
LegalRuleML:
Design Principles and Foundations

Tara Athan1, Guido Governatori2(B), Monica Palmirani3,
Adrian Paschke4, and Adam Wyner5

1 Athan Services, West Lafayette, USA
2 NICTA Queensland, Brisbane, Australia

guido.governatori@nicta.com.au
3 CIRSFID, University of Bologna, Bologna, Italy

4 Corporate Semantic Web, Freie Universitat, Berlin, Germany
5 University of Aberdeen, Aberdeen, UK

Abstract. This tutorial presents the principles of the OASIS Legal-
RuleML applied to the legal domain and discusses why, how, and when
LegalRuleML is well-suited for modelling norms. To provide a framework
of reference, we present a comprehensive list of requirements for devis-
ing rule interchange languages that capture the peculiarities of legal rule
modelling in support of legal reasoning. The tutorial comprises syntactic,
semantic, and pragmatic foundations, a LegalRuleML primer, as well as
use case examples from the legal domain.

Keywords: LegalRuleML · RuleML · Legal rule modelling · Meta
model

1 Introduction

The objective of the LegalRuleML Technical Committee (TC) is to extend
RuleML with formal features specific to legal norms, guidelines, policies and
reasoning; that is, the TC defines a standard (expressed with XML-schema and
Relax NG) that is able to represent the particularities of the legal normative rules
with a rich, articulated, and meaningful markup language. The features are:

– defeasibility of rules and defeasible logic;
– deontic operators (e.g., obligations, permissions, prohibitions, rights);
– semantic management of negation;
– temporal management of rules and temporality in rules;
– classification of norms (i.e., constitutive, prescriptive);
– jurisdiction of norms;
– isomorphism between rules and natural language normative provisions;

G. Governatori—NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the
ICT Centre of Excellence Program.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 151–188, 2015.
DOI: 10.1007/978-3-319-21768-0 6

152 T. Athan et al.

– identification of parts of the norms (e.g., bearer, conditions);
– authorial tracking of rules.

Some matters are out of the scope of the TC and LegalRuleML such as specifica-
tions of core or domain legal ontologies. For the full motivation for LegalRuleML
and its relationships with other approaches the reader is referred to [5,30].

The main principles of LegalRuleML are as follows.

Multiple Semantic Annotations: A legal rule may have multiple semantic anno-
tations, where these annotations represent different legal interpretations. Each
such annotation appears in a separate annotation collection as internal or exter-
nal metadata. A range of parameters provide the interpretation with respect to
provenance, applicable jurisdiction, logical interpretation of the rule, and others.

Tracking the LegalRuleML Creators: As part of the provenance information,
a LegalRuleML document or any of its fragments can be associated with its
creators. This is important to establish the authority and trust of the knowledge
base and annotations. Among the creators of the document can be the authors
of the text, knowledge base, and annotations, as well as the publisher of the
document.

Linking Rules and Provisions: LegalRuleML includes a mechanism, based on
IRI, that allows many to many (N:M) relationships among the rules and the
textual provisions: multiple rules are embedded in the same provision, several
provisions contribute to the same rule. This mechanism may be managed in the
metadata collections, permitting extensible management, avoiding redundancy
in the IRI definition, and avoiding errors in the associations.

Temporal Management: LegalRuleML’s universe of discourse contains a variety
of entities: provisions, rules, applications of rules, references to text, and refer-
ences to physical entities. All of these entities exist and change in time; their
histories interact in complicated ways. Legal RuleML represents these temporal
issues in unambiguous fashion. In particular, a rule has parameters which can
vary over time, such as its status (e.g., strict, defeasible, defeater), its validity
(e.g., repealed, annulled, suspended), and its jurisdiction (e.g., only in EU, only
in US). In addition, a rule has temporal aspects such as internal constituency of
the action, the time of assertion of the rule, the efficacy, enforcement, and so on.

Formal Ontology Reference: LegalRuleML is independent from any legal ontol-
ogy and logic framework. However it includes a mechanism, based on IRIs, for
pointing to reusable classes of a specified external ontology.

LegalRuleML is Based on RuleML: LegalRuleML reuses and extends concepts
and syntax of RuleML wherever possible, and also adds novel annotations.
RuleML includes Reaction RuleML.

Mapping: LegalRuleML is mappable to RDF triples for Linked Data reuse.

LegalRuleML: Design Principles and Foundations 153

2 Functionalities

Specifically, LegalRuleML facilitates the following functionalities.

(F1) Supports modelling different types of rules. There are constitutive rules,
which define concepts or institutional actions that are recognised as such
by virtue of the defining rules (e.g. the legal definition of “transfer property
ownership”); and there are prescriptive rules, which regulate actions or the
outcome of actions by making them obligatory, permitted, or prohibited.

(F2) Represents normative effects. There are many normative effects that fol-
low from applying rules, such as obligations, permissions, prohibitions, and
more articulated effects. Rules are also required to regulate methods for
detecting violations of the law and to determine the normative effects trig-
gered by norm violations, such as reparative obligations, which are meant
to repair or compensate violations. These constructions can give rise to
very complex rule dependencies, because the violation of a single rule can
activate other (reparative) rules, which in turn, in case of their violation,
refer to other rules, and so forth.

(F3) Implements defeasibility [13,31,34]. In the law, where the antecedent of a
rule is satisfied by the facts of a case (or via other rules), the conclusion
of the rule presumably, but not necessarily, holds. The defeasibility of legal
rules consists of the means to identify exceptions and conflicts along with
mechanisms to resolve conflicts.

(F4) Implements isomorphism [7]. To ease validation and maintenance, there
should be a one-to-one correspondence between collections of rules in the
formal model and the units of (controlled) natural language text that
express the rules in the original legal sources, such as sections of legislation.

(F5) Alternatives: often legal documents are left ambiguous on purpose to cap-
ture open–ended aspects of the domain they are intended to regulate. At the
same time legal documents are meant to be interpreted by end users. This
means that there are cases where multiple (and incompatible) interpreta-
tions of the same textual source are possible. LegalRuleML offers mecha-
nisms to specify such interpretations and to select one of them based on
the relevant context.

(F6) Manages rule reification [13]. Rules are objects with properties, such as
Jurisdiction, Authority, Temporal attributes [21,22,29]. These elements are
necessary to enable effective legal reasoning.

