n × B
n, such that y is obtained by updating the state of a sin-

gle automaton of x is an asynchronous transition, and is denoted by x −→ y
(the Hamming distance d(x, y) ≤ 1). If x �= y, x −→ y is said to be effective.
Let T = {x −→ y | x, y ∈ B

n} be the set of asynchronous transitions of N .
Digraph G = (Bn,T) is then the asynchronous transition graph (abbreviated sim-
ply by transition graph) of N , which actually represents the non-deterministic
“perfectly” asynchronous discrete dynamical system related to N .

Consider an arbitrary BAN N , its transition graph G = (Bn, T ) and x ∈ B
n

any of its possible configurations. A trajectory of x is any path in G that starts in
x. A strongly connected component of G that admits no outgoing asynchronous
transitions is a terminal strongly connected component. Such a component of G
represents an asymptotic behaviour of N , i.e. one of its attractors. A configu-
ration that belongs to an attractor is a recurrent configuration and, for a given
attractor, the number of its configurations is said to be its size. An attractor
of size 1 (resp. of size greater than 1) is a stable configuration (resp. a stable
oscillation). We conclude this paragraph by defining the convergence time of a
configuration x as the length of the shortest trajectory that leads it to an attrac-
tor and the convergence time of a BAN as the highest convergence time of all
configurations in B

n.
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Fig. 1. Interaction graphs of the three kinds of canonical BADCs: (a) a canonical
positive BADC, (b) a canonical mixed BADC, and (c) a canonical negative BADC.

Boolean Automata Double-cycles. The literature has put the emphasis on BACs.
The reason comes from the three following results (theorems) which show that
cycles are necessary for BANs to admit complex asymptotic dynamics.

Theorem 1. Consider G as the asynchronous transition graph of a BAN N .

– In [19] Whatever the updating mode is, if N does not contain any cycle, then
it admits a unique attractor, that is a stable configuration.

– In [16,18,22] If G admits two stable configurations then the interaction graph
of N contains a positive cycle.

– In [16,17,22] If G admits a stable oscillation then the interaction graph of N
contains a negative cycle.

On the basis of the theorems above, we propose in this paper to study Boolean
automata double-cycles (BADCs) when updated asynchronously. Note that, syn-
chronous (parallel) updated BADCs have already been studied in [1,13]. Infor-
mally, a BADC D of size n+m−1 is composed of two BACs C � (of size n) and
C r (of size m) that intersect tangentially at one automaton that will be denoted
specifically, for the sake of clarity in proofs, by c (resp. c�

0, cr
0) when considering D

(resp. C �, C r). Notice that in D , every automaton admits a unary function as its
local transition function that is either id or neg, except automaton c that admits
a binary function. In this paper, we focus on monotone functions and enforce fc

to be the and-function without loss of generality for our concern. Also, note that
there exist three different kinds of BADCs: positive BADCs made of two positive
BACs, negative BADCs made of two negative BACs, and mixed BADCs made
of one positive and one negative cycles. An interesting point is that the study of
BADCs of size n + m − 1 in general can be reduced to that of three canonical
BADCs of size n+m−1 [13,14], presented in Fig. 1, because of the isomorphism
between their transition graphs. A canonical positive BADC D+ is composed
only of positive interactions. A canonical negative BADC D− is composed only
of positive interactions, except the two that have c as their destination. A canon-
ical mixed BADC D± is composed only of positive interactions, except one of
those that have c as their destination (we suppose that this interaction belongs
to C �). To finish, for easing the proofs, we denote a BADC configuration x by a
pair of two binary words, in which the first symbol represents xc. For instance,
the configuration in which all automata are at state 0 is denoted by (0n, 0m).
Also, we denote by x� (resp. xr) the projection of x on cycle C � (resp. C r).
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Thus, x = (x�, xr) and the state of automaton c�
i in configuration x is x�

i . Note
that x0 = x�

0 = xr
0 since these three notations stand for the state of automaton c

in configuration x.

3 Algorithmic Tools

In this section, we introduce the tools that will be used further to study the
dynamics of BADCs. We introduce first the expressiveness of a configuration,
which counts the number of its 01 patterns. This notion is inspired by works on
asynchronous cellular automata that have shown that the occurrence number of
this pattern is crucial to understand their behaviour [3]. Then are introduced
instructions to represent sequences of updates as classical algorithms. Instruc-
tions are used to express long sequences of updates with few lines of code.

3.1 Expressiveness

Definition 1. Let x be a configuration of a BAC C of size n. The expressive-
ness of x is the number of 01 patterns in x, i.e. |{i | 0 ≤ i ≤ n − 1, xi = 0
and xi+1 mod n = 1}|.
From Definition 1, we derive easily the expressiveness of a configuration x of
a BADC D as the sum of the expressivenesses of x� and xr. The least expres-
sive configurations are (0n, 0m) and (1n, 1m) and the most expressive ones are
((10)

n
2 , (10)

m
2 ) and ((01)

n
2 , (01)

m
2 ) (if n and m are even). In the sequel, we will

see that: (i) the lowly expressive configurations generally are recurrent and can
be reached in linear time by most configurations; (ii) the highly expressive con-
figurations either are not recurrent or can only be reached through very specific
update sequences, and they can quickly reach any other configuration. So, for a
BADC D that admits an attractor of exponential size made of lowly expressive
and highly expressive configurations, we will show that: (1) the shortest path
from a highly expressive configuration to any other configuration is linear in n
and m; (2) the shortest path from a lowly expressive configuration to a highly
expressive one is quadratic in n and m.

3.2 Elementary Instructions

In this article, many proofs of our results [11] rely on exhibiting update sequences
between two configurations. However, the length of such sequences is problematic
and a human reader would not manage to extract directly from these sequences
the general proof ideas. Thus, we propose to view update sequences as instruc-
tions that allow us to define them and understand their effect on configurations
easily.

Let D be a BADC, C be one of the BACs of D , x the current configuration
of C , and ci and cj be two automata of C different from c and such that i < j. In
the sequel, we will make particular use of the following elementary instructions:
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• sync: xc ← fc(x) # update of c

sync is the only instruction that updates automaton c and where both BACs
interact with each other. This (key)-instruction will always be called when c
can change its state. sync can be used either to set c at a desired state or to
increase the expressiveness from a configuration. Notice that sync is the only
way to switch a 111 (resp. 000) pattern into a 101 (resp. 010) pattern and,
thus, to increase the expressiveness. Remark that the BAC sub-configurations
have to be specific for c to switch its state.

• update(ci): xci ← fci(x) # update of ci

update updates an automaton distinct from c.
• incUp(C , i, j): for k = i to j do update(ck) # incremental updates

incUp updates consecutive automata in increasing order. In fact, incUp prop-
agates the state of ci−1 along C . Notice that if j < i then no automata are
updated. Moreover, since i �= 0, c cannot be updated with incUp.
Property 1. Let x′ be the result of applying incUp(C , i, j) on configuration x.
Then we have: ∀k ∈ {i, . . . , j}, x′

k = xi−1 and ∀k /∈ {i, . . . , j}, x′
k = xk.

• erase(C ): incUp(C , 1, size(C ) − 1)
erase is a particular case of incUp, it propagates the state of c0 along C . As
a consequence, using erase on C decreases it expressiveness to 0.
Property 2. Let x′ be the result of applying erase(C ) on configuration x.
Then we have: ∀k ∈ {0, . . . , size(C ) − 1}, x′

k = x0.
• expand(C ): incUp(C , 1, κ − 1 ∈ N) with

κ = min
1≤k≤size(C−1)

{
k |

{
(xk = 0) and (xk+1 mod size(C ) = 1) if xc = 1
(xk = 1) and (xk+1 mod size(C ) = 0) if xc = 0

}
.

expand is another particular case of incUp that aims at propagating the state
of c0 along C while neither 01 nor 10 patterns are destroyed.

• decUp(C , i, j): for k = j down to i do update(ck) # decremental updates

decUp updates consecutive automata by decreasing order. Once decUp(C , i, j)
executed, the information of cj is lost and that of ci−1 is possessed by both
ci−1 and ci. In fact, decUp aims at shifting partially a BAC section. As for
incUp, if j < i then no automata are updated and c cannot be updated with
decUp.
Property 3. Let x′ be the result of applying decUp(C , i, j) on configuration x.
Then we have: ∀k ∈ {i, . . . , j}, x′

k = xk−1 and ∀k /∈ {i, . . . , j}, x′
k = xk.

• shift(C ): decUp(C , 1, size(C ) − 1)
shift is a particular case of decUp. Once executed, every automaton of C
takes the state of its predecessor, except c whose state does not change.
Automaton csize(C−1) excluded, all the information contained along C is kept
safe. shift is useful to propagate information along a BAC without losing
too much expressiveness (at most one 01 pattern is destroyed).
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Table 1. The sequences copy c, copy and copy p.

4 Results

4.1 More Complex Instructions

Now, consider a configuration x of BADC D and an algorithm made of instruc-
tions that defines a sequence of updates (abbreviated simply by “sequence”
from now) from x, denoted by sequence(x). Abusing language, in the sequel,
sequence(x) represents both the underlying sequence and its result, namely the
configuration resulting from the execution of sequence(x). To end this section,
we introduce three other sequences in Table 1, more complex, that will be impor-
tant later. In particular, Lemma 1 states that copy allows to transform x into
x′ if x is expressive enough (highly expressive actually).

Lemma 1. Let D be a BADC and x and x′ two of its configurations such that
x0 = x′

0. If, for all s ∈ {�, r}, one of the following properties holds for x:

1. ∀i ∈ {1, . . . , size(C s) − 1}, xs
i �= xs

i−1,
2. ∀i ∈ {1, . . . , size(C s) − 2}, xs

i �= xs
i−1 and xs

size(C s)−1 = x′s
size(C s)−1,

3. ∀i ∈ {1, . . . , size(C s) − 2}, xs
i �= xs

i−1 and ∃p ∈ {1, . . . , size(C s) − 2}, xs
p �=

x′s
p ,

then copy(x, x′) = x′ and this sequence consists in at most 2(n+m−6) updates.

From this first result that gives strong insights about the power of instructions
and sequences to reveal possible trajectories between configurations, let us now
focus on the dynamical behaviours of double-cycles. Notice that for not bur-
dening the reading, as for copy and copy p, D is always considered as a global
variable of the sequences that follow.
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Table 2. The sequences fix0 and fix1.

