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Preface

The International Conference on Computational Social Network (CSoNet) 2015 pro-
vided a premier interdisciplinary forum bringing together researchers and practitioners
from all fields of social networks – such as network computing, social network/media
analysis and mining – for the presentation of original research results as well as the
exchange and dissemination of innovative, practical development experiences. CSoNet
2015 addressed emerging yet important computational problems with a focus on the
fundamental background, theoretical technology development, and real-world appli-
cations associated with social network analysis, modeling and data mining.

CSoNet 2015 was inherently interdisciplinary as it attempted to integrate across
different disciplines such as social science, computer science, networks science, and
mathematics in pursuit of a fundamental understanding of computational social net-
works. The conference welcomed all submissions with a focus on common principles,
algorithms, and tools that govern social network structures/topologies, network func-
tionalities, security and privacy, network behaviors, information diffusions and influ-
ence, and social recommendation systems that are applicable to all types of social
networks and social media. The conference received 102 qualified submissions from
which 28 papers were accepted as regular and short papers, as well as extended
abstracts. Each submission was reviewed by at least three reviewers and some received
meta reviews from Program Committee members.

June 2015 My T. Thai
Nam P. Nguyen

Huawei Shen
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Measuring Originality in Knowledge Networks

Ádám Szántó-Várnagy, Péter Pollner, and Illés J. Farkas
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and Biological Physics Group, Hungarian Academy of Sciences,
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fij@elte.hu

Abstract. Human knowledge is accumulated in several ways: through patents,
scientific publications, encyclopedias, news, etc. In each case the involved
“knowledge items” form a directed network that shows which item is built on
which others. For example, patents (nodes) cite (link to) other patents (nodes).
The usefulness of knowledge is most often measured on single knowledge items
by article-level metrics (ALMs). In science the most common ALM is the
citation number, n, quantifying impact. Instead of the impact here we discuss
originality. We compute the probability, p, of directed links pointing from a
node’s in-neighbors to its out-neighbors. Low values of p mean high originality.
For several large real knowledge networks we find a very low correlation
between n and p. Thus, we suggest that p provides qualitatively novel infor-
mation about single knowledge items of human knowledge, such as patents,
scientific publications, encyclopedia and news articles, etc.



Quantitative Function and Algorithm
for Community Detection
in Bipartite Networks

Zhenping Li1, Rui-Sheng Wang2, Shihua Zhang3,*,
Xiang-Sun Zhang3,*
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Abstract. In this paper, we propose a new quantitative function for community
detection in bipartite networks, and demonstrate that this quantitative function is
superior to the widely used Barber’s bipartite modularity and other functions.
Based on the new quantitative function, we develop an integer programming
model and a heuristic and adapted label propagation algorithm (BiLPA). We
demonstrate their efficiency by applying them onto artificial networks and
real-world networks.
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Real-Time Topic-Aware Influence Maximization
Using Preprocessing

Wei Chen1, Tian Lin1,2(B), and Cheng Yang1

1 Microsoft Research, Beijing, China
weic@microsoft.com

2 Tsinghua University, Beijing, China
lint10@mails.tsinghua.edu.cn, albertyang33@gmail.com

Abstract. Influence maximization is the task of finding a set of seed
nodes in a social network such that the influence spread of these seed nodes
based on certain influence diffusion model is maximized. Topic-aware influ-
ence diffusion models have been recently proposed to address the issue that
influence between a pair of users are often topic-dependent and informa-
tion, ideas, innovations etc. being propagated in networks are typically
mixtures of topics. In this paper, we focus on the topic-aware influence
maximization task. In particular, we study preprocessing methods to avoid
redoing influence maximization for each mixture from scratch. We explore
two preprocessing algorithms with theoretical justifications. Our empirical
results on data obtained in a couple of existing studies demonstrate that
one of our algorithms stands out as a strong candidate providing microsec-
ond online response time and competitive influence spread, with reason-
able preprocessing effort.

Keywords: Influence maximization · Topic-aware influence modeling ·
Information diffusion

1 Introduction

In a social network, information, ideas, rumors, and innovations can be propa-
gated to a large number of people because of the social influence between the
connected peers in the network. Influence maximization is the task of finding a
set of seed nodes in a social network such that the influence propagated from the
seed nodes can reach the largest number of people in the network. More techni-
cally, a social network is modeled as a graph with nodes representing individuals
and directed edges representing influence relationships. The network is associ-
ated with a stochastic diffusion model (such as independent cascade model and
linear threshold model [14]) characterizing the influence propagation dynamics
starting from the seed nodes. Influence maximization is to find a set of k seed
nodes in the network such that the influence spread, defined as the expected
number of nodes influenced (or activated) through influence diffusion starting
from the seed nodes, is maximized [6,14].

c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 1–13, 2015.
DOI: 10.1007/978-3-319-21786-4 1
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Influence maximization has a wide range of applications including viral mar-
keting [9,14,18], information monitoring and outbreak detection [15], competi-
tive viral marketing and rumor control [5,13], or even text summarization [22]
(by modeling a word influence network). As a result, influence maximization
has been extensively studied in the past decade. Research directions include
improvements in the efficiency and scalability of influence maximization algo-
rithms [8,12,21], extensions to other diffusion models and optimization problems
[3,5,13], and influence model learning from real-world data [10,19,20].

Most of these works treat diffusions of all information, rumors, ideas, etc.
(collectively referred as items in this paper) as following the same model with a
single set of parameters. In reality, however, influence between a pair of friends
may differ depending on the topic. For example, one may be more influential
to the other on high-tech gadgets, while the other is more influential on fashion
topics, or one researcher is more influential on data mining topics to her peers
but less influential on algorithm and theory topics. Recently, Barbieri et al. [2]
propose the topic-aware independent cascade (TIC) and linear threshold (TLT)
models, in which a diffusion item is a mixture of topics and influence parameters
for each item are also mixtures of parameters for individual topics. They provide
learning methods to learn influence parameters in the topic-aware models from
real-world data. Such topic-mixing models require new thinking in terms of the
influence maximization task, which is what we address in this paper.

In this paper, we adopt the models proposed in [2] and study efficient topic-
aware influence maximization schemes, i.e., finding a set of k seed nodes to
trigger the information cascade whenever a diffusion item composed of multiple
topics is given. It has a wide application in viral marketing for online scenarios,
where the system should recommend candidate sets instantly to different queries.
One can still apply topic-oblivious influence maximization algorithms in online
processing of every diffusion item, but it may not be efficient when there are a
large number of items with different topic mixtures or real-time responses are
required. Thus, our focus is on how to utilize the preprocessing of individual
topic influence so that when a diffusion item with certain topic mixture comes,
the online processing of finding the seed set is fast. To do so, our first step is
to collect two datasets in the past studies with available topic-aware influence
analysis results on real networks and investigate their properties pertaining to
our preprocessing purpose. Our data observation shows that in one network
users and their relationships are largely separated by different topics while in
the other network they have significant overlaps on different topics. Even with
this difference, a common property we find is that in both datasets most top
seeds for a topic mixture come from top seeds of the constituent topics, which
matches our intuition that influential individuals for a mixed item are usually
influential in at least one topic category.

Motivated by our findings from the data observation, we explore two prepro-
cessing based algorithms (Section 3). The first algorithm, Best Topic Selection
(BTS), minimizes online processing by simply using a seed set for one of the
constituent topics. Even for such a simple algorithm, we are able to provide a
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theoretical approximation ratio (when a certain property holds), and thus BTS
serves as a baseline for preprocessing algorithms. The second algorithm, Marginal
Influence Sort (MIS), further uses pre-computed marginal influence of seeds on
each topic to avoid slow greedy computation. We provide a theoretical justifi-
cation showing that MIS can be as good as the offline greedy algorithm when
nodes are fully separated by topics.

We then conduct experimental evaluations of these algorithms and comparing
them with both the greedy algorithm and a state-of-the-art heuristic algorithm
PMIA [21], on the two datasets used in data analysis as well as a third dataset
for testing scalability (Section 4). From our results, we see that MIS algorithm
stands out as the best candidate for preprocessing based real-time influence
maximization: it finishes online processing within a few microseconds and its
influence spread either matches or is very close to that of the greedy algorithm.
Full technical details including data analysis, proofs and experimental results
are available in the technical report [7].

Our work, together with a recent independent work [1], is one of the first that
study topic-aware influence maximization with focus on preprocessing. Compar-
ing to [1], our contributions include: (a) we include data analysis on two real-world
datasets with learned influence parameters, which shows different topical influ-
ence properties and motivates our algorithm design; (b) we provide theoretical
justifications to our algorithms; (c) the use of marginal influence of seeds in indi-
vidual topics in MIS is novel, and is complementary to the approach in [1]; (d)
although MIS is simple, it achieves competitive influence spread within microsec-
onds of online processing time satisfying real-time application requirement.

2 Preliminaries

In this section, we introduce the background and problem definition on the
topic-aware influence diffusion models. We focus on the independent cascade
model [14] for ease of presentation, but our results also hold for other models
parameterized with edge parameters such as the linear threshold model [14].

Independent cascade model. We consider a social network as a directed graph
G = (V,E), where each node in V represents a user, and each edge in E rep-
resents the relationship between two users. For every edge (u, v) ∈ E, denote
its influence probability as p(u, v) ∈ [0, 1], and we assume p(u, v) = 0 for all
(u, v) /∈ E or u = v. The independent cascade (IC) model, defined in [14], cap-
tures the stochastic process of contagion in discrete time. Initially at time step
t = 0, a set of nodes S ⊆ V called seed nodes are activated. At any time t ≥ 1,
if node u is activated at time t − 1, it has one chance of activating each of its
inactive outgoing neighbor v with probability p(u, v). A node stays active after
it is activated. This process stops when no more nodes are activated.

We define influence spread of seed set S under influence probability function
p, denoted σ(S, p), as the expected number of active nodes after the diffusion
process ends. As shown in [14], for any fixed p, σ(S, p) is monotone (i.e., σ(S, p) ≤



4 W. Chen et al.

σ(T, p) for any S ⊆ T ) and submodular (i.e., σ(S ∪ {v}, p) − σ(S, p) ≥ σ(T ∪
{v}, p) − σ(T, p) for any S ⊆ T and v ∈ V ) in its seed set parameter. For two
influence probability functions p and p′ on graph G = (V,E), we denote p ≤ p′

if for any (u, v) ∈ E, p(u, v) ≤ p′(u, v). Another well-known fact is that σ(S, p)
is monotone in p (i.e. σ(S, p) ≤ σ(S, p′) if p ≤ p′ edge-wise).

Influence maximization. Given a graph G = (V,E), an influence probability
function p, and a budget k, influence maximization is the task of selecting at
most k seed nodes in V such that the influence spread is maximized, i.e., finding
the optimal seeds S∗ = S∗(k, p) ⊆ V such that S∗ = argmaxS⊆V,|S|≤k σ(S, p).

Kempe et al. [14] show that the influence maximization problem is NP-hard
in both the IC and LT models, and they propose the following greedy algorithm.
Given influence probability function p, the marginal influence (MI) of any node
v ∈ V under any seed set S is defined as MI (v|S, p) = σ(S∪{v}, p)−σ(S, p). The
greedy algorithm selects k seeds in the following k iterations: (a) let S0 = ∅; (b)
for each iteration j = 1, 2, . . . , k, find node vj = argmaxv∈V \Sj−1

MI (v|Sj−1, p),
and adds vj into Sj−1 to obtain Sj ; (c) output seed set Sg(k, p) = Sk.

It is shown in [14] that the greedy algorithm selects a seed set Sg(k, p)
with approximation ratio 1 − 1

e − ε for any small ε > 0 (i.e., σ(Sg(k, p), p) ≥(
1 − 1

e − ε
)
σ(S∗, p)), where ε accommodates the inaccuracy in Monte Carlo sim-

ulations to estimate the marginal influence.

Topic-aware independent cascade model and topic-aware influence maximization.
Topic-aware independent cascade (TIC) model [2] is an extension of the IC model
to incorporate topic mixtures in any diffusion item. Suppose there are d base
topics, and we use set notation [d] = {1, 2, · · · , d} to denote topic 1, 2, · · · , d.
We regard each diffusion item as a distribution of these topics. Thus, any item
can be expressed as a vector I = (λ1, λ2, . . . , λd) ∈ [0, 1]d where

∑
i∈[d] λi =

1. We also refer such a vector I as a topic mixture. Given a directed social
graph G = (V,E), influence probability on any topic i ∈ [d] is pi : V × V →
[0, 1], and we assume pi(u, v) = 0 for all (u, v) /∈ E or u = v. In the TIC
model, the influence probability function p for any diffusion item I is defined as
p(u, v) =

∑
i∈[d] λipi(u, v), for all u, v ∈ V (or simply p =

∑
i∈[d] λipi). Then, the

stochastic diffusion process and influence spread σ(S, p) are exactly the same as
defined in the IC model by using the influence probability p on edges.

Given a social graph G, base topics [d], influence probability function pi for
each base topic i, a budget k and an item I = (λ1, λ2, . . . , λd), the topic-aware
influence maximization is the task of finding optimal seeds S∗ = S∗(k, p) ⊆ V
such that S∗ = argmaxS⊆V,|S|≤k σ(S, p), where p =

∑
i∈[d] λipi.

3 Preprocessing Based Algorithms

Topic-aware influence maximization can be solved by using existing influence
maximization algorithms such as the ones in [14,21]: when a query on an item
I = (λ1, λ2, · · · , λd) comes, the algorithm first computes the mixed influence
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probability function p =
∑

j λjpj , and then applies existing algorithms using
parameter p. This, however, means that for each topic mixture influence max-
imization has to be carried out from scratch. It may take from half a minute
to several hours to find the seed sets in large-scale networks, which could be
inefficient or impractical for online scenarios.

In this paper, we are able to obtain datasets from two prior studies, one is
on social movie rating network Flixster [2] and the other is on academic col-
laboration network Arnetminer [20], to help design our algorithms. Due to the
space limit, the full data analysis can be found in [7], and we briefly summa-
rize two key observations we made as follows: (1) Topic separation in terms of
influence probabilities is network dependent: In the Arnetminer network, topics
are mostly separated among different edges and nodes in the network, while in
the Flixster network there are significant overlaps on topics among nodes and
edges; (2) Most seeds for topic mixtures come from the seeds of constituent top-
ics, in both Arnetminer and Flixster networks. In this section, motivated by the
above observations, we introduce two preprocessing based algorithms that cover
different design choices.

3.1 Best Topic Selection (BTS) Algorithm

Our first algorithm is to minimize online processing by simply selecting a seed
set from one of the constituent topics that has the best influence spread in the
topic mixture, and thus we call it Best Topic Selection (BTS) algorithm. Since
the query of item I = (λ1, λ2, · · · , λd) may be arbitrary, our key idea is to apply
a bucketing technique to establish landmarks for each topic in the preprocessing
stage, and use properties of upper and lower landmarks to bound the error in
the online stage, as we explain in more detail now.

Preprocess Stage. Denote constant set Λ = {λc
0, λ

c
1, · · · , λc

m} as a set of land-
marks, where 0 = λc

0 < λc
1 < · · · < λc

m = 1. For each λ ∈ Λ and each topic
i ∈ [d], we pre-compute Sg(k, λpi) and σ(Sg(k, λpi), λpi) in the preprocessing
stage, and store these values for online processing. In our experiments, we use uni-
formly selected landmarks because they are good enough for influence maximiza-
tion and can adopt parallel optimization. More sophisticated landmark selection
method may be applied, such as the machine learning based method in [1].

Online Stage. We define two rounding notations that return one of the neigh-
boring landmarks in Λ = {λc

0, λ
c
1, · · · , λc

m}: given any λ ∈ [0, 1], let λ = λc
j

such that λc
j ≤ λ < λc

j+1, and λ = λc
j+1 such that λc

j < λ ≤ λc
j+1. Given

I = (λ1, λ2, · · · , λd), let D+
I = {i ∈ [d] |λi > 0}. With the pre-computed

Sg(k, λpi) and σ(Sg(k, λpi), λpi) for every λ ∈ Λ and every topic i, the BTS
algorithm is given in Algorithm 1. The algorithm basically rounds down the
mixing coefficient on every topic to (λ1, · · · , λd), and then returns the seed set
Sg(k, λi′pi′) that gives the largest influence spread at the round-down landmarks.

In this paper, BTS is used as a baseline for preprocessing based algorithms.
Although BTS is rather simple, we show below that it could provide theoretical
guarantee with a certain condition.
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Algorithm 1. Best Topic Selection (BTS) Algorithm
Require: G = (V,E), k, {pi | i ∈ [d]}, I = (λ1, · · · , λd), Λ, Sg(k, λpi) and

σ(Sg(k, λpi), λpi), ∀λ ∈ Λ,∀i ∈ [d].
1: I ′ = (λ1, · · · , λd)
2: i′ = argmaxi∈D+

I
σ(Sg(k, λipi), λipi)

3: return Sg(k, λi′pi′)

We say that σ(S, p) is c-sub-additive in p for some constant c if for any S ⊆ V
with |S| ≤ k and any I = (λ1, . . . , λd), σ(S,

∑
i∈D+

I
λipi) ≤ c

∑
i∈D+

I
σ(S, λipi).

The sub-additivity property above means that the influence spread of any seed
set S in any topic mixture will not exceed constant times of the sum of the
influence spread for each individual topic. It is easy to verify that, when each
topic in the network does not interfere with each other, σ(S, p) is 1-sub-additive.
The counterexample we could find that violates the c-sub-additivity assumption
is a tree structure where even layer edges are for one topic and odd layer edges
are for another topic. Such structures are rather artificial, and we believe that
for real networks the influence spread is c-sub-additive in p with a reasonably
small c.

We define μmax = maxi∈[d],λ∈[0,1]
σ(Sg(k,λpi),λpi)
σ(Sg(k,λpi),λpi)

, which is a value controlled
by preprocessing. A fine-grained landmark set Λ could make μmax close to 1.
The following Theorem 1 guarantees the approximation ratio of Algorithm 1.

Theorem 1. If the influence spread function σ(S, p) is c-sub-additive in p, Algo-
rithm 1 achieves 1−e−1

c|D+
I |μmax

approximation ratio for item I = (λ1, λ2, · · · , λd).

The approximation ratio given in the theorem is a conservative bound for
the worst case (e.g., a common setting may be c = 1.2, μmax = 1.5, |D+

I | =
2). Tighter online bound in our experiment section based on [15] shows that
Algorithm 1 performs much better than the worst case scenario.

3.2 Marginal Influence Sort (MIS) Algorithm

Our second algorithm derives the seed set from constituent topics, and more-
over it utilizes pre-computed marginal influence from different topics to select
seeds. Our idea is partially motivated by our data observation, especially for the
Arnetminer dataset, which shows that in some cases the network could be well
separated among different topics. Intuitively, if nodes are separable among differ-
ent topics, and each node v is only pertinent to one topic i, the marginal influence
of v would not change much whether it is for a mixed item or the pure topic i,
as formally characterized in the following. Given threshold θ ≥ 0, define node
set νi(θ) = {v ∈ V | ∑

u:(v,u)∈E pi(v, u)+
∑

u:(u,v)∈E pi(u, v) > θ} for every topic

i, and node overlap coefficient for topic i and j as RV
ij(θ) = |νi(θ)∩νj(θ)|

min{|νi(θ)|,|νj(θ)|} . If
θ is small and the overlap coefficient is small, it means that the two topics are



Real-Time Topic-Aware Influence Maximization Using Preprocessing 7

Algorithm 2. Marginal Influence Sort (MIS) Algorithm
Require: G = (V,E), k, {pi | i ∈ [d]}, I = (λ1, · · · , λd), Λ, Sg(k, λpi) and

MI g(v, λpi), ∀λ ∈ Λ, ∀i ∈ [d].
1: I ′ = (λ1, · · · , λd)
2: V g = ∪i∈[d],λi>0S

g(k, λipi)
3: for v ∈ V g do
4: f(v) =

∑
i∈[d],λi>0 MI g(v, λipi)

5: end for
6: return top k nodes with the largest f(v),∀v ∈ V g

fairly separated in the network. In particular, we say that the network is fully
separable for topics i and j if RV

ij(0) = 0, and it is fully separable for all topics
if RV

ij(0) = 0 for any pair of i and j with i 
= j.

Lemma 1. If a network is fully separable among all topics, then for any v ∈ V
and topic i ∈ [d] such that σ(v, pi) > 1, for any item I = (λ1, λ2, . . . , λd), for
any seed set S ⊆ V , we have MI (v|S, λipi) = MI (v|S, p), where p =

∑
j∈[d] λjpj.

Lemma 1 suggests that we can use the marginal influence of a node on each
topic when dealing with a topic mixture. Algorithm MIS is based on this idea.

Preprocess stage. Recall the detail of greedy algorithm, given probability p
and budget k, for iteration j = 1, 2, · · · , k, it calculates vj to maximize marginal
influence MI (vj |Sj−1, p) and let Sj = Sj−1 ∪ {vj} every time, and output
Sg(k, p) = Sk as seeds. Denote MI g(vj , p) = MI (vj |Sj−1, p), if vj ∈ Sg(k, p), and
0 otherwise. Therefore, MI g(vj , p) is the marginal influence of vj according to
the greedy selection order. Suppose the landmark set Λ = {λc

0, λ
c
1, λ

c
2, · · · , λc

m}.
For every λ ∈ Λ and every single topic i ∈ [d], we pre-compute Sg(k, λpi), and
cache MI g(v, λpi), ∀v ∈ Sg(k, λpi) in advance.

Online stage. Marginal Influence Sort (MIS) algorithm is described in Algo-
rithm 2. Given an item I = (λ1, · · · , λd), it first rounding down the mixture,
and then use the union of seed sets as candidates. If a seed node appears mul-
tiple times in pre-computed topics, we approximate by summing the marginal
influence in each topic together. Then we sort all candidates according to the
computed marginal influence, and select top-k nodes as seeds.

Theorem 2. Suppose I = (λ1, λ2, · · · , λd), where each λi ∈ Λ, and Sg(k, λ1p1),
· · · , Sg(k, λdpd) are disjoint. If the network is fully separable for all topics, the
seed set calculated by Algorithm 2 is one of the possible sequences generated by
greedy algorithm under the mixed influence probability p =

∑
i∈[d] λipi.

Although MIS is a heuristic algorithm, this theorem implies that the seed set
S from MIS satisfies σ(S, p) ≥ (1−e−1−ε)σ(S∗, p) (for any ε > 0) compared with
the optimal S∗ in fully separable networks. It suggests that MIS would work well
for networks that are fairly separated among different topics, which are verified
by our test results on the Arnetminer dataset. Moreover, even for networks that
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are not well separated, it is reasonable to assume that the marginal influence of
nodes in the mixture can be approximated by the sum of the marginal influence
in individual topics, and thus we expect MIS to work also competitively in this
case, which is verified by our test results on the Flixster dataset.

4 Empirical Evaluation

We test the effectiveness of our algorithms by using multiple real-world datasets,
and compare them with state-of-the-art influence maximization algorithms.

Data descriptions. The first dataset is on social movie rating network Flixster
[2], an American social movie site for discovering new movies, learning about
movies, and meeting others with similar tastes in movies. The Flixster network
represents users as nodes, and two users u and v are connected by a directed
edge (u, v) if they are friends both rating the same movie and v rates the movie
shortly later after u does so. The network contains 29357 nodes, 425228 directed
edges and 10 topics. We eliminate individual probabilities that are too weak
(∀i ∈ [d], λi < 0.01). We also obtain 11659 topic mixtures, from which we found
that predominant ones are single topic (96.79%) or two-topic mixtures (3.04%).
Mixtures with three or four topics are already rare and there are no items with
five or more topics.

The second dataset is on the academic collaboration network Arnetminer
[20], which is a free online service used to index and search academic social
networks. The Arnetminer network represents authors as nodes and two authors
have an edge if they coauthored a paper. It contains 5114 nodes, 34334 directed
edges and 8 topics, and all 8 topics are related to computer science, such as data
mining, machine learning, information retrieval, etc.

The above two datasets act as the baseline to verify the effectiveness of the
algorithms. Furthermore, we use a larger academic collaboration network data
DBLP maintained by Michael Ley (650K nodes and 2 million edges) only to test
the scalability of the algorithms.

Influence probabilities. We first test our algorithms on the Flixster and Arnet-
miner datasets, whose influence probabilities are learned from real action trace
data or node topic distribution data. The basic statistics for the learned influ-
ence probabilities show similar behavior between the two datasets, such as mean
probabilities for each topic are mostly between 0.1 and 0.2, standard deviations
(SD) are mostly between 0.1 and 0.3, etc. (Take the average over all topics:
Arnetminer mean=0.173, SD=0.227; Flixster mean=0.131, SD=0.187.)

As DBLP does not have influence probabilities, we simulate two topics
according to the joint distribution of topics 1 and 2 in the Flixster, and follow the
practice of the TRIVALENCY model in [21] to rescale it into {0.1, 0.01, 0.001}
(i.e., strong, medium, and low influence).
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Topic mixtures. In terms of topic mixtures, in practice and also supported by
our data, an item is usually a mixture of a small number of topics thus our tests
focus on testing topic mixtures from two topics. First, we test random samples
to cover most common mixtures. We draw 50 topic mixtures from the uniform
distribution over the polytope of any two topics. Second, since we have the
data of real topic mixtures in Flixster dataset, we also test additional 50 cases
following the same sampling technique described in Section 3.1 of [1], which
estimates the Dirichlet distribution that maximizes the likelihood first and then
generates topic mixtures by sampling from the distribution.

Algorithms for comparison. In our experiments, we test our topic-aware pre-
processing based algorithms MIS and BTS comprehensively. Three classes of
algorithms are selected for comparison: (a) Topic-aware algorithms: The topic-
aware greedy algorithm (TA-Greedy) and a state-of-the-art fast heuristic algo-
rithm PMIA (TA-PMIA) [21]; (b) Topic-oblivious algorithms: The topic-oblivious
greedy algorithm (TO-Greedy), degree algorithm (TO-Degree) and random algo-
rithm (Random); (c) Simple and fast heuristic algorithms that do not need pre-
processing: The topic-aware PageRank (TA-PageRank) [4] and WeightedDegree
(TA-WeightedDegree) [21] algorithms.

In this paper, we employ the greedy algorithm [15] with lazy evaluation and
the same approximation ratio to provide hundreds of time of speedup to the
original one [14]. PMIA is a fast heuristic algorithm based on trimming influence
propagation to a tree structure, and it achieves thousand fold speedup comparing
to optimized greedy algorithms with a small degradation on influence spread [21]
(we set a small threshold θ = 1/1280 to alleviate the degradation).

Topic-oblivious algorithms work under previous IC model that does not iden-
tify topics (the uniform topic mixture). TO-Greedy runs greedy algorithm for pre-
vious IC model. TO-Degree outputs the top-k nodes with the largest degree based
on the original graph. Random simply chooses k nodes at random.

Finally, we study the possibility of acceleration for large graphs by comparing
PMIA with greedy algorithm in preprocessing stage, and denote MIS and BTS
algorithms as MIS[Greedy], BTS[Greedy] and MIS[PMIA], BTS[PMIA], respectively.

In the preprocessing stage, we use two algorithms, Greedy and PMIA, to
pre-compute seed sets for MIS and BTS, except that for the DBLP dataset,
which is too large to run the greedy algorithm, we only run PMIA. In our tests,
we use 11 equally distant landmarks Λ = {0, 0.1, 0.2, . . . , 1} for MIS and BTS.
Each landmark is independent and can be pre-computed concurrently in differ-
ent processes. We choose k = 50 seeds in all our tests and compare the influence
spread and running time, and take the average of 10000 Monte Carlo simula-
tions to obtain the influence spread for each seed set in the greedy algorithm. In
addition, we apply offline bound (the influence spread of any greedy seeds mul-
tiplied by factor 1/(1 − e−1)) and online bound (Theorem 4 in [15]) to estimate
influence spread of optimal solutions.

All experiments are conducted on a computer with 2.4GHz Intel(R) Xeon(R)
E5530 CPU, 2 processors (16 cores), 48G memory, and Windows Server 2008 R2
(64 bits). The code is written in C++ and compiled by Visual Studio 2010.
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(a) Arnetminer on random sam-
ples

(b) Flixster on random samples

(c) Flixster on Dirichlet samples (d) DBLP on random samples

Fig. 1. Influence spread of algorithms. Legends are ordered (left to right, top to bottom)
according to influence spread.

Influence spread. Figure 1 shows the total influence spread results on Arnet-
miner with random samples (a); Flixster with random and Dirichlet samples,
(b) and (c), respectively; and DBLP with random samples (d). For the Arnet-
miner dataset, it clearly separates all algorithms into three tiers (all percentages
reported in parentheses are the gap of ratio compared with the best algorithm
after taking average from one seed to 50 seeds): the top tier is TA-Greedy, TA-PMIA

(0.61%), MIS[Greedy] (0.32%) and MIS[PMIA] (1.08%) whose gaps are negligible;
the middle tier is TA-WeightedDegree (4.06%), BTS[Greedy] (4.68%), BTS[PMIA]

(4.67%) and TA-PageRank (26.84%); and the lower tier is topic-oblivious algo-
rithms TO-Greedy (28.57%), TO-Degree (56.75%) and Random (81.48%). Besides,
MIS[Greedy] and BTS[Greedy] are 76.9% and 72.5% of the online bound, which are
better than their conservative theoretical bounds (1−e−1 ≈ 63.2%). For Flixster
dataset we see that the influence spread of TA-PMIA, MIS[Greedy], MIS[PMIA],
BTS[Greedy] and BTS[PMIA] are 1.78%, 3.04%, 4.58%, 3.89% and 5.29% smaller
than TA-Greedy for random samples, and 1.41%, 1.94%, 3.37%, 2.31% and 3.59%
smaller for Dirichlet samples, respectively, indicating that our preprocessing
based algorithms can perform quite well.



Real-Time Topic-Aware Influence Maximization Using Preprocessing 11

Table 1. Running time statistics

(a) Preprocessing time

Arnetminer Flixster DBLP
(|Λ| = 8 × 11) (|Λ| = 10 × 11) (|Λ| = 2 × 11)

Total Max Total Max Total Max

Greedy 8.8 hrs 1.2 hrs 26.3 days 3.5 days ≥ 100 days ≥ 7 days
PMIA 37 secs 7.1 secs 2.28 hrs 12.6 mins 9.6 mins 4.2 mins

(b) Average online response time

Arnetminer Flixster DBLPrandom Dirichlet

TA-Greedy 9.3 mins 1.5 days 20 hrs N/A
TA-PMIA 0.52 sec 5.5 mins 3.8 mins 58 secs
MIS 2.85 s 2.37 s 3.84 s 2.09 s
BTS 1.20 s 2.35 s 1.42 s 0.49 s
TA-PageRank 0.15 sec 2.08 secs 2.30 secs 41 secs
TA-WeightedDegree 8.5 ms 29.9 ms 30.7 ms 0.32 sec

Running time. We summarize both of the preprocessing time and average online
response time in Table 1. Table 1(b) shows the average online response time of
different algorithms in finding 50 seeds (topic-oblivious algorithms always use the
same seeds and thus are not reported). Our proposed MIS emerges as a strong
candidate for fast real-time processing of topic-aware influence maximization
task: it achieves microsecond response time, which does not depend on graph
size or influence probability parameters, while its influence spread matches or is
very close to the best greedy algorithm and outperforms other simple heuristics
(Figure 1). Table 1(a) shows the preprocessing time based on greedy algorithm
and PMIA algorithm on three datasets. It indicates that the greedy algorithm
is suitable for small graphs but infeasible for large graphs like DBLP. PMIA is
a viable choice for preprocessing, and our MIS using PMIA as the preprocessing
algorithm achieves almost the same influence spread as MIS using the greedy
algorithm for preprocessing (Figure 1).

5 Related Work

Domingos and Richardson [9,18] are the first to study influence maximization in
an algorithmic framework. Kempe et al. [14] first formulate the discrete influence
diffusion models including the independent cascade model and linear threshold
model, and provide algorithmic results on influence maximization.

A large body of work follows the framework of [14]. One line of research
improves on the efficiency and scalability of influence maximization algorithms
[8,11,12,21]. Others extend the diffusion models and study other related opti-
mization problems [3,5,13]. A number of studies propose machine learning meth-
ods to learn influence models and parameters [10,19,20]. A few studies look
into the interplay of social influence and topic distributions [16,17,20,23]. They
focus on inference of social influence from topic distributions or joint inference of
influence diffusion and topic distributions. They do not provide a dynamic topic-
aware influence diffusion model or study the influence maximization problem.
Barbieri et al. [2] introduce the topic-aware influence diffusion models TIC and
TLT as extensions to the IC and LT models. They provide maximum-likelihood
based learning method to learn influence parameters in these topic-aware models.
We use their proposed models and datasets with the learned parameters.

A recent independent work by Aslay et al. [1] is the closest one to our
work. Their work focuses on index building in the query space while we use
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pre-computed marginal influence to help guiding seed selection, and thus the
two approaches are complementary. Other differences have been listed in the
introduction and will not be repeated here.

6 Future Work

One possible follow-up work is to combine the advantages of our approach and
the approach in [1] to further improve the performance. Another direction is to
study fast algorithms with stronger theoretical guarantee. An important work is
to gather more real-world datasets and conduct a thorough investigation on the
topic-wise influence properties of different networks, similar to our preliminary
investigation on Arnetminer and Flixster datasets. This could bring more insights
to the interplay between topic distributions and influence diffusion, which could
guide future algorithm design.
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Abstract. We study the problems of pricing an indivisible product to
consumers who are embedded in a given social network. The goal is
to maximize the revenue of the seller. We assume impatient consumers
who buy the product as soon as the seller posts a price not greater than
their valuations of the product. The product’s value for a consumer is
determined by two factors: a fixed consumer-specified intrinsic value and
a variable externality that is exerted from the consumer’s neighbors in
a linear way. We study the scenario of negative externalities, which cap-
tures many interesting situations, but is much less understood in com-
parison with its positive externality counterpart. We assume complete
information about the network, consumers’ intrinsic values, and the neg-
ative externalities. The maximum revenue is in general achieved by iter-
ative pricing, which offers impatient consumers a sequence of prices over
time. We prove that it is NP-hard to find an optimal iterative pricing,
even for unweighted tree networks with uniform intrinsic values. Comple-
mentary to the hardness result, we design a 2-approximation algorithm
for finding iterative pricing in general weighted networks with (possi-
bly) nonuniform intrinsic values. We show that, as an approximation to
optimal iterative pricing, single pricing works rather well for many inter-
esting cases, such as forests, Erdős-Rényi networks and Barabási-Albert
networks, although its worst-case performance can be arbitrarily bad.

1 Introduction

People interact with and influence each other to a degree that is beyond most
of us can imagine. The magnitude of this connection has been upgraded to
a brandnew level by the proliferation of online SNS (Social Network Services,
e.g., Facebook, Twitter, and SinaWeibo). Numerous business opportunities are
being incubated by this upgrading. Yet, its consequences are far from being
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fully unfolded or understood, leaving many fascinating questions for scientists
in a variety of disciplines to answer. One incredible fact in the SNS era is that
we are now able to know the complete network of who is connected with whom.
Network marketing and pricing, with this assistance, could be much more precise
and flexible than traditional counterparts, and are attracting increasing attention
from both industry and academia. In this paper, we study, from an algorithmic
point of view, how a monopolist seller should price to the consumers connected
by a known social network.

Consumption is often not a completely private thing. As opposed to standard
economic settings, the utilities that a consumer obtains from consuming many
kinds of goods, are not determined merely by her private needs and the functions
and qualities of the goods, but also greatly affected by the consumptions of
her social network neighbors. For example, the reason that we wear clothes is
not only to cover ourselves from cold, but usually also to make other people
think that we look great. This social side of consumption is becoming more and
more prominent with the unification of E-commerce and SNS. It is now very
convenient for us to share with our friends our shopping results. By clicking
one more button at the time we pay for the skirt online, all our SNS friends
may know immediately the information of this skirt. This effect could be much
stronger and faster than face-to-face sharing. Our ladybros may think the skirt
terrific and get one too; or oppositely, they may prefer later a different style to
avoid outfit clash. The former case is typical positive externality: the incentive
that a consumer wants to buy a product increases as more of her social network
neighbors have it. The latter opposite scenario where the incentive decreases
when more neighbors possess the product, referred to as negative externality,
is the focus of this paper. Positive externalities are prevalent in many aspects
of the society and have been extensively studied under various terminologies
(herding, cascading, Matthew effect, viral marketing, to name a few). Negative
externalities, in contrast, although widely exist too, are much less investigated.

Pricing with Negative Externalities. We concentrate on the negative exter-
nality among consumers of consuming a single kind of product, which is usually
luxury or fashionable one. An important reason that a consumer buys this prod-
uct is to showoff in front of her friends (also referred to as invidious consumption
in literature). Naturally, a consumer buys the product if the price is not higher
than her valuation of the product, which is the sum of her constant intrinsic
value and varying external value. We propose and study the typical network
pricing model, where the external value is the (weighted) number of people to
whom the consumer can showoff (i.e., her social network neighbors who do not
possess this product). We study, to obtain a maximum revenue, how a monop-
olist seller should price such a product with negative externality to consumers
connected by a link-weighted social network, where the revenue is the total pay-
ment the seller receives, and the nonnegative integer link weights represent the
influences between consumers. We assume that the seller have complete informa-
tion of both the social network and the consumers’ intrinsic values. Our study
falls into the framework of uniform pricing, where at any time point the same
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take-it-or-leave-it price is offered (posted) to all consumers who have not bought
the product. The seller adopts a strategy of iterative pricing – posting different
prices sequentially at discrete time points, to maximize her revenue (we assume
that production costs are zero). We also assume that the consumers are myopic
(a.k.a. impatient) in the sense that they, when making purchase decisions, do
not take into account their neighbors’ future actions (which will change their
external values of the product).

Contributions. Comparing with their positive counterparts, negative external-
ities possess more irregularity and pose more challenges for research on product
diffusion, especially from the perspective of pricing. The intuitive hardness is
confirmed by the following theoretical intractability. By a reduction from the
3SAT problem we show that finding an optimal iterative pricing is NP-hard
even for the extremely simple case of unweighted tree network with uniform
intrinsic values (Theorem 1).

Complementary to the hardness result, we design a 2-approximation algo-
rithm for iterative pricing in general weighted networks with general intrinsic
values (Theorem 2). An exact O(n2)-time algorithm is designed for unweighted
split networks with uniform intrinsic values, where n is the number of consumers
(Theorem 3).

We also study single pricing as an approximation of iterative pricing, and
obtain the following negative and positive results. We prove that optimal sin-
gle pricing can be arbitrarily worse (at a rate of ln lnn) than the optimal
iterative pricing (Example 1); and on the other hand, the best single pricing
provides nice approximations to the optimal iterative pricing for several well-
known unweighted networks with uniform intrinsic values: (lnn)-approximation
for general networks (Theorem 7), 1.5-approximation for forest networks (Theo-
rem 4), (1 + ε)-approximation a.a.s for Erdős-Rényi networks (Theorem 5), and
2-approximation a.a.s. for Barabási-Albert networks (Theorem 6).

Organization. The remainder of the paper is organized as follows. Section 2
provides a literature review. Section 3 gives the mathematical formulation of
our iterative pricing model. Section 4 is devoted to general iterative pricing.
Section 5 discusses the relation between single pricing and iterative pricing.
Section 6 concludes the paper with remarks on future research. The proofs and
details omitted can be found in the full version [11].

2 Related Work

In the economics literature, the importance of network effects and network exter-
nalities in business began to attract serious attention around three decades ago
([15,20]). Under the most popular frameworks, network effects are assumed to
be global instead of local. Namely, only complete networks are considered. Con-
sumers may also act sequentially as in this paper, but are usually assumed to
be completely rational in the way that they are able to forecast the decisions



Pricing in Social Networks with Negative Externalities 17

of later ones and make their purchase decisions accordingly. There are quite a
lot of followups, most of which are beyond the scope of this paper. We refer the
reader to [23] for a most recent development in this paradigm with relaxations
of assumptions on consumers.

In the literature of computer science, network pricing stems mainly from the
study of diffusion and cascading. One of the most important differences between
this strand of research and that of economics is arguably that network structures
are explicitly and seriously addressed. Over the last decade, under the frame-
work of viral marketing, the algorithmic study of diffusing products with positive
externalities is especially fruitful for influence maximization, see, e.g., [12,21,22].
To the best of our knowledge, Hartline et al. [18] was the first to study the diffu-
sion problem from a network pricing perspective. They investigated marketing
strategies for revenue maximization with positive externalities. Consumers are
visited in a sequence (determined by the seller), and asked whether to buy or
not under some price (different consumers may receive different prices, referred
to as differential pricing or discriminative pricing). They showed that for myopic
consumers, a reasonable approximation of the optimal marketing strategy can
be achieved in a simple way of influence-and-exploit. While complete informa-
tion was assumed in [18], Chen et al. [13] studied the incomplete information
model with rational players and positive externalities. They provided a polyno-
mial time algorithm that computes all the pessimistic (and optimistic) equilibria
and the optimal single price. When discriminative pricing is allowed, they proved
the NP-hardness of optimal equilibrium computation, and gave an FPTAS for
the case that consumers are already partitioned into groups such that those
within the same group must receive the same price.

Iterative pricing, with a very limited literature, was discussed by Akhlagh-
pour et al. [1] for positive externalities. The authors studied two iterative pricing
models in which consumers are assumed to be myopic. In the first model, they
gave an FPTAS for the optimal pricing strategy in the general case. In the second
model, they showed that the revenue maximization problem is inapproximable
even in some special case. Their second model is quite similar to ours.

Although there is also a large literature in the field of classical economics
studying negative externalities (under various terms, e.g. the Veblen effect, the
snob effect, the congestion effect etc.), explicit networks are rarely treated seri-
ously as aforementioned. One of the classical papers in this strand is [19], where
the nulclear weapon selling problem was considered from the perspective of net-
work effects. In the more recent computer science literature, compared with posi-
tive externalities, network pricing problems with negative externalities are much
less investigated. Chen et al. [13] showed that when both positive and negative
externalities are allowed in their model, computing any approximate equilib-
rium is PPAD-hard. However, the complexity status of the problem in the case
with only negative externalities is still unknown. The only paper known to us
that deals with the network pricing problem with negative externalities is [5] by
Bhattacharya et al., although their main focus is on equilibrium computation for
given prices rather than pricing. The authors also considered linear externalities,
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but a combination of single pricing, complete information and strategic con-
sumers. They showed that for any given price, the game that the consumers
play is an exact potential game, and provided a set of hardness results. They
proved that finding the best equilibrium is NP-hard even for trees, and gave a
2-approximation algorithm for bipartite networks. Along a different line, Alon et
al. [2] used the term “negative externality” to mean the harm of discriminative
pricing on consumers (because discriminative pricing gives many consumers a
feeling of inequality).

All the papers cited above assume that externalities are only exerted between
consumers who buy the product. In contrast, for some products or sevices, e.g.,
public goods, externalities are exerted also from purchasers to nonpurchasers.
Our paper is close to [9] in the sense that both papers address strategic sub-
stitutes (each player has less incentive to buy when more neighbors purchase),
although the network externalities are negative in our settings but positive in
their settings of public goods. In the computer science, the public goods pric-
ing problem was also studied by Feldman et al. [16]. Their work differs from
ours in two main respects: (i) In our externality model, a consumer’s utility is
subtractive over the purchases made by this neighbors, whereas in their setting,
purchases of neighbors are substitutes. (ii) Technically, they related the pric-
ing problem (where externalities in their model are mathematically expressed in
terms of products of neighbors actions) to a single-item auction problem, while
we address the pricing problem (where externalities are expressed in terms of
sums of neighbors actions) using iterative algorithmic approaches. As noted by
the authors [16], their results carry over to a special kind of negative external-
ity, where the valuation of a consumer on the product is positive if and only
if the consumer is the only one among her neighbors who possess the product.
The aforementioned literature are all on indivisible goods. The network pricing
problems for divisible goods with quadratic utilities functions have been studied
in [6,10]. Along with [16], a growing number of papers have been addressing
the network externality problem from the perspective of mechanism design and
auction theory (e.g. [4,14,17]).

3 The Model

Let G = (V,E) be the given undirected network (without self-loops, and possibly
associated with a nonnegative integer weight function w ∈ Z

V ×V
+ ), where V ≡ [n]

is the set of n consumers, and E represents the links between pairs of consumers.
When the weight function w ∈ Z

V ×V
+ is discussed, it is always assumed that

wij = wji for all i, j ∈ V and wij = 0 if and only if ij �∈ E. Given any consumer
i ∈ V and subset S ⊆ V of consumers, we use wi(S) =

∑
j∈S wij to denote

the sum of weights contributed to consumer i by those in S. Clearly, only i’s
neighbors can possibly contribute.

We name the model under investigation as PNC (Pricing with Negative exter-
nalities and Complete information). Let Q, which usually shrinks as the iterative
pricing proceeds, denote the set of consumers who do not possess the product.
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Each consumer i ∈ V has an intrinsic value ν(i) ∈ R+, and her total value of the
product equals ν(i)+wi(Q). Initially Q = V . The PNC model proceeds as follows.

– Iterative pricing. The monopolist seller announces prices p1, p2, . . . , pτ

sequentially at time 1, 2, . . . , τ .
– Impatient consumers. As soon as a price is announced, a consumer in Q buys

the product if and only if her current total value is greater than or equal to
the current price.

– Simultaneous moves. We assume that, for each newly announced price, all
consumers in Q make their decisions (buying or not buying) simultaneously.

Note that a consumer in Q who does not purchase at current time t under
price pt may be willing to buy at a later time t′ > t under a lower price pt′ < pt.
For each t = 1, 2, . . . , τ , let B(pt) denote the set of consumers who buy the
product at price pt, (i.e., at time t, or in the t-th round). We use r(p) to denote
the revenue derived from p = (p1, p2, . . . , pτ ), i.e., r(p) =

∑τ
t=1 pt · |B(pt)|. In

case of p = (p1), we often write r(p) as r(p1). The PNC problem is to find a
pricing sequence p = (p1, p2, . . . , pτ ) such that r(p) is maximized, where both
the length τ and the entries p1, p2, . . . , pτ of the sequence are variables to be
determined.

4 General Iterative Pricing

In this section, we study the PNC model in the most general setting where no
restriction is imposed to the length of the pricing sequence.

Theorem 1. In the PNC model, computing an optimal pricing sequence is NP-
hard, even when the underlying network is an unweighted tree and all the intrinsic
values are zero.

4.1 2-Approximation

As to approximation, we design a very simple greedy algorithm which performs
fairly well. For any subnetwork H of G with node set V (H), and any i ∈ V (H),
we use dw

H(i) =
∑

j∈V (H) wij to denote the weighted degree of i in H.

Theorem 2. For the PNC model, Algorithm 1 finds a 2-approximate pricing
sequence in O(n2) time.

Proof. The 2-approximation follows from the observation that the revenue of the
iterative pricing output by the algorithm is

∑
i∈V ν(u) +

∑
ij∈E wij , while the

revenue of the optimal pricing is no more than
∑

i∈V ν(u) + 2
∑

ij∈E wij . ��
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Algorithm 1. Iterative Pricing
Input: Network G = (V, E) with weight w ∈ Z

V ×V
+ and intrinsic value ν ∈ R

V
+ .

Output: Sequence p of prices.
1. G0 ← G, t ← 0
2. While V (Gt) �= ∅ do
3. t ← t + 1
4. pt ← max{ν(i) + dw

Gt−1
(i) : i ∈ V (Gt−1)}

5. Gt ← Gt−1 \ B(pt)
6. End-while
7. Output p ← (p1, p2, . . . , pt)

4.2 Optimal Pricing for Unweighted Split Networks

Network G = (V,E) is a split network if its node set V can be partitioned into
two sets C and I such that C induces a clique and I is an independent set of
G. Clearly, the nodes in I can only have neighbors in C. In case of each node
in I adjacent to exactly one node in C, network G is called core-peripheral.
Core-peripheral networks are widely accepted as good simplifications of many
real-world networks and thus have been extensively studied in various environ-
ments [8].

We consider the case of uniform intrinsic values, which can be assumed
w.l.o.g. to be zeros. Let d(v) = dG(v) denote the degree of v ∈ V in G. Suppose
that C = {v1, v2, . . . , vk}, and d(vi) ≤ d(vi+1) for every i ∈ [k − 1]. For each
i ∈ [k], note that v1, . . . , vi form a clique set Ci and their neighbors in I form an
independent set Ii, and Ci ∪ Ii induces a split subnetwork Gi of G with degree
sequence

dGi
(ui

�i) ≤ dGi
(ui

�i−1) ≤ · · · ≤ dGi
(ui

1) ≤ dGi
(v1) ≤ · · · ≤ dGi

(vi),

where Ii = {ui
1, u

i
2, . . . , u

i
�i

}. Apparently, dGi
(vh) = d(vh) − (k − i) for every

h ∈ [i]. Consider an optimal pricing p = (p1, . . . , pτ ) for the PNC problem
on Gi, and write the corresponding maximum revenue as opt(Gi). One of the
following must hold.

– p1 = dGi
(vh+1) for some h ∈ [i − 1], and exactly (i − h) nodes, i.e.,

vh+1, . . . , vi, purchase at price p1, offering revenue (i − h)p1 = (i −
h)dGi

(vh+1). It follows that τ ≥ 2 and (p2, . . . , pτ ) is an optimal pricing
for Gh, giving opt(Gi) = (i−h)dGi

(vh+1)+opt(Gh) = (i−h)d(vh+1 − k +
i) + opt(Gh).

– p1 = dGi
(ui

j) for some j ∈ [�i] and exactly (i+j) nodes, i.e., ui
j , u

i
j−1, . . . , u

i
1,

v1, v2, . . . , vi, purchase at price p1, offering revenue (i+j)p1 = (i+j)dGi
(ui

j).
Since the nodes not purchasing at price p1 are pairwise nonadjacent, it is
easy to see that p = (p1) and opt(Gi) = (i + j) · dGi

(ui
j).
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For convenience, let opt(G0) stand for real number 0. Then opt(G) = opt(Gk)
can be computed by the following recursive formula (for i = 1, 2, . . . , k):

opt(Gi)

= max
{

i−1
max
h=0

{opt(Gh) + (d(vh+1) − k + i)(i − h)},
�imax

j=1
{(j + i) · dGi

(ui
j)}

}
.

This formula implies the following result.

Theorem 3. For the PNC model, an optimal pricing sequence for any
unweighted split network with uniform intrinsic values can be found in O(n2)
time by dynamic programming.

5 Approximation by Single Pricing

Finding an optimal single pricing is trivial because it can be chosen from the n
valuations of the consumers. Thus it is natural to ask: How does the optimal
single pricing work as an approximation to the optimal iterative pricing? We
find that the answer is both “good” and “bad”, in the sense that single pricing
works rather well for many interesting networks with unit weights and uniform
intrinsic values, including forests, Erdős-Rényi networks and Barabási-Albert
networks; but in general, its worst-case performance, even when restricted to
unweighted networks, can be arbitrarily bad. This justifies the importance of
the research of iterative pricing, and at the same time poses the interesting
question of investigating the relation between single pricing and iterative pricing
for more realistic scenarios.

In this section, we restrict our attention to unweighted networks G with
uniform intrinsic values, for which we may assume w.l.o.g. that all intrinsic
values are zero, and use opt(G) to denote the revenue derived from an optimal
iterative pricing.

5.1 1.5-Approximation for Forests

We show that the best single price guarantees an approximate ratio of 1.5 for
unweighted forests with uniform intrinsic values.

Theorem 4. For the PNC model, the single pricing p with maximum p · |B(p)|
has an approximation ratio of 1.5 for unweighted forests with uniform intrinsic
values.

Remark 1. In Theorem 4, to achieve the approximation ratio 1.5, the single price
can be simply chosen between 1 and 2, whichever produces a larger revenue.
Moreover, the ratio 1.5 is tight, as shown by the following tree G.

Tree G with n = 1 + 2k nodes is a spider with center of degree k and each
leg of length 2 (i.e., the tree obtain from star K1,k by subdividing each link
with a node). It is easy to see that the maximum revenue 3k is given by pricing
sequence (k, 1). However, any single pricing can produce a revenue of at most
max{k·1, 2·(k+1), 1·(2k+1)} = 2k+2. The tightness follows from 3k/(2k+2) →
1.5 (k → ∞).
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5.2 Near Optimal Pricing for Erdős-Rényi Networks

For large n, there is a simple algorithm that is “almost optimal” for “almost all”
Erdős-Rényi networks G(n, η(n)). The network is constructed by connecting n
nodes randomly; each link is included in the network with probability η(n). This
algorithm, which will be referred to as A(δ), prices only once with price (1 −
δ)(n−1)η(n), where δ > 0 is a parameter to be determined by the approximation
ratio that we intend to reach.

Theorem 5. Given arbitrarily small positive number ε > 0, set δ ∈ (0, 1) such
that 1+δ

1−δ < 1+ε. Then for the PNC model, Algorithm A(δ) has an approximation
ratio at most 1 + ε for asymptotically almost all networks G(n, η(n)), as long as

η(n)
√

(ln n)/n
→ +∞. (1)

To be precise, under condition (1), we have

lim
n→∞ Pr

(
2|E(G(n, η(n)))|

r(G(n, η(n)))
≤ 1 + ε

)
= 1,

where E(G(n, η(n)) is the link set of G(n, η(n)), Pr(·) is the probability function,
and r(G(n), η(n)) is the revenue obtained from the single pricing (1 − δ)(n −
1)η(n).

5.3 (2 − ε)-Approximation for Barabási-Albert Networks

The scale-free property (the power-law tail) has been nicely emulated by
the multiple-destination preferential attachment growth model introduced by
Barabási and Albert [3]. Starting with a small number of nodes (who are origi-
nally connected with each other), at each time step a new node enters network
G = (V,E), and attaches to β existing nodes. Each of the existing nodes is
attached to the new one with a probability that is proportional to its current
degree. Such a process is well-known as the preferential attachment. Recall that
|V | = n. Let αn,k be the fraction of nodes with degree k. It is known from [7]
that for any fixed ε > 0, and any β ≤ k ≤ n1/15,

lim
n→∞

Pr

(
(1 − ε)

2β(β + 1)

k(k + 1)(k + 2)
≤ αn,k ≤ (1 + ε)

2β(β + 1)

k(k + 1)(k + 2)

)
= 1. (2)

Note by the construction that each node has a degree of at least β. Let Γ be the
set of all nodes that have a degree of exactly β. Then

Γ is an independent set of G, (3)

because whenever two nodes are connected, the “older” one must have a degree
at least β+1. Note also that for any fixed ε > 0, the inequality |E| ≤ (1+ε/2)nβ
holds for big enough n.
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Theorem 6. Consider the PNC model. For any fixed ε > 0, with probability
tending to one as n → ∞, the single pricing with price β achieves an approxi-
mation ratio of 2 − 2/(2 + β) + ε for Barabási-Albert network G. To be precise,

lim
n→∞ Pr

(
opt(G)

nβ
≤ 2 − 2

(2 + β)
+ ε

)
= 1,

where nβ is the revenue obtained by single price β.

In the special case of β = 1, Barabási-Albert network G is a tree. The approx-
imation ratio 2− 2/(β + 2) = 4/3 stands in contrast to the ratio 1.5 in Theorem
4 and Remark 1.

5.4 Upper and Lower Bounds for Single Pricing

Having seen the above constant approximations that single pricing achieves, one
may ask: can best single pricing always provide good approximations to optimal
iterative pricing for unweighted networks with uniform intrinsic values? The
following example shows that, in the worst case, the best single price can only
guarantee at most a fraction 1/(ln lnn) of the optimal revenue.

Example 1. The network G with n = k(k!) + 1 nodes consists of
∑k

i=1 i =
k(k + 1)/2 node-disjoint cliques and one special node which is adjacent to all
other nodes, where the number of (k!/i)-cliques is i for each 1 ≤ i ≤ k.

In the above instance G, there are one node with degree k(k!), which is the
special node, and k! nodes with degree (k!)/i for i = 1, 2, . . . , k. Recall that r(p)
denote the revenue under single pricing (p). Note that r(k(k!)) = k(k!), and
r((k!)/i) = (i(k!) + 1) · (k!)/i = (k!)2 + (k!)/i for i = 1, . . . , k. Then the best
single price is k!, which brings a revenue

r(k!) = (k!)2 + k! = max
p≥0

r(p).

On the other hand the pricing p = (p1, . . . , pk+1) with p1 = k(k!), pi+1 = (k!)/i,
i = 1, . . . , k, brings revenue r(p) = k(k!)+

∑k
i=1(k!)(k!/i−1) = (k!)2 ·∑k

i=1(1/i).
When k tends to infinity,

r(p)
r(k!)

=
∑k

i=1
1
i

1 + o(1)
≈ 1 + ln k = Θ(ln lnn).

In complementary to the above example, we show in the following theorem
that, with single pricing, one can always assure at least a factor 1/(1 + ln n) of
the optimal revenue in unweighed network G with uniform intrinsic values. Let
d1, d2, . . . , dn with d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of G.

Theorem 7. opt(G)/maxn
i=1{idi} ≤ 1 + ln n.
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Proof. Since
∑n

i=1 di ≥ opt(G), it suffices to show that

max
i=1,··· ,n

{idi} ≥
n∑

i=1

di

1 + ln n
.

Suppose on the contrary that idi <
∑n

j=1 dj

1+lnn for each 1 ≤ i ≤ n. Then we have

n∑

i=1

di <

(
n∑

i=1

1
i

)

·
∑n

i=1 di

1 + ln n
=⇒ 1 + ln n <

n∑

i=1

1
i
,

which is a contradiction.

6 Conclusion

Our work is an addition to the very limited literature on both pricing with
negative network externalities and iterative pricing. The model captures many
interesting settings in real-world marketing, and is usually much more chal-
lenging than the positive externality counterpart. The hardness result identifies
complexity status of a fundamental pricing problem. The algorithms achieve
satisfactory performances in general and several important special settings. An
interesting direction for future research is to narrow the lower and upper bounds
on the approximability of the iterative pricing problem with negative externality.
Obtaining more accurate estimations for the optimal pricing is a key to reduce
the approximation ratios.
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14. Deng, C., Pekeč, S.: Money for nothing: exploiting negative externalities. In: Pro-
ceedings of the 12th ACM Conference on Electronic Commerce, EC 2011, pp.
361–370 (2011)

15. Farrell, J., Saloner, G.: Standardization, compatibility, and innovation. The RAND
Journal of Economics, 70–83 (1985)

16. Feldman, M., Kempe, D., Lucier, B., Paes Leme, R.: Pricing public goods for
private sale. In: Proceedings of the Fourteenth ACM Conference on Electronic
Commerce, EC 2013, pp. 417–434 (2013)

17. Haghpanah, N., Immorlica, N., Mirrokni, V., Munagala, K.: Optimal auctions with
positive network externalities. ACM Transactions on Economics and Computation
1(2), 13 (2013)

18. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: Proceedings of the 17th International Conference on World
Wide Web, WWW 2008, pp. 189–198 (2008)

19. Jehiel, P., Moldovanu, B., Stacchetti, E.: How (not) to sell nuclear weapons. The
American Economic Review, 814–829 (1996)

20. Katz, M., Shapiro, C.: Network externalities, competition, and compatibility. The
American Economic Review, 424–440 (1985)
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Abstract. This paper introduces a new optimization problem which
aims to develop a distribution plan of vaccines which will be supplied
over time such that an epidemic can be best suppressed until a complete
cure for it is invented. We first exploit the concept of temporal graph to
capture the projected images of the evolving social relations over time
and formally define the social-relation-based vaccine distribution plan-
ning problem (SVDP2) on the temporal graph. Then, we introduce a
graph induction technique to merge the subgraphs in the temporal graph
into a single directed acyclic graph. Next, we introduce a max-flow algo-
rithm based technique to evaluate the quality of any feasible solution of
the problem. Most importantly, we introduce a polynomial time enumer-
ation technique which will be used along with the evaluation technique
to produce a best possible solution within polynomial time.

1 Introduction

In 2014, the world have witnessed the unprecedented spread of critical disease
called Ebloa, which is transmittable from an infected person, who has spent
a certain incubation period after the initial infection, to another healthy one
via direct contact to bodily fluid from the infected. After the seriousness of the
disease was recognized, many efforts were initiated to expedite the development
of vaccines to stop the further spread of the disease as well as of a complete
cure for it. During last one year, a number of vaccines were tested and several
approaches to cure infected ones were tried, which saved several lives. However,
the disease is still spreading and many people are dying while the researches for
the vaccines and cures are ongoing. Unfortunately, there is no guarantee that
Ebloa is the last pandemic on this scale. As a result, the proper preparedness
against such calamity is of great urgency to save lives, possibly in the near future.
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It is not difficult to imagine that even a vaccine is once invented against a new
pandemic, its near-term availability would be highly restricted. As a result, the
development of proper distribution strategy of vaccines over healthy individuals
is as important as inventing vaccines and cures of unknown pandemic to reduce
the number of the victims of the critical epidemic once happens. Recently, Zhang
and Prakash [1] used the information from social relationship to address the
issue of selecting those to be vaccinated when the number of currently available
vaccines is limited. In this approach, two adjacent nodes with high probability
implies there is a great chance of infection from one to the other. This social
relation based approach could be promising as the disease usually is transmitted
one to another following their (physical) social interaction. However, we found
that there is generally a lack of efforts to utilize this approach.

In order to fill this deficiency, this paper investigates the best way to dis-
tribute available vaccines which will be supplied over time by exploiting the
projected social relations among the members of a society with the objective of
minimizing the number of infected people until a complete cure is invented. The
list of the contributions of this paper is as follows.

(a) We introduce a new optimization problem, namely social-relation-based vac-
cine distribution planning problem (SVDP2), which aims to study the best
strategy to distribute regular vaccine supplies over time with the objective
of minimizing the number of infected until a complete cure is developed.

(b) We use the concept of temporal graph [10] to capture the projected images
of the evolving social relations over time. Then, we introduce a new strategy
to reduce the graphs in the temporal graph into a single directed acyclic
graph (DAG). Finally, we redefine the proposed optimization problem on
this new DAG.

(c) We introduce a new maximum-flow algorithm based strategy to evaluate the
performance of any feasible solution of SVDP2.

(d) We propose a polynomial time exact algorithm for SVDP2 by exploiting our
evaluation strategy.

The rest of this paper is organized as follows. Related work is discussed in
Section 2. The formal definition of SVDP2 is in Section 3. Our main contribution,
the polynomial time exact algorithm for SVDP2 is in Section 4. Finally, we
conclude this paper in Section 5.

2 Related Work

We realize that there are several problems which are previously well-studied in
the literature. Therefore, we need to explain how our problem is fundamentally
different from them. Largely speaking, there are three group of problems related
to ours.

Fire-Fighter Problem and Its Variations [4–6]. There are two variations
of the the fire-fighter problem [5]. In the context of our problem of interest,
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the first version, namely MAXSAVE, aims to find a valid vaccine strategy over
time to maximize the number of uninfected after a given period. The second
version, MINBUDGET, attempts to find a valid vaccine strategy to save the
members in a given node subset with a given graph such that the budget for
the vaccines (the number of nodes removed) used this purpose is minimized. At
a glance, MAXSAVE is similar to our problem of interest, SVDP2. However,
SVDP2 is more challenging as MAXSAVE uses a static topology graph while
SVDP2 considers a social relation graph which varies over time.

Graph-Cut Problems [2,3]. The main objective of graph-cut problem is that
given a graph, to identify a subset of nodes such that after the nodes in the
subset are removed from the graph, the resulting graph consists of two connected
components in a way that a certain objective function is maximized. One example
of such objective is that each of the components should have one designated
node s (and t), respectively and the size of the component including t becomes
maximized. The main challenges to use a solution for the graph-cut problems for
SVDP2 are that (a) the former one assumes we have enough vaccines to contain
the epidemic, which is not necessarily true in SVDP2, and (b) the former one
also assumes a static graph, which is not necessarily true in our case.

Data-Aware Vaccination Problem [1]. Recently, Zhang and Prakash have
investigated the data-aware vaccination problem, the problem of how to best
distribute currently available k vaccines over healthy individuals so that the
expected number of victims can be minimized with the knowledge of the infection
probability from one to another under the assumption that infection of a patient
to another happens only one time. In their work, the knowledge of the social
network graph which represents the relationship between the people is used to
evaluate the likelihood of the disease transmission. Then, a greedy strategy is
used to find the best k healthy nodes in the graph such that the average number
of patients are minimized. This work is very remote from our work as (a) there
is no concept of time-dimension in their work, e.g. an infected individual may
infect its neighbor only one time with a probability and the vaccines are only
provided at the beginning, and (b) the social network graph is fixed.

Based on our survey, we can conclude that there is no existing work which
is directly used to solve SVDP2. In the following section, we provide the formal
definition of SVDP2.

3 Problem Definition

This paper uses a temporal graph [10] G = {G0 = (V0, E0), G1 =
(V1, E1), · · · , GT = (VT , ET )}, where Gt ∈ G captures the social relation among
the members of society at the t-th unit moment from the initial moment (0-
th moment) to the final moment (T -th moment). After the final moment, it is
highly anticipated that a complete cure of the disease will be developed. The
time gap between two consecutive moments could range from an hour to weeks.
For instance, in case of Ebola, usual incubation time is 2 weeks, and this can be
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used as a reasonable gap. From the initial relationship among the members in
the society, and corresponding graph G0, the temporal graph G can be generated
by an existing strategy such as [8]. We assume there is a threshold to determine
if there should be an edge between a pair of nodes at a moment, which implies
that two members at the moment are close enough to infect each other in case
that one of them is infected with very high probability. Note that the accuracy
of this approach is out of the scope of this paper, and we simple assume that
the algorithm used for this purpose is highly precise.

Now, due to the gravity, we list our main assumptions in more detail and
corresponding justifications if necessary.

(a) The temporal graph G = {G0 = (V0, E0), G1 = (V1, E1), · · · , GT =
(VT , ET )} representing the social relationship of the members of the society
at each moment is known in advance, and is precise. After T unit moments
later, a complete cure of the disease will be developed. Any Gi and Gi+1

may differ in node set or edge set as the relationship can be highly dynamic.
(b) The initial set of infected people I0 in G0 is known in advance. Ii will be

used to represent the set of infected people in Gi.
(c) After each unit moment from Gi to Gi+1, the neighbors of Ii in Gi will be

infected in Gi+1. We argue that our approach considers the worst-case (in
which the infection ratio from two people is 100% if they are related) and
thus would be more rigorous to deal with a critical disease like Ebola rather
than the probabilistic approach considered by Zhang and Prakash [1].

