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Abstract. In this paper, we study the Misinformation Containment
(MC) problem. In particular, taking into account the faster development
of misinformation detection techniques, we mainly focus on the limiting
the misinformation with known sources case. We prove that under the
Competitive Activation Model, the MC problem is NP-hard and show
that it cannot be approximated in polynomial time within a ratio of
e/(e − 1) unless NP ⊆ DTIME(nO(log log n)). Due to its hardness, we
propose an effective algorithm, exploiting the critical nodes and using the
greedy approach as well as applying the CELF heuristic to achieve the
goal. Comprehensive experiments on real social networks are conducted,
and results show that our algorithm can effectively expand the awareness
of correct information as well as limit the spread of misinformation.

1 Introduction

With the increasing popularity of online social networks (OSNs), such as
Facebook, Twitter and Google+, OSNs have become the most commonly utilized
vehicles for information propagation. However, along with genuine and trustwor-
thy information, rumors and misinformation also spread all around the Internet
through this convenient and quick dissemination channel, which results in unde-
sirable social effects and even leads to economic losses [1–3]. The rumor of the
earthquake in Ghazni province in August 2012 made thousands of people leave
their home in panic and be afraid of returning back home [5]. And the rumor
about Obama injured originated from Twiiter in June 2011 caused the instabil-
ity in financial markets. Misinformation about diseases are often observed [6].
For instance, there were many Twitter tweets containing misinformation about
swine flu at the outset of the large outbreak in 2009. And the misinformation
about vaccinations makes parents withhold immunization from their children [8].
Thus, it is crucial to seek efficient ways to control the inadvertent and intentional
spread of misinformation.

Furthermore, once users believe the misinformation they received, they are
resistant to change their beliefs, even though there are clear retractions [8].
Thus, rather than making efforts to only eliminate misinformation after it causes
users’ misunderstandings, negative emotions and further disruptive effects, we
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want to disseminate “good information” so as to raise users’ awareness, reshape
their attitude, and thus reduce their vulnerabilities to misinformation. “Good
information” could refer to something for the debunking of misinformation, such
as specific recommendations, authorized announcements or valid news.

Related Work. The large size and complex topology of OSNs, and various
users’ characteristics make this problem more challenging. Some existing works
focus on identifying the infected nodes [7], which shed light on how to further
design algorithms to prevent the misinformation from disseminating to the whole
network. There are some recent attempts on limiting misinformation by initially
injecting some good information and letting this good information propagate in
the same network to convince other users [1,2,5]. Budak et al. [2] formulated the
problem as an optimization problem and gave a greedy solution with approxima-
tion guarantees. The βI

T problem of limiting viral propagation of misinformation
is investigated in [1]. Fan et al. [5] studied the containment of rumor originating
from a community and obtain the minimum number of needed protectors. But
they only aimed to limit the spread misinformation. [4,15] approach this problem
in different ways, they want to limit the spread of misinformation by blocking
some nodes so that the overall pairwise connectivity can be minimized. However,
during the process of limiting the misinformation by using good information, we
should also simultaneously propagate this good information to other users who
are unaware of this misinformation as soon as possible.

In this paper, we study the problem of minimizing the cost to prevent the
spread of misinformation and simultaneously disseminate good information. At
first we assume that nodes being active of misinformation are detected. An effec-
tive and timely algorithm is proposed to identify the most important dissemina-
tors with the minimum total cost to inject correct information into the diffusion.
In particular, we should detect a critical round in which we take full protection on
them to limit the wide spread of misinformation in advance and also prompt the
further propagation of good information. Extensive experiments on real datasets
are conducted to evaluate the efficiency and effectiveness of our algorithms and
the results show that our algorithms perform significantly well.

Our contributions in this paper are summarized as follows:

– This is the first attempt to limit the misinformation and also maximize the
prevalence size of good information. And we introduce Competitive Activa-
tion model to represent the competition nature of misinformation and good
information.

– For the MC problem, we prove its NP-hardness and show that it cannot
be approximated in polynomial time within a ratio of e

e−1 unless NP ⊆
DTIME (nO(log log n)).