4.2 Positive BADCs

Since results of [13,14] have shown that positive BADCs behave as positive
BACs, and because stable configurations are conserved between distinct updat-
ing modes [4], it is easy to show that the asymptotic dynamics of positive BADCs
consists in two stable configurations x and x̄ (where x̄ denotes the negation of
x). In the case of canonical BADCs, these stable configurations are (0n, 0m)
and (1n, 1m). Here, let us focus on an arbitrary positive BADC D+. We show
that two new sequences fix0 and fix1 (cf. Table 2) can respectively transform
any configuration with at least one automaton at state 0 into (0n, 0m), and any
configuration with at least one automaton at state 1 in both cycles into (1n, 1m).

Theorem 2. Let D+ be a canonical positive BADC and x one of its unstable
configurations. If x admits one automaton at state 0, then fix0(x) = (0n, 0m).
Also, if x admits one automaton at state 1 in both its cycles, then fix1(x) =
(1n, 1m). The convergence time of D+ is at most 2(n + m) − 5.

4.3 Mixed BADCs

Now, we pay attention to mixed BADCs. From the same works [13,14] that
showed also that asynchronism keeps only recurrent configurations of least global
instability, we know that their asymptotic dynamics consists only in a stable
configuration. In particular, the attractor of canonical mixed BADCs is (0n, 0m).
Let us focus on their convergence time. To do so, we will make particular use
of the new sequence simp (cf. Table 3) that gives a way of converging to this
stable configuration from any initial configuration x, by reducing progressively
its expressiveness.

Theorem 3. Let D± be a canonical mixed BADC. For any configuration x of
D±, simp(x) = (0n, 0m) holds. The convergence time of D± is at most 2n+m−2.
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Table 3. The sequences simp, comp1 and comp1.

4.4 Negative BADCs

In this section, we are interested in negative BADCs. Contrary to BADCs of
other sorts, the previous results of [1,13,14] obtained under the parallel updating
mode are not helpful for dealing with the asynchronous updating mode. Indeed,
in parallel, negative BADCs admit an exponential number of attractors. In our
asynchronous framework, we will show that they admit a unique stable oscillation
of exponential size that depends on the parity of underlying cycles. In particular,
the study that follows is divided in two axes: the first one deals with BADCs
made of two negative cycles of even sizes (abbreviated by D−

e ), the second one
with the others where at least one cycle of odd size (abbreviated by D−

o ).

Both Cycles Are Even. Here, we show that any BADC D−
e admits only one

stable oscillation of size 2n+m−1. In other terms, all configurations are recur-
rent and the convergence time is null. However, although all configurations are
reachable from each other, those of high expressiveness are hard to reach. The
proof of this result follows three points (they will be referred to Points 1, 2 and 3
later) in which it is respectively shown that:

1. Any configuration can reach the least expressive one (0n, 0m) in linear time;
2. Configuration (0n, 0m) can reach the highest expressive one ((10)

n
2 , (10)

m
2 )

in quadratic time;
3. Any configuration can be reached from ((10)

n
2 , (10)

m
2 ) in linear time.

Notice that Point 2 above is the hardest part. Indeed, to reach ((10)
n
2 , (10)

m
2 )

from (0n, 0m) needs O(n2 + m2) updates. We will see that this upper bound is
tight and that to increase a configuration expressiveness by δ requires at least
δ2 updates (cf. Theorem 5).

Let us consider Point 1. It is easy to see that sequence simp is still efficient
to reach (0n, 0m) and thus, that the following Lemma holds.

Lemma 2. For any configuration x of D−
e , simp(x) = (0n, 0m) holds and takes

at most 2n + m − 2 updates.
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Now, let us pay attention to Point 2 that asks for increasing the expressiveness of
(0n, 0m). We characterise here a path from this configuration to ((10)

n
2 , (10)

m
2 ).

To do so, let us proceed in two steps. The first one aims at increasing the
expressiveness of C � by means of sequence comp1 (cf. Lemma 3), the second
at increasing that of C r while ensuring not to decrease that of C � by means
of comp2 (cf. Lemma 4). Then, we get directly Lemma 5 with the composition
comp = comp2 ◦ comp1.

Lemma 3. In a BADC D−
e , comp1((0n, 0m)) = ((10)

n
2 , 1m) holds and takes at

most (n − 1)(n + m − 2) updates.

Lemma 4. In a BADC D−
e , comp2(((10)

n
2 , 1m)) = ((10)

n
2 , (10)

m
2 ) holds and

takes at most (m − 2)(n + m − 2) + (2m − 1) updates.

Lemma 5. In a BADC D−
e , comp((0n, 0m)) = ((10)

n
2 , (10)

m
2 ) holds and takes

at most (n + m)2 − 5(n − 1) − 3m updates.

Point 3 is developed in Lemma 6, in which we make particular use of copy p (cf.
Table 1).

Lemma 6. In a BADC D−
e , for any x′, copy p(((10)

n
2 , (10)

m
2 ), x′) transforms

configuration ((10)
n
2 , (10)

m
2 ) into x′ in at most 3(n + m − 4) − 1 updates.

By combining Lemmas 2, 5 and 6, for all configurations x and x′, the composition
copy p(comp(simp(x)), x′) = x′ holds, which shows that there exists a unique
attractor of size 2n+m−1. From this is derived the following theorem.

Theorem 4. A BADC D−
e admits a unique attractor of size 2n+m−1. In this

stable oscillation, any configuration can be reached by any other one in O(n2 +
m2). However, some configurations are specific: (0n, 0m) and (1n, 1m) can be
reached from any other one in O(n+m), and configurations ((01)

n
2 , (01)

m
2 ) and

((10)
n
2 , (10)

m
2 ) can reach any configuration in O(n + m).

Now we show that the bound O(n2 + m2) of Theorem 4 above is tight.

Theorem 5. Let x be a configuration of a BADC D−
e . Increasing the expres-

siveness of x by δ ∈ N needs Ω(δ2) updates.

Corollary 1 is then directly derived from the two previous theorems, considering
that δ = n

2 for C � and δ = m
2 for C r.

Corollary 1. In a BADC D−
e , to reach ((10)

n
2 , (10)

m
2 ) from (0n, 0m) requires

Θ(n2 + m2) steps.

At Least One Cycle Is Odd. Like BADCs D−
e , BADCs D−

o admit only one
attractor but contrary to the latter, they also admit a set I of specific non-
recurrent configurations, from which updates are “irreversible”. In the sequel,
abusing language, these configurations are said to be irreversible. Lemma 7 below
shows the irreversibility of some configurations.
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Lemma 7. Let us consider a BADC D−
o . The following properties hold:

1. If C s, s ∈ {�, r}, is of odd size k > 1, then configuration x such that xs =
((10)

k−1
2 1) is irreversible.

2. If both C � and C r are of odd sizes n > 1 and m > 1, then configuration
((01)

n−1
2 0, (01)

m−1
2 0) is irreversible.

Let I be the set of irreversible configurations of a BADC D−
o given by Lemma 7.

Theorem 6 below proves that I contains in fact all the irreversible configurations
and, from this set, generalises Theorem 4 for any sort of negative BADCs. Notice
that the complexity bounds remain valid.

Theorem 6. Let α : N → {0, 1} with α(k) =

{
0 if k = 0 or k ≡ 1 mod 2
1 otherwise

Any negative BADC D− admits one attractor of size 2n+m−1 − |I|, where |I| =
α(n − 1) × 2m−1 + α(m − 1) × 2n−1.

5 Conclusion and Perspectives

In this paper we focused on the dynamical properties of BADCs subject to the
asynchronous updating mode. The general idea was to make a step further to
achieve a better understanding of how interaction networks work, given the fact
that they are ceaselessly more present in our daily life. Again, the focus on
BADCs is explained by the fact that although cycles have been known to be
the engines of complexity in interaction networks since the 1980s, their influence
on network dynamics is not really understood. However, because of the intrin-
sic difficulties to bring such studies in general frameworks (in general BANs
for instance), we needed to restrain the spectrum of intersections considered to
the “simplest” kinds, the tangential ones. In this setting, our contribution was
twofold: (i) we gave a complete characterisation of the dynamical behaviour of
asynchronous BADCs by means of (ii) new algorithmic tools that bring a new
way to view updates in networks and a nice understanding of how information is
relayed. Obviously, these tools have been built for our purpose and their use is
consequently limited. Nevertheless, we believe that they can be applied almost
directly in some more complex networks, in particular those with tangential cycle
intersections, such as flower graphs for which they will help to provide charac-
terisation results regarding their behaviours that will generalise the existence
results given in [2]. Furthermore, another perspective would consist of adapting
these tools in order to apply them to more complex intersections. Beyond the
dynamical aspects, notice that the algorithmic tools presents the benefit of rep-
resenting concisely long sequences of updates. About this abstraction, we would
like to understand to what extent we can characterise network architectures
when update sequences (that represent only pieces of dynamics) are given. For
instance, the latter could be very useful to find networks of specific dynamics
complexity classes (in terms of convergence time for instance, or even in terms
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of number of attractors). To finish, this work together with that of [13] raises
once again the matter of the fundamental differences between synchronism and
asynchronism whose study deserves to be pursued.
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de Lyon (2012)
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Pierre-Étienne Meunier(B)

Department of Information and Computer Science,
Aalto University, Espoo, Finland

pierre-etienne.meunier@aalto.fi

Abstract. Imagine you are left alone in a forest with ogres and wolves,
with a paper, a pen and a supply of small stones as your only weapons.
How far can you go using a deterministic escape strategy, if you also
want to be back in time for dinner (i.e. avoid running periodically)?

The answer to this question has been known for some time (and called
the “pumping lemma”) in the simple case where the forest has exactly
one self-avoiding trail: after at most 2n steps (where n is the number of
bits writable on your paper) you start running periodically.

However, geometry can sometimes allow for better strategies: in this
work, we show the first non-trivial positive algorithmic result (i.e. pro-
grams whose output is larger than their size), in a model of self-assembly
that has been the center of puzzling open questions for almost 15 years:
the planar non-cooperative variant of Winfree’s abstract Tile Assembly
Model. Despite significant efforts, very little has been known on this
model, until the first fully general results on its computational power,
proven recently in SODA 2014.

In this model, tiles can stick to an existing assembly as soon as one
of their sides matches the existing assembly. This feature contrasts with
the general cooperative model, where it can be required that tiles match
on several of their sides in order to bind.

Since the exact computational power of this model is still completely
open, we also compare it with classical models from automata theory.

1 Introduction

Whenever you are left alone in an unknown geometric space peopled by ogres
(and possibly wolves), you’d better have a sure (i.e. deterministic) strategy to
escape. Moreover, fear will not help you remember everything precisely; laying
stones along the path, and taking notes in a notebook is probably better. And
of course, you want to be back in time for dinner: you must avoid loops (starting
to run periodically in the same direction) at all costs!
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This is in essence the question asked in several contexts in computer science:
it is indeed a particular case of self-avoiding walks, a model introduced by Flory
in 1953 [4] in the context of polymer chemistry, and since then studied by various
scientists, such as Knuth [5] in the 1980 s, or Bousquet-Mélou [1] in more recent
years.