(d) The initial vaccine supply Q = {Q0 = (p0 = 0, q0), Q1 = (p1, q1), · · · , Ql =
(pl, ql)} are know in advance, where Qi = (pi, qi) ∈ Q is the information of
ith vaccine supply and pi is the arrival moment of qi vaccines.

(e) Shortly after time T , the complete cure for the disease will be developed.

Now, we provide the formal definition of our problem of interest.

Definition 1 (Social-relation-basedVaccineDistributionPlanningPro-
blem (SVDP2)). Given G,Q, I0, and T , the goal of SVDP2 is to find the best
vaccine distribution schedule of the incoming vaccines under the infection model
such that the total number of infected people after T unit moments is minimized.

4 Main Contributions

4.1 Consolidating G to Integrated Graph Ĝ

Apparently, G is difficult to deal with as Gi and Gi+1 in G may differ in node
sets and edge sets for any i. To overcome the difficulty, we introduce a graph
consolidation technique to merge the graphs in G to a new graph Ĝ = (V̂ , Ê),
and redefine SVDP2 using Ĝ. This consists of the following steps.

(a) Node set construction: Set V̂ ← ⋃
0≤i≤T V (Gi), where V (Gi) is the set

of nodes in Gi. Each node v
(i)
j represents the status of node vj at the i-th

moment. In case that there exists a node v
(i)
j ∈ Gi for some i, but v(k)j /∈ Gk



30 D. Kim et al.

for some k, then add a virtual node w
(k)
j to V̂ , e.g. nodes {a, b, c, d, e, f, g}

in Fig. 1(b).
(b) Edge set construction: First, add a directed edge from v

(i)
j ∈ V̂ (or

alternatively w
(i)
j ) to v

(i+1)
j ∈ V̂ (or alternatively w

(i+1)
j ) for each i and j

pair: this means an infected node j at i-th moment will stay infected in
i + 1-th moment (even though the node is outside the area abstracted by
the social network). Second, for each v

(i)
j ∈ Gi and its neighbor v

(i)
k ∈ Gi,

add a direct edge from v
(i)
j to v

(i+1)
k (or its virtual node w

(i+1)
k ) to Ê: this

means that a node neighboring to an infected node at i-th moment will keep
infected in i + 1-th moment.

a

b c d

gfe

0-th moment 1-th moment 2-th moment 3-th (T-th) moment

Fig. 1. (Figure (a) illustrates the time temporal graph G which consists of a series of
graphs G1, G2, G3, G4 representing the social relation at each moment. Figure (b) shows
the integrated graph Ĝ which is induced graph G. In this graph, node a, b, c, d, e, f, g are
fake nodes and does not exist. This means that e cannot be infected at the beginning.
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Fig. 2. In this graph, v0 and v2 are initially infected, and an available vaccine is given
to v4 at the initial moment. Then the maximum flow from s to t is equivalent to the
number of infected nodes after the T -th moments, which is 4 in this example.

The original infection rule can be applied in a way that when v
(i)
j is infected,

then its neighbors will be infected, and so on. Due to this, the resulting graph
Ĝ has the following two interesting property.

(a) Once a node v
(i)
j is infected, then all v(k)j s such that k < i will be infected.

(b) Once a node v
(i)
j is vaccinated, then all v(k)j s such that k < i will be vacci-

nated.

This means that once we decide a vaccine to v
(i)
j , then all of the nodes v(k)j such

that k ≥ i can be removed from Ĝ. In fact, this is a unique property which
distinguishes our problem with the rest of the existing related problems.

4.2 Evaluation of Feasible Solution

In this section, we introduce a max-flow algorithm based strategy to evaluate a
feasible solution of SVDP2. In detail, given an integrated graph Ĝ = (V̂ , Ê), we
first add two nodes s, t to V̂ . Then, add an edge from s to the nodes in V̂ which
are initially infected. Then, set the edge capacity of all nodes in the current Ĝ
to be ∞. Next, for all nodes at the T -th moment, we add an edge from each of
them to t with an edge capacity 1 (see Fig. 3). Suppose the resulting graph is
Ĝ′. Then, we prove the following theorem.

Theorem 1. The maximum s− t flow in Ĝ′ after removing a subset of nodes S
which received vaccines, i.e. if a node v

(i)
k ∈ S receives a vaccine, then all nodes
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Fig. 3. In this graph, v2 can be vaccinated when t = 0, which will make X
(0)
2 =

{v(1)2 , v
(2)
2 , v

(3)
2 } removed from the graph, or when t = 1, which will make X

(1)
2 =

{v(2)2 , v
(3)
2 } removed from the graph

v
(j)
k with j ≥ i and their corresponding edges are removed from Ĝ′, is equivalent
to the number of infected people after the T -th moment.

Proof. Let IT be the subset of nodes got infected in the final time t = T . Let
f be a maximum flow with value |f | for the constructed network in Fig. 2. We
claim that for the maximum flow f , the flow must be one on the directed edge
(vTi , t) for any vTi ∈ IT . Otherwise, notice that for each vTi ∈ IT , there is a
directed path from s to vTi (since vTi got infected at moment T ). We can take
the directed path (s → vTi → t) as a augmenting path, and increase the flow
on every edge of the path by one (note the capacity of each edge from s to vTi
is infinity, so we can increase the flow as we wish). Then the new flow value
would increase by one; contradiction to the maximality of f . Therefore, we have
|f | = |IT |.

4.3 Polynomial Time Exact Algorithm Based on Enumeration

In this section, we discuss how the best possible solution of SVDP2 can be
computed within polynomial time. Our strategy consists of the following steps.

(a) Our key observation on this step is that as we stated in Theorem 1, once
a node v

(i)
k receives a vaccine, then all nodes v

(j)
k with j ≥ i and their

corresponding edges are removed from Ĝ′. Based on this observation, we
first construct a subset X

(i)
k = {v(i)k , v

(i+1)
k , · · · , v(T )

k } for each node v
(i)
k in

V (Ĝ′)\
(
{s, t}⋃

V (G0)
)
. Note that X(i)

k in fact is the subset of nodes which
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should be removed from Ĝ′ once we determined to give a vaccine to v
(i−1)
k .

This takes polynomial time as the number of such subset X
(i)
k is equivalent

to the size of V (Ĝ′) \
(
{s, t}⋃

V (G0)
)
.

(b) Consider Q = {Q0 = (p0 = 0, q0), Q1 = (p1, q1), · · · , Ql = (pl, ql)}. For each
Qi, we are allowed to pick qi nodes in Ĝ′ after the pi-th moments and give
a vaccine to it, which will eliminate all corresponding nodes (i.e. the nodes
in the corresponding X

(i)
k ) from Ĝ′.

Given Q, the number of all possible choices to select nodes to give a vaccine
is bound by

(
n
qT

)
= O(nqT ), where q = max1≤i≤T qi. Then, we just need to

pick the best one among the all possible choices.

As a result, we obtain a polynomial time exact algorithm for SVDP2. Now, we
show the correctness of this algorithm.

Theorem 2. Given T and q = max1≤i≤T qi being fixed. The proposed strategy
computes the best possible solution within polynomial time.

Proof. Note all possible choices strategy of giving of vaccines to nodes in Ĝ
is bounded by O(nqT ). And According to Theorem 1, each time when can we
use max-flow algorithm to compute the number of infected nodes, which runs
in polynomial time. Thus, the time complexity of our is polynomial under the
given assumptions.

5 Concluding Remarks and Future Works

During the recent decade, we have witnessed several new epidemics which has
threatened the existence of mankind. In most cases, it took a long time to pro-
duce sufficient amount of effective vaccines, and it took even long to invent a
complete cure of it. Therefore, it is of great importance to develop an efficient
strategy to minimize the impact of the epidemic while only a limited amount
of vaccines are available. This paper aims to open a discuss on this research
direction, which is relatively not well understood yet. Our approach uses exist-
ing social relationship project strategies to capture the images of evolving social
relation which are used to predict the routes of infection of a critical disease.
Then, we develop a polynomial time exact algorithm to establish vaccine distri-
bution plan based on the knowledge of future vaccine production and the exacted
time to discover a complete cure. We believe that this work shows one significant
potential of the information from social network, which is already considered to
be with rich set of information for various applications [11–15]. As a future
work, we plan to further study the problem to introduce a faster algorithm for it
because the running time of our algorithm is very large even though it is poly-
nomial. We are also interested in real data to validate the actual effectiveness of
the proposed approach.
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Abstract. In this paper, we study the Misinformation Containment
(MC) problem. In particular, taking into account the faster development
of misinformation detection techniques, we mainly focus on the limiting
the misinformation with known sources case. We prove that under the
Competitive Activation Model, the MC problem is NP-hard and show
that it cannot be approximated in polynomial time within a ratio of
e/(e − 1) unless NP ⊆ DTIME(nO(log log n)). Due to its hardness, we
propose an effective algorithm, exploiting the critical nodes and using the
greedy approach as well as applying the CELF heuristic to achieve the
goal. Comprehensive experiments on real social networks are conducted,
and results show that our algorithm can effectively expand the awareness
of correct information as well as limit the spread of misinformation.

1 Introduction

With the increasing popularity of online social networks (OSNs), such as
Facebook, Twitter and Google+, OSNs have become the most commonly utilized
vehicles for information propagation. However, along with genuine and trustwor-
thy information, rumors and misinformation also spread all around the Internet
through this convenient and quick dissemination channel, which results in unde-
sirable social effects and even leads to economic losses [1–3]. The rumor of the
earthquake in Ghazni province in August 2012 made thousands of people leave
their home in panic and be afraid of returning back home [5]. And the rumor
about Obama injured originated from Twiiter in June 2011 caused the instabil-
ity in financial markets. Misinformation about diseases are often observed [6].
For instance, there were many Twitter tweets containing misinformation about
swine flu at the outset of the large outbreak in 2009. And the misinformation
about vaccinations makes parents withhold immunization from their children [8].
Thus, it is crucial to seek efficient ways to control the inadvertent and intentional
spread of misinformation.

Furthermore, once users believe the misinformation they received, they are
resistant to change their beliefs, even though there are clear retractions [8].
Thus, rather than making efforts to only eliminate misinformation after it causes
users’ misunderstandings, negative emotions and further disruptive effects, we
c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 35–47, 2015.
DOI: 10.1007/978-3-319-21786-4 4
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want to disseminate “good information” so as to raise users’ awareness, reshape
their attitude, and thus reduce their vulnerabilities to misinformation. “Good
information” could refer to something for the debunking of misinformation, such
as specific recommendations, authorized announcements or valid news.

Related Work. The large size and complex topology of OSNs, and various
users’ characteristics make this problem more challenging. Some existing works
focus on identifying the infected nodes [7], which shed light on how to further
design algorithms to prevent the misinformation from disseminating to the whole
network. There are some recent attempts on limiting misinformation by initially
injecting some good information and letting this good information propagate in
the same network to convince other users [1,2,5]. Budak et al. [2] formulated the
problem as an optimization problem and gave a greedy solution with approxima-
tion guarantees. The βI

T problem of limiting viral propagation of misinformation
is investigated in [1]. Fan et al. [5] studied the containment of rumor originating
from a community and obtain the minimum number of needed protectors. But
they only aimed to limit the spread misinformation. [4,15] approach this problem
in different ways, they want to limit the spread of misinformation by blocking
some nodes so that the overall pairwise connectivity can be minimized. However,
during the process of limiting the misinformation by using good information, we
should also simultaneously propagate this good information to other users who
are unaware of this misinformation as soon as possible.

In this paper, we study the problem of minimizing the cost to prevent the
spread of misinformation and simultaneously disseminate good information. At
first we assume that nodes being active of misinformation are detected. An effec-
tive and timely algorithm is proposed to identify the most important dissemina-
tors with the minimum total cost to inject correct information into the diffusion.
In particular, we should detect a critical round in which we take full protection on
them to limit the wide spread of misinformation in advance and also prompt the
further propagation of good information. Extensive experiments on real datasets
are conducted to evaluate the efficiency and effectiveness of our algorithms and
the results show that our algorithms perform significantly well.

Our contributions in this paper are summarized as follows:

– This is the first attempt to limit the misinformation and also maximize the
prevalence size of good information. And we introduce Competitive Activa-
tion model to represent the competition nature of misinformation and good
information.

– For the MC problem, we prove its NP-hardness and show that it cannot
be approximated in polynomial time within a ratio of e

e−1 unless NP ⊆
DTIME (nO(log log n)).

– The DI algorithm has been developed to find the nodes which can effectively
block misinformation and simultaneously expand the influence of good infor-
mation. And this algorithm is shown to be scalable to large-scale networks
and outperforms several other heuristics.
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The rest of this paper is organized as follows. Section 1 introduces the com-
petitive activation model. Section 2 and Section 3 give the definition of Misin-
formation Containment and analysis of its complexity. We propose Dominating
Influence algorithm in Section 4, and evaluate the performance of our method
in Section 5. Finally, Section 6 concludes this paper.

2 Competitive Activation Model

In this paper, an OSN is modeled as a directed graph G = (V,E), where nodes in
V represent users and edges in E represent social ties between each pair of users.
The size of a given graph G is n = |V |. Starting with a seeding set, information
can propagate along edges of the underlying network. It is very possible for
a user to be exposed to both misinformation and good information. Negative
dominance is used as the tie-breaking rule in Competitive Linear Threshold
model [9]. However, considering various characteristics of users, they could make
different decisions upon receiving same information. So, we introduce a new
parameter preference to determine which activation will finally succeed. Our
model for the simultaneous spread of misinformation and good information is as
follows.

Each node v ∈ V is associated with two thresholds θAv and θBv > 0, and
each edge (u, v) ∈ E is assigned to two weights wA

uv, w
B
uv ≥ 0 corresponding to

misinformation A and good information B. Let IA0 and IB0 denote the sets of ini-
tial A-active nodes, accepting the misinformation, and B-active nodes, believing
good information, respectively. At time t, an inactive node v will become A-active
if

∑
u∈IA

t−1
wA

uv ≥ θAv , or will become B-active if
∑

u∈IB
t−1

wB
uv ≥ θBv . When both

thresholds have been satisfied, a node will decide to accept which one by its
preference, P i

v = (
∑

u∈Nin
a (v) wi

uv)/θiv, where i ∈ {A,B} and N in
a (v) is the set

of activated in-neighbours of v . It will become A-active if PA
v ≥ PB

v , and vice
versa. After accepting one kind of information, a node will stay in this status
and not change to accept another one till the end of diffusion process, reflecting
the continued influenced effect of information perception.

3 Misinformation Containment and Inapproximability

3.1 Problem Definition

Definition 1. Misinformation Containment (MC). Given misinforma-
tion A and good information B spread on a graph G = (V,E, θA, θB , wA, wB),
where θi = {θiv}, wi = {wi

uv} and i ∈ {A,B}, while set of IA0 and kB are given,
this problem aims to find a seeding set for good information IB0 of size kB such
that we can minimize the number of A-active nodes and simultaneously maximize
the number of B-active nodes.
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3.2 Hardness of MC

In this section, we first show the NP-completeness of MC problem by reducing
it from the Maximum Coverage problem. We further prove the inapproxima-
bility of MC which is NP-hard to be approximated within a ratio of e

e−1 unless
NP ⊆ DTIME(nO(log log n)).

Theorem 1. The MC problem is NP-complete.

Proof. We first consider the decision version of MC problem that asks whether
the graph G = (V,E,wA, wB , θA, θB , IA0 , kB) contains a set of vertices IB0 ⊂ V
of size kB such that the number of B-active nodes is at least tB and the number
of A-active nodes is at most tA where tA and tB are positive integers. Given
IB0 ⊂ V , we can easily compute the influence spread of B as well as that of A in
polynomial time under the CAM model. This implies MC is in NP.

To prove that MC is NP-hard, we reduce it from the decision version of
Maximum Coverage problem defined as follows.

Maximum Coverage. Given a positive integer k, a set of m elements U =
{e1, e2, · · · , em} and a collection of sets S = {S1, S2, · · · , Sn}. The sets may
have some elements in common. The Maximum Coverage problem asks to find
a subset S ′ ⊂ S, such that | ∪Si∈S′ Si| is maximized with |S ′| ≤ k. The decision
version of this problem asks whether the input instance contains a subset S of
size k which can cover at least t elements where t is a positive integer.

Reduction. Given an instance I = {U ,S, k, t} of maximum coverage, we con-
struct an instance G = (V,E, θA, θB , wA, wB , IA0 , kB , tA, tB) of MC problem as
follows.

The set of vertices: add one vertex ui for each subset Si ∈ S, one vertex vj
for each element uj ∈ U , and a special vertex x.

The set of edges: add an edge (ui, vj) for each ej ∈ Si and connect x to each
vertex vj .

Thresholds and weights: assign all vertices the same threshold θA = θB = 1
2m ,

and each edges (ui, vj) has weight wA
uivj

= 0, wB
uivj

= 1
m . In addition, for all edges

leaving from x, we assign their weights as wA
xvj

= 1
2m , wB

xvj
= 0.
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Fig. 1. Reduction from Maximum Coverage to Misinformation Containment
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The construction is illustrated in Fig. 1. Finally, set kB = k, tB = t + kB
and tA = m − t + 1. Let IA0 = {x}. We now show the equivalence between two
instances.

Suppose that S∗ is a solution to the maximum coverage instance, thus |S∗| ≤
k and it can cover at least t elements in U . By our construction, we can select
all the nodes ui corresponding to subset Si ∈ S∗ as a seeding set IB0 . Thus
|I0B | = k = kB . Since S∗ can cover at least t elements ej in U , then IB0 can
influence at least t vertices vj corresponding to those ej . Besides, for any vj ,
both of A and B’s total incoming influence exceed its threshold and PA

vj
≤ PB

vj
.

Hence, there are at least t + kB B-active nodes in the MC problem and at most
m − t + 1 = tA A-active nodes.

Conversely, suppose there is a B-seeding set |IB∗
0 | = kB such that the number

of B-active nodes is at least tB . For any vj ∈ IB∗
0 , we replace it with its adjacent

node ui. This replacement does not reduce the number of B-active nodes. Then
the S∗ can be a collection of subset Si corresponding to those ui ∈ IB∗

0 after the
replacement which has exactly size k and the number of elements which it can
cover is at least tB − kB = t.

As MC problem is NP-complete, we further show that the above reduction
implies a e

e−1 -inapproximation factor in the following theorem.

Theorem 2. The MC problem can not be approximated in polynomial time
within a ratio of e

e−1 unless NP ⊆ DTIME(nO(log log n)).

Proof. We use the above mentioned reduction in the proof of Theorem 1. Suppose
that there exists a e

e−1 -approximation algorithm H for MC problem. Then H
can return the number of B-active nodes in G with seeding size less than kB . By
our constructed instance, we can obtain the maximum coverage with size t if the
the number of B-active nodes in the optimal solution for MC problem is t + kB .
Thus algorithm H can be applied to solve the Maximum Coverage problem in
polynomial time. And this contradicts to the NP-hardness of Maximum Coverage
problem [10].

4 Dominating Influence Algorithm

In this part, we propose our Dominating Influence (DI) algorithm for MC prob-
lem. DI algorithm consists of two sub-algorithms, which are DI-Gateway Nodes
Detection and DI-Candidate Selection. DI-Gateway Nodes Detection helps us iden-
tify the gateway nodes, which are of significance in enlarging misinformation’s
influence. Before misinformation’s diffusion naturally terminates, we use DI-
Candidate Selection to find candidate seeding sets of different searching rounds,
which are determined by the set of gateway nodes. Finally, we obtain the best
seeds for good information from Dominating Influence algorithm.
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4.1 Gateway Nodes Detection

In order to block the spread of misinformation, we should identify which nodes
play an important role in its spreading out. In this paper, we use “gateway
node” to refer to nodes which help misinformation propagate further. Knowing
currently active nodes of misinformation, we can obtain the newly active nodes
in each time stamp. Under CAM model, we have the following key observation.

Observation 1. Each newly activated node in time t must be incident to at
least one node that activated in time t − 1.

Algorithm 1. DI-Gateway Nodes Detection

1: Input: Two set of nodes IA
t , IA

t−1

2: Output: A set of gateway nodes Ct−1

3: Ct−1 ← ∅
4: for i = 1 to |IA

t−1| do
5: δmax = 0
6: for each v ∈ IA

t−1 \ Ct−1 do
7: if δv(Ct−1) > δmax then
8: δmax ← δv(Ct−1)
9: end if

10: if δmax = 0 then
11: Return Ct−1

12: end if
13: Ct−1 ← Ct−1 ∪ {v}
14: end for
15: end for
16: Return Ct−1

According to this observation, we utilize a trace back method to shrink the
influence of misinformation step by step. Instead of starting from the inner-most
round, we begin with the outer-most round. The reason is to avoid changes from
happening in an earlier stage that may result in a cascading behavior to the
later round. By simulating the propagation of misinformation, we record the
set of nodes IAi that activated in round i, i = 1, 2..., T . To prevent the further
propagation of misinformation to IAt , we should deal with nodes in IAt−1. Rather
than targeting all nodes activated in round t − 1, we want to find the gateway
nodes which contribute to activating the most number of nodes in IAt . Thus,
we use a greedy approach to sequentially select a node u ∈ IAt maximizing the
following marginal gain into set Ct−1:

δu(Ct−1) = f(Ct−1 + {u}) − f(Ct−1),

where f(·) is the number of newly activated nodes which are incident to the set
of selected nodes.

The algorithm terminates and returns the set of gateway nodes Ct−1 for a
given set of A-active nodes IAt . The detail of this step is shown in Algorithm 1.
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4.2 Candidate Selection

After obtaining the set of gateway nodes, we want to target those nodes and
activate them before misinformation reaches. Meanwhile, we desire to enhance
users’ awareness of good information. To achieve both goals, we present the
candidates selection in Algorithm 2, and the core is to iteratively choose a node
that maximizes the following marginal gain:

ηu(IB0 ) =α[ψ(IB0 + {u}) ∩ Ct−1 − ψ(IB0 ) ∩ Ct−1]+

β[ψ(IB0 + {u}) − ψ(IB0 )],

where α + β = 1. By adjusting the value of α, and β, we can change the
effect on limiting misinformation’s influence and expanding the influence of good
information.

Algorithm 2. DI-Candidate Selection

1: Input: G = (V, E, wA, wBθA, θB), Ct−1 and kB

2: Output: A candidate seed set IB
0 (t − 1) of size at most kB

3: P ← ∅, Q ← ∅
4: for each v ∈ Ct−1 do
5: Find node u that is t − 1-hops away from v
6: P ← P ∪ {u}
7: end for
8: for u ∈ P do
9: Compute ηu(IB

0 (t − 1)),
10: Push u into Q
11: end for
12: while |IB

0 | ≤ kB do
13: repeat
14: u ← top of Q
15: Recompute ηu(IB

0 (t − 1))
16: until u stays on top of Q
17: if ηu(IB

0 ) ≤ 0 then
18: Return IB

0 (t − 1)
19: end if
20: IB

0 ← IB
0 + {u};

21: Return IB
0 (t − 1), result(A, B, t − 1)

22: end while

Since greedy algorithms are always suffering from severe scalability problem,
we use two techniques to effectively improve the running time. First, instead
of selecting nodes from all over the network, we start from a candidate set P ,
which consists of nodes that are t − 1 hops away from the targeted gateway
nodes. Second, we employ CELF [11] heuristic to speed up the selection in each
iteration. This approach can avoid the exhaustive update, which is extremely
time consuming. This algorithm finally returns a candidate seeding set IB0 as
well as the total number of A-active and B-active nodes, respectively.
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4.3 DI Algorithm

Incorporating above two algorithms, we obtain the DI algorithm, presented in
Algorithm 3. First, we simulate the diffusion of misinformation and obtain ter-
mination round T along with the sets of activated nodes IAt , t = 1, · · · , T in
each round. Starting with an arbitrary IAt , t ∈ [1, T ], by applying Gateway Nodes
Detection, we are able to find the set of nodes Ct−1 that contributed the most to
activating nodes in IAt . Next, in order to limit the diffusion of misinformation,
we should guarantee that the node v ∈ Ct−1 should be activated by good infor-
mation no later than time t − 1. This requires us to either let good information
reach v earlier than t − 1 or activate more of v’s neighbors to be B-active nodes
in order to make v’s preference PB

v ≥ PA
v at t − 1.

Algorithm 3. Dominating Influence Algorithm

1: Input: Graph G = (V, E, wA, wB , θA, θB), IA
0 and kB

2: Output: A seed set IB
0 of size kB

3: Simulate A’s influence starts with IA
0

4: Get the termination round T and sets of active nodes IA
i , i = 1, ..., T

5: for t = T to 1 do
6: Ct−1 ← DI-Gateway Nodes Detection (IA

t )
7: (IB

0 (t), result(A, B, t)) ← DI-Candidate Selection (G, Ct−1, kB)
8: end for
9: for t = 1 to T do

10: Find τ where argmaxτ∈[1,T ]{B \ A|result(A, B, t)}
11: end for
12: Return IB

0 (τ)

Considering the above time constraint, there will be a trade-off when selecting
nodes into the seeding set. If we try to limit the propagation of misinformation at
an early stage, the candidate set (which consists of nodes t − 1 hops away from
Ct−1) will be very limited, and thus may lead to decreasing the quality of seeds to
disseminate good information. On the contrary, we are able to get a better candi-
date set by postponing the time to block misinformation, but this may result in
increasing the number of A-active nodes dramatically. However, since the termi-
nation round of misinformation diffusion is usually a relatively small integer, and
by applying the above mentioned enhancements to improve the running time, we
are able to go through each Ct where t is from 1 to T searching round in order to
find to best seeding set. Eventually, by measuring the difference between number
of A-active and B-active nodes for every Ct, we can obtain the best seeding set to
contain misinformation and maximally raise users’ awareness.

5 Experiment and Evaluation

In this section, we perform various experiments based on the proposed algorithms
and heuristics with real-world datasets, and evaluate the performance.
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5.1 Dataset Description

We use three real-world networks, which are widely used for information diffusion
process analysis, their basic statistics are summarized in Table 1, including:

Gnutella. The snapshot of the Gnutella peer-to-peer file sharing network in
August 2002. Nodes represent hosts in the Gnutella network topology and edges
represent connections between the Gnutella hosts [13].

Facebook. This dataset contains friendship information among New Orleans
regional network on Facebook, spanning from September 2006 to January 2009,
where nodes represent users and edges among them are friendship.

Amazon. This network is collected by crawling Amazon webpages. In this graph,
an edge (i, j) indicates that product i is frequently co-purchased with product j
by customers [14].

Table 1. Basic Information of Investigated Networks

Network Gnutella Facebook Amazon

Nodes 6,301 61,096 262,111

Edges 20,777 1,811,130 1,234,877

Avg. Degree 3.29 29.64 4.71

Type Directed Directed Directed

For graphs we tested on, nodes’ thresholds for accepting misinformation and
good information are generated uniformly at random in the range [0, 1]. To
assign the influence weights on each edge, we adopt the method in [12], where
we uniformly generate edge weights at random in the range [0, 1], and then
normalize the weights of all incoming edges of a node v to let it satisfy that∑

u∈Nin(v) wu,v ≤ 1. Furthermore, for the seeding set of misinformation, we
employ the greedy algorithm proposed by Kempe et al. [12], where in each iter-
ation, the node with maximum marginal gain is chosen into the seeds. We are
most likely to be able to detect misinformation and take action to contain its
spread after it has propagated for a while and leads to undesirable effect [3]. Con-
sidering this observation, we introduce a delay d to model the time difference
of disseminating good information and misinformation starting out. Compared
with random selection, assigning seeds set for misinformation in this way can
guarantee the high quality of misinformation initiators, and makes our prob-
lem of choosing seeds set for good information so as to limit the influence of
misinformation more challenging.

Algorithms Compared. In our experiments, we compare our algorithm with
several other heuristics listed as follows:
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– Random: Randomly select kB nodes from V \ IA0 as the seeds for good infor-
mation in the graph.

– MaxDegree: We choose top kB nodes from V \ IA0 with highest degree as the
seeding set for good information.

– MaxGreedy: The greedy algorithm focuses on maximizing the influence of
good information, in which the node with the maximum influence of good
information is iteratively picked[16].

– MinGreedy: The greedy algorithm targets on minimizing misinformation
propagation; the node with maximum number of A-active nodes blocked
is selected in each iteration [2,9].

5.2 Experimental Results

In this part, we first measure the performance of our algorithm, in which we eval-
uate the number of A-active nodes and B-active nodes as well as their difference
across three real world datasets with different number of seeds and rounds. Sec-
ondly, we compare the the results from all above mentioned algorithms. Next,
we evaluate how time delay impacts the overall performance.

Seeding Set. We first present the spread of misinformation A and good infor-
mation B achieved by selecting 50 B-seeds at different rounds. We evaluate them
based on the number of A-active and B-active nodes, along with the difference
between them. Fig. 2 shows two types of information of selecting 50 seeds with
initial set |IA0 | = 10 and time delay d = 2. The initiators of misinformation are
selected by above described method, and before we disseminate good informa-
tion in the network, misinformation has already activated 83, 205 and 50 nodes
in Gnutella, Facebook and Amazon, respectively.

Fig. 2(a), 2(b), 2(c) show that the number of A-active nodes keeps dropping
with a larger size of good information seeds. For example, in Gnutella, without
adding any B-seeds, the spread of misinformation could reach as many as 851
nodes. However, by adding 50 seeds of good information selected by DI, the
active size of misinformation can be limited to only 208 nodes. Conversely, Fig.
2(d), 2(e), 2(f) depict that the amount of B-active nodes increases dramatically
with more B-seeds. For the seeds chosen from round 14 in Gnutella, the total
number of B-active nodes can be 4749, eventually. Furthermore, we find that
the difference between B-active nodes and A-active nodes is steadily increasing
with larger budget of the seeding set of good information. It is also fluctuating
with different targeting rounds.

Different Methods. Next, we compare the spread of both kinds of information
achieved from different heuristics. The comparison is based on the number A-
active nodes and B-active nodes and their difference. Fig. 3 shows the spread of
misinformation and good information when there are 50 B-seeds and 10 initial
A-active nodes, and the time delay d = 2 obtained from different heuristics.
For limiting the spread of misinformation, MinGreedy is the best among those
five methods across three datasets, while Random hardly blocks it. Except for
MinGreedy, DI outperforms other heuristics as it effectively prevents the further



Limiting the Spread of Misinformation While Effectively Raising Awareness 45

0 10 20 30 40 50

0

10

20

30
100

200

300

400

500

Seeds
Rounds

Sp
re

ad
 o

f A

200

250

300

350

400

450

(a) Gnutella

0 10 20 30 40 50

0

5

10

15

20
1020

1040

1060

1080

1100

1120

1140

Seeds
Rounds

Sp
re

ad
 o

f A

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

(b) Facebook (c) Amazon

0
10

20
30

40
50

0

10

20

30
0

1000

2000

3000

4000

5000

SeedsRounds

Sp
re

ad
 o

f B

1000

1500

2000

2500

3000

3500

4000

4500

(d) Gnutella

0
10

20
30

40
50

0
5

10
15

20
0

2000

4000

6000

8000

SeedsRounds

Sp
re

ad
 o

f B

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

(e) Facebook (f) Amazon

0
10

20
30

40
50

0

10

20

30
0

1000

2000

3000

4000

5000

SeedsRounds

Sp
re

ad
 D

iff
. b

et
w

ee
n 

A 
an

d 
B

500

1000

1500

2000

2500

3000

3500

4000

4500

(g) Gnutella

0
10

20
30

40
50

0
5

10
15

20
−2000

0

2000

4000

6000

SeedsRounds

Sp
re

ad
 D

iff
. b

et
w

ee
n 

A 
an

d 
B

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(h) Facebook (i) Amazon

Fig. 2. Influence spread in three networks

propagation of misinformation. As shown in Fig. 3(c), the amount of A-active
nodes nodes goes down to 312 finally while it could be 468 without any B-seeds,
which means that a 33% of A-active nodes has been reduced.

On the contrary, the number of B-active nodes is increasing sharply for both
of the DI and MaxGreedy algorithms. Fig. 3(d) demonstrates that the number of
B-active nodes climbs to 4749 and 4608 after selecting 50 nodes by DI and Max-
Greedy, while for other three methods, the total number for A-active nodes is less
than 1500, similar results can be obtained in Amazon. However, the MaxDegree
in Facebook achieves the largest number of nodes accepting misinformation. By
digging into the data, we find that there are some super nodes with massive
outgoing edges are chosen by MaxDegree, while missed by MaxGreedy. Consid-
ering the greedy approach in selecting seeds, some of those super nodes may
have less gain than other nodes due to the way we assign edge weights. How-
ever, the combination of them could lead to a large cascading influence. Hence,
MaxDegree even outperforms MaxGreedy on Facebook. However, seldom nodes
accepting misinformation have been reduced compared to our DI.



46 H. Zhang et al.

(a) Gnutella (b) Facebook (c) Amazon

(d) Gnutella (e) Facebook (f) Amazon

Fig. 3. The number of nodes activated by misinformation and good information
achieved by different algorithms

6 Conclusions

In this paper, in order to protect users from potential influence of misinformation,
we aim to block misinformation and also raise users’ awareness. We formulate
the MC problem, and then prove it is NP-complete and cannot be approximated
in polynomial time within a ratio of e

e−1 unless NP ⊆ DTIME(nO(log log n)).
An efficient algorithm DI is proposed, and extensive experiments on three real-
world datasets are conducted. Experiments results show that our algorithm out-
performs several other heuristics and well scalable to large-scale social networks.
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Abstract. Rumor spreading is a typical phenomenon which poses security 
threats. Therefore, it is necessary to study the evolution mechanism of rumor 
spreading in complex networks. Considering the hesitating state in rumor 
spreading, we supplement fence-sitter group on existing rumor spreading mod-
els, then propose a novel SIFR rumor spreading model. The mean-field equa-
tions are derived to describe the dynamics of the rumor spreading in complex 
networks. In order to identify effective rumor control strategies, we further ana-
lyze the networks structure and propose an algorithm based on the topology  
potential theory to search the center nodes and divide the network. 

Keywords: Rumor spreading · Monitoring · Complex networks · Topological 
potential 

1 Introduction 

Rumors, as an important form of social communications and a typical social phenom-
enon run through the whole evolutionary history of mankind. If any information cir-
culates without officially publicized confirmation, this phenomenon is called rumor. 
In other words, rumors are unreliable information which may cause harmful impacts, 
such as viral marketing, fraud and panic. To understand mechanisms of rumor propa-
gations, it is necessary to study rumor spreading models in complex networks and to 
investigate the pattern and structure of such a model. 

The classical rumor spreading model, named DK model, was proposed by Daley and 
Kendall [1,2], The development of complex network theory provides the foundation to 
make the study of rumor spreading step into a new era. Zanette [3,4] first applied com-
plex network theory to study the rumor spreading on small-world networks and proved 
the critical threshold’s existence of the rumor spreading. Moreno et al. [5] established the 
rumor spreading model on the scale-free network, and found that the uniformity influ-
ences the dynamic mechanism of rumor spreading. Nekovee et al. [6] modified the rumor 
spreading model with consideration of the forgetting mechanism and discussed the 
thresholds in complex networks. Wang et al. [7] presented a SIRaRu rumor spreading 
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model and discussed the rumor immunization strategy, and obtained the immunization 
threshold and spreading thresholds. Zan et al. [8] introduced the status of counterattack 
and analyzed the self-resistance parameter.  

However, most of the previous models have not considered that there are some 
ignorants who may hear about a rumor and decide to sit on a fence, and not to spread the 
rumor. After the increasing rumors, the ignorants may be convinced and begin to spread 
the rumor as a spreader. In addition, rumor control strategy is very important to prevent 
the rumor from being spread. However, existing research results about rumor control are 
far less sufficient in the rumor model than those in the infectious disease models. Moni-
toring is necessary to control the information sharing and spreading channels in order to 
hinder the spreading of illegal and harmful information [9]. 

To address the above-mentioned issues, we propose a novel rumor spreading mod-
el, called SIFR model, via splitting the infected states with two types of infected 
states: spreader (S) and fence-sitter (F). The mean-field equations are derived to de-
scribe the dynamics of the rumor spreading in complex networks. In order to identify 
effective rumor control strategies, we combine the complex network theory with the 
social network analysis to analyze the networks and propose an algorithm based on 
the topology potential theory to search the center nodes and partition the network. 

The rest of the paper is structured as follows. In Section 2, we describe our new 
rumor model and derive mean-field equation. In Section 3, the parameters in the  
rumor spreading model are analyzed to develop the rumor control strategy. We intro-
duce the social network analysis theory in Section 4. We describe the security  
monitoring mechanism and propose the algorithm to partition the networks based on 
topology potential in Section 6. We conclude in Section 7. 

2 SIFR Rumor Spreading Model 

Facing the same event, people may have distinct opinions i.e. positive, dubious and 
negative. In classical SIR rumor spreading model [1,2], the people with positive opin-
ions act as spreaders and the people with negative opinions act as stiflers. However, 
the people with dubious opinions have fewer descriptions. Therefore, we partition the 
classical spreader state into two separate states according to whether people provide 
supports firmly or hesitate indefinitely: spreader and fence-sitter. The fence-sitter 
state represents those who have heard about the rumor but stopped spreading it  
temporarily, and would possibly spread the rumor again when convinced. 

We consider a closed and mixed group consisting of N individuals as a complex 
network, where individuals can be represented by vertexes and contacts between peo-
ple can be represented by edges. We then obtain an undirected graph G = (V, E), 
where V and E denote the vertexes and the edges, respectively. We assume that the 
rumor is disseminated through direct contacts of spreaders with the rest of the group, 
and the rumor spreading process of the SIFR model is shown in Fig. 1. 

In the proposed model, we have four states including ignorant (I), spreader (S), 
fence-sitter (F) and stifler (R). The SIFR rumor spreading rules can be summarized as 
follows. 
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(a) When an ignorant meets a spreader, the ignorant may believe the rumor and  
become a spreader at a rate λ or may not be sure and become a fence-sitter at a 
rate α or may not believe it and become a stifler at a rate β. 

(b) When a fence-sitter meets a spreader, the fence-sitter may be persuaded and  
become a spreader at a rate μ. If the fence-sitter meets a stifler, he turns into  
stifler at a rate δ. 

(c) When a spreader meets a stifler, the spreader may come to realize the truth and 
become a stifler at a rate γ or may not be sure and become a fence-sitter sat a 
rate ω. 

 

Fig. 1. Structure of SIFR rumor spreading process 

Considering the normalization condition: 

                            (1) 

The mean-field equations can be described as follows:  

    (2) 

where  denotes the average degree of the network. We assume that there is only 
one spreader at the beginning of the rumor spreading. The initial conditions for rumor 
spreading are given as follows: 
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The classical SIR rumor spreading model is a special case of the SFHR model. 
When α = 0, β = 0, δ = 0, μ = 0, ω = 0, the SIHR model becomes the classical SIR 
rumor spreading model. 

3 Rumor Control Strategy 

The parameters which affect the rumor spreading are analyzed. We conclude as  
follows: 

• With the decrease of the infection rate, the peak value of S(t) drops very fast.  
However, this method is less effective in the decay and life span of rumor; 

• With the increase of the immunization rate, the life span of rumor reduces sharply. 
However, this is less effective in the decay and peak value of S(t);  

• With the increase of hesitation rate, the peak value of S(t) decreases sharply. At the 
same time, the decay and life span are affected a lot; 

As the above analysis, the increase of the hesitation rate from spreader to fence-
sitter can reduce both the peak value and the life span of rumor spreading. We can 
adopt different strategies according to the type of rumors, including changing the 
infection rate, hesitation rate, and immunization rate. 

In addition, it has been shown [6,7]  that the average degree of the network is a 
critical factor which controls the rumor spreading. Especially in target immunization 
[10,11], the degree distribution and the topology of a network directly affects which 
nodes and what extent would infect the rumor. Therefore, monitoring the center nodes 
and partitioning the network are the feasible ways to control the rumor spreading. 

4 Social Network Analysis 

As an important branch of data mining, social network analysis (SNA) [12] is used to 
analyze the connection of the units in networks quantificationally. Using SNA, we can 
identify the leader nodes, monitor the networks, and establish the security mechanism of 
complex networks effectively. 

SNA mainly includes centrality analysis, core-periphery model analysis, and  
cohesive-subgroups analysis. 

4.1 Centrality Analysis 

Centrality refers to the power of the network nodes in quantitative analysis, in other 
words, the evaluation of the importance of the network nodes, which mainly  
includes three aspects, as showed in Table 1. 

• Degree centrality is the direct connections between the actors in the network (point 
degree in undirected graph and the sum of in-degree and out-degree in directed 
graph). We determine the status of an actor in the network by the number of the  

k
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actor’s direct contacts to other actors.  Larger degree indicates greater power in 
networks. Degree centrality includes absolute centrality and relative centrality.  
Absolute centrality refers to the number of the actor’s direct contacts to other actors. 
However, absolute centrality cannot be compared in different scales of networks. 
Therefore, Freeman [13] proposed relative centrality, which is result of distinguishing 
absolute centrality with the maximum degree of nodes in the networks 

• Betweenness centrality is a measure of a node’s ability to control the network’s 
resource, indicating the ability to control the contacts of other nodes. This is equiv-
alent to the number of shortest paths from all vertices to all others that pass through 
that node. The node plays a role as a bridge in the network with a larger betweenness 
centrality. 

• Closeness centrality is a measure of the ability of not being controlled by other 
nodes. Larger closeness centrality means higher capacity to against other nodes’ 
control. 

Table 1. Centrality analysis 

Type Definition Description 
Degree Centrality The direct connections of 

the nodes. 
Larger degree centrality means higher 
probability to be the core of the network. 

Betweenness Centrality The node’s ability to  
control the network’s  
resource. 

The node is played a role as a bridge in the 
network with a larger betweenness centrality. 

Closeness Centrality The ability of not being 
controlled by other nodes. 

Larger closeness centrality means higher 
capacity to against other nodes’ control. 

4.2 Core-Periphery Model Analysis 

We partition the network into two regions: the core region and the periphery region. 
The key actors are in the core region. The purpose of core-periphery analysis is to 
find the actors located in core or periphery area. 

Actors or groups may have direct connections with some actors in the network, 
while they are not directly linked to other actors. Ronald. Burt [14] proposed structur-
al holes to indicate the non-redundant relationship of the actors. There are at least 
three actors to connect non-redundant actors in a structural hole. 

Intermediary plays an intermediary role in the network. There are five categories of 
intermediary, as showed in Table 2 and Fig. 2. 

Table 2. Categories of intermediary 

Type Description 
Coordinator A, B and C are in the same group, B is the coordinator. 
Consultant A and C are in the same group, while B in the other group. B is the consultant. 
Gatekeeper B and C are in the same group, while A in the other group. B is the gatekeeper. 
Agent A and B are in the same group, while C in the other group. B is the agent. 
Contact A, B and C are all in the different groups. B is the contact. 
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4.3 Cohesive Subgroups Analysis 

Cohesive subgroup is a subset in the network, where the actors are contacted closely 
and actively. General analysis includes four aspects: the characteristics of the contacts 
between the participants, the connectivity of the internal participants of the subset, 
contact times between the internal participants of the subset, the closeness of the con-
tacts of the internal participants compared with the external participants. We can  
describe the network topology effectively based on the cohesive subgroup analysis. 

 

 

Fig. 2. Five categories of intermediaries 

5 Security Monitoring 

Aiming at protecting center nodes, security monitoring can control the information 
sharing and spreading channels to prevent the rumor from spreading extensively. 

5.1 Community Structure 

As a popular spot in network research, community discovery and division is an  
important research field of complex networks. With the in-depth study of the network, 
community structure [15-17], the common nature of many real networks was discov-
ered. The entire network is composed of many communities, which are the collections 
of the nodes in the network. Nodes contact closely in a collection, while less connec-
tions between different collections. A community structure is showed in Fig. 3. 

Community structure, generally including many categories, groups, and models, 
like the connections in the interpersonal networks, is a manifestation of the modulari-
zation and heterogeneity of the network.. In-depth study of the community structure is 
of great importance to analyze the structure and characteristics of the network. Com-
munity structure may help improve search performance and accuracy. In this paper, 
we study the community structure of the network and partition the network based on 
the data field theory and topology potential algorithm. 
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Fig. 3. A community structure map 

5.2 Data Field 

Field is the distribution of an object in space, which expressed by spatial position 
function. Data field [18], proposed based on the physics field theory, is a virtual space 
to describe and calculate the effect of the data on the entire number field. 

Ω is an n-dimensional space, with the data objects , where is 

the i-th ( ) dimensional coordinate of representing the similarity of  

and other data. Ω is a space of number field, and  represent the field source in Ω. 

The interaction effect of  formed the data field. Li et al. [19] proposed that every 

data element can be considered as a particle with unit mass, thus every data element 
produces an applied field and has applied force for all other data elements in the 
space, where we determine a data field. The properties of data field are as follows: 

• Independence: every data element is not influenced by other elements while radiat-
ing energy.  

• Superposition: the energy of one object, which is radiated by several elements, is 
the sum of the independent radiating energy of each element. 

Elements of the data field influence each other based on potential function. The 
closer distances between elements represents stronger impacts. The rules to select 
potential function are as follows. 

For any square integrable function, the following must hold: 

                     (4) 

where  is a monotone decreasing function of , which is a distance 

function between x and y. 

1 2{ , ,... }nD x x x= 1x

1 i n≤ ≤ D id

ix
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( , ) ( ) ( ) 0x yf x y g x g y d d ≥
( , )f x y ( , )d x y



 Rumor Spreading and Security Monitoring in Complex Networks 55 

Generally, we choose potential function in the form of the Gaussian potential func-
tion: , where  is a factor, and  is the Euclidean space distance 

of x and y. 

5.3 Topology Potential 

Li et al. [19] proposed topology potential based on data field theory. Suppose that 
every node in the logical space produces an applied field, each node will be affected 
by other nodes, while the affection is related to the nodes’ logical distance. The topol-
ogy location of the node, equivalent to the node’s potential, which is called topology 
potential, indicates the ability to influence its neighbor nodes. Topology potential 
theory has been applied in nodes permutation, community partition, community 
member discovery, and so on. 

The network is expressed as , where  is the set of 

nodes, is the set of edges, and  is the number of the edges. The 

interaction effect of the nodes can be indicated as:  

                                (5) 

where  denotes the impact of  to ,  denotes the quality of 

,  denotes the shortest distance between  and , and impact factor  

reflects the influence area of each node. 

As  is influenced by every node in the network, the topology potential can be 

indicated as: 

                                (6) 

Regardless of the difference of the inherent property of nodes, we  
assume , and simplify the formula as: 

                                     (7) 

For a given , the influence area of every node is approximately limited in 
hops. When the distance of nodes is greater than the influence area, the 

influence between the nodes will rapidly decay to zero. 
The topology potential is based on ’s value. 
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(a) : There is no influence between nodes, thus the topology potential 

is . 

(b) : Every node has impact only on its neighbor nodes, the  

topology potential is defined as: 

                           (8) 

(c) : The affecting area is l, the topology potential is: 

                         (9) 

where  is the number of nodes located in ’s l-hop range. 

5.4 Community Partition Based on Topological Potential 

The network is , where  is the set of nodes, 

is the set of edges, and  is the number of the edges. For , if v is not a 

local maximum potential node, v either belongs to a community, which is called an inter-
nal node, or is attracted by several communities simultaneously, named a boundary node. 

The steps of community partition algorithm based on topology potential are as  
follows: 

(a) Establish the adjacency matrix  based on the topology structure of the net-

work. Assign  as 1 if  and  is connected or  otherwise. 

(b) Calculate each node’s degree. 
(c) Establish matrix , where  is the number of nodes satisfying that  

,where  is the distance between  and . 

(d) Calculate the optimal impact factor when the topology potential entropy is 
minimal. 

(e) Calculate each node’s topology potential based on  and the formula dis-
cussed in last section. 

(f) Search the local maximum potential nodes and determine the set of community 
representatives. 

(g) Partition the community according to the community representatives. 
(h) Output partitioned communities. 
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5.5 Optimize the Impact Factor  

We estimate the uncertainty of the network by the characteristic of topology potential 
entropy H, which is defined as follows. 

Given a network , where  is the set of nodes, 

is the set of edges, and  is the number of the edges. The topology 

potential of each node is , the topology potential entropy is  

indicated as: 

                              (10) 

where  is the normalization factor. 

As H is only related to one unknown parameter , we can optimize the impact  
factor  by minimize H. Fig. 4 shows a simple network and Fig. 5 shows the  
relationship between H and based on Fig. 4. 

 

Fig. 4. A simple network 

 

Fig. 5. Relationship between H and  
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Fig. 5 shows that the topology potential entropy approaches the maximum  

 while . With the increase of  between 0 and 
1.3930, H gradually decreases to the minimum . When , , 

H increase with the increase of . 
We used the optimal impact factor to calculate each node’s topology potential  

entropy, and the result is showed in Table 3. 

Table 3. Topology potential entropy of each node 

Node Topology potential entropy degree 

1 1.8591 1 

2 3.0464 2 

3 1.8519 1 

4 3.1737 3 

5 1.8519 1 

6 2.831 2 

7 1.9791 4 

8 3.5165 1 

9 1.9791 1 

10 1.9791 1 

From Table 3, we can observe that node  and node  are two maximum poten-

tial nodes, which are two center nodes. Therefore, we can partition this network into two 

communities. Node  is a boundary node, which is classified in node ’s communi-

ty, since the topology potential entropy of node  is greater than that of node . 

Thus, the two partitioned communities are  and . 

6 Conclusion 

In this paper, considering the hesitating state in rumor spreading, our SIFR rumor 
spreading model adds a new group, fence-sitter, to the classical SIR model. To obtain 
an effective rumor control strategy, we further analyze the key factors that influence 
the rumor spreading. With the social network analysis and complex networks theory, 
an algorithm has been proposed to partition the network group based on the center 
nodes defined by the topology potential entropy. Through calculating the topology 
potential entropy for each node in a network, it is easy to find the center nodes in 
every partitioned network. Therefore the monitoring procedure can be simplified only 
with the center nodes. 

max lH =
lg( ) lg10 2.3026n = ≈ 0σ = σ

min 2.2702H = 1.3930σ ≥
σ

4v 8v

6v 8v

8v 4v
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Abstract. Nowadays, together with the development of internet, online
social networks provide lots of benefits for human. People use social
networks for different purposes, such as: communicating, information
sharing, relations creating or for business purposes, and etc. However,
accompanying with benefits of social networks, users also must face the
security and privacy risks. These issues have recently paid much atten-
tion to. One of these issues is the user can penetrate and steal personal
information. The assailants can penetrate through agreeing their friend
requests. When confirming this friend request, the user unintentionally
discloses personal information. Especially, if the user stolen information
is an important person of a specific organization, losses are extremely
considerable. Promoted by this phenomenon, in this paper, we propose a
new solution to prevent and discover any penetration for a specific user
in an organization. First of all, we propose a new model which is called as
safety community model in order to protect everybody in the organiza-
tion. We build a target function orienting to the safety for everybody in
the organization. After that, we have designed an effective algorithm to
discover the penetration of unsafe factors for specific users in the organi-
zation. Tests in social networks are actually implemented, and the result
shows that our model can prevent the penetration of outside objects.

Keywords: Infiltration · Social networks · Security · Privacy · Safety
community

1 Introduction

Together with the fast development of Online Social Networks (OSNs) in recent
years, OSNs makes human lives become more favorable, the user can communi-
cate with each other at any geographic distance. Billions of people in the world
use all social networks each day[1]. On average, each person uses 7 hours and
45 minutes each month on Facebook1[3]; 32 millions of like and comment turns

1 https://www.facebook.com
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each day[2]. The user uses social networks for many different purposes: main-
taining connection with their friends and families, for business purposes, creating
complicated relations or even creating romantic relations. Unfortunately, accom-
panying with benefits of OSNs, the user must face lots of risks on security and
safety on OSNs. One of them is the assailant to penetrate and steal personal
information. The user can be stolen information by the assailant, such as: their
email address, their friends, their working places, and their organizations. In
2012, Bosman et al. [6] have designed a socialbots which can imitate activities
for actual user to collect personal data for defrauding purposes and strategies of
spam disseminating in big scale. In 2012, Yashar et al. [7] have introduced an
algorithm to collect information of officers in a detailed organization on social
network from community and then they can regenerate information on organi-
zation. In 2012, Yashar et al. [5] have used Socialbots to acquire information in
an organization on social network (OSNs). Socialboot has sent friend requests
to users who work in a specific organization in social networks to take valuable
information of organization.

Especially, in 2013, Yavial Yashar et al. [4] proposed a method which com-
bines all studies using Socialbot to penetrate into a specific user in a target
organization. They have tested on Facebook for three organizations. They pene-
trate a target user in an organization by make they feel confident through their
friends. Firstly, Socialbots finds friends of the target user and send friend request
to them. After confirmed by several their friends, Socialbot sends a friend request
to the target users. They show that it is easy to penetrate the target user and
the success rate of penetration is 50% and 70%, and they also comment that the
higher quantity of common friends confirming the friend request is, the higher
the penetration ability is. These results show that in fact the information leakage
ability of user is very high, the user should select more carefully friends on OSNs.
The penetration becomes more and more serious when the user attacked is an
important officer of organization, company. They have important information
on their organization or company, thus the attacker can use this information to
protest against them and cause losses for organizations or companies where they
work, these sequences can not be estimated.

Thanks to studies and analysis stated above, we can see that protecting users
against penetration is very urgent. Motivated by study of Elyashar in [4], we set a
reverse problem: how to detect a penetration for a specific user in an organization
or company? In this paper, we propose a solution for this problem, including two
tasks: Firstly, we give a new relationship-measure to evaluate the relation, and
also to identify the importance of relation between two users. Based on this
measure, we propose a new model which is called as Safety Community (SC) to
protect all users in an organization or company. SC is a safe area surrounding
all officers in organization, it only includes safe users and reliable relation. The
user in organization is recommended to communicate only with users in SC and
should be more careful about who do not belong to this model SC. Thereby,
we set Maximize the safety for all users in organization(MSO)problem on SC
model with object function orienting to the safety for everybody in organization.
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We also design an effective algorithm for MSO problem and used SC model to
prevent the infiltration. Secondly, detecting the penetration of factors which are
unsafe for a user in organization. We introduce an solution to detecting the
penetration. In this paper, we proposed a solution for preventing and detection
infiltration under SC model. Our main contributions are summarized, as follows:

– We introduce a new concept of measure called relationship- measure to quan-
tify a relation, and also to identify the importance between two users. We
analyze the meaning of the new measure and compare with the previous.
Consequently, we propose a SC model to protect all users in an organization.
We formulate the Maximizing for all user in Organization (MSO) problem
on SC model with the object function oriented to the safety of all users in
this organization.

– We design an effective algorithm for MSO problem and given a solution to
use the SC model for the purpose of preventing and detecting the infiltration.

– We conduct experiments on real social and achieve really impressive result.
We show that SC model prevent the infiltration successfully for organizations
of different sizes under various OSNs.

The rest of paper is organized as follows. In Section 2, we introduce the graph
model and notations which will be user throughout in the paper and also provide
a specific description on SC model. Section 3, we formulate MSO problem and
give a greedy algorithm for MSO. In section 4, we present a solution for prevent
and detecting the infiltration. The experiment results on real-social networks are
shown in section 5. Finally, section 6 concludes the paper.

2 Model and Problem Definition

2.1 Network Model

In this paper a social network be represented by a direct and weight graph
G = (V,E,w) with V is the set of n network users (or nodes), E is the set of m
directed relationships (or edges), wuv is the weight function of edges (u, v) which
representing the communication frequency. A set U ⊂ V , U = {u1, u2, ., uk} is
representing all users in an organization in which we need to protect and k is
the cardinality of U . Without loss of generality, we assume that all weights of
edges are normalized, i.e

∑

(u,v)∈E

wuv = 1 and wuv ≥ 0.

2.2 Relationship-Measure

In order to build SC model, firstly we determine a safety relationship between two
users. In fact, sometimes we must identify relations (or familiar level) between
two users on OSNs.

It is so important, because we can identify their impacts, the interaction
between them and also network structure. About identifying the relation between
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two users, Leskovec et al. [11] comment that your friends in social networks are
highly likely to become their friends. Fire et al. [8] introduce a relationship
measure which is called as friend-measure. This measure shows that the more
connections between neighboring countries of two users, the higher the prob-
ability of connecting between two users is. However, this measure only uses
in undirected and weighted graph and only identifies relations through mutual
friends. In fact, two users can affect each other by word of mouth or peer-pressure
through intermediate users between these users.

Therefore, we can evaluate the relation between two users through their inter-
mediate users. Note that, in order to evaluate the relation between two users,
we must evaluate this relation in all relations that they have participated. For
example, in order to identify the familiar level between u and v, we must consider
the interactive frequencies wux, and also the rate of this relation among all their
friends, which means that wux and wvy with x and y are neighbors of u and v.

By the above analysis, we given the formula to evaluate relationship between
two users through t intermediaries users, as follows

ϕ(u, v, t) =

∑

|P (u,v)|=t

w(P (u, v))

∑

P∈Ptotal(u,t)

w(P )
(1)

where P (u, v) is a path going from v to u (v and u are excluded) of length
|P (u, v)| = t, Ptotal(u, t) is a path going from u to x (x and u are excluded) of
length t, x is any user in social network which from u can come to through t

intermediate users, Ptotal(u, t) does not contain a cycle, w(P (u, v)) =
∏

(a,b)∈P

wab

is the total weight of path P (u, v). However, the formula (1) only reflects the
relation correlative to the direction from u to v through t intermediate users,
and then to v. To reflect relations between two users in two directions, we define
according to the formula, as follows:

g(u, v, t) = ϕ(u, v, t) + ϕ(v, u, t) (2)

Finally, we identify relationship − measure(u, v) between two users through T0

intermediate users, in which T0 is a predefined parameter:

relationship − mesure(u, v, T0) = Φ(u, v, T0) =
T0∑

t=0

g(u, v, t) (3)

The meaning of formula (3) allows identifying the relation between users bas-
ing on the evaluation of their relation. In large-scaled OSNs, information on edges
between users is frequently lacking. Information is usually lost during the process
of information retrieval. By using this measure, we can enrich (increase necessary
information) of network by calculating the connection between users indirectly.
Thanks to this measure, we also broaden the idea of Leskovec and colleagues;
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it implies that friends of friends through intermediate users have high probabil-
ity of becoming friends. The meaning of the formula (3) allows identifying the
relationship between users based on their interest together and all the relation-
ships that they have joined. Information is usually lost during the process of
retrieval. By using this measure, we can enrich (increase necessary information)
of network by calculating the connection between users indirectly. Thanks to this
measure, we also broaden the idea of Leskovec et al. [11], it implies that friends
of friends through intermediate users have high probability of becoming friends.
Now, we use this relationship measure to identify a reliable or safe relationship
between two users by using a safe threshold. If relationship−measure(u, v) ≥ θ,
the relationship between u and v is safe. If not, it is unsafe. Note that, accord-
ing to this measure, the relation between two users u and v is safe, even when
(u, v) is not any edge of graph G. It is safe to evaluate the relationship based
on relationship−measure, because of reasons, as follows: First of all, this eval-
uation we can based on a safety threshold for any pairs of nodes u and v in
graph G. Secondly, this evaluation is safe by using relationship−measure(u, v)
to be against the penetration to a user X in an organization by sending a friend
request to mutual friends of X. When we use relationship − measure(u, v) to
consider sending a friend request to X with parameter T0 ≥ 2, we will restrict
the penetration. In this case, we will consider the relationship between S and
X through T0 intermediate people, thus it is possible to avoid making friends
through mutual friends of X (or T0 = 1).

2.3 SC Model

In our model, we instruct a Safety Community model based in an important fac-
tor which is relationship-measure. Almost all studies on discovering community
structure base on maximizing modularity [9] and based on and density function
in [10]. However, in this paper, we instruct a community model based on safety
relationship between users and orienting to the safety of all users in organization
that we should protect. Safety Communication model of set U = {u1, u2, .., uk}
with |U | = k on the graph G = (V,E,w) denote GSC = (V SC , ESC , wSC , θ, T0)
where θ, T0 are predefined parameters. V SC , ESC , wSC be defined by incremen-
tal method as follows:

1. Start : V SC = U . It’s mean a initially safety community include all users in
the organization.

2. Incremental users and edges: From each vertex u ∈ V SC , for each vertex
v ∈ V \ V SC , if relationship − measure(u, v) ≥ θ then: add v into V SC ,
edge (u, v) into ESC with wSC

uv = reltionship−measure(u, v). Continue this
until no more vertex can be add into V SC .

Edges ofGSC are safety relationships and it is difficult for Socialbots [4] to
achieve it. Note that, edge (u, v) of GSC can belong to G because relationship-
measure can be estimated to enrich the network structure. By the incremental
method, each user has a safety relationship with user in GSC which will be added.



Preventing and Detecting Infiltration on Online Social Networks 65

However, there is a question how to add user with the maximal relationship-
measure for all users in GSC . Based on this idea, we build a problem of maxi-
mizing safety for all users in organization MSO in the following part.

2.4 Problem Definition

In SC model exits users who have safe relations for a specific user (called as X) in
organization and we can not identify their safety for other people in organization.
On the other hand, it is a safety which is local, partial and not comprehensive
for everybody. Socialbots (S) proposed in [4] can penetrate into X by creating a
safe relationship X (through T0 intermediate users) and then they can penetrate
into the safety community. This work can be implemented easily when S has
selected people in organization with the fewest number of friends and attack. To
evaluate the safety of user v in SC model but this user does not belong to the
organization which should be protected (i.e v ∈ VSC \ U), we identify the safety
of v for U by the following formula:

F (v) =
∑

ui∈U

Φ(v, ui, T0) (4)

On the other hand, a user v is the trust for organization, he must have all trust
of everybody in this organization and vice versa. In reality, ensuring the safety
of everybody is very important, we introduce a objective function to ensure the
safety for all users in set U as follows:

H(GSC) =
∑

vk∈V SC\U
F (vi) =

∑

vk∈V SC\U

∑

uk∈U

Φ(vi, uk, T0) (5)

Now, we should maximize the safety for all users in V SC \ U for set U, which
means finding the maximum function H(G). In SC model, the number of edges
increases when we use the incremental method of edges and vertices into GSC

based on the safety relationship for GSC , indirectly into set U. Therefore, we
only have a number of user enough to create a safety relationship and we provide
a user threshold to restrict the number of vertices of GSC required.

Problem 1 (MSO Problem)
Given a direct and weight graph G = (V,E,w) underlying an OSN. A set
users U = {u1, u2, .., uk} is representing all users in organization which we
need protect. The MSO problem construct a Safety Community (SC) model
GSC = (V SC , ESC , wSC , θ, T0) of U on G with the goal of:

maximum: H(GSC) =
∑

vk∈V SC\U
F (vi) =

∑

vi∈V SC\U

∑

uk∈U

Φ(vi, uk, T0)

subject to: |V SC | ≤ Δ

In the next section, we analysis the complexity of MSO and give a solution to
MSO.
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3 Solution to MSO Problem

3.1 An Algorithm Calculate Relationship-Measure

By using the ideas of Rippling algorithm, we can calculate Ptotal(u, t + 1) by
using Ptotal(u, t). Called Qold set is all vertices which can came from u through
t intermediaries users. Now, we go through t + 1 intermediate users be call set
Qnew by using Qold. P (u, v) is selected from Ptotal(u, t) which have end vertex is
v, similarly for P (u, v, t+1), doing so until t = T0. Base on this idea, we proposed
an algorithm to calculate relationship−measure for each pair of vertices (u, v).

Algorithm 1. Relationship-measure
Data: G = (V, E, w), T0.
Result: Φ(u, v), ∀u, v ∈ V, (u �= v)
begin

P (u, v) ← 0 ;
Qold ← ∅; Qnew ← ∅;
for u ∈ V do

t ← 0;
Qnew ← u;
while t ≤ T0 do

Ptotal(u, t) ← 0; P (u, v) ← 0 ;
Qold ← Qnew; Qnew ← ∅;
for x ∈ Qold do

\\ Find all vertices can come to and calculate Ptoal(u, t), P (u, v)
for v ∈ V, wxv �= 0 do

Qnew ← Qnew ∪ {v};
if P (u, x) = 0 then

P (u, v) ← wxv ;

else
P (u, v) ← P (u, x).wxv ;

Ptotal(u, t) ← Ptotal(u, t) + P (u, v) ;

\\ calculate ϕ(u, v, t) of vertices which came to.
for v ∈ Qnew do

ϕ(u, v, t) =
P (u, v)

Ptotal(u, t)
;

\\ When calculated both directions
if ϕ(v, u, t) �= 0 then

g(u, v, t) = ϕ(u, v, t) + ϕ(v, u, t);
Φ(u, v) ← Φ(u, v) + g(u, v, t);

t ← t + 1 ;

Lema 1. The time of complexity for calculate the relationship − measure for
each pair vertices by Algorithm 1 is O(M0n

2).
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3.2 Greedy Algorithm for MSO Problem

We introduce a simple greedy algorithm in Algorithm 2, this algorithm for MSO
consists of two step.

Algorithm 2. Greedy Algorithm
Data: G = (V, E, w), Φ(u, v), θ, U = {u1, u2, . . . , uk}.
Result: GSC = (V SC , ESC , wSC).
begin

V SC ← U ; C ← ∅;
Initialize Candidate set:
for v ∈ V SC do

for x ∈ V \ V SC do
if Φ(v, x) ≥ θ then

C ← C ∪ {x};

Update Candidate set:
while |V SC | ≤ Δ or C = ∅ do

Chose u ∈ C such that F (u) = max
x∈C

F (x);

C ← C \ {u};
V SC ← V SC ∪ {u};
Add the edge (v, u) into ESC which from v can go to u in previous
wSC

vu = Φ(v, u);
for x ∈ V \ {C ∪ V SC} do

if Φ(u, x) ≥ θ then
C ← C ∪ {u};

Return GSC ;

Step 1. Initialize Candidate set The candidate C is a set of all users with
safety relationship with any user in U. And then, we select users with maximal
safety for all users in U. In this step, the set V SC of model SC including U, it is
obvious because U set of users who need be protected in SC model and C will
be updated in step 2.

Step 2. Update Candidate set : In this step, set C be updated, user in C with
maximizing safely for all users in U be calculated by (4) will be add into V SC

and remove from C and the vertices has safety relationship with each vertex in
V SC be add into C, this work is continued until satisfying: |V SC | = Δ.

Theorem 1. The Greedy algorithm has a time complexity O((k + Δ)n), where
n is number of vertices of G and k = |U |.