3 Criteria of Good Language Design

The syntax design should follow from semantic intuitions from the subject matter
domain - labelling entities, properties, and relations as well as some of the type
constraints amongst them that guide how the labels are combined and used.

Criteria of Good Language Design are:

– Minimality, which requires that the language provides only a small set of
needed language constructs, i.e., the same meaning cannot be expressed by
different language constructs.

154 T. Athan et al.

– Referential transparency, which means that the same language construct
always expresses the same semantics regardless of the context in which it
is used.

– Orthogonality, where language constructs are independent of each other, thus
permitting their systematic combination.

– Pattern-based design, where design patterns are a distillation of common wis-
dom in organizing the structural parts, the grammar and the constraints of
a language. Some of them are listed in [9] and as XML Patterns1. Inside of
LegalRuleML we introduce five design patterns.

– Meta-model based, where the meta-model for a language, also called the
abstract syntax, defines the vocabulary for describing the language, including
syntactic categories.

LegalRuleML was designed based on such principles. In particular its vocabulary
is inspired by terms from the legal domain, which then facilitates its use by users
familiar with the domain.

The LegalRuleML meta-model captures the common meaning of domain
terms as understood in the legal field, formalizes the connections among the
various concepts and their representation in the language, and provides an RDF-
based abstract syntax. RDFS [8] is used to define the LegalRuleML metamodel,
and graphs of the RDFS schemas accompany the following discussions about the
domain concepts.2

4 Modelling Norms

According to scholars of legal theory [34], norms can be represented by rules
with the form

if A1, ..., An then C

where A1, . . . , An are the pre-conditions of the norm, C is the effect of the
norm, and if . . . then . . . is a normative conditional, which are generally defea-
sible and do not correspond to the if-then material implication of propositional
logic. Norms are meant to provide general principles, but at the same time they
can express exceptions to the principle. It is well understood in Legal Theory
[14,34] that, typically, there are different types of “normative conditionals”, but
in general normative conditionals are defeasible. Defeasibility is the property
that a conclusion is open in principle to revision in case more evidence to the
contrary is provided. Defeasible reasoning is in contrast to monotonic reasoning
of propositional logic, where no revision is possible. In addition, defeasible rea-
soning allows reasoning in the face of contradictions, which gives rise to ex false
quodlibet in propositional logic. One application of defeasible reasoning is the
ability to model exceptions in a simple and natural way.

1 http://www.xmlpatterns.com/.
2 https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/sche-

mas/rdfs/# trunk schemas rdfs .

http://www.xmlpatterns.com/
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/scheschemas/rdfs/#_trunk_schemas_rdfs_
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/schemas/rdfs/#_trunk_schemas_rdfs_

LegalRuleML: Design Principles and Foundations 155

4.1 Defeasibility

The first use of defeasible rules is to capture conflicting rules/norms without
making the resulting set of rules inconsistent. Given that ¬expression means the
negation of expression, the following two rules conclude with the negation of
each other

body1 ⇒ head
body2 ⇒ ¬head

Without defeasibile rules, rules with conclusions that are negations of each other
could give rise, should body1 and body2 both hold, to a contradiction, i.e., head
and ¬head , and consequently ex falso quodlibet. Instead, defeasible reasoning is
sceptical; that is, in case of a conflict such as the above, it refrains from taking any
of the two conclusions, unless there are mechanisms to solve the conflict (see the
discussion below on the superiority relation). Notice that an application of this
is to model exceptions. Exceptions limit the applicability of basic norms/rules,
for example:

body ⇒ head
body , exception condition ⇒ ¬head

In this case, the second rule is more specific than the first, and thus it forms
an exception to the first, i.e., a case where the rule has extra conditions that
encode the exception, blocking the conclusion of the first rule. Often, exceptions
in defeasible reasoning can be simply encoded as

body ⇒ head
exception condition ⇒¬head

In the definition of rules as normative conditionals made up of preconditions and
effect, we can see a rule as a binary relationship between the set of preconditions
(or body or antecedent) of the rule, and the (legal) effect (head or conclusion)
of the rule. Formally, a rule can be defined by the following signature:

body × head

We can then investigate the nature of such a relationship. Given two sets, we
have the following seven possible relationships describing the “strength” of the
connections between the body and the head of a rule:

body always head
body sometimes head

body not complement head
body no relationship head

body always complement head
body sometimes complement head

body not head

156 T. Athan et al.

In defeasible logic we can represent the relationships using the following formal-
isation of rules (rule types):

body → head
body ⇒ head
body � head
body → ¬head
body ⇒ ¬head
body � ¬head

There is no need to have a rule for the case where there is no relationship between
the head and the body. The following table summarises the relationships, the
notation used for them, and the strength of the relationship.3

body always head body → head Strict rule
body sometimes head body ⇒ head Defeasible rule
body not complement head body � head Defeater
body no relationship head
body always complement head body → ¬head Strict rule
body sometimes complement head body ⇒ ¬head Defeasible rule
body not head body � ¬head Defeater

The meaning of the different types of rules is as follows:
For a strict rule body → head the interpretation is that every time the body

holds then the head holds.
For a defeasible rule body ⇒ head the reading is when the body holds, then,

typically, the head holds. Alternatively we can say that the head holds when
the body does unless there are reasons to assert that the head does not hold.
This captures that it is possible to have exceptions to the rule/norm, and it is
possible to have prescriptions for the opposite conclusion.

For a defeater body � head the intuition is as follows: defeaters are rules that
cannot establish that the head holds. Instead they can be use to specify that
the opposite conclusion does not hold. In argumentation two types of defeaters
are recognized: defeaters used when an argument attacks the preconditions of
another argument (or rule); other defeaters used when there is no relationship
between the premises of an argument (preconditions of a rule or body) and the
conclusion of the argument (effect of the rule or head).

Given the possibility to have conflicting rules, i.e., rules with opposite or
contradictory heads, we have, for example

body1 ⇒ head
body2 ⇒ ¬head

Systems for defeasible reasoning include mechanisms to solve such conflicts. Dif-
ferent methods to solve conflicts have been proposed: specificity, salience, and
3 The syntax presented here is based on Defeasible Logic, see [4,27].

LegalRuleML: Design Principles and Foundations 157

a preference relation. According to specificity, in case of a conflict between two
rules, the most specific rule prevails over the less specific one, where a rule is
more specific if its body subsumes the body of the other rule. For salience, each
rule has an attached salience or weight, where in case of a conflict between two
rules, the one with the greatest salience or weight prevails over the other. A
preference relation (also known as superiority relation) defines a binary relation
over rules, where an element of the relation states the relative strength between
two rules. Thus, in case of a conflict between two rules, if the preference relation
is defined over such rules, the strongest of the two rules wins over the other.