The formalism that we use in this paper can be seen as an algorithmic,
resource-bounded version of this problem, formulated in the context of tile self-
assembly. Originally developed as a model of crystal growth [7,8], this model
considers the assembly of small square tiles with glues on their borders, where
a glue is a pair of a color and a strength, starting from an initial assembly
called a seed. The dynamics of this model is asynchronous, and proceeds one tile
at a time, not deterministically, subject to the following constraint: a tile can
only be placed at a position when the sum of glue strengths, on its sides whose
colors match their neighbors, is at least equal to a parameter of the model called
the temperature τ = 1, 2, 3, . . . We will only be concerned in this paper with
temperature 1 self-assembly, which is the model where tiles stick to the current
assembly as soon as one of their sides matches their neighborhood.

1.1 Main Results

Here, we present the first efficient constructions in the fully general planar non-
cooperative model. The generally accepted definition of an “efficient program”,
in this context, is a program whose output is larger than its size. Of course,
a simple first result on this model shows that arbitrary shapes can be built with
a number of tile types equal to the number of tiles in the shape, or (for simpler
shapes) equal to the Manhattan diameter of the shape [6].

Surprisingly, our results show that there are tile assembly systems whose
terminal assemblies are all larger (in Manhattan diameter) than their number
of tile types. Although a number of terms have not been defined yet, we briefly
introduce our two main constructions. The first construction can be proven eas-
ily by hand; we will demonstrate it first in Sect. 3.1, and then generalize it in
Sect. 3.2, to get the following theorem:

Theorem 1. For all integer n, there is a tile assembly system Tn = (Tn, σn, 1)
such that |Tn| = n, and for all terminal assembly a ∈ A�[Tn], a is finite and of
height 2n + o(n).

Intuitively, this construction works by preventing subpaths starting and ending
with the same tile type to repeat completely.

Understanding the precise computational capabilities of temperature 1 self-
assembly has been an open question for quite a long time. We show in Sect. 4 that
this model cannot be predicted by pushdown automata, nor by tree automata.
Previous work on the relations between self-assembly and formal languages were
mostly focused on a variant of self-assembly called staged self-assembly [9].
It is known, however, that its 3d generalization can simulate arbitrary Tur-
ing machines; understanding the minimal geometric requirements to perform
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arbitrary computation is therefore one of the most fundamental questions raised
by our positive constructions.

In Sect. 4, we define the language L(T ) of a tile assembly system T , and
compare temperature 1 tile assembly systems to classical automata models:

Theorem 2. Temperature 1 tile assembly systems without mismatches are
equivalent to tree automata of arity at most 3 (Proposition 2).

On the other hand, there is a (2D) temperature 1 tile assembly systems whose
language is not context-free (Proposition 4).

1.2 Key Technical Ideas and Methods

A major challenge, when studying non-cooperative self-assembly, is to overcome
the intuition given by the one-dimensional case (which is equivalent to finite
automata), that any repetition of a tile type may allow to “pump” an assembly.
Indeed, an easy observation shows that assemblies formed at temperature 1 are
nothing more than a collection of paths growing from the seed: if a tile type is
ever repeated along a path, it is tempting to try to repeat the subpath between
these repetitions.

However, geometry makes things more complex. First, there are simple
counter-examples to this pumping idea. Moreover, paths could first lay “block-
ing parts” out, and then come back and branch to check which type of blocker
has been formed; this is for instance the primary mechanism used by the simu-
lation of Turing machines in 3d shown in [3]. However, their construction “fakes
cooperation” by laying a blocker out for all alternatives but one.

On the other hand, recent (unpublished) progresses tend to show that this
kind of “bit reading” gadgets is not possible in two dimensions. This model thus
asks a different question: can you write efficient programs without the ability to
read your workspace?

Our results show that this is possible, at least to some extent. They do so by
carefully considering the fact that paths that are monotonic in one dimension
are pumpable; therefore, we must build “caves”, i.e. subpaths that are non-
monotonic in both dimensions. However, since these are more expensive to build
than straight paths, we also need to reuse these extra tile types several times,
either by making these subpaths self-blocking (in Sect. 3.2), and branching before
the blocking.

These results are quite puzzling and counter-intuitive; however, they do not
seem to make Turing computation possible. Therefore, a natural question is the
exact power of this model, that depends strongly on geometry, and that no other
“classical” model seems to capture, as shown in Sect. 4.

2 Definitions and Preliminaries

We begin by defining the abstract tile assembly model, in a slightly more general
framework than usually.
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A tile type is a unit square with 2n sides, each consisting of a glue label and
a nonnegative integer strength. In the most common case where n = 2, we call a
tile’s sides north, east, south, and west, respectively, according to the following
picture:

(East)

(North)

(West)

(South)

Also, we write these directions N, E, S and W, respectively. When there is
no ambiguity, we also write N(t), E(t), S(t) and W(t), to mean the north, east,
south and west glue of tile type t, respectively. Moreover, for each direction d,
we write −d its opposite direction. We assume a finite set T of tile types, but an
infinite supply of copies of each type. An assembly is a positioning of the tiles
on the grid graph G of Z2, that is, a partial function α : G ��� T . To simplify
the notations, we will assume G = Z

2 throughout the paper, unless explicitly
mentioned.

We say that two tiles in an assembly interact, or are stably attached, if the glue
labels on their abutting side are equal, and have positive strength. An assembly
α induces a weighted binding graph Gα = (Vα, Eα), where Vα = dom(α) (the
domain of α), and there is an edge (a, b) ∈ Eα if and only if a and b interact,
and this edge is weighted by the glue strength of that interaction. The assembly
is said to be τ -stable if any cut of Gα has weight at least τ .

A tile assembly system is a triple T = (T, σ, τ), where T is a finite tile set,
σ is called the seed, and τ is the temperature. Throughout this paper, we will
always have τ = 1, and σ will always be an assembly with exactly one tile.
Therefore, we can make the simplifying assumption that all glues have strength
one without changing the behavior of the model.

Given two τ -stable assemblies α and β, we say that α is a subassembly of β,
and write α � β, if dom(α) ⊆ dom(β) and for all p ∈ dom(α), α(p) = β(p). We
also write α →T

1 β if we can get β from α by the binding of a single tile, that
is, if α � β and |dom(β) \ dom(α)| = 1. We say that γ is producible from α, and
write α →T γ if there is a (possibly empty) sequence α = α1, . . . , αn = γ such
that α1 →T

1 . . . →T
1 αn.

A sequence of k ∈ Z
+ ∪{∞} assemblies α0, α1, . . . over A[T ] is a T -assembly

sequence if, for all 1 ≤ i < k, αi−1 →T
1 αi.

The set of productions of a tile assembly system T = (T, σ, τ), written A[T ],
is the set of all assemblies producible from σ. An assembly α is called terminal if
there is no β such that α →T

1 β. The set of terminal assemblies is written A�[T ].
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The Manhattan distance ‖−−→AB‖1 between two points A = (xA, yA) and B =
(xB , yB) is ‖−−→

AB‖1 = |xA − xB | + |yA − yB |. The Manhattan diameter of a
connected assembly is the maximal Manhattan distance between two points in
the assembly. We write (un)n∈N to mean “the infinite sequence u0, u1, u2, . . .”.

A regular tree grammar G = (S,N,F , R), according to [2], is given by an
axiom S, a set N of nonterminal symbols, a set F of terminal symbols, and a
set R of production rules of the form A → β where A is a nonterminal and β is
a tree whose nodes are labeled by elements of F ∪ N . Moreover, it is required
that F ∩ N = ∅. In this work, we write trees as “nested function applications”:
for instance, f(x, g(y, z)) is the following tree:

x

y z

g

f

The classical example of a regular tree grammar is the grammar of lists of
integers, with one axiom List, non-terminals List and Nat, terminals 0, nil, s()
and cons(, ), and the following rules:

List → nil

List → cons(Nat, List)
Nat → 0
Nat → s(Nat)

3 Efficient Algorithms

In this section, we show the main ideas of our efficient tileset.

3.1 A First Efficient Algorithm (Large Figures in Appendix A)

In this section, we call a tile assembly system T = (T, σ, 1) efficient if there is
an integer r, such that the Manhattan diameter of all the terminal assemblies of
T is strictly larger than |T | + |dom(σ)|, and at most r.

A simple observation on paths, is that any path that is monotonic in one
dimension (i.e. the sequence (yPi

)i of its y-coordinates, or the sequence (xPi
)i of

its x-coordinates is monotonic), and repeats a tile type, is pumpable.
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Therefore, the main ingredient of efficient paths is non-monotonicity: we call
a vertical cave (respectively horizontal cave) a part of a path P between two
indices i and j, such that (1) yPi

= yPj
, (2) for all k < i, yPk

≤ yPi
, and (3) for

all k ∈ {i + 1, i + 2, . . . , j − 1}, yPk
< yPi

.

Theorem 3. For all integer n, there is a tile assembly system Tn = (Tn, σn, 1)
such that |Tn| = n, and for all terminal assembly a ∈ A�[Tn], a is finite and of
height 5(n+2)

4 − 23.

Proof. Let T0 be the set of tiles appearing on the lower right assembly of Fig. 1,
and σ0 be the upper left assembly of that figure.

This tileset has 38 tile types, and its terminal assemblies are of height 27;
it is not efficient yet. But we will now add a number of new tile types to make
it efficient. First replace the following glues (zoom in on Fig. 1 to see these glue
numbers, or see the large version in AppendixA):

– glue 6 by (6, 0) on the north, and (6, n) on the south,
– glue 14 by (14, 0) on the north, and (14, n) on the south,
– glue 24 by (24, 0) on the north, and (24, n) on the south,
– glue 26 by (26, 0) on the north, and (26, n) on the south,

And then for all i ∈ {6, 14, 24, 26} and j ∈ {0, 1, . . . , n − 1}, add a tile type
to T , with south glue (i, j) and north glue (i, j + 1). In total, we have added
4n tile types, but the terminal assemblies of T grow 5n higher. See Fig. 2 for a
larger example (saving tile type). �
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Fig. 1. Four successive stages of the construction: first the seed, then the main path
grows, and finally, additional branches can also grow completely, along the main path.
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Fig. 2. An efficient tile assembly system, producing an assembly of width 112 with 106
tile types. This terminal assembly grew from a seed containing only its leftmost tile.