– The DI algorithm has been developed to find the nodes which can effectively
block misinformation and simultaneously expand the influence of good infor-
mation. And this algorithm is shown to be scalable to large-scale networks
and outperforms several other heuristics.
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The rest of this paper is organized as follows. Section 1 introduces the com-
petitive activation model. Section 2 and Section 3 give the definition of Misin-
formation Containment and analysis of its complexity. We propose Dominating
Influence algorithm in Section 4, and evaluate the performance of our method
in Section 5. Finally, Section 6 concludes this paper.

2 Competitive Activation Model

In this paper, an OSN is modeled as a directed graph G = (V,E), where nodes in
V represent users and edges in E represent social ties between each pair of users.
The size of a given graph G is n = |V |. Starting with a seeding set, information
can propagate along edges of the underlying network. It is very possible for
a user to be exposed to both misinformation and good information. Negative
dominance is used as the tie-breaking rule in Competitive Linear Threshold
model [9]. However, considering various characteristics of users, they could make
different decisions upon receiving same information. So, we introduce a new
parameter preference to determine which activation will finally succeed. Our
model for the simultaneous spread of misinformation and good information is as
follows.

Each node v ∈ V is associated with two thresholds θAv and θBv > 0, and
each edge (u, v) ∈ E is assigned to two weights wA

uv, w
B
uv ≥ 0 corresponding to

misinformation A and good information B. Let IA0 and IB0 denote the sets of ini-
tial A-active nodes, accepting the misinformation, and B-active nodes, believing
good information, respectively. At time t, an inactive node v will become A-active
if

∑
u∈IA

t−1
wA

uv ≥ θAv , or will become B-active if
∑

u∈IB
t−1

wB
uv ≥ θBv . When both

thresholds have been satisfied, a node will decide to accept which one by its
preference, P i

v = (
∑

u∈Nin
a (v) wi

uv)/θiv, where i ∈ {A,B} and N in
a (v) is the set

of activated in-neighbours of v . It will become A-active if PA
v ≥ PB

v , and vice
versa. After accepting one kind of information, a node will stay in this status
and not change to accept another one till the end of diffusion process, reflecting
the continued influenced effect of information perception.

3 Misinformation Containment and Inapproximability

3.1 Problem Definition

Definition 1. Misinformation Containment (MC). Given misinforma-
tion A and good information B spread on a graph G = (V,E, θA, θB , wA, wB),
where θi = {θiv}, wi = {wi

uv} and i ∈ {A,B}, while set of IA0 and kB are given,
this problem aims to find a seeding set for good information IB0 of size kB such
that we can minimize the number of A-active nodes and simultaneously maximize
the number of B-active nodes.
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3.2 Hardness of MC

In this section, we first show the NP-completeness of MC problem by reducing
it from the Maximum Coverage problem. We further prove the inapproxima-
bility of MC which is NP-hard to be approximated within a ratio of e

e−1 unless
NP ⊆ DTIME(nO(log log n)).

Theorem 1. The MC problem is NP-complete.

Proof. We first consider the decision version of MC problem that asks whether
the graph G = (V,E,wA, wB , θA, θB , IA0 , kB) contains a set of vertices IB0 ⊂ V
of size kB such that the number of B-active nodes is at least tB and the number
of A-active nodes is at most tA where tA and tB are positive integers. Given
IB0 ⊂ V , we can easily compute the influence spread of B as well as that of A in
polynomial time under the CAM model. This implies MC is in NP.

To prove that MC is NP-hard, we reduce it from the decision version of
Maximum Coverage problem defined as follows.

Maximum Coverage. Given a positive integer k, a set of m elements U =
{e1, e2, · · · , em} and a collection of sets S = {S1, S2, · · · , Sn}. The sets may
have some elements in common. The Maximum Coverage problem asks to find
a subset S ′ ⊂ S, such that | ∪Si∈S′ Si| is maximized with |S ′| ≤ k. The decision
version of this problem asks whether the input instance contains a subset S of
size k which can cover at least t elements where t is a positive integer.

Reduction. Given an instance I = {U ,S, k, t} of maximum coverage, we con-
struct an instance G = (V,E, θA, θB , wA, wB , IA0 , kB , tA, tB) of MC problem as
follows.