Various researchers have taken different views on such methods. Specificity
corresponds to the well know legal principle of lex specialis. [32] argues that
specificity is not always appropriate for legal reasoning and that there are other
well understood legal principles such as lex superior and lex posterior that apply
instead. [32] cites cases in which the lex specialis principle might not be the one
used to solve the conflict, for example, a more specific article from a local council
regulation might not override a less specific constitutional norm. [32] proposes
to use a dynamic preference relation to handle conflicting rules. The preference
relation is dynamic in the sense that it is possible to argue about which instances
of the relation hold and under which circumstances. [3] proposes that instances
of the superiority relation appear in the head of rules, namely:

body ⇒ superiority

where superiority is a statement with the form

r1 > r2

where r1 and r2 are rule identifiers.
Reference [12] proposes Carneades as a rule-based argumentation system suit-

able for legal reasoning which uses weights attached to the arguments (rules) to
solve conflicts and to define proof standards. [17] shows how to use the weights
to generate an equivalent preference relation, and, consequently, how to capture
the proposed proof standards. In addition, [17] shows that there are situations
where a preference relation cannot be captured by using weights on the rules.

To handle defeasibility, LegalRuleML has to capture the superiority relation
and the strength of rules. For the superiority relation, LegalRuleML offers the
element <Overrides>, which defines a relationship of superiority cs2 overrides
cs1, where cs2 and cs1 are Legal Statement identifiers.4 These elements are
included through hasQualification roles.

<lrml:hasQualification>

<lrml:Overrides over="#cs1" under="#cs2"/>

</lrml:hasQualification>

For the representation of the strength of rules, LegalRuleML has two options:
The first is to include it in a <Context> element, where a <Context> specifies

a context in which the rule is applied:
4 LegalRuleML defines a Legal Statement as an expression of a Legal Rule or a part

of a Legal Rule where a Legal Rule is a formal representation of a Legal Norm.

158 T. Athan et al.

<lrml:Context key="ruleInfo2">

<lrml:appliesStrength iri="deovo:defeasible2"/>

<lrml:toStatement keyref="#cs1"/>

</lrml:Context>

The second (and optional) way to express the qualification of the rule is directly
inside of the rule, through a hasStrength role. The difference is that <Context>
localises the strength of a rule, while hasStrength in effect relates the strength
to the rule in all contexts:

<lrml:hasStrength>

<lrml:Defeater key="str4"/>

</lrml:hasStrength>

Fig. 1. Partial Metamodel for Defeasible Concepts. LegalRuleML and RuleML classes
are labelled with a ‘C’ in a circle, LegalRuleML properties with a ‘P’ in a triangle. The
Formula and AtomicFormula classes are imported from RuleML.

4.2 Constitutive and Prescriptive Norms

As we have discussed, a Legal Rule can be seen as binary relationship between
its antecedent (a set of formulas, encoding the pre-conditions of a norm, repre-
sented in LegalRuleML by a formula, where multiple pre-conditions are joined
by some logical connective) and its conclusion (the effect of the norm, repre-
sented by a formula). It is possible to have different types of relations. In the
previous section, we examined one such aspect: the strength of the link between
the antecedent and the conclusion. Similarly, we can explore a second aspect,
namely what type of effect follows from the pre-condition of a norm. In Legal
Theory norms are classified mostly in two main categories: constitutive norms
and prescriptive norms, which will be then represented as constitutive rules (also

LegalRuleML: Design Principles and Foundations 159

Fig. 2. Partial Metamodel for Statement Subclasses.

known as counts-as rules) and prescriptive rules.5 The (partial) meta-model for
the notions described in this section is depicted in Fig. 2.

The function of constitutive norms is to define and create so called institu-
tional facts [36], where an institutional fact is how a particular concept is under-
stood in a specific institution. Thus, constitutive rules provide definitions of the
terms and concepts used in a jurisdiction. On the other hand, prescriptive rules
dictate the obligations, prohibitions, permissions, etc. of a legal system, along
with the conditions under which the obligations, prohibitions, permissions, etc.
hold. LegalRuleML uses deontic operators to capture such notions (see Sect. 4.3).
Deontic operators are meant to qualify formulas. A Deontic operator takes as
its argument a formula and returns a formula. For example, given the (atomic)
formula PayInvoice(guido), meaning ‘Guido pays the invoice’, and the deontic
operator [OBL] (for obligation), the application of the deontic operator to the
formula generates the new (deontic) formula [OBL]PayInvoice(guido), meaning
that “it is obligatory that Guido pays the invoice”.

The following is the LegalRuleML format for prescriptive rules. Notice, that
in LegalRuleML, legal rules are captured by the broader class of Statement and
the hasTemplate property links a prescriptive or constitutive statement (see Fig. 2
for the different types of statements available in LegalRuleML) to its template, a
fragment of RuleML syntax with root ruleml:Rule that denotes a class of rules.

<lrml:PrescriptiveStatement key="ps1">
<lrml:hasTemplate>

<ruleml:Rule key=":key1">
<lrml:hasStrength>

strength of the rule
</lrml:hasStrength>
<ruleml:if>

5 Reference [14] identify more types of norms/rules. However, most of them can be
reduced to the two types described here insofar as the distinction is not on structure
of the rules but it depends on the meaning of the content (specific effect) of the
rules, while keeping the same logical format.

160 T. Athan et al.

formula, including deontic formula
</ruleml:if>
<ruleml:then>

<lrml:SuborderList>
list of deontic formulas

</lrml:SuborderList>
</ruleml:then>

</ruleml:Rule>
</lrml:hasTemplate>

</lrml:PrescriptiveStatement>

The difference between constitutive rules and prescriptive rules is in the content of
the head, where the head of a prescriptive rule is a list of deontic formulas which
is called a suborder list (see Sect. 4.3 below), and represented in LegalRuleML by
the <lrml:Suborder> element. Syntactically, a suborder list of one element can be
rendered in LegalRuleML as just the element. Prescriptive and constitutive rules
can have deontic formulas in their set of preconditions (antecedent or body). The
conclusion (head) of a constitutive rule cannot be a deontic formula, nor can it be
a compound formula that contains a deontic formula.