4 Solutions to Prevent and Detect Infiltration

In this section we use the solution of the problem MSO to perform the prevention
and detection of the infiltration of factors unsafe outside the SC model.
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Prevention: We use SC model to prevent from unsafe risks, especially Social-
bots proposed in [4]. When any user who does not belong to SC model sends
friend request to users belonging to organization, this request will be deleted. It
will prevent from penetration to steal information. Socialboot in [4] only pene-
trates when confirming the friend request of specific number of mutual friends
for target user, thus using relationship-measure will restrict this penetration.
Prevention also restrictions the subjective element of the user when Socialboot
deceived by the trust through numbers mutual friend.

Detecting: In case u is an important user in organization, we must con-
sider whether confirming friend requests more strictly. Suppose the set X =
{u1, u2, . . . , un} is a set of important users in U and the threshold of making
friends for them are correlative to: θ1, θ2, . . . , θn. When a user in SC model sends
a friend request to user ui ∈ X. We will calculate relationship−measure(S, ui),
if relationship−measure(S, ui) ≥ θi, the friend request is confirmed, if not, the
friend request is deleted. Although S belongs to SC, it is unfamiliar with u. In
this case, S wants to attach X through t (t ≥ 1) intermediate users, the com-
plication of this case is O(nt), in which n represents mutual friends of X and
intermediate users. It is difficult to implement because the complication is very
big, thus S sends too much friend requests.

5 Experimental

5.1 Datasets

We examine the performance of our proposed algorithm on difference real-world
OSNs, including: Facebook, Slashdot, Epinions with different size in Table 1.
For Facebook, we use the dataset includes users in New Orleans spanning from
September 2006 to January 2009 [12]. The data includes more than 63,000 users
connected by more than 1.5 million friendship links represents the interaction
frequency between the users and average node degree of 23.5. We calculate and
normalized the weight of each edge is proportional to the frequency of interac-
tion on the whole network. For Slashdot and Epinions, we used the dataset by
the approach of Leskovec [13] and Richardson [14]. For each Dataset: Slashdot,
Epinions we randomly assign weight of each edge respectively and normalized
them.

Table 1. Dataset

Datasets Nodes Edges Avg. Degree

Facebook 60,000 1,500,000 23.5
Slashdot 82,168 948,464 11.7
Epinions 75,879 508,837 6.7
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5.2 Experiment Results

In our experiment, firstly for each OSN, we select an organization which is a
group of users to have an intimate relation, in which the number of users is k.
And then, we use the method of Socialbot (S) [4] to implement attacks to spe-
cific users in each organization. Secondly, we construct and optimize SC model
for organizations with purpose of preventing attacks. If S does not belong to
SC, deleting any friend request of S to all users in organization, thus we should
only check whether S belongs to SC or not? We call organizations in Facebook,
Slanshdot, Epinions social networks correlatively to: U1, U2, U3, they are orga-
nizations which should be protected against penetration. In order to evaluate
results more complicatedly, we select organizations with different dimensions k
= 50, k = 100, k = 200 and k = 500. Selecting organizations with different
dimensions to evaluate impacts of users in organization through function F(x)
defined by (4), which affect results of building SC model.

We can see in experiments of Alyshar [4], their socialboot can penetrate suc-
cessfully the target user when they achieve a specific number of mutual friends.
Therefore, we suppose that each user in organization U has a threshold of friend
request confirming, it is defined as follows:

θi =
The number mutual friend need for acceptance of ui

the number of friends of ui

In detecting and optimizing SC model, we select parameters for this experiment,
they are: Number of intermediate users, limited number of users in SC model
correlatively to: T0 = 5, Δ = 10k. We use different safety thresholds θ for
each organization and organization size, because we believe that it depends on
structure and properties of each network.

Simulation of Socialbots’ attack: We implement to simulate attacks of Social-
bot S according to the method proposed in on datasets. In each organization,
we select at random 10 users to implement attacks and we create a Socialbot
to attack to them. To attack target users, S finds all of their friends to send
friend requests, and then S sends friend requests to target users. We choose
the size of the organization respectively k = 50, 100, 200, 500 to perform experi-
ments. Figure 1 reports results that we have reproduced this attack of S for each
organization with different size on data set. These results are also correlative to
results of Elyashar [4]. In general, the more S has mutual friends with target
user, the higher the probability of confirming friend request of target user. Our
results show that it is very easy to infiltrate to target user with high successfully
rate. Next, we suppose S has not penetrated to the target user, and we imple-
ment to construct SC model by algorithm 2 for each different organization, and
then we check whether S can belong to SC model for each organization or not?
If SC does not contain S, S is isolated and the friend request will be deleted.
Table 2 reports the results of SC model and protection capabilities of SC model
respectively with k = 50, 100, 200, 500. We tested in organizations of various
sizes from 50 to 500 to evaluate comprehensively when k change.
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k=50, Facebook k=50, Slashdot k=50, Epinions

k=100, Facebook k=100, Slashdot k=100, Epinions

k=200, Facebook k=200, Slashdot k=200, Epinions

k=500, Facebook k=500, Slashdot k=500, Epinions

Fig. 1. Results of Socialboot attack for each organization and in different sizes

SC model : SC model in each circumstance has different size (number of ver-
tices), it depends on the safety threshold. We introduce different safety thresh-
olds for each different OSNs and different size. When selecting organizations in
Facebook, its numbers of members are 50, 100 and 200, V SC always reaches
the maximal level Δ = 10k, because we select the threshold θ. However, it only
affects size of GSC not affect the protective and functionality of prevention of
GSC because G is optimized by algorithm 2. In addition, we see that with same
size of organizations, organizations in Facebook have GSC higher than other
networks, although we select the safety threshold θ always higher then other
networks. It shows the difference in size of SC model depends on structure of
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Table 2. The results construct SC model and prevention

Size of Org Organization θ Size of GSC S belong GSC

U1-Facebook 3.0 500 No
k=50 U2-Slashdot 2.7 306 No

U3-Epinions 2.5 245 No

U1-Facebook 2.98 1,000 No
k=100 U2-Slashdot 2.67 504 No

U3-Epinions 2.43 297 No

U1-Facebook 2.87 2,000 No
k=200 U2-Slashdot 2.52 1,210 No

U3-Epinions 2.21 949 No

U1-Facebook 2.3 3,266 No
k=500 U2-Slashdot 1.92 2,508 No

U3-Epinions 1.81 2,968 No

OSNs. The index which represents a network structure is average level of each
OSNs higher than size of correlative SC model.

The prevention of SC model : We see that S can not penetrate into GSC in
any circumstance, and our purpose and expectation are totally achieved. For
organizations with small scale of 50 to organizations which scales are 10 times
as high as. Although Socialbot sends friend requests to target users, but they
can penetrate into GSC . Especially, when size of this organization is k = 500 and
SC model has the number of members up to 3,266 in Facebook, 2508 in Slashdot
and 2.968 in Epinions, S can not become a member in this model. It proves that
relationship-measure introduced by us can evaluate the familiar level, and so
that it is possible to restrict the penetration of Socialboot.

6 Conclusion

In this paper, we study a solution to detect and prevent the penetration of
Socialbot which is proposed in [4]. We design a new measure to quantify the
familiar and belief level between two people. Especially, in order to prevent
from penetration, we build SC models and propose MSO problem to optimize
SC models. Our experiment on actual data sets show that SC model is able to
prevent impressively. In the future, we have a plan of researching this issue in
social networks with more suitable model? Whether we can find suitable solutions
or not?

Appendix

The proof of Lema 1

Proof. The first loop for contribute a factor n to the time complexity. For the
while loop, when t = 0, Qold = u. t = 1, Qold contain all friends of u, |Qold| = M ,
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where M representing number of friend of each user. t = 2, Qold contain friend of
friend of u thus, |Qold| = M2. Similarly, t = T0, Qold contain friend of all T0-th
intermediate users. Thus, this work implement lost 1 + M + M2 + ... + MT0 of
time complexity, where M t is presenting number of friend of t-th intermediate
users. We note that, the number of friend less than the number of vertices,
thus M0 = 1 + M + M2 + ... + MT0 << n. The two last for loop can be
done in n + M t step, because calculating of Qnew must visit all the vertices
in order to find the appropriate vertices and now |Qnew| = M t. The time of
complexity is O(n+M t) = O(n), due to M t << n. The total of time complexity
is O((1 + M + M2 + . . . + MT0)n.n) = O(M0n

2). ��

The proof of Theorem 1

Proof. In the Initialize Candidate step, it is easy to see that this step
contribute a factor kn to the time complexity, where k1 = |U |. In the Update
Candidate step, the while loop lost Δ of time complexity. The selection of user
u ∈ C has H(u) maximizing implement |C| of time complexity. The for loop
implement lost |V \ C| so the total of this step is O(Δ(|C| + |V \ C|)) =
O(Δ.|V |) = O(Δ.n) time complexity. Hence, the complexity of algorithm is
O(kn) + O(Δ.n) = O((k + Δ)n). ��
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Abstract. Many studies show that opinions formation displays multi-
ple patterns, from consensus to polarization. Under the framework of
the social influence network by Friedkin and Johnsen (1999) and based
on random walk on graph, we rigorously prove that for a social group
influence system, with static social influence structure, the group con-
sensus is almost a quite certain result. In addition, we prove the lower
bounds on the convergence time m for random walk Pm to be close to
its final average consensus (wisdom group decision making) state, given
an arbitrary initial opinions profile vector and one small positive error ε.
Although our explanations are purely based on mathematic deduction,
it shows that the latent social influence structure is the key factor for
the persistence of disagreement and formation of opinions convergence
or consensus in the real world social group.

Keywords: Social influence network theory · Random graph · Opinions
dynamics

1 Introduction

Originally from decentralized decision making, consensus problems have an
old history, such as the models introduced in DeGroot(1974)[1], Friedkin and
Johnsen (1999)[2] and Friedkin (2011)[3]. From social psychological point of
view, this line of research began with French’s formal theory of social power[4],
a simple model of collective opinion formation in a network of interpersonal
influencing social group. As a step forward, Friedkin presented the social influ-
ence network theory, which considered both cognitive and structural aspects,
and focused on the contributions of networks of interpersonal influence to the
formation of interpersonal agreements and group consensus.

Over the past few years, models of the convergence of opinion or consensus
problem in social systems have been the subjects of a considerable amount of
recent attention in the fields such as motion coordination of autonomous agents
[5,6], distributed computation in control theory [5,7,8], randomized consensus
algorithms [9,10], and sensor networks about data fusion problems [11]-[15].

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-21786-4 7



Consensus on Social Influence Network Model 75

Most of the growing interests in consensus problems (both algorithms and
practical applications) are based on probabilistic settings. This might be due
to the unpredictability of the environment where the communication between
agents occurs [9], and the random characteristics of influences or interactions
among agents in systems (man made or social systems).

Recently, the study of opinion dynamics has started to attract the atten-
tion of the control community, who with the bulk of motivation have developed
about methods to approximate and stabilize consensus, synchronization, and
other coherent states. However, comparing with many man-made or engineering
systems, social systems do not typically exhibit a consensus of opinions, but
rather a persistence of disagreement, i.e. polarization patterns. The ubiquitous
group polarization phenomena can be observed from political election to carbon
dioxide emissions debate[16]. In a social system, the difficulty in arriving at a
collective consensus state roots in the fact that the process of opinion forma-
tion can rarely be reduced to accepting or rejecting the consensus of others, as
exemplified by Arrow’s dilemma of social choice [17]. On the contrary, in most
cases individuals construct their options in a complex interpersonal environment
or with their prior identities (e.g. prior beliefs, prejudices and social identities
etc.), their views are often in a state of disagreement or not easily changed, due
to opinion-dependent limitations in the network connectivity and obstinacy of
the agents as pointed in Ref. [18]. This phenomenon shows the complexities of
social control in social economic systems.1

Consensus as one of the important and regular group opinions dynamic pat-
tern is generally observed in a relative smaller group discussion and barging
process. Friedkin and Johnsen’s social influence network theory emphasizes that
the interpersonal influence social structure (or social influence matrix) is the
underling precondition for the group consensus or opinion convergence. In that
model, the initial social influence structure of group of actors is assumed to be
fixed during the entire process of opinion formation. However, with the evolution
of time stamp, considering both stubborn and susceptible effects, the interper-
sonal influence structure can be regarded as a dynamic recursive process. For
this reason, the interpersonal influence structure in their model is also dynamic,
as described in Section 2.

From social influence matrix point of view, in large scale group opinions
dynamic processes, the group belief is difficult to reach convergence, let alone
consensus state, since social influence structures are generally unconnected, not
to mention the social impact relations can be positive, negative or neutral. For
example, on-line highlighted discussion, political or social hot spot debates often
display polarization patterns [19].

In this paper, our interests concentrate on the precondition for consensus
formation in a social group based on Friedkin’s model. From interpersonal net-
work structure point of view, our investigation presents the conditions for the

1 In classical sociological field, social control refers to the occurrence and effective-
ness of ongoing efforts in a group to formulate, agree upon and implement collective
courses of action.
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formation of group opinions convergence and consensus. We investigate the opin-
ions convergence phenomenon over a group of N individuals with a random walk
social influence structure, and for any given initial opinions distribution, i.e. the
opinions evolution problem with a (time-variant) linear dynamic model driven
by random matrices. Our analytic proof provides strict mathematic explanations
for the deterministic characterization of the ergodicity, which can be used for
studying the consensus over random graphs and the formation of opinion par-
ties. The proof procedures are self-contained and based on ergodic theorem of
Markov chain and eigenvalues of random graph, as introduced in Ref.[20].

2 Problem Formulation and Terminology

Social influence network theory presents a mathematical formalization of the
social process of opinions changes that unfold in a social network of interpersonal
influences. The spread of influence among individuals in a social network can be
naturally modeled under a probabilistic framework, here, we briefly describe the
classical Friedkin and Johnsen’s model to illustrate how the opinion dynamics
arise in the context of social networks.

Let W = [wij ] is a N × N row random matrix of interpersonal influence,
i.e. for each i, wij denotes for the individual j’s social influence to i,

∑
j wij = 1.

A = diag(a1, a2, ..., aN ) is a N ×N diagonal matrix of individuals susceptibilities
to interpersonal influence on the opinion. In a group of N persons, with the initial
N ×1 opinions vector y(1), the updating opinions vector y(t) in the interpersonal
opinions influence system is described by Equ.(1),

y(t+1) = AWy(t) + (I − A)y(1) (1)

Definition 1. The system (1) reaches the convergence state if, for any initial
opinions vector y(1), it holds that lim

t→∞ y(t) = y∗.

Definition 2. The system (1) reaches consensus state if, for any initial opinions
vector y(1), and each 1 ≤ i, j ≤ N , it holds that lim

t→∞ |y(t)
i − y

(t)
j | = 0, where |.|

is the symbol of the absolute value. This means that, as a result of the social
influence process, in the limit they have the same belief on the subject.

As a consequence of system (1), the opinion profile at time t ∈ Z ≥ 0 is equal
to

y(t+1) = Ŵ ty(1), (2)

where Ŵ t = (AW )t + (Σt−1
k=0(AW )k)(I − A) is the reduced-form coefficients

matrix, discribing the total or net interpersonal effects that transform the ini-
tial opinions into equilibrium opinions, and for any entry ŵt

ij in Ŵ t, satisfies
0 ≤ ŵt

ij ≤ 1,
∑

j ŵt
ij = 1. According to Def.1, under suitable conditions, when
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t → +∞ if I −AW is nonsingular, the system (1) arrives at convergence equilib-
rium opinions profile y∗, where y∗ = lim

t→∞ y(t) = (I − AW )−1(I − A)y(1). When
t → +∞, we have

lim
t→∞ Ŵ t = lim

t→∞{(AW )t +
t−1∑

k=0

(AW )k(I − A)} = (I − AW )−1(I − A) = V. (3)

Given large enough time stamp t, and a sufficiently small positive real number
ε, V can be approximated by Ŵ t. Furthermore, according to the approximation
error ||Ŵ t − V || ≤ ε (where ||.|| denotes the matrix norm), we can obtain the
time stamp’s upper bound and lower bound as ln(||V || − ε)/ln(||Ŵ ||) ≤ t ≤
ln(||V || + ε)/ln(||Ŵ ||), where ||Ŵ || = ||AW + I − A||.

Followed the same lines of the convergence results by Ishii and Tempo (2010)
[21], and Golub and Jackson (2010) [22], by showing the ergodicity property,
Frasca, et al.(2013) proved the convergence result of system (1)[18]. Touri and
Nedic (2011) studied the ergodicity and consensus problem with a linear discrete-
time dynamic model driven by stochastic matrices [23].

It should be noted according to Def.1, that equilibrium opinions may settle on
the mean of group members’ initial opinions, a compromise opinion that differs
from the initial ones, or altered opinions that do not form a consensus. When
consensus is formed in system (1), i.e. as t → +∞, Ŵ t will have the form of a
stratification of individual contributions as following,

Ŵ t =

⎡

⎢
⎢
⎢
⎣

ŵt
11 ŵt

22 ... ŵt
NN

ŵt
11 ŵt

22 ... ŵt
NN

...
...

...
...

ŵt
11 ŵt

22 ... ŵt
NN

⎤

⎥
⎥
⎥
⎦

,

which suggests that the initial opinion of each individual makes a particular
relative contribution to the emergent consensus.

3 Random Walk on Weighted Graph

In this section, without the lose of the generality of system (1), we firstly intro-
duce the weighted adjacency random matrix, the weighted Laplacian and the
transition matrix of the random walk, then we present the conditions for a group
opinions consensus. Here we use the canonical graph symbol G(V,E) in which
V and E denote vertexes and edges respectively.

A weighted undirected graph G is defined as w : V × V −→ R such that
wij = wji, if {i, j} �∈ E(G) then wij = 0. In the context, the weighted degree
di of a vertex i is defined as di =

∑
j wij , vol(G) =

∑
i di denotes the volume

of the graph G. For a general weighted undirected graph G, the corresponding
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random walk is determined by transition probabilities pij = Pr(xt+1 = j|xt =
i) = wij/di, which are independent of i. Clearly, for each vertex i satisfies 0 ≤
pij ≤ 1,

∑
i pij = 1, in other words, transition matrix P is row stochastic matrix.

In addition if for any j ∈ V (G) satisfying
∑

j pij = 1, then transition matrix P
is named double stochastic matrix.

In this study, based on random walk on a graph, with the aim to prove the
Friedkin and Johnsen’s social influence system conclusions rigorously, we define
transition matrix P on graph Ŵ t with entries pij = Pr(xt+1 = j|xt = i) =
ŵt

ij/d̂t
i, where d̂t

i =
∑

j ŵt
ij , and matrix L as follows:

Lij =

⎧
⎪⎨

⎪⎩

d̂t
i − ŵt

ii if i = j,

−ŵt
ij if i and j are adjacent,

0 otherwise.
(4)

where ŵt
ij ∈ Ŵ t is defined in Equations (2) and (3). Let T denote the diagonal

matrix with the (i, i)-th entry having value d̂t
i as following

T =

⎡

⎢
⎢
⎢
⎢
⎣

d̂t
1 ... ... 0
0 d̂t

2 ... 0
...

...
...

...
0 ... ... d̂t

N

⎤

⎥
⎥
⎥
⎥
⎦

, (5)

we set T−1(i, i) = 0 for d̂t
i = 0, and if d̂t

i = 0 we say i is an isolated vertex. Then
the graph Ŵ t’s Laplacian matrix ζ is defined to be the form ζ = T−1/2LT−1/2,
and each entry in ζ is listed as following,

ζij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − ŵt
ii

d̂t
i

if i = j, and d̂t
i �= 0,

− ŵt
ij√

d̂t
i d̂

t
j

if i and j are adjacent,

0 otherwise.

(6)

Since ζ is symmetric, its eigenvalues are all real and non-negative. Let the
eigenvalues of ζ be {λi|i = 0 : N − 1} in increasing order of λi, such that
0 = λ0 ≤ λ1 ≤ ... ≤ λN−1. Furthermore, it is easy to check that transition
matrix P satisfies P = T−1/2(I − ζ)T 1/2, and 1TP = 1T , where 1 is unit
vector.

Definition 3. The random walk Pm is said to be irreducibility if for any i, j ∈
V , there exists some t such that pm

ij > 0. Definition 3 ensures the graph Pm is
strongly connected.

Definition 4. The random walk Pm is aperiodic if the greatest common divisor
of the lengths of its simple cycles is 1, i.e., gcd{m : pm

ii > 0} = 1 for any state i.
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Definition 5. The random matrix P is said to be ergodic if there is an unique
n × 1 stationary distribution vector π satisfying lim

m→∞ Pm(y(1))
′
= π, where ′ is

the transpose operation.

Definition 6. The random matrix P is convergent if lim
m→∞ Pm(y(1))

′
exists, for

any initial vectors beliefs y(1).

The social influence exchange among the N agents may be represented by a
graph G(V,Em) with the set Em of edges given by Em = {(i, j)|pm

ij > 0}. But
this condition is not sufficient to guarantee consensus of dynamic system (1) as
stated in Ref.[24]. This motivates the following stronger version Definition 7, as
addressed in Refs.[25,26].

Definition 7. (Bounded interconnectivity times). There is some B ≥ 1 such
that for each nodes pairs (i, j) ∈ E∞, agent j sends his/her social impact
to neighbor i at least once at every B consecutive time slots, i.e. the graph
(G(P ), Em

⋃
...

⋃
E(m+B−1)) is strongly connected. This condition is equivalent

to the requirement that there exists B ≥ 1 such that (i, j) ∈ Em

⋃
...

⋃
Em+B−1

for all (i, j) ∈ E∞ and m ≥ 0.

Definition 5 is the well-known result that aperiodicity is necessary and suffi-
cient for convergence in the case where P is strongly connected. In other words,
the necessary conditions for the ergodicity of P are (i) irreducibility, (ii) aperi-
odicity, i.e., Def.5 is equivalent to Defs. 3 and 4. If Def.5 holds, Def.6 satisfies.

If a Markov chain is irreducible and aperiodic, i.e. Def.3 (or Def.3’s stronger
version Def.7) and Def.4 are both satisfied, or equivalently Def.5 holds, then
P converges to its corresponding steady distribution. This conclusion is fairly
easily verified by adapting theorems on steady-state distributions of Markov
chains, such as the proof provided in Ref.[27]. From another alternative, we will
prove this result by spectrum graph theorem in the following section.

For above Defs.3-7, we summarize the associated results in the following
Theorem 1, then we emphasize on consensus result proof and converge time
derivation.

Theorem 1. If P is a random matrix, the following are equivalent:
(i)P is aperiodic and irreducible.
(ii)P is ergodic.
(iii) P is convergent, there is a unique left eigenvector ps of P corresponding to
eigenvalue 1 whose entries sum to 1 such that, for every y(1),
( lim
m→∞ Pm(y(1))

′
)i = π(i), where π(i) = (ps)

′
(y(1))

′
for every i.

Both (i) and (ii) in Theorem 1 are the well-known results. Next we focus
on the proof of (iii) based on spectral graph theory. Theorem 1 presents the
conditions for the formation of opinions convergence.
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4 The Convergence of Opinions Profile on Random
Graph

In this section, with the above Defs. 3,4 or 7, we prove that the convergence of
group opinions over general weighted and undirected random graph are almost
surely. In addition, we prove the lower bounds on the convergence time t for
random walk P t to be close to its stationary distribution, given an arbitrary
initial distribution and small positive error ε. We note that this proof is based
on spectrum graph theorem, which is different with Markov chains methods,
such as in [9,10,11,18].

Proof. In a random walk associated with a weighted connected graph G, the
transition matrix P satisfies 1TP = 1T , where 1 is the vector with all elements
are scalar 1. Therefore the stationary distribution is exactly π = 1T/vol(G).
We show that for any initial opinions profile distribution y(1), when m is
large enough, Pmy(1) converges to the stationary distribution π in the sense
of L2 or Euclidean norm. We write y(1)T−1/2 =

∑
i aiei, where ei denotes the

orthonormal eigenfunction associated with λi. Because e0 = 1T 1/2/
√

vol(G) and

< y(1),1 >= 1, ||.|| represents the L2 norm, we have a0 = <y(1)T −1/2,1T 1/2>
||1T 1/2|| =

1√
vol(G)

. We then have

||y(1)Pm − π|| = ||y(1)Pm − 1T/vol(G)|| = ||y(1)Pm − a0e0T
1/2||

= ||y(1)T−1/2(I − ζ)mT 1/2 − a0e0T
1/2|| = ||

∑

i�=0

(1 − λi)maieiT
1/2||

≤ (1 − λ
′
)m

maxj

√
d̂t

j

minj

√
d̂t

j

≤ e−mλ
′ maxj

√
d̂t

j

minj

√
d̂t

j

(7)

where

λ
′
=

{
λ1, if 1 − λ1 ≥ λN−1 − 1
2 − λN−1, else.

Given any ε > 0, for Equ.(7) we have

e−mλ
′ maxj

√
d̂t

j

minj

√
d̂t

j

≤ ε, (8)

then we have
maxj

√
d̂t
j

εminj

√
d̂t
j

≤ emλ
′
, so m ≥ 1

λ′ log(
maxj

√
d̂t
j

εminj

√
d̂t
j

).

With the symmetry of transition probability Pm, we easily check that
||y(1)Pm − π

′ || = ||(y(1)Pm − π
′
)

′ || = ||(y(1)Pm)
′ − π|| = ||(Pm)

′
(y(1))

′ − π|| =
||Pm(y(1))

′ − π||.
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With this we conclude that after m ≥ [ 1
λ′ log(

maxj

√
dj

εminj

√
dj

)] steps, the L2 dis-

tance between Pm(y(1))
′

and its stationary distribution π
′

is at most ε. Thus,
Pm converges to a matrix with all of whose rows are equal to the positive vec-
tor π

′
= (π1, π2, ..., πN )

′
, when a consensus is formed in Friedkin and Johnsen’s

model. Accordingly, we have ( lim
t→∞ y(t))i =

∑N
i=1 πiy

(1)
i almost surely with ε

approximating error corresponding to t updating steps.
In the herding example, there is consensus (of sorts), while which could

lead to the wrong outcome or misunderstandings (misdirections) for the whole
social group, such the “Mob phenomenon” of French revolution described by
Gustave LeBon. In this case, group consensus is equivalent to the unwis-
dom of crowds. If group consensus to be emerged at certain slot t∗, such that
y(t∗) = 1

N

∑N
i=1 y

(1)
j , for each j in a social group, we say that the society is wise,

i.e. each individual arrives the group average initial opinions profile.
One special case of the above theorem is when P is a double random matrix.

With this condition, the matrix has vector 1 as their common left eigenvec-
tor at all times, and therefore all the entries of the state vector converge to
(1/N)(1T y(1))1 = (1/N)

∑N
j=1 y

(1)
j 1, in other words, the mean of the initial N

individual’s opinion profile, with probability 1. This special case is addressed in
Ref.[28], we say this group is a wise social group, as introduced in Ref.[22].

5 Conclusions

In this study, from random walk aspects, we investigate the well-known Fried-
kin and Johnsen’s model. We define a weighted random walk P based on the
social influence matrix. If P satisfies ergodicity, i.e. aperiodic and irreducible,
Friedkin and Johnsen’s model converges to the average consensus of the initial
group opinions profile (the wise group decision making steady state) is almost
surely. Furthermore, we prove the lower bounds on the convergence time m for
random walk Pm to be close to its average consensus, given an arbitrary initial
distribution and a small positive error ε.
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Abstract. Given a social network, the Influence maximization (InfMax)
problem seeks a seed set of k people that maximize the expected influ-
ence for a viral marketing campaign. However, a solution for a particular
seed size k is often not enough to make informed choice regarding budget
and cost-effectiveness.

In this paper, we propose the computation of influence spectrum
(InfSpec), the maximum influence at each possible seed set’ sizes (i.e.
k = 1..n), thus provide optimal decision making for any range of budget
or influence requirements. As none of the existing methods for InfMax
are efficient enough for the task in large networks, we propose LISA, the
first linear time algorithm for InfSpec (and also InfMax). LISA runs in an
expected time O(ε−2(m + n)) and returns a (1 − 1/e − ε)-approximate
influence spectrum with high probability. Using statistical decision the-
ory, LISA has an asymptotic optimal running time (in addition to its
optimal approximation guarantee). In practice, LISA also surpasses the
state-of-the-art InfMax methods, taking less than 5 minutes to process a
network of 41.7 million nodes and 1.5 billions edges.

Keywords: Influence spectrum · Influence maximization · Approxima-
tion algorithm · Linear-time algorithm

1 Introduction

The Influence maximization (InfMax) problem seeks to find a seed set of k influ-
ential individuals in a social network that can (directly and indirectly) influence
the maximum number of people. It stands a fundamental problem in computa-
tional social networks with many applications in viral marketing, controlling epi-
demic disease, virus/worm propagation, and so on. Kempe et al. [1] was the first
to formulate InfMax as a combinatorial optimization problem on the two pioneer-
ing diffusion models, namely, Independent Cascade (IC) and Linear Threshold
(LT). Since InfMax is NP-hard, they provide a natural greedy algorithm that
yields (1 − 1/e − ε)-approximate solutions for any ε > 0. This celebrated work
c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 84–103, 2015.
DOI: 10.1007/978-3-319-21786-4 8
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has motivated a vast amount of work on InfMax in the past decade [2–8]. Never-
theless, the proposed methods cannot find satisfactory solutions in billion-edge
networks. They either scale poorly[2,4,5] or have no approximation guarantee
[3]. Even the state-of-the-art method in [8] scales poorly with the number of
seeds.

On top of the challenge to solve the InfMax problem in billion-size network,
we often need to compute seed sets for multiple sizes k in order to make informed
choice regarding budget and cost-effectiveness. Moreover, a viral campaign mar-
keting might go through multiple phases. The planning of the expenses for each
phase cannot be done properly without knowing the influence for multiple ranges
of the number of seeds. Going beyond InfMax, the authors in [2] optimize the
size-influence ratio (the expected number of influenced individuals per seed node)
or finding the min-seed set that can influence a large fraction of networks [9].
However, these approaches still give only one solution, that may not suite the
multi-objective nature of decision making processes.

In this paper, we propose the computation of influence spectrum (InfSpec),
the maximum influence (and the corresponding seed sets) for all possible seed
sizes from k = 1 up to n. The influence spectrum gives better insights for decision
making and resource planning in viral marketing campaigns. Given the influence
spectrum, we can find the solutions for not only InfMax but also cost-effective
seed set [2] and min-seed set selection [9] problems (with the best approximation
guarantees). As useful as it is, no one has ever considered computing InfSpec due
to the perception that it seems extremely computational expensive. The fact is
computing InfSpec implies solving of n InfMax instances with seed size as large
as n. Unfortunately, InfMax methods either do not scale well with large seed
sets [1,2,4,5] or resort to heuristics [3], i.e., obtained results could be arbitrarily
worse than the optimal ones. One might look into adapting some greedy methods
for InfMax for the task, e.g., solving InfMax with k = n and output the solutions
for all intermediate values of k = 1..(n − 1). When attempting to adapt the
state-of-the-art method for InfMax in [8] for InfSpec, we obtain a prohibitive
high time complexity O(n(m + n) log nε−2), rendering the algorithm unsuitable
for the task.

We introduce LISA the first linear-time approximation algorithm to compute
InfSpec in billion-size networks. Given arbitrarily small ε, δ > 0, our algorithm
has an expected running time O(ε−2 ln 2

δ (m + n)) and output (1 − 1
e − ε)-

approximate influence spectrum with high probability. Also, LISA requires only
an additional O(n) space. The proposed algorithm has both optimal approxi-
mation guarantees and optimal time-complexity (up to a constant factor) and
outperforms the state-of-the-art methods for InfMax in practice. In particular,
when ε = 0.2 and δ = 1/n, it takes about 5 minutes on a network with 41.7
million nodes and 1.5 billion edges. In comparison, it is 10 times faster than
TIM+ [8], the fastest known method with approximation guarantee for InfMax,
when k = 1000 and is several magnitudes of order faster than TIM+ for larger
k. Moreover, LISA provides significantly higher quality seed sets than TIM+’s
for large network. Our contributions are summarized as follows.
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– We introduce the problem of computing InfSpec that enables full spectrum
analysis of influence in networks.

– We propose LISA a linear-time approximation algorithm for InfSpec with a
factor (1−1/e−ε). LISA is also the first linear-time approximation algorithm
for InfMax and Min-Seed selection problems (with best possible approxima-
tion factors). Moreover, it outputs InfMax solutions for all seed set sizes at
the same time, effectively “killing all birds with one stone”.

– We provide theoretical analysis to show the superiority of LISA in terms of
time-complexity over existing methods (with approximation guarantees) for
InfMax.

– Using sequential analysis theory, we derive the optimal number of samples
needed to approximate influence of a queried seed set with a given level of
accuracy. Our method potentially sets new standards on simulating diffusion
processes in networks.

– We perform experiments on large networks up to billions of edges. As LISA
is easy to implement and requires no complicated parameter estimation or
tuning, it runs in orders of magnitude faster than the state-of-the-art meth-
ods for InfMax, including those without guarantees. Also, its solution quality
is very close to that of the (slow) greedy method and outperforms TIM+’s
for large-scale networks. Finally, in moderate and large networks, LISA uses
the least amount of memory among all the methods.

Table 1. Time complexity of InfMax methods (with approximation guarantee 1−1/e−ε
and probabilistic guarantee 1 − δ)

Name Time complexity Note

Greedy (Kempe et al.[1]) O(k3mn log n/ε2) δ = 1/n

RIS (Borgs et al. [10]) O(k(m + n) log2 n/ε3) δ = 1/n

TIM/TIM+ (Tang et al. [8]) O(k(m + n) log n/ε2) δ = 1/n

LISA (this paper) O((m + n) log n/ε2) δ = 1/n

LISA (this paper) O((m + n)ε−2 ln 2
δ
) for any δ > 0

Related Works. Kempe et al. [1] formulated the influence maximization prob-
lem as an optimization problem. They show the problem to be NP-complete and
devise an (1 − 1/e − ε) approximation algorithm. Since InfMax encodes MaxCov-
erage problem as a special case, InfMax cannot be approximated within a factor
(1 − 1

e + ε) [11] under a typical complexity assumption. Later, computing the
exact influence is shown to be #P-hard [3]. Leskovec et al. [2] study the influence
propagation in a different perspective in which they aim to find a set of nodes
in networks to detect the spread of virus as soon as possible. They improve the
simple greedy method with the lazy-forward heuristic (CELF), which is origi-
nally proposed to optimize submodular functions in [12], obtaining an (up to)
700-fold speed up.
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Several heuristics are developed to derive solutions in large networks. While
those heuristics are often faster in practice, they fail to retain the (1 − 1/e − ε)-
approximation guarantee and produce lower quality seed sets. Chen et al. [13]
obtain a speed up by using an influence estimation for the IC model. For the LT
model, Chen et al. [3] propose to use local directed acyclic graphs (LDAG) to
approximate the influence regions of nodes. In a complement direction, there are
recent works on learning the parameters of influence propagation models [14,15].
The influence maximization is also studied in other diffusion models including
the majority threshold model [16] or when both positive and negative influence
are considered [17,18] and when the propagation terminates after a predefined
time [16,19]. Recently, InfMax across multiple OSNs have been studied in [20,21].

Recently, Borgs et al. [10] makes a theoretical breakthrough and presents an
O(kl2(m + n) log2 n/ε3) time algorithm for InfMax under IC model. Their algo-
rithm (RIS) returns a (1−1/e−ε)-approximate solution with probability at least
1 − n−l. In practice, the proposed algorithm is, however, less than satisfactory
due to the rather large hidden constants. In a sequential work, Tang et al. [8]
reduce the running time to O((k + l)(m + n) log n/ε2) and show that their algo-
rithm is also very efficient in large networks with billions of edges. Nevertheless,
Tang’s algorithm scales poorly with the number of seeds k and the estimation
of the number of sampling times is both complicated and far from optimal.

For comparison, we summarize time-complexity of all algorithms that pro-
duce (1 − 1/e − ε)-approximation solution with probability 1 − 1/n in Table 1.
Our proposed algorithm LISA has the best time-complexity while compute all
n different seed set at the same time. Note that we follow [10] and [8] to set
δ = 1/nl. However, we argue that it is sufficient and better to set δ to be a small
constant, say δ = 10−6, in practice.

2 Model and Problem Definition

In this section, we formally define the InfSpec problem and present an overview
of Borgs et al. and Tang et al’s methods [8,10]. For simplicity, we focus on
Linear Threshold (LT) model, however, our solution can be extended easily to
Independent cascade (IC) model.

2.1 Problem Definition

We abstract a social network using a weighted graph G = (V,E,w) with |V | = n
nodes and |E| = m directed edges. Each edge (u, v) ∈ E is associated with a
weight w(u, v) ∈ [0, 1] and

∑
u∈V w(u, v) ≤ 1.

Linear Threshold (LT) model. Given a seed set S ⊆ V , the influence cascades
in G happen in rounds. At round 0, all nodes in S are activated and the others are
not activated. Each node v selects a random threshold λv uniformly at random
in range [0, 1]. In a round t ≥ 1, an inactivated node v becomes activated if∑

activated neighbor u w(u, v) ≥ λv. Once node v gets activated, it will remain
activated til the end. The process stops when no more nodes get activated.
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Let I(S) denote the expected number of activated nodes given the seed set S,
where the expectation is taken over all λv values from their uniform distribution.
We call I(S) the influence spread of S under the LT model.

The LT model is equivalent to the reachability in the live-edge graphs, defined
in [1]: Given a graph G = (V,E,w), for every v ∈ V , select at most one of its
incoming edges at random, such that the edge (u, v) is selected with probability
w(u, v), and no edge is selected with probability 1−∑

u w(u, v). Each live-graph
G generated from G is also called a sample graph. The influence spread of a seed
set S is same as the expected number of nodes reachable from S over all possible
sample graphs.

Definition 1 (Influence Maximization (InfMax)). Given k ≤ n, find a seed
set of size k that maximizes I(S).

Definition 2 (Influence Spectrum (InfSpec)). For all k = 1, 2, . . . , n, find
Ŝk of size k that maximizes I(Ŝk).

Since InfMax is an NP-hard problem, it follows that InfSpec is also an NP-
hard problem. Also, since we cannot approximate InfMax with a factor 1−1/e+ε
unless NP ⊆ DTIME(nlog log n) [1].

Greedy approach. The Greedy approach in [1], referred to as the Greedy, starts
with an empty seed set S = ∅, and iteratively adds to S a node u that leads to
the largest increase in the objective, i.e.,

u = arg max
v/∈S

(I(S ∪ {v}) − I(S))

The main bottle-neck is that we have to repeatedly compute I(S) to a reasonable
accuracy using Monte-Carlo method. To estimate I(S), we first generate a sample
graph g of G using the live-edge model: select for each node v ∈ G at most
one of its incoming edges at random, such that the edge (u, v) is selected with
probability w(u, v), and no edge is selected with probability 1 − ∑

u w(u, v).
We then measure the number of nodes reachable from S in g, say Rg(S). After
generating enough sample graphs g (typically ns = 10, 000 samples [1]), we can
take the average of Rg(S) as an estimation of I(S).

To a select a node u, we may have to perform up to n estimations of I(.) that
require generating ns samples each. Thus, Greedy with its O(k × ns × mn) time
complexity is computationally prohibitive for networks with millions of nodes.
Even the recently improved heuristics CELF and CELF++ [5] do not scale well
for large networks.

In next section, we will discuss a recent sampling strategy introduced by
Borgs et al. [10] for InfMaxand several challenges in using that approach to
obtain a linear-time algorithm for InfMax.

3 Estimating Influence via Reverse Influence Sampling

Borgs et al. [10] introduce a novel approach, called Reverse Influence Sampling
(RIS), to estimate the influence in Independent Cascade model. In summary, for
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Table 2. Table of Symbols

Notation Description

n, m #nodes, #links of graph G = (V, E), respectively

I(S) Influence Spread of seed set S ⊆ V . For v ∈ V , I(v) = I({v})

OPTk The maximum I(S) for any size-k node set S

S∗
k An optimal size-k seed node, i.e., I(S∗

k) = OPTk

mH #hyperedges in hypergraph H
degH(S), S ⊆ V #hyperedges incident at some node in S. Also, degH(v) for v ∈ V

c Sampling constant c = 2(e − 2) ≈ √
2

λL Complexity factor of LISA, λL = 8c
e

(1 − 1
e
)(e − 1 − ε

2
)ε−2 < 4.6ε−2

each node u uniformly chosen at random, instead of generating enough sample
graphs to estimate u’s influence, they travel in a reversed graph to infer which
nodes can influence u. Repeating that process multiple time will provide us with
information on the influence landscape of the network.

In this section, we present an adapted version of RIS for LT model. The RIS
procedure to generate a random hyperedge Ej ⊆ V in LT model is summarized
in Algorithm 1. After choosing a starting node u randomly, we attempt to select
an in-neighbor v of u, i.e. (v, u) is an edge of G, according to the edge weights.
Then we “move” to v and repeat, i.e. to continue the process with v replaced
by u. The procedure stops when we encounter a previously visited vertex or no
edge is selected. The hyperedge is then returned as the set of nodes visited along
the process.

Algorithm 1. Reverse Influence Sampling in LT model (RIS-LT)

Input: Weighted graph G = (V,E,w)
Output: A random hyperedge Ej ⊆ V .
Ej ← ∅
Pick a node v uniformly at random.
Repeat

Add v to Ej

Attempt to select an edge (u, v) using live-edge model
if edge (u, v) is selected then Set v ← u.

Until (v ∈ Ej) OR (no edge is selected)
Return Ej

The key insight into why random hyperedges generated via RIS can capture
the influence landscape is stated in the following lemma.
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Lemma 1. Given a fixed seed set S ⊆ V , for a random hyperedge Ej,

Pr[Ej ∩ S 
= ∅] =
I(S)
n

The proof is similar to that for IC model in [10] and is omitted.
Thus we can apply Monte-Carlo method to estimate the influence of a given

seed set S, i.e., to generate enough hyperedges (aka samples) and compute the
frequency that the hyperedges intersect with S. Even better, we only need to
generate the hyperedges once, and can reuse the hyperedges to approximate the
influence of as many seed sets as we want. This is a huge advantage comparing
to the traditional greedy [1], in which we have to perform an excessive number
of BFS to estimate nodes’ influence. All we need to figure out is the number of
sample times (i.e. number of hyperedges) needed to estimate nodes’ influence at
a desired level of accuracy.

3.1 Number of Samples (Hyperedges)

This section focuses on the number of samples (hyperedges) needed to achieve a
pre-determined performance guarantee. As the number of samples directly decide
the running time, it is critical to minimize the number of samples (keeping the
same performance guarantees). For example, Borgs et al.’s method requires at
least 48m+n log n

ε3OPTk
hyperedges to find a (1 − 1/e − ε)-approximate of InfMax with

probability at least 1 − 1/nl, while Tang et al.’s [8] needs only (8 + ε)k(m+n)
ε2OPTk

hyperedges to provide the same guarantees. Here OPTk = max|S|=k,S⊆V {I(S)},
the maximum influence of any size-k seed set. Hence, the Tang et al.’s is asymp-
totically 1

ε log n times faster than the Borgs et al’s.
Let Z be a random variable distributed in [0, 1] with mean E[Z] = μ and

variance σ2
Z . Let Z1, Z2, . . . , ZT be independently and identically distributed

(i.i.d.) realizations of Z. A Monte Carlo estimator for μZ is

μ̃ =
1
T

T∑

i=1

Zi.

m̃u is said to be an (ε, δ)-approximation of μ, for 0 < ε, δ ≤ 1, if

Pr[(1 − ε)μ ≤ μ̃ ≤ (1 + ε)μ] ≥ 1 − δ.

Let ρ(ε) = max{σ2, εμ}. The Generalized Zero-One Estimator Theorem in
[22] prove that if

T = 2c ln
2
δ

ρ(ε)
ε2μ2

(1)

then μ̃ = 1
T

∑T
i=1 Zi is an (ε, δ)-approximation of μ. Moreover, the number of

sampling time is (asymptotic) optimal (by a constant factor) [22].
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In this paper, we are interested in the random variable Z with realizations

Zj = min{|S ∩ Ej |, 1},

where S is a fixed seed set and Ej is a random hyperedge generated by Algorithm
1. From Lemma 1, Z is Bernouli random variable with mean μZ = I((S)/n and
variance σ2

Z = (1 − μZ)μZ .
A major obstacle in using Eq. (1) to derive the optimal number of samples

is that we do not know σ2
Z and μZ , the quantity we’re trying to estimate. Let

S∗
k = arg max|S|=k,S⊆V {I(S)}, and OPTk = I(S∗

k). If we can come up with a
close bound on OPTk, we will know the necessary number of hyperedges to
capture the influence landscape. After that, InfMax and InfSpec can be reduced
to the classic MaxCoverage problem [23] as shown in [8,10].

Thus, the key to the efficiency of the two previous studies in [8,10] are the
methods to probe and estimate the value of OPTk. With the better probing
and estimating techniques, TIM and TIM+ in [8] reduce the time-complexity
in [8] by a factor O(1/ε log n), making the first scalable method for InfMax in
billion-size networks. However, the number of sample times in [8] is still far from
optimal, especially for large seed sets. As a consequence, the two algorithms scale
poorly with large number of seeds.

4 Linear-Time Approximation Algorithm

In this section, we propose the first linear-time 1 that returns a (1 − 1/e − ε)-
approximate InfSpec with probability at least 1 − δ for any constant ε ∈ (0, 1/2]
and δ ∈ (0, 1).

Our algorithm, named LISA, is presented in Algorithm 2. It consists of 2
phases: 1) Phase-A: Generate a sufficient number of hyperedges using RIS (Algo-
rithm 1) and 2) Phase-B: Solve an instance of MaxCoverage using a greedy
approach. While the overall architecture is similar to those in [8,10], the key
difference is in how we determine the number of necessary hyperedges.

Borgs et al. [10] generates hyperedges until a pre-defined number of edges
explored by the algorithm and only provide a low successful probability 2/3.
While the authors suggest that their algorithm can be repeated multiple times
to boost up the success probability, this approach leads to very inefficient imple-
mentation. Tang et al. [8] estimates OPTk via the average cost of RIS, called
EPT. However, their approach still require generating as many as k times more
hyperedges than necessary. Differently, we propose a novel stopping rule: we
stop generating hyperedges once the maximum degree in the hypergraph reaches
a constant ΥL(ε, δ). Here, the degree of a node in the hypergraph is the number
of hyperedges that contain the node. Later we show our stopping rule guaran-
tees a ‘rich’ enough hypergraph to estimate nodes’ influence and small enough
hyperedges to make the algorithm run in linear-time.
1 In [8,10], δ = 1/nl. In that case, our algorithm has an O((m + n) log nε−2 ln 2

δ
)

time-complexity and is no longer linear. Nevertheless, it remains the lowest known
time-complexity approximation algorithm for InfMax.
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Algorithm 2. Linear-time Influence Spectrum Algorithm (LISA)

Input: Precision parameters ε ∈ (0, 1/2] and δ ∈ (0, 1), weighted graph G
Output: Influence spectrum Î = {̂i1, î2, . . . , în}.
1: ΥL ← 1 + λL ln 2

δ
2: H ← (V, E = ∅).

Phase A: Max-Degree Sampling
3: repeat
4: Generate Ej ← RIS − LT (G)
5: Add Ej to E .
6: until max

v∈V
degH(v) ≥ ΥL.

Phase B: Computing Influence Spectrum:
7: î0 ← 0
8: mH = |E| � Fixed parameter for the rest of the algorithm
9: for i = 1 to n do

10: v̂i ← arg max
v

degH(v)

11: îi ← îi−1 + degH(v)
mH

n
12: Remove v̂i and its incident hyperedges from H
13: return Î = {̂i1, î2, . . . , în} and Ŝ = {v̂1, v̂2, . . . , v̂n}

Our algorithm is easy to implement and requires no parameters rather than
ε and δ. In practice, it scales very well with billion-size networks and large seed
sets. It proves to be the fastest algorithm known for InfMax while maintaining
superior solution quality at the same time.

4.1 Approximation Guarantees

We use the following version of Chernoff-Hoeffding’s inequality with the proof
presented in the appendix.

Lemma 2. For any fixed T > 0,

Pr[μ̂ ≥ (1 + ε)μ] ≤ e
−T με2

2c

and
Pr[μ̂ ≤ (1 − ε)μ] ≤ e

−T με2

2c .

Theorem 1. Let Ŝk = {v̂1, v̂2, . . . , v̂k}, the set of the first k nodes selected by
LISA. For all k = 1..n,

I(Ŝk) ≥ (1 − 1
e

− ε)OPTk (2)

with probability at least 1 − δ. Also, for ε ≤ 1/4,

Pr[(1 − ε)I(Ŝk) ≤ îk ≤ (1 + ε)I(Ŝk)] > 1 − δ. (3)



Social Influence Spectrum with Guarantees: Computing More in Less Time 93

Proof. Proof of (2). To compute the influence spectrum, LISA employs the
greedy algorithm for the Max-Coverage problem in [23], selecting in each step
the node that is incident with the most number of hyperedges. Let S∗

k be an
optimal size-k seed set, i.e., I(S∗

k) = OPTk. Since the greedy algorithm has an
approximation ratio (1 − 1/e) [23] We have

degH(Sk) ≥ (1 − 1/e)MaxCover(k) ≥ (1 − 1/e) degH(S∗
k) (4)

where MaxCover(k) = max|S|=k,S⊂V degH(S). Let ôk = n × degH(S∗
k)/mH, an

unbiased estimator of I(S∗
k) = OPTk. By definition, we have

îk = n × degH(Sk)/mH ≥ (1 − 1
e
)n × degH(S∗

k)/mH = (1 − 1
e
)ôk (5)

Let η = εe
c+2−εe > 0, we will show in the rest of the proof that

Pr[̂ik ≥ (1 + η)I(Ŝk)] + Pr[ôk ≤ (1 − η)OPTk] < δ

or, equivalently,

Pr[I(Ŝk)] ≥ 1/(1 + η)̂ik AND ôk ≥ (1 − η)OPTk] > 1 − δ.

This will lead to

I(Ŝk) ≥ 1/(1 + η)̂ik ≥ (1 − 1
e
)(1 − η)ôk ≥ 1 − η

1 + η
(1 − 1

e
)OPTk (6)

= (1 − 1
e

− (1 − 1
e
)

2η

1 + η
)OPTk = (1 − 1

e
− ε)OPTk (7)

with probability at least 1 − δ.
We now show that Pr[̂ik ≥ (1 + η)I(Ŝk)] < δ/2. For each random hyperedge

Ej generated using reverse influence sampling, let Xj = min{|Ej ∩ Ŝk|, 1} be

Bernoulli random variables with mean μX = I(Ŝk)/n. Define T (η, δ) = degH(Ŝk)
(1+η)μX

,
we have

Pr[̂ik ≥ (1 + η)I(Ŝk)] = Pr[

∑mH
j=1 Xj

mH
≥ (1 + η)μX ] = Pr[T (η, δ) ≥ mH] (8)

=Pr[
T (η,δ)∑

j=1

Xj ≥ degH(Ŝk)] = Pr[

∑T (η,δ)
j=1 Xj

T (η, ε)
≥ (1 + η)μX ] (9)

Since degH(Ŝk) ≥ degH(v̂1) = max
v

degH(v) = ΥL, we have T (η, δ) ≥ ΥL

(1+η)μX
>

2c ln 2
δ η−2μ−1

X .Apply Lemma 2 with T (η, δ), we have

Pr[̂ik ≥ (1 + η)I(Ŝk)] = Pr[

∑T (η,δ)
j=1 Xj

T (η, δ)
≥ (1 + η)μX ] (10)

≤ e
−T (η,δ)μX η2

2c < e
−2c ln 2

δ
η−2μ

−1
X

μX η2

2c =
δ

2
(11)
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Similarly, we can show Pr[ôk ≤ (1 − η)OPTk] < δ/2 using the second half of
Lemma 2. This completes the proof of (2).

Proof of (3). From (10), Pr[̂ik ≥ (1 + η)I(Ŝk)] < δ/2. A similar proof to (10)
also yields Pr[̂ik ≤ (1 − η)I(Ŝk)] < δ/2. These two together lead to

Pr[̂ik ≥ (1 + η)I(Ŝk)] + Pr[̂ik ≤ (1 − η)OPTk] < δ/2 + δ/2 = δ

For ε ≤ 1/4, η = εe
c+2−εe < ε. Therefore

Pr[̂ik ≥ (1 + ε)I(Ŝk)] + Pr[̂ik ≤ (1 − ε)OPTk] (12)

< Pr[̂ik ≥ (1 + η)I(Ŝk)] + Pr[̂ik ≤ (1 − η)OPTk] < δ. (13)

This yields the second part in (3).

Time Complexity. Phase B of LISA can be implemented in a linear-time in
terms of the total size of the hyperedges. As we shall show later in the space
complexity section, the expected total size of the hyperedges is O(ΥLn). Thus
Phase has an expected time complexity O(ΥLn).

In detail, we store nodes in a list D of size max
v∈V

degH(v) ≤ mH in which

the Dt contains all nodes of degree t in H. Updating the degree of a node is
as simple as moving the node to the position in D corresponding with the new
degree. Thus updating node degree can be done in O(1). To find maximum
degree node, we maintain a variable Δ initialized as maxv∈V degH(v). Whenever
DΔ is empty, we keep decreasing Δ until reaching a non-empty DΔ or reaching
Δ = 0. Since the nodes’ degrees never increase, in the worst-case Δ will decrease
to 0 and maintaining Δ takes a maxv∈V degH(v) ≤ mH time. Therefore, the
time complexity of LISA depends mostly on the time complexity of Phase A.

We shall bound the time-complexity of Phase-A via the number of edges
examined. Keeping track of the maximum degree in the hypergraph is relatively
easy and can be done with little additional cost.

Lemma 3. The expected number of edges examined by LISA is at most
4.6 ln 2

δ ε−2m.

Proof. The proof consists of two parts 1) bound the expected number of hyper-
edges mH and 2) estimate the mean number of edges visited per reverse influence
sampling.

Number of hyperedes: Let v∗ = arg maxv∈V I(v), the most influential node.
Note that v∗ is not necessary the same with v̂1, selected by LISA. Define Yj =
|{v∗} ∩ Ej}—, a random variable with mean μY = I(v∗)/n.

Denote by Tmax(ΥL) and T ∗(ΥL) the random variables that correspond to
the numbers of sampled hyperedges until max degH(v) = ΥL and degH(v∗) = ΥL,
respectively. Clearly, Tmax(ΥL) = mH ≤ T ∗(ΥL), hence,

E[Tmax(ΥL)] ≤ E[T ∗(ΥL)].

Using Wald’s equation [24], and that E[T ∗(ΥL)] < ∞ we have

E[T ∗(ΥL)]μY = ΥL
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Therefore,

E[mH] = E[Tmax(ΥL)] ≤ E[T ∗(ΥL)] =
ΥL

μY
.

Average number of edges visited per reverse influence sampling : The reverse
influence sampling procedure picks a source vertex u uniformly at random. Then
for each vertex v, it will examine all in-neighbors of v with a probability I(v, u),
the probability that v can reach to u over all sample graphs of G (aka the
probability that v influences u). Thus the mean number of edges examined by
the procedure is

1
n

∑

u∈V

(
∑

v∈V

I(v, u)d−(v)) =
1
n

∑

v∈V

d−(v)
∑

u∈V

I(v, u) (14)

=
1
n

∑

v∈V

d−(v)I(v) ≤ 1
n

∑

v∈V

d−(v)I(v∗) =
m

n
I(v∗) (15)

Therefore, the expected number of edges examined by LISA is at most

m

n
I(v∗)

ΥL

μY
= mμY

ΥL

μY
= m(1 + λL ln

2
δ
) ≈ 4.6ε−2 ln

2
δ
m (16)

This yields the proof.

Theorem 2. LISA has an expected running time O(ln 2
δ ε−2(m + n)).

Proof. Since Phase A has a time complexity O(ΥLn) and Phase B has an expected
runntime O(ΥLm), it follows that the expected time complexity of LISA is
O(ΥL(m + n)) = O(ln 2

δ ε−2(m + n)).

Space Complexity. Besides an O(m + n) space to hold G, we show that on
average only an additional O(n) space is sufficient to hold the hyperedges. Thus,
LISA has an expected linear space complexity O(m + n). 2

Lemma 4. The expected additional space to store all the hyperedges is O(ΥLn).

Proof. From the proof of Lemma 3, the expected number of hyperedges is at
most ΥL/μY with μY = maxv∈V I(v)/n. The mean size of a hyperedge can be
computed as

1/n
∑

u∈V

∑

v∈V

I(v, u) = 1/n
∑

v∈V

I(v) ≤ nμY

Therefore, the expected value of the total sizes of all hyperedges is at most

ΥL

μY
× nμY = ΥLn.

This completes the proof.
2 Indeed there exists β > 0 so that the algorithm takes an O(m + bn) space with

exponentially small probability e−βb.
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4.2 InfMax

The InfMax problem can be solved by first running LISA and returning Ŝk =
{̂i1, î2, . . . , îk}. The approximation and running time follow directly.

Theorem 3. There exists a randomized algorithm that returns a (1 − 1/e − ε)-
approximate of the InfMax problem in an expected time O(ε−2 ln 2

δ (m + n)).

5 Efficient InfSpec Validation

For very large networks, many algorithms for InfMax do not use an adequate
number of samples, resulting in the inaccurate estimation of their seeds’ influ-
ence. For example, the algorithms in [1,3] use a fixed number of samples (typ-
ically 10,000 or 20,000) which is not sufficient for large networks or ones with
small edge weights. In [8], TIM and TIM+ opt for high error rate ε = 0.2 (in
Twitter) to reduce computational time, unfortunately this may lead to estima-
tion of seeds’ influence with up to 20% error rate.

In this section, we provide a fast and memory-efficient algorithm, called
EIVA, to estimate the influence of all n seed sets Ŝ1, Ŝ2, . . . , Ŝn where Ŝk =
{v̂1, v̂2, . . . , v̂k}. Here we assume v̂1, v̂2, . . . , v̂n are given as the output of LISA or
other algorithms for InfMax. While having the same time-complexity with LISA.
Moreover, EIVA do not store hyperedges but only a single array to store the val-
ues of îk, thus its space-complexity does not depend on the accuracy parameters
ε and δ.

Algorithm 3. Efficient Influence Spectrum Validation Algorithm (EIVA)

Input: Weighted graph G, seed nodes Ŝ = {v̂1, v̂2, . . . , v̂n} and ε, δ ∈ (0, 1)
Output: (ε, δ)-approximation of I(Ŝk), k = 1..n where Ŝk = {v̂1, v̂2, . . . , v̂k}.
1: ΥL ← 1 + λL ln 2

δ

2: T ← 0, ît ← 0,∀t = 0..n
3: repeat
4: Generate random hyperedge Ej ← RIS − LT (G).
5: tmin = arg mint{v̂t ∈ Ej}
6: îtmin

← îtmin
+ 1

7: T ← T + 1
8: until î1 ≥ ΥL.
9: for t = 1 to n do

10: ît ← ît−1 + ît × n/T
11:return Î = {̂i1, î2, . . . , în}

Specifically, EIVA, shown in Algorithm 3, repeatedly generates a hyperedge
Ej in each step. It then looks for the smallest index tmin that v̂t ∈ Ej . Observe
that all seed sets Ŝk, k ≥ tmin will cover hyperedge Ej . Instead of increasing the
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value of all îk, k ≥ tmin, EIVA only increases îk by one. Finally, the values of îk
will be aggregated at the end, lines 9 and 10. This smart update strategy reduces
the worst-case time-complexity per hyperedge from O(n) to O(1). Hence, we’ll
be able to compute all the influence of the seed sets much faster.

Lemma 5. EIVA (Algorithm 3) computes (ε, δ)-approximate for the influence
of all seed sets in time O(ε−2 ln 2

δ (m+n)) and only an θ(n) additional space
(exluding the space to store the graph).

6 Experiments

In this section, we evaluate the performance of LISA in four real-world social
networks. Notably, our algorithm can solve the problem in Twitter with 1.5
billion edges in only few minutes.

6.1 Experiment Settings

Table 3. Datasets’ Statistics

Datasets NetHEPT NetPHY DBLP Twitter
Nodes 15K 37K 655K 41.7M
Edges 59K 181K 2M 1.5G
Type undirected undirected undirected directed
Avg. degree 4.1 4.87 6.1 70.5

Datasets. We perform our experiments in four datasets: NetHEPT, NetPHY,
DBLP, and Twitter. The basic statistics of these networks are summarized in
Table 3. NetHEPT, NetPHY and DBLP are collaboration networks taken from
the “High Energy Physics - Theory”, “Physics” sections of arXiv.org and “Com-
puter Science Bibliography”. These undirected networks were frequently used
in previous works [3,25,26]. In the networks, nodes and edges represent authors
and co-authorship, respectively. Specially, the largest network is a large portion
of Twitter, crawled in July 2009 with 41.7 million nodes and 1.5 billion edges
[27]. s

Algorithms. We compare our LISA algorithm with with 3 state-of-the-art meth-
ods: 1) CELF++ [26], the fastest implementation of the greedy algorithm, 2)
Simpath [25], a high-quality solution that improves the greedy solution using
look-ahead technique, and 3) LDAG [3], a scalable heuristics (i.e., no approxi-
mation guarantee).

Metrics. For each algorithm, we measure 1) the spread of influence, i.e., the
expected number of influenced nodes eventually, 2) the running time, and 3) the
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Fig. 1. Spread of Influence (the higher the better)

peak memory consumption. Note that we only need to run LISA once to get the
metrics for all different k = 1..n, in contrast, we have to run the other algorithms
for each value of k. We terminate any algorithms that take more than 24 hours
to finish.

Parameters. We set ε = 0.1 and δ = 1/n for LISA and TIM+, unless otherwise
mentioned. For CELF++, we use the pruning threshold μ of 10−3. For LDAG,
we use the influence parameter θ = 1/320 to control the size of the local DAG
constructed for each node as recommended by the authors. For Simpath, we also
set the pruning threshold μ to 10−3 and look-ahead value l to 4 as suggested
in [25]. Finally, we revalidate the spread of influence of the outputed seed sets
using EIVA with very high accuracy level: ε = 0.1 and δ = 1/n3.

Weights Settings. We adopt the methods in [1] to calculate the influence
weights on edges. More precisely, we assign the weight on an edge (u, v) as
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Fig. 2. Running time

buv = A(u,v)
D(v) where A(u, v) is the number of actions both u and v perform, and

D(v) is the in-degree of node v, i.e., N(v) =
∑

u∈Nin(v) A(u, v).

Enviroment. Our code is written with C++ and compiled with GCC 4.7. All
our experiments are carried out using a Linux machine with a 3.4GHz Intel Xeon
CPU and 32GB memory of RAM.

6.2 Results

Solution Quality. The quality of the algorithms, measured as the expected
number of influenced nodes eventually and termed spread of influence are shown
in Figure 1. Our algorithm LISA shows the best quality solutions in all datasets.
It is better than both CELF++ and TIM+. Especially, only LISA and TIM+
can run the largest dataset Twitter and in that case LISA outperfoms TIM+ by
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Fig. 3. Memory usage

a large margin. LDAG, being a fast heuristic without performance guarantee,
perform poorly in comparison to the others.

Running Time. Fig. 2 shows the time taken by various algorithms against the
size of the seed set on the four datasets. Obviously, LISA, marked with red circles,
is the fastest of all. Across all the datasets, it outperforms the LDAG heuristic
that provides no performance guarantee and is up to 10 times faster than the
runner-up TIM+ with the same theoretical guarantees. For the Twitter dataset
which contains billions of edges, only TIM+ and LISA are scalable enough for
the task. LISA takes only 15 minutes to find all size-k seed sets and its parallel
version with 8 threads, denoted by LISA(8), does so in less than 5 minutes.

Memory Consumption. We show the memory usages of all the algorithms
in Fig. 3. Again, LISA consistently has the smallest footprint in temrs of the
memory. It uses even less memory than the LDAG heuristic. In comparison with



Social Influence Spectrum with Guarantees: Computing More in Less Time 101

TIM+, LISA uses up to ten times less memory TIM+. For the largest dataset
Twitter, only 23GB memory is consumed depsite that we did not try to optimize
the code for memory consumption.

Parallelization. The metrics for the (simple) parallelized versions of LISA are
shown in Figs. 2 and 3 under the names LISA(2), LISA(4), LISA(8). Here the num-
ber in the brackets is the number of threads used. The parallel utility decreases
when the number of threads increases. Nevertheless, we achive at least 50%
parallel utility in all cases. Also, we observe almost no increase in the memory
consumption with more threads. We anticipate the parallel utility will be much
greater if we carefully tweak LISA for parallelization.

7 Conclusion

We propose the computation of influence spectrum (InfSpec) to give better
insights for decision making and resource planning in viral marketing campaigns.
To compute InfSpec, we design LISA, the first linear time algorithm for InfSpec.
LISA runs in an expected time O(ε−2(m + n)) and returns a (1 − 1/e − ε)-
approximate influence spectrum with high probability. In practice, LISA also
surpasses the state-of-the-art InfMax methods, taking less than 5 minutes to
process a network of 40.6 million nodes and 1.5 billions edges. While the anal-
ysis of LISA is based on LT model, all the results also hold for IC model and
the generalized model that combine both LT and IC in [28]. In the future, we
will attempt to push the limit further to develop sublinear time approximation
algorithms for InfSpec and InfMax problems.

Appendix

Lemma 2. For any fixed T > 0,

Pr[μ̂ ≥ (1 + ε)μ]
Pr[μ̂ ≤ (1 − ε)μ]

}

≤ e
−T με2

2c .

Proof. Let Z be a distribution on points in the interval [0, 1] with mean μZ and
variance σZ and ρZ = max{σ2

Z , εμZ}. Define ξk =
∑k

i=1(Zi − μZ). According to
the lemma 4.6 in [22], for any β ≤ cρZ , we have

Pr[ξN/N ≥ β]
Pr[ξN/N ≤ −β]

}

≤ e
−Nβ2

2cρZ ≤ e
−N(εμZ )2

2cρZ ≤ e
−Nε2μZ

2c .