3.2 A More General Scheme

In the construction of Theorem3, repetitions of a tile type are done at the
expense of width of the assembly: indeed, in order to avoid collisions between
repeated paths, each repetition needs to be more and more narrow. Generalizing
this remark yields the following Theorem:

Theorem 1. For all integer n, there is a tile assembly system Tn = (Tn, σn, 1)
such that |Tn| = n, and for all terminal assembly a ∈ A�[Tn], a is finite and of
height 2n + o(n).

Proof. The idea is to repeat the construction of Theorem 3 more than a constant
number of times. A single cave, of height h (see Fig. 3), will be reused N times,
and at each iteration i ∈ {0, 1, . . . , N}, grow to height 2h − i.

To do this, we use a sequence of assemblies as shown on Fig. 3, with different
widths (wn)n. The general idea of this construction is: grow some construction
starting with tile type t, then use some modification of the initial cave as a
blocker, and then reuse t.

h
t

t

wn = 3n + 3n

Fig. 3. The repeated part is shown on the left-hand side. The drawing on the right-hand
side is a scheme of one step of the construction.

Then, we stack these parts on top of each other: on the Fig. 4, the next
assembly, drawn in dashed line, is of width wn−1 = 3n−1 + 3(n − 1). In order to
avoid making a pumpable path, we do not grow the full initial cave each time,
but a smaller and smaller suffix of it at each iteration.
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Fig. 4. Two successive iterations.

Because of this choice of widths, successive assemblies cannot collide with
each other, and different repetitions of the same assembly cannot collide with
each other either.

Let h be the height of the initial cave. For all integer n, the nth repetition
requires wn + 2wn−1 ≤ 2wn new tiles horizontally, h − n tiles vertically, and
grows to a height of 2(h − n). If we decide to repeat the construction N = log h

times, we need |T | = 2
∑N

i=1 wn + Nh + O(N2) tile types, i.e. h log h + O(h) tile
types.

Moreover, in this case, all terminal assemblies will have height 2h log h +
O(N2), which is 2|T | + o(|T |). �

4 Comparison with Automata

The constructions of Sect. 3 show the intricate connections between geometry
and the computational power of temperature 1 self-assembly, raising the ques-
tion of the exact characterization of the model, from the point of view of classical
computational models. In this section, we show that we are far from understand-
ing these relations.

When comparing tile assembly with automata theory, a first challenge is to
find a mapping between tile assembly systems and languages. We introduce this
mapping in the two definitions below, whose important length is due to the gap
in formalisms between tile assembly and formal language theory.

In Proposition 1, we show an example of how to use these definitions. Also,
remark in these definitions that the tree languages of the Turing machine simu-
lations in [3] are not recognizable by tree automata.

Definition 1. Let T = (T, σ, 1) be a temperature 1 tile assembly system where
σ is single-tile seed assembly. We call L(T ), the language of T , the tree language
recognized by the following tree grammar:
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– For each tile t ∈ T , with glues gN on the north, gE on the east, gS on the
south, and gW on the west, A has the four following production rules:

NgN → N(EgE , SgS ,WgW)
EgE → E(SgS ,WgW , NgN)
SgS → S(WgW , NgN , EgE)

WgW → W(NgN , EgE , SgS)

– Moreover, for each glue g appearing on the north (respectively south, west and
east side) of some tile of T , add a terminal symbol ng (respectively sg, wg,
eg) to the grammar, and the following rules:

Ng → ng

Eg → eg

Sg → sg

Wg → wg

– Finally, add a nonterminal symbol S, and the following rule:

S → Σ(NσN , EσE , SσS ,WσW)

Where σN, σE, σS and σW are the north, east, south and west glues of the
unique tile of σ, respectively.

Definition 2. Let T = (T, σ, 1) be a temperature 1 tile assembly system. A term
t of L(T ) describes the following assembly sequence:

– From Σ(NσN , EσE , SσS ,WσW), concatenate the four assembly sequences
obtained from NσN , EσE , SσS , WσW , successively.

– Let α(x, y, n,N(EtE , StS ,WtW)) be concatenation of the following sequences:
• the assembly of the unique tile type t ∈ T with north glue n, east glue tE,

south glue tS and west glue tW, at position (x, y).
• assembly sequence α(x + 1, y, tE, EtE).
• assembly sequence α(x − 1, y, tW,WtW).
• assembly sequence α(x, y − 1, tS, StS).

– Similarly for α(x, y, e,E(StS ,WtW , NtN)), α(x, y, s,S(WtW , NtN , EtE)), and
α(x, y, w,W(NtN , EtE , StS)).

– For terminals t of the form ng, sg, eg or wg, let α(x, y, g, t) be the empty assem-
bly sequence.

By extension, if this assembly sequence results in a producible assembly a ∈
A[T ], we say that t describes a. Moreover, if all the terms of some tree language
L describe a producible assembly of T , and all producible assemblies of T are
described by some term t ∈ L, we say that L describes A[T ].
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When all the nodes of terms of L(T ) have at most one nonterminal child,
this tree language is also a word language, over alphabet T .

As an example of these definitions, we re-prove a result from [8], using the
formalism introduced in the above definitions1.

Proposition 1. Let A be a non-deterministic finite automaton on alphabet S.
There is a (one-dimensional) tile assembly system TA = (TA, σA, 1) such that
L(A) describes A�[TA].

Proof. Let A = (Q,Σ,Δ, q0, F ) be any non-deterministic finite automaton, with
Q its set of states, Σ its alphabet, Δ ∈ Q × Σ × Q its transition relation, q0 its
start state and F its set of final states.

We build an “equivalent” temperature 1 tile assembly system TA = (TA, σA, 1),
where TA is a tileset with glue colors from Q, by letting:

– tσ be a tile with exactly one non-zero strength glue, on its east side, with
color q0.

– for each (q, s, q′) ∈ Δ, δ(q, s, q
′) be a tile with color q on its west side, q′ on

its east side, and s on its north side.
– for each q ∈ F , fq be a tile with color q on its east side, and no other non-zero

strength glue.

Then, let Ta = {tσ} ∪ {δ(q,s,q′)|(q, s, q′) ∈ Δ} ∪ {fq|q ∈ F}, and σA be an
assembly with exactly one tile of type tσ, at position (0, 0).

Clearly, the language L(A) recognized by A describes the terminal assemblies
of TA = (TA, σA, 1). �
Proposition 2. For any temperature 1 tile assembly system T = (T, σ, 1) with-
out mismatches, and such that σ is a connected assembly, there is a nondeter-
ministic top-down tree automaton whose language describes A[T ].

Proof. Clearly, since there are no mismatches in the productions of T , every
assembly described by L(T ) is producible by T . The other direction (producible
assemblies of T are described by L(T ) is immediate. �

When mismatches are allowed, the correspondance between tile assembly and
the “1D languages” is not as clear, as exemplified by the following proposition:

Proposition 3. There is a temperature 1 tile assembly system T such that L(T )
describes assembly sequences not producible by T .

1 We would like to thank an anonymous reviewer for pointing out the equivalence with
the known result.
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Proof. Let T be the following tileset:

T =

{
t0 =

a

, t1 =
a

a , t2 = a
a , t3 = aa ,

t4 = b
a , t5 =

b

b , t6 =
b

c , t7 = cc

}

Let σ be the assembly with a single tile of type t0.
We claim that for T = (T, σ, 1), L(T ) describes assembly sequences not

representing any assembly. First, since all the tiles of T can attach to at most
two tiles, we can completely describe assembly sequences as words on T . Let L
be the language of all assembly sequences (L is therefore a word language on
alphabet T ).

Since L(T ) is a regular tree language, L is a regular language, and is therefore
recognized by a deterministic finite automaton A. Let n be the number of states
of A, and let u = t0t

n
1 t2t4t

n+1
5 t6t

10
7 . Moreover, for i ∈ {0, 1, . . . , |u|−1}, let ai be

the state in which A is just before letter ui. Since there are n + 1 occurrences of
t5 in u, at least two distinct indices i and j, in subword tn+1

5 of u, are such that
ai = aj .

This means that the following word, which does not described any production
of T , is recognized: t0t

n
1 t2t4t

n+1−b+a
5 t6t

10
7 . �

Proposition 4. There is a temperature 1 tile assembly system T = (T, σ, 1)
such that L(T ) is a non-context-free word language on alphabet T .

Proof. Let T be the following tileset:

T =

{
t0 =

a0

, t1 =
a1

a0 , t2 = a1
b , t3 = bb , t4 = c2

b , t5 =
c2

c1 ,

t6 =
c1

d , t7 = dd , t8 =
e
d , t9 = e

f , t10 = ff

}

Since all tiles of T have exactly two sides of non-zero strength, the tree
language L(T ) is actually also a word language, on alphabet T . However, the
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language L of the productions of T is the union of the language M describing
the terminal assemblies of T , with all the prefixes of these assemblies. Formally,
M is the following language:

M = {t0t1t2t
a
3t4t5t6t

b
7t8t9t

c
10|a > b ≥ c} ∪ {t0t1t2t

a
3t4t5t6t

a
7 |a ∈ N}

Moreover, by the pumping Lemma on pushdown automata, this means if L
were context-free, then it would also contain words of the form t0t1t2t

a
3t4t5t6t

b
7

t8t9t
c
10 in which either c > b or b ≥ a, which is not the case. Indeed, for all a, M

contains the following word:

t0t1t2t
a+1
3 t4t5t6t

a
7t8t9t

a
10

Therefore, the pumping lemma states that L were context-free, it would also
contain:

– Either t0t1t2t
a+1−b
3 t4t5t6t

a−b
7 t8t9t

a
10 for some b < a. However, this word is not

in L.
– Or t0t1t2t

a+1
3 t4t5t6t

a+b
7 t8t9t

a+b
10 for some b > 0, which is also not in L.

– Or t0t1t2t
a+1+b
3 t4t5t6t

a
7t8t9t

a+b
10 for some b > 0, which is also not in L. �

5 Open Problems and Discussion

Despite our efficient constructions, planar temperature 1 tile assembly model
does not seem capable of Turing computation. Finding the limits of these con-
structions would give us a greater understanding of these processes, ubiquitous
in natural systems:

Open Problem 1. What is the largest integer s, such that all the terminal
assemblies of a tile assembly system with n tiles and a single-tile seed, are of
size s?

Another question, left open by Sect. 4, is the exact characterization of this model,
in terms of classical models.