<lrml:ConstitutiveStatement key="ps1">
<ruleml:Rule key=":key1">

<lrml:hasStrength>
strength of the rule

</lrml:hasStrength>
<ruleml:if>

formula, including deontic formula
</ruleml:if>
<ruleml:then>

non-deontic formula
</ruleml:then>

</ruleml:Rule>
</lrml:ConstitutiveStatement>

4.3 Deontic

One of the functions of norms is to regulate the behaviour of their subjects by
imposing constraints on what the subjects can or cannot do, what situations are
deemed legal, and which ones are considered to be illegal. There is an impor-
tant difference between the constraints imposed by norms and other types of
constraints. Typically a constraint means that the situation described by the
constraint cannot occur. For example, the constraint A means that if ¬A (the
negation of A, that is, the opposite of A) occurs, then we have a contradiction,
or in other terms, we have an impossible situation. Norms, on the other hand,
can be violated. Namely, given a norm that imposes the constraint A, yet we
have a situation where ¬A, we do not have a contradiction, but rather a viola-
tion, or in other terms we have a situation that is classified as “illegal”. From
a logical point of view, we cannot represent the constraint imposed by a norm
simply by A, since the conjunction of A and ¬A is a contradiction. Thus we need
a mechanism to identify the constraints imposed by norms. This mechanism is
provided by modal operators, in particular, deontic operators.

LegalRuleML: Design Principles and Foundations 161

Modal and Deontic Operators. Modal logic is an extension of classical logic
with modal operators. A modal operator applies to a proposition to create a new
proposition. The meaning of a modal operator is to “qualify” the truth of the
proposition that the operator applies to. The basic modal operators are those of
necessity and possibility. Accordingly, given a proposition p expressing, for exam-
ple that “the snow is white” and the necessity modal operator [NEC], [NEC]p is
the proposition expressing that “necessarily the snow is white”. Typically, the
necessity and possibility operators are the dual of each other, namely:

[NEC]p ≡ ¬[POS]¬p

[POS]p ≡ ¬[NEC]¬p

The modal operators have received different interpretations: for example, neces-
sity can be understood as logical necessity, physical necessity, epistemic necessity
(knowledge), doxastic necessity (belief), temporal necessity (e.g., always in the
future), deontic necessity (obligatory), and many more.

In the context of normative reasoning and representation of norms the focus is
on the concepts of deontic necessity and deontic possibility. These two correspond
to the notions of Obligation, and Permission. In addition, we consider the notion
of Prohibition, which corresponds to the operator of deontic impossibility. For
something to be “deontically necessary” means that it holds in all situations
deemed legal; similarly something is “deontically possible” if there is at least
one legal state where it holds. Finally, “deontically impossible” indicates that
something does not hold in any legal state. More specifically a legal state is
a state where there are no violations. Thus LegalRuleML defines Obligation
as a Deontic Specification6 for a state, an act, or a course of action to which a
Bearer is legally bound, and which, if it is not achieved or performed, results in a
violation; similarly a Prohibition is a Deontic Specification for a state, an act, or
a course of action to which a Bearer is legally bound, and which, if it is achieved
or performed, results in a violation. A Permission is a Deontic Specification
indicating that the Bearer has no Obligation or Prohibition to the contrary.

We will use [OBL] for the modal/deontic operator of Obligation, [PERM] for
Permission, and [FOR] for Prohibition (or Forbidden).

Standard deontic logic assumes the following relationships between the oper-
ators:

[OBL]p ≡ ¬[PERM]¬p

If p is obligatory, then its opposite, ¬p, is not permitted.

[FOR]p ≡ [OBL]¬p

If p is forbidden then its opposite is Obligatory. Alternatively, a Prohibition can
be understood as Obligation of the negation.

The following is an example of mathematical statement of a Prescriptive
Rule:

p1, . . . , pn, [DEON1]pn+1, . . . , [DEONm]pn+m ⇒ [DEON]q
6 Deontic Specification is the class that includes the various deontic notions used in

LegalRuleML.

162 T. Athan et al.

The antecedent, p1, . . . , pn, [DEON1]pn+1, . . . , [DEONm]pn+m, conditions the
applicability of the norm in the consequent [DEON]q; that is, when the antecedent
conditions are met, then the consequent is the deontic effect of them. Thus, given
the antecedent, the rule implies [DEON]q.

The operators of Obligation, Prohibition and Permission are typically consid-
ered the basic ones, but further refinements are possible, for example, two types
of permissions have been discussed in the literature on deontic logic: weak per-
mission (or negative permission) and strong permission (or positive permission).
Weak permission corresponds to the idea that some A is permitted if ¬A is not
provable as mandatory. In other words, something is allowed by a code only when
it is not prohibited by that code [38]. The concept of strong permission is more
complicated, as it amounts to the idea that some A is permitted by a code if and
only if such a code explicitly states that A is permitted, typically as an exception
to the prohibition of A or the obligation of its contrary, i.e., ¬A. It follows that a
strong permission is not derived from the absence of a prohibition, but is explic-
itly formulated in a permissive (prescriptive) norm [2]. An example of an explicit
permissive norm is manifested by a “U-turn permitted” sign exposed at a traffic
light, which derogates the (general) prohibition to U-turn at traffic lights.

Refinements of the concept of obligation have been proposed as well. For
example it is possible to distinguish between achievement and maintenance
obligations, where an achievement obligation is an obligation that is fulfilled
if what the obligation prescribes holds at least once in the period when the
obligation holds, while a maintenance obligation must be obeyed for all the
instants when it holds (see [18] for a classification of obligations).

LegalRuleML is neutral about the different subclasses of the deontic oper-
ators; to this end LegalRuleML is equipped with a mechanism to point to the
semantics of various Deontic Specifications in a document. The first mechanism
is provided by the iri attribute of a Deontic Specification for example:

<lrml:Obligation

key="oblig1"

iri="http://example.org/deontic/vocab#achievementobligation">

...

</lrml:Obligation>

The second alternative is to use an Association to link a Deontic Specification
to its meaning using the applyModality element, namely:

<lrml:Association>

<lrml:appliesModality

iri="http://example.org/deontic/vocab#maintenanaceobligation"/>

<lrml:toTarget keyref="#oblig101"/>

</lrml:Association>‘

Furthermore, Obligations, Prohibitions and Permissions in LegalRuleML are
directed operators [24], thus they have parties (e.g. Bearer), specifying, for exam-
ple, who is the subject of an Obligation or who is the beneficiary of a Permission.