The last two steps hold since εμZ ≤ β ≤ cρZ and ρZ ≤ μZ .
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Abstract. Clustering is one fundamental task in network analysis.
A widely-used clustering method is k-means clustering, where clustering
is iteratively refined by minimizing the distance between each data point
and its cluster center. For k-means clustering, one key issue is initial-
ization, which heavily affects its accuracy and computational cost. This
issue is particularly critical when applying k-means clustering to graph
data where nodes are not embedded in a metric space. In this paper, we
propose to use diversified ranking method to initialize k-means cluster-
ing, i.e., finding a set of seed nodes. In diversified ranking, seed nodes
are figured out by considering their centrality and diversity in a unified
manner. With seed nodes as starting points, k-means clustering is used to
cluster nodes into groups. We apply the proposed method to detect com-
munities in synthetic network and real-world network. Results indicate
that the proposed method exhibits high effectiveness and efficiency.

Keywords: Clustering · Seed node · Diversified ranking · K-means

1 Introduction

In recent years we witnessed an explosive growth of interests on complex net-
work analysis [1–5]. Clustering is a fundamental task of network analysis, which
assigns nodes to communities, groups of nodes with relatively denser connections
within groups but sparser connections between them [6]. A widely-used cluster-
ing method is k-means clustering, which iteratively refines clustering starting
with a random initialization. Unfortunately, random initialization often results
in two problems, low clustering accuracy and high computational complexity,
especially for graph data without an explicit metric space. When being applied
to graph data, the initialization of k-means is generally completed via finding a
set of seed nodes [7,8].

Several efforts have been made to develop efficient methods that could deal
with the problem of initializing k-means clustering [9]. K-means++ [10] aims to
spread out seed nodes in the whole network without considering the centrality
of nodes. PageRank [11] selects the nodes with high centrality, but without con-
sidering whether these nodes are densely connected or not. To overcome these
c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 104–115, 2015.
DOI: 10.1007/978-3-319-21786-4 9
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problems, diversified ranking [12–18] is proposed to select a set of seed nodes
with both high centrality and high diversity. In addition, several methods inte-
grated ranking and clustering method to detect communities in several specific
networks [15,16]. However, few methods are effective at finding a high qual-
ity seed set to reduce the number of iterations and to improve the clustering
performance.

In order to improve the performance of k-means clustering on graph data, we
need to find a high-quality set of seed nodes, which has both high centrality and
diversity. In this paper, we propose a two-stage framework by integrating diversi-
fied ranking method with clustering method. In the first stage, we use diversified
ranking method to find a high-quality set of seed nodes. In the second stage, we
start from the seed set to find communities through iterative node adjustment
using k-means method. We implemented the proposed framework by employing
an improved GRASSHOPPER diversified ranking method in the first stage and a
state-of-the-art clustering method (i.e., k-means clustering) in the second stage.
This two-stage framework exhibits two potential benefits: 1) it circumvents the
shortage of random selection of seed nodes, balancing efficiency and accuracy via
efficient heuristic in the first stage and a principled optimization in the second
stage; 2) the two stages of the framework itself are independent, i.e., each stage
could be optimized independently. Thus, we can choose any diversified ranking
method to help our second stage clustering method improve its performance.
Taken together, this paper opens the door of community detection on graph to
integrate diversified ranking with clustering methods based on seed nodes.

2 Related Work

Diversified ranking on graph is proposed to find an explicit global order in a
graph. We use V to represent the node set of a graph G, W to represent the
adjacent matrix. Each element wij of W is the weight of the edge between node
i and j. For unweighed network, wij = 1 when there is an edge between node
i and j; otherwise wij = 0. Diversified ranking aims to find a node set S ⊆ V ,
so that nodes in S have both high centrality and diversity. Existing diversified
ranking methods on graph could be roughly classified into three categories [19]: 1)
diversified ranking based on maximizing marginal benefit; 2) diversified ranking
based on random walk with competition; 3) diversified ranking based on mutual
reinforcement between ranking and clustering.

Marginal Benefit Maximization. Zhai et al. proposed the Subtopic [20,21]
model to cover as much as possible the subtopics of a query. Diversified rank-
ing is used to exclude the similar subtopics from each other. For efficiency, Lin
et al. studied the property of the objective function of diversified ranking, e.g.,
Submodular [22]. Generally, the objective function satisfies the following three
requirements: submodularity, non-decreasing and f(∅) = 0. With these require-
ments, the optimization result f(S) using greedy strategy is no poorer than
(1 − 1

e ) of the optimal result f(S∗), i.e., f(S) ≥ (1 − 1
e )f(S∗). Li et al. argued

that the above diversified ranking methods use little topological information of
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the graph. Hence, they proposed the Expansion [18] method to include the node
whose neighbours cover the largest number of additional nodes of the network
into the seed set. Generally, diversified ranking is used in the methods to select
the important and dissimilar nodes as the top-k ranked nodes. Different similar
measurements correlate to different diversified ranking methods.

Random Walk With Competition. This line of methods has two typical
examples. The first is random walk based on node self-reinforcement, introducing
the mechanism of “rich-get-richer” to random walk. The transition probability
between nodes is dynamically changed during the process of random walk. The
more frequently the node is visited, the larger probability it will be visited in
the next iteration of random walk [13]. Eventually, the k richest nodes in the
network are taken as the top-k ranked nodes. The second is random walk with
absorbing state. This method turns the node with the largest expected number
of visits into sink state each time [17,23,24]. Eventually, the k sink nodes in the
network are the top-k ranked nodes. These methods can discover relatively good
results, but neither of them can explain the diversity of the top-k nodes.

Mutual Reinforcement Between Ranking and Clustering. Sun et al.
claimed that they integrated ranking and clustering together firstly in their work
RankClus [15] and NetClus [16]. They start from a random k-part community
partition and mapped each node to a k-dimensional mixture vector according
to the membership probability. Then, they use PageRank to identify the local
central nodes in each community and update node assignment. Ranking and
clustering are iteratively optimized. The target of these two methods is not to
find an optimal seed nodes set to improve the clustering method, and can only be
used on specific information networks [15]. Other methods such as LTR [25] and
LeaderRank [26] are also proposed to improve the quality of ranking algorithms.

To improve the performance of clustering on graph data, there are two main
problems: 1) node mapping; 2) seed nodes selection. Spectral clustering tech-
niques [27] make use of the spectrum (eigenvalues) of the similarity matrix of
the data to perform dimensionality reduction before clustering in fewer dimen-
sions. Generally, k eigenvectors for some k, are computed, and then another
algorithm (e.g. k-means clustering) is used to cluster points by their respective
k components in these eigenvectors. The node mapping problem can be solved
elegantly in this way. However, when faced large graphs spectral clustering have
ill-conditioned problem [28] and convergence problem. Liu et al. proposed a
community detection method using a dissimilarity-index-based k-means and a
diffusion-distance-based k-means [29]. However, the two methods only measure
the diversity of the nodes without considering their centrality. Other ranking
methods like RankClus [15] and NetClus [16] are proposed to integrate rank-
ing with clustering. The two methods can mutually reinforce both the ranking
and clustering performance through the full use of community information and
clustering-central information.
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3 The Proposed Method

In this paper we propose a two-stage framework as shown in Fig. 1. This frame-
work could be briefly described as follows:

1) The first stage considers both the centrality and diversity of the network
nodes to select a high-quality set of seed nodes.

2) The second stage employs a state-of-the-art clustering method, e.g., k-
means, starting from the seed nodes to assign each node to clusters.

Original network Diversified ranking nodes Communities

Diversified ranking Clustering

Fig. 1. (Color online) Two-stage framework for detecting communities. We take the
karate club network as an example to illustrate the process of the two-stage framework.
The seed nodes identified in the first stage is coloured as green. Communities are
differentiated from each other by color.

To implement the framework into an efficient method for detecting commu-
nities, two principles or rules are critical: 1) in the first stage, the diversified
ranking method should consider both the centrality and diversity of the nodes,
and find a high-quality set of seed nodes; 2) in the second stage, the clustering
methods should start from the seed set and iteratively cluster the nodes in k
groups. The first stage guarantees the effectiveness and efficiency of the second
stage. The second stage refines the clustering to an optimal solution.

The calculation framework of our method is shown in Fig. 2. We select k nodes
in the first stage as the initial cluster centers of the network. We map all nodes
to an n-dimensional vector using Google matrix used by Google’s PageRank
algorithm, where each dimension j of the vector −→vi represents the possibility
that node i can visit the corresponding node j in random walk, following

vij = λ ∗ Aij + (1 − λ) rj , (1)

where A represents the state transition matrix and r represents the PageRank
value of each node. In this case, each vector represents the link preference of the
corresponding node to the other nodes in the network. We can measure the
similarity between the nodes and cluster centers and assign the nodes to the
closest cluster represented by one seed node. The cluster centers will be updated
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iteratively until convergence. To guarantee the convergence of our method, we
set the damping factor λ = 0.85 to guarantee the detailed balance of the Markov
process in order to obtain a definite seed set. K-means clustering is employed in
the second stage to find the final clustering, using the seed nodes for initialization.

k seed nodes

Seed set
mapping

n nodes
Seed set 
link preference

n nodes 
link preference
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.
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mapping

Preference
matching

k communities 
structure

Fig. 2. (Color online) Implementation procedure of our method

3.1 The Improved GRASSHOPPER

GRASSHOPPER method is proposed by Zhu et al. [23]. In GRASSHOPPER, a
highly ranked item is a representative of a local group in this set. Once the node
is turned into absorbing state, it covers its neighbour nodes. GRASSHOPPER
requires three inputs: a graph W , a probability distribution r that encodes the
prior ranking, and a weight λ ∈ [0, 1]. The distribution r is the PageRank val-
ues under random walk. At each step the random walker moves to a neighbour
node with probability λ and (1 − λ) to a random state. P is the state transi-
tion matrix, P = λ ∗ P + (1 − λ) ∗ 1r�. The first node of the seed set is the
largest PageRank node found under the stationary distribution of random walk.
GRASSHOPPER turns the ranked items into absorbing states. Once a node is
turned into absorbing state, random walk will be absorbed and stay there. The
matrix P can written as

P =
[

IS 0
R Q

]
, (2)

where S is the set of nodes ranked so far. The selection of the next node is
different. They select the state with the largest expected number of visits as the
next item in GRASSHOPPER ranking.

v =
N�1

n − |S| , (3)
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where N is the fundamental matrix that gives the expected number of visits in
absorbing random walk, |S| is the size of seed set S, and n is the number of nodes
in the whole network. However, the expected number of visit cannot explain why
the seed set is diversified and sometimes include some redundant nodes. In this
paper, we consider both the expected number of visit and the expansion of a
node together. We introduce a parameter δ to balance the two parts, so that the
expected score matrix v

′
is

v
′
j = δ

∑
i N

�
ij 1

n − |S| + (1 − δ)
|Nb(S

⋃{j})| − |Nb(S)|
n

= δ

∑
i N

�
ij 1

n − |S| + (1 − δ)
|Nb({j})| − |Nb(S)|

n
,

(4)

where Nb(j) is the neighbour nodes of node j. In this paper, we set δ = 0.3.
So the final objective function is s|S|+1 = arg maxn

i=|S|+1 vi, where, s|S|+1 is
the score of the (|S| + 1)th node to be ranked. We demonstrate the difference
between the original GRASSHOPPER and our modified GRASSHOPPER in
Fig. 3. As shown in Fig. 3, the seed nodes discovered by our method is better in
both centrality and diversity.

Redundancy
nodes

Fig. 3. (Color online) Seed nodes identified by the original GRASSHOPPER (left)
and the modified one (right). Seed nodes are highlighted by circles or stars respec-
tively. Communities, represented by different colors, are obtained through modularity
optimization, offering us a reference to validate the effectiveness of seed nodes.

3.2 K-means Clustering Method

In the second stage of our framework we use k-means method as the clustering
method. Actually, any clustering method that could start with a predefined seed
set can be used here. For a graph G with n nodes, if we suppose to use k-means,
we must embed these nodes to a metric space. In this paper, we map each node
i to an n-dimensional vector −→vi . Each dimension j in this vector −→vij represents
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the probability that node i visit j under random walk, as defined in Eq. (1). So,
we have

∑n
j=1

−→vij = 1. We allow self-edges in graph. If two nodes have similar
connection pattern with all n nodes in the graph, we can say they are similar
and the distance between the two nodes is close. The distance between node i
and j is

dij =

√√
√
√

n∑

t=1

(−→vit − −→vjt)2. (5)

Initially, we map each node to an n-dimensional vector and calculate the
distance between each node and the k seed nodes S = {s1, s2, · · · sk}. We assign
each node to the closest cluster. c

′
i represents the cluster which node i belongs

to. So we get k clusters C = {c1, c2, · · · ck}. We update the cluster center

si =

∑n
j

−→vj δ(c′
j , ci)

|ci| . (6)

The new cluster centers may be virtual nodes embedded in the n-dimensional
space. We iteratively optimise the cluster centers and the nodes assignment until
convergence i.e., the cluster membership of each node no longer changes.

4 Experiments

To validate our method, we apply it to synthetic benchmark networks, where
community structure is known a prior, and a real-world network. We use “bench-
mark” tool [30] to generate synthetic networks. For accuracy evaluation, we use
the Normalized Mutual Information (NMI) [31] to measure the extent to which
each method could accurately identify the communities planted in the bench-
mark networks. Higher NMI represents higher similarity of node assignments
between the proposed method and the ground truth. To demonstrate the perfor-
mance of our method on real-world network, we test it on the American football
teem network which have 115 nodes and 613 edges.

4.1 Evaluation on Synthetic Networks

We generate the synthetic networks with the number of nodes N = 1000 and
with the power exponents of the degree distribution and the community size
distribution being (α, β) = (2, 1). We set the average degree of nodes as N

50 and
the maximum degree as N

10 and the range of community size as
[
N
20 , 3∗N

20

]
. The

mixing parameter u varies from 0.0 to 0.8 with the interval 0.1.
Firstly, we demonstrate the performance of our method compared with the

random seed set selection method. Our method uses a high quality set of seed
nodes obtained by the improved GRASSHOPER. The comparison method uses
50 random seed sets for each of the u value. As shown in Fig. 4, our method is
more accurate and keeps stable compared with the one using random seed set. To
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Our method

Fig. 4. (Color online) Comparison between our method and the standard k-means
clustering with randomly-selected seed nodes. For each network, we run the k-means
clustering for 50 times, depicting the mean and variance caused by randomness of seed
nodes. When u > 0.4, limited by the huge computational cost, we don’t give the results.
Our method give a definite high quality seed set each time, the performance of k-means
keep the same good in repeated experiments.

further illustrate how well our method performs, we compare our method with
the random seed set method with 100 different random initializations. We select
the benchmark network when u = 0.2. We examine the number of iterations
required before convergence and the final value of the NMI. As shown in Fig. 5,
our method requires the smallest number of iterations with respect to all the 100
implementations. Meanwhile, our method always outperforms these implementa-
tions of random seed set method at obtaining high-quality community structure,
reflected by the highest NMI value.
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Fig. 5. (Color online) The performance of our method compared with 100 randomly-
selected seed sets on benchmark network. The box-plot illustrates the distribution
of the results from the 100 implementations of random-selected seed sets, while our
method is marked by a circle. Here we scatter all points only for clarity.

Secondly, we compare the proposed method with several state-of-the-art
methods to demonstrate the effectiveness of our method, as shown in Fig. 6.
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Our method

Fig. 6. (Color online) Comparison between our method and several state-of-the-art
community detection methods
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Fig. 7. (Color online) Communities detected by our method in American football game
network. Labels are the name of conference to which these teams belong. Five inde-
pendent teams are marked by star.

Louvain [32] proposed by Blondel et al. is the most widely used community
detection method for its high efficiency. The performance of our method is bet-
ter than that of the Louvain method for almost all the u values. Infomap [33] is
claimed one of the most accurate non-overlapping community detection methods
recently. The accuracy of our method is almost as well as Infomap when u < 0.5
which is the usual scene of real-world networks. To demonstrate the improve-
ment of our method compared with the traditional GRASSHOPPER, we also
compared the difference between the clustering accuracy of our improved method
and the clustering method combined with GRASSHOPPER. As shown in Fig. 6,
we can see our method is better than that of the “GRASSHOPPER+k-means”
method.
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4.2 Test on Real-World Networks

To further validate our method and offer some intuition about why it works well,
we apply it on a real-world network, the American football game network [34]
which has 115 nodes and 613 edges. Nodes in the network represent football
teams, and edges represent games between these teams. As shown in Fig. 7,
we can see our method identified the conferences the football teams belong to,
except the independent teams. Actually, any link-based algorithm, e.g., modu-
larity optimization method, cannot recognise these independent nodes.

5 Conclusion

In this paper, we proposed a two-stage framework to circumvent the problem of
seed selection suffered by k-means clustering in network clustering. This frame-
work is motivated by two key insights: 1) high quality seed set can improve the
performance of clustering method in graph; 2) high quality seed set are the nodes
set that have both high centrality and low diversity. We implement the two-stage
framework by integrating an improved diversified ranking method, GRASSHOP-
PER, and a state-of-the-art clustering method, e.g., k-means. Results on syn-
thetic networks and real-world networks demonstrate that the proposed method
is accurate and efficient at detecting communities of networks.
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Abstract. Numerous methods for detecting communities on social net-
works have been proposed in recent years. However, the performance and
scalability of the algorithms are not enough to work on the real-world
large-scale social networks. In this paper, we propose Improved Speaker-
listener Label Propagation Algorithm (iSLPA), an efficient and fully
distributed method for community detection. It is implemented with
Dpark, which is a Python version of Spark and a lightning-fast cluster
computing framework. To the best of our knowledge, this is the first
attempt at community detection on Dpark. It can automatically work
on three kinds of networks: directed networks, undirected networks, and
especially bipartite networks. In iSLPA, we propose a new initialization
and updating strategy to improve the quality and scalability for detect-
ing communities. And we conduct our experiments on real-world social
networks datasets on both benchmark networks and Douban (http://
www.douban.com) user datasets. Experimental results demonstrate that
iSLPA has a comparable performance than SLPA, and have confirmed
our algorithms is very efficient and effective on the overlapping commu-
nity detection of large-scale networks.

Keywords: Community detection · Label Propagation Algorithm ·
Dpark · iSLPA

1 Introduction

Finding communities on real-world social networks has become one of the hottest
research fields in social network analysis and complex networks in recent years,
especially analyzing large-scale social network data is getting more complicated
and challenging. However, most of the work has been done on non-overlapping or
disjoint community detection in which one node can only belong to one commu-
nity, such as Girvan-Newman algorithm [1]. In reality, network communities are
not always disjoint and communities usually overlap with each other since one
user can possibly join in or belong to multiple groups at the same time, in which
one node can belong to two or more communities. For this reason, the research
have been widely focused on overlapping community detection algorithms.
c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 116–127, 2015.
DOI: 10.1007/978-3-319-21786-4 10
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Several methods for community finding have been proposed, such as the
minimum-cut method, the hierarchical clustering method, and the modularity
maximization. Also, there are a number of local based optimization methods
utilizing seed expansion to grow natural communities [2], such as LFM [3], CPM
[4], GCE [5], and our previous work PHSE [6]. Besides, statistical based method
Order Statistics Local Optimization Method (OSLOM)[7] and Infomap [8] based
on maps of random walks method show much promise as accurate. Another line
of algorithms to solve this problem are modularity based community detection
methods. However, modularity-based methods normally have poor performances,
especially for larger systems and smaller communities. And modularity optimiza-
tion has been proved to be resolution limit [9].

Besides these algorithms, Label Propagation Algorithm (LPA) [10] is by far
one of the fastest community detection methods and is widely used in large
scale networks. Also, LPA is scale independent for community detection because
it doesn’t involve modularity optimization [11]. Initially, every node is assigned
with a unique label. At every step, each node updates its label to a new one which
is most of its neighbors shares. The stop criteria is until every node has a label
that is the maximum label of its neighbors. In this fashion, densely connected
group of nodes can reach a consensus on a unique label and form a community
quickly [12].

Many research of Label Propagation based method have been published in
recent years, such as [11], [13], [14]. However, there are very few algorithms
that can detect overlapping communities. COPRA [13] can detect overlapping
communities by using label propagation technology. It sets a parameter v, which
allows each vertex to belong to v communities at most. However, the parameter
v is vertex-independent. It is hard for COPRA to adapt the situation of some
vertices with a small number of community memberships and some others with
a large number of community memberships.

Xie et al. propose Speaker-listener Label Propagation Algorithm (SLPA)
[15][16], which uses memory list to store labels from each iteration, after post-
processing the label list, one node can have multiple labels, which means it can
detect the overlapping communities. However, SLPA is a sequential algorithm
when updating the list of labels at each iteration, which makes it hard to achieve
parallelism.

In this paper, we propose an improved Speaker-listener Label Propagation
Algorithm (iSLPA), based on SLPA, a near linear algorithm to detecting overlap-
ping communities on large-scale real-world social networks, which is using a new
initialization and updating strategy and implemented with distribution comput-
ing framework Dpark, to achieve the fully distribution of detecting communities
on large-scale networks. Also, it can automatically detect different kinds of social
networks, such as directed, undirected and bipartite networks.

The rest of the paper is organized as follows. Section 2 describes the clus-
ter computing framework Dpark. Section 3 describe the iSLPA algorithms.
Section 4 provides a community detection results of iSLPA. We conclude with
future work in Section 5.
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2 Dpark

DPark1 is a lightning-fast cluster computing framework based on Mesos, is a
Python version implementation of Spark, similar to MapReduce but more flexi-
ble. It can relay on Python to do the distribution computing, and provides more
function to give the iteration computing a better support.

Table 1. Common transformations supported by Dpark

Transformation Meaning

map(func) Return a new distributed dataset formed by passing each element
of the source through a function func.

filter(func) Return a new dataset formed by selecting those elements of the
source on which func returns true.

flatMap(func) Similar to map, but each input item can be mapped to 0 or more
output items.

union
(otherDataset)

Return a new dataset that contains the union of the elements in the
source dataset and the argument.

groupByKey
([numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K,
Iterable〈V 〉) pairs.

reduceByKey
(func,
[numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, V)
pairs where the values for each key are aggregated using the given
reduce function func, which must be of type (V, V ) ⇒ V . Like in
groupByKey, the number of reduce tasks is configurable through an
optional second argument.

join
(otherDataset,
[numTasks])

When called on datasets of type (K, V) and (K, W), returns a
dataset of (K, (V, W)) pairs with all pairs of elements for each key.

flatMapValue
(func)

Change to a new RDD, that is equivalent of flatMap (lambda (key,
value): [(key, v ) for v in func (value)])

Dpark revolves around the concept of a resilient distributed dataset (RDD),
which is a fault-tolerant collection of elements that can be operated on in par-
allel. Dpark has the feature of functional programming, including two types of
operations on RDD: Transformations and Actions. Transformations create a new
dataset from an existing one. The Table 1 lists some of the common transforma-
tions supported by Dpark. All transformations in Dpark are lazy, in that they do
not compute their results right away. Instead, Dpark design Class Dependency
to record the RDD lineage, which will let us to know the information of RDD’s
parent or ancestor. The transformations are only computed when an action,
which return a value to the driver program after running a computation on
the dataset, requires a result to be returned to the driver program, such as the
actions of reduce, collect, count, collectAsMap, saveAsTextF ile, and so on.
By default, each transformed RDD may be recomputed each time you run an
action on it. However, you may also persist an RDD in memory or on disk using

1 https://github.com/douban/dpark

https://github.com/douban/dpark
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the cache method, in which case Dpark will keep the elements around on the
cluster for much faster access the next time you query it. This lazyness design
enables Dpark to run more efficiently.

3 Algorithm

The iSLPA is an overlapping community detection algorithm on large-scale real-
world social networks based on SLPA, shown in Fig. 1. In bipartite network,
edges only exist between the bi-side nodes, so, we only need to assign one side
node with a unique label, based on the observation that number of communities
is at most equal to the number of large side nodes. There are two kinds of label
updating scheme based on its neighbors labels information of LPA based method:
synchronous and asynchronous. Synchronous updating may lead to oscillation
situation in bipartite or near bipartite structure networks. So, Raghavan et al.
[10] suggest the asynchronous updating strategy to randomly update nodes in

Fig. 1. The Algorithm iSLPA
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one iteration. However, the detecting results are unstable due to the random-
ness in asynchronous updating. As for SLPA, it is a sequential algorithm when
updating the list of labels at each iteration, which makes it hard to achieve par-
allelism. So, we separate the graph as bi-side nodes with the connection between,
this move will eliminate the oscillation during the update. And at each iteration,
we take the synchronous updating way to updating each side nodes’ label. In
sum, in our method, we take a new initialization process and updating strategy
to make the algorithm parallel when implemented the algorithm with Dpark,
benefiting from the RDD structure, which can make the information of each
node’s neighbors locally.

Targeted on three kinds of networks, directed, undirected, and bipartite net-
works, Dpark implementation of the corresponding methods, Directed-iSLPA,
Undirected- iSLPA, and Bipartite-iSLPA are elaborating in this section.

3.1 Directed-iSLPA

The iSLPA is suitable for the directed network input. We set the directed edge
as a pair, and arrange the source node which links the others as blue, and the
target node which is pointed to as red. Even it is not exactly a bipartite network,
we also can get the information of the neighborhood who has influence on the
others. We always believe the target nodes (red nodes) have the impact on the
source nodes (blue nodes). So, we first initialize the all nodes’ labels as label. In
each iteration, we update blue nodes’ labels based on its neighbors information,
and red nodes’ labels based on the neighbors information of blue. To get the
overlapping detection results, label is set as a memory list for each node to store
the labels in each updated iteration.

Fig. 2 illustrates our idea flow and functions used with Dpark. First, get
label information from the original rdd follow: (user, follower) data through
functions map, groupByKey, union and reduceByKey. Second, use the method
〈propagateLabel〉 to run iteration to update the label memory list of each node,
through functions join, groupByKey, union and reduceByKey. The process
〈propagateLabel〉 is following the Speaker-listener rule, about choosing the pop-
ular label in the neighbors. Random pick a label from each speaker’s label list,
group as listener’s pickedLabelList, then using the method 〈getPopLabel〉 to find
the most popular label, if there are several top labels that means their appearance
frequencies are the same, then random pick one as the updated label. Third, using
〈getCommunityResult〉 to get the final communities detection results with the
method 〈postProcessing〉 and 〈getCommunitites〉. 〈postProcessing〉 choses the
labels which are frequently appearing in the node’s label list through the thresh-
old r, normally set r = 0.1 in our experiments. 〈getCommunitites〉 gets the
communities results (community, user list) from user’s labels information (user,
label list) through the Dpark’s function flatMapV alue and groupByKey.
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Fig. 2. Directed-iSLPA with Dpark

3.2 Undirected-iSLPA

For the consistency of the algorithm, in Fig. 3, we process the undirected network
as follows. First, copy all reversed edges appended to the origin edges, and remove
the duplicate edges using the method 〈removeDuplicates〉 through functions
union and groupByKey. The rest progress is like Directed-iSLPA, running
〈propagateLabel〉 to iteratively update the nodes’ label list, and to get final
community detection results through 〈getCommunityResult〉. We deal with the
iteration process only through propagating the red or blue nodes based on the
last iteration labels information in the nodes’ memory list.

3.3 Bipartite-iSLPA

First, we initialize the labels of one side (with larger size) of nodes marked as
red, and the other side as blue through functions map and groupByKey, as
shown in Fig. 4.
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Fig. 3. Undirected-iSLPA with Dpark

Second, propagating red nodes’ labels to the blue ones, that is to say, updat-
ing blue nodes’ label memory list. The updating process is using flag isBlueF lag
to control the direction of propagation, if it is True then propagating label red
to the label blue through the method 〈redToBlue〉, otherwise, if flag isBlueF lag
== False, propagating label blue to label red through the method 〈blueToRed〉,
both methods are using the functions flatMapV alue, join, and groupByKey.

Finally, get community detection results through the method
〈getCommunityResult bipartite〉. Due to the structure of bipartite network, we
need to filter the communities whose has only one side nodes using the method
〈filCom〉 with functions filter and union.

All these improvements we designed using Dpark functions are making iSLPA
more efficient and scalable. Next section will give the experiment results and
evaluation of our method on real networks.
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Fig. 4. Bipartite-iSLPA with Dpark

4 Experiment on Real-World Networks

The experiment results can be divided into two parts according to the datasets
including benchmark networks and large-scale social networks.

4.1 Benchmark Networks

We conduct our experiments on four well known benchmark graphs, including
Zacharys karate club network (karate)[17], Political blogs network (polblogs)[18]
and Southern Women network (women)[19].

We take Normalized Mutual Information (NMI) metric to evaluate the com-
munities results detected by different algorithms with the ground truth. We
compare results of our method and SLPA. The statistics of networks and NMI
evaluation of detection results are shown in Table 2.

In the case of the Zachary’s karate (Fig. 5) and Southern Women (Fig. 6) net-
works, there are two communities with overlapping nodes are detected by both
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Table 2. The NMI results of iSLPA, SLPA and the statistics of real networks

Datasets
NMI

Type Nodes Edges
iSLPA SLPA

karate 0.742 0.511 undirected 34 78
political blogs 0.196 - directed 1222 16782

southern women 0.438 0.342 bipartite W:18, E:14 89

SLPA and iSLPA methods. The best NMI results of the iSLPA, 0.742 and 0.438
separately, are better than SLPA. The yellow nodes in the figures are overlapping
nodes of the two detected communities. We find that SLPA detects more over-
lapping nodes than the iSLPA, due to the sequenced updating scheme of SLPA
leads to a worse accuracy results. And even, in the case of the Political Blogs
network, SLPA fails to detect directed networks. The iSLPA gets highly accuracy
detection results compared with the SLPA method on benchmark networks.

4.2 Large-Scale Real-World Social Networks

Douban is a Chinese SNS website allowing registered users to record information
and create content related to film, books, music, and recent events and activities
in Chinese cities. The first dataset is a network of friends who has broadcast in
public, which has 190,641 vertices and 8,901,291 edges, originally it is a directed
network marked as Directed. An undirected network is created from the original
directed network, simply considering the edges are bi-directional, and marked
as Undirected. The third dataset is user-movie dataset, that is the users and the
movies they cited on Douban site, it is a bipartite user-movie network marked
as Bipartite which has 22,578 users and 12,128 movies and 892,638 edges.

(a) SLPA (b) iSLPA

Fig. 5. The detection result of Zacharys Karate Club by (a) SLPA and (b) iSLPA.
The yellow nodes are the overlapping nodes of the two detected communitites. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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(a) SLPA

(b) iSLPA

Fig. 6. The detection result of Southern Women network by (a) SLPA and (b) iSLPA.
The yellow nodes are the overlapping nodes of the two detected communitites. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 3 gives description of the experiments including the vertex, edges and
average degrees K of different social network datasets, and the detection results
of iSLPA algorithm including number of communities and time consuming com-
pared with SLPA. We set r = 0.1 and iteration = 20. The running time of
iSLPA is faster than SLPA, later renamed to GANXiS2, on three kinds of net-
works. Among the overlapping community detection algorithms [20], iSLPA has
the fastest run-time with Dpark on Douban’s networks. Other methods men-
tioned in the introduction, such as LFM, GCE, CFinder3 - an implementation
of CPM, was not able to run on the large-scale unbipartite networks. These
algorithm are very computationally expensive and thus may not be suitable for
detecting large-scale networks. The iSLPA has shown its potential for real time
community analysis of large-scale networks.

2 https://sites.google.com/site/communitydetectionslpa/
3 http://www.cfinder.org/

https://sites.google.com/site/communitydetectionslpa/
http://www.cfinder.org/
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Table 3. Experiment results of community detection on large-scale real-world social
networks

Data Vertexes Edges K iSLPA SLPA Description

Directed 190,641 8,901,291 46.69 7.87min - friends
Undirected 190,641 8,901,291 46.69 9.03min 11.21min friends
Bipartite U:22,578 M:12,128 892,638 39.54 14.85min 19.15min user-movie

5 Conclusion

This paper developed an improved and scalable community detection algorithm
iSLPA implemented with distribution computing framework Dpark. It supports
three kinds of unweighted social networks, which are directed networks, undi-
rected networks and specially bipartite networks. Compared with the previous
label propagation based algorithms, iSLPA performed competitively and is able
to detect meaningful communities on large-scale real-world social networks. In
the future, we will improve our algorithm to meet the need for detecting commu-
nities on many different kinds of networks with the universality and robustness,
especially fewer research on bipartite networks, more comparison and research
work will be done in the future.
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Abstract. In this paper, we propose a clustering method based on
the infinite betweenness centrality for temporal networks specified by 1-
dimensional periodic graphs. While the temporal networks have a wide
range of applications such as opportunistic communication, there are
not many clustering algorithms specifically proposed for them. We give
a pseudo polynomial-time algorithm for temporal networks, of which the
transit value is always positive and the least common divisor of all tran-
sit values is bounded. Our experimental results show that the centrality
of networks with 125 nodes and 455 edges can be efficiently computed in
3.2 seconds. Not only the clustering results using the infinite between-
ness centrality for this kind of networks are better, but also the nodes
with biggest influence are more precisely detected when the betweenness
centrality is computed over the periodic graph.

1 Introduction

In this paper, we propose a clustering method for temporal networks specified
by 1-dimensional periodic graphs. Periodic graphs are infinite graphs that have
a repetitive finite structure. That finite structure is called static graph.

The 1-dimensional periodic graph have a wide range of applications. Those
include the model illustrated how people move in specific situations by Sekimoto
et al. [16], and the model used for finding the optimal train schedule based on
train demand by Orlin, Serafini, and Ukovich [1,13,17]. In this paper, we will
focus on the application of the graphs to opportunistic communication where
each object in sensor networks communicates with the others in every given
period of time [10]. Each sensor is represented by a node in static graph, and
each copy of the static graph represents the network in a specific period. A node
i in a static graph representing a network in time t1 is connected to a node j in
a static graph for time t2, if i can send information to j in t2 − t1 periods.

Because of the applications discussed in the previous paragraph, there are
many works proposed algorithms for the graph. Those include a work by
Orlin, who propose algorithms to determine weekly connected components [12],

c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 128–139, 2015.
DOI: 10.1007/978-3-319-21786-4 11
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strongly connected components [12], Eulerian paths [12], minimum cost span-
ning trees [12], maximum flows [14], and minimum cost flows [15]. Beside that,
an algorithm to test a planarity of a given periodic graph is proposed by Iwano
and Steiglitz in [11]. In [6], we propose a shortest path algorithm for a class
of periodic graphs. The algorithm improves the computation of a shortest path
algorithm for an arbitrary periodic graph by Höfting and Wanke in [9].

Although there are many periodic extensions for many basic algorithmic
problems in literature, there are not many data mining or machine learning
techniques specifically proposed for them. In this paper, we will focus on clus-
tering problem, one of the most common problems in data mining. We consider
a clustering method based on betweenness centrality discussed in [3].

Betweenness centrality is known as one of the most common graph mining
techniques used for extracting information from networks. Beside its application
in clustering, we can also use the betweenness value to measure the influence of
each node in the network [2,5].

It is also possible to find cluster a graph using the betweenness centrality of its
static graph. However, we strongly believe that the static graph does not contain
some important information we have in the periodic graph. A method which
takes the graph with more information should help us find a better clustering
results.

1.1 Our Contribution

The notation of betweenness centrality in the previous works is done only for
finite graphs. As the number of nodes of an periodic graph is infinite, it is
not clear if we can directly use the definition in our setting. In [7], we give a
notation of betweenness centrality, we propose straightforward extension of the
definition to the periodic case that preserve the meaning of the betweenness
centrality. Beside that, we give a mathematical proof to show that the new
definition is valid, using theoretical results on integer programming. Also, we
give an algorithm to compute this betweenness centrality for a given network
based on dynamic programming and Markov chains. The algorithm is proved to
be polynomial time, when the input periodic graph is VAP-planar.

Although VAP-planar periodic graphs are used in many practical applications,
graphs obtained from opportunistic communication do not usually have that prop-
erty. That motivates us to consider a different class of periodic graphs in this
paper. In that class, we assume that the graphs have the following properties.

1. Recall that a periodic graph contains a repetitive structure of static graphs.
Let each static graph in the periodic graph be Gi and the transit value of an
edge from Gi to Gj be j − i. We require that the transit values of all edges
are positive.

2. We require that the weight of each edge is equal to its transit value.
3. We require that the least common multiple of all transit values is bounded

by a constant K.
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The transit value corresponds to the communication time between two nodes
in our model. Clearly, the communication time must be positive. Also, we can
consider the weight of each edge as the communication time between nodes, so
it is natural to assume that the weight and the transit value are equal.

The least realistic requirement could be the third one. However, we observe
that there are not usually many distinct values of communication time in most of
the real-world datasets. Because of that, the least common divisor of the transit
values is usually small.

In Section 3, we propose an algorithm that can find a betweenness centrality
of a periodic graphs satisfying those three conditions. The ideas behind the
algorithm are dynamic programming and Markov chains.

Since there is no algorithm for clustering the periodic graph proposed in
literature, we compare our computation with the computation time of the fastest
algorithm for finite graphs [18]. Although our asymptotic computation time looks
much larger than the previous algorithm, the experimental results in Section 4
show that the computation time for both is not that different in practice.

Our algorithm takes 3.2 seconds for an opportunistic network with 125 nodes
and 455 edges constructed from the data by Fournet and Barrat [4]. By using
betweenness on periodic graph, we can find clusters with around 50% higher pre-
cision and recall, compared to clusters obtained from results from static graph.
Beside that, we can spread information to 3% − 10% more nodes in periodic
graph, if we use nodes with higher periodic betweenness instead of nodes with
higher betweenness in static graph.

2 Problem Definition

2.1 Definition of Periodic Graphs

Definition 1 (Static Graph). The tuple G = (V, E ,w) of a vertex set V =
{1, . . . , n}, a set of directed edges with vector labels E = {e(1), . . . , e(m)} ⊆ (V ×
V) × Z

d, and a weight function w : E → R>0 is called a static graph.

Definition 2 (Periodic Graph). For a static graph G = (V, E ,w), the periodic
graph G = (V,E, ŵ) generated by G is an infinite graph with weights of edges,
such that V = V ×Z

d, E = {((i,h), (j,h+g)) : h ∈ Z
d, ((i, j),g) ∈ E} ⊂ V ×V ,

and ŵ : E → R>0, ŵ((i,h), (j,h + g)) = w(((i, j),g)).

If G has d-dimensional transit vectors, then we call G a d-dimensional periodic
graph. Unless otherwise specified, we use G = (V, E ,w) to denote a static graph,
and G = (V,E, ŵ) to denote the periodic graph generated by G. By definition,
a periodic graph can be any directed graph, but in this paper we consider only
strongly connected 1-dimensional ones.

An example of a 1-dimensional periodic graph, together with its static graph,
can be found in Fig. 1.

Definition 3 (Length of a Walk). Given a walk W with edges F on G, we
define the length of W as

∑
e∈F ŵ(e). Analogously on G, we define the length of

a walk W as
∑

e∈F w(e).
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Fig. 1. A 1-dimensional periodic graph (right) and its associate static graph (left)

The distance from s to t in G, denoted by dG(s, t) (or simply d(s, t) if the
graph is omissible), is the length of a path from s = (u,y) to t = (v, z) in G
such its length is minimized. That path is also known as a shortest path.

2.2 Periodic Betweenness Centrality

Let H = (U,F ) be a undirected graph. For any two vertices s, t ∈ U , we denote
by σH

s,t the number of shortest paths between s and t in H, and σH
s,t(v) the ones

that contains v.
The betweenness centrality of a vertex v on a finite graph H = (U,F ) is

defined as gH(v) =
∑

s �=v �=t

σH
s,t(v)

σH
s,t

. But we will abbreviate them as g(v), σs,t(v)

and σs,t, when the graph that their are applied to results obvious.
Now, let G = (V,E) be a 1-dimensional periodic graph, and fix the vertex

ν whose betweenness centrality is to be computed. We can denote the distance-
bounded vertices of μ by:

VD(μ) := {ω ∈ V : dG(μ, ω) < D} ∪ {ω ∈ V : dG(ω, μ) < D}
where D ∈ R≥0. Unless otherwise specified, we abbreviate VD(μ) by VD when
μ = ν. Let GD the subgraph of G induced by a set of nodes VD. Our betweenness
centrality can be defined as follows.

Definition 4 (Periodic Betweenness Centrality). For ν ∈ V , the 1-
dimensional periodic betweenness centrality of ν on G is

pbc1(ν) = lim
D→+∞

gGD (ν)
|VD|2 .

We note that the 1-dimensional periodic betweenness centrality is an exten-
sion of the betweenness centrality on a finite graph H = (U,F ), since the
betweenness centrality of H can be obtained by multiplying it |U |2. And since
the main purpose of the betweenness is to compare the centrality of the vertices,
scaling does not affect the result.

In [7], we show that, for all 1-dimensional periodic graph G and all nodes ν
of G, the value of pbc1(ν) always converges to some positive real number. In the
same paper, we give an algorithm that can output pbc1(ν) in finite time. The
algorithm is when the periodic graph is VAP-planar.



132 N. Fu and V. Suppakitpaisarn

3 Algorithm

Before introducing our algorithm, we give the following definition.

Definition 5 (Positive Periodic Graph). Let G = (V, E ,w) be a static graph
of a 1-dimensional periodic graph G. If, for all e(t) = (i, j, 〈g〉) ∈ E, the value of
g is positive, then G is a positive periodic graph.

Since a cycle 〈(i1, i2, 〈g1〉), (i2, i3, 〈g2〉), . . . , (im, i1, 〈gm〉)〉 must have
∑

i gi =
0, and the summation of the value of gi for all paths in a positive periodic graph
is positive. We know that a positive periodic graph does not contain a cycle.

3.1 Dynamic Programming Idea

Recall the notation GD defined in the previous section. For any g′ ∈ Z, we
denote V (g′) := {(i, j, 〈g〉) ∈ V : g = g′}. Let assume without loss of generality
that ν ∈ V (0). We know that the number of shortest paths σGD

s,t (ν) > 0, only
if s ∈ V (�) ∪ {ν} and t ∈ V (u) ∪ {ν} for some � < 0 and u > 0. Otherwise,
σGD

s,t (ν) = 0.
In this subsection, we will give an idea how we calculate the value σGD

s,t (ν) > 0
for some specific D ∈ Z+, s ∈ V (�) and t ∈ V (u). To calculate that value, we will
first compute the number of shortest paths from s to ν, denoted by σs,ν , and
the distance between s and ν, denoted by d(s, ν), in GD. For v ∈ VD, we denote
Ev := {(u, u′) ∈ E : u′ = v}. Our idea behind the computation of those values
are shown in Algorithm 1. We note that the function arg min in Line 7 returns
a set of all edges that minimize the value d(s, u) + w ((u, u′)).

Algorithm 1 is clearly slower than the fastest algorithm for the between-
ness calculation proposed in [18]. However, the idea used in the algorithm can
be extended to an infinite periodic graph in the following subsection. We will
show the correctness and the computation time of the algorithm in the following
theorem.

Theorem 1. Algorithm 1 can calculate the value of σs,ν and d(s, ν) in O(|ED|)
when ED is the set of edges in VD.

Proof. The bottleneck of Algorithm 1 is Lines 6-8 of the algorithm. Because
each edge will be considered only once in those lines, the computation time of
the algorithm is O(|ED|).

We will prove the correctness of the algorithm by induction on the vari-
able i. It is clear that there are no path from s to v when the node v in(

⋃

�′≤�

V (�′) ∩ VD

)

\{s}, because our periodic graph is positive. By that, σs,v = 0

and d(s, v) = ∞, as assigned in Line 1. Because our positive periodic graph con-
tains no cycle, it is clear that the only path from s to s is an empty set. Therefore,
σs,s = 1 and d(s, s) = 0, as done in Line 2.
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Input: A graph GD, a node s ∈ V�, and a node ν ∈ V (0).
Output: σs,ν and d(s, ν)

1 Set σs,v ← 0 and d(s, v) ← ∞ for all v ∈
( ⋃

�′≤�

V (�′) ∩ VD

)
\{s}.

2 Set σs,s ← 1 and d(s, s) ← 0.
3 i ← � + 1

4 while V (i) ∩ VD �= ∅ do

5 forall the v ∈ V (i) do
6 d(s, v) ← min

(u,u′)∈Ev

[d(s, u) + w ((u, u′))]

7 Sv ← arg min
(u,u′)∈Ev

[d(s, u) + w ((u, u′))]

8 σs,v ← ∑
(u,u′)∈Sv

σs,u

9 end

10 end

Algorithm 1. An algorithm for calculating the number of shortest paths from s
to ν and the distance between s and ν in a finite graph

Assume that Algorithm 1 can give a correct value of σs,v and d(s, v) for all
v ∈ ⋃

�′<i

V (�′) ∩ VD. We know that a node v ∈ V (i) ∩ VD needs at least one edge

to reach the node s. Because of that, d(s, v) can be calculated as in Line 6 of
the algorithm. All the shortest paths to the node v are the paths to some other
nodes u added with an edge from u to v. The number of shortest paths is the
summation of the number of shortest paths to each u such that d(s, u)+w((u, u′))
is minimized, as calculated in Lines 7-8. ��

Using the same method, we can calculate σs,t and d(s, t) for all s ∈ ⋃
�′<0 V (�′)

and t ∈ ⋃
�′>0 V (�′). Also, by inversing the side of each edge, we can calculate the

value of σμ,t and d(μ, t) for each t ∈ ⋃

�>0

V (�). By those values, we know that there

exists some shortest paths from s, t that pass ν, only if d(s, t) = d(s, ν)+ d(ν, t).
If there is some shortest paths, it is clear that the number σGD

s,t (ν) is equal to
σGD

s,ν · σGD
ν,t .

In short, we can calculate the betweenness centrality of ν by

gGD (ν) =
∑

s �=ν �=t

ps,t,ν

σGD
s,t (ν)

σGD
s,t

=
∑

s �=ν �=t

ps,t,ν

σGD
s,ν · σGD

ν,t

σGD
s,t

,

when ps,t,ν = 1 if d(s, t) = d(s, ν) + d(ν, t) and ps,t,ν = 0 otherwise.

3.2 Recurrence Relations

Recall that V (�) can be written in the form {(0, �), . . . , (n, �)}. When D → ∞ and
Algorithm 1 do not terminate, we will find a betweenness centrality by solving
a recurrence relation for σs,ν , σν,t, σs,t and |VD|2.
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Let gmax := max{g : (i, j, 〈g〉) ∈ E}. By Algorithm 1, we know that σs,(v,i)

can be written in the form

σs,(v,i) =
gmax∑

t=1

∑

(v′,i−t)∈V (i−t)

ci,t,v,v′σs,(v′,i−t).

ci,t,v,v′ = 1 when ((v′, i − t), (v, i)) ∈ S(v,i), and ci,t,v,v′ = 0 otherwise.
Let s ∈ V� for some � ∈ Z−. In the following subsection, we will argue that,

for all i > �, ci,t,v,v′ = 1 if ((v′, i − t), (v, i)) ∈ E and (v′, i − t) is reachable
from s. Otherwise, ci,t,v,v′ = 0. Since σs,(v′,i−t) = 0 for any node v unreachable
from s, we can still get the same solution even when we set ci,t,v,v′ to 1. We
can set ci,t,v,v′ = 1 if ((v′, i − t), (v, i)) ∈ E, and ci,t,v,v′ = 0 otherwise. Because
the periodicity of our graph, we can calculate σs,(v,i) by the following recurrence
relation:

σs,(v,i) =
gmax∑

t=1

∑

(v′,i−t)∈V (i−t)

ct,v,v′σs,(v′,i−t),

for any i ≥ H+�. Since we can calculate the value of σs,(v,i) for all v ∈ ⋃

i<H+�

V (i)

by Algorithm 1, we can solve the recurrence relation to find a closed form for
σs,(v,i).

The computation time for solving the recurrence relation is polynomial of
L := lcm ({g : (i, j, 〈g〉)}) when lcm(S) is the least common multiple of all mem-
bers of S. When we require that L ≤ K for some constant K, we can find the
solution of the recurrence relation in polynomial time.

When D is large enough, the number of shortest paths from (v′, i′) to (v, i)
is equal to the number of shortest paths from (v′, i′ − i) to (v, 0), since the
transition on a periodic graph does not change the number of paths. Hence,
σ(v′,i′),(v,i) = σ(v′,i′−i),(v,0). Let s = (v′, i′). As we have the value of σ(v′,i′),(v,i)

for all v′, v, i from the calculation on the previous paragraph, we can use those
results to get σ(v′,j),(v,0) all v′, v, j. When ν = (v, 0), we can have the closed form
for the number of shortest paths from all nodes to ν.

Using the similar idea, we can find closed forms for σ(v,i),t, σs,t, and |VD|2.
From those closed forms, we can calculate pbc1(ν) defined in Section 2.

3.3 Properties of Sv

In this subsection, we will prove a property of the set Sv defined in Algorithm 1.
Let t be a function from a path in E to R+ such that t(〈e1, . . . , em〉) =

∑m
i=1 w(ei)∑m

i=1 gi

when ei = (ui, ui+1, 〈gi〉). Also, let Ss,t := arg min{t(P ) : P ∈ Ps,t}, when Ps,t

is a set of all paths from s to t and arg min returns a set of paths such that all
members of the set minimize the value of t(P ). By the notation, we have the
following lemma.

Lemma 1. Let s ∈ V (�) and e := ((u′, i′), (u, i), 〈g〉) be an edge in G. The edge
e is in the set S(u,i), if and only if there is a path P ∈ Ss,(u,i) such that e ∈ P .
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Proof. We know that all paths 〈e′
1, . . . , e

′
m′〉 from s ∈ V (�) to (u, i) have

∑m′

i=1 g′
i = i − � when e′

i = (u′
i, u

′
i+1, 〈g′

i〉). By that, the path P1 has a smaller
summation of weight than P2, if and only if t(P1) ≤ t(P2). Because of that, P ∗ is
the shortest path, if P ∗ minimizes t(P ) and P ∗ ∈ Ss,(u,i). Since e ∈ S(u,i) if and
only if e is in some shortest path from s to (u, i), we can prove this lemma. ��

With some further assumption, we can prove the following theorem.

Theorem 2. If, for all e = (u, u′, 〈ge〉) ∈ E, ge = w(e), then

S(u,i) = {((u′, i′), (u, i)) ∈ E : (u′, i′) is reachable from s}.

Proof. When ge = w(e) for all e, all paths P from s has t(P ) = 1. Because
of that, Ss,(u,i) is a set of all paths from s to (u, i). The edge ((u′, i′), (u, i))
is included in one of the paths from s to (u, i), if and only if (u′, i′) reachable
from s and there is an edge from (u′, i′) to (u, i). By Lemma 1, we know that
((u′, i′), (u, i)) ∈ S(u,i), if and only if ((u′, i′), (u, i)) ∈ E and (u′, i′) is reachable
from s. ��

Our result can be also applied to the case when ge �= w(e) for some e ∈ E.
Recall that we denote the set of edges in the static graph by E = {e(1), . . . , e(m)}.
Let e(i) := (ui, vi, 〈gi〉) and EM := {e(i) ∈ E : w(ei)/gi = min

1≤j≤m
w(ej)/gj}. If the

subgraph of the static graph (V, EM ,w) is strongly connected, we can calculate
the betweenness centrality by using only edges in EM . Due to the page limitation,
we omit that proof in this paper.

We also omit an example of our computation due to the page limitation.
Interested readers can find a brief example in [8], and we plan to publish an
example that include all details of our computation in the full version of this
paper.

4 Experimental Results

Our experimental settings and results are as follows.

4.1 Dataset

As temporal networks with periodic graphs are emerging research area, there
are not so many published datasets with clustering information. We choose to
construct a periodic graph based on a dataset collected for a research in [4]1. In
that paper, the authors install a devise on 125 high school students to detect all
of their communication during 4 school days.

The data contains 28561 communication records. Each record consists of IDs
of two students who make a communication, and a time stamp in which that
communication occurs. We observe from the dataset that there is a clear periodic
1 The dataset is published at http://www.sociopatterns.org.

http://www.sociopatterns.org
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Fig. 2. Edge-betweenness clusters using betweenness value on static graph (left) peri-
odic graph (right)

pattern in those communication records. Every student communicate with their
friends on daily basis (or even on hourly basis with closest ones).

We construct our static graph G = (V, E , w) from that observation. Each
node in V represents a student. An edge (i, j,g) is in the edge set E , if student i
communicates with student j once in every g hours, and the weight of an edge
(i, j,g) is equal to g. As a result of this construction we get a static graph with
125 nodes and 455 edges.

By that static graph, we will get a periodic graph G = (V,E, ŵ), where
(i,h) ∈ V represents a student i at time h. An edge ((i,h), (j,h + g)) ∈ E
represents the fact that the information known by i at time h will be known by
j at time h + g, as i talks with j once in every g hours. This is due to the high
school students have a fixed class schedule and they only share physical location
with people for other classes (and can speak freely) in very specific situations
such as lunch breaks or between-class breaks.

4.2 Computational Time

We implement our betweenness centrality algorithm and the fastest algorithm for
finite graph in [18] using Python, and run the program on a personal computer
with Intel(R) Core(TM) i7-3770 @ 3.40GHz CPU, Windows 8.1 64 bits, 16GB
RAM. Our algorithm takes only 3.2 seconds for the periodic graph constructed
in the previous subsection while the previous algorithm takes 0.4 seconds for
computing betweenness for the static graph; resulting in only an 8-fold slower
computation time when computing it on the infinite periodic graph.

4.3 Clustering Using pbc1(v)

We can also find each edge-betweenness using the edge-partition technique, in
that way the betweenness of that middle node will be the edge betweenness.
One of the most common clustering method is to remove edges with highest
betweenness, and group nodes that are in the same connected component into a
cluster.
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Fig. 3. Comparison between our results and previous works (a) clustering results (b)
influence maximization

In this experiment, we set the number of removed edges to p × 455 when p
is a real number between 0.1 and 1.

In Fig. 3, we compare the clustering result obtained by removing edges with
high infinite betweenness and the result obtained by removing edges with high
betweenness in static graph. Clustering results is evaluated by precision, value,
and F-measure calculated from the results and clusters given in the dataset.
Although our precision is smaller than the value from the previous method in
some p, our recall is significantly larger for all p. Because of that, our F-measure
is also larger for all p. When p = 0.5, we improve precision by 51%, recall by
66%, and F-measure by 57%.

The clustering results is shown in Fig. 2. The color of each node represents
a class of each student given in our dataset. Two nodes are considered to be
in the same cluster, if they are connected in the result graphs. We can clearly
seen from the figure that the pink nodes and the green nodes are put into the
same cluster in the conventional clustering results, while all clusters are almost
unicolor in our clustering results.

4.4 Maximizing Influence Using pbc1(v)

In this subsection, want to model the way some information spread over the
students (for example a rumour). For that, we select k students, with k being
an integer between 1 to 10, and with probability p ∈ {0.15, 0.3}, the selected
student will send information to node adjacent to them in G. The node who
receive the information will forward the information with the same probability
after adding more content to it.

Because more content are added, students who did forward the information
may forward the message again. To assure that large number of students can get
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a lot of content added during the process, we want to maximize the number of
nodes that are forwarded information in periodic graph.

In Fig. 3(b), it can be clearly seen that nodes selected by periodic between
centrality can affect more nodes than nodes selected by betweenness centrality
in static graph. In our results, it can affects up to 20% more nodes than the
conventional method when k = 2 and p = 0.15, and up to 9.9% when k = 8 and
p = 0.3.

5 Conclusion and Future Work

It usually takes long computation time to extract information from a temporal
network, as the number of nodes in the graph is usually exceptionally large. We
can reduce that computation time if the network can be specified as a repeti-
tive structure of a small graph, called static graph. In this paper, we propose
an efficient algorithm that can compute betweenness centrality of that infinite
network. The computation time of the algorithm is comparable to the time that
the fastest method required for the static graph.

Currently, we are aiming to find more application of the betweenness central-
ity on the periodic graph, other than the clustering and the influence maximiza-
tion. Also, we are planning to collect information to construct more periodic
datasets, and use those datasets to show that our results are more preferable
than the results obtained by using previous methods on static graph. Beside, we
plan to find a mathematical model that can capture properties of opportunistic
networks. We will use the model to generate a large periodic graph, before using
that large graph to test if our algorithm is scalable enough in those practical
settings.

Acknowledgement. The authors would like to thank Mr. Alonso J. Gragera Aguaza
who kindly read our papers and rewrite some of the critical parts, Mr. Saran Tarnoi who
kindly introduce us to the opportunistic network communication, and three anonymous
reviewers who kindly give us several comments which significantly help improving the
quality of this paper. The comments also give us an idea to extend this work in the
future.
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Abstract. How does community structure affect the process of social
contagion? Latest research shows the existence of optimal clustering,
where global cascades require the minimal number of early adopters in
classical threshold model. Is this interesting finding a general pattern in
other model? Motivated by this, in this paper, we study the community
structure in anther contagion model that involving social enhancement.
Our results confirm the existence of optimal network clustering for cas-
cade again. This work may shed some light on the in-depth understanding
and application of the social contagion problem.

1 Introduction

Innovations and ideas spread through social networks [1–6]. In a social network,
nodes are individuals while links represent the relations between different indi-
viduals [7]. The study of investigating the spreading process of information and
behavior has attracted much attention of researchers from different fields in
recent several years. This is so-called social contagion problem. Unlike epidemic
contagion, social contagion should take social enhancement into account [8,9]
which assuming the more times of exposures that one individual get, the higher
probability will he/she adopt the information. For instance, an individual who
has over one hundred friends adopting a particular behavior will be more likely
to take this behavior than someone that only one friend in his/her circle has
adopted the behavior. However, the difference of epidemic contagion and social
contagion is still not fully clear yet. Moreover, it has been shown that when
the effect of social reinforcement is strong, the contagion is strongly affected
by network community structure [10]. According to recent studies, communities
sometimes can, rather than inhibit, enhance spreading of information [11]. In the
paper mentioned above, they performed experiments in classical linear thresh-
old model [12]. Consider a network involving N nodes and E links, the states
of all nodes can be classified as two types: active and inactive. Initially, certain
fraction of nodes are selected as seeds and initialized in active state. At each
time step, nodes’ states are updated based on the following rule: if the fraction
of its’ neighbors that in active state has exceed the threshold (like 50%, 80% and
so on), then the corresponding node will become active. Finally the states of all

c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 140–147, 2015.
DOI: 10.1007/978-3-319-21786-4 12
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nodes will reach a steady state. One of the most interesting finding in that paper
is that they demonstrate the existence of optimal clustering in classical linear
threshold model. Here we aim to investigate whether this finding is a general
pattern. Will it still valid in other social contagion model?

This article is organized as follows. In the next section, we will clearly intro-
duce social enhancement and describe the details of social contagion model.
Methods for how to generate networks with tunable community structure are
presented in Section 3. In Section 4, we will describe our experiments and then
show the corresponding results. Finally, we summarize our results in Section 5.

2 Contagion Model

In this paper, we adopt one modified threshold model [13]. In order to involving
the social contagion into the process of information diffusion, each individual has
a state of awareness value Ai (spans through 0, 1, 2, ..., M), which standing for the
number of times that the corresponding individual exposed to the information.
In this paper, we set the threshold function as a Kronecker delta function,

f(Ai) =

{
0 Ai < M
1 Ai = M

That’s to say, individual will adopt the information when its awareness value
reaches M . So at any time, the status of all individuals can classified into three
types: ignorant, aware, adopted. In the ignorant state (Ai = 0), the node i know
nothing about the information and also never heard about it from its neighbors.
In the aware state (0 < Ai < M), the node has heard the information from
its neighbors but still didn’t adopt yet, so nodes in aware state will not spread
information. In the adopted state (Ai = M), the node has adopt this information
and will transmit to its neighbors that still in ignorant/aware state. To clearly
illustrate this contagion model, the details of the spreading model are described
as below:

Step1 : Random select certain proportion of nodes as seeds (adopted state),
set the awareness value of these seeds as M . While all the remaining nodes are
considered as ignorant (the awareness value set as 0).

Step2 : In each step, all adopted individuals will transmit the information to
its neighbors that in ignorant/aware state with probability p. If infect success-
fully, the awareness value of its neighbor will plus one in this step. Note that,
we assume an edge that has transmitted the information successfully will never
transmit the same information again.

Step3 : Repeat Step2 until the status of all nodes will not change.

3 Networks with Community Structure

In order to systematically investigate the impact of community structure, we
prepare an ensemble of networks with two communities with varying degree of
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strength. First, half of the nodes are randomly selected and assigned to commu-
nity A, and the other half are assigned to community B. Then, (1−μ)E links are
randomly distributed among node pairs in the same community and μE links
are randomly distributed among node pairs that belong to different communi-
ties. The free parameter μ spans from 0 to 0.5, thus can tune the strength of
community structure. Clearly, a large value of μ means more links between the
two communities and thus weak community structure, while a small value of μ
means less links that connect two communities and thus strong community struc-
ture. Figure 1 displayed visualization of three networks with different strength
of community structure. As we can see, for the networks in same size, networks
generated when μ = 0.1 has strong community structure, while generated when
μ = 0.2 displayed weak community structure. Clearly, networks with μ = 0.5
almost near total random network.

Let’s assume one network with N nodes and E links involving with two same-
sized communities A and B. That’s to say, NA = NB = N

2 . Then (1−μ)E links
are randomly distributed among node pairs in the community A or B. While
the remaining μE links are randomly distributed among node pairs that connect
community A and B. So there are 1−µ

2 E links in each community. Clearly, for
each community A and B, the intra-community link probability can calculated
as below:

PA = PB =
EB(
NB

2

) =
(1−µ)E

2
NB(NB−1)

2

=
4(1 − μ)E
N(N − 2)

, (1)

in which NB and EB denotes number of nodes and links in community B sepa-
rately. So the average degree of intra-community

< kAintra
>=< kBintra

>=
2EB

NB
=

2(1 − μ)E
N

. (2)

and the intra-degree distribution of community A and B can be calculated by:

P (kAintra
) =

(
NA − 1
kAintra

)
(PA)kAintra (1 − PA)NA−kAintra

−1

=
( N

2 − 1
kAintra

)
(
4(1 − μ)E
N(N − 2)

)kAintra (1 − 4(1 − μ)E
N(N − 2)

)NA−kAintra
−1,

(3)

P (kBintra
) =

(
NB − 1
kBintra

)
(PB)kBintra (1 − PB)NB−kBintra

−1

=
( N

2 − 1
kBintra

)
(
4(1 − μ)E
N(N − 2)

)kBintra (1 − 4(1 − μ)E
N(N − 2)

)NB−kBintra
−1.

(4)

Based on analysis above, the total number of links between two communities
EAB = μE, while the total available number of links between two communities
should be NANB , so link probability for each node pairs that located in different
communities

PAB =
EAB

NANB
=

4μE

N2
, (5)
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Fig. 1. Visualizations of same-sized ensemble networks with different μ. The number
of nodes and links are 30 and 100 separately. All nodes are classified into two different
communities with each community involving 15 nodes and nodes in different communi-
ties are labeled by different colors. Clearly, the ensemble network with smaller μ = 0.1
has less links between two communities and show strong community structure. For
network with bigger μ = 0.2, it shows weak community structure compared with that
of μ = 0.1. While when we set μ = 0.5, it almost approaches random network for all
links are randomly chosen from all available node pairs.

while the degree distribution

P (kAB) =
(

NA

kAB

)
(PAB)kAB (1 − PAB)NA−kAB−1

=
( N

2

kAB

)
(
4μE

N2
)kAB (1 − 4μE

N2
)

N
2 −kAB−1.

(6)

4 Experiments and Results

To systematically study the impact of community structure, we employ the sim-
ple community model described in the previous section, which allow us to create
a network with tunable community structures. The network generating process
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Fig. 2. Number of adopters in relationship with time step. The value shown in the figure
are the average value of 10 networks with run 100 independent experiments on each
network. The free parameter μ controls the strength of community structure. Smaller
value of μ means less links to connect two communities and thus strong community
structure. Initially, all the seeds were planted in one community and let contagion
originates from one community. Strong community structures (μ = 0.01) slow down
the global cascade as the sparse connections between communities act as bottlenecks
while speed up local spreading. More bridge links (μ = 0.15) will make it’s easier to
spread information to another community, so that enhance global contagion. While
when the ensemble network will almost be random (μ = 0.4), it’s like we just randomly
select seeds in the whole network, which will disperse the ability to spread information
out because the accumulation of successful transmission was suppressed here. The
parameters for the simulation are: N = 10000, E = 50000, NA = 5000, ρ0 = 0.05,
M = 3, p = 0.2.

produces graphs that have known community structure, but which are essentially
random in other respects. Here we performed all the experiments on networks
with 10000 nodes and 50000 links. The network was classified into two commu-
nities with each community involving 5000 nodes. For the information spreading
process, we plant the seeds in, assuming that the contagion originates from one
community. So in the beginning stage of spreading, the information is spreading
in one community, it’s called local contagion. While later information will grad-
ually spread to another community through links that connect two communities
and it’s called global contagion.

Figure 2 displays number of final adopters with time in the networks with
different community structures. Strong community structures (μ = 0.01) slow
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Fig. 3. Final adopters in relationship with number of initial seed and free parameter
μ. Clearly, number of final adopters is in positive correlation with number of initial
adopters if the effect of μ was teased out. While the relationship between ρ∞ and μ
is very complex. Both weak community structure (μ > 0.2) and strong community
structure (μ < 0.05) will depress global cascade. While certain range of community
structure (0.05 < μ < 0.2) will enhance spreading cascade when enough seeds were
supplied here (0.02 < ρ0 < 0.03). The parameters for the simulation are: N = 10000,
E = 50000, NA = 5000, M = 3, p = 0.2. Moreover, our results show that this tendency
is independent with M .

down the global cascade as the sparse connections between communities act as
bottlenecks. At the same time, the local spreading is sped up. As μ increases
(as modularity decreases, μ = 0.15), there are more bridge links that connect
two communities which can make it’s easier to spread information to another
community so that will enhance global spreading. While when μ was set too big
(μ = 0.4), the ensemble network will almost be random. In this case, it’s like we
just randomly select seeds in the whole network, which will disperse the ability
to spread information out because the accumulation of successful transmission
was suppressed here. From results shown here, strong community structure can
enhance local contagion while suppress global contagion. The most interesting
finding here is for certain strength range of community structure, it will enhance
global contagion (μ = 0.15). In depth, Figure 3 shows the detailed situation
of final adopters in relationship with number of initial seed and free parameter
μ. The phase diagram can be classified into three cases: no cascade, local cas-
cade (information only adopted by individuals in originating community) and
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global cascade (information was spread out to another community from the orig-
inating community). Clearly, number of final adopters is in positive correlation
with number of initial adopters. While the relationship between number of final
adopters and μ is very complex. The most interesting here is for ρ0 in certain
range (0.02 < ρ0 < 0.03), certain range of community structure will enhance
global cascade (0.05 < μ < 0.2). While strong community structure (μ < 0.05)
can only enhance local cascade. That’s to say, if enough seeds were initialized,
optimal strength of community structure exist for global cascade.