The set of vertices: add one vertex ui for each subset Si ∈ S, one vertex vj
for each element uj ∈ U , and a special vertex x.

The set of edges: add an edge (ui, vj) for each ej ∈ Si and connect x to each
vertex vj .

Thresholds and weights: assign all vertices the same threshold θA = θB = 1
2m ,

and each edges (ui, vj) has weight wA
uivj

= 0, wB
uivj

= 1
m . In addition, for all edges

leaving from x, we assign their weights as wA
xvj

= 1
2m , wB

xvj
= 0.
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Fig. 1. Reduction from Maximum Coverage to Misinformation Containment
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The construction is illustrated in Fig. 1. Finally, set kB = k, tB = t + kB
and tA = m − t + 1. Let IA0 = {x}. We now show the equivalence between two
instances.

Suppose that S∗ is a solution to the maximum coverage instance, thus |S∗| ≤
k and it can cover at least t elements in U . By our construction, we can select
all the nodes ui corresponding to subset Si ∈ S∗ as a seeding set IB0 . Thus
|I0B | = k = kB . Since S∗ can cover at least t elements ej in U , then IB0 can
influence at least t vertices vj corresponding to those ej . Besides, for any vj ,
both of A and B’s total incoming influence exceed its threshold and PA

vj
≤ PB

vj
.

Hence, there are at least t + kB B-active nodes in the MC problem and at most
m − t + 1 = tA A-active nodes.

Conversely, suppose there is a B-seeding set |IB∗
0 | = kB such that the number

of B-active nodes is at least tB . For any vj ∈ IB∗
0 , we replace it with its adjacent

node ui. This replacement does not reduce the number of B-active nodes. Then
the S∗ can be a collection of subset Si corresponding to those ui ∈ IB∗

0 after the
replacement which has exactly size k and the number of elements which it can
cover is at least tB − kB = t.

As MC problem is NP-complete, we further show that the above reduction
implies a e

e−1 -inapproximation factor in the following theorem.

Theorem 2. The MC problem can not be approximated in polynomial time
within a ratio of e

e−1 unless NP ⊆ DTIME(nO(log log n)).

Proof. We use the above mentioned reduction in the proof of Theorem 1. Suppose
that there exists a e

e−1 -approximation algorithm H for MC problem. Then H
can return the number of B-active nodes in G with seeding size less than kB . By
our constructed instance, we can obtain the maximum coverage with size t if the
the number of B-active nodes in the optimal solution for MC problem is t + kB .
Thus algorithm H can be applied to solve the Maximum Coverage problem in
polynomial time. And this contradicts to the NP-hardness of Maximum Coverage
problem [10].

4 Dominating Influence Algorithm

In this part, we propose our Dominating Influence (DI) algorithm for MC prob-
lem. DI algorithm consists of two sub-algorithms, which are DI-Gateway Nodes
Detection and DI-Candidate Selection. DI-Gateway Nodes Detection helps us iden-
tify the gateway nodes, which are of significance in enlarging misinformation’s
influence. Before misinformation’s diffusion naturally terminates, we use DI-
Candidate Selection to find candidate seeding sets of different searching rounds,
which are determined by the set of gateway nodes. Finally, we obtain the best
seeds for good information from Dominating Influence algorithm.
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4.1 Gateway Nodes Detection

In order to block the spread of misinformation, we should identify which nodes
play an important role in its spreading out. In this paper, we use “gateway
node” to refer to nodes which help misinformation propagate further. Knowing
currently active nodes of misinformation, we can obtain the newly active nodes
in each time stamp. Under CAM model, we have the following key observation.

Observation 1. Each newly activated node in time t must be incident to at
least one node that activated in time t − 1.