<lrml:Obligation iri="http://example.org/deontic/vocab#obl1">

<ruleml:slot>

<lrml:Bearer iri="http://example.org/deontic/vocab#oblBearer"/>

LegalRuleML: Design Principles and Foundations 163

<ruleml:Ind>Y</ruleml:Ind>

</ruleml:slot>

<ruleml:Atom key=":atom2">

<ruleml:Rel iri="#rel2"/>

<ruleml:Ind>X</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

Violation, Suborder, Penalty and Reparation. Obligations can be vio-
lated; according to some legal scholars, the possibility of being violated can be
used to define an obligation. A violation means that the content of the obligation
has not been met. It is important to notice that a violation does not result in
an inconsistency. A violation is, basically, a situation where we have

([OBL]p) and ¬p

One of the characteristics of norms is that having violated them, a penalty can
be introduced to compensate for the violation, where a penalty is typically a
Deontic Specification. To model this feature of norms and legal reasoning [20]
introduced what is called here a suborder list, and [16] showed how to combine
them with defeasible reasoning for the modelling of (business) contracts. As we
have mentioned above, a suborder list is a list of deontic formulas, e.g., formulas
of the form [D]A, where [D] is one of [OBL] (Obligation), [FOR] (Prohibition,
or forbidden), [PERM] (Permission) and [RIGHT] (Right). Syntactically, a sub-
order list of one element can be rendered in LegalRuleML as just the element.
To illustrate the meaning of suborder lists, consider the following example:

[OBL]A, [OBL]B, [FOR]C, [PERM]D

The expression means that A is obligatory, but if it is violated, i.e., we have its
opposite ¬A, then the obligation comes into force to compensate for the violation
of [OBL]A with [OBL]B. If also this Obligation of B is violated, then we have
[FOR]C, the Prohibition of C. At this stage, if we have a Violation of such a
Prohibition, i.e., we have C, then the Permission of D kicks in. Obligations and
Prohibitions should not be preceded by Permissions and Rights in a suborder
list, for the semantics of suborder lists is such that an element holds in the list
only if all the elements that precede it in the list have been violated. It is not
possible to have a Violation of a Permission, so it cannot serve a purpose in
the suborder list. Accordingly, an element following a permission in a suborder
list would never hold. See [19] for a full discussion on the issue of permissions
and suborder lists. [16,20] also discuss mechanisms to combine the suborder lists
from different rules. For example, given the rules

body ⇒ [OBL]A
¬A ⇒ [OBL]B

Here the body of the second rule is the negation of the content of the oblig-
ation in the head of the first rule. It is possible to merge the two rules above in
the following rule

body ⇒ [OBL]A, [OBL]B

164 T. Athan et al.

stating that one compensates for the violation of the obligation of A with the
obligation of B. This suggests that suborder lists provide a simple and con-
venient mechanism to model penalties. It is not uncommon for a legal text
(e.g., a contract) to include sections about penalties, where one penalty is pro-
vided as compensation for many norms. To model this and to maintain the
isomorphism between a source and its formalisation, LegalRuleML includes a
<PenaltyStatement> element, the scope of which is to represent a statement
of a penalty as a suborder list (including the trivial non-empty list of a single
element).

<lrml:PenaltyStatement key="pen1">
<lrml:SuborderList>

list of deontic formulas
</lrml:SuborderList>

</lrml:PenaltyStatement>

LegalRuleML not only models penalties, but aims to connect the penalty state-
ment with the corresponding Reparation element:

<lrml:Reparation key="rep1">

<lrml:appliesPenalty keyref="#pen1"/>

<lrml:toPrescriptiveStatement keyref="#ps1"/>

</lrml:Reparation>

With the temporal model of LegalRuleML (see Sect. 5.4), we can model a unique
prescriptive statement (e.g., a prohibition) and several penalties that are updated
over time according to the modifications of the law. Dynamically, the legal rea-
soner can point out the correct penalty according to the time of the crime (e.g.,
an obligation to pay statutory damage $500 in 2000, $750 in 2006, $1000 in 2010).

Fig. 3. Partial Metamodel for Deontic Concepts. LogicalFormula, Term and Atomic-
Formula classes are imported from RuleML.

LegalRuleML: Design Principles and Foundations 165

4.4 Alternatives

In the legal interpretation theory [37] norms are interpreted by the judges in
order to apply them to the concrete cases. Sometime the legal interpretation
theories conflict and diverge from each other [11,23,33]. Linguistic elements are
added to this also for different reasons such as jurisdiction (e.g., national and
regional level) or for competences (e.g., civil or criminal court). The practice
of law over time has developed its own catalogue of hermeneutical principles,
a range of techniques to interpret the law, such as catalogued and discussed in
[35]. In addition, in Linguistics, issues about interpretation have long been of
central concern (see among others [10,26]), where the need for interpretation
arises given that the meanings (broadly construed) of “linguistic signs”, (e.g.,
words, sentences, and discourses), can vary depending on participants, context,
purpose, and other parameters. Interpretation is, then, giving the meaning of
the linguistic signs for a given set of parameters.

LegalRuleML endeavours not to account for how different interpretations
arise, but to provide a mechanism to record and represent them. We have four
different templates:

The element <lrml:Alternatives> permits to express all these interpreta-
tion templates. The following LegalRuleML fragments illustrate how to represent
the four cases above (the first case shows the normalized serialization, while the
rest show the compact serialization).