Acknowledgements. The author thanks Damien Woods for insightful comments and
discussions, and one of the anonymous reviewer whose expertise helped improved this
paper quite a lot.
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A A Printable Version of Fig. 1
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Abstract. Tangle machines are topologically inspired diagrammatic
models. The novel feature of tangle machines is their natural notion of
equivalence. Equivalent tangle machines may differ locally, but globally
they share the same information content. The goal of tangle machine
equivalence is to provide a context-independent method to select, from
among many ways to perform a task, the ‘best’ way to perform the
task. The concept of equivalent tangle machines is illustrated through
an example in which tangle machines represent networks for distributed
information processing.

1 Introduction

1.1 The Idea in a Nutshell

This paper, which is a pared-down version of (Carmi and Moskovich 2015), intro-
duces a diagrammatic formalism for computation and for information process-
ing. Behind this endeavor is the observation that the combinatorial properties of
knot diagrams mimic principles pertaining to conservation and to manipulation
of information in networks.

We construct diagrammatic models called tangle machines, represented by
labeled versions of diagrams such as those of Fig. 1, that represent entities and
relationships between those entities. Unlike labeled graphs, in which edge e from
vertex a to vertex b represents a transition from the label of a to the label of b,
the basic building block of a tangle machine is an interaction, in which agent c
causes a transition from colours of input patients a1, a2, . . . , ak to colours of cor-
responding output patients b1, b2, . . . , bk. A machine makes explicit the cause of
a transition. From one perspective, a machine is a computational scheme, a sort
of “planar algorithm” wherein interactions simulate basic computations. From
the dual perspective, a machine is a network within which information is manip-
ulated at interactions and then transmitted further down to registers in other
interactions. Information can be both a patient (e.g. an input data stream) and
an agent (e.g. commands of a computer programme). This aspect of information
is captured by tangle machines but not necessarily by labeled graphs.

The novel feature of tangle machines is their flexibility. Whereas competing
graphical models are rigid, tangle machines admit a natural local notion of equiv-
alence. Roughly speaking, two machines are equivalent if one can be perfectly
c© Springer International Publishing Switzerland 2015
C.S. Calude and M.J. Dinneen (Eds.): UCNC 2015, LNCS 9252, pp. 277–289, 2015.
DOI: 10.1007/978-3-319-21819-9 21
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Fig. 1. Three different tangle machines with colours suppressed.

reproduced from the other. Machine equivalence parallels the notion of ambi-
ent isotopy in low dimensional topology. Local features such as implementation
and performance of computations or information manipulations modeled by the
tangle machine may be different for networks modeled by equivalent machines,
but we consider their information content to be the same. We may thus use the
tangle machine formalism to select, from among many equivalent models which
‘perform the same task’, the model (and thus the network) best suited for a
specified application. This concept is illustrated in our examples.

In regard to the computational power of tangle machines, we prove elsewhere
that tangle machines with a bounded number of interactions can decide any
language in complexity class IP (Carmi and Moskovich 2014b).

We represent networks of distributed information processing in Sect. 3 using
machines. In this example three equivalent machines are presented, one ‘optimal’,
one ‘suboptimal’, and one ‘abstract’. This illustrates the operational meaning of
machine equivalence.

1.2 Scientific Context

Turing machines are the heart of theory of computation and complexity the-
ory. They formalize the notion of an algorithm or of an effective procedure, and
they define the class of computable functions. There are many profound interre-
lationships between Turing machines, and related notions of computation, and
low dimensional topology, usually concerning computability of various topologi-
cally relevant functions.

The present paper suggests that coloured knots, tangles, spaces, and related
structures can themselves be computers. Indeed, the term tangle machine imi-
tates Turing machine. The computation of a tangle machine involves reading off
colours of a chosen set of output registers given a colouring of a chosen set of
input registers (assuming that the latter uniquely dictates the former). A tangle
machine may thus capture a certain sort of network computation.

The idea to model computations using tangle diagrams and related structures
from low dimensional topology was pioneered by Louis Kauffman. Kauffman used
knot and tangle diagrams to study automata (Kauffman 1994), nonstandard set
theory, and lambda calculus (Kauffman 1995, Buliga and Kauffman 2013). The
diagrammatic calculus of braids (braids are a special class of tangles) also lies at
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the basis of topological quantum computing— see e.g. (Kauffman and Lomonaco
2004). In another direction, a different diagrammatic calculus, originating in
higher category theory, has been used in the theory of quantum information—
see e.g. (Abramsky and Coecke 2009, Baez and Stay 2011).

Despite many shared keywords, our approach is conceptually different from
all of the above. We consider a ‘crossing’ (which we call an interaction) to repre-
sent a computation (in the sense of computer science or of automata) or a fusion
of information whose basic symmetries are encapsulated by the three Reidemeis-
ter moves of Fig. 4 which generate machine equivalence. Topology suggests that
these three local rewrite moves are in a sense different aspects of a single opera-
tion consisting of rotating a plane onto which an embedded object is projected.
We call the reader’s attention to the Reidemeister move R3 which manifests a
distributivity axiom (Eq. 1). Tangle machines place primary emphasis on a dis-
tributive property of computation and of information (compare Roscoe 1990), as
opposed to other approaches in which the lead role is played by associativity of
a ‘stacking’ operation. Also, in contrast with other approaches, tangle machines
are coloured. Colours of registers represent information and are a fundamental
part of our structure. Interactions are coloured by binary operations representing
fusion or computation schemes, which may differ for different interactions. A fur-
ther difference is that our interactions cannot be merged or split. In addition,
only our overstrands are oriented, and their orientations are independent of one
another. For these reason we do not believe that it is possible to usefully reformu-
late tangle machines in the language of braided monoidal categories, that is the
language of categorical quantum mechanics. Indeed, we have not yet found direct
overlap between our applications and the applications of other low-dimensional
topological approaches to computation.

2 Machines and Machine Equivalence

2.1 The Set of Labels of a Machine: A Quandle

We consider a set Q equipped with a set of binary operations B : Q × Q → Q.
We think of elements of Q as representing pieces of information and of elements
of B, which we call updates, as representing information fusion. An example of
an information fusion operation is given in Sect. 3.

Our updates are required to satisfy three properties (Ishii 2013, Przytycki
2011):

Idempotence: x � x = x for all x ∈ Q and for all � ∈ B.
Reversibility: The map �y : Q → Q which send each x ∈ Q to a corresponding

element x � y ∈ Q is a bijection for all (y, �) ∈ (Q,B). In particular, if
x�y = z�y for some x, y, z ∈ Q and for some � ∈ B, then x = z. We interpret
this condition to mean that information fusion does not forget information,
because x can uniquely be reconstructed from knowledge x � y, �, and y.
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Distributivity: For all x, y, z ∈ Q and for all �,�∈ B:

(x � y) � z = (x � z) � (y � z) (1)

We interpret this equation to mean that information fusion eliminates redun-
dancy. Thus, information z which appeared once in x � z and once in y � z
is not double-counted towards (x � z) � (y � z).

We call (Q,B) a B–family of quandles or just a quandle. We list several
archetypal examples of B–families of quandles.

Example 21 (Conjugation Quandle). Colours might be elements of a group Γ,
and the operation might be conjugation:

x � y
def= y−1xy. (2)

The pair (Γ, {�}) is called a conjugation quandle. Such quandles feature in knot
theory, e.g. Joyce (1982).

Example 22 (Linear Quandle). Colours might be elements of a real vector space
Q and the operations might be convex combinations:

x �s y
def= (1 − s)x + sy s ∈ R \ {1} . (3)

The pair
(
Q, {�s}s∈R\{1}

)
is called a linear quandle. Our example in Sect. 3

involves linear quandles.

Example 23 (Loglinear quandle). In the same setting as Example 22, consider
the operations:

x �̄s y
def= x1−sys s ∈ R \ {1} . (4)

The pair
(
Q, {�̄s}s∈R\{1}

)
is called a loglinear quandle. In (Buliga and Kauffman

2014a) we have exhibited several standard information fusion operations, such as
covariance intersection, as quandle operations of quotients of loglinear quandle.

2.2 Inductive Definition of Tangle Machines

The fundamental building block of a machine is an interaction. The simplest
interaction is graphically depicted as

x

y

This describes initial information x (called the input patient) being updated
by new information y (called the agent) to obtain updated information x � y
(called the output patient). The updating operation � may differ for different
interactions. The colours x, y, and x � y are elements of a quandle (Q,B). We
name the strands being coloured as registers. The assignments of colours to
registers and of binary operations to interactions is called colouring.

One register in an interaction may update multiple registers. In this case the
agent is drawn as a thick line. For example, with colours suppressed and with a
dotted line to indicate that it may be a part of a larger machine:
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(5)

A general tangle machine is obtained by concatenating a disjoint union of a

finite number of interactions and building blocks which look like Concate-
nation is the process of connecting endpoints of a tangle machine. See Fig. 2.

Fig. 2. Concatenation. Endpoints can be concatenated if they share the same colours
(colours are suppressed in the above figure). At the third stage, note that in our for-
malism, only agents are oriented, and no compatibility requirement is imposed. The
concatenation line chosen is arbitrary, and in particular it may intersect other concate-
nation lines.

Remark 24. Our diagrammatic model of machines as concatenations of interac-
tions is inspired by diagrammatic formalisms in low dimensional topology. The
field of combinatorial knot theory studies knots as planar diagrams instead of
as embedded objects in 3–space. These diagrams are decomposed into tangles
(Conway 1970). Knots and tangles are modified by local moves, which replace one
tangle within a knot by another. Knots are thus revealed to be algebraic objects
arising as concatenations of crossings (which are very simple tangles) in the plane
(Jones 1999). Dropping the requirement that concatenation be planar, Kauffman
defined virtual tangles (Kauffman 1999). A strengthening of the equivalence rela-
tion imposed on virtual tangles gives rise to w-tangles. Our diagrammatic con-
struction is most similar to the diagrammatic calculus of w-tangles (Bar-Natan
and Dancso 2013), which form an algebra over a modular operad (Getzler and
Kapranov 1998). The differences are that our diagrams are coloured, that we
allow multiple quandle operations, and also that our interactions cannot be split
or merged. Also, no compatibility is required of orientations of concatenated
agents, as in the theory of disoriented tangles (Clark et al. 2009).

For rigourous definitions, see (Carmi and Moskovich 2015). Examples of tan-
gle machines are scattered throughout the paper.
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2.3 Machine Equivalence

The main feature of machines is their a natural local notion of equivalence. First,
we do not ascribe physical meaning to colours, but only to differences between
colours. Thus, if change the colouring of a machine M by an action of an auto-
morphism of (Q,B) inside a disc D, where M does not intersect the boundary
of D, then the resulting machine M ′ is considered to be equivalent to M .