5 Conclusion and Discussion

Our analysis shows that in other social contagion model rather than classical
linear threshold model there still exists optimal strength of community struc-
ture for facilitating global cascades. Unlike previous researches which point out
that community structure can only enhance or hinder spreading contagion, our
results show one picture that clearly demonstrate the complex influence of com-
munity structure in social contagion. Networks with strong community structure
will enhance local contagion while hinder global contagion due to less links that
connect different communities. While for networks with optimal strength of com-
munity structure, information can then spread outside the community effectively,
thus enhance global contagion. Notice that the main contribution of this arti-
cle does not lie in the finding. Instead, the significance of this work is to raise
the serious question about the influence of community structure in social conta-
gion. To us, this is a very important yet not completely understood problem in
social contagion. As a starting point, we give some preliminary analysis, which
is of course far from a satisfactory answer to the question. In fact, we think an
in-depth understanding of this problem may shed light on this issue.

Acknowledgments. We thanks Ming Tang and Wei Wang for helpful discussion and
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date in Academic Research by UESTC: YBXSZC20131035.
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Abstract. In this paper, we investigate the problem of maximizing the
difference between two partitions (or clusterings) of a complex network.
Particularly, given the input network represented as an undirected graph
and its initial partition X, we are interested in finding a partition Y
such that the difference between X and Y , evaluated by the Variation
of Information measure, is maximized. This problem is important in
understanding fundamental properties of not only the network’s struc-
tural organization (via its clusters) but also the internal and mutual
interactions among those structures in response to adversarial perturba-
tion. We propose an approximation algorithm to define the new partition
Y with a guarantee ratio of 1−α−β (where α and β are constants derived
from the network’s initial partition), and present further optimization to
improve the quality of the suggested approach.

1 Introduction

Partitioning, or clustering, a network is the process of grouping or rearranging
the network’ elements, commonly called its nodes and edges, into different sub-
sets such that the elements in each subset are somehow similar to each other
and elements in different subsets are disimilar in some sense. The fields of parti-
tioning algorithms for classification in data mining and finding network’ clusters
in complex systems are mature and well-developed with many different methods
and techniques proposed in the literature [1][2].

In this paper, we look at this classical clustering problem from a different
angle: Instead of defining another network paritioning algorithm, we are inter-
ested in finding out the network’s partition that maximally differs from its orig-
inal clustering. Specifically, given a complex network and its initial partition X,
we are interested in finding another partition Y of the network which is as much
different from X as possible, i.e., the clustering difference between X and Y are
maximized. We call this problem Partition Difference Maximization (PDM).
PDM is fundamental in understanding not only the network’s structural orga-
nization (via its clustering structures) but also the internal and mutual interac-
tions among those structures in response to adversarial perturbation. A thorough
analysis of PDM, as a result, will provide insights into how much the network
entities can change as well as how different they can potentially be, compared to
c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 148–159, 2015.
DOI: 10.1007/978-3-319-21786-4 13
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the original structures, in the worst-case scenario. Therefore, this problem lends
itself effectively to the analysis of various important security aspects of com-
plex networked systems such as network generation [3][4] community structure
and network vulnerability [5][6], critical node selection [7], cascading failure [8],
information diffusion in social networks [9][10].

In order to compare two partitions of a network, we need a measure that can
evaluate either the similarity or dissimilarity between them. There are many dif-
ferent measures for this purpose suggested in the literature and they are generally
classified into classes of pair-counting based and set-matching based measures
[1]. Recently, information theoretic criteria have formed another fundamental
class, and have been employed widely due to their strong mathematical foun-
dation and the ability to distinguish non-linear similarities. Popular methods
in this context include Entropy, Mutual Information (MI), Normalized Mutual
Information (NMI), Adjusted-for-Chance and many other measures (see [11] for
a summary). The seminal work of Meila [12] proposes Variation of Information
(VI), a potential information theoretic measure to evaluate the dissimilarity
between two partitions of a network. Essentially, VI aggregates the amount of
lost and gained information about the first and second partitions when going
from one to another. There are many advantages of using this metric (Section
3): (1) VI is a real metric on the space of all possible partitions of G; (2) VI is
bounded by log N and can be normalized to be in the range of [0, 1] using this
quantity; (3) Small changes in a partition result in small VI-distances; and (4),
VI can be efficiently computed in linear time. Therefore, this will be the measure
we utilize for evaluating partitions in this paper.

In a nutshell, our contributions in this paper are:

– We investigate PDM, the problem of maximizing the Variation of Informa-
tion between two partitions of a complex network: Given a network and its
current partition X, PDM asks for another partition Y such that the dissim-
ilarity V I(X,Y ) between X and Y is maximized. We believe that this is the
first effort in optimizing VI as a measure for evaluating clustering difference.

– We propose an approximation algorithm to define the new partition Y with
a performance guarantee ratio of 1 − α − β, where α and β are constants
defined by the input partition X.

– We provide further optimization taking into account the marginal gains
obtained in each round. This provides a better result in terms of solution
quality. However, we are not yet able to obtain a better approximation guar-
antee for this fine-tuned algorithm rather than the ratio of 1 − α − β.

(Paper organization) In Section 2, we review the studies related to our work.
Section 3 describes the notations, VI formulation and the main problem def-
inition. Section 4 presents our proposed algorithms, their analysis and further
optimization to fine-tune the objective function VI. Lastly, we conclude the paper
in Section 5.
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2 Related Work

Our work is mostly related to the category of Alternative Clustering Analysis
in data mining with the common spirit of alternating given clusters in order to
find a new clustering with better quality and of least similarity to the given ones
[13]. A board classification of methods in this light of research include Unguided
Generation with Meta Clustering [14], Eigenvectors of the Laplacian Matrix [15],
the Decorrelated k-means and Convolutional EM [16], CAMI [17], etc. On the
other hand, the Guided Generation with Constraints include MAXIMUS [18],
Constrained Optimization Approach [19], ADFT [20], etc. Interested readers
can see [13] for a complete survey.

Another approach for alternative clustering is based on information theoretic
principles. This is mostly related to our work. The main difference of studies in
this light of research is the objective function: the measure to quantify the sim-
ilarity/dissimilarity between partitions. For instance, [21] proposed Conditional
Information Bottleneck (CIB) and Ensembles based on the Mutual Information
(MI) between clusters. In the same vein, NACI algorithm proposed by [22] also
based on this concept of MI. Other popular methods are based on MI difference
[23], NMI difference [5] and the Adjusted Mutual Information [11].

Among those methods, the most limitations that the utilized measures suffer
are (1) None of them are real metrics on the space of possible clusters (2) They
are non-monotone, i.e., they are not sensitive to any small change to the clusters
(3) There do not exist any approximation guarantees for the optimization of these
objectives. The seminal work of Meila [12] proposed Variation of Information,
a potential information theoretic measure to evaluate the dissimilarity between
two partitions of a network, that overcomes these limitations. This is the measure
that we will use in this paper, and we believe that our work presents the first
effort in optimizing VI as a measure for evaluating clustering difference.

3 Preliminary

In this section, we first describe the model and notations that will be used in
the paper. We then describe the Variation of Information (VI) as a metric to
evaluate the dissimilarity between two partitions. Finally, we define in detail the
Partition Difference Maximization problem - our main focus in the paper.

3.1 Notations

Consider a complex network represented as an undirected graph G = (V,E)
where V is the set of nodes (or vertices) and E is the set of connections (or
edges). Let X and Y be two partitions of V into disjoint clusters, i.e.,

X = {X1,X2, ...,Xp},

and respectively,
Y = {Y1, Y2, ..., Yq},
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where Xi, Yj ⊆ V and

∪p
i=1Xi = V and Xi ∩ Xs = ∅,

for all indices 0 ≤ i, s ≤ p.
Similarly,

∪q
j=1Yj = V and Yj ∩ Yt = ∅,

for all indicies 0 ≤ j, t ≤ q.
For each i ∈ [1, p] and j ∈ [1, q], let xi and yj be the sizes of Xi ∈ X and

Yj ∈ Y , i.e., xi = |Xi| and yj = |Yj |. Furthermore, without loss of generality, we
assume that clusters in X are sorted by sizes:

x1 ≤ x2 ≤ ... ≤ xp.

For each pair of indicies (i, j) ∈ [1, p] × [1, q], let rij be the number of nodes
in the intersection of Xi and Yj , i.e., rij = |Xi ∩ Yj |. Finally, denote by N the
number of nodes in V , i.e, N = |V | and by P(V ) ≡ {X|X is a partition of V }
the space of all possible partitions of V , respectively.

With these above notations, the following properties hold true for any net-
work G = (V,E):

1.
p∑

i=1

xi =
q∑

j=1

yj = N.

2.
p⋃

i=1

(Xi ∩ Yj) = Yj ∀j ∈ [1, q], and
q⋃

j=1

(Xi ∩ Yj) = Xi ∀j ∈ [1, q].

3.
q∑

j=1

rij = xi,

p∑

i=1

rij = yj , and
∑

ij

rij = N.

3.2 Variation of Information

In order to evaluate the dissimilarity between partitions of V , we utilize Vari-
ation of Information (VI), a concept in Information Theory suggested in [12].
Conceptually, V I(X,Y ) is the total of two quantities: the conditional uncertainty
about X in the presence of Y , and the same type of uncertainty about Y in the
presence of X. As we show later on, this equals the aggregation of the amount
of information about X (that we lose) and the amount of information about Y
(that we still have to gain) when going from partition X to Y . V I(X,Y ) is 0 if
X and Y are identical structures, and is lnN if X and Y are completely different
partitions, e.g., X = V and Y contains exactly N singleton clusters. Formally,
given two partitions X and Y of V , the dissimilarity V I(X,Y ) between X and
Y is defined as

V I(X,Y ) = H(X) + H(Y ) − 2I(X,Y ), (1)

where H(X),H(Y ) and I(X,Y ) are the entropy and Mutual Information of X
and Y , respectively [24].
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To formulate H(X),H(Y ) and I(X,Y ), we start out by considering cluster
assignments Xi and Yj , where Xi and Yj are considered as cluster labels of a node
in X and Y , respectively. Without loss of generality, we can further assume that
Xi and Yj are also values of two random “variables” X and Y , with individual
distribution:

P (Xi) = P (X = Xi) = xi/N,

P (Yj) = P (Y = Yj) = yj/N,

and the joint distribution:

P (Xi, Yj) = P (X = Xi;Y = Yj) = rij/N.

The entropy (or uncertainty) of X and Y is defined below. Note that we will
use the natural base e for all logarithmic functions hereafter:

H(X) = −
p∑

i=1

P (Xi) log P (Xi) = −
p∑

i=1

xi

N
ln

xi

N
,

H(Y ) = −
q∑

j=1

P (Yj) log P (Yj) = −
q∑

j=1

yj

N
ln

yj

N
.

The Mutual Information I(X,Y ) is defined as

I(X,Y ) =
p∑

i=1

q∑

j=1

P (Xi, Yj) log
P (Xi, Yj)

P (Xi)P (Yj)
=

p∑

i=1

q∑

j=1

rij

N
ln

Nrij

xiyj
.

Finally, V I(X,Y ) defined in Eq. (1) is written as:

V I(X,Y ) =
1
N

( p∑

i=1

xi ln xi +
q∑

j=1

yj ln yj − 2
p∑

i=1

q∑

j=1

rij ln rij

)
. (2)

Eq. (2) reveals that V I(X,Y ) essentially aggregates the amount of informa-
tion about X (that we loose via the negative term of rij ’s) and the amount of
information about Y (that we still have to gain via the second term of yj ’s) when
going from partition X to Y .

There are many advantages of using VI over other measures for evaluating
partition difference [12]: (1) First and foremost, VI satisfies non-negativity, sym-
metry and subadditivity, indicating that it is a real metric on P(V ) - the space
of all possible partitions of G. Hence, VI is ideal to evaluate partition difference;
(2) VI is not bounded by a constant value. Rather, it is bounded by lnN and
can be normalized by this quantity; (3) The product of two partition X and Y
is “colinear” with the two partitions. This implies small changes in a partition
result in small VI-distances; and lastly, (4) VI can be efficiently computed in an
order of O(N + pq), which can be regarded as linear time in term of N .
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3.3 Problem Definition

With all the necessary notations taken into account, our main problem is defined
as follow:

Definition 1 (Partition Difference Maximization - PDM). Given a net-
work represented as an undirected graph G = (V,E) and its initial disjoint par-
tition X = {X1,X2, ...,Xp}, find another disjoint partition Y of V such that the
dissimilarity measure V I(X,Y ) is maximized, i.e., find the partition Y such that

Y = argmax
Y ′∈P(V )

{V I(X,Y ′)}.

In an essence, PDM problem asks for a partition Y ∈ P(v) which incurs
a maximum dissimilarity to X measured by V I(X,Y ). The solution to PDM
will provide valuable insights to a larger set of problems such as network struc-
tural vulnerability [25][5] or critical node detection [6]. Unlike the case of other
measure, such as Normalized Mutual Information, the trivial all-singleton sce-
nario for Y (i.e., every node is a cluster of itself in Y ) does not always yield
the maximal dissimilarity in VI. Rather, we are interested in the case where the
information contained in clusters of Y spreads out more while barely overlaps
with clusters of X (which, in turn, makes yj ’s big and rij ’s small in Eq. (2)).

Many variations of problems in this direction can also be defined based on
PDM. For instance, when X and Y are overlapping partitions (i.e., clusters in
X (and in Y ) can overlap), or in a different angle, finding partition Y on the
graph G after some of its critical nodes are deleted under adversarial attacks.
Vice versa, another variation can include the finding of k critical nodes of G
such that the clustering Y , defined by some given partitioning methods on G
excluding these k nodes, are of maximal difference from X.

4 Method

In order to find the partition Y that incurs the maximum dissimilarity V I(X,Y ),
it is important to investigate the behavior of VI measure and also its properties
in general. Recall that, given the network G = (V,E) and two partitions X and
Y , the dissimilarity V I(X,Y ) (Eq. (2)) is written as

V I(X,Y ) =
1
N

( p∑

i=1

xi ln xi +
q∑

j=1

yj ln yj − 2
p∑

i=1

q∑

j=1

rij ln rij

)
.

Since xi’s and N are given as parts of input parameters, we treat them as con-
stants hereafter. As a result, maximizing V I(X,Y ) is equivalent to maximizing
the two later terms. This is also our main objective to optimize

max
{ q∑

j=1

yj ln yj − 2
p∑

i=1

q∑

j=1

rij ln rij

}
(3)
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Note that although
∑q

j=1 yj ln yj is a convex function, −2
∑p

i=1

∑q
j=1 rij ln rij ,

on the other hand, is a concave function. This fact makes the main objective nei-
ther convex nor concave. At a glance, the optimization presented in Eq. (3)
requires yj ’s to be big meanwhile keeping the overlaps rij as small as possible.
However, the bigger the values yj ’s are the larger the clusters Yj ’s are. Thus,
the higher chance Yj ’s will overlap with clusters Xi’s in X, implying potentially
big values of rij ’s. Moreover, since rij = |Xi ∩ Yj | involves both clusters Xi and
Yj , the last term in Eq. (3) penalties the main objective significantly if Yj and
Xi heavily overlap. This is the main source difficulty in globally optimizing the
objective function.

4.1 Algorithm

We next describe our first algorithm trying to maximize V I(X,Y ). The idea
behind our approach is simple, intuitive yet effective: since we are penalized
by the overlaps of Xi’s and Yj ’s, let us try not to get penalized, i.e., we will
choose Yj in such a way that yj = |Yj | is as large as possible meanwhile keeping
rij ln rij = 0. This requires rij has to be exactly equal to 1 for all pairs (i, j).

To satisfy this requirement, we will first mark all nodes in V unassigned.
We then select exactly one unassigned node from every cluster Xi ∈ X, and let
Y1 be the set of selected nodes. By this selection, the newly created cluster Y1

contains exactly p nodes from X1,X2, ...,Xp and satisfies ri1 = |Xi ∩ Yj | = 1 for
all i ∈ [1, p]. We continue defining Y2, Y3, etc, in this very same manner until all
nodes in Xp−1 are assigned to new clusters in Y . Lastly, we make each left-over
unassigned node in Xp a singleton cluster in Y . By doing in this way, every
cluster Yj of Y spreads out evenly over all clusters of X, and has exactly one
common element with any cluster Xi. This ensures rij = 1 for all pairs of indices
(i, j). This idea leads us to the approach presented in Alg. 1.

Algorithm 1. A bounded solution to PDM
Input: Network G = (V, E) and a disjoint partition X = {X1, X2, ..., Xp} of V;
Output: A disjoint partition Y of V ;

1. Mark all nodes in V as “unassigned”, set Y = ∅ and q = 1.
2. Select an unassigned node (if there is any) in each set X1, X2, ..., Xp. Mark all the
selected nodes “assigned” and include them in Yq.
3. If there are still unassigned nodes, increase q and go back to Step 2.
4. If all nodes are assigned, return partition Y = {Y1, Y2, ..., Yq}.

4.2 Performance Analysis

We next analyze the performance of the suggested approach. We will show that
Alg. 1, despite its simple nature, achieves a constant approximation factor that
depends only on the input parameters, and is a very efficient approach with linear
time and space complexity. An an algorithm said to obtain an approximation
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guarantee of ρ(n), (or equivalently is bounded by ρ(n) if) for all input of size n,
the cost c of the solution obtained by the algorithm is within a factor ρ(n) of
the cost of an optimal solution [26].

Lemma 1. Alg. 1 produces a partition Y containing q = xp clusters, among
which there are xp−1 real clusters of sizes greater than 1. Moreover, all clusters
Yj ∈ Y satisfy rij = 1 for all pairs (i, j) ∈ [1, p] × [1, q].

Proof. The proof of this proposition follows naturally from the algorithm and is
omitted here.

Lemma 2. Let a ≥ 3 be a constant. Then f(x) =
(

a
x

)x is an increasing function
for x ∈ (0, 1].

Proof. Rewrite f(x) = axx−x. Taking the derivative of f(x) yields

df

dx
= axx−x(ln a − ln x − 1) > 0

for all x ∈ (0, 1] and a ≥ 3. Thus, the conclusion follows.

Theorem 1. Given the network G = (V,E) and its initial partition X, Alg. 1
provides a partition Y of V satisfying

max
{

2
N

, (1 − α − β) ln N

}
≤ V I(X,Y ) ≤ ln N

where N = |V |, α = xp−xp−1
N ∈ [0, 1) and β = logN

p
2 are constants derived from

the input parameters. In order words, Alg. 1 achieves a constant approximation
guarantee for PDM problem.

Proof. We first give an estimate for
∑p

i=1 xi ln xi. Using Log Sum inequality [24]
yields

p∑

i=1

xi ln xi ≥ ( p∑

i=1

xi

)
ln

( ∑p
i=1 xi

)

p
= N ln N − N ln p.

Due to Lemma 1, the last term involving rij ’s in Eq. (3) is canceled (because
ln rij = 0). Thus, a lower bound on

∑q
j=1 yj ln yj is of desire. We again utilize

the convexity of x ln x function and Log Sum inequality to yield
q∑

j=1

yj ln yj =
∑

yj>1

yj ln yj ≥ ( ∑

yj>1

yj

)
ln

(∑
yj>1 yj

)

xp−1

Note that we divide by xp−1 instead of xp for the number of clusters in Y since
there are xp−1 non-singleton clusters in Y (Lemma 1). To find the summation
of non-singletons yj ’s, we compute
∑

yj>1

yj ln yj = px1 + (p − 1)(x2 − x1) + (p − 2)(x3 − x2) + ... + 2(xp−1 − xp−2)

= 2xp−1 + (x1 + x2 + ... + xp−2) = N − (xp − xp−1)
= (1 − α)N.
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Thus,
∑

yj>1

yj ln yj ≥ (1 − α)N ln
(1 − α)N

xp−1

= (1 − α)N ln N − N ln
(

xp−1

1 − α

)1−α

.

Hence, the main objective in Eq. (2) is simplified to

V I(X,Y ) =
1
N

( p∑

i=1

xi ln xi +
∑

yj>1

yj ln yj

)

≥ (2 − α) ln N − ln p

(
xp−1

1 − α

)1−α

Due to Lemma 2,
(

xp−1
1−α

)1−α

is a decreasing function for α ∈ [0, 1), and will

attain its maximum value xp−1 at α = 0. Moreover, since xp−1 ≤ xp+xp−1
2 ≤ N

2 ,
we can estimate V I(X,Y ) by

V I(X,Y ) ≥ (2 − α) ln N − ln(p × xp−1)

≥ (2 − α) ln N − ln
(

p
N

2

)

= (1 − α) ln N − ln
p

2
= (1 − α − β) ln N

On the other side, it has been show by Melia [12] that V I(X,Y ) is upper
and lower bounded by lnN and 2

N in general, respectively. Hence, the conclusion
follows.

4.3 Complexity Analysis

It is straightforward that Alg. 1 visits every node in the network exactly once in
order to produce the resulting partition Y . Thus, this algorithm is O(N), i.e., is
of linear time and space complexity.

Remark

The analysis of the suggested approach implies that if the sizes of the largest and
second largest clusters in X are not very different from each other, i.e., (xp−xp−1)
approaches 0, then the proposed approach is suboptimal (only different by a
constant factor logN

p
2 ) in VI optimization. The derived guarantee factor also

mathematically emphasizes the following intuitions that have been observed in
prior studies [25][5]: the sizes of the tops clusters as well as the number of clusters
in the initial partition do contribute significantly into the structural difference
of network’ clusterings.
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Algorithm 2. A bounded solution to PDM with marginal gain
Input: Network G = (V, E) and a disjoint partition X = {X1, X2, ..., Xp} of V;
Output: A disjoint partition Y of V ;

1. Mark all nodes in Xi sets as “unassigned”, Y = ∅ and q = 1.
2. Select an unassigned node (if there is any) in every set X1, X2, ..., Xp. Mark all
the selected nodes “assigned” and put them in Yq.
3. For the current cluster Yq containing yq nodes, select z∗ (Eq. (4)) more “unas-
signed” nodes from the largest cluster Xp and include them to Yq.
4. If there are still unassigned nodes, increase q and go back to Step 2.
5. If all nodes are assigned, return partition Y = {Y1, Y2, ..., Yq}.

4.4 Further Optimization

As the original approach presented in Alg. 1 tries to zeroes out the penalty terms
ln rij ’s, it assigns left-over “unassigned” nodes in Xp (the largest cluster of X)
to singleton clusters. This approach, however, disregards the potential marginal
gains that incur when the size of the largest dominates the size of the second
largest cluster in the network, i.e., when xp � xp−1. These marginal gains can be
achieved by further increasing the current yj and pay the penalty rpj specifically
for only Xp, as long as the marginal gains keep increasing positively.

Mathematically, let z be the number of more “unassigned” nodes that we
can select from Xp to include in Yj . The marginal gain for each cluster Yj can
sequentially be formulated as a function of z:

g(z) = (yj + z) ln(yj + z) − 2(z + 1) ln(z + 1).

Note that because we only select more nodes from Xp, we have to pay the
penalty only for rpj where j is the currently selected cluster. In this context, Alg.
1 corresponds exactly to the case of g(0). Our improvement objective, therefore,
is to further maximize g(z) for every cluster Yj at Step 2 of Alg. 1.

To find the maximum value of g(z), we compute

dg

dz
= ln

yj + z

e(z + 1)2
,

where e is the base of the natural Logarithm function. We then solve dg
dz > 0 for

z. This yields the range z ∈ [0, z∗] where

z∗ =
⌊

1 − 2e +
√

4e(yj − 1) + 1
2e

⌋
, (4)

In this range of z, g(z) is an strictly increasing function, and attains the
maximum value at g(z∗), which is the optimal marginal gain for each cluster
Yj . This further optimization leads us to the second approach with the benefit
of marginal gains. Step 3 in Alg. 2 represents this change. Unfortunately, we do
not yet have a way to further analyze and provide an estimate for this marginal
gain over the prior approach.
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5 Conclusion

We study PDM, which is the problem of maximizing the difference between two
partitions, or clusterings, of a network. This problem is crucial in understand-
ing fundamental properties of network’ structures and their internal and mutual
interactions in response to adversarial perturbation. We propose an approxima-
tion algorithm to define the new partition Y with a constant guarantee ratio
of 1 − α − β, and present further optimization to improve the quality of the
suggested methods.
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Abstract. Point-of-interest (POI) recommendations aim at identifying
candidate POIs and ranking them in a descent order according to the
probabilities of a user visiting them. The paper takes the scalability of
information and user personalization into consideration to improve POI
recommendation service, and proposes a personalized POI recommenda-
tion method based on user check-in behaviors in online social networks.
First, the user’s travel experience in the target region is used to reduce
the range of candidate POIs. At last, the proposed method ranks the
candidate POIs to meet the user’s personalized need by combining the
user preference, attraction of a POI on the target user, and social recom-
mendations from friends. Experimental results show that the proposed
method is feasible and effective.

Keywords: POI recommendation · User preference · Attraction of a
POI · Social recommendation

1 Introduction

With the combination of mobile phone and Internet, the location-based services
become more and more attractive. If users login the location-based social web-
sites and send some messages, their check-in data are generated and their friends
can know users’ current positions and behaviors in an electronic map in addition
to feelings. The user’s check-in behavior is proven more susceptible to the social
link and geographic position [2,8]. For example, based on the check-in data from
Gowalla website, the research shows that more than 30% of new places visited
by a user have been visited by a friend or friends of friends [1,2]. Hence, studying
users’ check-in behaviors can contribute to Point-of-interest (POI) recommen-
dation. A POI is a terminology referred in a geographic information system for
denoting a concrete entity such as a restaurant or gym. The POI recommenda-
tion has been one of important issues in location-based services.

The main tasks of the POI recommendation include how to identify candi-
date POIs for a target user and rank the POIs according to the probabilities of
a user visiting these POIs. However, the scalability of information and user per-
sonalized needs have been the main obstacles for POI recommendation methods.
c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 160–171, 2015.
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Hence, the paper takes the scalability of information and user personalization
into consideration to raise the performance of POI recommendations.

The POI recommendation first needs to acquire the user’s current location
and personalized characteristics. As for the representation of the geographic
location, the location can be described in different granularities. For example, a
POI is often specified by the geographic longitude and latitude in a geographic
information system. In addition, a street or block can also be used to determine
the user location. The paper analyzes the influence of a geographic location from
different geographic levels. For example, the regions frequently visited by users
are also identified for evaluating the geographic influence of an unvisited POI.
In terms of the personalization, the travel characteristics of users include their
preferences and travel experience. The user check-in behaviors in online social
websites not only reflect the travel characteristics of users, but also reflect the
influences of other factors such as the popularity of a POI and social link. Fol-
lowing the analysis, we propose a personalized POI recommendation method
based on user check-in behaviors in online social networks. The rest of the paper
is organized as follows. Section 2 introduces the related work. Section 3 provides
a POI recommendation strategy by analyzing the travel characteristics of dif-
ferent kinds of tourists. Section 4 elaborates the proposed POI recommendation
method. Section 5 presents the experimental results for validating the perfor-
mance of the proposed method. Section 6 gives conclusions and future work.

2 Related Work

The check-in data generated by users in the location-based social network record
their trajectories in geographic coordinates, which is the most obvious difference
from a traditional online one. Recently, there is a great progress for person-
alized POI recommendations. The links between entities in the location-based
social network, such as social ties between users, interactions among users and
POIs, and proximity between POIs, are extracted for POI recommendations. For
example, the user-based collaborative filtering method speculates the preference
of the target user from similar users. Those POIs that are popular with similar
users are more likely to be recommended to the target user [11]. Symeonidis and
colleagues found that users prefer to accept the opinions from their friends [7].
Based on the social influence, Ye and colleagues proposed a friend-based col-
laborative filtering approach for POI recommendations [9]. However, the data
scarcity is obvious for collaborative filtering methods because users can seldom
visit a great number of POIs. Especially, most users often live at the same area
with their friends. Hence, the data scarcity has a great impact on collaborative
filtering methods with respect to those unvisited POIs. Ye and colleagues found
that users prefer to visit POIs near those that they have visited [10]. The distance
between POIs is consequently taken into consideration [14]. In order to overcome
the data scarcity and meet personalized needs of users, more researchers evaluate
the probability of a user visiting a POI from the user preference, popularity of a
POI and social influence [12,13]. Based on the geographic and social influences,
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Zhang and colleagues evaluated the sequential influence by the location-location
transition graph and additive Markov chain to recommend POIs [15]. Following
such a multi-factor recommendation strategy, this paper not only considers the
popularity of a POI but also evaluates the geographic influence of the POI on
the target user. In addition, the user’s forgetting factor is also taken into account
when the social influence is evaluated.

3 Problem Analysis and Strategy

This section lays emphasis on how to implement the personalized information
organization and management that aim to facilitate the identification and rank-
ing of POIs. Geographic locations and user characteristics are essential require-
ments for POI recommendations. Hence, POI recommendations must first focus
on the identification of a user’s location and identity. The following conditions
are taken into consideration: 1) how does a tourist choose a POI in an unfamiliar
region when the tourist takes a short trip? 2) how does a tourist choose a POI
in a familiar region when the tourist takes a short trip? 3) how does a tourist
choose a POI when the tourist takes a long trip?

As for above conditions, the moving trajectories of a tourist need to be ana-
lyzed from the macroscopic and microscopic views. First, it is undoubtedly that
the local people are more proficient in finding those local interesting POIs than
newcomers. Meantime, newcomers often pay more attention to the popularity of
a POI or opinions from their friends. Hence, the trajectories of local people are
often concentrated in their living and working areas, and the trajectories of the
newcomers are often concentrated around the famous scenic spots. At last, each
tourist has different preferences on different POIs, and the geographic location
of the same POI has different impacts on different tourists. Based on the above
analysis, it is obvious that a tourist’s experience and preferences play an impor-
tant role in tour planning. Hence, we have following hypotheses: 1) when a user
visits a familiar region, the user is more likely to visit those POIs near familiar
ones; 2) when a user arrives in an unfamiliar region, the user is more likely to
visit the POIs that are either famous or highly recommended by friends.

Based on the above hypotheses, it is important to identify the familiar regions
of the target user. The paper first partitions the target region according to the
distribution of POIs, and then those sub-regions are ranked by evaluating user’s
travel experience. At last, the user’s familiar regions are identified. In other
words, the candidate POIs are identified according to the user’s travel expe-
rience. As shown in Figure 1, the candidate POIs are limited in the familiar
region if a local person visits a familiar region. Oppositely, the candidate POIs
are limited within a certain radius when a newcomer or a local person visits
an unfamiliar region. Wang and colleagues found that the new POI visited by
a user is often located within 10 kilometers around those POIs once visited by
the user [8]. Meantime, the distribution of POIs can reflect the range of human
activities. Hence, the paper implements the personalized information organiza-
tion and management through the granularity of the geographic partition.
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The POI recommendation methods consider more factors so that those meth-
ods are more and more sophisticated. In order to improve the performance of
POI recommendations, the work flow is separated into the offline and online
phases. The online work includes the identification and ranking of candidate
POIs for the user’s need. The proposed method ranks the candidate POIs to
meet the users’ personalized needs by combining the user’s preference on the
POI, attraction of the POI on the target user, and social recommendations from
friends. Hence, as shown in Figure 2, the offline work is as follows: 1) extract the
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information oriented to the whole region such as the user preference, popularity
of the POI and social recommendation; 2) partition the target region into the
sub-regions and identify the familiar sub-regions for each user; 3) rearrange the
information oriented to the user’s familiar sub-region from original information
set. After identifying users’ personalized needs, we can do the following online
work: 1) judge if the user can stay in the visited region according to the current
trajectory and then identify the candidate POIs; 2) compute the recommenda-
tion degree of each candidate POI and rank those POIs.

4 POI Recommendation Based on User Check-in
Behaviors

The proposed method first identifies the candidate POIs according to the user’s
current location and travel experience. At last, the POIs are ranked by combining
the preference of the targeted user on the POI, the attraction of the POI for the
target user, and social recommendations from friends. The process is presented
in Algorithm 1.

Algorithm 1.. POI recommendation
Input: u id is the target user, loc id is the current location of u id.
Output: Li is POI recommendation list for u id.
1. Extract the information oriented to the target region such as popularity of POI list

PL, user preference list HL and social recommendation list FL;
2. Partition the target region and identify the familiar sub-regions for each user;
3. if current trajectory of u id is concentrated in familiar region A then
4. Retrieve all POIs that are not more than given miles away from loc id in A as

the candidate POI set Candiates;
5. Rearrange the related information oriented to A, and get popularity of POI list

PLi, user preference list HLi and social recommendation list FLi;
6. else
7. Retrieve all POIs within the radius of given miles around loc id as the candidate

POI set Candiates;
8. end if
9. for POI pj in Candidates do

10. Compute the geographic influence of pj and then evaluate the attraction of pj

on u id by combining the geographic influence and popularity of pj ;
11. Compute the recommendation of pj for u id by combing the preference of u id

on pj , attraction of pj on u id and social recommendation of pj for u id;
12. end for
13. Rank the candidate POIs in a descent order, and choose the top N POIs to con-

stitute Li;
14. Return Li.

4.1 Identification of Candidate POIs

Based on the strategy mentioned in Section 3, it is important to judge if the mov-
ing trajectory of the target user is concentrated in corresponding familiar regions.
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Hence, the paper needs to evaluate user’s travel experience in different regions in
advance. If a user stays longer in a region, the user is likely to have high experi-
ence. Zheng and colleagues adopt the idea that a tourist can have high travel expe-
rience if the tourist visits more famous places in the given region [17]. Meantime,
the region is more likely to be familiar one for the target user if the region includes
most of POIs visited by the user. The paper adopts Zheng and his colleagues’ strat-
egy to consider the relation between the travel experience and the popularity of
a POI. In addition, the recency and frequency of user check-in behaviors are also
counted to evaluate user’s travel experience.

The popularity of a POI is often measured by using information entropy
presented as follows [3]:

E(li) = −
∑

u∈Ui

(
Cu,i∑

u∈Ui
Cu,i

× log
Cu,i∑

u∈Ui
Cu,i

) (1)

where li denotes the ith POI in region A, Ui denotes all users who have visited
li, and Cu,i denotes the number of visiting li of user u. The information entropy
is low if the POI belongs to a private place. In other words, the popularity of
the POI is low. Based on the information entropy, the travel experience of user
u in region A is evaluated by:

ACu,A =
∑

li∈A

Cu,i∑

j=1

e−�tj × E(li) (2)

where �tj denotes the time interval between the date when user u visited li
for the jth time and current time. Owing to different travel patterns, the paper
categorizes users into two categories, namely local people and newcomers. As for
local people, their check-in behaviors are more likely to happen in their living
and working areas [10]. As for newcomers, their check-in behaviors are often
concentrated in scenic spots. Hence, the paper chooses two most familiar regions
for a local person and chooses one most familiar region for a newcomer according
to their travel experience.

The distribution of POIs is irregular because of the dispersed population and
other factors. Meantime, the density-based spatial clustering of applications with
noise (DBSCAN) method is often used to analyze human activities [16]. Hence,
the proposed method adopts the DBSCAN method to partition the target region.
The DBSCAN method first identifies the core point of each cluster according to
the minimum of sample points within a given distance. Then related core points
whose distance from the target point is not more than the given distance are
clustered. Meantime, the corresponding clusters of related core points are merged
into a new cluster. Based on the DBSCAN method, POIs in the target region are
clustered into different sub-regions. However, some famous POIs such as some
historical places often lie in the suburbs so that those POIs are possible to be
classified into the isolated points. As for such a problem, the proposed method
clusters those isolated POIs again, which is stated as follows: first, the isolated
POIs are ranked in a descent order; then the top one POI is selected as the center
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of a new cluster and other POIs within the given radius are classified into the
new cluster. The above process is repeated until all isolated POIs are classified
into a corresponding cluster.

4.2 User Preference

It is very important to evaluate the user’s preference on POI recommendations
because more researchers find that the influence of the user’s preference is greater
than the ones of other factors [10,12,13]. The number of a user visiting the same
POI can reflect the user’s preference on such a POI. Meantime, the spatio-
temporal distribution of visiting the given POI and the total number of users
who visit the same POI can also reflect the user’s preference. Namely, the target
user is more likely to have a strong preference on a POI if the user frequently
visits the POI and other users seldom visit that POI. According to the strategy
mentioned above, Wang and his colleagues evaluate the user’s preference by the
following equation [5]:

Pre(uk, li) =
Ck,i∑

lj∈Lk
Ck,j

× dk,i
dk

× log

∑
u∈Ui

Cu,i

|Ui| (3)

where Ck,i denotes the number of user uk visiting POI li, Lk denotes the total
POIs visited by user uk, lj denotes the jth POI in Lk, dk,i denotes the number
of days when uk visited li, dk denotes the number of days when uk stayed in the
target region, Ui denotes all users who have visited li, u denotes a given user in
Ui, and |Ui| denotes the total number of users who have visited li. Equation 3
is also adopted by our method.

4.3 Attraction of a POI

A popular POI is more likely to be chosen for the users who do not visit it.
Meantime, users prefer to visit those POIs in their familiar regions. Hence, we
need to take the popularity and geographic influence of a POI into consideration.
In order to evaluate the geographic influence of a POI on the target user, the
distance between the candidate POI and visited one is counted. The geographic
influence of the POI is evaluated by the following equation:

D(uk, li) =
∏

lk∈Lk

e−dis(li,lk) (4)

where dis(li, lk) denotes the distance between POIs li and lk, Lk denotes all
POIs visited by user uk, and lk denotes the kth POI in Lk. If the user has a long
trip, the geographic influence of a newly visited POI is obviously small according
to Equation 4. Based on the popularity and geographic influence of a POI, the
attraction of POI li on user uk is computed by the following equation:

Pop(uk, li) = E(li) × Pre(uk, lj)
edis(li,lj)

× D(uk, li) (5)

where li = argminlk∈Lk
dis(li, lk), which is the nearest POI visited by uk in

terms of POI li.
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4.4 Social Recommendation

Friends can also influence the user’s choice. A user is more likely to visit POIs
visited by his/her friends [1,2]. The social influence used by the friend-based
collaborative filtering approach is defined by [9]:

Ruk,i =

∑
uj∈U ′

k
wj,k × Cj,i

∑
uj∈U ′

k
wj,k

(6)

where U ′
k denotes the friends of user uk, uj denotes the jth friend in U ′

k, Cj,i

denotes the count of user uj visiting POI li, and wj,k denotes the similarity
between users uj and uk. If two users share more same POIs, they are more
similar in terms of their interests. Based on this hypothesis, the interest similarity
between users is defined by Adam as follows [6]:

wj,k =
|Lj

⋂
Lk|

min(|Lj |, |Lk|) (7)

where |Lj

⋂
Lk| is the number of POIs visited by both uk and uj , |Lj | is the

total number of POIs visited by user uj , and min(x,y) is the minimum between
parameters x and y.

However, it is undoubtedly that the social influence will become weak with
the lapse of time. Hence, the forgetting factor needs to be considered. Follow-
ing the friend-based collaborative filtering approach [9], the social influence is
evaluated by:

Sr(uk, li) =

∑
uj∈U ′

k
wj,k × ∑Cj,i

m=1 e−�tm

∑
uj∈U ′

k
wj,k

(8)

where �tm is the number of time intervals between the date when user uj visited
POI li for the mth time and current time. Mao and colleagues find that two users
are easy to be friends if users live very closely [9]. Hence, friend set U ′

k includes
the friends of friends. Meantime, user moving trajectories are recorded in the
website so that the user can draw on those online records for a tour plan. Hence,
friend set U ′

k also includes the target user in our method.

4.5 POI Recommendation Model

The POI recommendation model is the linear combination of factors mentioned
above. The probability score of user uk visiting POI li is calculated by:

R(uk, li) = (1 − α − β) × Pre(uk, li) + α × Pop(uk, li) + β × Sr(uk, li) (9)

where parameters α and β range from 0 to 1, and the sum of α and β is not
more than 1. In order to properly tune above parameters, the evaluation results
of the user preference (Pre), entropy of a POI (E), attraction of a POI (Pop),
and social recommendations from friends (Sr) need to be normalized. Let Pre,
E, Pop, Sr be x, the normalization equation is defined as follows [4]:

norm(x) =
1

1 + e−x
(10)
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5 Experiments

Experimental data are from Gowalla website [1]. There are a total of 6442890
check-in records and 950327 social links generated by 196591 users from Febru-
ary 2009 to October 2010 in Gowalla. The experiment extracts 154803 check-in
records generated in Los Angeles by 6550 users. A check-in record is composed
of user ID, check-in time, longitude, latitude and location ID. A social link is
composed of user ID and friend’s user ID. In order to validate the performance
of the proposed method, the experiment observes the top N recommended POIs
for test users. Test data are composed of each test user’s last check-in location in
Los Angeles. 429 test users are satisfied with following conditions: 1) they have
more than 5 check-in records; 2) they have at least two check-in records for the
last trip; 3) the distance between last two check-in locations is not more than 5
kilometers. The precision and recall of the proposed method are observed, and
related equations are defined as follows [13]:

precision@N =

∑
u∈Ut

|Qu

⋂
Mu|

∑
u∈Ut

|Mu| (11)

recall@N =

∑
u∈Ut

|Qu

⋂
Mu|

∑
u∈Ut

|Qu| (12)

where Qu denotes the true check-in location for user u, Mu denotes the top N
recommended POIs for user u, and Ut denotes the test users. The parameter N
is set as 3, 5, 10, 20, 30 and 50 respectively. When the DBSCAN algorithm is
used, the minimum of sample points is set as 15 and the distance is set as 0.5
kilometer. The Los Angeles region is partitioned into 2256 sub-regions according
to the distribution of check-in locations.

The experimental data do not record the user’s identity so that the users need
to be categorized. The number of check-in records and number of days of visit-
ing POIs are counted to categorize users into the local people and newcomers.
According to users’ check-in patterns, the user category is judged by:

LR(u,A) =
ca(u,A)
ta(u)

× log(
cd(u,A)

10
+ 0.1) (13)

where ca(u,A) denotes the number of check-in records of user u in region A,
ta(u) denotes the total number of check-in records of user u in Gowalla dataset,
and cd(u,A) denotes the number of days when user u stayed in region A. The
time span of check-in data is 21 months. Given that a local user is so busy that
most of check-in behaviors happened on the weekend, the duration of check-in
behaviors should be more than 30 days. Hence, the user is classified into a local
person if the target user meets following conditions: 1) stay more than 30 days in
the target region; 2) more than half of user’s check-in records in Gowalla dataset
are generated in the target region.

In order to select optimized parameters, parameters α and β in Equation 9 are
assigned different values that are shown in Table 1. According to the performance
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Table 1. Parameters tuning for the proposed method

Group ID α β

1 0.1 0.3
2 0.3 0.6
3 0.4 0.4
4 0.6 0.3
5 0.5 0.1
6 0.3 0.1
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Fig. 3. Performance comparisons when tuning parameters

comparison shown in Figure 3, the parameter α is set as 0.3 and parameter β is
set as 0.6.

In order to validate the performance of the proposed method, two baseline
methods are chosen. Baseline method 1 only applies Equation 9 to POI recom-
mendations, which does not consider user’s travel experience to reduce the range
of candidate POIs. Baseline method 2 applies the friend-based collaborative fil-
tering approach, which computes the similarity between the user and his/her
friend by the following equation [10]:

wj,k = η × |Fj ∩ Fk|
|Fj ∪ Fk| + (1 − η) × |Lj ∩ Lk|

|Lj ∪ Lk| (14)

where Fj denotes the friend set of user uj , Lj denotes the POI set which user
uj has visited and parameter η ranges from 0 to 1. Fj also includes the friends
of user uj ’s friends and the parameter η is set as 0.5 in our experiment.

As shown in Tables 2 and 3, the proposed method and baseline method 1
almost overlap with respect to the precision and recall. Hence, it is obvious that
the proposed method can effectively reduce the range of candidate POIs accord-
ing to user’s travel experience, which is useful for the large scale data. Baseline
method 2 computes the probability of a user visiting a POI by identifying the
similar users who not only have similar interests but also have similar travel
experiences. However, users may not check in each time, although users often
habitually visit some familiar POIs. Such a phenomenon strictly affects the per-
formance of baseline method 2, and the proposed method reduces that effect by
combining the user preference, the attraction of a POI, and social recommenda-
tions from friends.
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Table 2. Comparison of recall among three methods

N 3 5 10 20 30 50

Proposed method 0.6224 0.6946 0.7692 0.8298 0.8555 0.8974
Baseline method 1 0.6224 0.6923 0.7692 0.8322 0.8578 0.8998
Baseline method 2 0.0466 0.0559 0.0699 0.0979 0.1142 0.1375

Table 3. Comparison of precision among three methods

N 3 5 10 20 30 50

Proposed method 0.2078 0.1392 0.0772 0.0418 0.0288 0.0182
Baseline method 1 0.2075 0.1385 0.077 0.0417 0.0287 0.0181
Baseline method 2 0.0155 0.0112 0.007 0.0049 0.0038 0.0028

6 Conclusions

The proposed method lays emphasis on the user personalization, which is shown
in the identification and ranking of candidate POIs. On one hand, the identifi-
cation of candidate POIs considers user’s travel experience to reduce the search
range. On the other hand, the candidate POIs are ranked for meeting user’s
personalized needs by combining the user preference, attraction of a POI, and
social recommendations from friends. Experimental results show that the pro-
posed method is feasible and effective. However, the proposed method does not
analyze the user’s travel motivation. If the target region is labeled with some
tags such as shopping, recreation or social contact, the range of candidate POIs
can be further reduced. Identifying the user’s travel motivation is our future
work.
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Abstract. Recent years have seen exponential growth of microblog
which provides users with a new communication and information shar-
ing platform. Some recommendation approaches have been proposed by
leveraging the social relationships in microblog based on the principle
of homophily to improve the accuracy of recommendation. To prove the
feasibility of users social relationships as the bases of recommendation in
microblog, we investigate the correlation of strength of social relation-
ship and user interest similarity in microblog by using real-world data
set. We observe that strength of social relationship shows strong pos-
itive correlation with user interest similarity in microblog. We believe
our investigation presents substantial impact for social recommendation
research in microblog and will benefit future research in both recom-
mender systems and other related social implications.

Keywords: Mociroblog · Interest similarity · Strength of social rela-
tionship

1 Introduction

Microblog, such as Twitter and Google+, has become a popular Internet service.
Essentially, microblog enables an easy and lightweight way of communication,
which allows people to write short messages and then broadcast and share them
through the participating online social networks. The short message can be any-
thing like news, daily activities, and opinions. Microblog has noticeably changed
the way of information consumption, which has surely emerged as a mainstream
social network medium globally. Users form an explicit social network by fol-
lowing other user in microblog. A user as a follower automatically receives the
messages posted by the users he/she follows, known as followee or social friend.

Microblog presents new opportunities to improve the accuracy of recom-
mender systems [1]. In real life, people tend to resort to friends in their social
networks for advice before consuming a service. Findings in the fields of soci-
ology and psychology indicate that humans tend to associate and bond with
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similar others [2]. Microblog provides novel ways for people to communicate and
build virtual communities, which not only makes it easier for users to share
their opinions with each other, but also serve as a platform for developing new
recommender system algorithms. Many recommendation approaches have been
proposed by leveraging the topological structure of formed social networks to
improve the accuracy of recommendation [3, 4, 5, 6, 7] in microblog. The basic
assumption behind these approaches is based on the principle of homophily [2].
Homophily shows the tendency of individuals to associate and bond with similar
others. Individuals in homophilic relationships share common characteristics.

Some researchers have investigated the connections of social relationships
and users’ interest similarities in online social networks to provide fundamen-
tal support to the research of friend-based social recommendation problem in
online social networks [8, 9, 10]. Ziegler et al. in [8] investigated the correlation
between user’s trust and similarity on an online community. Their experiments
showed that user’s trusted peers are more similar to their sources of trust than
arbitrary peers. Lee and Brusilovsky in [9] investigated several features of trust
netowrk by using real life data collected from a social web system. They found
that users formed by trust network exhibit significantly higher similarity than
non-connected users. Ma in [9] conducted several experiments on two friend com-
munities obtained from real world recommender systems to investigate the cor-
relations between social friend relationships and user interest similarities. They
observed that social friend relationships cannot reflect user’s interest similarity
in these communities. They also found that users’ similarities with their friends
are diverse.

Although previous researches have investigated the correlation between social
relationship and user’s interest similarity in online social networks, there is still
left open question needed to be further explored. In the previous work, all social
relationships between users are the same, regardless whether the corresponding
users have a stronger connection or a weaker connection. In fact, literature states
that there may be stronger and weaker connections between users in online social
networks [11, 12, 13]. Strength of social relationship is an important concept
in social network analysis. Understanding strength of social relationship might
apply it to make better recommendation [11].

Hence, the research question we explore in this paper is: Is there a posi-
tive correlation between strength of social relationship and user interest similar-
ity in microblog? We conduct several experiments on a real-world data set to
address this question. Our main contribution in this paper is that we observe
that strength of social relationship shows strong positive correlation with user
interest similarity in microblog.

The remainder of this paper is organized as follows. Section 2 introduces sev-
eral related work in the literature. Section 3 conducts experiments on a real-world
data set to investigate the connection between strength of social relationship and
user interest similarity in microblog, followed by the conclusion and future work
in Section 4.
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2 Related Work

In this section, we review two research directions which are relevant to our work:
user interest analysis and strength of social relationship.

2.1 User Interest Similarity Analysis

Ziegler et al. in [8] believed that recommendations based on trust relationship
only make sense when trust relation can reflect user’s interest similarity to some
extent. In order to investigate the correlation between user trust and similarity,
they performed two experiments based on data obtained from an online com-
munity focusing on books, which allows users to express which other users they
trust as well as which books they appreciate. Their experiments showed that
user’s trusted peers are more similar to their sources of trust than arbitrary
peers when the community’s trust network is tightly bound to some particular
application.

Lee and Brusilovsky in [9] investigated several features of self-defined trust
networks by using real life data collected from a social web system to examine
how similar users interests are in these networks. They measured users interest
similarity by calculating similarity of items and meta-data users share. Their
study showed that users formed by a self-defined trust network exhibit signifi-
cantly higher similarity on items and meta-data than non-connected users. The
similarity is highest for directly connected users and decreases with the increase
of distance between users. They believed that self-defined trust relationship in
social web system can be valuable for improving the accuracy of recommendation
algorithm.

Ma in [9] argued that trust relationship is just one kind of social relationships.
Many recommenders systems are designed for users to interact with their friends
in the real life. Social friendships are quite different from trust relationships in
many aspects. Thus, the previous hypotheses on trust relationships may not be
held in friend-based recommender systems. They conducted several experiments
on two friend communities obtained from real world recommender systems to
investigate the correlations between social friend relationships and user interest
similarities. They observed that social friend relationships cannot reflect user
interest similarities in these communities. Average similarity between a user and
his/her friends is even correlated with the average similarity between this user
and some other randomly selected users. They also found that a users similarities
with his/her friend are diverse in the social friend communities. That meant that
some friends of a user are quite similar with this user while the other friends
are not similar with this user. Network topology, connected components, and
number of co-friends all affect the users interest similarities.

However, as mentioned in Section 1, all social relationships between users are
the same in online social networks, regardless whether the corresponding users
have a stronger connection or a weaker connection. Understanding strength of
social relationship might apply it to make better recommendation [11]. In this
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paper we aim to analyze the connection between strength of social relationships
and user interest similarity in microblog.

2.2 Strength of Social Relationship

In the online social networks, all social relationships between users are the
same, regardless whether the corresponding users have a stronger connection
or a weaker connection. However, literature states that there may be stronger
and weaker relationships between users in online social networks [11, 12, 13].
Strength of social relationship is an important concept in social network analy-
sis. Understanding strength of social relationship might apply it to make better
recommendation [11].

Strength of a social relationship is a quantifiable property that characterizes
the link between two users. By definition, strength of a social relationship is
a combination of amount of time, the emotional intensity, the intimacy and
reciprocal services which characterize the tie [12]. Granovetter proposed four
dimensions of strength of social relationship: amount of time, intimacy, intensity
and reciprocal services [14]. In theory, strength of social relationship has at
least seven dimensions and many manifestations. In practice, relatively simple
proxies have substituted for them. In different contexts the strength of a social
relationship may have different definitions and measures.

Users in microblog differ substantially from other online social networks,
such as ones in Facebook or LinkedIn, where social relationships can only be
established with the consent of both to-be connected users. In contrast, a social
relationship in microblog is asymmetric. In other words, a user can follow a fol-
lowee without the followees consent. The asymmetry of social ties in microblog
has made microblog social networks called hybrid networks [15, 16, 17]. Kwak
et al. [18] found that 77.9% of users’ social relationships are not reciprocal in
Twitter. Reciprocity is a source of social cohesion [19, 20, 21]. When two indi-
viduals attend to one another, the bond is reinforced in each direction and both
people will find the tie rewardings [22].

In microblog, besides following other users, a user can also interact with other
users in microblog. If a user wants to notify another user about his/her message,
he/she would use an ‘@’ to notify the other user. A user can repost a message
and append some comments to share it with his/her followers. A user can add
some comments to a message. The number of interaction between two users is
often considered the strength of their relationship. Researcher has found that
pairs of individuals with strong tie exhibit greater similarity than those with
weak ties in online social networks [19]. In microblog, fantastic fans may repost
stars many more times than other persons they follow.

3 Experiment Analysis

In this section, we conduct experiments to investigate the correlation between
strength of social relationship and interest similarity in microbblog. More specif-
ically, the first experiment we conduct is to explore whether the reciprocal
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social relationship indicates positive connection with user interest similarity in
microblog. The second experiment we conduct is to evaluate how the number of
interaction between a pair of users in social relationship can affect the interest
similarity between these two users in microblog.

We first describe the data set used in this section. We then define interest
similarity metric for evaluation. Last, we give detailed experimental analysis.

3.1 Data Set Description

The data set we use in this paper is from Tencent Weibo, which is a Chi-
nese microblog website launched by Tencent in April, 2010. Tencent Weibo has
become one of leading microblog platforms in China. Similar to Twitter, a user
in Tencent Weibo can broadcast a short message and follows other users on the
website. Besides following other users, a user can also interact with other users in
Tencent Weibo. A user can @, repost and comment on other users. The data set
we use in this paper is from KDD Cup 2012 Track 1, which is a prediction task
that involves predicting whether or not a user will follow a recommended user.
The data set is a sampled snapshot of Tencent Weibo, including user profiles,
social graph, interaction, and so on.

In this paper, we only use social graph and interaction for our analysis.
The data set includes 2,320,895 users, 50,655,143 social relationships, 899,899 @
interactions, 8,790,544 repost interactions and 2,179,510 comment interactions
between users in certain number of recent days. Without loss of generality while
keeping our test meaningful and manageable, we randomly sample 15,000 users
from the KDD Cup 2012 Track 1 data set as our target users to investigate their
interest similarities with their social friends. In order to reduce noises, we require
that each target user needs to have at least five claimed social relationships.

3.2 Definition of Interest Similarity

In microblog, users build following relationships not only for communicating
with their friends or acquaintances in real life but also for seeking information
they interest [16, 17]. So the following relationship can reflect user’s interest
in the microblog. Interest similarity we explore in this paper is based on the
homophily principle of shared interest [15]. In microblog, shared interests can be
represented by u→k← v, where user u and user v both follow user k. User u and
v sharing interests is surely one kind of similarity in microblog. In this paper, we
use Jaccard Similarity Coefficient to define the interest similarity between two
users u and v based on the followees they follow in common [7].

Mathematically, we can construct a directed graph G (V, E), where V rep-
resents a set of users in microblog and E represents a set of social relationships
among these users. A directed edge <u, v>∈E exists between user u and v if u
follows v. The set of out-neighbors of user u is Γ+(u)={v∈V|<u, v>∈E}, and the
out-degree of u is | Γ+(u)|, where | · | denotes the size of the set. Thus, the interest
similarity su,v between user u and user v is defined as:
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su,v =
| Γ+(u) ∩ Γ+(v) |
| Γ+(u) ∪ Γ+(v) | (1)

3.3 Reciprocal Social Relationship

Unlike some online social networks, a followed user has the option but not the
requirement to similarly follow back. Thus, social relationships in microblog may
be asymmetric. We distinguish two kinds of following relationships between two
users in microblog: unidirectional and reciprocal. If user u follows user v, but v
does not follow u, we call the social relationship between u and v as unidirectional
and we call v is u’s unidirectional social friends. If user u and user v both follow
each other, we consider them reciprocal friends and we call v is u’s reciprocal
friend. Reciprocity is a source of social cohesion. When two individuals attend to
one another, the bond is reinforced in each direction and both people will find the
tie rewardings [22]. Hence, the first experiment we conduct is to compare the
differences of interest similarities between unidirectional and reciprocal social
relationship. We define uni su as the average interest similarity between user
u and his/her unidirection social friends, reci su the average interest similarity
between u and his/her reciprocal social friends:

uni su =

∑
v∈Uni(u) su,v

| Uni(u) | (2)

where Uni(u) represents the list of unidirectional social friends of user u follows.

reci su =

∑
v∈Reci(u) su,v

| Reci(u) | (3)

where Reci(u) represents the list of reciprocal social friends of user u.
For any target user u who has reciprocal social relations, we calculate the

value of uni su and reci su and compared both values. Figure 1 plots the correla-
tions between average unidirectional social friends interest similarity and recip-
rocal social friends interest similarity on data set. Every data point in Figure 1
represents a target user, where the x-axis indicates average unidirectional social
friends interest similarities and y-axis represents the related average reciprocal
social friends interest similarities. We observe that the plot in Figure 1 exhibits
strong biases towards the upper-left region, which indicates that reciprocal social
relationship and user interest similarity has high correlation in microblog. Users
involved in a reciprocal social relationship shows significantly larger similarity
than users involved in a unidirectional social relationship.

We further compare the correlation between interest similarity in social and in
non-social friend relationship. We define su as average interest similarity between
user u and his/her social friends, n su as average interest similarity of user u with
his/her non-social friends:

su =

∑
v∈Γ+(u) su,v

| Γ+(u) | (4)
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Fig. 1. The correlation between unidirectional and reciprocal social friend interest
similarity

n su =

∑
v∈R(u) su,v

| R(u) | (5)

where R(u) indicates the list of randomly selected users whom user u does not
follow. R(u) has the same size with Γ+(u), and R(u)∩Γ+(u)=φ.

For each target user u, we calculate su and n su, and compare these two
average interest similarities for each target user in great detail. Figure 2 plots
the correlations between average social friends interest similarities and non-social
friends interest similarities of target users on date set. In Figure 2, each point
represents a target user, where the x-axis indicates average social friends interest
similarities and the y-axis specifies the related average non-social friends interest
similarities. We find that the plot in Figure 2 shows biases towards lower-right
region, which indicates that social relations has correlation with user interest
similarity in microblog However, we also observe that the biases towards the
lower-right region are not strong, which shows that the connection between social
relationship and user interest similarity is not strong in microblog. Users tend
to look for interesting information by following other uses in microblog [9]. So
social relationship has correlation with user interest similarity. However, the
correlation is not strong. We can understand this from three aspects. First of
all, users trend to follow celebrities in microblog, because these celebrities are well
known to people and they are more likely to be reliable and stable information
sources [20]. Consequently, even if two users don’t have social relationship, they
may both follow the same celebrity. Secondly, users play a dual role in microblog
as they are both information sources and seekers [10]. What a user follows may
not wholly be similar with what he/she is followed. Lastly, there exist some
spammers in microblog. One of the most common ways for spammers to gain



Investigating Correlation Between Strength of Social Relationship 179

Fig. 2. The connections between social and non-social friends interest similarity

Fig. 3. Interest similarity conditioned on the number of interaction

popularity and get more spam targets is to follow a huge number of users and
wait for them to follow back [21]. Hence, we cannot observe strong correlations
between social following relationships and user interest similarity.

3.4 Number of Interaction

In this subsection, we perform the second experiment to analyze the correlation
between the number of interaction of a pair of users in social relationship and
their interest similarity in microblog. More specifically, the peer similarity su,v

is measured according to Equation 1 for social relationship <u,v> between user
u and user v in our data set. Then, the number of @, repost and comment from
user u to v is counted respectively. Figure 3 shows the result.

The number of interaction is divided into eight groups in the x-axis of Figure
3, in which “(4,8]” indicates the number of interaction is greater than 4 but less or
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equal to 8. We observed from Figure 3 that the user interest similarity increases
as their number of interaction increases. One interpretation for this observation
is that many interactions from a user may indicate the strong interest in the
message posted by his/her social friend. The number of interaction between two
users is often considered the strength of their relationship. Researcher has found
that pairs of individuals with strong tie exhibit greater similarity than those
with weak ties in online social networks [19]. In microblog, fantastic fans may
repost stars many more times than other persons they follow.

4 Conclusion and Future Work

To prove the feasibility of users social relations as the bases of recommenda-
tion in microblog, we examined the correlations of strength of social relation
and user interest similarity in microblog. Using Tencent Weibo data set, we find
strong positive connection between reciprocal social relationship and user inter-
est similarity in microblog. As to users interaction, we find that the number
of interaction between two users in social relation indicates the degree of user
interest similarity. We believe our investigation presents substantial impact for
social recommendation research in microblog and will benefit future research in
both recommender systems and other related social implications

In our future studies we plan to apply these findings to recommendation
application in microblog to improve the accuracy of recommendation. At the
same time, a more concrete definition to represent user interest similarity is
needed. We plan to incorporate other features to calculate user interest similarity
more accurately.
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Abstract. This paper discusses a new approach to use the information
from a special social network with high homophily to select a survey
respondent group under a limited budget such that the result of the sur-
vey is biased to the minority opinions. This approach has a wide range of
potential applications, e.g. collecting complaints from the customers of
a new product while most of them are satisfied. We formally define the
problem of computing such group with better utilization as the p-biased-
representative selection problem (p-BRSP). This problem has two sepa-
rate objectives and is difficult to deal with. Thus, we also propose a new
unified-objective which is a function of the two optimization objectives.
Most importantly, we introduce two polynomial time heuristic algorithms
for the problem, where each of which has an approximation ratio with
respect to each of the objectives.

1 Introduction

Recently, the value of the information from online resources such as online social
networks are getting more recognized and thus lots of research efforts are made
to maximize its utilization [1–3]. Following the trend, online survey is also being
recognized as a critical tool to make a wide range of significant marketing and
political decisions. Due to the reason, a huge amount of investment is being
made for various researches on online survey [4]. There are several motives that
promote online survey [5]. Most of all, it costs much less and produces results
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much faster than its counterpart. How to select a meaningful survey respondent
group has been a tough but critical question to deal with to make a traditional
off-line survey method more effective and reliable, and this is still true for online
survey. Here, the definition of “meaningful” can differ based on the purpose
of the survey. In most cases, a survey aims to learn the general opinions from
the public of interest by sampling, and thus it is significant to elect a group
of unbiased respondents among the public using a proper method, e.g. random
sampling.

Previously, Kim et. al. [6] introduced a new strategy to elect a survey respon-
dent group to perform efficient biased survey and collect more minority opinions
with the assistance from an artificial social network graph constructed by them.
They argued that in opposition to the widely accepted belief, biased survey
could be useful, and discussed an example to support their claim. In the exam-
ple, they pointed out that when the majority of the people, who purchased a
new smartphone, are very satisfied, the opinions of unsatisfied users of the new
smartphone, who can be classified as minority opinion holders, could provide
useful information to the new smartphone’s product quality manager, who is
more interested in complaints. Based on this observation, Kim et. al. introduced
a new strategy to select a respondent group more suitable for such survey in
the sense that from which the diversified voices from unsatisfied users (minor-
ity opinions) can be heard more loudly. Most importantly, their strategy only
requires the expected similarity of the opinions between each pair of users on
the issue to construct the biased respondent group. Kim et. al.’s approach is
rather localized and consumes less resources, and thus is more practical in big
data environment compared to its alternative straightforward approach which
analyzes the sentiment of each individual on the issue first, and then identifies
the minority opinions as this certainly requires global analysis.

To achieve the goal, they first compute a new social network graph G in which
each node represents a member of the society, and there is an edge between two
nodes only if the opinions of the two people, who are represented by the nodes,
are similar enough on the subject of interest. In the literature, such social network
graph, in which two nodes are neighboring only if they are sharing close opinion,
is told to have high level of homophily [7]. Once such a graph is constructed, the
algorithm attempts to compute a smaller size inverse k-core dominating set D
of G, which is a subset of the nodes in G = (V,E) such that all nodes in V is
either in D or neighboring to a node in D (domination property), and the degree
of each node in D in the induced graph by D in G is at most k (inverse k-core
property). Note that the dominating property on D is necessary to ensure that
D has a representation over all of the members in the society, and the inverse
k-core property is enforced to make sure to obtain more minority opinions with
greater diversity. Most of all, in the simulation, the authors have shown that
their approach is in fact effective.

Meanwhile, online survey may not be completely free-of-cost, even though
it is usually much cheaper than the traditional off-line survey approaches. For
instance, a recent study conducted by Singer and Ye shows that a reasonable
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compensation can certainly improve the response rate of the survey [8]. However,
we notice the approach proposed by Kim et. al. does not provide any explicit
way to control the cost of their approach (the size of the group returned by their
algorithm), and this can be a very critical issue in order to make the approach
more practical. Motivated by this observation, in this paper, we introduce two
new approaches to perform effective biased survey using homophily rich graph
under limited budget. The main contributions of this paper can be summarized
as follows.

(a) For the first time in the literature, we discuss the motivation for selecting a
survey respondent group to better capture more diversified minority opinions
under limited budget. We formulate the problem of our interest as a new
optimization problem two independent objectives. We also discuss how the
two objectives can be combined into one objective function.

(b) We introduce two polynomial time algorithms to solve the proposed problem.
The first algorithm is based on Kim et. al. [6]’s approximation algorithm for
the minimum inverse k-core dominating set problem, and can be considered
as its generalization. This algorithm has a proven approximation ratio with
respect to Objective 1. The second one is a simpler greedy algorithm and
has the best possible approximation ratio with respect to Objective 2.

The rest of this paper is organized as follows. Section 2 discusses some prelim-
inaries. We introduce the two new approaches for the problem of our interested
in Section 3. Section 4 concludes this paper and presents future works.