166 T. Athan et al.

Case 1:

<lrml:Alternatives key="alt1">

<lrml:fromLegalSources>

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

</lrml:LegalSources>

</lrml:fromLegalSources>

<lrml:hasAlternative keyref="#ps1"/>

<lrml:hasAlternative keyref="#ps2"/>

</lrml:Alternatives>

Case 2:

<lrml:Alternatives key="alt2">

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

<lrml:hasLegalSource keyref="#ref2"/>

</lrml:LegalSources>

<lrml:hasAlternative keyref="#ps1"/>

<lrml:hasAlternative keyref="#ps2"/>

</lrml:Alternatives>

Case 3:

<lrml:Alternatives key="alt3">

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

</lrml:LegalSources>

<lrml:hasAlternative keyref="#ss1"/>

<lrml:hasAlternative keyref="#ss2"/>

</lrml:Alternatives>

<lrml:Statements key="ss1">

<lrml:ConstitutiveStatement keyref="#ps1"/>

<lrml:ConstitutiveStatement keyref="#ps2"/>

</lrml:Statements>

<lrml:Statements key="ss2">

<lrml:ConstitutiveStatement keyref="#ps3"/>

</lrml:Statements>

Case 4:

<lrml:Alternatives key="alt3">

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

<lrml:hasLegalSource keyref="#ref2"/>

</lrml:LegalSources>

<lrml:hasAlternative keyref="#ss1"/>

<lrml:hasAlternative keyref="#ss2"/>

</lrml:Alternatives>

<lrml:Statements key="ss1">

<lrml:ConstitutiveStatement

keyref="#ps1"/>

<lrml:ConstitutiveStatement

LegalRuleML: Design Principles and Foundations 167

keyref="#ps2"/>

</lrml:Statements>

<lrml:Statements key="ss2">

<lrml:ConstitutiveStatement

keyref="#ps1"/>

<lrml:ConstitutiveStatement

keyref="#ps3"/>

</lrml:Statements>

Fig. 4. Partial Metamodel for Alternatives Concepts.

A possible use of the LegalRuleML alternatives mechanism is in legal disputes
where the alternatives can be used to model the (different) interpretations of
a piece of legislation by the parties involved in the dispute; a comprehensive
illustration of this is provided in Sect. 8 based on [6].

5 Meta Data of the Norms

5.1 Sources and Isomorphism

For legal rule modelling, it is important to maintain the connection between
the formal norms and the legally binding textual statements that express the
norms for several reasons. Legal knowledge engineers and end users should know
and be able to track the textual source of the formal representation. Further-
more, because the legal text is the only legally binding element, the connection
between text and the rule(s) (or fragment of rule) guarantees the provenance,
authoritativeness, and authenticity of the rules modelled by the legal knowledge
engineer. In addition, legal experts (judges, lawyers, legal operators) request a
mechanism to connect text and rules for legibility and validation of the rules.
Finally, because the legal sources of rules change over time, the formal rules
need to be updated according to the textual changes; as there is usually no
automatic mechanism to correlate and track modifications to rules, the con-
nection between text and rules helps to do so. For these reasons LegalRuleML

168 T. Athan et al.

includes a mechanism for managing this connection, which is called “isomor-
phism” in the AI & Law community. The mechanism must support a fine gran-
ularity (rules, fragments of rules, atoms, fragments of atoms connected with
provisions, fragments of provisions, letters, numbers, paragraphs, sentences, and
words) as well as to represent temporal modifications. LegalRuleML dedicates
two collections (<lrml:References>, <lrml:LegalSources>) to annotate the
original legal sources. In Sect. 6 the mechanism for creating an N:M relationship
with rules (e.g., many rules associated with one textual provision; many legal
source fragments for one rule) will be described.

<lrml:References> is the collection dedicated to record non-IRI based iden-
tifier sources, and the attribute refIDSystemName is able to annotate the naming
convention used. In the following example we refer to the Akoma Ntoso relative
IRI of the section 504 of the US Code, following the naming convention of the
XML-schema in Akoma Ntoso7:

<lrml:References refType="http://example.legalruleml.org/lrml#LegalSource">

<lrml:Reference

refersTo="ref1"

refID="/akn/us/act/uscode/eng@/main#title17-chp5-sec504-clsa-lst1-pnt1"

refIDSystemName="AkomaNtoso3.0-2015-04-16"/>

</lrml:References>

<lrml:LegalSource> is the construct dedicated to record the IRI based iden-
tifier sources. The following example define the source of the U.S. Code,
section 504, paragraph 1, title 17 published in the Cornell University portal
http://www.law.cornell.edu/:

<lrml:LegalSources>

<lrml:LegalSource

key="ref2"

sameAs="http://www.law.cornell.edu/uscode/text/17/504#psection-1"/>

</lrml:LegalSource>

</lrml:LegalSources>

The list of the resources connected with the legal rules that are modelled in
a LegalRuleML document are defined once in the first part of the XML file.
This minimizes redundant definitions of the resources and avoids errors. As we
see later, using the attribute value specified in @key, rules (or fragments of a
rule) can be connected to References or LegalSources. The <lrml:Association>
construct links LegalSources and References with rules (or fragment of rule), thus
implementing the N:M relationship.

7 Akoma Ntoso is an XML vocabulary for representing legal, legislative, parliamentary
and judiciary documents in a structured and semantic manner. Akoma Ntoso is man-
aged by the LegalDocML TC of OASIS. https://www.oasis-open.org/committees/
tc home.php?wg abbrev=legaldocml.

http://www.law.cornell.edu/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legaldocml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legaldocml

LegalRuleML: Design Principles and Foundations 169

Fig. 5. Metamodel for LegalSource concepts.

5.2 Jurisdiction and Authority

The Jurisdiction element is a geographic area or subject-matter over which an
Authority applies its legal power. It annotates the legal rules that are applicable
to a given region (e.g., the rules applicable only in the United States of America
in contrast to other countries in the world).

<lrml:Jurisdictions>

<lrml:Jurisdiction key="us"

sameAs="http://example.org/jurisdiction#unitedStatesOfAmerica"/>

</lrml:Jurisdictions>

We can use Jurisdiction also to specify a limited subject-matter, for instance,
legal rules which are applicable only to the executive departments.

<lrml:Jurisdictions>

<lrml:Jurisdiction key="exd"

sameAs="http://example.org/jurisdiction#executiveDepartments"/>

</lrml:Jurisdictions>

Similarly, authority qualifies the rules with respect to the authenticity of the
provenance of the formal model. Authority is a person or organization with the
power to create, endorse, or enforce Legal Norms.

<lrml:Authorities>

<lrml:Authority key="congress"

sameAs="unibo:organization.owl#congress">

<lrml:hasType iri="lrmlv:Legislature"/>

</lrml:Authority>

</lrm:Authorities>

170 T. Athan et al.

Fig. 6. Metamodel for authority and jurisdiction metadata concepts.

5.3 Agent, Figure, Role

An Agent is an entity that acts or has the capability to act. An Agent could be
a physical person, a database, or a bot; for this reason we have the sub-element
<lrml:hasType> that expresses the category of agent.