Secondly, as in graph theory, intersections between edges in diagrams of
machines ‘do not really exist’, and can be added or taken away at will by one
of the modifications VR1, VR2 and VR3 in Fig. 3. This amounts to choosing
different concatenating lines when recursively building the machine out of inter-
actions. Moves I1, I2, and I3 relate local pictures which express the same inputs
changing to the same outputs as a result of the same agent. And move ST allows
us to add and delete agents which do not act on anything.

I1 x

x

x

x
xx

VR1

VR2 VR3

SV

I2

I3

ST

Fig. 3. Cosmetic Reidemeister moves for machines. Where directions are not indicated,
the meaning is that the move is valid for any directions, and the same for colourings.

Third, updates performed by a single agent should be thought of as simulta-
neous. Thus, the two diagrams below, whose diagrams differ by permutation of
input-output pairs (on the LHS the agent. indicated by the thick line, appears
first to update process A and then process B, while on the RHS it appears first
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R1

R2 R3

Fig. 4. Reidemeister moves for machines, valid for any directions of the agents and for
any colouring.

to update process B and then process A), depict equivalent machine:

(6)

Fourth, the Reidemeister moves, R1, R2 and R3 of Fig. 4 embody the defin-
ing axioms of (Q,B). This is illustrated in Figures(7a), (7b), and (7c), which
reflect idempotence, reversibility, and distibutivity respectively (in each equation
designated colours on either sides of the arrow are equal). Note that reversibil-
ity implies the existence of an inverse operation � for each � ∈ B such that
(x � y) � y = x for all x, y ∈ Q. Machines related via a finite sequence of Reide-
meister moves are considered equivalent.

(7a)

(7b)

(7c)
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To summarize:

Definition 25. Tangle machines M and M ′ are considered equivalent if they
(or rather their restrictions to a closed disk outside which they both consist only
of rays to infinity) are related by an automorphism of (Q,B) together with planar
isotopies and a finite number of the local moves of Figs. 3 and 4.

For an example of equivalent machines see Fig. 5.

Fig. 5. An example of machine equivalence.

3 Machines and Information

The concept of computation is broad, and extends beyond calculating the answer
to a prescribed problem. Perhaps the most general characterization of computa-
tion is that it is ‘a manipulation or processing of information’. Computation and
information are intertwined, and these two concepts rely heavily on one another.

In this section, machines are conceived of as a class of networks for dis-
tributed information processing. The colours represent information entropies.
The information processing capacity associated with an interaction, called its
local capacity, is defined to be the difference between initial and terminal colours.
A machine M represents a network within which information is processed and
sent further down to other interactions or registers. A machine equivalent to M
is a network which, as a whole, exhibits an information processing capacity the
same as M , but whose local capacities may be different.

Our definitions in this section follow (Cover and Joy 2006). We take note
that the reader may not be fully acquainted with this field and hence maintain
expositions as informal as possible.

We colour machines by the linear quandle (Q,B) whose elements are real
numbers, with an operation

x �s y
def= (1 − s)x + sy

for each s �= 1. To recap, each register r is coloured by a real number nr �= 1,
and it acts on each of its patients via either �nr

or � nr
. In this section, elements

of Q represent entropies.
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3.1 Preliminary Definitions

An information channel is an apparatus through which messages are transmit-
ted from one location to another. In practical situations, a message entering the
channel on one end will emerge corrupted on the other end. It is convenient to
think of a message as a sequence of zeroes and ones. An information channel is
characterized by its capacity, that is the maximal rate at which messages may
be transmitted with a ‘negligible’ loss of information. Entropy is a measure of
information, or rather, of uncertainty. If a message is constructed by sampling
N independent identically distributed (iid) binary random variables, then Shan-
non’s Source Coding Theorem tells us that, for typical sequences, the entropy
times N is nearly the number of information units (e.g. bits) required to encode
a message so that it can reliably be recovered by a receiver.

Compressible messages exhibit some kind of pattern (H < 1), and these
admit shorter descriptions than the length of the message itself. This is the key
principle underlying message compression. Incompressible messages are messages
for which randomness inhibits descriptions shorter than the message own length
(i.e. H = 1).

A general computing device (e.g. a universal Turing machine) requires two
distinct inputs. The first input X0 is a stream of data that is read and manip-
ulated by the machine according to instructions given by the second input X1.
Both inputs X0 and X1 and the result of a computation Xout are all assumed to
be typical binary sequences.

3.2 Information Processing by Machines

A machine describing an information processing network is a concatenation of
interactions. Each of its registers is coloured by a real number representing an
entropy. The colour of an agent register represents the entropy of a programme
typical sequence, while colours of input registers represent entropies of data
typical sequences. The agent register is equipped with a parameter s ∈ (0, 1),
which may represent some (input-independent) property of the computing device
itself. The colour of the output corresponding to input H(X0) is:

H(X0) �s H(X1)
def= (1 − s)H(X0) + sH(X1). (8)

If H(X0) > H(X1) then the output entropy is strictly lower than the input
entropy, i.e. H(X0) �s H(X1) < H(X0).

Thus, the computing device computed Xout by applying the instruction data
steam X1 to the input data stream X0, and the entropy of Xout is H(X0)�sH(X1).
See Fig. 6.

3.3 Capacity

In this section we describe various capacities associated to machines, which pro-
vide a measure of how ‘good’ a computation is. Our analysis of a computing
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H(X0)

H(X1)

H(X0) sH(X1)X0

X1

Xouts

Fig. 6. The computation, and the corresponding interaction between entropies.

device whose internal workings are unknown to us focusses on discrepancies
between its input and output streams. Suppose that we wish to know if the
computation is meaningful in some sense. If no additional restrictions are made,
then “meaningful” might mean that computations produce intelligible answers
which could read off by a human operator. Translating this requirement into
the language of preceding paragraphs, the output stream is expected to appear
‘less random’ than the input stream. According to this paradigm, computation
and compression are literally the same thing. A ‘good computation’ is one which
compresses X0 as much as possible, given X1. In the language of information
theory, the optimal output Xout has entropy equal to the conditional entropy
H(X1 | X0). The channel capacity of the computing device is defined as the
mutual information:

I(X1 : X0)
def= H(X1) − H(X1 | X0). (9)

The capacity of a process (that is, a chain of registers connected by concate-
nation and by being input-output pairs of an interaction) is the entropy of its
initial register minus the entropy of its terminal register. For example, for an
interaction with a single input-output pair:

(10)

An interaction is optimal if its capacity equals its the mutual information:

H(X0) − H(X0) �s H(X1) = I(X0 : X1) (11)

which occurs when H(X0) �s H(X1) = H(X0 | X1).
The global capacity of a machine is the set of all capacities of its processes.

3.4 Equivalent Machines

Consider the three equivalent machines in Fig. 7. As the three machines are
equivalent, they have the same global capacities. But the capacities of their
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H(0) H(0)H(0)H(1) H(1)H(1)

H(2)

H(2)

H(2)

H(0) tH(2) H(0) tH(2)H(0) tH(2)

H(1|2)
H(1 0)

H(1 0)

H(1|0,2) H(1|0,2)H(1|0,2)

s

s

s

t

t

t

abstract locally suboptimal locally optimal

Fig. 7. Equivalent machines with the same global information processing capacities.
The middle and right machines are feasible whereas the left machine is abstract. While
all of them are globally optimal only the rightmost machine is also locally optimal.

interactions are quite different, and the leftmost machine represents an impos-
sible, abstract computation.

Set the following values of t and s:

t
def=

H(1) − H(1 | 2)
H(1) − H(2)

, s
def=

H(1 | 2) − H(1 | 0, 2)
H(1 | 2) − H(0) �t H(2)

. (12)

In order to assure that t, s ∈ (0, 1), we choose our entropies so that:

H(1 | 2) > H(2), H(1 | 0, 2) > H(0) �t H(2) , (13)

which essentially describe the extent to which the sources, X0, X1, and X2, are
statistically dependent.

H(0) H(1)

H(2)X1

X1

X1

X2

X2

X2

X0

X0

X0
H(0) tH(2)

process capacity in I(M)

H(1|0,2)

local capacities at crossings Cap

I(1 : 2)

I(1 : 2 | 0)

I(1 : 2, 0)

Fig. 8. Optimal information processing along a process P1 in the rightmost (locally
optimal) machine in Fig. 7.

All three machines are globally optimal, but the local capacities for the three
machines in Fig. 7 are different. In the rightmost machine, by our choices of t



288 D. Moskovich and A.Y. Carmi

and s, each interaction is locally optimal— see Fig. 8. This is no longer true
for the middle machine, which has a register labeled H(1 � 0) def= H(1) �s H(0),
which may not equal H(1 | 0). In this case, the middle machine contains a non-
optimal interaction. The left machine involves the inverse operation � s, so that
its colour H(1) �s H(0) might be negative. The idea of negative entropies may
sound absurd, but nevertheless the leftmost machine in Fig. 7 is equivalent to a
machine all of whose computations are feasible, and in fact even optimal. In view
of this, we may think of this machine as a sort of abstract information processing
scheme.

4 Conclusion

We have introduced tangle machines as a diagrammatic algebra uniting ideas
in low-dimensional topology, information, and computation. There is a natural
local notion of tangle machine equivalence. We have exhibited ways in which
machine equivalence may represent networks with identical global properties,
but with different local properties, within a certain paradigm of computation.
Our vision is to model other complex real-world phenomena by machines, then
to use machine equivalence to select a ‘best’ machine (whatever ‘best’ means in
that context), and then to perform a computation for that ‘best’ machine which
might not have been tractable for the machine that we started with.
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Abstract. We discuss how formalisation using proof assistants, an
unconventional way of doing mathematics which seems to disregard
Gödel’s celebrated Incompleteness Theorems, interacts with ideas of
understanding. Our experience is based on a formalisation carried out
in the Isabelle generic proof assistant.

1 Introduction

Gödel’s Incompleteness Theorems tell us that there are true but unprovable
statements. No formal system is able to prove every true statement, and so
automated proof assistants are guaranteed to never be wholly effective. Nonethe-
less, proof assistants are being used on larger and larger scales. This leads to a
strange circumstance - we know proof assistants are ultimately doomed to fail,
yet we still use them for formalisation. Conventionally, if something is proved
impossible, we stop pursuing it. Formalisation leads to us putting aside Gödel’s
Theorems and testing how much we really can prove formally. It leads to a wholly
unconventional way of doing mathematics.

Much thought is often given to the syntactical implications of Gödel’s The-
orems. While mathematics is syntactically limited by the Theorems, from a
practical point of view we seem to be able to overcome this. However the dif-
ficulties arising in semantics are much harder to pin down. By its very nature,
semantics is less conducive to formalisation than syntax, and so specific limi-
tations are hard to describe. Related is the subjective notion of understanding,
which is itself difficult to define. A less conventional view of proofs is that they
serve not only to verify a statement, but also to provide some understanding
as to why that statement is true.1 In a 2009 paper by Calude and Müller [4],
the authors propose a series of symptoms of understanding. These attempt to
capture the idea of mathematical understanding, with reference to proofs and
proof assistants.