2 Preliminaries

2.1 Notations and Definitions

In this paper, G = (V,E) represents a social network graph with a node set
V = V (G) and an edge set E = E(G). We assume the relationship between each
pair of members is symmetric, which is true in homophily high social network
graph, and thus the edges in E are bidirectional. Also, we use n to denote
the number of nodes in V , i.e. n = |V |. For any subset D ⊆ V , G[D] is a
subgraph of G induced by D. For a pair of nodes u, v ∈ V (G), Hopdist(u, v)
is the hop distance between u and v over the shortest path between them in
G. Given a node v in G, deg(v,G) is the degree of v in G. For any V ′ ⊆ V in
G = (V,E), deg(V ′, G) is max

v∈V ′
deg(v,G). Also, deg(G) is max

v∈V
deg(v,G). dia(G)

is the diameter of G, which is the length of the longest shortest path between
any pair of nodes in the graph G. For each node v ∈ V , Nv,V (G) is the set of
nodes in V neighboring to v in G. In other words, the nodes in Nv,V (G) are the
1-hop neighbors of v in G. Similarly, Nd

v,V (G) is the set of nodes in V , which
are at most d-hops far from v in G. Note that we will use Nv,V (G) and N1

v,V (G)
interchangeably. Given a graph G, a subset D ⊆ V is a dominating set (DS)
of G if for each node u ∈ V \ D, ∃v ∈ D such that (v, u) ∈ E. In general, a
subset D ⊆ V is a d-hop dominating set (d-DS) of G if for each node u ∈ V \D,
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∃v ∈ D such that Hopdist(v, u) ≤ d. In graph theory, the minimum dominating
set problem (MDSP) is to find a minimum size DS in a given G. Also, the goal
of the minimum d-hop dominating set problem (MdDSP) is to find a minimum
size d-DS in G. Given a graph G, a subset D ⊆ V , and a positive integer k such
that 0 ≤ k ≤ Δ, where Δ is the degree of G, D is an inverse k-core in G if for
each v ∈ D, |Nv,D(G)| ≤ k. Generally speaking, D is an inverse (k, d)-core in
G if for each v ∈ D, |Nd

v,D(G)| ≤ k. Given 〈G, k〉, the minimum inverse k-core
dominating set problem is to find a minimum size inverse k-core dominating set
of G. Similarly, given 〈G, k, d〉, the minimum inverse (k, d)-core dominating set
problem is to find a minimum size inverse k-core d-hop dominating set of G.

2.2 Formal Definition of Problem

In this paper, we are interested in selecting a survey respondent group whose
size is p, which is a positive constant determined by the available budget, such
that (a) more members with minority opinions are selected (biased to minority
opinions), and (b) the group can well-represent the overall minority opinions
(well-representation of diversified minority opinion). In the following, we explain
the desirable properties of the group to be elected for our purpose and their
implications in terms of graph theory.

Property 1: Higher Bias to Minority Opinion Holders. Previously, Kim
et. al. [6] introduced a way to construct a homophily high social network graph,
in which there exists an edge between two nodes only if the opinions of the
members represented by the two nodes are similar enough. They also found that
in a homophily high social network graph, a node with lower node degree tends
to be a minority opinion holder. This implies that a group with size p possibly
includes more minority opinion holders (and thus the group is more biased) when
the average degree of the selected nodes (or their total node degree) in the given
social network graph is lower. In this paper, we will assume a homophily high
social network graph G as an input of our algorithms and thus, prefer to have a
node subset V ′ with size p such that

∑

v∈V ′
deg(v,G) becomes as small as possible

as an output of our algorithm.

Property 2: Better Representation of Minority Opinion Holders. In a
homophily high social network graph G, a pair of nodes are connected in G only
if their expected opinions on the subject of interest are similar enough. In the
literature, the minimum size dominating set problem is widely used to select an
efficient representative group. For instance, in [6], Kim et. al. were looking for
a minimum size dominating set of G with certain properties to elect a group of
survey respondents which can represent the rest.

Unfortunately, there are two issues to extend this approach to the problem
of our interest directly. First, depending on the input graph G, a dominating
set (or 1-hop dominating set) with the enforced size constraint p may not exist.
Second, we may ignore the majority opinion holders in the process of selecting
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the representatives for minority opinion holders in contrast to the fact that a
dominating set implicitly does not ignore them.

One way to address the first concern is to relax the 1-hop domination con-
straint and allow a representative of a node to be multiple hops far from the node.
In this way, the size of the dominating set can be reduced. However, as the hop
distance between two nodes in G generally implies the degree of difference on
the opinions between them, and thus as the hop distance grows, the effect of the
representation becomes smaller. Consequently, it would be more desirable to find
a subset of nodes, V ′ from V with size p such that the maximum hop distance
from a minority opinion holder to its nearest node in V ′ becomes minimized. To
address the second concern, the concept of nodes with “minority opinion hold-
ers” should be more clearly defined. Based on [6], a node with lower degree has
a better chance to be a minority opinion holder. Therefore, we may attempt to
identify those minority opinion holders by computing the degree of each node in
G (by following Property 1) and consider those nodes with smaller node degree
as minority opinion holders, where the concept of “smaller” is dependent on the
context and can be specified by the survey organizer.

Property 3: Greater Diversification of Minority Opinion Holders. In
practice, there can be a number of different minority opinions, and thus minority
opinions are quite diversified. Therefore, it is important to construct a size p
representative group in a way that more diversified minority opinions can be
collected. Now, we have the following remark.

Remark 1. We argue that Property 3 is already included in Property 2. For
instance, given a connected graph G with one huge complete subgraph (majority
opinion holders) and two non-adjacent smaller size complete subgraphs (minori-
ties), if we select two representatives from the same smaller size complete sub-
graph, the total hop distance discussed in Property 2 will be greater compared to
the case in which one representative is selected from each smaller size complete
subgraph.

Based on Properties 1, 2, 3, and Remark 1, we formally define our problem of
interest.

Definition 1 (p-BRSP). Given a homophily high social network graph G =
(V,E), a subset S ⊂ V , which is the group of nodes in V whose node degree
is no greater than a threshold level (and therefore are suspected as nodes repre-
senting minority opinion holders), a positive integer p ≤ |V | = n, the p-biased-
representative selection problem (p-BRSP) is to find a subset V ′ ⊆ V whose size
is p from G such that

(a) Objective 1: the total node degree of V ′ is minimum, or equivalently∑

v∈V ′
deg(v,G) is minimum, and

(b) Objective 2: the maximum hop distance between a node in V to its nearest
node in V ′, or equivalently max

u∈S\V ′
arg min

v∈V ′
Hopdist(u, v) is minimum.
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Algorithm 1. Greedy-MI(k, d)CDSA (G,S, p)
1: for d = 1 to dia(G) do
2: for k = 0 to deg(G) do
3: Prepare an empty set D(d,k), i.e. D(d,k) ← ∅.
4: For each vi ∈ V , prepare a counter ni which is initialized to 0, i.e. ni ← 0.
5: Suppose Xj = {vi|vi ∈ V and ni = j}.
6: while X0

⋂
S �= ∅ do

7: Find vi ∈ V \
(
(
⋃

j≥k Xj)
⋃

D(d,k)

)
so that |Nw

vi,X0
⋂

S(G)| is maximized,

where 1 ≤ w ≤ d. A tie can be broken by selecting a node with smaller node degree.
8: Set D(d,k) ← D(d,k) ∪ {vi}.
9: for each node vj ∈ Nw

vi,V
(G) with any 1 ≤ w ≤ d do

10: nj ← nj + 1.
11: end for
12: end while
13: end for
14: end for
15: Output the D(d,k) whose size is p and which minimizes the objective function in

Eq. (1).

Meanwhile, it is uncertain that which of the requirements is more significant. As
a result, we redefine the problem such that its objective is to minimize

α ×
∑

v∈V ′ deg(v,G)
∑

v∈W deg(v,G)
+ (1 − α) × maxS∈V \V ′ arg minv∈V ′ Hopdist(u, v)

dia(G)
, (1)

from some 0 ≤ α ≤ 1, which is determined by the operator of the survey, where
W is the set of the first p nodes in G with largest node degree. During the rest of
paper, we discuss how to quality solutions of p-BRSP with the objective function
in Eq. (1).

3 Two Polynomial Time Algorithms for p-BRSP

In this paper, we introduce two new heuristic algorithms for p-BRSP along with
some interesting theoretical analysis.

3.1 First Approach: Greedy-MI(k, d)CDSA

Previously, Kim et. al. introduced Greedy-MIkCDSA, a simple greedy strategy
for the minimum inverse k core dominating set problem (MIkCDSP). Given
an MIkCDSP instance 〈G, k〉, Greedy-MIkCDSA first prepares an empty set
D, which will eventually include the output, an inverse k-core dominating set
(IkCDS) of G. For each node vi ∈ V , the algorithm creates a counter ni which is
initialized to 0. The counter will be used to track the number of neighbors of vi
in D. Depending on the counter, the algorithm creates a partition of the nodes
in V , X0,X1, · · · , where Xj is the subset of nodes in V whose counter is j. This
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means that initially X0 is equal to V and each of the rest is empty. Clearly, the
number of the subsets is bounded by n. Then, the algorithm iteratively picks a
node vi from V \

(
(
⋃

j≥k Xj)
⋃

D
⋃

Q
)
, i.e. vi is a node which is

(a) with a counter ni whose value is less than k (i.e. has less than k neighbors in
DS),

(b) not selected as a DS node yet, and
(c) without any neighboring node wl which is in D (otherwise vi is already

dominated) and, at the same time, in Xj for some j ≥ k (otherwise adding
vi to D will violate the k-inverse-core property),

such that the number of neighbors of vi in X0 is the maximum, where Q =
{w1, · · · , wq} such that wl ∈ Q has at least one neighbor in (

⋃
j≥k Xj). Any tie

can be broken arbitrarily. The algorithm eventually terminates when all nodes
in V is either in D or dominated by some node in D while maintaining G[D] as
an inverse k-core.

The main idea of Greedy-MIkCDSA is still applicable to p-BRSP. However,
due to the size constraint p, we need to employ d-hop dominating set instead of 1-
hop dominating set. To extend the main idea of Greedy-MIkCDSA which utilizes
1-hop dominating set to d-hop dominating set, there are several challenges to
deal with at the same time. That is, we must find a subset V ′ of nodes with size
p such that V ′ can d-hop dominates all nodes in S. At the same time, we need
to adjust k properly, otherwise, there might be no feasible solution. Note that
there can be more than one 〈V ′, d, k〉 computed in this way, and we need to find
the one which can minimize the objective of p-BRSP in Eq. (1).

Algorithm 1 is the formal definition of this modified algorithm, namely
Greedy-MI(k, d)CDSA. The core idea of our modification is that we vary d and
k (Line 1 and Line 2 of Algorithm 1) and compute an inverse k-core d dominat-
ing set whose size is p. From Line 3 to Line 12, the strategy of Kim et. al’s algo-
rithm for the minimum inverse k-core dominating set problem is used to compute
a smaller size inverse (k, d) core dominating set D(d,k) of G in a greedy manner.
Note that D(d,k) intends to d-hop dominate the nodes in S which is a subset of
V rather than the whole nodes in V . In Line 15, the algorithm returns the best
D(d,k), which minimizes the objective function in Eq. (1) among all feasible ones.

Theorem 1. Algorithm 1 is correct.

Proof. This algorithm always returns a feasible solution and therefore correct as
with d = dia(G) and k = deg(G), we can always find a single node in G which
is an inverse k-core d dominating set of G.

Note that the potential function of Algorithm 1 is submodular and thus the
algorithm has an approximation factor of O(log δ) with respect to Objective 1,
where delta is the maximum degree of the input graph. The proof of this claim
is very similar to the proof of Theorem 2 in [10]. The only difference is that
now we are considering d-hop domination instead of 1-hop the ratio becomes
O(log δd) = O(d log δ) = O(log δ).
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3.2 Second Approach: Simple-p-RSPA

Now, we propose a simpler greedy algorithm for p-BRSP. Before discussing our
new strategy, we first introduce a related problem, namely the p-center problem
with degree constraint (p-CDC), and propose a 2-approximation algorithm for
it, where 2 is the best possible. Then, this algorithm is used to design our second
strategy, the simple-p-RSP algorithm (Simple-p-RSPA).

Definition 2 (p-CDC). Given a graph G = (V,E), a positive integer p, a
subset S ⊂ V representing the group of people with minority opinion, and a
degree constraint W , the p-center problem with degree constraint (p-CDC) is to
find a subset of nodes D satisfying (a) |D| ≤ p, and (b)

∑
v∈D deg(v,G) ≤ W

such that the furthest distance from a node in S to its nearest node in D becomes
minimum.

Now, we present a 2-approximation algorithm for the p-CDC problem, which
is best possible unless P = NP . The main idea of the algorithm and correspond-
ing analysis are motivated by Hochbaum’s algorithm for the p-center problem [9].
However, p-CDC has a additional degree-sum constraints, and the objective func-
tion is also different from that of p-center (note we try to minimize the maximum
hop-distance of a node in S (instead of V ) to its nearest center in D). So the
method in [9] cannot be applied directly here.

Let Γ = (V,E′) be a complete weighted graph constructed from G, in which
the edge weight, cost(e) of e = (u, v), is the length of shortest-path between nodes
u and v, and the node weight of v is the degree of v in G for every v ∈ V . Now, we
order the edges of Γ in the following way: cost(e1) ≤ cost(e2) ≤ · · · ≤ cost(em);
where m =

(
n
2

)
is the number of edges in the complete graph Γ .

Let Gi = (V,Ei) with Ei = {e1, e2, · · · ei} = {e | cost(e) ≤ cost(ei)}. Let
Hi be the subgraph of Gi induced by the 1-hop neighbors of S, together with
S, i.e., Hi = Gi[∪v∈SNv,V (Gi) ∪ S]. Let H2

i be the square of Hi, i.e., H2
i is a

graph obtained from Hi such that two nodes are adjacent in H2
i if and only if

the hop-distance between them is no more than two in Hi. The algorithm is as
follows:

(a) Step 1. Compute H2
1 ,H2

2 , · · · ,H2
m and (G1[S])2, (G2[S])2, · · · , (Gm[S])2.

(b) Step 2. For each i = 1, 2, · · · ,m, compute a Maximal Independent Set (MIS)
Mi of (Gi[S])2 (which is also an independent set of H2

i ) as follows: At each
time, choose a node v ∈ S with the lightest node weight, then remove all
the neighbors of v together with v in H2

i , i.e., Nv,V (H2
i ), from (Gi[S])2; in

the remaining graph, repeat the same process until there is no node left in
G2

i [S].
(c) Step 3. Choose the smallest index i (say j) such that |Mi| ≤ p and w(Mi) =∑

v∈Mi
deg(v) ≤ W .

(d) Step 4. Output S = Mj as the centers.

Now, we show the algorithm describe above is a 2-approximation for p-CDC.
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Lemma 1. Mi dominates S in graph (Gi[S])2 for every i.

Proof. Note Mi is a maximal independent set of (Gi[S])2, it is also a dominating
set of (Gi[S])2. Since if there is one node, say v in S, which is not dominated by
Mi, then Mi ∪ {v} is also an independent set; contradicts the fact that Mi is a
maximal indecent set.

Lemma 2. Let D∗
i be a subset of V with minimum size which dominates S in

graph Gi, then |D∗
i | ≥ |Mi|.

Proof. Since Mi is an independent set in H2
i , the hop distance of any two nodes

u, v ∈ Mi is at least three in Hi. Thus all the stars S(u) = {v ∈ V | (u, v) ∈
E(Hi)} centered at u ∈ Mi are pairwise disjoint each other. For each star S(u),
at least one vertex has to be selected into D∗

i in order to dominate S. Therefore,
we have |D∗

i | ≥ |Mi|.
Lemma 3. Let WD∗

i be a subset of V with minimum total weight which domi-
nates S, then w(WD∗

i ) ≥ w(Mi).

Proof. The proof is similar to that of Lemma 3. Now the key point is that by
the construction of Mi, for each star S(u) (u ∈ Mi), we have w(u) ≤ w(v) for
any v ∈ NGi

(v) = {v|(u, v) ∈ E(Hi)}. Note S(u) ∩ S(v) = ∅ for u, v ∈ Mi and
u = v. Thus, at least one node in each S(u) (u ∈ Mi) has to be selected into
WD∗

i . Note u is the lightest node in S(u). It follows that w(WD∗
i ) ≥ w(Mi).

Theorem 2. Above algorithm is a 2-approximation for p-CDC.

Proof. Let i∗ be the smallest index such that there exists a subset Di∗ of
Gi∗ that dominates S such that |Di∗ | ≤ p and w(Di∗) ≤ W . Then we have
OPT = cost(ei∗), where OPT is the optimal value of the p-CDC problem.
By our algorithm, for each i (i = 1, 2, · · · , j − 1), we have either |Mi| > p or
w(Mi) > W . It follows from Lemma 2 and Lemma 3 that either |D∗

i | ≥ |Mi| > p
or w(WD∗

i ) ≥ w(Mi) > W . Thus we have i∗ > i for i = 1, 2, · · · , j − 1, i.e.,
j ≤ i∗ and cost(ej) ≤ OPT . Since Mi is a maximal independent set of (Gi[S])2,
it also a dominating set of (Gi[S])2. So in (Gi[S])2, the stars centered at each
u ∈ Mi span all the nodes in S = V ((Gi[S])2). Let v be any node in a star
centered at some u ∈ Mi. Then v is at most two hops away from u in Gi[S]. By
triangle inequality, cost(e) ≤ 2cost(ej) for any edge e = (u, v) in the star. Note
cost(ej) ≤ OPT . We have cost(e) ≤ 2OPT . This completes the proof.

Next, we discuss how to use the 2-approximation algorithm for the p-CDC
problem to construct Simple-p-RSPA. There is a major challenge to apply the
2-approximation algorithm for the p-CDC problem to our problem of interest,
since we are looking for a subset of nodes with size exactly p. If we enforce this,
then the algorithm may not produce a feasible solution with insufficient W . To
address this concern, it is necessary for us to find a valid W . To this purpose,
we may set W to be Wi =

∑
v∈Vi

deg(vi, G), where Vi is the subset of the first
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i nodes with largest node degree, for each i = n, n − 1, · · · , 1 and apply the
modified 2-approximation algorithm for the p-CDC problem. Finally, we choose
the one out of all feasible outputs such that the objective of p-BRSP in Eq. (1)
is minimized. Note that this final result still has the approximation factor of 2
with respect to Objective 2.

4 Concluding Remarks

This paper introduces a new application of the information which can be
extracted from social network information. The main focus of this paper is to
use the information for biased survey so that more amount of minority opinions
can be heard. We formalize the problem of our interest as a new optimization
problem with two separate objectives. Then, we propose two heuristic algorithms
for the problem, each of which has an approximation factor with respect to each
of the objectives. As a future work, we will conduct simulations to evaluate the
performance of the proposed algorithms. We are also interested in using real
data to see if our approach is in fact effective. We also plan to use apply app-
roach to identify the users with less satisfaction and compensate them so that
the negative reputation of a new product can be suppressed. We believe this can
compensate the existing approaches which focus on how to compensate users to
spread positive reputation [11,12].
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Abstract. With the development and widely utilization of mobile
device, location-based social network (LBSN) has become one important
platform for many novel applications. Location information will help dis-
cover latent friend relationship and then guide trip, recommend goods
and so on. In this paper we propose an algorithm for friendship predic-
tion. Firstly, we adopt the information gain to measure the contri-
bution of different features to human friendship, and extract user social
relationship, check-in distance and check-in type as three key features.
Secondly, we take the prediction problem as a classification problem and
choose SVM (support vector machine) to classify it. At last some exper-
iment results show our algorithm valid to some extent.

Keywords: Location-based social network · Friendship prediction ·
SVM

1 Introduction

The location-based online social networks have seen soaring popularity, attract-
ing millions of users [1]. Many location-based online social networking applica-
tions, such as Foursquare, Mingle, Gowalla, etc [2], have offered amazing, novel
and valuable services for users based on the sharing of location information by
checking-in on those websites.

LBSN offers a new social networking platform for making friends, sharing
information, searching contents with the location labels, and making commu-
nication with nearby friends [3]. Different from usual online social networking,
LBSN not only maintains contacts in the virtual network, but also supports face
to face communication in real world, recommend valued information to users. It
has attracted a great number of users and aroused great concern of researchers.
Community mining [4], privacy protection [5], friend prediction [6] and location
recommendation are main related research topics.

c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 193–204, 2015.
DOI: 10.1007/978-3-319-21786-4 17
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In this paper, firstly we use information gain to evaluate the contribu-
tion of different features to the friendship. Then, we extract user social relation-
ship, check-in distance and check-in type as key factors for friendship prediction.
Base on the selected features we present a friendship prediction method. Finally,
we take real check-in data from two location-based social networks (Gowalla
and Brightkite) to validate effectiveness of feature selection and the accuracy of
friendship prediction.

The paper is organized as follows: section 1 introduces the research back-
ground and significance; section 2 describes the related work of friendship pre-
diction on LBSN; section 3 focuses on the datasets and feature selection; section
4 puts forward the method for prediction, parameter optimization and evalua-
tion; section 5 summarizes our studies.

2 Related Work

Friendship prediction has become one of the major studies on LBSN. Check-
in data carries a wealth of user information, and it can be used to improve
the accuracy of friendship prediction, which also benefits friend or trajectory
recommendation in the future. Generally, the network connections between users
on LBSN and their online behaviors, to some extent, reflect their behaviors in
real life. In other words, people who have the same interests and geographically
close, or have the same social circle, often easily become friends [7].

Lee et al.[8] presented multi-Layered friendship prediction model and quanti-
fied the correlation between users’ friendship with their mobility characteristics,
social graph properties, and user profiles. Ma et al. [9] proposed one method to
judge the existence of social relationship and the type of relationship. Quercia D
et al. [10] put forward a directed social network link prediction approach based
on topic model, which analyzes node semantic information, synthesizes network
node attributes and structural characteristics for link prediction. Wang et al.
[11] took the personal factors, global factors and time factor as main features for
friendship prediction. They pointed out that if only considering personal factors
or global factors, some opposite conclusions may appear. For example, the prob-
ability of tourists visiting New York’s Times Square is far less than that of the
locals. Crandall et al. [12] demonstrated how temporal and spatial co-occurrences
between people help to infer social ties among them, and the main goal was to
put forward a generative model which explains empirical data. Liben-Nowell et
al.[13] described how the probability of friendship between two individuals can
be related to the geographic distance between them.

Table 1 describes the relevant characteristics used in the friendship predic-
tion. From which, we can easily notice that the social relationship and check-
in distance are two key factors. But, in the factor of social relation, people
mainly consider individual features of common neighbor nodes; ignore the rela-
tion between common neighbor nodes and other neighbor nodes. Moreover, in
some cases, users check in different places, but they have the similar check-in
type, which meaning they may be friends with similar interests.
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Table 1. Features of Friendship Prediction

Literatures
Social Check-in User Semantic

Relation Distance Profile Information

Schwartz(93,ACM)
√ √

Liben-Nowell(05,PNAS)
√

Crandall(10,PNAS)
√ √

Scellato(11,ACM)
√ √

Quercia(12,ACM)
√ √

Ma(13,JNUDT )
√ √

Wang(14,ICDM)
√ √

Base on these analyses, in this paper, we extract user social relationship,
check-in distance and check-in type as main characteristics to predict friendship.

3 Feature Selection on LBSN

3.1 Dataset

Gowalla and Brightkite are two classical online location-based social network-
ing services. In Stanford Network Analysis Project(SNAP) project, two data
sets collected from Gowalla and Brightkite respectively are offered freely and
they have been used by many literatures researching on LBSN. Then, in this
paper we choose the two data sets as experiment data for friendship predic-
tion research. The records of Gowalla dataset are collected from Feb. 2009 to
Oct. 2010, whereas the Brightkite dataset is collected from Apr. 2008 to Oct.
2010. The total number of check-ins for Gowalla is 6.4 million and 4.5 million
for Brightkite. Each dataset also contains a social network of friendships, which
serves as the ground truth evaluation [2,14]. The relevant dataset statistics is
given in Table 2.

Table 2. Dataset Statistics

Gowalla Brightkite

Nodes 196,591 58,228
Edges 950,327 214,078

Check-ins 6,442,890 4,491,143

In the remainder of the paper we will use word ”check-in” to refer to an event
when the time and the location of a particular user is recorded. Additionally, we
calculate the distance between friends for two datasets (see Fig.1), and observe
that the probability of friendship decreases with the increasing of their distances.
Meanwhile, check-in records obey long-tailed distribution.
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Fig. 1. Distribution of distance between friends

3.2 Feature Selection

Recently, the main way for friendship prediction is to select features that affect
friendship and establish a prediction model. Identifying key features is one
of the most important issues that decides the prediction precision and recall.
Information gain(IG) can evaluate the contribution feature attributes to
the target attribute on the whole, so we use it to extract appropriate feature
attributes.

In general terms, the expected information gain is the change in informa-
tion entropy X from a prior state to Y state that takes some information [15],
as given in equation (1):

IG(X,Y ) = H(X) − H(X|Y )

H(X) =
m∑

i=1

−p(xi)logp(xi)

H(X|Y ) =
∑

i,j

p(xi, yj)log
p(yj)

p(xi, yj)
(1)

We take Gowalla dataset as an example, calculate information gain values
of different attributes and the result is shown in Table 3.

Table 3. IG for Different Attributes

Attribute IG Value

Social Relationship 0.837
Check-in Distance 0.484

Check-in Type 0.294
Common check-in location 0.014
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Feature of Social Relationship. In published studies, social relationship is
one of important factors for new friendship formation and many different mea-
surement methods were put forward, such as Jaccard coefficient [16], Adamic-
Adar Index(AA) [17] or Resource Allocation Index(RA) [18] and so on. However,
most of these approaches only consider individual features of common neighbor
nodes, ignore the relation between common neighbor nodes and other neighbor
nodes.

According to empirical observation, we divide the edges into four categories:
1. the edges between the common neighbor nodes , assigned the weight of a; 2.
the edges between the common neighbors and the user nodes , assigned weight
of b; 3. the edges between the common neighbor nodes and other neighbors of
the user nodes predicted, assigned the weight of c; 4. the edges between the
common neighbors and its own neighbors, allocated the weight of d. To assess
the relationship between i and j, the four types play different roles. Ranking
them by importance, the sequence is a > b > c > d. In this paper, we simplify
it and set a=2, b=1.5, c=1, and d=0.5. The similarity of social relationship
between i and j is equation(2).

Fig. 2. Network with different neighbor relationships

sim(i, j) =
a · ca + b · cb + c · cc + d · cd

ca + cb + cc + cd
(2)

Where, ca, cb, cc, cd represent the corresponding number of four categories of
edges respectively. According to calculation method above, the similarity of user
i and userj in Fig.2 is computed as follow:

sim(i, j) =
2 + 1.5 × 2 + 1 × 1 + 0.5 × 1

5

+
2 + 1.5 × 2 + 1 × 2 + 0.5 × 2

7
= 2.45
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We compute the similarities of (i,j) and (1,2) in Fig.2 by different methods
and the result is shown in Table 4. Obviously, our proposed approach is supe-
rior to traditional methods in distinguishing different relationship between node
pairs.

Table 4. Similaritiy Analysis

Jaccard AA RA Our Approach

(i, j) 0.29 2.61 0.34 2.45
(1, 2) 0.33 1.43 0.20 1.00

Feature of Check-in Distance. From Table 3, we can see that excepting for
social relationship, check-in distance also affects the friendship. In this paper,
we build the following equation (3) to characterize the feature.

ai,j =
∑M

m=1

∑N
n=1 d(lim,ljn)

N∑M
m=1

∑N
n=1 d(lim, ljn)

(3)

Where, li1, li2, . . . , liM is check-in sequence for user i, d(lim, ljn) is the dis-
tance between the mth check-in location of user i and the nth for user j. We
define ai,j as the characteristic property of check-in distance among different
users.

Feature of Check-in Type. The check-in types of users reflect their own
interests. Sometimes, different users check in different places, but the types of
places are similar. It may show they have the similar preferences, and then it
brings more possibility to establish friendship. (ti1, ti2, . . . , tiM ) is the set of
check-in types of user i; (ci1, ci2, . . . , ciM ) is the number of check-in for each
location; Ci is the total number of check-in. Let L denote the total number
of users. Then (Tk1, Tk2, . . . , TkL) is the number of check-in for each user in the
location k and pi(k) is the check-in probability for user i in the location k, shown
as equation (4).

pi(k) =
Tki

Ci
(4)

We introduced the concept of location information entropy [19] to describe
the location type, shown as equation (5). The more check-ins in public places
is, the smaller probability of each user check-in is. Thus, the larger information
entropy shows fairly open for this place. In the experiment, we will remove such
locations, and count the same check-in types in the remaining location types.

E(tk) =
L∑

i=1

−pi(k)logpi(k) (5)
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The final feature is described by the ratio between the same types and the
total types. We define ti as the check-in type set of user i, tj as the check-in type
set of user j. Defining at as the feature of check-in type among different users,
shown as equation (6).

at(i, j) =
ti ∩ tj
ti ∪ tj

(6)

4 Friendship Prediction Based on LBSN

4.1 SVM Based Prediction Method

Since the result of friendship prediction is ”Yes” or ”No”, we can make it as a
classification problem. SVM can improve generalization performance; solve high
dimensional and nonlinear problems; avoid local minimum problems. Therefore,
we use support vector machine to construct model. In machine learning, SVM is
supervised learning model with associated learning algorithms that analyze data
and recognize patterns, used for classification and regression analysis. The SVM
training algorithm builds a model that assigns new examples into one category
or the other, making it a non-probabilistic binary linear classifier [20].

4.2 Parameter Optimization

Grid search is one traditional way of performing parameter optimization, which
is simply an exhaustive searching through a manually specified subset of the
parameter space of a learning algorithm [21]. A grid search algorithm must be
guided by some performance metrics, typically measured by cross-validation on
the training set.

In our experiment, SVM classifier equipped with a RBF kernel has at least
two parameters that need to be tuned for good performance on unknown data:
a regularization constant C and a kernel parameter g. Grid search then trains
a SVM with each pair (C, g) in the Cartesian product of these two datasets
and evaluates their performance on a K-fold cross validation set. Finally, the
grid search algorithm outputs the settings that achieved the highest score in the
validation procedure.

C is a trade-off between training error and the flatness of the solution. The
larger C is the less the final training error will be. But if you increase C too much
you risk losing the generalization properties of the classifier, because it will try
to fit as best as possible all the training points (including the possible errors
of your dataset) [22]. In addition, a large C usually increases the time needed
for training. Generally, we select (C, g) which achieves the highest classification
accuracy and gets the smallest parameter C as the best parameters.

In Fig.3 and Fig.4, we plot the optimal (C, g) for two datasets. Also, we can
find the optimal (C, g) from Table 5 . For Gowalla, we select C = 0.35355 and
g = 0.17678. And in Brigthtskite dataset, we choose C = 0.25 and g = 0.25.
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4.3 Evaluation Indicators

We use precision, recall, F1 measure and AUC value for model evaluation. And
regarding the friendship as positive; non-friendship as negative, given in Table 6.

Fig. 3. Grid Search, Gowalla Fig. 4. Grid Search, Brightkite

Table 5. Parameter Optimization

(a) Gowalla

K (C,g) CV Accurancy

K=2
C=0.70711

97.7528%
g=0.125

K=3
C=0.35355

98.8214%
g=0.17678

K=5
C=1.4142

98.8214%
g=0.70711

K=8
C=1.4142

98.8214%
g=0.25

K=10
C=0.35355

97.7528%
g=0.088388

(b) Brightkite

K (C,g) CV Accurancy

K=2
C=0.17678

96.9621%
g=0.125

K=3
C=0.25

97.2368%
g=0.25

K=5
C=0.25

96.9621%
g=0.70711

K=8
C=0.35355

97.2368%
g=0.5

K=10
C=0.125

96.9621%
g=0.70711

The precision and recall are defined as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN
(7)
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Table 6. Test Results

Condition Condition

Positive Negative

Result Positive
True Positive False Positive

(TP ) (FP )

Result Negative
False Negative True Negative

(FN) (TN)

However, precision and recall indicators may meet the contradictory situa-
tion, we also employ F1 measure, which is the harmonic mean of precision and
recall [23], shown in equation (8).

F1 =
2 × precision × recall

precision + recall
(8)

In addition, we use the area under the curve (AUC) value to better evaluate
the classification performance. Usually, the value of AUC is between 0.5 and 1.0
and a larger AUC represents better performance [24].

4.4 Experimental Results

We mix social relation, check-in distance and check-in type for each user, and
use SVM classification algorithm for friendship prediction. Also, we acquired
corresponding classification results for two datasets. (See Table 7) We can notice
that the proposed method can predict friendship effectively. Additionally, the

Table 7. Classification Results

Gowalla Brightkite

precision 0.923 0.902
recall 0.821 0.753
F1 0.869 0.821

AUC 0.879 0.847

ROC curves are illustrated in Fig.5 and Fig.6. And in Table 8 and Table 9, we
display the area under the ROC curve. From it, we can find the area of three
features fusion reaches 0.879 for Gowalla and 0.847 for Brightkite. And the social
relationship makes a greater impact on the friendship prediction.
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Fig. 5. ROC Curve, Gowalla Fig. 6. ROC Curve, Brightkite

Table 8. Area Under the Curve(Gowalla)

Test Result Variables Area
Std. Asymptotic Asymptotic 95% Confidence Interval

Errora Sig.b Lower Bound Upper Bound

fusion of three features .879 .047 .000 .766 .952

social relationship .787 .060 .000 .669 .905

check-in type .668 .062 .012 .548 .789

check-in distance .712 .058 .002 .598 .825

Table 9. Area Under the Curve(Brightkite)

Test Result Variables Area
Std. Asymptotic Asymptotic 95% Confidence Interval

Errora Sig.b Lower Bound Upper Bound

fusion of three features .847 .055 .000 .694 .908

social relationship .731 .059 .001 .615 .847

check-in type .671 .062 .011 .549 .793

check-in distance .703 .061 .003 .584 .823

4.5 Comparison with Other Models

Compared with the model for friendship prediction proposed by Salvatore ,
our precision reaches 0.923 in Gowalla dataset and 0.902 for Brightkite dataset,
AUC values are 0.879 and 0.847 respectively. Whereas 0.92, 0.98, 0.90 by Model
trees, Random forests and J48 algorithm using Salvatore′s model. Moreover,
our calculation process is relatively simple, implicating the effectiveness of our
presented approach.
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5 Conclusion

This paper presents a SVM based approach for friendship prediction on LBSN.
We extract the user social relations, check-in distance and check-in type and
establish prediction model. Some experiments show our algorithm valid. But,
there still exists some problems, such as whether just the three attributes are
enough? We will do more research on mobile datasets to find more latent infor-
mation to improve the quality of friendship prediction. And travel route recom-
mendation depending on friendship is also the research focus later.
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Abstract. Named entity recognition (NER) is a task of detecting named
entities in documents and categorizing them to predefined classes such as
Person (PER), Location (LOC), Organization (ORG) and so on. There
have been many approaches proposed to tackle this problem in both for-
mal texts such as news or authorized web content and short texts such as
contents in online social network. However, those texts were written in
languages other than Vietnamese. In this paper, we propose a method for
NER in Vietnamese tweets. Since tweets on Twitter are noisy, irregular,
short and consist of acronyms, spelling errors, NER in those tweets is a
challenging task. Our method firstly normalizes tweets and then applies
a learning model to recognize named entities using six different types of
features. We built a training set of more than 40,000 named entities, and
a testing set of 2,446 named entities to evaluate our system. The exper-
iment results show that our system achieves encouraging performance
with 82.3% F1 score.

Keywords: Text normalization · Named entity recognition · Spelling
error detection and correction

1 Introduction

In recent years, social networks are becoming more and more popular. It is easy
for user to share their data using online social networks. Nowaday, one of the most
popular social networks is Twitter. According to a statistic in 2011, the number of
tweets was up to 140 million per day1. With the huge posting everyday, effective
extraction and processing of those data will bring great benefit, in particular, to
information extraction applications.

Twitter provides an interactive environment allowing users to create their
own content through tweets. Since each tweet consists of only 140 characters, a
user tends to use acronyms, non-standard words, and social tokens. Therefore,

1 https://blog.twitter.com/2011/numbers
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it contains many spelling errors and raises a challenge for NER. For English and
others languages, there have been several named entities recognition methods
proposed for tweets [1,7,12,13,21]. For Vietnamese language, although there
have been many approaches proposed for NER in formal texts, but there is no
one for Vietnamese tweets. In this paper, we propose a method for NER in
Vietnamese tweets to fill the gap. The system consists of three steps: the first
step is to normalize tweets by detecting and correcting spelling errors; the second
is capitalization classifier and the last is to recognize named entities.

For example, for the tweet: xe đón hồ ngọc hà gây tai nạn kinhh hoàng: sẽ
khởi tố tài xế http://fb.me/2MwvznBbj - (the car picked up ho ngoc ha caused
a terrible accident: the driver will be prosecuted); after the first step, the tweet
will become: xe đón hồ ngọc hà gây tai nạn kinh hoàng: sẽ khởi tố tài xế, where
the spelling error word kinhh is corrected to kinh; And after the second and
the third steps, the tweet will become Xe đón Hồ Ngọc Hà gây tai nạn kinh
hoàng: sẽ khởi tố tài xế and Xe đón <PER>Hồ Ngọc Hà</PER> gây tai nạn
kinh hoàng: sẽ khởi tố tài xế respectively.

This paper presents the first attempt to NER in Vietnamese tweets and the
contribution is three-fold: (1) a method for normalization of Vietnamese tweets
based on dictionaries and Vietnamese vocabulary structures in combination with
a language model, (2) a learning model for NER in Vietnamese tweets with six
different types of features, and (3) a training set of more than 40,000 named
entities and a testing set of 2,446 named entities to evaluate NER system of
Vietnamese tweets.

The rest of this paper is organized as follows: Section 2 presents related work.
Section 3 presents our proposed method. Experiments and results are shown in
Section 4. Finally we draw conclusion in Section 5.

2 Related Work

NER has been extensively studied on formal texts, such as news, authorized
web content. Several approaches have been proposed using different learning
models such as Condition Random Fields (CRF), Maximum Entropy Model
(MEM), Hidden Markov Model (HMM), Support Vector Machines (SVM). In
particular, [14] used SVM to estimate lattice transition probabilities for NER.
[15] applied a feature induction method for CRF to recognize named entities. A
combination between a CRF model with latent semantics to recognize named
entities was proposed in [8]. A method using soft-constrained inference for NER
was proposed in [5]. In [3] and [26], the authors proposed a maximum entropy
tagger and a HMM-based chunk tagger to recognize named entities respectively.
Unfortunately, those methods gave poor performance on tweets as pointed out
in [13].

Regarding to microblog texts written in English, there have been several
approaches proposed for NER. Among them, [21] proposed a NER system
for tweets, called T-NER, which employed a CRF model for training and
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Labled-LDA [20] with the external knowledge base, in particular, Freebase2

for NER. A hybrid approach to NER on tweets was presented in [13] where
a KNN-based classifier was employed together with a CRF model. A combina-
tion between heuristics and MEM was proposed in [7]. Since Vietnamese has
some specific features presented in [23], it is not able to apply those methods
directly to Vietnamese tweets.

For Vietnamese texts, various approaches have been proposed using some
learning models such as SVM [23], classifier voting [22], CRF [9,25]. Some other
works proposed a rule-based method [16], employed bootstrapping algorithm
and a rule-based model [24], combined linguistically motivated and ontological
features [17] for NER.

However, until now, there has not been any work focusing on NER in Viet-
namese tweets or (short) informal Vietnamese texts. In this paper, we propose
a method for NER in Vietnamese tweets to fill the gap. Our method includes
three main tasks as follows: (1) a method for normalization of Vietnamese tweets
based on dictionaries and Vietnamese vocabulary structures in combination with
a language model, (2) a method for detecting and correcting the suitable capital
letter, and (3) a model for training and recognizing named entity in Vietnamese
tweets. We also conduct experiments to evaluate our NER method focused on
three entity types: PERSON, LOCATION and LOCATION.

3 Proposed Method

In this section, we presents our method for NER in Vietnamese tweets. The
method is described in Figure 1. We will describe proposed method in details in
following subsections.

3.1 The Theoretical Background

Currently, there are several view-points on what is a Vietnamese word. How-
ever, in order to meet the goals of automatic error detection, normalization and
classification, we follow the view-point in [22]: "A Vietnamese word is composed
of special linguistic units called Vietnamese morphosyllable". A morphosyllable
may be a morpheme, a word, or neither of them [23]. And according to the sylla-
ble dictionary of Hoang Phe [19], we split a morphosyllable into two basic parts
as follows:

– Consonant and vowel:
• Consonant: Vietnamese language has 27 consonants: "b", "ch", "c", "d",

"đ", "gi", "gh", "g", "h", "kh", "k", "l", "m", "ngh", "ng", "nh", "n",
"ph", "q", "r", "s", "th", "tr", "t", "v", "x", "p". And in those, there
are 8 tail consonants: "c", "ch", "n", "nh", "ng", "m", "p", "t".

• Vowel: Vietnamese language has 12 single vowels including: "a", "ă","â",
"e","ê", "i","o", "ô","ơ", "u","ư", "y".

2 http://www.freebase.com

http://www.freebase.com
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– Syllable: A syllable may be a vowel, or combination of vowels, or combina-
tion of vowels and tail consonants. According to the syllable dictionary of
Hoang Phe, Vietnamese language has 158 syllables and the vowels in these
syllables do not occur consecutively more than once except "ooc" and "oong"
syllables.

Fig. 1. NER model in Vietnamese tweets

3.2 Normalization

Because Vietnamese tweets contain a lot of spelling errors, we propose a method
for normalization them before performing NER. Our normalization method has
two steps, the first step is error detection and the second step is error correction.

3.2.1 Error Detection
Before performing this step, tweets must be removed noisy contents such as
emotion symbols (e.g: ❤❤,..), hashtag symbols, link url @username, etc. In
order to detect errors, we synthesize and build a dictionary for all Vietnamese
morphosyllables. This dictionary includes more than 7,300 morphosyllables. A
morphosyllable in a text will be identified as an error if it does not appear in
the morphosyllable dictionary.

3.2.2 Error Correction
Normally, there are two kinds of errors existing in Vietnamese texts. They are
typing errors and spelling errors.
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To compose Vietnamese texts, there are two popular typings: Telex typing
and VNI typing. Each input typing has a combination of letters and tone-marks
to form Vietnamese morphosyllables. Therefore, in order to fix typing errors, we
build a set of syllables with their tone-marks and a set of rules to map these
syllables to their errors as example follows:

– "án": "asn", "ans", "a1n", "an1"
– "àn": "afn", "anf", "a2n", "an2"
– "ản": "arn", "anr", "a3n", "an3"
– "ãn": "axn", "anx", "a4n", "an4"
– "ạn": "ajn", "anj", "a5n", "an5"

In order to fix spelling errors, we employ the tri-gram model proposed in [18].
Table 1 shows normalization results of Vietnamese tweets with spelling errors
and their normalization.

Table 1. Tweets with spelling errors and their normalization.

Spelling error tweets Normalized tweets

xe đón hồ ngọc hà gây tai nạn
kinhh hoàng: sẽ khởi tố tài xế
http://fb.me/2MwvznBbj

xe đón hồ ngọc hà gây tai nạn kinh hoàng: sẽ khởi
tố tài xế (the car picked up ho ngoc ha caused a
terrible accident: the driver will be prosecuted)

hôm nay, siinh viên ddaijj
học tôn dduwcss thắng được
nghỉ học

hôm nay, sinh viên đại học tôn đức thắng được
nghỉ học (today, students of ton duc thang univer-
sity was allowed to absent)

3.3 Capitalization Classifier

Capitalization is a key orthographic feature for recognizing named entities ([6],
[4]). Unfortunately, in tweets, capitalization is much less reliable than in edited
texts. Users usually compose and reply message quickly, they do not care much
about capitalization. According to [2], a letter is capitalized in the following
cases:

1. Capitalize first letter of the first syllable of a complete sentence, after punctu-
ation (.), question mark (?), exclamation point (!), ellipsis (...) and newline.

2. Capitalize name of persons, locations and organizations.
3. Capitalize for other cases: medal name, position name, days of a week,

months of a year, holidays, name of books, magazines, etc.

Because our method focuses on three types of entities: person, organization
and location; therefore, in capitalization classifier, we take the first and the
second cases into account. For the first case, we detect the structure of sentence
and correct wrong capitalization letters. In the second case, we use gazetteers of
persons, locations and organizations. Table 2 shows the results of capitalization
classifier of Vietnamese tweets.
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Table 2. Some results of capitalization classifier of Vietnamese tweets.

Tweets before capitalization Tweets after capitalization classifier

xe đón hồ ngọc hà gây tai nạn
kinh hoàng: sẽ khởi tố tài xế

xe đón Hồ Ngọc Hà gây tai nạn kinh hoàng: sẽ
khởi tố tài xế (the car picked up Ho Ngoc Ha
caused a terrible accident: the driver will be pros-
ecuted)

hôm nay, sinh viên đại học tôn
đức thắng được nghỉ học

hôm nay, sinh viên Đại học Tôn Đức Thắng được
nghỉ học (today, students of Ton Duc Thang uni-
versity was allowed to absent)

3.4 Word Segmentation and POS Tagging

In order to perform word segmentation and POS tagging for normalized tweets,
we employ vnTokenizer3 of [10] for word segmentation and VnTagger4 of [11] for
POS tagging.

3.5 Feature Extraction

This phase aims to convert each word to a vector of feature values. Our system
uses IOB model to annotate data in training and classification phases. IOB is
expressed as follows:

– B: current morphosyllable is the beginning of a named entity (NE)
– I: current morphosyllable is inside of a NE
– O: current morphosyllable is outside of a NE

Table 3 shows the characteristic value of labels according to IOB model with
four classes (PER, LOC, ORG, O).

Selection of specific attributes from the training set plays a key role in iden-
tifying the entity type. Since the nature of the Vietnamese language is different
from English, we exploit the most appropriate and reasonable features in order
to achieve optimum accuracy for the system. Our system uses following features:

– Word position: the position of words in a sentence.
– POS: POS tag of the current word.
– Orthographic: capitalization of first character, capitalization of all letters,

lowercase, punctuation, numbers.
– Gazetteer: We build several gazetteer lists such as: person, location, organi-

zation and prefixes. Those gazetteer lists consist of more than 50,000 person
names, nearly 12,000 location names and 7,000 organization names.

– Prefix, Suffix: the first and the second character; the last and the next to
the last character of the current word.

3 http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnTokenizer
4 http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnTagger

http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnTokenizer
http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnTagger
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– POS Prefix, POS Suffix: POS tags of two previous words and POS tags
of two following words of the current word.

Table 3. The characteristic value of labels according to IOB model

Label Value Meaning

O [1] Outside a named entity

B-PER [2] Beginning morphosyllable of a NE belongs to a Person class

I-PER [3] Inside morphosyllable of a NE belongs to Person class

B-LOC [4] Beginning morphosyllable of a NE belongs to Location class

I-LOC [5] Inside morphosyllable of a NE belongs to Location class

B-ORG [6] Beginning morphosyllable of a NE belongs to Organization class

I-ORG [7] Inside morphosyllable of a NE belongs to Organization class

4 Evaluation

4.1 Training Set

In Figure 1, before performing feature extraction, we perform word segmenta-
tion, POS tagging and assigning labels in Table 3 for each word in the training
set. Then the system extracts features of the words and represents each of those
word as a feature vector. Finally, a support vector machine learning algorithm
is employed to train a model using the training set.

In particular, we assign labels for words in training set by semi-automatic
program. It means that we assign labels to those words with self-written program
and check in hand. In our self-written program, we consider the noun phrase
obtained after tagging step combining with a list of dictionary of text files to
label for those words. Text files of dictionary contains:

– The noun prefix for people such as you, sister, uncle, president, etc.
– The noun prefix for organizations such as company, firm, corporation, etc.
– The noun prefix for locations such as province, city, district, etc.
– List of dictionary for states, provinces of Vietnam, etc.

Table 4 shows results of assigning labels to words in Vietnamese tweets.
Total number of entities which we assigned label in this phase was presented in
Table 5.
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Table 4. The results of assigning labels for words in Vietnamese tweets.

Tweets Tweets after assigning labels

xe đón Hồ Ngọc Hà gây tai nạn
kinh hoàng: sẽ khởi tố tài xế

xe đón <PER> Hồ Ngọc Hà </PER> gây tai
nạn kinh hoàng: sẽ khởi tố tài xế (the car picked up
Ho Ngoc Ha caused a terrible accident: the driver
will be prosecuted)

hôm nay, sinh viên Đại học
Tôn Đức Thắng được nghỉ học

hôm nay, sinh viên <ORG> Đại học Tôn Đức
Thắng </ORG> được nghỉ học (today, students
of Ton Duc Thang university was allowed to absent)

After assigning labels for words in Vietnamese tweets, we analyze
these tweets to build feature vectors for those words. Structure of a
feature vector includes: <label> <index1>:<value1> <index2>:<value2>
<index3>:<value3>... where:

– <label>: value from 1 to 7 according to 7 labels (O, B-PER, I-PER, B-LOC,
I-LOC, B-ORG, IORG).

– <index>:<value>: order of feature and value corresponding to feature of
word respectively.

After representing words in training set as feature vectors, we employ lib-
SVM6 to train the model.

Table 5. Total number of named entities in the training set

Entity type Number of named entities

PER 10,842

LOC 19,037

ORG 12,311

4.2 Experiments

We conduct experiments to evaluate our method. Table 6, Table 7 show our
experimental results in the terms of Precision, Recall and F-Measure.

– Precision (P): the number of correctly recognized named entities divided by
total number of named entities recognized by the NER system.

– Recall (R): the number of correctly recognized named entities divided by
total number of named entities in the testing set.

6 http://www.csie.ntu.edu.tw/cjlin/libsvm/#download

http://www.csie.ntu.edu.tw/cjlin/libsvm/#download
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– F-Measure (F1): F1 = 2∗P∗R
p+R

We build a testing set including 1,668 Vietnamese tweets and conduct two exper-
iments, with (Case 1) and without (Case 2) normalization and capitalization
classifier of tweets.

Table 6. Experiment results

Case # NEs in
testing

set

# recog-
nized
NEs

# correctly
recognized

NEs

# wrong
recognized

NEs

P R F1

1 2,446 1,915 1,601 314 83.6% 65.45% 73.42%

2 2,446 2,266 1,939 327 85.57% 79.27% 82.3%

We re-implement the state-of-the-art method proposed in [23] and compare
its performance with that of our method.

Table 7. Comparison performance of our method with that of [23]

System Precision Recall F1

Our system 85.57% 79.27% 82.3%

System of [23] 83.20% 76.20 79.55

5 Conclusion

In this paper, we present the first attempt to NER in Vietnamese tweets on
Twitter. We propose a method for normalization of Vietnamese tweets based
on dictionaries and Vietnamese vocabulary structures in combination with a
language model. We also propose a learning model to recognize named entities
using six different types of features. To evaluate our system, we build a training
set of more than 40,000 named entities and a testing set of 2,446 named entities.
The experiment results show that our system achieves encouraging performance
with 82.3% F1 score.
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Abstract. Betweenness centrality is one of the basic concepts in the
analysis of social networks. Initial definition for the betweenness of a node
in a graph is based on the fraction of the number of geodesics (short-
est paths) between any two nodes that given node lies on, to the total
number of the shortest paths connecting these nodes. This method has
quadratic complexity and does not take into account indirect paths. We
propose a new concept of betweenness centrality for weighted network,
beta current flow centrality, based on Kirchhoff’s law for electric circuits.
In comparison with the original current flow centrality and alpha current
flow centrality, this new measure can be computed for larger networks.
The results of numerical experiments for some examples of networks,
in particular, for the popular social network VKontakte as well as the
comparison with PageRank method are presented.

Keywords: Beta current flow centrality · Betweenness centrality ·
Pagerank · Weighted graph · Social networks

1 Introduction

The online social networks gave impulse to the development of new graph-
theoretical methods for network analysis. Furthermore, social network analysis
methods are applied in many other fields such as: economics, physics, biology
and information technologies.

One of the basic concepts in the analysis of social networks is betweenness
centrality, a measure of centrality that is based on how well a node i is situated
in terms of the paths that it lies on [11]:

cB(i) =
1

nB

∑

s,t∈V

σs,t(i)
σs,t

, (1)
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where σs,t is the total number of geodesics (shortest paths) between nodes s
and t, σs,t(i) is the number of geodesics between s and t that i lies on. The
denominator nB captures that the node i could lie on paths between as many
as nB = (n − 1)(n − 2)/2 pairs of other nodes. The complexity of the fastest
algorithm to find cB(i) is O(mn) where m is the number of edges and presented
in [8].

One of shortcomings of the betweenness centrality is that it takes into
accounts only the shortest paths, ignoring the paths that might be one or two
steps longer, while the edges on such paths can be important for communication
processes in the network. In order to take such paths into account, Brandes and
Fleischer [9] and Newman [19] introduced the current flow betweenness central-
ity (CF-centrality, for short). In [9,19] the graph is regarded as an electrical
network with edges being unit resistances. The CF-centrality of an edge is the
amount of current that flows through it, averaged over all source-destination
pairs, when one unit of current is induced at the source, and the destination
(sink) is connected to the ground.

However, the modification proposed in [9,19] comes with a cost. In compari-
son with the original betweenness centrality, the bottleneck in the computation
of CF-centrality is the matrix inversion with complexity O(n3). To mitigate this
high complexity, in [2] the authors suggested a modification of CF-centrality,
where in addition to the grounded sink, every node is attached to the ground
with some small conductance proportional to the node degree.

The proposal in [2] makes the underlying linear system strongly diagonally
dominant and reduces the computational cost of CF-centrality significantly but
still needs to apply averaging over all source-destination pairs. In the current
work, we go further and suggest to ground all nodes equally, which leads to
averaging only over source nodes and reduces further computational cost. We
refer to our new method as beta current flow centrality (βCF-centrality, for
short).

Additionally, in contrast to the works [2,9,19], we consider weighted net-
works. Of course, the original betweenness centrality can easily be extended
to weighted networks with integer weights. Namely, transform each link of the
weight k into k parallel links of weight 1. We obtain a multigraph. The shortest
path between two nodes is determined the same way as in unweighted graph. But
the number of geodesics becomes larger because of the multi-links. For instance,
if the nodes i1 and i2 are connected by k links and the nodes i2 and i3 are con-
nected by l links, then the nodes i1 and i3 are connected by k · l paths. Applying
the formula (1) to the nodes of multigraph we derive the centrality value for
weighted graph, but with a very significant increase in computation cost. In the
worst case scenario of k links between any two nodes the complexity of the algo-
rithm to find cB(i) is O(mnk). In contrast, we note that our proposed method
has the same computational complexity for weighted and non-weighted graphs.

Finally, we would like to note that, due to its relatively small computational
cost, the proposed βCF-centrality is very well suited to serve as a characteristic
function in the Myerson vector [1,18]. The concept of betweenness centrality
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via the Myerson vector was proposed in [12–14]. Considering the nodes in the
network as players and the links as connections between players they formulate
a communication game. The imputation of the general payoff in this cooperative
game can be used for ranking of players and, respectively, for nodes of the graph.
In [17] for the communication game with special characteristic function it was
proposed a fairly simple imputation procedure based on the generating function
and was shown that the resulting imputation agrees with the Myerson value.
The advantage of the Myerson value is in taking into account the impact of all
coalitions. Using the current flow betweenness centrality as a weight of any subset
of the network it is possible to determine a new characteristic function and then
rank the nodes as the Myerson value. This approach extends the game-theoretic
approach from non-weighted to weighted graphs.

2 Beta Current Flow Centrality Based on Kirchhoff’s Law

Consider a weighted graph G = (V,E,W ), where V is the set of nodes, E is the
set of edges, and W is the matrix of weights, i.e.,

W (G) =

⎛

⎜
⎜
⎜
⎝

0 w1,2 . . . w1,n

w2,1 0 . . . w2,n

...
...

. . .
...

wn,1 wn,2 . . . 0

⎞

⎟
⎟
⎟
⎠

,

where wi,j � 0 is weight of the edge connecting the nodes i and j, n = |V |
is the number of nodes. Note that wi,j = 0 if nodes i and j are not adjacent.
Here we assume that G is undirected graph, i.e. wi,j = wj,i. By random walk
interpretation, the method can in fact be extended to directed networks.

Next we introduce the diagonal degree matrix:

D(G) =

⎛

⎜
⎜
⎜
⎝

d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

⎞

⎟
⎟
⎟
⎠

,

where di =
∑n

j=1 wi,j is the sum of weights of the edges which are adjacent to
node i in graph G. The Laplacian matrix L(G) for weighted graph G is defined
as follows:

L(G) = D(G) − W (G) =

⎛

⎜
⎜
⎜
⎝

d1 −w1,2 . . . −w1,n

−w2,1 d2 . . . −w2,n

...
...

. . .
...

−wn,1 −wn,2 . . . dn

⎞

⎟
⎟
⎟
⎠

. (2)

Let the graph G′ be converted from the graph G by extension with an addi-
tional node n + 1 connected with all nodes of the graph G with the links of
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constant conductance β. Thus, we obtain the Laplacian matrix for the modified
graph G′ as:

L(G′) = D(G′) − W (G′) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d1 + β −w1,2 . . . −w1,n −β
−w2,1 d2 + β . . . −w2,n −β

...
...

. . .
...

...
−wn,1 −wn,2 . . . dn + β −β
−β −β . . . −β βn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3)

Suppose that a unit of current enters into the node s ∈ V and the node n + 1
is grounded. Let ϕs

i be the electric potential at node i when an electric charge
is located at node s. The vector of all potentials ϕs(G′) = [ϕs

1, . . . , ϕ
s
n, ϕs

n+1]
T

for the nodes of graph G′ is determined by the following system of equations
(Kirchhoff’s current law):

L(G′)ϕs(G′) = b′
s, (4)

where b′
s is the vector of n + 1 components with the values:

b′
s(i) =

{
1 i = s,

0 otherwise.
(5)

The Laplacian matrix (2) is singular. The potential values can be determined up
to a constant. Hence, without loss of generality, we can assume that the potential
in node n + 1 is equal to 0 (grounded node). Then, from (3) it follows that

ϕ̃s(G′) = L̃(G′)−1bs, (6)

where ϕ̃s(G′), L̃(G′) and bs are obtained from (3) by deleting the last row and
column corresponding to node n+1. Notice that in ϕs(G′) and b′

s zero elements
are deleted. This yields

ϕ̃s(G′) = [D(G) − W (G) + βI]−1bs, (7)

where I is a unity matrix of size n.
Thus we can consider the vector ϕ̃s(G′) as the vector of potential values for

the nodes of graph G, that is,

ϕ̃s(G) = [L(G) + βI]−1bs.

Rewrite (7) in the following form:

ϕ̃s(G) = [(D(G) + βI) − W (G)]−1bs =

= [I − (D(G) + βI)−1D(G)D−1(G)W (G)]−1(D(G) + βI)−1bs.

The matrices (D(G) + βI)−1 and (D(G) + βI)−1D(G) are diagonal with the
elements 1

di+β and di

di+β , i = 1, ..., n, denote these matrices as D1 and D2, respec-
tively. The matrix D−1(G)W (G) is stochastic. Denote it as P . Consequently, we
have

ϕ̃s(G) = [I − D2P ]−1D1bs =
∞∑

k=0

(D2P )kD1bs. (8)
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From (8) it follows that the potential vector can be calculated by the recursion:

ϕ̃s
k+1(G) = D2Pϕ̃s

k(G) + D1bs, ϕ̃s
0(G) = 0.

Note that the convergence is guaranteed since the matrix D2P is substochastic.
The rate of convergence can be easily regulated by the value of β.

The current let-through the link e = (i, j) according to Ohm’s law is xs
e =

|ϕs
i − ϕs

j | · wi,j . Consequently, given that the electric charge is in node s, the
mean value of the current passing through node i is:

xs(i) =
1
2
(bs(i) +

∑

e:i∈e

xs
e), (9)

where

bs(i) =

{
1 i = s,

0 otherwise.

Finally, we define beta current flow centrality (βCF-centrality) of node i as
follows:

CFβ(i) =
1
n

∑

s∈V

xs(i). (10)

We note that the above equation and the law of large numbers can be used to
make a simple, light complexity, Monte Carlo type method for quick estimation
of βCF-centrality. Specifically, we can take a small subset of nodes, V1 ⊂ V ,
chosen independently and uniformly as source nodes in order to approximate
βCF-centrality:

CFβ(i) ≈ 1
|V1|

∑

s∈V1

xs(i). (11)

Let us now investigate the limiting cases of large and small values of β. First,
assume that β is large. Then, we can derive the following asymptotics for the
potential vector.

ϕ̃s = [L + βI]−1bs =
1
β

[I +
1
β

L]−1bs =
1
β

bs − 1
β2

Lbs + o
(

1
β2

)

From the above asymptotics, we can conclude that xs(s) = 1/2(1+ds/β)+o(1/β)
and xs(i) = o(1), for i �= s, and consequently,

CFβ(i) =
1
2n

+ o(1), as β → ∞,

which does not give informative ranking. Now for the other case β → 0, we can
derive the following asymptotics

ϕ̃s = [L + βI]−1bs =
[

1
β

1
n

11T + L� + O(β)
]

bs =
1
β

1
n

1 + L�
�,s + O(β),
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where we have used the Laurent series expansion for inversion of singularly
perturbed matrices (see e.g., [4, Chapter 2]) with 1 denoting vector of ones of
appropriate dimension, and L� = [L − 1/n11T ]−1 − 1/n11T denoting the group
inverse of the Laplacian. Thus, we have

xs
e = |L�

i,s − L�
j,s|wi,j + o(1),

and hence a well-defined and non-trivial limit for βCF-centrality exists when
β → 0.

3 Illustrative Examples

3.1 Weighted Network of Six Nodes

Let us start with a simple six nodes network example which nicely explains the
properties of the beta current flow centrality (see Fig.1). We compute all main
measures of centrality for that weighted graph with six nodes. The results of
computation are presented in Table 1. We see that classical betweenness cen-
trality evaluates only the nodes A and D and gives 0 to other four nodes, even
though they are obviously also important. The PageRank method ranks all nodes
with equal values and thus it is indiscriminatory in this particular case. The cur-
rent flow betweenness centrality and the βCF-centrality evaluate all nodes in
quite similar manner. In particular, they both give rather high values to nodes
A and D. As we mentioned in the introduction, the comparative advantage of
the βCF-centrality in its small computational costs.

Fig. 1. Weighted network of six nodes

Table 1. Measures of centrality for weighted graph with six nodes

Nodes A B C D E F

Original betweenness centrality 6 0 0 6 0 0

PageRank centrality α = 0.85 1/6 1/6 1/6 1/6 1/6 1/6

Current flow betweenness centrality 1.12 0.66 0.66 1.12 0.66 0.66

βCF-centrality β = 1 0.27 0.19 0.19 0.27 0.19 0.19
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3.2 Star Graph

Consider a graph G of n nodes in the form of a star. Let node 1 be the center
of the star. The modified Laplacian matrix in this case is given by

L̃ = L + βI = D(G) − W (G) + βI

=

⎛

⎜
⎜
⎜
⎝

n − 1 + β −1 . . . −1
−1 1 + β . . . 0
...

...
. . .

...
−1 0 . . . 1 + β

⎞

⎟
⎟
⎟
⎠

.

Its inverse matrix is
L̃−1 = (L + βI)−1

=
1

β(1 + β)(n + β)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(1 + β)2 1 + β 1 + β . . . 1 + β
1 + β 1 + β(n + β) 1 + β . . . 1
1 + β 1 1 + β(n + β) . . . 1

...
...

...
. . .

...
1 + β 1 1 . . . 1 + β(n + β)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

If we take as a source node s = 1, we find from (9) that

xs(1) =
1
2

(
1 +

n − 1
n + β

)
,

and
xs(i) =

1
2(n + β)

, i = 2, ..., n.

And for a source node s �= 1, we obtain

xs(1) =
2n − 3 + β

2(1 + β)(n + β)
,

xs(s) =
1
2

(
1 +

n − 1 + β

(1 + β)(n + β)

)
,

xs(i) =
1

2(1 + β)(n + β)
, i �= 1, s.

The latter yields that the βCF-centrality for the star graph is

CFβ(1)=
1
2n

(
1 +

n − 1
n + β

+ (n − 1)
2n − 3 + β

(1 + β)(n + β)

)
=

1
2n

+
(n − 1)(n − 1 + β)
n(1 + β)(n + β)

,

CFβ(i) =
1
2n

(
1

n + β
+ 1 +

n − 1 + β

(1 + β)(n + β)
+ (n − 2)

1
(1 + β)(n + β)

)
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=
1
2n

+
n − 1 + β

n(1 + β)(n + β)
, i = 2, ..., n.

In particular, we can conclude from the above expressions that if β → ∞ all
nodes obtain the same value 1/(2n). And if β → 0 and n is large, the central node
obtains a value very close to one and the other nodes have nearly zero value. This
is in agreement with the general asymptotics derived in the previous section.

This example also shows that the βCF-centrality can be viewed as a flexible
characteristic function and thus efficiently used in the calculation of the Myerson
vector.

3.3 The Results of Computer Experiments with Online Social
Network VKontakte

In this subsection we consider the weighted graph extracted from the popular
Russian social network VKontakte. The graph corresponds to the online com-
munity devoted to game theory. This community consists of 483 participants.
As a weight of a link we take the number of common friends between the par-
ticipants. In fact, the probability that two participants are familiar depends on
the number of common friends [14]. This approach is often used in online social
networks for link recommendation.

In Fig. 2 we show the principal component of the community Game Theory,
which consists of 275 nodes. It is difficult to see from Fig. 2 which nodes are more
important with respect to the community connection structure. Then, we have
converted this graph to another modified graph by deleting the links whose weights
are less than three. This new weighted graph is presented in Fig. 3. The thickness
of a link depends on the link weight, i.e. on the number of common friends.