<lrml:Agents>

<lrml:Agent key="mp"

sameAs="http:example.org/agents#MonicaPalmirani">

<lrml:hasType iri="http://example.org/types#Person"/>

</lrml:Agent>

<lrml:Agent key="ta"

sameAs="http://example.org/agents#TaraAthan"/>

</lrml:Agents>

The Agent usually is the author of the rule model and he/she/it can act in
a particular function (e.g., as senator). A Figure in LegalRuleML is an instanti-
ation of a function by an Actor, and an Actor could be an Agent or a Figure.

<lrml:Figures>

<lrml:hasMemberType

iri="http://example.org/figure-types#LegislativeFigure"/>

<lrml:Figure key="fs">

<lrml:hasFunction iri="http://example.org/functions#Senator"/>

<lrml:hasActor keyref="#ta"/>

</lrml:Figure>

</lrml:Figures>

In the end we associate the Actor that fills a Role (using <lrml:filledBy>)
for a particular rule.

LegalRuleML: Design Principles and Foundations 171

<lrml:Roles>

<lrml:Role key="role1" iri="http://example.org/roles#author">

<lrml:filledBy keyref="#mp"/>

<lrml:filledBy keyref="#ta"/>

<lrml:forExpression keyref="#rule1a"/>

</lrml:Role>

<lrml:Role key="role2" iri="http://example.org/roles#author">

<lrml:filledBy keyref="#mp"/>

<lrml:forExpression keyref="#atom2a"/>

<lrml:forExpression keyref="#atom2b"/>

</lrml:Role>

</lrml:Roles>

Using this mechanism we can filter all the rules modelled by a particular Actor
when he/she/it acts as a particular figure; for instance, we can filter for all the
rules modelled by President Obama when he is acting as chief executive and not
as the commander-in-chief of the United States Armed Forces.

Fig. 7. Partial metamodel for agent, figure and role metadata concepts. AgentClass is
imported as URI from dublin core.

5.4 Time and Events

Legal texts are often amended as a society or judicial system evolves. Norms and
rules are valid in a particular interval of time and with respect to three main
legal axes: when they come into force (entry or enforceability), when they effect

172 T. Athan et al.

the intended or desired result (efficacy), and when they apply (applicability).
In this section, we model the external temporal dimensions of the norms (e.g.,
when the norm is valid) and not the temporal dimensions of the complex events
that are the content of the textual provision (e.g., when a person is to present a
tax application). Therefore, we only model the intervals and temporal parame-
ters that define the period of validity of the rules. Moreover, in keeping with the
sources, it is important to link the temporal parameters to any part of a rule
(e.g., atom, rel, ind, if, then, etc.) with a very fine granularity. The follow-
ing fragment shows the definition of the instant time using the <ruleml:Time>
element wrapped by the <lrml:Times> collection element:

<lrml:Times>

<ruleml:Time key="t1">

<ruleml:Data xsi:type="xs:dateTime">

1978-01-01T01:01:00.0Z

</ruleml:Data>

</ruleml:Time>

<ruleml:Time key="t2">

<ruleml:Data xsi:type="xs:dateTime">

1989-03-01T01:01:00.0Z

</ruleml:Data>

</ruleml:Time>

</lrml:Times>

The time instants are combined in intervals according with the legal temporal
characteristics, e.g. enforceability, efficacy, applicability. In the following case the
tblock1 defines the interval [t1, t2] of efficacy.

<lrml:TemporalCharacteristics key="tblock1">

<lrml:TemporalCharacteristic key="e1-b">

<lrml:forStatus iri="lrmlv:Efficacious"/>

<lrml:hasStatusDevelopment iri="lrmlv:Starts"/>

<lrml:atTime keyref="#t1"/>

</lrml:TemporalCharacteristic>

<lrml:TemporalCharacteristic key="e1-e">

<lrml:forStatus iri="lrmlv:Efficacious"/>

<lrml:hasStatusDevelopment iri="lrmlv:Ends"/>

<lrml:atTime keyref="#t2"/>

</lrml:TemporalCharacteristic>

</lrml:TemporalCharacteristics>

After this definition of the time interval or instant, it is possible to asso-
ciate them to the legal sources using the <lrml:Association> element or the
<lrml:Context> element (see Sect. 6) for associating the temporal parameters
with any part of the rule formalization.

LegalRuleML: Design Principles and Foundations 173

Fig. 8. Partial Metamodel for Temporal Metadata Concepts. Individuals are repre-
sented by triangular icons with the letter ‘I’. Event and Time classes are imported
from RuleML.

6 Association and Context

6.1 Association

To avoid redundancy, we have the element <Association> which can be used
to group meta information referring to several rules or portions of them. In
the following example we have two associations inside of the collection element
<Associations>. The first <Association> applies the temporal parameters of
tblock1 to the prescriptive statements 1 and 2. In the second one authority and
jurisdiction properties are applied to prescriptive statements 1 and 3:

<lrml:Associations key="sourceBlock1">

<lrml:Association>

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

<lrml:toTarget keyref="#ps1"/>

<lrml:toTarget keyref="#ps2"/>

</lrml:Association>

<lrml:Association>

<lrml:appliesAuthority keyref="ex:#congress"/>

<lrml:appliesJurisdiction keyref="ex:#us"/>

<lrml:toTarget keyref="#ps1"/>

<lrml:toTarget keyref="#ps3"/>

174 T. Athan et al.

</lrml:Association>

</lrml:Associations>

This LegalRuleML language construct permits a large flexibility without repli-
cating the information and so maintains the XML representation neatly, cleanly,
compactly, and with fewer redundancies and errors. The parameters that we can
associate are:

<lrml:appliesModality iri="deovo:obl"/>

for expressing modality;

<lrml:appliesSource keyref="#sec504-clsc-pnt1"/>

for connecting LegalSources or References;

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

for connecting temporal parameters;

<lrml:appliesStrength iri="lrmlv:Defeasible"/>

for qualifying the strength of a rule according to the defeasibility categorization;

<lrml:appliesAuthority keyref="authorities:congress"/>

for assigning the authority of the editor of the rule;

<lrml:appliesJurisdiction keyref="jurisdictions:us"/>

for assigning the jurisdiction to a rule.

Fig. 9. Partial metamodel for context concepts.