Algorithm 1. DI-Gateway Nodes Detection

1: Input: Two set of nodes IA
t , IA

t−1

2: Output: A set of gateway nodes Ct−1

3: Ct−1 ← ∅
4: for i = 1 to |IA

t−1| do
5: δmax = 0
6: for each v ∈ IA

t−1 \ Ct−1 do
7: if δv(Ct−1) > δmax then
8: δmax ← δv(Ct−1)
9: end if

10: if δmax = 0 then
11: Return Ct−1

12: end if
13: Ct−1 ← Ct−1 ∪ {v}
14: end for
15: end for
16: Return Ct−1

According to this observation, we utilize a trace back method to shrink the
influence of misinformation step by step. Instead of starting from the inner-most
round, we begin with the outer-most round. The reason is to avoid changes from
happening in an earlier stage that may result in a cascading behavior to the
later round. By simulating the propagation of misinformation, we record the
set of nodes IAi that activated in round i, i = 1, 2..., T . To prevent the further
propagation of misinformation to IAt , we should deal with nodes in IAt−1. Rather
than targeting all nodes activated in round t − 1, we want to find the gateway
nodes which contribute to activating the most number of nodes in IAt . Thus,
we use a greedy approach to sequentially select a node u ∈ IAt maximizing the
following marginal gain into set Ct−1:

δu(Ct−1) = f(Ct−1 + {u}) − f(Ct−1),

where f(·) is the number of newly activated nodes which are incident to the set
of selected nodes.

The algorithm terminates and returns the set of gateway nodes Ct−1 for a
given set of A-active nodes IAt . The detail of this step is shown in Algorithm 1.
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4.2 Candidate Selection

After obtaining the set of gateway nodes, we want to target those nodes and
activate them before misinformation reaches. Meanwhile, we desire to enhance
users’ awareness of good information. To achieve both goals, we present the
candidates selection in Algorithm 2, and the core is to iteratively choose a node
that maximizes the following marginal gain:

ηu(IB0 ) =α[ψ(IB0 + {u}) ∩ Ct−1 − ψ(IB0 ) ∩ Ct−1]+

β[ψ(IB0 + {u}) − ψ(IB0 )],

where α + β = 1. By adjusting the value of α, and β, we can change the
effect on limiting misinformation’s influence and expanding the influence of good
information.

Algorithm 2. DI-Candidate Selection

1: Input: G = (V, E, wA, wBθA, θB), Ct−1 and kB

2: Output: A candidate seed set IB
0 (t − 1) of size at most kB

3: P ← ∅, Q ← ∅
4: for each v ∈ Ct−1 do
5: Find node u that is t − 1-hops away from v
6: P ← P ∪ {u}
7: end for
8: for u ∈ P do
9: Compute ηu(IB

0 (t − 1)),
10: Push u into Q
11: end for
12: while |IB

0 | ≤ kB do
13: repeat
14: u ← top of Q
15: Recompute ηu(IB

0 (t − 1))
16: until u stays on top of Q
17: if ηu(IB

0 ) ≤ 0 then
18: Return IB

0 (t − 1)
19: end if
20: IB

0 ← IB
0 + {u};

21: Return IB
0 (t − 1), result(A, B, t − 1)

22: end while

Since greedy algorithms are always suffering from severe scalability problem,
we use two techniques to effectively improve the running time. First, instead
of selecting nodes from all over the network, we start from a candidate set P ,
which consists of nodes that are t − 1 hops away from the targeted gateway
nodes. Second, we employ CELF [11] heuristic to speed up the selection in each
iteration. This approach can avoid the exhaustive update, which is extremely
time consuming. This algorithm finally returns a candidate seeding set IB0 as
well as the total number of A-active and B-active nodes, respectively.
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4.3 DI Algorithm

Incorporating above two algorithms, we obtain the DI algorithm, presented in
Algorithm 3. First, we simulate the diffusion of misinformation and obtain ter-
mination round T along with the sets of activated nodes IAt , t = 1, · · · , T in
each round. Starting with an arbitrary IAt , t ∈ [1, T ], by applying Gateway Nodes
Detection, we are able to find the set of nodes Ct−1 that contributed the most to
activating nodes in IAt . Next, in order to limit the diffusion of misinformation,
we should guarantee that the node v ∈ Ct−1 should be activated by good infor-
mation no later than time t − 1. This requires us to either let good information
reach v earlier than t − 1 or activate more of v’s neighbors to be B-active nodes
in order to make v’s preference PB

v ≥ PA
v at t − 1.