Fig. 2. Principal component of the community Game Theory in the social network
VKontakte (number of nodes: 275, number of edges: 805 and mean path’s length: 3.36)
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Fig. 3. Principal component of the community Game Theory in the social network
VKontakte after deleting the links weighted less than 3 (number of nodes: 71, number
of edges: 116 and mean path’s length: 3.75)

Table 2. Measures of centrality for top nodes of social network VKontakte

Nodes βCF-centrality Nodes PageRank Nodes Weighted Nodes CF-centrality

betweenness

(β = 0.3) centrality centrality “tnet”

(α = 0.85) (α = 1.5)

1 0.4168 1 0.1359 1 1846 1 0.6406

8 0.3143 8 0.1189 8 1398 8 0.4919

52 0.1463 56 0.0432 52 500 69 0.2946

69 0.1454 28 0.0366 69 494 52 0.2748

28 0.1299 44 0.0277 47 384 28 0.2095

56 0.1273 4 0.0267 44 331 56 0.1942

7 0.1002 32 0.0252 63 331 47 0.1880

15 0.0931 20 0.0244 7 325 44 0.1649

66 0.0922 63 0.0228 55 265 15 0.1645

63 0.0896 6 0.0212 15 228 7 0.1642
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Table 3. The results of the Monte Carlo approach with sampling only 10% of the
nodes as sources

Nodes βCF-centrality Nodes Monte Carlo

(β = 0.3) approach

10% of the nodes

1 0.4168 1 0.5043

8 0.3143 8 0.4134

52 0.1463 52 0.2468

69 0.1454 23 0.2307

28 0.1299 28 0.2255

56 0.1273 20 0.2003

7 0.1002 7 0.1982

15 0.0931 24 0.1871

66 0.0922 63 0.1789

63 0.0896 10 0.1786

47 0.0889 15 0.1763

24 0.0880 55 0.1756

44 0.0842 36 0.1613

55 0.0801 69 0.1565

49 0.0725 12 0.1457

23 0.0702 39 0.1438

13 0.0699 45 0.1403

10 0.0610 56 0.1397

14 0.0598 3 0.1360

25 0.0564 4 0.1234

The results of computing the βCF-centrality for the social network VKon-
takte are given in Table 2. Here we take β = 0.3. It is useful to compare these
values of βCF-centrality with the results corresponding to the PageRank and
classical notation of centrality using the shortest paths [20] for the parameter
α = 1.5. We present in the table only the lists of top-10 nodes for each centrality
measure.

From Table 2 we find that all four methods ranked two main nodes 1 and 8
in the same order. We can already see that, as in the six node network example,



226 K.E. Avrachenkov et al.

βCF-centrality is more similar to CF-centrality and betweenness centrality than
to PageRank.

On Figure 3 we can see that node 52 connects the subgraph {3, 4, 6, 7, 17, 20}
with the rest of the graph. Thus, we can expect that node 52 deserves high cen-
trality rank. Similarly, we also expect that node 7 should have high centrality
rank. The ranking according to βCF-centrality confirms this intuitive expecta-
tion, as they take positions 3 and 7, respectively (See Table 2). We also note
that nodes 4, 20, 6, 17 and 3 took positions 22, 24, 36, 68 and 69, respectively.
However, PageRank gives to nodes 52 and 7 only positions 22 and 12, respec-
tively. Furthermore, under PageRank ranking nodes 4, 20 and 6 took positions
6, 8 and 10, respectively. Namely, PageRank ranks nodes 4, 20 and 6 higher than
node 52. This does not correspond at all to our intuition.

Finally, in Table 3 we present the results of the Monte Carlo approach (see
equation (11)) with sampling only 10% of the nodes as sources. Nodes 1 and 8
as before lead the ranking and there are 6 correct elements in the top-10 basket
of nodes [3]. Monte Carlo approach also determines correctly the ranks of the
key nodes 52 and 7.

4 Conclusion

Betweenness centrality measure is an important tool in the analysis of social
networks. The structure of a network is represented by a graph. The original
betweenness centrality measure is based on the assumption that the information
is transmitted along geodesics (shortest paths) between any two nodes. There
is a criticism of this approach that it does not take into account information
spread along non-shortest paths. The current flow betweenness centrality based
on electric circuit interpretation tries to mitigate this shortcoming. However,
this comes with the increase of computational cost. We introduce here the βCF-
centrality method which depends on the parameter β. This method is versatile,
has lower computational complexity and can be easily used as characteristic
function in the Myerson vector.
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Abstract. Link prediction in complex networks has attracted increasing
attention of researchers in many domains. The prediction methods are
usually used to find missing information, identify spurious interactions,
and reconstruct networks. Inspired by the rich-get-richer mechanism, we
propose a novel index on the basis of betweenness. Extensive experiments
show that the proposed method performs well on some networks. Espe-
cially, on the Adjnoun network and Florida network, it outperforms some
mainstream link prediction baselines, such as CN Index, AA Index and
RA Index.

Keywords: Link prediction · Complex networks · Betweenness

1 Introduction

Many complex systems can be well described as networks, ranging from biochem-
ical networks, through the Internet, to various social networks. Nodes represent
individuals or organizations and edges denote the relations between them [1].
Link prediction as one of the most fundamental problems plays a significant role
in understanding the intrinsic evolutionary mechanisms of networks. On protein-
protein interaction network, whether a link between two nodes exists must be
demonstrated by laboratorial experiments, which are usually very costly. Instead
of checking all possible interactions, focusing on those links most likely to exist
can sharply reduce the experimental cost if the predictions are accurate enough.
On online social networks, the accurate predictions can help users to find new
friends and further enhance their loyalties to the web sites [2]. On online shopping
networks, with the help of link prediction methods, recommending customers the
most likely right goods is welcome to not only the buyers but also the sellers.

Link prediction is a long-standing challenge in complex networks, and a lot of
methods have been proposed based on topological features and/or the structural
characteristics of networks, like the node attribute, the hierarchical organization
[3] and community structure [4]. Mainstream link prediction methods can be clas-
sified into two major classes. The first class is the similarity-based algorithms
that take into account the topological similarity based on network structures
only, such as CN Index counting the number of common neighbours [5], AA

c© Springer International Publishing Switzerland 2015
M.T. Thai et al. (Eds.): CSoNet 2015, LNCS 9197, pp. 228–235, 2015.
DOI: 10.1007/978-3-319-21786-4 20
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Index [6] and RA Index [1] penalizing the large-degree common neighbours,
and so on. This kind of methods usually has a low computational expense but
performs not very well on some networks to some extent, like Adjnoun network
[15] and Florida network [16]. The second class is proposed based on maximum
likelihood estimation, like Stochastic Block Model(BM) [7] and Hierarchical Ran-
dom Graph(HRG) [8] predicting more accurate with higher computational com-
plexity. Recently, a new measure based on neighbor communities is proposed
with good performance [9], meanwhile, a proposed method via convex nonnega-
tive matrix factorization on multiscale blocks gives better results than common
neighbours method when the networks have a large number of missing links [10].

However, the network evolutionary mechanisms coincide with our capacity
to predict missing links. For example, rich-get-richer mechanism is very popular.
When people search papers to read, the higher cited ones are always favoured
and then have more popularity to be cited again. When someone has extra
money to deposit, larger bank is usually the favourite choice. Does the pair
of unlinked nodes with large betweenness also have more probability to be con-
nected? Therefore, we propose an index called B−Index based on betweenness to
predict missing links. Empirical results verify that the proposed index improves
prediction accuracy, compared with the three mainstream baselines, especially
on the Adjnoun network [15], Karate network [14] and Florida network [16].

2 Method

Suppose we have an undirected simple network G(V,E), where V is the set of
nodes and E is the set of links.

2.1 Common Neighbours (CN)

Let Γ (i) represents the set of neighbours of node vi. By common sense, two nodes
are more possible to have a link if they have many common neighbours. Thus,
CN Index [5] measures the probability between two nodes with the number of
their common neighbours:

sCN
ij = |Γ (vi) ∩ Γ (vj)| (1)

where Γ (i) denotes the set of neighbours of node vi, Γ (i) ∩ Γ (j) indicates the
set of common neighbours of node vi and vj .

2.2 Adamic-Adar Index (AA)

AA Index [6] refines the counting of common neighbours by emphasizing less-
connected common neighbours, as:

sRA
ij =

∑

z∈Γ (i)∩Γ (j)

1
log kz

(2)

in which kz is the degree of the node vz.
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2.3 Resource-Allocation Index (RA)

RA Index [1] simulates resource transmissions between two nodes, and penalizes
common neighbours with large degrees, it is defined as:

sRA
ij =

∑

z∈Γ (i)∩Γ (j)

1
kz

(3)

2.4 B-Index

Different node has different influence, the influence of a node denotes the signif-
icance. Obviously, the significance of a node is not only an individual property
but also related to other nodes. It determines the ability to capture resource,
information, and is always related with network structure. Popularly, the signif-
icance of the node is measured by the Betweenness. Betweenness regards a node
as being in a favoured position to the extent that the node falls on the shorted
paths between other pairs of nodes in the network [11]. Moreover, Betweenness
is in proportion to the number of shortest paths from all nodes to the others that
pass through that node. If item transfers through the network follows the short-
est paths, a node with high Betweenness has a large influence on the transfer
behaviour. Motivated by the rich-get-richer phenomenon, we hypothesize that
the probability of two nodes to make a link is related to the sum of their between-
ness. Therefore, the sum of two nodes’ betweenness is bigger, the two nodes are
more possible to be connected.

Definition 1. The betweenness [12] of the node vk is given by the expression:

g(vk) =
∑

vi �=vk �=vj

σij(vk)
σij

(4)

where σij is the total number of shortest paths from node vi to node vj , and
σij(vk) is the number of those paths that pass through node vk.

We claim that in the network construction, if we make a link between two
unconnected nodes vi and vj , then the betweenness of vi and vj will get bigger,
respectively.

The reason is as follows. vx and vy are two random nodes but different with
vi and vj . Take the node vi for example. Firstly, the distance from node vx to
node vy will be shorter than or equal to that of node vi and vj unconnected. So,
it may contribute more to the betweenness of node vi. Secondly, if a shortest
path (between node vx and vj) passes through the node vi, the contribution to
the betweenness of node vi will be 1 if node vi and node vj are connected.

The Betweenness is essential in the analysis of complex networks, but costly
to compute. Currently, the known algorithms require O(n3) time, where n is the
number of nodes in the network [13].

Thus, we get the B − Index as follows:

sB
ij = g(vi) + g(vj) (5)
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Table 1. Algorithm of the B − Index

Algorithm of B − Index

input: A = (aij)n×n//observed network

output: S//prediction network

1. Compute the betweenness of the node vk by the
equation (4).
2. Calculate sBij for each vi, vj by the equation (5).
3. S = (sBij).

3 Experiments

In general, links between different nodes may have different weights to measure
their relative importance in networks. In our experiments, we set all weights
to be one. Multiple links and loops are not allowed, and we convert arcs into
undirected links.

3.1 Data

In this paper, we consider six representative networks from disparate fields:
1) Karate [14]: the network of friendships between the 34 members of a karate
club. 2) Adjnoun [15]: the network of common adjective and noun adjacencies for
the novel “David Copperfield”. 3) Florida [16]: the food web of Florida ecosystem,
the relations of carbon exchanges in the cypress wetlands of South Florida dur-
ing the wet season. 4) USAir97 [17]: the network of the USA air transportation
system, which contains 332 airports and 2126 airlines. 5) ERDOS971 [18]: Erdos
collaboration network containing 472 researchers and 1314 papers. 6) Email [19]:
the e-mail communication network of a university in Spain.

Table 2 gives the basic topological features of these networks. Brief definitions
of the monitored topological measures can be found in the table caption.

Table 2. The basic topological features of six example networks, |V | and |E| are the
number of nodes and edges, respectively. C indicates the clustering coefficient [20],
and < k > represents the average degree of the network, ρ denotes the density of
the network, defined as ρ = 2|E|

|V |(|V |−1)
, < d > is the average distance. r denotes the

assortative coefficient [21], H is the degree heterogeneity, defined as H = <k2>
<k>2 .

Networks |V | |E| C < k > ρ < d > r H

Karate 34 78 0.588 4.589 0.139 2.408 -0.476 1.693
Adjnoun 112 425 0.190 7.589 0.068 2.536 -0.129 1.815
Florida 128 2,075 0.334 32.422 0.255 1.776 -0.111 1.237
USAir97 332 2,126 0.749 12.807 0.039 2.738 -0.208 3.464
ERDOS971 472 1,314 0.347 5.568 0.012 4.021 0.182 2.442
Email 1,133 5,452 0.254 9.624 0.0086 3.606 0.078 1.941
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Fig. 1. Comparisons of B − Index with CN , AA and RA on six networks

3.2 Evaluation Method

The set of links E is randomly divided into two parts: the training set ET and
the probe set EP . The former one is treated as known information, the latter
one is used for testing. Clearly, E = ET ∪ EP and ET ∩ EP = ∅.

To quantify the accuracies of link prediction methods, the standard metric
we use is AUC [22]. The value of AUC can be interpreted as the probability
that a randomly chosen missing link (a link in EP ) is given a higher score than
a randomly chosen nonexistent link (a link in U\E, where U represents the
universal set). In practice, we do n independent comparisons, if there are n0
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times the missing link having a higher score than the nonexistent link and n∗

times they are equal, the AUC value can be computed by the formula below:

AUC =
n0 + 0.5 ∗ n∗

n
. (6)

3.3 Results

Firstly, we compare B−Index with the similarity-based algorithms: CN , AA and
RA, measured by AUC. As shown in Fig 1, our method outperforms all the time
in the networks: Karate, Adjnoun and Florida. On the networks: ERDOS971,
USAir97 and Email, although B − Index doesn’t do very well at the begining,
when the fraction of missing edges is large enough, our method outperforms the
other three algorithms. What’s more, the AUC of all methods decrease as the
fraction of missing edges grows, but our method decreases very slowly.

Note that the AUC of CN , AA and RA are more or less similar in the
performance on the six networks, while that of B − Index is not. The reason
is twofold. Firstly, the first three methods are all based on common neighbours,
yet B − Index is proposed based on betweenness. Secondly, betweenness is a
global network attribute, but that three measures are local similarity indices.
In addition, as we can see from Fig 1, on the network of Florida of which the
average degree is only 1.237 and the degree heterogeneity is only 1.776, the AUC
raises almost 0.2 all the time. However when the proposed method is applied on
the ERDOS971 network whose average degree is 4.021 and degree heterogeneity
is 2.442, it does better only when the fraction of missing edges is bigger than
0.4. Obviously, B − Index does better on the networks that simultaneously have
small degree heterogeneity and small average distance. The reason is that in this
kind of networks, betweenness determines the ability of capturing the flow of
information more perfectly without the turbulence from node’s degree.
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Fig. 2. Comparisons of B − Index with BM , HRG and CN on networks: Karate and
Adjnoun

What’s more, we compare B − Index with three representative methods:
Stochastic Block Model(BM), Hierarchical Random Graph(HRG) and Common
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neighbors(CN), the AUC results are shown in Fig 2. BM and HRG show better
performance in prediction in some networks but suffer from high computational
complexity. However, B − Index gets the best performance on the Adjnoun
network. Moreover, the AUC of B − Index gets down quickly after a point.
This phenomenon is the result that the network is too sparse. Before the point,
B − Index shows much more reliability and stability.

4 Conclusion

In this paper, we have proposed a new measure, B − Index, motivated by the
rich-get-richer mechanism, to predict missing links. The proposed index is cal-
culated by summing up the two ends’ betweenness. The experiments on six
networks reveal that two nodes are more likely to be connected if the sum of
their betweenness is bigger. Besides, the proposed method does well in predict-
ing missing links on monitored network which simultaneously has small average
distance and small degree heterogeneity, like Karate, Adjnoun and Florida.

Acknowledgments. The authors would like to thank Zheng Xie for helpful discus-
sions and good ideas, and Xuan Zhao for proofreading this paper.
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Abstract. In social networks, trust is a complex social relationship
between entities. How to calculate the trust degree more accurately is
an important research issue. This paper proposes a trust measurement
model in social networks based on game theory. The trust degree is calcu-
lated from three aspects, service reliability, feedback effectiveness, recom-
mendation credibility, to get more accurate result. In addition, in order
to alleviate the free-riding problem, based on game theory, this paper
proposes a punishment mechanism according to the specific trust degree
and the global trust degree. The simulation results indicate the effective-
ness of the proposed trust measurement model. And it can effectively
solve the free-riding problem in social networks through the proposed
punishment mechanism.

Keywords: Service reliability · Feedback effectiveness · Recommenda-
tion credibility · Game theory · Punishment mechanism

1 Introduction

With the current popularity of online social networks, more and more infor-
mation is distributed through social network services. Participants in online
social networks want to share information and experiences with as many reliable
users as possible [1,2]. Trust between nodes is the basis of social network ser-
vices. However, the modeling of trust is complicated and application-dependent
[3,4]. Modeling trust needs to consider interaction history, recommendation, user
behaviors and so on. Therefore, modeling trust is an important focus for online
social networks [5–7].

In social networks, the existing trust models are mainly constructed on
the basis of the nodes’ global trust. However, these models fail to filter the
false feedback and distrust recommendation, which leads to the inaccuracy of
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DOI: 10.1007/978-3-319-21786-4 21



A Trust Measurement in Social Networks Based on Game Theory 237

the measurements. Because it is common that nodes intend to be selfish, the free-
riding phenomenon often occurs in complex networks, resulting in the decrease
of network performance. According to the free-riding, the so-called free-riders
attempt to benefit from network resources of others without offering their own
resources in exchange [8]. The goal of our work is to build an effective trust
measurement model that can benefit social network services, such as controlling
feedback, recommendation, and strategy selection, etc. In an effort to solve the
above problems, the main contributions of our work are summarized as follows.

1. In order to more accurately measure trust degree of a node, we introduce
three novel evaluation factors which are service reliability, feedback effective-
ness and recommendation credibility.

2. Another practical problem considered in this paper is the free-riding problem.
We propose a punishment mechanism based on the proposed trust model,
which is different from the existing works where statistic methods are com-
monly used. In our punishment mechanism, we employ the evolutionary
game theory which is more flexible and effective.

The rest of the paper is organized as follows: Section 2 reviews the related
works and presents the motivation for our work. Section 3 introduces the pro-
posed trust measurement model for social networks. Section 4 illustrates our
simulation results and analysis of the results. Conclusions and future work are
shown in Section 5.

2 Related Work

Much effort has been spent on trust measurement models to depict trust behav-
iors in complex networks. Trust measurement methods under open network envi-
ronment and trust measurement methods based on Agent synergy are the most
important trust measurement methods.

i. Trust Measurement Methods Under Open Network Environment
Beth et al. [9] first proposed a trust measurement method under open network
environment. In their work, trust is regarded as direct trust and recommendation
trust, and a probabilistic method is adopted to represent trust. The PeerTrust
model [10] uses the transaction and the community background as the source of
reputation feedback. It can act as a defense against some of the subtle malicious
attacks, e.g., a seller develops a good reputation by being honest for small trans-
actions and tries to make a big profit by being dishonest for large transactions.
The EigenRep model [11] assumes that if the direct trust between a node and the
destination node is higher, the recommendation trust is more reliable. The model
uses direct trust to calculate the global trust. This model can effectively solve
the bad effect caused by the malicious recommendation. Wang et al. [12] pro-
posed a trust model based on Bayesian network. This model investigates how to
describe different aspects of trust to obtain various properties of entities accord-
ing to different scenes. Wang et al. [13] solved the problem of recommendation
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trust based on the Bayesian method. This method calculates recommendation
trust based on experts’ experience. Lu et al. [14] proposed an evaluation method
of software reliability. It is a bottom-up calculation process of trust level that
can decompose and synthetically derive a parallel structure, so that the trust
value of a system can be calculated accurately. However, there are still some
shortages about this kind of models. They only adopt probabilistic model to
establish subjective trust model. In other words, subjectivity and uncertainty
of trust are equivalent to randomness. They also adopt the averaging method
to calculate recommendation trust, which cannot reflect the real situations of a
trust relationship.

ii. Trust Measurement Methods Based on Agent Synergy
In Agent synergy, trust means that a collaborative Agent can properly and non-
destructively predict subjective possibility of a collaborative activity. The source
of prediction is the goal service behavior that previous Agent observes. Predic-
tion results are affected by evaluation of important degree from the Agent, such
as key collaborative activities, secondary collaborative activities, etc [15]. The
eBay trust model [16] is one of the most successful cases. In this model, the
entities evaluate each other after each transaction. The structure of this system
is straightforward, and the computation cost is small. Because trust between
Agents is associated with other entities’ subjective understanding and fuzzi-
ness, it cannot be described and managed by conventional and accurate logic.
Subjective trust as a cognitive phenomenon, whose subjectivity and uncertainty
present fuzziness, is often managed by Fuzzy Set based methods. It not only
reflects fuzziness of Agent trust, but also describes the trust mechanism between
Agents with intuitive and concise semantics. Tang et al. [17] first proposed the
definition and evaluation of trust based on the fuzzy set theory. They gave for-
malization, and deducted rules of trust to construct a complete subjective trust
management model. However, this kind of models fail to consider the cooperative
cheating behaviors, which cannot detect the community of cooperative cheating.

In addition, some recent works are also remarkable. Shi et al. [18] proposed a
dynamic P2P trust model based on the time-window feedback mechanism. The
model considers the inherent connection among trust, reputation and incentive
and the effect of time factor on the trust computation. Gan et al. [19] proposed
a reputation-based multi-dimensional trust (RMDT) algorithm which makes use
of a self-confident coefficient to synthesize the direct and recommendation trust
to evaluate the nodes in a network. A multi-dimensional trust mechanism is also
introduced to improve sensitivity of RMDT on a single attribute. Meng et al. [20]
proposed the @Trust model. Bedi et al. [21] proposed a trust based recommender
system using ant colony for trust computation. Zhang et al. [22] proposed a trust
evaluation method based on the cloud model.

These models have promoted the development of trust measurement. How-
ever, most of the existing models fail to filter the false feedback and distrust
recommendation, which leads to the inaccuracy of the measurements. In addi-
tion, the free-riding problem is not comprehensively considered in one trust
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measurement model. Considering these problems, this paper proposes a new
trust measurement model for social networks based on Game Theory. The pro-
posed model introduces three novel evaluation factors which are service relia-
bility, feedback effectiveness and recommendation credibility to more accurately
measure the trust degree of a node.

3 The Proposed Trust Measurement Model

In order to describe the trust degree more accurately, this paper divides nodes
into four categories, which are service nodes, feedback nodes, recommendation
nodes and managed nodes. In particular, each node can become the four dif-
ferent roles in different transactions, i.e., service node, feedback node, recom-
mendation node or managed node. In social networks, trust represents the level
of confidence about the reliability and correctness of entity’s behaviors. Service
reliability indicates the trustworthiness of service that service nodes provide;
feedback effectiveness represents the trustworthiness of feedback that feedback
nodes return; recommendation credibility expresses the trustworthiness of rec-
ommendation that recommendation nodes give. In this paper, the global trust
of the node i, denoted as Ti, is the probability of i being correct. The service
reliability is denoted as STi; the feedback effectiveness is denoted as FTi; and
the recommendation credibility is denoted as CTi.

In this paper, let i be a service node, j be a feedback node and k be a recom-
mendation node; and Mi, Mj , Mk are the managed nodes of i, j, k, respectively.
In each transaction, the managed nodes are different, because every node has
the probability to become managed node.

When feedback node j requests a specific service s, the managed node Mj

searches for the trust node which can provide service s. If there exists such a
node i, then node j requests the service from node i. If not, Mj searches for the
recommendation node k. Then node k recommends a service node i with the
maximum trust degree that can provide service s to node j. If there does not
exist a recommendation node k, the transaction fails.

3.1 The Trust Measurement Process

In this model, the specific feedback value fvj,i
, given by the feedback node j,

is known by the system. Therefore, we obtain the calculation method of service
reliability based on the specific feedback value fvj,i

, which is shown by Eq.(1).

STi =

∑
j∈set(i) fvj,i

· λ(j, i)
∑

j∈set(i) λ(j, i)
, FTj ≥ θ (1)

In Eq. (1), set(i) is the set of feedback nodes that communicated with ser-
vice node i, and θ is the threshold of feedback effectiveness. λ(j, i) presents the
influence effect of node j on node i. In addition, FTj represents the feedback
effectiveness of node j.



240 Y. Wang et al.

In social networks, some feedback nodes may evaluate some trust nodes mali-
ciously, and praise some distrustful nodes. Therefore, we should also evaluate the
trust degree of fvj,i

. In this paper, we calculate the feedback effectiveness based
on similarity of specific feedback values. The feedback effectiveness of node j can
be derived through a similarity formula as shown by Eq.(2).

FTj =

∑
i∈set(j,r) fvj,i

· fvr,i√∑
i∈set(j,r) f2

vj,i
·
√∑

i∈set(j,r) f2
vr,i

(2)

In Eq.(2), set(j, r) presents the node-pair set that both nodes communicated
with node i. Similar with the calculation method of service reliability, the rec-
ommendation credibility of node k is computed by Eq.(3).

CTk =

∑
i∈Rset(k) ST i · λ(k, i)
∑

i∈Rset(k) λ(k, i)
(3)

In Eq.(3), Rset(k) is the node set recommended by recommendation node
k before. λ(k, i) presents the influence effect of node k on node i. There are
two factors affecting the value of λ(k, i). One is the time interval T = tn − tp,
tn presents the current time, and tp presents the time that node k recommend
node i. Another is the connection degree ωk,i of the relationship between node i
and node k. Thus, λ(k, i) is shown as Eq.(4).

λ(k, i) =
1

tn − tp
· ωk,i (4)

In this paper, how to determine the connection degree ωk,i is considered.
According to the successful transaction Trsuc and the number of total transac-
tions |Tr| between node k and node i, we determine the connection degree ωk,i,
which is shown by Eq.(5). In Eq.(5), successful transaction Trsuc is an indicative
function, if CT > Threshold, Trsuc = 1, otherwise, Trsuc = 0.

ωk,i =
∑|Tr|

m=1 Trsuc
|Tr| (5)

According to the above analysis, the calculation method of global trust degree
is shown by Eq.(6). In Eq.(6), α, β and γ are weights for service reliability,
feedback effectiveness and recommendation credibility, and α + β + γ = 1.

Ti = α · STi + β · FTi + γ · CTi (6)

If a service node provides distrust service, i.e., the service reliability is less
than the service threshold ρ, the node will enter the service punishment cycle.
In the service punishment cycle, a node should not provide any service. If a feed-
back node provides distrust feedback, i.e., the feedback effectiveness is less than
the feedback threshold θ, the node will enter the feedback punishment cycle. In
the feedback punishment cycle, a node should not request any service. If a rec-
ommendation node provides distrust recommendation, i.e., the recommendation
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credibility is less than the recommendation threshold δ, the node will enter the
recommendation punishment cycle. In the recommendation punishment cycle, a
node should not provide any recommendation for other nodes.

In direct interaction algorithm, the service reliability STi, and the feedback
effectiveness FTj will be output.

If there is not a trustful service node i that has interacted with the feedback
node j directly, it needs a recommendation node k to recommend a trustful
service node i for node j.

3.2 The Punishment Mechanism

Based on the proposed trust model, two punishment mechanisms are proposed
according to the specific trust degree and the global trust degree respectively.
According to the specific trust degree (service reliability, feedback effectiveness
and recommendation credibility), this paper designs three punishment cycles
according to different specific trust degree, so that restrain the specific trust
behavior of nodes. According to the global trust degree, this paper gives a pun-
ishment mechanism based on the game theory [23,24] in order to solve the free-
riding problem in social networks.

According to the specific trust degree, we design the specific punishment
mechanism, and divide punishment cycles into service punishment cycle, feed-
back punishment cycle and recommendation punishment cycle. Once a node
has selfish behavior, the node will enter the punishment cycle. In the period of
punishment cycle, the node must be cooperative and honest in order to restore
its reputation. In addition, other nodes reject to provide services for this node.
After the punishment cycle, the node can replay transactions. According to the
different selfish behavior, this paper gives different punishment strategies.

1. Service punishment cycle. If the service reliability STi < ρ, node i will enter
service punishment cycle. In the service punishment cycle, a node cannot
provide service for other nodes, and cannot request any service.

2. Feedback punishment cycle. If the feedback effectiveness FTi < θ, node i
will enter feedback punishment cycle. In the feedback punishment cycle, a
node cannot request any service. However, it can provide service for other
nodes.

3. Recommendation punishment cycle. If the recommendation credibility CTi <
δ, node i will enter recommendation punishment cycle. In the recommenda-
tion punishment cycle, a node cannot recommend any node. However, it can
request and provide service for other nodes.

If the global trust degree of a node that stays in punishment cycle, greater
a threshold, this node will exit the punishment cycle. And this node can make
transactions with other nodes normally. However, if the node behaves distrust-
fully again, this node will enter the corresponding punishment cycle. In addition,
the exiting threshold will be increased, so that strengthen the punishment force.

According to the global trust degree, this paper proposes punishment mech-
anism based on multi-strategy game to inspire nodes to select the strategies
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with high trust degree. Ti indicates the whole trust degree of node i. We divide
trust degrees into five levels shown as: [0.8, 1.0] → Trust1, [0.6, 0.8) → Trust2,
[0.4, 0.6) → Trust3, [0.2, 0.4) → Trust4 and [0.0, 0.2) → Trust5 .

The five-strategy matrix is shown in Table 1. In Table 1, prijA is the profit
value that the entity A obtains, if entity A game with entity B that A adopt
the strategy i, and entity B adopt the strategy j. And prijB is the profit value
that the entity B obtains, if entity B game with entity A that B adopt the
strategy i, and entity A adopt the strategy j. Through the game analysis for
the entities’ behaviors in social networks, we can know that the multi-strategy
game matrix is a symmetric matrix. In the analysis of the dynamics model,
this game is performed repeatedly. At the end of each stage of the multi-strategy
game, any participant’s strategy as a historical information can be known by
other participants. In addition, all the participants establish the strategy for the
next stage of game based the historical information.

Table 1. The five-strategy game matrix with incentive and punishment mechanism

Trust level Trust 1 Trust 2 Trust 3 Trust 4 Trust 5

Trust 1 pr11A , pr11B pr12A , pr12B pr13A , pr13B pr14A , pr14B pr15A , pr15B

Trust 2 pr21A , pr21B pr22A , pr22B pr23A , pr23B pr24A , pr24B pr25A , pr25B

Trust 3 pr31A , pr31B pr32A , pr32B pr33A , pr33B pr34A , pr34B pr35A , pr35B

Trust 4 pr41A , pr41B pr42A , pr42B pr43A , pr43B pr44A , pr44B pr45A , pr45B

Trust 5 pr51A , pr51B pr52A , pr52B pr53A , pr53B pr54A , pr54B pr55A , pr55B

In order to prevent the selfish nodes from selecting the strategy with low trust
degree to be their preferred strategy for getting more benefits, i.e., to restrain
the free-riding phenomenon, a punishment mechanism is established to inspire
the nodes to select the strategies with high trust degree based on the multi-
strategy game. In the case of i < j, the calculation method of the benefits after
adding punishment mechanism is shown by Eq.(7). When i = j, the calculation
method is shown by Eq.(8).

PRij
A = prijA + μ · (prijA + prijB ), i < j

PRij
B = prijB − μ · (prijA + prijB )

(7)

PRij
A = prijA , i = j (8)

where PRij
A represents the benefit of entity A, if entity A selects i strategy and

entity B selects j strategy after adding punishment mechanism.

4 Simulations and Performance Analysis

In this section, we present the simulation results to verify the effectiveness of
the proposed model. The hardware simulation environment is: Intel Core (TM)
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Duo 2.66GHz CPU, 2GB Memory, Windows XP operating system, and Mat-
lab 7.0 simulation platform. There are two kinds of nodes, the normal nodes
and the malicious nodes. There are two types of normal nodes: (1) completely
trustful nodes that can provide trustable service, feedback and recommendation;
(2) mix-type trustful nodes that provide trustful feedback and recommendation,
but random service quality, 20% of files have low quality, i.e., malicious files. The
malicious nodes include three types: (1) completely malicious nodes that provide
questionable service, feedback and recommendation; (2) random malicious nodes
that provide questionable service, feedback and recommendation with a certain
probability (in the simulations, the probability is 50%); (3) disguised malicious
nodes that provide trustful service and recommendation but questionable feed-
back. In the simulations, there are 1000 nodes, including 30% completely trustful
nodes, 30% mix-type trustful nodes, 10% completely malicious nodes, 20% ran-
dom malicious nodes, and 10% disguised malicious nodes. The simulation setting
is shown in Table 2 where 1 represents completely trustful strategy, 0 represents
completely questionable strategy, and ε represents randomly trustful strategy.

Table 2. The simulation setting

The style of nodes/trust Service Feedback Recommendation

Ct 1 1 1

Tt ε 1 1

Cm 0 0 0

Rm ε ε ε

Dm 1 0 1

We measure the evolution of trust degree according to the service reliabil-
ity, feedback effectiveness and the recommendation credibility respectively. Fig.1
presents the initial evolution trend of the service reliability without any punish-
ment mechanism. From Fig.1, it can be seen that there exists the free-riding
problem. The proportions of completely malicious nodes (Cm) and the random
malicious nodes (Rm) increase steadily in the first 50 generations. After that, the
system tends to be stable. Therefore, if there is not any punishment mechanism,
the malicious nodes will dominate the evolutionary direction of the whole system.
Fig.2 shows the ideal condition by adopting the punishment mechanism. From
Fig.2, it can be seen that the completely trustful nodes (Ct) will dominant the
evolutionary direction of the whole system with the punishment mechanism. The
proportions of the completely trustful nodes (Ct) and the disguised malicious
nodes (Dm) increase steadily, and tend to be stable at the last. It is because
that the disguised malicious nodes (Dm) can provide trustful service so that
they can survive in the system.

Fig.3 and Fig.4 show the evolution trend of feedback effectiveness. Fig.3
presents the initial evolution trend of the feedback effectiveness without any
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Fig. 1. The initial evolution trend of ser-
vice reliability without punishment

Fig. 2. The evolution trend of service
reliability with punishment

punishment mechanism. From Fig.3, it can be seen that the free-riding problem
occurs. The proportions of the completely malicious nodes (Cm), the random
malicious nodes (Rm) and the disguised malicious nodes (Dm) increase steadily
in the first 50 generations. After that, the system tends to be stable. Since the dis-
guised malicious nodes (Dm) provide distrustful feedback, they will obtain more
benefits than the nodes that provide trustful feedback without any punishment
mechanism. Fig.4 shows the ideal case by adopting the punishment mechanism.
From Fig.4, it can be seen that the proportion of the completely trustful nodes
(Ct) and the mix-type trustful nodes (Tt) increase steadily, and tend to be stable
at the last. Since the mix-type trustful nodes (Tt) can provide trustful feedback,
they will survive in the system.

Fig.5 and Fig.6 show the evolution trend of recommendation credibility. Fig.5
presents the initial evolution trend of the recommendation credibility without

Fig. 3. The initial evolution trend of
feedback effectiveness without punish-
ment

Fig. 4. The evolution trend of feedback
effectiveness with punishment
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Fig. 5. The initial evolution trend of rec-
ommendation credibility without punish-
ment

Fig. 6. The evolution trend of recom-
mendation credibility with punishment

any punishment mechanism. From Fig.5, it can be seen that the free-riding prob-
lem generates in social networks. The proportions of the completely malicious
nodes (Cm) and the random malicious nodes (Rm) increase steadily in the first
50 generations. After that, the system tends to be stable. Fig.6 shows the ideal
case by adopting the punishment mechanism. From Fig.6, it can be seen that
the proportions of the completely trustful nodes (Ct) and the mix-type trustful
nodes (Tt) increase steadily, and tend to be stable at the last. Because the mix-
type trustful nodes (Tt) can provide trustful recommendation, they will survive
in the system.

We also verify the effectiveness of the whole punishment mechanism. Through
combining the measurement results of service reliability, feedback effectiveness
and recommendation credibility, we measure the trust evolution of the whole
system. Fig.7 shows the initial evolution results. It can be seen that if there is

Fig. 7. The initial evolution trend of
trust without punishment

Fig. 8. The evolution trend of trust with
punishment
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not any punishment mechanism, the free-riding phenomenon will occur. The free-
riding problem can be solved by employing the punishment mechanism based on
multi-strategy game which is shown by Fig.8.

5 Conclusions

In social networks, the trust relationship between nodes is the basis of service
transactions. However, the establishment of trust relationship is a complex pro-
gressive process depending on interaction history, trust recommendation, trust
management and so on. Therefore, modeling trust relationship needs to take
into account multiple decision factors. Considering the existing problems of the
trust models, this paper proposes a trust measurement model in social networks
based on game theory where the trust degree is determined by three aspects,
which are service reliability, feedback effectiveness, and recommendation credi-
bility. In addition, based on game theory, we propose punishment mechanisms
according to a specific trust degree and the global trust degree respectively in
order to solve the free-riding problem. The simulation results show the effective-
ness of the proposed trust measurement model. It also shows that the proposed
punishment mechanisms can prevent the free-riding phenomenon effectively.

As a future work, we will further investigate more specific trust relationships
between entities, e.g., family, best friends, and classmates. We plan to study how
to find ordered trust-entity set in social networks.
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Abstract. Vehicular communication networks such as vehicle-to-vehicle (V2V) 
or vehicle-to-infrastructure (V2I) are a type of network in which vehicles and 
roadside units are the communicating nodes, providing each other with informa-
tion such as safety warnings and traffic information. As a cooperative approach, 
vehicular communications can be more effective in avoiding accidents and traffic 
congestion than if each vehicle tries to solve these problems individually. Vehicu-
lar communications has some distinct characters such as fast moving, short-lived 
and opportunistic connections. Recently literature in this area is growing rapidly. 
The main focus in on studying how to advance and evaluate the traditional com-
munication protocols and algorithms so as to be more effective in communicating 
information among those fast moving vehicles. Unfortunately there is far less 
work to reveal how the underlie connectivity of wireless network topological can 
affect the overlay communications behaviors. The vehicles’ communications be-
havior is not merely a function of message transmission or the wireless communi-
cations technologies, but also it is a network-wide role and organization. The 
wireless ties that link a vehicle to other vehicles are also a critical factor. In this 
paper, we are paving a new line of research on revealing the roles of network to-
pological characters in vehicular communications. This novel research dimension 
is thought-provoking and opening a new conversation for researchers working in 
this area to rethink and redesign the communications protocols by also consider-
ing the topological connectivity related parameters. 

1 Introduction 

Vehicular communication networks are a type of network in which vehicles and road-
side units are the communicating nodes, providing each other with information such as 
safety warnings and traffic information. As a cooperative approach, vehicular commu-
nications can be more effective in avoiding accidents and traffic congestion than if 
each vehicle tries to solve these problems individually. Therefore the Intelligent Trans-
portation Systems (ITS) have been developed to address the challenges of safety, secu-
rity and efficacy of the current transportation systems. The field of Inter Vehicular 
Communications (IVC), including both Vehicle-to-Vehicle communication (V2V) and 
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Vehicle-to-Infrastructures (V2I), also known as Vehicular Ad-Hoc Network (VANET). 
The VANET is recognized as an important component of ITS in various national plans 
[1]. The VANET communication has become a progressively important research topic 
in the area of wireless networking as well as the automotive industries. The goal of 
VANET research is to develop a vehicular communication system to enable cost-
effective and fastest communication of data for the benefit of passengers’ safety and 
comfort [2]. VANETs are a class of ephemeral networks [3], in which the nodes have 
short-lived and opportunistic connections with each other. The density of the network 
changes continuously as nodes move in and out of the range of each other.  

Recently there are rapidly growing literatures in this area but mainly focus on 
studying how to advance and evaluate the traditional communications protocols and 
algorithms so as to more effectively transmit information among those fast moving 
vehicles. Unfortunately there is far less work to reveal how underlie wireless network 
topological connectivity can affect the overlay communications behaviors. There is a 
saying that, it is not what you know but who you know in daily communications cas-
es, which argues people get ahead in life based on their connections, not on their skills 
or knowledge, and every day offers evidence of this 'hiding' law. Actually it is applied 
to the V2V or V2I communications behavior too. For example, noticing other  
vehicles for finding alternative paths as earlier as possible by unfolding congestion 
information due to accident or abnormal traffic down the track. The vehicles’ com-
munications behavior is not merely a function of message transmission or the wireless 
communications technologies, but also it is a network-wide activity. The wireless ties 
that linking a vehicle to other vehicles are also a critical factor.  

The rest of the paper is organized as follows. Section 2 brief some backgrounds of 
vehicular communications. The novel paradigm of the adaptive network (i.e., the 
interplay between trust state and topology) is introduced in Section 3. An opening 
discussion to raise a new research direction, by using the network transitivity as a 
topological metric example associated with two case studies to validate the transitivity 
effects on VANET communication performances. The section 5 concludes the find-
ings and also layout future works.  

2 Background on VANET 

The VANET is one of the emerging wireless communications network areas. It is the 
upcoming area of mobile ad hoc network (MANET) where vehicles work as portable 
nodes that are within the network. Comforting passengers and increase in the road users 
are some of the basic targets of VANET. Its communications takes place through wire-
less links that are mounted on each and every node i.e. the vehicle [4]. Within VANET, 
each node always act as the participant and network router as the node communication 
is through the nodes that are intermediate and also lies in a range within their own 
transmission. VANET is a network that organizes communications on its own and  
its reliability is not pegged on any network infrastructure that is fixed although some of 
the nodes that are fixed work as roadside units. This is to ensure facilitation of the  
vehicular networking to serve geographical data or to allow access to the internet etc. 
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The characteristics of VANET include the rapid pattern movement, speed and higher 
mobility of the node that causes faster changes in topology’s network and also oppor-
tunist connection [5]. In VANET, vehicles have to follow traffic signals and traffic 
signs, vehicles move on road that are predefined and the vehicle’s velocity always de-
pend on the speed signs unlike in MANET [6]. The stable and reliable communications 
e.g., end-to-end routing in VANET and some of the challenges to be solved to provide 
guaranteed services. Therefore, to make VANET more applicable and put it into imple-
mentation, some challenging research problems should be addressed. For example, 
routing is one of most challenging issues because vehicles are dynamic in action, in 
speed and also high mobility. In addition, there are also much work done in social net-
work aspect of VANET such as trust and reputation management in VANET [7]. More-
over, transport emissions are among the highest environmental pollution sources and the 
vehicles emissions contain a number of harmful substances which include fine particu-
late matter, carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), nitrogen 
dioxide and nitrogen monoxide [8]. Refining mobility of transportation and improving 
the living environment are two challenging issues that require attention for urban traffic.  

While many literatures are mainly focusing on studying how to advance and eva-
luate the traditional communications protocols and algorithms so as to more effective-
ly communicate information among those fast moving vehicles and reduce carbon 
emissions. Unfortunately there is far less work to reveal how underlie wireless net-
work topological connectivity can affect the overlay network behaviors and asso-
ciated performance. The wireless ties that linking a vehicle to other vehicles are also a 
critical factor. A new paradigm named as adaptive networks has been emerged in 
recently to reveal the co-evolution behavior of dynamic ‘on’ and ‘of’ the networks 
[10, 11]. In other words, how the network entities’ state (i.e., behaviors) change af-
fects the underlie network topologies evolves. On the other hand how the change in 
network topologies can affect the change of over entities’ state which we will elabo-
rated in more details in the next section.  

3 Adaptive Networks and Topological Robustness 
Measurement 

Adaptive network is a combination of two concepts which are dynamics on networks 
and dynamics of networks in [12 - 14]. The dynamics on networks is defined as the 
status or state change on the network entities, and the dynamics of networks is defined 
as the change of underlie network topology. These two factors are affecting each oth-
er which are called as co-evolution. In study [14] of the Internet web, the state (i.e., 
behaviors) affects how topologies (i.e., structure) change, and on the other hand, the 
topologies affect how state change as well. For example, the users change their beha-
viors to do more online shopping which could cause more online shops (i.e., computer 
servers and their related connectivity to the Internet) are established. On the other 
hand, the search results associated with positioning could affect user’s preference to 
access various contents and this underlie topology affect overlay state. 
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3.1 The Interplay Between Network State and Topology 

The behavior on a particular node in the network can be considered as the state of that 
node, once this node’s behavior changes which also mean the node’s state changes.  
A typical example is that in the vehicular routing algorithm, if a node is moving out of 
the communication range of others, the connection state is changed, and the algorithm 
will detect this change then disconnect this node but look for an alternative node be-
ing routed to the destination. This is how the state’s change of a node to affect the 
change of its underlying network topology. On the other hand, the network topology 
change should affect the state of a node as well. For example, there are two routes 
between node A and B, so A can select either route to connect with B. However, if 
one of the routes is disconnected, node A will have no choice but to choose the re-
maining route to stay connected with B. This can make the remaining route overload 
as all traffic now come through this route. Some of the nodes might become selfish to 
preserve energy so as to stay alive longer in the network. This example shows that a 
reliable node can become unreliable under pressure due to the change of its underlie 
network topology. Moreover, the change of network topology can affect the efficien-
cy of information dissemination algorithm. The study in [9] found out that the  
information dissemination speed is much faster that in small world network than in 
Lattice network. The information dissemination algorithm can be very inefficient in  
some network topologies, such as scale-free network and star network. In such case, 
the research question will be stated as “can network topological characteristic become 
one of the metrics for information dissemination evaluation?” To do that, “how to 
characterize network topology” is next research question. 

3.2 Network Topology Modeling 

There are lots of researches on complex network. They are trying to model the net-
work evolution of human social network such as telephone communication, co-
authors network , epidemiological network the Susceptible–Infected–Susceptible 
(SIS) model [12] etc. The extraction is the process deciding which part of the network 
is going to change, production is decide how this part is going to change, and finally 
the embedding is embedding the new part into the network. There are two well-
known existing models such as Small World and Scale Free networks. Small World 
effect was introduced by Watts and Strogatz [9]. It is defined as any node in the net-
work can reach any other nodes within k hops. In the real world, a person is very far 
away from you, but sometimes you will be surprised that he could be your friend’s 
friend. In such case, he is actually very close to you, this is small world effect. Scale-
free network was introduced by Barabási and Albert [11] which features as power-law 
degree distribution. Many studies describe this scale-free network as “robust, yet fra-
gile” [12-14]. Free scale networks are robust against random malicious attacks, but 
fragile while malicious parties attack its central hops. For example, random attacks 
need to disable 10 nodes to achieve disconnect the network, but also by disabling one 
central node can achieve the same damage. The work in [14] found out that the  
information dissemination speed is faster in Small World network than in Lattice 
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network. This is because the longest distance between two nodes in Small World 
network is no bigger than k hops. In such case, comparing to lattice network, it ob-
viously has a much longer distance that makes the dissemination speed decrease sig-
nificantly to Small World network. In addition, the routing algorithm is inefficient in 
scale-free and star network because such network normally does not have an alterna-
tive route between any two nodes in the network. In such case, even though routing 
algorithm detects the unavailable nodes or links, it cannot avoid them to create a trus-
table path. 

Moreover, a directed or undirected and weighted or unweighted graph G (V, E) is 
usually used to represent a complex network in [14, 16]. V is node or entity in the 
network and E is edge or link which is connecting the Vs. A directed graph G is 
meant the edge has direction like the link is connected from A to B but not necessary 
vice versa. An undirected graph means the link in the network is reciprocity. The 
same idea, a weight graph means the links have weight in the network, such as the 
connection between A and B is motorway, but between B and C is only an alley [18]. 
In such case, the link weight between A and B is larger. Node strength is the sum of 
link weights to all its neighbors and a high strength node is normally attracting more 
nodes to connect, which is “rich get richer”. 

3.3 Network Robustness Topological Measurement 

Networks exist everywhere in our world, like social network, internet network, traffic 
network etc. Sometimes the network failure can cause significant damage to the com-
panies, society etc. Like a large-scale power outage can cost huge financial loss. Net-
work robustness becomes crucial to prevent this situation happening. What is network 
robustness? The study in [18] defines the term as “the ability of a network to continue 
performing well when it is subject to failures or attacks”. The study [19] suggests as a 
network is more robust if the service on the network performs better, where perfor-
mance of the service is assessed when the network is either (a) in a conventional state 
or (b) under perturbations, e.g. failures, virus spreading. The research in [17] sug-
gested that robustness has a different definition in different scenarios. 

To systematically define network robustness, we need to quantify the robustness. 
The study [18] has listed four classical graph metrics categories to measure robustness 
which includes connectivity, distance, betweenness, and clustering. The connectivity 
is calculated as the percentage of connecting pairs in the network. A fully connected 
network is having connectivity of 1, and then the completely disconnected network is 
having the connectivity of 0. There are another two metrics under connectivity, which 
are vertex connectivity and edge connectivity. The vertex connectivity is the number 
of nodes needs to remove so as to disconnect the network. Same idea, the edge con-
nectivity is the number of edges needs to be disconnected so as to disconnect  
the network. Distance has average hop count of all node pair’s connection, and the 
longest hop count is the diameter of the network. Betweenness is calculated as the 
number of shortest path between any node pair route through a node. Clustering is 
using the clustering coefficient to measure the percentage of the connected triangle 
cluster in all connected triples (3 nodes). One of popular metric is algebraic connec-
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tivity. It uses the Laplacian matrix to represent the network graph, and the second 
smallest eigenvalue is the algebraic connectivity. Effective Resistance is another spec-
tral metric to measure the network robustness. It uses the Kirchhoff’s circuit laws to 
calculate the resistance between two vertexes, and the sum of all node pairs’ resis-
tance is the effective resistance. The smaller the value is, the network believes more 
robustness. 

The study in [18] has also categorized metrics into Distance class, Connection 
class, and Spectral class. It is the same as the studies in [19] but more metrics has 
been listed in each class. It also put the betweenness into the distance class and clus-
tering into the connection class. These additional metrics are similar to that of the 
given metrics mentioned above. The clustering is first design to describe friends’ of 
my friend is my friends as well in human social network, but here also could measure 
the backup route as well as the more in clustering, the more in backup routes. Bet-
weenness is the measure of centrality of a particular node in the network. For the 
algebraic connectivity, studies [18, 19] suggested that if the second smallest eigenva-
lue are multiple, the algebraic connectivity will not change when additional link add-
ed. The effective resistance does not have such problem that it can be more suitable to 
measure the network robustness by focusing on alternative routes. 

4 Directional Discussion and Case Studies 

As we can see that, after surveying on the three knowledge domains include vehicular 
communication networks, social network analysis and adaptive networks associated with 
robustness measurement, there is a new research gap that can be identified as shown by 
Fig.1 above. This is to explore the interplay between the underlie network topological  

 

 

Fig. 1. The research gap identified on the interplay between overlay vehicular social communications 
behavior and underlie topological connectivity 
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k vertices. If we by.  denote the class of all k-subsets of V, we have for E, the edge 

set of G that E ≤ 2  The elements of Y, the corresponding n X n adjacency matrix of 

G, are given by  10  ,  .                                                    1  

 
By r we denote the size of the graph, which is the same as the number of edges, 

thus 
  | |   .                                                            2  

 

Since transitivity and triads are inextricably intertwined, it will be almost inevitable 
for us to deal with triad counts. Triads can have from 0 to three edges, i.e. be of size 0 
to 3. We may use the adjacency matrix Y in order to obtain the count of induced triads 
of size ℓ as 

 

ℓ  , , 3 :   ℓ  .                    3  

 
By ∆ℓwe denote the proportion of complete subgraphs of order ℓ out of all possible 

subsets of order ℓ, thus, for ℓ >2, 
 

∆ℓ  ℓ : 2ℓ , ℓ .                  4  

If we let N= 2  denote the number of all positions in the graphs where there could 

be edges, we realize that for ℓ = 2 we have that 
 ∆  / 2    .                                             5  

 
i.e. ∆2 is the graph density for ℓ= 3, we have that 
 ∆  / 3  / 3  .              6  

In other words, ∆3 is the proportion of transitive triads out of all triads. This propor-
tion can be used as a transitivity index.  
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4.2 Case Study 1 

In a network where the channel access contention is uniformly distributed (In case of 
CSMA), or the number of time intermediate node , and the time that the packet is 
received at the intermediate node 1,  1 … .  

Table 1. Simulation Parameters 

No. of Vehicles 3 
Simulation area 0.5 Km  
Simulation Time  60 minutes  
Vehicle Speed 10 m/sec to 18 m/sec  
Channel bandwidth  11Mbps  
Transport protocol  UDP  
Transmitted power  0.5mW,5mW,15mW,25mW  

 

Fig. 3. Simulation Scenario 

 

Fig. 4. End-To-End Delay vs. Transitivity of Nodes 
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From the given graph, it can easily be analyzed that as the transmitted power de-
creases (i.e., their associated transitivity decreases), the delay increases and vice ver-
sa. Moreover, as shown in Fig.5 below, it can be seen that as the transitivity increases 
(i.e., caused by the transmitted power increases), the overall throughput will increase. 

 

Fig. 5. Throughput vs. Transitivity of Nodes 

4.3 Case Study 2 

Transport emissions are among the highest environmental pollution sources in cities. 
The vehicles emissions contain a number of harmful substances. These include fine 
particulate matter, carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC) 
and nitrogen dioxide and nitrogen monoxide. Refining mobility of transportation and 
bettering the living environment are two essential problems which require to be han-
dled in urban traffic. [22]  

 

Fig. 6. Simulation Scenario 
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In general, the factors can be ascribed to a traffic accident, situation of the road 
(icy, closed), bad driving behavior and traffic signs and lights, as shown in the figure 
below.  

There are two ways to estimate carbon emission. One way is to estimate energy 
consumption at different vehicular speed in mph. There is one useful model that can 
be used in our project – Comprehensive Modal Emissions Model. It has 3 main func-
tions: providing detailed fuel consumption, estimating localized emissions and ac-
counting for road grade effects. These 3 functions can act on each individual vehicle. 
This will be helpful for estimating carbon emission of individual vehicle. [23], [24]. 
The other way is to evaluate CO2 emissions based on average speed of trip or trip 
segment. According to the research, the air pollutant released by burned fuel will 
increase during acceleration. [26] We can use a formula to calculate the carbon emis-
sion. 

 0 1 · 2 · 2 3 · 3 4 · 4 .                            7   
 

Where y stands CO2 emission in g/mi and x stands average travel speed in mph. 
The concrete number that every letter stands for is in [23], [25].  

The total mass of the system, the engine, the speed and acceleration of the calcula-
tion, we can produce analog data. This data will be treated as an estimate of the emis-
sions. The emissions include CO2, CO, hydrocarbon (HC), and nitrous oxide (NOx) 
and so on. By calculating the two acceleration and deceleration of the vehicle emis-
sions, it can get estimate CO2 emissions. The tractive power requirement at a vehicle's 
wheels Ptract is calculated using the following polynomial: 

 sin  .                                 8  
 

Based on the tractive power requirement, the gas consumption can be estimated 
and, consequently, tailpipe emissions of CO2 calculated according to a second poly-
nomial: 
        0 .                                  9  

 
Because road grade is not currently modeled in SUMO, Ptract calculations as-

sumed planar roads and, hence, ϑ = 0. [25] 
Also, the numerical value of carbon emission in 0mph to 20mph is highest among 

0mph to 90mph. (i.e., relationship between average speed and carbon emission) 
Meanwhile, the numerical value of carbon emission in 20mph to 0mph will be on the 
rise. Actually, the vehicle will stay in low speed in the traffic congestion. Which 
means the vehicle will release more air pollutant including carbon emission in traffic 
congestion. [26] After traffic congestion ended, the vehicle will accelerate to get up to 
normal speed. In the acceleration, it will also release more carbon pollutant. In the 
view of this, the relationship between traffic congestion and carbon emission is that  
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traffic congestion will cause more carbon emission. [27]. Moreover, we found another 
useful formula to calculate emission of carbon. Like formula below to calculate CO2 emis-
sion.  

 

                              .  .   

 
Liter/Kilometer means vehicle-technology-related parameter which is used to de-

scribe fuel energy economy of a vehicle. [28] 

 

 

Fig. 7. CO2 Emission vs. Transitivity 

5 Conclusion  

In this paper, we have surveyed three domains of knowledge include the vehicular 
communications network, social network analysis and adaptive networks (include ro-
bustness topological measurement). It can be seen that, there are rich literature on vehi-
cular communications protocols and algorithms which mainly focus on advancing the 
traditional communication protocols to handle new challenges in vehicular networks, 
but unfortunately there is limited work on how underlie network topological connectivi-
ty can affect the overlay vehicular social communications behaviors. Like our daily 
sayings, it is not what you know but who you know. This means that you can only get 
the right information through the right connectivity. This universal rule embed in the 
networks can be applied to the vehicular communication networks. The vehicular  
communications behavior is not merely a function of message transmission, but also 
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network-wide activity. Finally, we need to notice that, in this paper, we are more focus-
ing on the rationales to establish a new developing line of research on exploring the 
roles of underlie network topological connectivity in vehicular communications. The 
current state of our research in this direction does not yet lend itself to sweeping pre-
scription. Nevertheless, we believe the topic is thought-provoking and opens a new 
conversation for researchers to rethink and redesign the vehicular communications 
protocols from the network topological perspective.  
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Abstract. Network lifetime is one of the key characteristics for evaluat-
ing wireless sensor networks (WSNs) in an application-specific way based
on the availability of sensor nodes, wireless radio coverage, and wireless
connectivity. Basically it shows in a resource constrained environment
the consumption of every limited resource must be considered. A large
number of energy efficient protocols and algorithms have been proposed
in WSNs, mainly by introducing a sleep mode (SM) state to prolong the
lifetime of a sensor network. The network nodes or links can be switched
between working and sleep modes dynamically according to the real-time
traffic situations. While there are far less critical discussions on what can
be the negative effects of SMs on network lifetime in terms of hardware
reliability such as failure rate. The duration of SMs tends to increase
hardware lifetime, while the frequency of power state transitions tends
to decrease it. In this paper, we extend the lifetime concepts in WSNs
to wired network to reveal the side-effects of SMs on the hardware reli-
ability. We have extensively studied the lifetime behavior of network
links in a backbone network scenario as well as identified the sensitive
social factors impacting the network lifetime. This novel research dimen-
sion is thought-provoking and opening a new conversation for researchers
who are working in the areas of sustainable communications and com-
puting to rethink and redesign the energy efficient approaches so as to
address their possible side-effects on hardware reliability for the next
stage of their implementation.

Keywords: Lifetime-aware networking · Energy efficiency · Reliability ·
Failure rate and analysis · Social behavior

1 Introduction

Lifetime-aware network is one of most important research topics in sensor net-
works which are under the resource-constrained environments and the consump-
tion of every limited resource must be considered. It is a key characteristic for
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evaluating wireless sensor networks (WSNs) in an application-specific way based
on the availability of sensor nodes, the wireless radio coverage, and the wire-
less connectivity. Even the quality of service (QoS) measures can be related
to lifetime considerations[1]. The network lifetime can be a measure of energy
consumption occupies the exceptional position since it decides the upper time
bound for the utility of a sensor network. The network can only fulfill its com-
munications purpose as long as it is considered alive but not after that. It is
therefore an indicator for the maximum utility and service of which a sensor
network can provide. Lifetime studies first came up because the recharging or
replacement of batteries is not feasible in many scenarios e.g., too many nodes,
hostile environment etc., and thus the lifetime of network cannot be extended
infinitely. If network lifetime metric is used in an analysis on a real life deploy-
ment, the estimated network lifetime can also contribute to moderate the cost
of the deployment. Lifetime is also considered as a fundamental but very critical
parameter in the context of availability and security in networks[2]. Network
lifetime strongly depends on the lifetimes of single nodes or links that constitute
the network. This fact does not depend on how the network lifetime is defined.
Each definition can finally be interpreted to the fundamental question of when
the individual node or link fails. Thus, if the lifetime of single node or link are not
predicted accurately, it is possible that the derived network lifetime metric will
deviate in an uncontrollable manner. It should therefore be clear that accurate
and consistent modeling of single node or link is very important. The lifetime
of a sensor node basically depends on two factors according to the literature[3]:
how much energy it consumes over time, and how much energy is available for
its use.

In the literature, we can find a great number of relevant publications that
address the problem of sensor network lifetime and how to prolong it by introduc-
ing a sleep mode (SM) state and exploiting the possibility to enable the sensor
node with SMs as much as possible to save energy consumption. When a SM
state is set for a device in a network, the other nodes that remain powered on
have to sustain the traffic flows between the source and destination nodes. This
promising SMs approach has been applied into the wired networks and different
works have investigated the management of backbone networks by adopting sleep
modes (SMs)[4–7]. The main outcome of these works is that networks with SM
enabled are able to save a significant amount of energy, due to the fact that the
traffic experiences high fluctuations between the day and the night, resulting in
a large number of resources that can be put in SMs during off peak hours. How-
ever, the impact of SMs on the reliability of network devices is an open issue[8,9].
In particular, there are two opposite effects influencing the lifetime of network
devices[10]: the duration of SMs tends to increase the lifetime, but the change
frequency of the power state (i.e., from SM to full power and vice versa) has
the opposite effect, i.e., lifetime decrease. When a device experiences a failure,
the device may not be available any more to accommodate traffic forwarding,
resulting in a Quality of Service (QoS) degradation for users. Additionally, the
reparation costs are incurred, which may involve even the replacement of the
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whole device. In particular, the reparation costs may even exceed the monetary
savings gained from SMs[11]. These all facts suggest that the lifetime of the
devices plays a crucial role in determining the effectiveness of SMs, showing that
the energy saving may be not the only metric to prove the effectiveness of a
SM-based approach.

The remainder of the paper is organized as follows. The mathematical model
adopted for evaluating the network lifetime is presented in Sec. 2. Sec. 3 defines
and formulates the lifetime aware network problems. A backbone network sce-
nario is introduced for setting up the numerical studies in Sec. 4, and Sec. 5 has
conducted the simulation studies and then the results analysis is presented to
explain the different network lifetime behavior of each network resource. Discus-
sion of our work is reported in Sec. 6. The final conclusion is drawn and future
work is laid out in Sec. 7.

2 The Network Lifetime Model

We first review the model of [9,10] to compute the network lifetime. Here we
report the main intuitions, while we refer the reader to [10] for the complete
models. In particular, our focus is on links of a backbone network. The generic
failure rate for a link at full power is defined as γon. The failure rate is the
inverse of the lifetime. When SM is applied into the link, the new failure rate
γtot is defined as:

γtot = γon

(
1 − τoff

T

)
+ γoff τoff

T
︸ ︷︷ ︸

Failure Rate Decrease

+
f tr

NF
︸︷︷︸

Failure Rate Increase

(1)

where τoff is the total time in SM during time period T , γoff is the failure rate
in SM, f tr is the power switching rate between full power and SM, and NF is
a parameter called number of cycles to failures. Thus, the total failure rate is
composed by two terms: the first one tends to decrease the failure rate, while
the second one has the opposite effect.

In order to evaluate the lifetime increase or decrease w.r.t. the always on
solution, we define a metric called Acceleration Factor (AF). The AF is lower
than one if the link lifetime is increased compared to the always on solution.
On the contrary, a value higher than one means that the lifetime is decreased
compared to the always on case. More formally,

AF =
γtot

γon
= 1 − (1 − AF off )

τs

T︸ ︷︷ ︸
Lifetime Increase

+ χf tr

︸︷︷︸
Lifetime Decrease

(2)

where AF off is defined as γoff

γon , which is always lower than one since the failure
rate in SM γoff (by neglecting the negative effect due to power state transi-
tions) is always lower than the failure at full power γon. Moreover, χ is defined



To Sleep or Not to Sleep: Understanding the Social Behavior 265

as 1
γonNF , which acts as a weight for the power frequency rate f tr. The AF is

then composed of two terms: the first one which tends to increase the lifetime
(longer periods of SMs tends to increase this term which is negative), instead
the second one tends to decrease the lifetime (the more often power state tran-
sitions occur, the higher this term will be). Moreover, the model is composed by
parameters AF s and χ, which depend solely on the hardware components used
to build the device, while parameters τs and f tr depend instead on the specific
SM strategy. In the following, we detail the optimization model for minimizing
the AF of a set of links.

3 Problem Definition

We consider an Internet Service Provider (ISP) network, where nodes are sources
and destinations of aggregated traffic requests generated by users. We also
assume that the links capacity and the traffic demand by all source/destination
node pairs for each time period are given. Our objective is to find the set of
links that must be powered on so that the total AF in the network is mini-
mized, subject to flow conservation and maximum link utilization constraints.
More formally, we report the formulation of the problem of [12]. More in depth,
let G = (V,E) be the graph representing the network infrastructure. Let V be
the set of the network nodes, while E the set of the network links. We assume
| V |= N and | E |= L. Let ci,j > 0 be the capacity of the link (i, j) and α ∈ (0, 1]
the maximum link utilization that can be tolerated in order to avoid congestion
and to guarantee over-provisioning. Let us denote as T the total amount of time
under consideration. T is divided in time slots of period δt. Finally let ts,d(k) ≥ 0
be the traffic demand from node s to node d during slot k.

Focusing on the variables, we denote with fs,d
i,j (k) ≥ 0 the amount of flow

from s to d that is routed through link (i, j) during slot k. Similarly, we denote
as fi,j(k) ≥ 0 the total amount of flow on link (i, j) during slot k. Moreover, let
τoff
i,j ≥ 0 be the total time in sleep mode of link (i, j). Finally, let us denote with

AFi,j ≥ 0 the AF for link (i, j).
In the following, we consider the integer variables. Let us denote with xi,j(k)

a binary variable which takes value one if the link (i, j) is powered on during slot
k, zero otherwise. Moreover, let us denote with ξi,j(k) a binary variable which
takes value one if link (i, j) has experienced a power state transitions from slot
k − 1 to slot k, zero otherwise. Additionally, Ci,j ≥ 0 are integer variables
counting the number of power state transitions for link (i, j).

Given the previous notation, the objective is to minimize the total AF in the
network:

min
1
L

∑

(i,j)∈E

AF(i,j) (3)
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We then consider the constraints. In particular, traffic has to be routed in
the network:

∑

j:(i,j)∈E

fs,d
i,j (k) −

∑

j:(j,i)∈E

fs,d
j,i (k) =

⎧
⎨

⎩

tsd(k) if i = s
−tsd(k) if i = d

0 if i �= s, d
∀i ∈ V ∀k (4)

We then compute the total amount of traffic on each link:

fi,j(k) =
∑

s,d

fs,d
i,j (k) ∀(i, j) ∈ E ∀k (5)

And we impose the maximum link capacity constraint:

fi,j(k) ≤ αci,jxi,j(k) ∀(i, j) ∈ E ∀k (6)

Additionally, links have to assume the same power state in both directions:

xi,j(k) = xj,i(k) ∀(i, j) ∈ E ∀k (7)

We then count the number of power state transitions for each link:
{

xi,j(k) − xi,j(k − 1) ≤ ξi,j(k)
xi,j(k − 1) − xi,j(k) ≤ ξi,j(k) ∀(i, j) ∈ E ∀k (8)

Moreover, we count the total number of transitions for each link:

Ci,j =
∑

k

ξi,j(k) ∀(i, j) ∈ E (9)

And also the total time in SM for each link:

τoff
i,j =

∑

k

(1 − xi,j(k)) ∗ δt ∀(i, j) ∈ E (10)

Finally, we compute the total AF for each link:

AFi,j = [1 − (1 − AF s
(i,j))

τoff
i,j

T
+ χ(i,j)

Ci,j

2
] ∀(i, j) ∈ E (11)

The total number of transitions is divided by two since we assume that a power
cycle is always composed of two transitions.