Formalising a proof or concept involves ensuring that each step or notion is
explicitly defined and explained, that no detail has been overlooked. In conven-
tional mathematics proofs are not formalised, since much extra effort is required
for what is perceived to be an uninformative task. A major objection to the use

1 Our thanks to a reviewer for highlighting this unconventional view of proofs.

c© Springer International Publishing Switzerland 2015
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of formal proofs is that they hinder understanding of the very concepts they are
proving. If we take understanding to be fundamentally linked to proof, then this
hindrance would preclude formal proofs from being proofs at all. The fundamen-
tal issue we seek to address in this paper is how the process of formalisation can
help (or hinder) the process of understanding. We consider understanding in the
context of Calude and Müller’s symptoms.

We have undertaken a case study in formalisation in the Isabelle interactive
proof assistant [1]. The area of formalisation was computability theory, specif-
ically the formalisation of theorems appearing in [3]. Here we give impressions
on the process undertaken and focus less on the formalisation itself than how it
was achieved. Our findings are as follows.

– A discussion of the merits and difficulties of using Isabelle to formalise com-
putability theory, including suggestions for improvements and additions to
what is currently possible.

– Comments on the process of formalisation generally, and its relation to the
concept of mathematical understanding.

This report has been written entirely within the Isabelle system.

2 The Isabelle Generic Proof Assistant

We begin with a brief discussion of the Isabelle generic proof assistant, upon
which our experiences are based. Isabelle is derived from the Higher Order Logic
(HOL) theorem proving software, which in turn is a descendant of Logic for
Computable Functions (LCF) [5]. It is based on a small core set of logical prin-
ciples from which theories can be built up. As such, the confidence with which
we can claim any theorem proven in Isabelle to be true is the same confidence
with which we can claim that small core is true.

Isabelle provides a formal language to work in, and a set of proof methods,
which allow it to prove statements using logical rules, definitions, and axioms,
as well as already proved statements. Proofs in Isabelle are essentially natural
deduction style. A structured proof language, Isar, is provided which aims to
make proofs more human readable, and which serves to greatly reduce the learn-
ing curve required to use Isabelle. Isabelle is developed jointly at the University
of Cambridge, Technische Universität München and Université Paris-Sud [1].

The currently recommended interface for Isabelle is jEdit,2 which is packaged
with the distribution. This interface allows for correct parsing of special symbols
in theories, and integrates well with Isabelle output. Syntax highlighting makes
clear which statements are being processed, and when a proof is taking longer
than might be expected. This results in a very useable interface, with a low
learning curve.

2 http://www.jedit.org/.

http://www.jedit.org/
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General Usage and Proof Methods. Isabelle provides a variety of tools for
formalisation. Datatypes can be specified and built up from existing datatypes.
Definitions for concepts can be expressed in a number of ways. Both recursive
and non-recursive functions can be defined, and this can be inductive.

Propositions can be proved in Isabelle through the use of lemmas, theorems
and corollarys. In keeping with general practice, these have no semantic dif-
ference in their use, and so distinctions can be arbitrarily made [2]. Proofs of
propositions are given using any of a range of proof methods and, as with infor-
mal proofs, deductions can often be completed in a number of ways.

The metis proof method is supplied with previously proved propositions, and
attempts to use these to prove the current goal. Metis can take some time as it
searches for solutions to problems, but it is very useful when all the theorems
needed to prove the goal are explicitly known. The more powerful simp proof
method attempts to solve the goal by way of simplification rules and general
reasoning. Any lemma can be marked as a simplification rule, which simp will
make use of automatically. simp has access to far more resources than metis
and will often run faster, though it is important to note that simp can be over
zealous and fail where metis succeeds. auto, which calls simp as a subroutine,
is more powerful still, and is adept at handling first-order logic applications,
especially those involving quantifier rules. For even more advanced logic, blast,
fastforce and force are provided. A wide variety of other proof methods exist,
including rule for applications directly matching previously proved results and
ind-cases, which is used for rule inversion with inductive definitions [6].

Proofs in Isabelle can be completed in two main ways: by applications of
proof methods to the lemma, or through the Isar proof language. The latter of
these closely models the style of informal proofs, and so allows for greater human
readability as well as a reduction in the learning curve required for formalisation.
As an example of the distinction, we give two proofs for the same result. First,
we give a proof without Isar.

lemma (x ::nat) ∗ (x − 1 ) ≤ xˆ2
by (metis comm-semiring-1-class.normalizing-semiring-rules(29 )

comm-semiring-1-class.normalizing-semiring-rules(7 ) diff-le-self mult-le-mono1 )

We simply supply metis with the required results to prove the statement. In
many cases it is convenient and tidy to have a proof as short as this, however
by way of exemplar, we give a fully detailed Isar proof.

lemma (x ::nat) ∗ (x − 1 ) ≤ xˆ2
proof (induction x )
case 0
show (0 ::nat) ∗ (0 − 1 ) ≤ 0 2 by simp

next case (Suc x )
have Suc x ∗ (Suc x − 1 ) = (Suc x )∗(Suc x ) − (Suc x ) by simp
moreover have (Suc x )∗(Suc x ) − (Suc x ) ≤ (Suc x )ˆ2
by (metis diff-le-self power2-eq-square)

ultimately show ?case by simp
qed
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Isabelle actively interacts with the user during proofs such as that above,
offering help as to what the current goals are, any counter examples it has found
and information on why proof methods may have failed.

Sledgehammer is an incredibly useful tool built into Isabelle. Sledgehammer
uses a number of external automated theorem provers and searches all available
facts in an attempt to prove the current goal. The result is (generally) a metis
command explicitly listing which facts are required. In this manner, sledgeham-
mer provides an efficient means to search for the particular theorem needed to
reach the goal.

3 Formalisation as a Tool for Understanding

A proof is “something that proves a statement; evidence or argument establish-
ing a fact or the truth of anything” [7]. Mathematically, a proof is a “sequence of
steps by which a theorem or other statement is derived from given premises” [7].
While informal proofs are the norm in most areas of mathematics and computer
science, formal proofs such as those created in Isabelle are becoming more prac-
tical. It is readily apparent that a formal proof of a statement is more reliable
than an informal proof - we need not appeal to any leaps of faith or intuition,
and can (at least in principal) verify every step of the proof.

A question which naturally arises when discussing formal proof is that of
understanding. Do formal proofs hinder understanding or help it? In their 2009
paper [4], Calude and Müller discuss this question, and more fundamentally the
question of what understanding really means. They propose a series of symptoms
of understanding, and discuss how these relate to formal theorem proving. Fur-
ther, they envisage an active proof environment (APE), “in which users can write
and check formal proofs as well as query them with reference to the symptoms
of understanding”.

In this section, we discuss the experience of formalisation from this perspec-
tive. We consider the interaction of formalisation and understanding and explore
how well Isabelle matches the ideals of an APE, both from the perspective of a
reader and a writer of proofs.

Formalisation in Isabelle immediately provides a number of the symptoms of
understanding given in [4].

Symptom 1. Fill in simple details of the proof, like explication of notation and
definitions.

Symptom 4. Cast the proof in different terms.
Symptom 7. Give natural examples and counter-examples for various notions

used in the proof.
Symptom 20. Program (parts of) the proof in a programming language.

The last of these is clearly satisfied by formalisation in Isabelle, which uses a
process very similar to programming. Since a formalisation requires all details to
be complete, Symptom 1 is achieved. By rewriting an informal proof formally,
we change radically the style of the proof, clearly an instance of Symptom 4.
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Symptom 7 is provided by tools such as AutoQuickcheck, which searches for
counterexamples to the current goal.

3.1 Facts and Assumptions

An important feature of formalisation we encountered was the explicit realisation
of which facts and assumptions were required in order to deduce a proposition. In
many cases, underlying assumptions not immediately obvious were uncovered. In
other cases, assumptions that seemed necessary were in fact superfluous. These
relate closely to the second, eighth and eleventh symptoms of understanding
given in [4]:

Symptom 2. Justify other results implicitly used in the proof and inferences..
Symptom 8. Indicate where certain hypotheses are needed.
Symptom 11. Discuss interesting modifications of hypotheses and their corre-

sponding modifications of conclusions.

A good example of the impact of unexpectedly required assumptions is the
use of IN for recursive functions, rather than Z

+, which is what appeared in
the source [3]. The addition of the number 0 changed a number of important
properties in one function, with the result that some of our theorem statements
differ from that given informally. This gives an instance of Symptom 11.

An interesting issue which arose when proving one proposition surrounded
the definition of another function. We defined this function in three ways and
were able to show correctness for all three definitions, but termination on appro-
priate inputs (which was critical) only for one. While all three definitions intu-
itively matched the informal definition given in [3], only one led to the required
conclusion. This is another instance of Symptom 11.

The use of assumptions is made clear in Isabelle by the fact that they must be
referenced by assms whenever used. It is thus easy to tell from the proof where
the assumptions are required and where they are not, showing Symptom 8. If
assumptions are not used at all, they can safely be removed, giving a stronger
proof. The reader may have noticed that the inductive hypothesis was not used
in the inductive proof in Sect. 2 (it would have been referenced by Suc.IH). This
suggests that induction may not be necessary there. A good improvement would
be if Isabelle were able to highlight such unused assumptions in a manner similar
to how Integrated Developer Environments often highlight unused variables.

The sledgehammer tool is also very useful from this perspective. While it may
seem that some understanding is lost through the application of sledgehammer,
in practice, it is useful mainly for locating the names of theorems which the
user already knows exist. The result of sledgehammer is a metis command which
explicitly states which assumptions, facts and theorems are being used to prove
the goal, demonstrating Symptom 2.

A notable ommission in our formalisation is the explicit expression of the
concept of infinity. We implicitly give this by stating various propositions to
be dependent on arbitrary universal functions. Since there are infinitely many
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universal functions, this implies that the propositions hold for infinitely many
cases. However, it could be seen that formalising this information would con-
stitute a large project of its own. While arguably a mark against formalisation,
this reinforces that concepts we informally take for granted are in fact subtly
complex.

3.2 A Higher Level of Constructive Proof

As [4] notes, “a constructive proof gives more insight than a non-constructive
argument”.

Symptom 19. Recognise the constructive or non-constructive character of a
proof.