Algorithm 3. Dominating Influence Algorithm

1: Input: Graph G = (V, E, wA, wB , θA, θB), IA
0 and kB

2: Output: A seed set IB
0 of size kB

3: Simulate A’s influence starts with IA
0

4: Get the termination round T and sets of active nodes IA
i , i = 1, ..., T

5: for t = T to 1 do
6: Ct−1 ← DI-Gateway Nodes Detection (IA

t )
7: (IB

0 (t), result(A, B, t)) ← DI-Candidate Selection (G, Ct−1, kB)
8: end for
9: for t = 1 to T do

10: Find τ where argmaxτ∈[1,T ]{B \ A|result(A, B, t)}
11: end for
12: Return IB

0 (τ)

Considering the above time constraint, there will be a trade-off when selecting
nodes into the seeding set. If we try to limit the propagation of misinformation at
an early stage, the candidate set (which consists of nodes t − 1 hops away from
Ct−1) will be very limited, and thus may lead to decreasing the quality of seeds to
disseminate good information. On the contrary, we are able to get a better candi-
date set by postponing the time to block misinformation, but this may result in
increasing the number of A-active nodes dramatically. However, since the termi-
nation round of misinformation diffusion is usually a relatively small integer, and
by applying the above mentioned enhancements to improve the running time, we
are able to go through each Ct where t is from 1 to T searching round in order to
find to best seeding set. Eventually, by measuring the difference between number
of A-active and B-active nodes for every Ct, we can obtain the best seeding set to
contain misinformation and maximally raise users’ awareness.

5 Experiment and Evaluation

In this section, we perform various experiments based on the proposed algorithms
and heuristics with real-world datasets, and evaluate the performance.
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5.1 Dataset Description

We use three real-world networks, which are widely used for information diffusion
process analysis, their basic statistics are summarized in Table 1, including:

Gnutella. The snapshot of the Gnutella peer-to-peer file sharing network in
August 2002. Nodes represent hosts in the Gnutella network topology and edges
represent connections between the Gnutella hosts [13].

Facebook. This dataset contains friendship information among New Orleans
regional network on Facebook, spanning from September 2006 to January 2009,
where nodes represent users and edges among them are friendship.

Amazon. This network is collected by crawling Amazon webpages. In this graph,
an edge (i, j) indicates that product i is frequently co-purchased with product j
by customers [14].

Table 1. Basic Information of Investigated Networks

Network Gnutella Facebook Amazon

Nodes 6,301 61,096 262,111

Edges 20,777 1,811,130 1,234,877

Avg. Degree 3.29 29.64 4.71

Type Directed Directed Directed

For graphs we tested on, nodes’ thresholds for accepting misinformation and
good information are generated uniformly at random in the range [0, 1]. To
assign the influence weights on each edge, we adopt the method in [12], where
we uniformly generate edge weights at random in the range [0, 1], and then
normalize the weights of all incoming edges of a node v to let it satisfy that∑

u∈Nin(v) wu,v ≤ 1. Furthermore, for the seeding set of misinformation, we
employ the greedy algorithm proposed by Kempe et al. [12], where in each iter-
ation, the node with maximum marginal gain is chosen into the seeds. We are
most likely to be able to detect misinformation and take action to contain its
spread after it has propagated for a while and leads to undesirable effect [3]. Con-
sidering this observation, we introduce a delay d to model the time difference
of disseminating good information and misinformation starting out. Compared
with random selection, assigning seeds set for misinformation in this way can
guarantee the high quality of misinformation initiators, and makes our prob-
lem of choosing seeds set for good information so as to limit the influence of
misinformation more challenging.

Algorithms Compared. In our experiments, we compare our algorithm with
several other heuristics listed as follows:
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– Random: Randomly select kB nodes from V \ IA0 as the seeds for good infor-
mation in the graph.

– MaxDegree: We choose top kB nodes from V \ IA0 with highest degree as the
seeding set for good information.

– MaxGreedy: The greedy algorithm focuses on maximizing the influence of
good information, in which the node with the maximum influence of good
information is iteratively picked[16].