4 Scenario Description

We adopt the Orange - France Telecom (FT) scenario of [13]. Tab. 1 reports the
main network characteristics. We refer the reader to [13] for more details. Here
we report a brief summary. In brief, the FT network comprises the core level of
the network. The topology, reported in Fig. 1, is composed of 38 nodes and 72
bidirectional links. Additionally, link capacities and routing weights are provided.
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Fig. 1. Orange-FT network topology

More in depth, the FT network provides specific weights used to balance the load
in the network. Finally, focusing on power consumption, we have adopted the
same power model of [14], in which each link consumes an amount of power
corresponding to a pair of transponders and a pair of IP interface ports. Each
10 Gbps transponder consumes 37W and each 1 Gbps port consumes 10W.
Finally, we assume that when a link is in sleep mode, the power consumption is
negligible.

Together with the topology, we have considered different sets of traffic matri-
ces provided by the operator, together with the source and destination nodes.
A total of 289 matrices is provided, which covers a working day. The total traffic
(normalized to one) over time is reported in Fig. 2. As expected, traffic exhibits
a strong day-night trend, with a peak during the day and an off peak during the
night.

Finally, the maximum link utilization α is set to 50%, as recommended by
the operator.

5 Case Studies

Since the presented problem is very hard to be solved due to the high number
of links in the FT topology, as well as the number of TMs, we have followed a
heuristic approach. In particular, we have applied the Most Power (MP) heuristic
[6] for each TM, and we have then computed as a post-processing phase the
resulting AF. The main idea of the MP heuristic is to put in SM the largest
number of links, by ordering them in descending value of power to selectively
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Fig. 2. Traffic profile for the Orange-FT scenario

Table 1. Network Characteristics

Parameter FT

Type Core Level
Number of Nodes 38
Number of Links 72
Average Degree 3.78
Routing Weights Provided by Operator

Routing Algorithm Min. Cost Path
Traffic Variation 1 working day

put them in SM. For each link put in SM, the connectivity and maximum link
utilization constraints are verified. If they are not met, the link is put at full
power, otherwise it is left in SM.

In our scenario, we have considered a time period of 15 days, and the repeti-
tion of the same traffic profile over the days. Moreover, we have set the hardware
parameters as χ(i,j) = 0.5 and AF off = 0.2 for all the links. In this way, the
gain in terms of lifetime from putting in SM links is high, but we consider also
a penalty χ(i,j) not negligible for the transitions.

The Fig. 3 reports the values of the AF for each link in the network at the
end of the 15 days period. Interestingly, we can see that the observed AF is not
the same for all the links, with some links having an AF close to one and others
instead with larger AF (i.e. more than four). This suggests that the lifetime
behavior is not the same for all components in the network, with some links
that decrease the lifetime and others instead which tends to keep it similar
compared to the full power solution. Thus, we can clearly see that the lifetime
depends on the particular device in the topology. In particular, it is a metric that
depends on the global conditions of the network (i.e. guaranteeing connectivity
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and maximum link utilization), but also on the local policy adopted to decide
when to put in SM the network device.

To give more insight, the Fig. 4 reports the network topology with the link
width proportional to the measured AF. Interestingly, the links with the largest
value of AF (i.e., consequently lower lifetime) are the ones that are connected
to at least one node with high degree (e.g., 30,32,33,34). In particular, these
links are frequently put in SMs to save energy and then powered on to support
the traffic flows. Thus, the resulting lifetime is significantly decreased due to the
fact that there are a lot of power state transitions occurred. This suggests that
also the position of the link in the network topology strongly influences its AF
too. In other words, the ways of links being connected play a crucial role for its
lifetime.

In the following, we consider the evolution of AF over the time. Fig. 5 reports
the AF vs. time for four different links in the topology. Interestingly, also the AF
tends to vary notable vs. time. In particular, links 4-23, 19-33 and 20-32 expe-
rience an AF less than one in the first two days, meaning that at the beginning
their lifetime tends to be increased compared to full power solution. However,
in the following days, their AF is higher than one, meaning that the lifetime is
reduced. This suggests also that time needs to be considered as one of sensitive
factors for the lifetime.

In the last part of our work, we have considered the variation of the hardware
parameters χ and AF off . Fig. 6 reports the variation of the average AF in the
network vs. the hardware parameters. In particular, when AF off is increased,
the AF is increased too: this is due to the fact that the gain for putting in SM
devices is smaller compared to low values of AF off . Additionally, the lifetime
tends to be decreased when the penalty for power state transitions is increased.
This suggests also that the lifetime management should take into account the
hardware parameters, which depends on how the single devices are being built.
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6 Discussion

The presented results pointed out some interesting insights about the social
behavior of lifetime-aware networks. First of all, the lifetime is not the same for
all devices in the network, with some devices increasing the lifetime and other
keeping it almost constant. This is due to the following factors: i) the specific
algorithm used to select the links in sleep mode, ii) the traffic variation over time,
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iii) the network topology under consideration, and iv) the HW parameters. Thus,
we may claim that there exists a social behavior in this scenario: each link has
to optimize its own lifetime, but this metric depends on both endogenous (e.g.
the HW parameters) and exogenous parameters (e.g. the power state of the
other links in the network). Additionally, also the link position in the topology
tends to influence the lifetime, i.e., the links connected to the nodes with the
highest degree (i.e. the highest number of “connections”) tend to vary more
notably their lifetime. Moreover, we have seen that the lifetime changes over
time, passing from the situation in which it is clearly increased (e.g. during the
initial days) to the case in which it is decreased (e.g. during the last days under
consideration). Clearly, also this issue should be considered as future direction
of investigation for our work.

7 Conclusions and Future Work

We have studied the impact of applying a sleep mode based algorithm on a
telecom backbone network, with an emphasis on its social behavior. We have
first proposed a simple model to evaluate the lifetime increase or decrease of
network links as a consequence of sleep mode. After optimally formulating the
problem of maximizing the lifetime of a set of links in a backbone network,
we have conducted an extensive case study to validate the lifetime behavior of
network links. Our results show that the link lifetime is influenced by the position
of the link in the topology, as well as endogenous (e.g. the HW components used
to build the link) and exogenous parameters (e.g. the current set of links in SM,
and the traffic in the network). Moreover, we have shown that the lifetime varies
over time. As next step, we plan to develop an algorithm that is able to consider
the aforementioned social effects, as well to study the impact of traffic matrix
on the lifetime.
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Abstract. The emergence of online social network services allows user
to share photo, video or other content with their social friends. The con-
tent is transmitted from person to person, and a diffusion cascade form.
Many recent works have discovered that the vast majority of cascades
are small and only a tiny fraction of content can spread widely. In this
paper, we focus on the structure of these rare but large cascades in online
social networks. We introduce the concept of combined graph which not
only contains the diffusion links but also includes relevant friendship
edges. We find that the characteristics of combined graph provide a deep
understanding of how information flows and reaches a large population
on social network.

We investigate over 45000 large cascades whose sizes range from thou-
sands to hundreds of thousands. We show the temporal dynamics of
cascade tree and combined graph, and find that the combined graph is
sparse, less clustering and lack of a dense core. In addition, we analyze
the phenomenon from a microscopic perspective. Finally, we examine the
correlations between structural properties and summarize four structural
patterns.

Keywords: Social network · Information diffusion · Large cascades

1 Introduction

The online social networks, such as Facebook, Twitter and KaiXin, provide a
mechanism for posting and sharing information. In these sites, photos, videos, or
other piece of information are transmitted from person to person, creating long
chains or “cascades”. On one hand, large cascades capture a lot of attention,
ranging from viral marketing [6] to social sites [3,10]. However, on the other
hand, many recent works have indicated that large cascades in the real world
are rare [5], and quantitative analysis of large cascades is scarce.

In this paper, we focus on the structure of large cascade and its evolution in
online social network. We analyze a large dataset from KaiXin, with over 45000
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cascades of which sizes range from the thousands to hundreds of thousands.
We do not only explore the dynamics of the tree structure over time, but also
concentrate on the corresponding underlying social network.

1.1 Summary of Findings and Contributions

The first contribution of this paper is the introduction of a new concept called
combined graph. It gives a more effective way to describe cascades of information
diffusion. In addition, we examine several structural properties, such as cascade
depth, the average depth of node, the ratio of leaf node, the community structure
of combined graph, etc. We show detailed observations of these properties and
how they evolve over time. The most striking result is that, for most cascades,
the combined graphs are sparse, less clustering and without a dense core.

We attribute this phenomenon to two reasons. One reason is the “low infec-
tion rate”: each resharer can only affects a small fraction of its neighbours;
another reason is the “persistent adoption probability”: the adoption probabil-
ity is relatively stable and does not increase with multiple exposures.

Next, we seek insight into the correlations between structural properties.
These correlations indicates a strong relationship between cascade tree structure
and the combined graph. In addition, we summarize four structure patterns:
the “long chains” cascades spread via the viral mechanism and generate a lot
of long chains; the “one-step broadcast” cascades always include a high-degree
root node and form a radial shape, whereas the “multi-step broadcast” cascades
rely on multiple hub nodes, and both two kinds can reach a large population in
short distance; the “combination” cascades benefit from both viral and broadcast
mechanisms.

2 Related Work

In recent years, the emergence of blogs and social networks has offered oppor-
tunities to collect massive amounts of user interaction data, and a number of
studies have used these online data to empirically observe the information dif-
fusion process [1,6,12]. Several recent papers [3,5] have analyzed and cataloged
properties of online information cascades, and find that the vast majority of
cascades are small and large cascades are rare.

Some recent studies focus on the mutual effects between the diffusion process
and underlying network: [2] discusses the causal effect of content exposure on
reshare activities and the influences of strong and weak ties; [15] stats that the
contagion process is affected by the community structure of underlying network;
[10] finds that information diffusion process often result in the bursts of new
connections; [12] finds that repeated exposures have a much less marginal effect
on the adoption; These works give a rich understanding of the mechanism behind
diffusion process, while our study provides a global view of large cascades.

The most relevant work is [3], which use the data of photos in Facebook
to study the characteristics of cascades. The study shows that large cascades
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have remarkable difference in time evolution, reshare depth distribution and
the demographics of individuals. However, they study only two typical large
cascades, and our dataset contains tens of thousands.

3 Preliminaries

3.1 Concepts and Terminology

Let the undirected graph G = {V,E} denote the whole underlying social net-
work. The undirected edge e = 〈vi, vj〉 ∈ E represents the friendship between
node vi and vj , as vi, vj ∈ V .

Fig. 1. A cascade starts at node v0 and spreads through the solid arrow lines. The
shadow area illustrates the corresponding combined graph, where the dashed lines
represent the friendship edges between cascade nodes.

We define the cascade as comprising a “seed” individual, who create or post
some content independently of any other individual, followed by other individuals
who are influenced either directly or indirectly by the seed and take a reshare
action. Under this definition, a cascade can be abstracted as tree structure T =
{VT , ET }. VT denotes the nodes participating in the cascades, VT ⊂ V , and the
directed edge eT = 〈vi, vj〉 ∈ ET represents that the spreading direction of the
content is from node vi to node vj , as vi, vj ∈ VT . For example, in Figure 1,
the node {v0, v1, . . . , v6} with the solid arrow lines form a cascade tree, the v0 is
the root node and the cascade size is 7.

Meanwhile, these nodes in cascade tree have friendships with each other,
and form a subgraph in the underlying social network. The subgraph provides
information about the social connections between cascade nodes. Formally, we
denote the subgraph as GS = {VT , ES}, where ES = {eS = 〈vi, vj〉 | vi, vj ∈
VT ∧ eS ∈ E}.

It is important to note that, a small fraction of reshares occur between social
strangers because of the external influence [11]. Such observation implies that the
diffusion links do not necessarily belong to the friendship edges, as ET �⊂ ES .
As a result of this situation, the subgraph of some cascades might not be a
connected graph.
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Due to the defects of subgraph, we introduce another revised concept: com-
bined graph. The combined graph is the combination of both cascade tree
and the corresponding subgraph, including all the diffusion links and friend-
ship edges between cascade nodes. Formally, we denote the combined graph as
GC = {VT , EC}, and the edges satisfy EC ≡ ET ∪ ES . The shadow area in
Figure 1 shows an example of combined graph, where the dash lines represent
the friendship between cascade nodes. In contrast to the subgraph with uncer-
tainty in structure, the definition above guarantees that the combined graph is
a single connected network.

Some studies [3,4,9] have found that, despite achieving comparable diffusion
sizes, the large cascades have significant distinctions in structure. In general,
cascades form two main shapes, which are always referred as star cascade and
chain cascade. In the star cascades, information are originated from a high-
degree node, and many reshares are made directly from the source. It often
creates a wide and shallow tree structure. Conversely, in the chain cascades, the
content spread naturally from person to person and any node can only directly
infects a few others. It produces a deep tree with richer structure.

[4] argues that the mechanisms behind the two types of cascades are different.
The chain cascades grow via the viral mechanism which is analogous to the
virus spreading and reach the population by multi-step interpersonal contagion,
whereas the star cascades grow via the broadcast mechanism which affects
the majority of individuals by one or few super hubs. Our next study will shows
that the different mechanisms not only determine the shape of cascades but also
influence the properties of underlying combined graph.

3.2 Data Description

KaiXin(www.kaixin001.com) is one of the largest online social network services
in China, which was founded in 2008 and has hundreds of millions of registered
users. Similar to Facebook, individuals can reshare the content which is posted by
others in KaiXin. By rough estimating, the majority of these reshared contents
are hot news and funny videos.

Our data consists of 45358 large cascades which posted during from June
1, 2009 to November 30, 2009. The sizes of all cascades are larger than 3000,
among them, sizes of 7013 cascades are larger than 30000 and the largest cascade
includes 448643 cascade nodes.

An unexpected discovery is, comparing with the photo re-share activities in
Facebook[3], the cascades in KaiXin is striking larger. A plausible explanation is
that, compare with private photos, people are more willing to share interesting
news and funny clips.

4 Structure of Large Cascade and Its Evolution

In this section, we show our observations and analysis on the cascade structure
and its evolution in detail. For each cascade, we study the structural properties
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Fig. 2. Structure properties as a function of the number of cascade nodes observed

by observing a certain number (k) of first “infected” nodes. Our plots show how
the structural properties change with the increase of k.

4.1 Temporal Dynamics of Tree Structure

Here we study the temporal evolution of several properties in cascade tree.
The first natural property we consider is the Depth of the cascade. We define
the depth of cascade as the largest number of edges from any node to the root
node plus one, and the depth of root node is 1. We calculate the depth of all
large cascades with different number of observed nodes, and show the statistics
in Figure 2a. It is not surprising that, as the cascade grows over time, the depth
increases sub-linearly.

One problem of the Depth is that this measurement is sometimes not robust
and a single long chain can dramatically affect the result [4]. Therefore, we also
examine some alternative measures. For example, we use the 90th percentile
cascade node depth Depth90p as a metric, which will not affect by the long
tail and more effective than Depth. Similarly, we also calculate the average node
depth Depthavg and the median of node depth Depth50p. In addition, prior work
[4] suggests that the WienerIndex, defined as the average distance between all
pairs of nodes in the cascade tree, provides a measure of “structural virality”.
Thus, a cascade with small Wiener index indicates a pure “broadcast” and the
large Wiener index implies a highly “viral”. It will be demonstrated in later
section that these measures are all highly correlated with each other.

Other features have also been studied, such as the ratio of leaf nodes in the
tree (Leafratio), and how many nodes reshare the content directly from the root
node (Depth2ratio). A cascade with large fraction of leaves indicates that most
of adopters receive the content from a small number of branching nodes and the
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spreading is more dependent on the “broadcast” mechanism. Figure 2b indicates
that the Leafratio decreases rapidly with the growth of cascade but maintains
a relatively stable value (about 0.5) when cascades become large (more than
10000). The Depth2ratio property describes the infectivity of the root node,
and Figure 2c shows it decreases with the cascade size. In many cases, these
two properties are consistent with each other, as a cascade with large Leafratio

always has a large Depth2ratio. However, we find a kind of cascades with large
Leafratio but small Depth2ratio, and we will return to this issue in next section.

4.2 Basic Properties of Combined Graph

We now examine the structure of combined graph. First, we look at the average
degree of nodes in combined graph (Degreeavg). The Degreeavg is defined as
the edge number of combined graph divided by the node number in it. Previous
work [7] has observed that, in most of the real social networks, the average degree
increases over time. We can also observe that, the Degreeavg of combined graph
increases with the growth of cascade size, as shown in Figure 2d. The result
indicates that the “Densification Laws” do also apply to the combined graph.
The phenomenon is not surprising, since larger and deeper the cascade grows, the
new infected node is likely to have more friendships with preceding nodes. Thus,
the new joined node might not only have larger degree but also augment the
degree of old ones.
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Fig. 3. (a) The significant difference between Degreeavg of combined graph and
Degreeavg in the underlying social network. Note that the x axis is log scale. (b)
The probability density of “infection rate”. (c) The probability of infection with the
repeated number of exposures.

On the other side, however, we can observe that, the value of Degreeavg in
combined graph is unexpectedly small, which implies that the combined graph
is extremely sparse. In order to better illustrate the point, we also calculate the
average degree of cascade nodes in the underlying social network. Therefore,
each cascade has two related Degreeavg: one is the average degree in combined
graph and the other is the average degree of these cascade nodes in the social
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network. The comparison of both Degreeavg is demonstrate in Figure 3a, and
note that the x axis is log scale. We can see that, compared with the Degreeavg

of combined graph, the Degreeavg in social network is one order of magnitude
larger and the mean value is more than 100. The remarkable difference between
two Degreeavg indicates that the density of combined graph is mush smaller
than the underlying social network.

Another basic property of combined graph is the diameter. The diameter
of a network is the maximum distance between any two nodes. However, just
like the depth, the diameter will greatly affected by a occasional long chain.
Thus, we use the 90th percentile diameter (Diameter90p) as the alternative
measure which equals the minimum value that greater than the distance of 90%
node pairs. Figure 2e shows that, as the number of observed nodes increases,
the Diameter90p increases in the early stage and decreases slowly at the later
period. The similar phenomenon of “shrinking diameter” was observed by [7],
and our study shows that diameter shrinking happens in combined graph as well.

4.3 The Community Structure

Here we study the community structure of the combined graph in detail. We first
compute the average local clustering coefficient (LCCavg) which is often used to
measure how close a node’s neighbors are to being a clique [14]. Figure 2f shows
that the LCCavg increases monotonically with the cascade growth. Moreover,
we can see that the LCCavg maintains a stable relatively small value, and the
mean is about 0.1. In previous subsection we have indicated that the Degreeavg

in combined graph is small and the mean value is 3.6. Therefore, on average, the
ego network of a node in combined graph only includes 0.6 triangles. It implies
that, for most of the cascade nodes, there is zero or only one friendship links
between its neighbors.

In order to obtain more detailed community structures, we detect the com-
munities of combined graph and examine two community-related properties: one
is the number of communities in combined graph (CommunityNum), the other
is the size ratio of the largest community (LargestCratio). The LargestCratio is
defined as the size of combined graph divided by the size of largest community.
Figure 2g shows that the CommunityNum is on a linear growth as the cascade
size. Moreover, most combined graph are composed by a large number of com-
munities. Figure 2h indicates that, despite the significant growth of the cascades,
the largest community invariably contains a small faction of cascade nodes. Even
if when the cascades grow very large (about 50000) and the LargestCratio seems
to be larger in many cascades, the mean value still smaller than 0.1. Thus, it is
difficult to find a large dense core in those cascades.

4.4 Microscopic Perspective

The small Degreeavg, LCCavg and LargeCratio in combined graph indicate that,
for most cascades, the underlying combined graphs are sparse, less clustering and
without a large dense core. Our finding is somewhat surprising because plenty
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of previous studies [8,13] have examined the structure of social network can
roughly described by the “jellyfish” model. That is, the center of network is
a tight “core” which contains a large proportion of nodes, and then there are
a large number of relatively small “whiskers” connected to the “core”. So the
question is raised: why the combined graph, which is sparse and less clustering,
is generated on top of a dense network substrate?

We argue that this phenomenon can be ascribed to two reasons. The first
reason is that, even for the popular event which can obtain a large population,
the “infection rate” is still very small. In other words, an infected node can only
affect a tiny fraction of its neighbors. To illustrate our point, in each cascade, we
computer the infection probability of node which equals the number of node’s
neighbours in social network divided by the number of followers in the cascade
tree. We show the distribution in Figure 3b. The mean value of infection proba-
bility is about 0.022, which implies that, for a node with 100 social friends, only
2 of its neighbours will reshare the content on average. The “low infection rate”
guarantees the small sparsity of combined graph.

Another reason is that, the likelihood of “adoption” does not increases lin-
early but be somewhat persistence with the number of repeated exposures. It
means that a large proportion of “infected” social neighbours will not moti-
vate the user to “adopt” the content. We demonstrate the adoption probability
with the number of repeated exposures in Figure 3c, and the exposure curve is
amazingly consistent with the result in [12]. The figure shows that the adoption
probability increases and reaches the peak early but declines rapidly and keeps
a small value. The adoption probability of multiple exposures (> 10) is even
smaller than the probability of first exposure. Therefore, multiple exposures has
almost no impact on the adoption, and the “persistent adoption probability”
ensures that it is difficult to form a large dense core in combined graph.

5 The Structural Patterns of Cascades

In this section, we first examine the correlations between structural properties.
In order to achieve the target, these large cascades are pruned and only retain
the first 3000 resharers for each. As a consequence, all pruned cascades have
the same size, and the structure properties become comparable. In addition, we
summarize four patterns for large cascades. Each pattern represents a typical
cascade structure and reflects different diffusion mechanism.

5.1 Correlations Between Structure Properties

First, We study the correlations between the depth-related properties, such as
Depth, Depth50p, Depth90p, Depthavg and WienerIndex. Table 1 shows the
Pearson correlation coefficients between the five properties. We can see that
these properties are highly correlated with each other. In addition, we find that
the Depth90p has the largest average correlation coefficients with other features,
and we use the Depth90p as the representative in our next study.
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Fig. 4. 1. The upper right plots illustrate the correlations between pairs of structure
properties, and the point in plots represents a large cascade; 2. The left lower plots
illustrate the two-dimensional probability densities for property pairs; 3. The plots in
the first left column show the one-dimensional probability density for the corresponding
properties; 4. The cascades are divided into two groups with different colors, red for
the deep cascades and blue for the shallow ones; 5. The “log” label in plots mean that
the horizontal axis is log scale.

Next, we focus on the correlations between eight structure proper-
ties: Depth90p, Leafratio, Depth2ratio, Degreeavg, Diameter90p, LCCavg,
CommunityNum and LargeCratio. We display a scatter plot for each property
pair on the upper right part of Figure 4, and every point in each plot repre-
sents a large cascade. The meaning of colors in plots will be explained in next
subsection, and here we only place emphasis on correlations between variables:

– Leafratio generally has a increasing relationship with Depth2ratio, and both
two properties trend to be inversely proportional to the Depth90p. The phe-
nomenon is easy to understand that, if the cascade is deeper, more nodes
will grow on the deep layers and become branching nodes.

– Leafratio shows a negative correlation with Degreeavg and LCCavg. As we
have mentioned before, a large ratio of leaves indicates that the cascade is
more attributed to the broadcast mechanism. So the negative correlation
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Table 1. Correlation coefficients between Depth, Depth50p, Depth90p, Depthavg and
WienerIndex

Depth Dep50p Dep90p Depavg WIdx

Depth 1 0.87 0.97 0.92 0.94
Depth50p 0.87 1 0.93 0.99 0.90
Depth90p 0.97 0.93 1 0.97 0.96
Depthavg 0.92 0.99 0.97 1 0.93
WIndex 0.94 0.90 0.96 0.93 1

implies that, while most combined graphs are sparse, the combined graph of
star cascades are even sparser.

– Leafratio also has a negative correlation with Diameter90p. The reason is
that, the diameter of combined graph is always in proportion to the cascade
depth, but the depth is inversely proportional to the ratio of leaves.

– Because of the decreasing relationships with Degreeavg, LCCavg and
Diameter90p, Leafratio shows a negative correlation with CommunityNum.

– While a few of cascades have high LargeCratio, the LargeCratio for most
cascades is very small. In addition, the LargeCratio does not show any strong
relationships with other properties.

These strong correlations indicate that the shape of cascade tree and the
structure of combined graph are not independent with each other. In addition,
we find that the Leafratio is a fairly good indicator, which has strong correlations
with most other properties. This property not only describes the shape of cascade
tree but also provides insight on the combined graph.

5.2 Structural Patterns

As we mentioned before, the large cascades can be roughly categorized into the
star cascades and the chain cascades. However, besides the two categories, is

(a) (b) (c) (d)

Fig. 5. Examples of different structure patterns. The large red circle represents the
initial node, the small red circles represent the leaves of cascades, and the blue ones
are branching nodes. All the four cascades have the same size of 3000.
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there other specific shape which can describe a specific collection of cascades?
Another question is, does there exist some more structural difference between
the cascades in the same category?

In order to examine the structural patterns in more detail, we divide our
cascades into two groups according to their Depth90p, where the “deep” group
is labeled by red color and the “shallow” group is labeled with blue color in
Figure 4. In addition, we plot two dimensional probability densities of property
pairs for each group in the left lower part, and demonstrate the one dimensional
density of corresponding structure properties in the first left column of Figure 4.

We find that each group has specific structural characteristics, and the dif-
ference in structure between two groups is significant. The deep group, which
represents the chain cascade, statistically contains less leaves and only a few
nodes followed directly from the root node. Moreover, the combined graph is
denser, has larger diameter and clustering coefficient, and is made up of more
tiny clusters. We refer this structural pattern as “long chains”.

A typical “long chains” cascade is visualized in Figure 5a. The cascade forms
exceedingly long branches, where the Depth90p is 122, and only 0.1% of nodes
follow directly from the root. A distinctive characteristic of the cascade is that
the root is not in the center of the tree structure. In addition, there are no
apparent hub nodes. It implies that, even without huge hubs, information might
spread widely and reach a large population.

On the other side, the structures of cascades in shallow group is slightly
complicated. A large part of these cascades contain only one super-hub node
(is always the root node), and the majority of other nodes receive the information
directly from the super-hub. In the cascade tree, the depth is very short, and
most of nodes surround the hub. In addition, the combined graph is sparser
and covers fewer tiny clusters. We refer this kind of cascades as “one-step
broadcast”. A typical example is shown in Figure 5b.

However, instead of the only one hub node in cascade tree, there exists a part
of cascades in which the spreading of information relies on multiple hub nodes.
These cascades have small Depth2ratio but also infect massive individuals in
short distance. We show a example in Figure 5c. This kind of cascades are not
extreme cases, and we find thousands of similar instances in our dataset. We
refer this pattern as “multi-step broadcast”.

In reality, a sizable majority of cascades are somewhere in between the pure
“long chains” and extreme “broadcast”. These cascades form via both broad-
cast and viral mechanisms. Correspondingly, they consist of not only a high
degree root node but also multiple long chains. A typical cascade is visualized
in Figure 5d and we refer this pattern as “combination”.

Besides the four common structural patterns, there are also some unfrequent
shapes. For example, we observe some cascades which form exact star topol-
ogy with depth of 2. All those cascades are artificial and produced by Sybils.
Furthermore, we have mentioned previously that a few cascades contain a large
community in their combined graph. However, the tree structure of these cas-
cades shows no significant differences with the ones visualized in Figure 5, so
they are not discussed here.
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6 Conclusion

In this paper we focus on the structure and its evolution of large cascade. We
introduced the concept of combined graph and found that the combined graphs
of most large cascades are fairly sparse and less clustering. We analyzed this
phenomenon from a microscopic view. In addition, we examined the correlations
between structural properties and summarized four structural patterns.

More structural properties should be considered in our future work. For exam-
ple, the border nodes and edges surrounding cascade may have effects on the
cascade structure. The four structural patterns are coarse-grained, and more
particular fine-grained patterns need to be discovered. Another direction is to
develop a diffusion model which can simulate these structural characteristics.
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Abstract. Many online social networks (OSN), such as Facebook, Twit-
ter can quickly become popular, but many such as Friendster or MySpace
can also suffer catastrophic decline in traffics and users. Understanding
the capability of OSNs to withstand perturbation and changes, termed
social resilience, is a matter of the uttermost importance. In this paper,
we investigate the resilience of OSNs under nodes and links removals,
where the robustness of the network is measured through the number
of triangles, a fundamental property in many networks. Specifically, we
strive to discover critical nodes and links whose failures will critically
break most triangles in the network, changing the network’s organiza-
tion and (possibly) leading to the unpredictable dissolving of the net-
work. We formulate this vulnerability analysis as optimization problems,
and provide proofs of their intractability. Given the intractability of the
problem, we also investigate approximation algorithms and their efficient
implementations.

Keywords: Triangle breaking · Social networks · Approximation
algorithm

1 Introduction

With massive amount of users, online social networks (OSNs) have fundamen-
tally changed the way people communicate and interact nowadays. While many
OSNs, such as Facebook, Twitter witness rapid expanding in terms of number
of users and user-engagement, the other sites such as Friendster and MySpace
suffered catastrophic decline in traffics and users. For example, Friendster had
over 100 million users at its peak but most of its users have fled to other net-
works such as Facebook by the end of 2009. Thus, understanding the capability
of OSNs to withstands perturbation and changes, termed social resilience, is a
matter of the uttermost importance.

Network resilience to perturbation and changes is a growing concern nowa-
days. Roughly speaking, network resilience evaluates how much the network’s
normal function and capacity is affected in case of external perturbation [1].
c© Springer International Publishing Switzerland 2015
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Complex and social systems that can sustain their organizational structure, func-
tionality and responsiveness under such unexpected perturbation are considered
more robust than those that fail to do so.

While many measures are proposed for resilience of technological and biolog-
ical systems, there are little understanding on the resiliency of social networks.
Most studies in the literature focus on how the network behaves under pertur-
bation using the measures such as the pair-wise connectivity [2], natural con-
nectivity [3], or using centrality measures, such as degrees, betweeness [4], the
geodesic length [1], eigenvector [5], etc. However, these measures are not suitable
for assessing social network resilience.

In this paper, we investigate the resilience of OSNs under nodes and links
removals, where the robustness of the network is measured through the number of
triangles, a fundamental properties in many networks including social networks,
communication networks, biological networks and more. There are many advan-
tages of number of triangles over other structural measures. First, it is a popular
and fundamental metric for evaluating network clustering: a high number of
triangles in a network facilitates more cooperative behaviors and interactions
among its users. Second, a high number of triangles positively correlate with
other structural properties such as modular structure (or community structure),
small diameter, and clustering coefficient.

Our goal is to discover critical nodes and links whose failures will critically
break most triangles in the network, changing the network’s organization and
(possibly) leading to the unpredictable dissolving of the network. We formulate
this vulnerability analysis as optimization problems, and provide proofs of their
intractability. Given the intractability of the problem, we propose efficient and
scalable approximation algorithms to identify triangle-breaking points (i.e. nodes
or links) in the networks. The proposed algorithms guarantee the solutions to
be close to the optimal solutions by a constant factor.

Related Works. Many metrics and approaches have been proposed to account
for network robustness and vulnerability [6–10]. While each of these measures
has its own emphasis and rationality, they often come with several shortcomings
that prevent them from capturing desired characteristics of network connectivity
and resilience. For example, measures based on shortest path are rather sensi-
tive to small changes (e.g. removing edges or nodes); algebraic connectivity and
diameter are not meaningful for disconnected graphs (all disconnected graphs
have the same values); number of connected components and component sizes,
arguably, do not fully reflect level of network connectivity.

Network structural vulnerability in social networks, has so far been an
untrodden area. In a related work [11], the authors introduced the community
structure vulnerability to analyze how the communities are affected when top k
vertices are excluded from the underlying graphs. They further provided different
heuristic approaches to find out those critical components in modularity-based
community structure. [12] suggested a method based on the generating edges of
a community to find out critical the components.
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Table 1. List of Symbols

Notation Meaning

n Number of vertices/nodes (N = |V |)
m Number of edges/links (M = |E|)
du The degree of u
N(u) The set of u’s neighbors
Tri(u) The set of triangles on a node u
T (u) = |Tri(u)| The number of triangles on u
Tri(u, v) The set of triangles on an edge (u, v)
Tri(S) = ∪u∈STri(u) The set of triangles on S ⊆ V
Tri(F ) = ∪(u,v)∈FTri(u, v) The set of triangles on a subset of edges F ⊆ E

Counting and listing triangles in a graph is an important problem, moti-
vated by applications in variety of areas. The problem of counting triangles on
a graph with n vertices and m edges can be performed in a straightforward
manner in O(mn). This has been improved to O(m3/2) in [13] and O(m

2w
w+1 )

where w < 2.376 is the exponent of matrix multiplication [14]. Recently, the
k-triangle-breaking-node and k-triangle-breaking-edge problems are investigated
in [15]. The authors provides NP-completeness proofs and greedy algorithms for
the problems. Unfortunately, the NP-completeness proofs contains fundamental
flaws that cannot be easily fixed.

2 Model and Problem Definition

2.1 Problem Definition

We abstract a social network using an undirected graph G = (V,E) with |V | = n
nodes and |E| = m edges. Given a graph G = (V,E), we study attack models in
which the attackers attempt to minimize the number of triangles in the graph
by removing nodes and edges.

We define four different versions of the problems as follows. In the first two,
the attacker seeks to remove k nodes/edges from the graph to break as many
triangles in G as possible. Here a triangle is broken if one of its edges or nodes
is removed. The k-triangle-breaking-node problem is defined as

Definition 1 (k-Triangle-Breaking-Node). Given an undirected graph G =
(V,E) and budget size k, find a subset S of k nodes that removal will break the
maximum number of triangles in G

max |Tri(S)| (1)
s.t. |S| ≤ k, (2)

S ⊆ V, (3)
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where Tri(S) is the set of triangles with at least one node in S, i.e.,

Tri(S) = {(u, v, w) | (u, v), (v, w), (w, u) ∈ E and {u, v, w} ∩ S �= ∅}.

Note that we can formulate the above problem as an Integer Linear Programming
problem (ILP). Define for each u ∈ V , xu ∈ {0, 1} that satisfies

xu =
{

1 if node u is removed,
0 otherwise.

and for each triangle (u, v, w) ∈ Tri(V ) define an integral variable yuvw ∈ {0, 1}
that satisfies

yuvw =
{

1 if triangle (u, v, w) is broken,
0 otherwise.

The k-triangle-breaking-node problem is to delete at most k nodes, i.e.,∑
u∈V xu ≤ k, to break the maximum number of triangles, i.e., to maximize

the objective function
∑

(u,v,w)∈Tri(V ) yuvw. Since the triangle (u, v, w) is only
broken if at least one node among u, v, w is removed, we have the constraint

xu + xv + xw ≥ yuvw.

In summary, we have the following equivalent ILP formulation.

max
∑

(u,v,w)∈Tri(V )

yuvw (4)

s.t.
∑

v∈V

xv ≤ k, (5)

xu + xv + xw ≥ yuvw, ∀(u, v, w) ∈ Tri(V ), (6)
xu, yuvw ∈ {0, 1}. (7)

Observe that the ILP in (13) is a special case of the Max-k-Coverage[16] problem
in which the set of universe is U = Tri(V ) (i.e. all the triangles) and the collection
of subsets is S = {Tri(v) | v ∈ V }. This special case of Max-k-Coverage also
satisfies the condition that all the elements have the same frequency three, as
each triangle involves exactly three nodes.

Similarly, the k-triangle-breaking-edge problem is defined as

Definition 2 (k-Triangle-Breaking-Edge). Given an undirected graph G =
(V,E) and budget size k, find a subset F of k edges that removal will break the
maximum number of triangles in G

min Tri(F ) (8)
s.t. |F | ≤ k,

F ⊆ E,
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where Tri(F ) is the set of triangles with at least one edge in F ⊂ E.
The equivalent ILP of k-triangle-breaking-edge is

max
∑

(u,v,w)∈Tri(V )

yuvw (9)

s.t.
∑

(u,v)∈E

xuv ≤ k, (10)

xuv + xvw + xwv ≥ yuvw, ∀(u, v, w) ∈ Tri(V ), (11)
xuv, yuvw ∈ {0, 1}, (12)

where

xuv =
{

1 if edge (u, v) is removed,
0 otherwise.

for all (u, v) ∈ E.
Again, k-triangle-breaking-edge is an another special case of Max-k-Coverage

in which the elements to be covered are the triangles in G, and the collection
of subsets includes the set of triangles involve each edge (u, v) ∈ E. As each
triangle consists of three edges, the frequency of each element in this instance is
also three. Moreover, any two subsets have at most one triangle in common.

Also, we studies the converse version in which we wants to break a certain
number of triangles by removing the least number of nodes/edges from the graph.

Definition 3 (min-triangle-breaking-
node). Given an undirected graph
G = (V,E) and an integer |Tri(V )| ≥
p > 0, find a minimum size subset of
nodes S that removal will break at least
p triangles in G.

The ILP for min-triangle-breaking-node

min
∑

v∈V

xv (13)

s.t.
∑

(u,v,w)∈Tri(V )

yuvw ≥ p,

xu + xv + xw ≥ yuvw,

xu, yuvw ∈ {0, 1}.

Definition 4 (min-triangle-breaking-
edge). Given an undirected graph
G = (V,E) and an integer |Tri(V )| ≥
p > 0, find minimum size subset of
edges F that removal will break at least
p triangles in G.

The ILP for min-triangle-breaking-edge

max
∑

(u,v)∈E

xuv (14)

s.t.
∑

(u,v,w)∈Tri(V )

yuvw ≥ p,

xuv + xvw + xwv ≥ yuvw,

xuv, yuvw ∈ {0, 1}.

As shown through the ILP formulations, min-triangle-breaking-node and min-
triangle-breaking-edge are special cases of the partial set-cover problem [17], in
which each element is in exactly three subsets and the intersection of any three
subsets contains at most one element.
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Table 2. Summary of Complexity and Best Approximation Guarantees

Problem Complexity Best approximation ratio

k-triangle-breaking-node NP-complete 19/27 [18]
min-triangle-breaking-node NP-complete 3 [17]
k-triangle-breaking-edge NP-complete 19/27 [18]
min-triangle-breaking-edge NP-complete 3 [17]

2.2 Hardness and Approximability

We summarize the complexity and approximability results for the studied prob-
lems in Table 2. We first discuss the complexity, then present the best approxi-
mation guarantees for those problems.

NP-Hardness. Proofs of NP-completeness of k-triangle-breaking-node and k-
triangle-breaking-edge are presented in [15]. Unfortunately the proofs have fun-
damental flaws. Specifically, the proof of Theorem 2.1 [15] relies on a weaker
constraint of the set system: “the intersection of any three subsets in S has
at most one element”. Indeed for the k-triangle-breaking-edge, the correct (and
stronger) condition should be: the intersection of any two subsets in S has at
most one element. Moreover, the proof relies on another wrong assumption (2nd
paragraph) that if a problem is not NP-hard then there is a polynomial-time
algorithm to solve it. Indeed, we do not know if there exist NP-intermediate
problems between NP and P. Consequently, the validity of the reduction cannot
be confirmed.

We show that all the four problems are indeed NP-complete problems. First,
we present simple NP-completeness proofs of min-triangle-breaking-node and k-
triangle-breaking-node via reduction from the Vertex-Cover problem [16]. The
decision versions of k-triangle-breaking-node and min-triangle-breaking-node can
be polynomial-time reducible from the following decision problem, called Node-
Triangle-Free:

“Given a undirected graph G = (V,E) and a number k, can we delete k nodes
from G so that there is no more triangles in G (aka G is triangle-free)?”.

In turn, we shall show that Node-Triangle-Free is polynomial-time reducible
from the decision version of Vertex-Cover:

“Given a graph G = (V,E) and an integer 0 < k < |V |, is there a vertex-cover
of size k?”.

Let Φ =< G = (V,E), k > is an instance of the vertex-cover problem. For
each edge (u, v) ∈ E, we add to G a new node tuv and connect tuv to both u and v.
Let G′ be the resulted graph. We shall reduce φ to an instance Λ =< G′, k >
of Node-Triangle-Free. Obviously, if we have a vertex-cover S ⊂ V of size k in
G then we can delete the same set of nodes S in G′ to obtain a triangle-free
graph. In the reverse direction, we can assume w.l.o.g. that tuv will never be
removed. The reason is that we can always remove u or v and break an equal or
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greater number of triangle(s). Thus a subsets of size k that removal makes G′

triangle-free must induce a vertex-cover of size k in G.

Theorem 1. The problems k-triangle-breaking-node and min-triangle-breaking-
node are NP-complete.

Similarly, both k-triangle-breaking-edge and min-triangle-breaking-edge can be
polynomial-time reducible to the following problem:

“Can we delete k edges from a graph G = (V,E) to make the graph triangle-
free?”.

That problem is known to be NP-complete according to [19]. Hence, we have
the following result.

Theorem 2. The problems k-triangle-breaking-edge and min-triangle-breaking-
edge are NP-complete.

Approximability. Since the min-triangle-breaking-node and min-triangle-
breaking-edge problems are special cases of the partial set cover problem with
bounded frequencies f = 3 [17], the primal-dual algorithm in [17] provides a
3-approximation algorithm for both the problem.

Theorem 3. There exist 3-approximation algorithms for min-triangle-breaking-
node and min-triangle-breaking-edge.

The k-triangle-breaking-node and k-triangle-breaking-edge problems are special
cases of Max-k-Coverage and the pipage-rounding method in [18] results in an
approximation algorithm with ratio 1 − (1 − 1/3)3 = 19/27. Note that both the
primal-dual method in [17] and the pipage-rounding algorithm in [18] have high
time-complexity and are not scalable for large networks. Thus we will propose
faster algorithm for the studied problems with slightly worse approximation
ratios.

Theorem 4. There exist 19/27-approximation algorithms for k-triangle-
breaking-node and k-triangle-breaking-edge.

3 Finding Triangle-Breaking Nodes

In this section, we present a typical Greedy Algorithm and our Improved
Greedy Algorithm (IGAN) to solve the k-triangle-breaking-node and min-triangle-
breaking-node problems. The first algorithm (Alg. 1) is a naive and simple greedy
algorithm serving as a baseline for comparison purpose. Our main algorithm
(Alg. 2) employs more techniques to provide faster running-time

The first algorithm (Alg. 1) select in each step the node that break the most
number of triangles. That node u = arg maxv∈V \S ΔS(v) is then added to the
solution S. The algorithm continues until meeting requirement : either k nodes
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Algorithm 1. Greedy Algorithm (Simple Greedy)

1: S ← ∅;
2: Repeat
3: S ← S + arg maxv∈V \S ΔS(v)
4: Until (meeting requirement)
5: return S

Algorithm 2. Improved Greedy Algorithm (Node) (IGAN)

1: Number nodes from 1 to n such that u < v implies d(u) ≤ d(v).
2: S ← ∅;
3: for each u ∈ V do T (u) ← 0;
4: for each (u, v) ∈ E do tr(u, v) ← 0;
5: for u ← n to 1 do
6: for each v ∈ N(u) with v < u do
7: for each w ∈ A(u) ∩ A(v) do
8: Increase T (u), T (v) and T (w) by one;
9: Add u to A(v);

10: Repeat
11: umax ← arg maxu∈V \S{T (u)};
12: Remove umax from G and add umax to S;
13: for each (v, w) ∈ E do
14: if v, w ∈ N(umax) \ S then
15: Decrease T (v) and T (w) by one;
16: Until (meeting requirement)
17: return S

are selected (for k-triangle-breaking-node) or when the number of triangles broken
reach p (for min-triangle-breaking-node).

Since the k-triangle-breaking-node and min-triangle-breaking-node problems
are special cases of Max-k-Coverage and partial set cover, respectively, the typi-
cal greedy algorithm provide performance guarantees (1−1/e) and ln p for those
problems, respectively. The (1−1/e) approximation ratio for k-triangle-breaking-
node is also shown in [15] by proving that the objective function (the number of
broken triangles) is a monotone submodular function.

The complexity of Alg. 1 is O(kmn) assuming k nodes are selected in the
solution. Later the time complexity for Alg. 1 is brought down to O(km3/2)
in [15] using the fast triangle computation method in [13]. For large value of
k = θ(n), the time-complexity of the algorithm in [15] could be as high as
O(nm3/2). In next part, we will present our improved implementation of greedy
with time complexity O(m3/2 + km) which is up to m1/2 times faster than the
algorithm in [15].
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3.1 Improved Greedy Algorithm

Our Improved Greedy Algorithm (IGAN - Alg. 2) speeds up significantly the
simple greedy algorithm. For small k’s, this algorithm requires as much time as
counting the number of triangles.

In principle, IGAN employs an adaptive strategy in computing the marginal
gains (the number of broken triangles) when nodes are removed one after
another. At each round, the node v that breaks the most number of triangles is
selected into the solution. Node v is then excluded from the structure and the
procedure repeats itself on the remaining nodes and recomputes efficiently the
new marginal gain for each node u.

We structure IGAN into two phases. The first phases (lines 1–9) extends the
algorithm in [13] to compute the number of triangles that are incident with each
node in the graph. This algorithm was proved to be time-optimal in θ(m3/2)
for triangle-listing, and has been shown to be very efficient in practice. The
second phase (lines 10–16) repeats the vertex selection for k rounds. In each
round, we select the node umax with the highest value of ΔS(u) = T (u) into the
solution. The algorithm then removes umax from the graph, and performs the
necessary update for T (u) for all u ∈ V \S. The algorithm repeats until meeting
requirement: either k nodes are selected (for k-triangle-breaking-node) or when
the number of triangles broken reach p (for min-triangle-breaking-node).

The key efficiency of IGAN algorithm is in its update procedure for ΔS(u) =
T (u). The update for all O(n) values of ΔS(u) after removing umax can be done
in linear time. This is made possible due to the information on the number of
triangles involving each node.

Time-complexity : The first phase takes O(m3/2) as in [13]. The second phase
takes a linear time in each round and has a total time complexity O(k(m + n)).
Thus, the overall complexity is O(m3/2 + km). For k < m1/2, the algorithm
has an effective time-complexity O(m3/2), dominated by the counting triangles
procedure.

Obviously, IGAN is an implement of the greedy method and retains the
approximation guarantees of the greedy method for Max-k-Coverage and partial
set cover.

Theorem 5. The IGAN algorithm is an (1 − 1/e)-approximation algorithm for
k-triangle-breaking-node and an H(p) − 1/2 approximation algorithm for min-
triangle-breaking-node, where H(p) denotes the harmonic function H(p) = 1 +
1/2 + . . . + 1/p.

4 Finding Triangle-Breaking Edges

We present IGAE, the improved greedy algorithm for finding triangle-breaking
edges in Alg. 3. IGAE is faster than its node-version, IGAN, and possesses a
time-complexity O(m3/2 + kn).

Unlike IGAN, IGAE maintains on each edge the number of triangles incident
on that edge and updated the measure efficiently when removing nodes from G.
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Algorithm 3. Improved Greedy Algorithm (Edge) (IGAE)

1: Number nodes from 1 to n such that u < v implies d(u) ≤ d(v).
2: F ← ∅;
3: for each u ∈ V do T (u) ← 0;
4: for each (u, v) ∈ E do tr(u, v) ← 0;
5: for u ← n to 1 do
6: for each v ∈ N(u) with v < u do
7: for each w ∈ A(u) ∩ A(v) do
8: Increase tr(u, v), tr(v, w) and tr(u,w) by one;
9: Add u to A(v);

10: Repeat
11: emax ← arg max(u,v)∈E\F {tr(u, v)};
12: Remove emax from G and add emax to F ;
13: Let (u′, v′) = emax;
14: for each w ∈ N(u′) ∩ N(v′) do
15: Decrease tr(w, u′) and tr(w, v′) by one;
16: Until (meeting requirement)
17: return F

After removing an edge (u′, v′) we only needs to consider only |N(u′) ∩ N(v′)|
updates to discount the triangles incident on (u′, v′) from the corresponding
edges. Thus the overall time-complexity in each iteration is on finding the edge
that breaks the maximum number of triangles. Similar to the node version, we
also have the same approximation guarantees for the edge-deletion problems.

Theorem 6. The IGAE is an (1−1/e)-approximation algorithm for k-triangle-
breaking-edge and an H(p) − 1/2 approximation algorithm for min-triangle-
breaking-edge.

5 Conclusion

In this paper, we study the problems of finding critical nodes and links whose
failures will critically break most triangles in the network, changing the net-
work’s organization and (possibly) leading to the unpredictable dissolving of the
network. We formulate this vulnerability analysis as optimization problems, and
provide proofs of their intractability and their best approximation guarantees:
19/27-approximation for k-triangle-breaking-node and k-triangle-breaking-edge as
well as 3-approximation for min-triangle-breaking-node and min-triangle-breaking-
edge. Since the methods to obtain the best approximation guarantees are not
scalable, we provide efficient implementations for the greedy approaches with
worsen approximation ratios. In the future, we aim to bridge the gaps between
theory and practice to design the scalable approximation with best possible
approximation ratios.
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Abstract. In this paper, we combine network analytical methods to understand the 
structure of financial markets with recent research about collective attention shifts 
by utilizing massive social media data. Our main goal, hence, is to investigate 
whether changes in stock networks are connected with collective attention shifts. 
To examine the relationship between structural market properties and mass online 
behavior empirically, we merge company-level Google Trends data with stock 
network dynamics for all S&P 100 corporations between 2004 and 2014. The 
interplay of massive online behavior and market activities reveals that collective 
attention shifts precede structural changes in stock market networks and that this 
connection is mostly carried by companies that already dominate the development 
of the S&P 100. 

Keywords: Collective attention · Stock networks · Econophysics · Financial 
crisis · Information Theory · Computational Science 

1 Introduction 

Recent economic turmoil has underlined the need to understand modern financial 
markets as complex systems. Especially in times of crisis, the classical models of 
rational agents and efficient markets turn out to be insufficient. One interdisciplinary 
challenger of the dominant paradigm is often dubbed Econophysics [1]. A major 
branch of this field is the statistical analysis of stock interaction networks and their 
structural dynamics. This kind of analysis was first conducted by Mantegna [2], using 
the correlation between price fluctuations of single stocks to construct hierarchical 
networks and reproduce the topological properties of a market. The main idea is to 
decrease the immense complexity of financial markets to facilitate investigation, and, 
at the same time, retain the markets’ core information. Several filtering methods have 
been successfully used to achieve such a reduction, for instance, minimal spanning 
trees [2–5], dynamic spanning trees and asset graphs [6–8] or a winner-take-all 
approach [9], which is applied in [10, 11]. Independent of the construction technique, 
it can be stated that major economic events cause dramatic changes in the network 
structure of stock markets [12].  
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Another innovative research line trying to explain complex economic systems 
focuses on collective attention shifts and their influence on markets by utilizing 
massive social media data [13–16]. The publicly available service Google Trends 
seems to be especially fruitful for scientists to comprehend collective financial 
behavior. Therein, Google provides access to aggregated information on the volume 
of queries for specific search terms over time. These search query data have delivered 
useful information to predict trading volumes [17], to diversify portfolio risks [18] 
and to quantify trading behavior [19]. 

In this paper, we combine both research approaches. Our main goal is to 
investigate whether structural changes in stock networks are connected to collective 
attention shifts. For this purpose, we interpret Google Trends as an approximation for 
collective informational needs and the stock network topologies as representation of 
the structure of financial markets. The subsequent results indicate a general pattern in 
modern investment decision making regarding the importance of collective attention 
shifts for stock formations and, hence, the importance of understanding the link 
between mass internet behavior and price movements.  

2 Data and Methods 

2.1 Stock Networks 

To examine the relationship between structural market properties and mass online 
behavior, we merge two large data sets in the period between 2004 and 2014 for all 
companies listed in the Standard & Poor´s 100 in August, 2014 [20]. The S&P 100 
index composition is based on one hundred large and well established “blue chips”. 
Their raw stock data was retrieved from Yahoo [21]. The basic information consists 
of N assets with price  for asset i at the first trading day of week . The 
logarithmic return for this specific week is then given as the difference to the first 
trading day of the previous week, r ln ln  . In order to investigate the 
dynamics of the stock market, we divide the individual stock data into  windows, 
denominated 1,2, …  of width T, that is, the number of weekly returns in . The 
windows overlap and shift further at length δT, which is also measured in trading 
weeks to match the second data set on Google Trends queries discussed below. We 
use one year (i.e. 52 trading weeks) as window width. Following [6–8] we can now 
quantify the degree of similarity between assets i and j for the given window around t 
with the correlation coefficient        ,                                               (1) 

where …  indicates a time average over the consecutive trading weeks t that are 
contained in the return vector . Finally, we can now the  correlation matrix 

, which is completely characterized by 1 /2 correlation coefficients.  
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From the moving stock price correlation matrices we construct dynamic networks 
by using the “winner-take-all”-approach discussed in [9]. According to Tse and 
colleagues, only those correlations between stocks are used that lie above a certain 
connection criterion z. Here, the condition is set to 0.6, as a lower bound of considerable 
correlations. Please note that different levels of correlations have no big impact on the 
network construction [9, 11]. Thus, to be part of the stock network the correlation (i.e. 
the weight of the relation) between stock i and j has to satisfy the condition | |. 

In our view, there exist two major advances of the threshold approach compared 
with other reduction techniques: (a) The constructed networks loose no essential 
information. Both minimal spanning trees and planar graphs remove edges with high 
correlation if the respective nodes fit certain topological conditions and are, on these 
grounds, already within the reduced graph. (b) There is no fixed upper bond, i.e. the 
number of nodes included in the network is not mandatory but dependent on the 
specific period and its topology. 

After the construction of the dynamic stock network, we apply two longitudinal 
measures to quantify its stability and structure on its macro level. To study the 
systemic stability we use a well-established measure for biological systems. May  
[22, 23] introduced three parameters for which random networks are almost certainly 
stable: the size of the network (N), the density of connections (D), and the average 
interaction strength ( ) at a given time t. The stability condition can therefore be 
formalized as 1,  √   .                                                (2) 

This condition challenged the established relationship between ecological diversity 
and the stability of ecosystems. In fact, May´s model turned it upside down. 
According to (2), an increasing network complexity decreases the stability of a 
system, not the other way round. This relation proofs to be valid in a multitude of 
ecological networks [24]. Even more important for our undertaking, the stability 
criterion also displays the state of financial markets rather well [11]. 

A second measure to comprehend the development of whole networks is their 
modularity [25, 26], which displays their compartmentalization, i.e. its community 
structure and community division. For weighted networks it is defined as   ∑  ,,  ,                                          (3) 

with  being the interaction strength (weight) of the edge between i and j,  being 
the number of degrees of node i, and  being the community of node i. The function 

is 1 if   and 0 otherwise, and  ∑ . We calculated the modularity for 

each dynamic network by using the algorithm of Blondel et al. [27]. 
Regarding the global structure of financial networks, hence, modularity  

addresses the partitioning of a stock network and decreases in times of crisis due to 
common influence factors that concern all stocks. On the other hand, ecological 
stability  follows a reversed numerical logic, since high values indicate an unstable 
market with large risks and high uncertainties. 
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To complement these structural indicators with an analysis of individual company 
positions, we apply the Eigenvector Centrality [28, 29]. This measure does not only 
account for the number of connections of each node (as done, for instance, by the 
degree centralization), but considers also the “prestige” of each relationship partner. 
In other words, nodes are more central if they are connected to neighbors that are 
themselves more central. This makes it the most useful measure for economic 
networks according to properties discussed in [30, 31]. Formally, the Eigenvector 
Centrality  of node i is defined as the product of i’s relation to j and j’s respective 
Eigenvector. This set of parallel equations is elegantly solved by   … ∑  ,                           (4) 

with µ being the largest positive eigenvalue. Thus in the case of stock networks,  
measures how much the price movements of company i influences other stocks, and 
how central and influential those other stocks are themselves. Since stock networks 
are known to be scalefree [9], it is expected that relatively few stocks are exerting 
much of the influence over the majority of stocks. 

2.2 Collective Attention 

As a second data set we gathered search volumes provided by Google Trends for each 
of the S&P 100 companies. Changes in search queries are interpreted as collective 
attention shifts [17–19]. We retrieved search volume data for all companies in the 
S&P 100 index from Google Trends website (http://www.google.com/trends) between 
August 23, 2014 and August 29, 2014. Search volume data are restricted to requests 
of users localized in the USA, the home location of all companies contained in the 
S&P 100. We used the full corporate name in combination with “company” as search 
term to avoid semantic ambiguities. Since only five search terms can be looked up 
simultaneously, we retrieved the data for each company separately. The scores 
produced by Google Trends consist of the volume of each search query relative to the 
total number of searches carried out at each week t. They are normalized by Google 
with a maximum of 100, serving as a scaling factor for the rest of the series. 

Each series is reported weekly on a Sunday to Saturday frequency. In order to 
investigate the connection between shifts in collective attention and stock networks, 
the two data sets are matched by following rule: Trends reported on Sunday of week  
correspond to the stock network of the next week that is derived from the subsequent 
correlation matrix . In doing so, the information about collective attention 
published on Sunday would be available for potential investors on the subsequent 
Monday and correspond to the respective stock network of week 1 (and thus time 
window t+1).  

To demonstrate the development of attention for the whole index the arithmetic 
mean for each week over all company search queries is used. Due to the data-inherent 
normalization of Google Trends scores between 100 and 0, the simple average gives 
us a broad picture of collective information gathering processes, i.e. if there was a 
relatively high or low interest in S&P 100 companies in a certain week. To examine 
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the connection between shifts in collective attention and structural dynamics in the stock 
networks empirically, we utilize time-lagged Pearson cross correlation coefficients [14]. 
According to the matching rule mentioned above, hence, the correlation is calculated for 
each week between Google Trends time series and the measures derived for the whole 
network of the next week,  and , respectively. 

3 Empirical Results 

3.1 Collective Attention and Network Structure 

The results are discussed on two levels: the global macro-structure of the stock 
networks and the individual position of each corporation within this network. Fig. 1 
shows the general connection between the development of both global network 
measures (i.e. May´s ecologic stability criterion and Newman´s modularity) and the 
relative change of Google search volumes. To facilitate the interpretation, we also 
picture the course of the S&P 100 index.  

If only the course of the lines are considered initially, both network measures 
express a rather abrupt shift in the market state at the beginning of recent financial 
turmoil. Systemic stability  breaks down, indicated by a steep rising curve in the 
beginning of 2008. Simultaneously, the previously compartmentalized network 
becomes cohesive, i.e. less partitioned in subgroups and communities. In other words, 
the relations get more instable and centralized during the enfolding crisis – a 
mechanism that is well-known in stock networks [6, 7, 11]. A second eruption in both 
measures can be observed during 2011, when the “Euro crisis” led to high economic 
uncertainties that are also reflected in a volatile S&P 100. Here again, the stability 
criterion is heavily violated and the regained structuration in divisible “modules” is 
dispersed. 

Additionally, each curve in Fig. 1 is dyed by a color code corresponding to the 
average search volumes of each Standard and Poor´s 100 company. Red sections 
indicate increasing collective attention in terms of search queries and green parts 
illustrate declining numbers. If we concentrate on the two points in time when both 
network measures change drastically, we see that collective attention changes before 
those alterations take place. In both periods, the relatively high search volumes start 
previous to the breakdown of systemic stability and the de-compartmentalization of 
relations in terms of separated communities. Moreover, in the beginning crisis in 
2007/08 the uprising of search volumes is succeeded by a period of relatively low 
collective interest in the S&P 100 corporations. 

However, Fig. 1 only provides “weak evidence” through descriptive visualization. 
To test the proposed relationship more thoroughly we calculate regression models. 
The models allow us to check the robustness of our results on a weekly basis and 
explore the direction (i.e. the sign) of the relationships between the change in search 
volume (denominated GT) and its influence on the structural network measures in  
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Fig. 1. The S&P 100 network over time and its stability, modularity, and index values matched 
with average Google search volumes 

the following week. This is done (A) for the whole time period as well as (B) for the 
period from 2008 onward to account for the particular market upheavals in the 
financial crisis. To control for general market developments we also include the S&P 
500 Volatility Index (VIX) and the S&P 100 (SPY) in the regression m |  β  ,                      (5) 

where  is an error term.  
The highly significant results in Tab. 1 for Google Trends scores confirm the 

suggested relationship between stability and collective attention for the whole 
observation period as well as for the shortened timeframe. The model also approves the 
evidence provided in Fig. 1 regarding the positive direction of that relationship. In 
contrast, the influence of collective attention on the modularity score  is not 
significant for the whole period of time (cf. Tab. 2). Looking back to Fig. 1, the reason 
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may lie in the relative high volatility of the measure in the early observation period. 
However, if we only focus on the period after 2008 the effect of search volumes is both 
highly significant and negative. Thus the suggested preceding influence of collective 
attention processes can also be confirmed for the modularity scores and, hence, the de-
compartmentalization of the network structure in times of crisis.  

On the level of the whole network, in summary, the information about Google 
Trends search volumes provides evidence for the connection of structural changes in 
stock networks and those in collective attention. Especially in times of great economic 
uncertainties company-level search queries increase strongly before major network 
alterations happen. This result is supported by time-lagged regression models for each 
structural measure. As a consequence, the findings provide evidence that collective 
attention shifts precede the rearrangement of market structures before financial crisis 
hit the economy (and media coverage, supposedly) with full force.  

Table 1. Regression results. Dependent Variable: Stability  

(A) Timeframe: 2004-2014 
 Estimate SE t statistic Pr | | 

GT 0.0637      0.0185     3.44      0.0006 
VIX 0.0781      0.0074     10.59 0.0000 
SPY -0.0004        0.0010 -0.38      0.7012 

Adj. R2 0. 3044 
 

N 424 
 

(B) Timeframe: 2008-2014 
GT 0.1229      0.0228     5.39       0.0000 
VIX 0.0300      0.0108     2.78      0.0059 
SPY -0.0036      0.0014     -2.53      0.0121       

Adj. R2 0.2094    
Obs. 260    

Table 2. Regression results. Dependent Variable: Modularity  

(A) Timeframe: 2004-2014 
 Estimate SE t statistic Pr | | 

GT -0.0004      0.0024     -0.18      0.8544 
VIX -0.0106      0.0010     -10.97     0.0000 
SPY -0.0000      0.0001     -0.31      0.7601 

Adj. R2 0.3076 
 

Obs. 424 
 

(B) Timeframe: 2008-2014 
GT -0.0105      0.0019     -5.67      0.0001 
VIX 0.0006      0.0009     0.73 0.4689 
SPY 0.0008      0.0001     7.38      0.0001 

Adj. R2 0.3013    
Obs. 260    
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3.2 Collective Attention and Network Positions 

On the micro level of stock markets we investigate individual company network 
positions and their correlation with collective attention processes as approximated with 
Google Trends. After establishing a general relationship between changes in public 
information gathering behavior and shifts in stock network structures in the previous 
chapter, the question now is for which corporations these connection is especially strong 
and in which positions the respective firms are located in the network. Fig. 2 illustrates 
the time-lagged Pearson cross correlation coefficients between dynamic Eigenvector 
centralities for each company and their Google search volume. The respective 
significance level is displayed on the x-axis. In addition, each circle size corresponds to 
the individual Eigenvector centrality.  

 

Fig. 2. Correlation between Eigenvector centralities and Google Trends scores of S&P 100 
companies, plotted against their significance levels. Circle size is relative to the Eigenvector 
centrality of each firm. 



304 R.H. Heiberger 

For all companies with correlations that have significance levels lower than 0.05 
the ticker symbols are drawn, whereby the size of the names are also corresponding to 
the Eigenvector centrality values. The results shown in Fig. 2 provide evidence that 
the highest correlation scores between attention shifts and network measures emerge 
for the most influential corporations, i.e. for those with the largest Eigenvector 
centralities. Unsurprisingly, firms like MetLife, General Motors, FedEx or General 
Electric are located in the center of the network. For many of those prominent 
corporations we find that changes in their position is significantly correlated to shifts 
in “Googling” them, i.e. to their search volumes. 

Table 3. Top 30 Eigenvector centrality scores of the S&P 100 and the significance level of their 
correlation to Google Trends volumes 

Ticker 
Symbol 

Eigenvector 
Centrality 

Significance 
< 5 

 Ticker 
Symbol 

Eigenvector 
Centrality 

Significance 
< 5 

MET 0.31760607 True  GS 0.15254205 False 

DD 0.29576174 False  SPG 0.15070847 True 

GM 0.2700878 True  ALL 0.14350536 True 

JPM 0.26691977 False  UNP 0.105724 False 

MS 0.25837733 False  NSC 0.10512067 True 

GE 0.25099612 True  WFC 0.1001642 True 

AXP 0.2327536 True  HD 0.09815718 False 

DIS 0.22479677 False  APA 0.0887574 True 

BAC 0.21162135 True  CVX 0.06912528 True 

HON 0.20062998 True  BA 0.06228806 True 

FDX 0.18942757 True  BRK.B 0.05955707 True 

BK 0.18442774 False  NOV 0.04284174 True 

USB 0.18432278 False  MMM 0.03856179 False 

DOW 0.16941818 True  TGT 0.03338286 False 

UPS 0.16332159 True  HAL 0.03225848 True 

 
This connection between central network positions and Google search queries is 

underlined in Tab. 2. Therein, the more detailed numbers emphasize the visualized 
relationship between network influence (operationalized via the Eigenvector centrality) 
and the strength of correlation. Of the 30 largest centrality scores we find for 19 a 
significant correlation between changes in position and related search volumes. Thus, we 
observe not only that collective attention shifts precede structural changes in stock 
market networks, but that this connection is mostly carried by companies which already 
dominate the development of the S&P 100. 
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4 Conclusion 

Overall, company-level Google Trends data allow us to combine recent research 
efforts about massive online behavior with the structural analysis of stock market 
networks, rather than to analyze them separately. Taking both into account reveals 
that collective attention shifts precede structural changes in stock market networks 
and that this connection is mostly carried by companies that already dominate the 
development of the S&P 100. As a consequence, both mechanisms point to (further) 
“Matthew effects” [32] on stock markets. Existing structures and hierarchies are 
reproduced through collective information gathering behavior, since the impact of 
collective attention is especially strong on stocks with already influential positions, 
which strengthens their position further. Practically, however, the significant correlation 
between collective attention and network structure indicates that shifting – and publicly 
available – search queries could be a very valuable estimator for changing financial 
structures and, hence, financial crisis. 
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