Formalisation of computability theory can arguably lead to a more constructive
proof for certain statements. For example, in proofs of universality, we actively
constructed the required functions, and proved that our constructions met the
requirements of the definition. Rather than claiming such functions could exist,
or inferring their computability from abstract results, we built the functions
from scratch and demonstrated their correctness. In some cases we were even
able to construct a working Isabelle function for that given in the proofs, another
symptom of understanding.

Symptom 14. Calculate a quantity used in the proof.

For one function defined informally in [3], we constructed an Isabelle function
which successfully calculated values of the function. In this way, we were able
to check that the function was behaving as expected (on small inputs). It was
interesting to see how long the function took to calculate values, as this gave an
idea of the efficiency of the algorithm.

3.3 Balancing Understanding and Tedium

An interplay was observed during formalisation between the ideas of understand-
ing and tedium.

A type of proof that was avoided as much as practicable was that involving
the manipulation of algebraic expressions, especially with a mixture of natural
and real numbers, and functions defined only on naturals or only on reals. It
could charitably be said that such proofs are best avoided. It is interesting to
compare the process of manipulating expressions by pen and paper with the
level of formalisation required to achieve the same results in Isabelle. An error
that reappeared many times involved the requirement that numerals be given
explicit types in some cases. Expressions involving, for example, 2ˆm sometimes
need to be specified more carefully as (2::nat)ˆm. This simple inclusion of a type
allows a myriad of theorems to apply to the phrase, but is easy to forget. It is
interesting to note that were we completing a formalisation in a different domain
such details could be the focus of our work. Rather than being a tedious means
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to an higher level end, they would be the very fundamental operations we would
be studying. The relevant level of understanding is dependent on the field being
studied. While it would be tempting to automate such proofs to a greater degree
in proof assistants, consideration must be given to the field being formalised.

In other cases we found that Isabelle proofs could be very brief where a
human would require more detail. For example, consider the following proofs of
correctness for a recursive function (using the formalisation from [8]). The first
proof is entirely obscure.

lemma rec-exec (Cn 1 (Pr 1 (id 1 0 ) (id 3 1 )) [z , (id 1 0 )]) [x ] = x − 1
by simp

For the second proof, we use Isar to explain how this function works.

lemma rec-exec (Cn 1 (Pr 1 (id 1 0 ) (id 3 1 )) [z , (id 1 0 )]) [x ] = x − 1
proof cases
assume First :x = 0
then have rec-exec (Cn 1 (Pr 1 (id 1 0 ) (id 3 1 )) [z , (id 1 0 )]) [x ] = rec-exec (Pr

1 (id 1 0 ) (id 3 1 )) [0 , 0 ]
by simp

moreover have rec-exec (Pr 1 (id 1 0 ) (id 3 1 )) [0 , 0 ] = rec-exec (id 1 0 ) [0 ] by
simp
ultimately have rec-exec (Cn 1 (Pr 1 (id 1 0 ) (id 3 1 )) [z , (id 1 0 )]) [x ] = 0 by

simp
thus ?thesis using First by simp

next assume Second :x �= 0
then have rec-exec (Cn 1 (Pr 1 (id 1 0 ) (id 3 1 )) [z , (id 1 0 )]) [x ] = rec-exec (Pr

1 (id 1 0 ) (id 3 1 )) [0 , x ]
by simp

moreover have rec-exec (Pr 1 (id 1 0 ) (id 3 1 )) [0 , x ] = rec-exec (id 3 1 ) [0 , x −
1 , rec-exec (Pr 1 (id 1 0 ) (id 3 1 )) [0 , x − 1 ]]

using Second by simp
moreover have rec-exec (id 3 1 ) [0 , x − 1 , rec-exec (Pr 1 (id 1 0 ) (id 3 1 )) [0 , x

− 1 ]] = x − 1
by simp

ultimately show rec-exec (Cn 1 (Pr 1 (id 1 0 ) (id 3 1 )) [z , (id 1 0 )]) [x ] = x − 1
by simp
qed

This second proof is still not “complete” - each step is not explicitly described.
However, it elucidates greatly on why the function gives that output when com-
pared with the first proof. We have refrained from commenting within the proof
to reinforce this point - at each step only one or two basic applications of the
definitions for recursive functions are used.

A striking difference appears here between our intuition of what a formal
proof should be, and the realisation in Isabelle. The first proof could charitably
be described as “brief”. However, a formal proof is meant to provide every detail,
so intuitively it should be much longer than an informal proof. In the second
proof, the level of detail is wholly unnecessary for the Isabelle system, yet it
seems to more closely resemble what we would expect as a formal proof (or even
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an informal proof). Were we to try to convince a human that the lemma was
true, the first proof would almost certainly not suffice. So where is the ability
to test correctness? How can a reader perform, as Hilbert put it, “a mechanical
procedure that will check whether the proof is correct or not, whether it obeys
the rules or not” when the proof is by simp? The answer is by studying the code
which makes up Isabelle, and deriving a proof by themselves. This seems highly
unsatisfactory. While the first proof may technically constitute a formal proof
in the strict sense, it does not seem in the right spirit. In practice, we can only
rely upon the Isabelle system; the first proof is like saying “because I said so”,
without giving any compelling reason.

3.4 The Reader and the Prover

A difference may readily be discerned between the level of understanding a formal
proof gives the prover versus reader. It would seem that formal proofs offer a
huge window of insight to the prover, but may be quite opaque to the reader.

An example of this is in the abstraction of goals. When proving a statement,
it is convenient to abstract the current goal, and prove a more general statement
of a given step. In this way, proofs are kept to a manageable length, and general
statements are able to be reused. A negative effect is that the reader is presented
with a seemingly irrelevant proof, the justification for which is only provided
later. It is up to the prover to explain a general overview of the theory, and why
each proposition is proved when it is. This clearly fails the requirements of a few
symptoms of understanding from [4]:

Symptom 3. Give presentations of the proof for different audiences having
various degrees of expertise.

Symptom 5. Motivate the proof.

This seems a problem for formalisation. If formal proofs are to be used exten-
sively, they need to be human understandable. At present, they often do not meet
this criterion for humans not involved in the proof process. A solution to this
problem may be to present theories with only the high level lemmas, with more
detailed proofs available by selecting the appropriate theorem references.

In fact, the process of abstraction can hinder understanding even on the part
of the prover. A difficulty which regularly appeared was that of losing sight of
the goal, or proving without motivation. This situation occurs easily in Isabelle
and is characterised by a series of incomplete proofs, each dependent on the last.
When proving high level theorems, many abstractions present themselves easily.
It is very easy to become deeply involved in such proofs, and end up trying to
prove a statement which has seemingly little bearing on the original theorem.
While it is interesting to see the fundamental principles a theorem relies upon,
after three or four abstractions the original statement is completely forgotten.
Having lost sight of the goal, the prover begins to wonder what purpose there is
in proving the current statement. This confusion is often compounded when an
abstracted proof fails to help prove the original goal.
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In order to avoid this problem, we found the use of sorry statements very
useful. sorry is a command which causes Isabelle to accept a given statement
without proof. In order to avoid disappearing down a warren of abstraction, it is
convenient to map out complex proofs using statements justified by sorry. These
proof overviews often contain approximately the same amount of detail as an
informal proof.

Another effective solution to the problem of forgotten goals is to complete
informal proofs of the theorem on pen and paper. While this may seem like an
obvious first step to proving a theorem, in many cases a formal proof seems like
it should be able to proceed easily. Informally proving a statement serves both to
convince the user that the proposition is true, and to give a good outline of how
the formal proof should look (similar to the use of sorry statements). Further,
the flexibility of presentation with informal pen and paper proofs means that
solutions can often be found quicker than with a rigid notation mechanism.

It is interesting to consider this second solution. It says that in order to
complete a formal proof it is helpful to complete an informal proof of the same
statement. Does this mean that formal proofs offer no understanding to the
prover? Not at all. In fact, the formal proof is the source of the statement we
prove informally; if not for the process of formalisation we would never have
tried to prove what is likely to be an abstract theorem, giving us a deeper
understanding of the concepts at play.

3.5 Isabelle as an APE

Isabelle still has some way to go to being a good model of an APE. While the
creative aspects of APEs (discovering and verifying proofs) are well served, the
accessibility of formalised proofs to a general readership is not yet as envisioned.
Isabelle does well as a proof assistant (as would be expected), but not yet as an
intelligent interface for exploring proofs.

However even as a tool for general formalisation of the proof process, Isabelle
has some way to go. While the act of proving is highly satisfying when it works,
difficulties arising due to use of the system (rather than underlying problems
with the mathematics) are too common and can be quite frustrating. A user
interested in Isabelle as a tool for formalisation, rather than as an object of
study itself, is likely to find the current learning curve unjustifiable.

An example of such a difficulty which led to great tedium was in certain
proofs of termination. Specifically, if Isabelle is expecting an argument in the
form ([x, y] @ [z]) and it is instead provided with ([x, y, z]) (both of which evaluate
to the same), it will not apply relevant theorems. This can be quite frustrating,
especially when the list in question has been automatically generated. A number
of similar issues, while small, are nonetheless important in preventing the system
feeling efficient.

However, it seems highly likely that Isabelle will mature well, and that in the
future such systems will become much more widespread.
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4 Conclusion

Concerns that the process of formalisation hinders understanding need not be
grave. At its best, formalisation makes the prover consider and evaluate every
assumption and step required to prove their goal, reinforcing just what’s needed
and what isn’t. At its worst, formalisation can be a tedious task in determining
the reasons basic algebra isn’t accepted, or a far too unilluminating verification
of correctness. Cases of the latter are uncommon and easily overcome. Cases
of the former may increase frustration but in no way curb understanding - the
inherent problem is that the prover is being made to understand more than they
wish to.

An argument can be made that formalisation hinders understanding on the
part of the reader. Indeed, the original four line informal proof would be much
more accessible than our 40 page formalisation of it. But arguably this is a prob-
lem with informal proofs too - surely the reader of an informal proof generally
understands less of the topic than the writer. Further, were a reader patient
enough to make it through all 40 pages, would they not understand more than
the reader of the informal proof? Such questions warrant further investigation.
This being said, if systems such as Isabelle are to be used in contexts of presen-
tation, capacity for accessibility on the part of the reader needs to be increased.

An interesting issue to consider is the impact greater automation of formali-
sation would have on understanding. Greater automation would lead to shorter
proofs, missing more details, which might impair understanding. But perhaps
in implementing the automation, that understanding would be recovered, or a
deeper understanding would be found.

As a general formalisation tool, Isabelle still has some way to go. While
formalisation is rewarding and enjoyable, there is still a reasonable learning
curve and small annoyances affect the experience. However it seems likely that
as Isabelle (and other developments) continues to improve, it will become second
nature to use it in general mathematics.
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