– MinGreedy: The greedy algorithm targets on minimizing misinformation
propagation; the node with maximum number of A-active nodes blocked
is selected in each iteration [2,9].

5.2 Experimental Results

In this part, we first measure the performance of our algorithm, in which we eval-
uate the number of A-active nodes and B-active nodes as well as their difference
across three real world datasets with different number of seeds and rounds. Sec-
ondly, we compare the the results from all above mentioned algorithms. Next,
we evaluate how time delay impacts the overall performance.

Seeding Set. We first present the spread of misinformation A and good infor-
mation B achieved by selecting 50 B-seeds at different rounds. We evaluate them
based on the number of A-active and B-active nodes, along with the difference
between them. Fig. 2 shows two types of information of selecting 50 seeds with
initial set |IA0 | = 10 and time delay d = 2. The initiators of misinformation are
selected by above described method, and before we disseminate good informa-
tion in the network, misinformation has already activated 83, 205 and 50 nodes
in Gnutella, Facebook and Amazon, respectively.

Fig. 2(a), 2(b), 2(c) show that the number of A-active nodes keeps dropping
with a larger size of good information seeds. For example, in Gnutella, without
adding any B-seeds, the spread of misinformation could reach as many as 851
nodes. However, by adding 50 seeds of good information selected by DI, the
active size of misinformation can be limited to only 208 nodes. Conversely, Fig.
2(d), 2(e), 2(f) depict that the amount of B-active nodes increases dramatically
with more B-seeds. For the seeds chosen from round 14 in Gnutella, the total
number of B-active nodes can be 4749, eventually. Furthermore, we find that
the difference between B-active nodes and A-active nodes is steadily increasing
with larger budget of the seeding set of good information. It is also fluctuating
with different targeting rounds.

Different Methods. Next, we compare the spread of both kinds of information
achieved from different heuristics. The comparison is based on the number A-
active nodes and B-active nodes and their difference. Fig. 3 shows the spread of
misinformation and good information when there are 50 B-seeds and 10 initial
A-active nodes, and the time delay d = 2 obtained from different heuristics.
For limiting the spread of misinformation, MinGreedy is the best among those
five methods across three datasets, while Random hardly blocks it. Except for
MinGreedy, DI outperforms other heuristics as it effectively prevents the further
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Fig. 2. Influence spread in three networks

propagation of misinformation. As shown in Fig. 3(c), the amount of A-active
nodes nodes goes down to 312 finally while it could be 468 without any B-seeds,
which means that a 33% of A-active nodes has been reduced.

On the contrary, the number of B-active nodes is increasing sharply for both
of the DI and MaxGreedy algorithms. Fig. 3(d) demonstrates that the number of
B-active nodes climbs to 4749 and 4608 after selecting 50 nodes by DI and Max-
Greedy, while for other three methods, the total number for A-active nodes is less
than 1500, similar results can be obtained in Amazon. However, the MaxDegree
in Facebook achieves the largest number of nodes accepting misinformation. By
digging into the data, we find that there are some super nodes with massive
outgoing edges are chosen by MaxDegree, while missed by MaxGreedy. Consid-
ering the greedy approach in selecting seeds, some of those super nodes may
have less gain than other nodes due to the way we assign edge weights. How-
ever, the combination of them could lead to a large cascading influence. Hence,
MaxDegree even outperforms MaxGreedy on Facebook. However, seldom nodes
accepting misinformation have been reduced compared to our DI.
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(a) Gnutella (b) Facebook (c) Amazon

(d) Gnutella (e) Facebook (f) Amazon

Fig. 3. The number of nodes activated by misinformation and good information
achieved by different algorithms

6 Conclusions

In this paper, in order to protect users from potential influence of misinformation,
we aim to block misinformation and also raise users’ awareness. We formulate
the MC problem, and then prove it is NP-complete and cannot be approximated
in polynomial time within a ratio of e

e−1 unless NP ⊆ DTIME(nO(log log n)).
An efficient algorithm DI is proposed, and extensive experiments on three real-
world datasets are conducted. Experiments results show that our algorithm out-
performs several other heuristics and well scalable to large-scale social networks.
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