LegalRuleML: Design Principles and Foundations 175

6.2 Context

A rule may be differently interpreted according to a variety of parameters associ-
ated with a particular situation. For instance, sometimes an alternative interpre-
tation of a textual source of a rule (and its associated formalisation) is associated
with a jurisdiction, e.g., regional, national, or international levels, meaning that
in one jurisdiction, the rule is interpreted one way, while in another jurisdiction,
it is interpreted in another way. Similarly, temporal parameters (e.g., efficacy,
enforceability) can change over time due to the normative modifications, and
these changes can also affect the strength of the norms.

To represent such parameters, we introduce the <lrml:Context> element,
which permits the description of all the characteristics that are linked to a par-
ticular rule (e.g., rule1) using the operator <applies*>, substituting the * with
different relationships (see Sect. 6.1). Additionally to the previous relationships
we add also the following:

<lrml:appliesAssociations keyref="#assoc1"/>

<lrml:appliesAlternatives keyref="#alt2"/>

The mechanism combines the relationships and the target rules, and it acts as a
bridge between metadata and rules or fragments of them. The following example
shows rules rule1 and rule4 connected with a LegalSource section 504, point 2,
under the authority of Congress, valid in the jurisdiction of the USA, associated
with the association #assoc1 and constrained by the alternatives represented in
#alt2.

<lrml:Context key="ruleInfo4" hasCreationDate="#t1">

<lrml:appliesSource keyref="#sec504-clsc-pnt2"/>

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

<lrml:appliesStrength iri="lrmlv:Defeater"/>

<lrml:appliesAuthority keyref="authorities:congress"/>

<lrml:appliesJurisdiction keyref="jurisdictions:us"/>

<lrml:appliesAssociations keyref="#assoc1"/>

<lrml:appliesAlternatives keyref="#alt2"/>

<lrml:inScope keyref="#rule1"/>

<lrml:inScope keyref="#rule4"/>

</lrml:Context>

7 Concrete XML-based Syntax Design

The concrete XML-based syntax for LegalRuleML was designed based on the
principles in Sect. 3, as well as certain design principles that are specific to
XML-based syntaxes.

7.1 XML Elements vs. Attributes

A common design decision for XML-based languages is whether to use an XML
element or an attribute to represent a particular abstract syntactic feature. Gen-
eral guidelines are:

176 T. Athan et al.

– If the information in question could be itself marked up with elements, put it
in an element, because attributes cannot contain such complex content;

– If the information is suitable for attribute form (i.e., not complex), but could
end up as multiple attributes of the same name on the same element, use child
elements instead, avoiding list datatypes for attributes;

– If the information is required to be in a standard XML schema attribute type
such as ID, IDREF, ENTITY, KEYREF, use an attribute;

– If the information should not be normalized for white space, use elements
(XML processors normalize attributes in ways that can change the raw text
of the attribute value.).

Additional general markup conventions developed in RuleML are adopted in
LegalRuleML, providing common principles for the merged language hierarchy.

7.2 Node and Edge Elements

There is a distinction between type (also called node) elements and role (also
called edge) elements, the element name of the former starting with an upper case
letter, and the latter with a lower case letter. Node elements correspond to classes
of the metamodel while edge elements correspond to relationships between mem-
bers of these classes. Edge elements correspond, in general, to “object” properties
in the metamodel, where the range is a subclass of rdfs:Resource. Node ele-
ments alternate with edge elements, forming a bipartite pattern, often called a
striped syntax (e.g., the striped RDF/XML syntax).

7.3 Specialization of Language Constructs with Attributes
and Header Elements

Main XML elements are used for representing general language constructs as
recursive trees while XML attributes and nonrecursive header elements are used
for distinguishing specializations of a given main element. (Attributes are also
used for rendering names that are IRIs, as in RDF.) Syntactic and semantic
variation can thus be achieved by different attribute values and header elements
rather than requiring a different element name. Consider the case of M general
language constructs, all of which may be specialized by P attributes, each with
N predefined values. With this approach, a vocabulary of size M + N ∗ (P + 1)
is able to express M ∗ NP specialized language constructs. In practice, not all
specializing components are appropriate for all general language constructs, so
the actual reduction of vocabulary is not as dramatic as the example, but still
significant.

7.4 Generic Elements

In addition to predefined values, a number of RuleML and LegalRuleML
attributes are allowed values which are IRIs, providing extension points for user-
defined syntactic and semantic variation. A generic element is a main element

LegalRuleML: Design Principles and Foundations 177

whose semantics is underspecified unless an attached attribute or header ele-
ment provides a predefined value or an IRI pointer to a user-defined semantics
(e.g., <Obligation> is a generic deontic operator.) In contrast, non-generic main
elements have either a fixed semantics (e.g., <References>), or a default seman-
tics specified by a profile reference which may be modified through the use of
semantic variant attributes (e.g., <ruleml:And>).

7.5 Normalized and Compact Serialization

In many cases, edge elements are redundant because they could be reconstructed
based on the type or position of the parent and child node elements. RuleML
syntax allows such edges to be optionally skipped, called the stripe-skipped seri-
alization. LegalRuleML syntax allows the two extreme cases - either no edges
are skipped in the document (the normalized serialization) or all skippable edges
in the document are omitted (the compact seralization). The normalized seri-
alization may be reconstructed from a document in stripe-skipped or compact
serialization by applying the normalizer XSLT transformation.

7.6 Design Patterns

Inside of LegalRuleML we employ five well-known design patterns:

– container, which is a structure of elements having independent existence (e.g.,
<Context> can include several <Association> sub-elements);

– collection, a subpattern of container that is in the form of a list of elements
of the same type (e.g., <Roles> that is a sequence of <Role> elements);

– recursive element (e.g., <Obligation> can include other <Obligation> ele-
ments);

– marker, an element that uses attribute @sameAs for identifying a source, e.g.,
<lrml:LegalSource key="sec504-clsa-pnt1"

sameAs="UScode:title17-chp5-sec504-clsa-lst1-pnt1"/>

– composite elements that are made up of different dependent parts, (e.g., a rule
<Rule> consists of an antecedent <if> and conclusion <then>).

7.7 IRI References, CURIES, and the Xsd:ID Datatype

Syntactic labels are attached to fragments of LegalRuleML syntax with the
@key attribute, and are referenced with @keyref. On LegalRuleML elements,
the datatype of @key values is xsd:ID, as is used in HTML for same-document
references, while the datatype of @keyref is either an IRI reference (xsd:anyURI)
or a CURIE [1].

The names of elements and attributes in the XML syntax of LegalRuleML
are inspired by terms from the legal domain, which then facilitates the use by
users familiar with this domain. The LegalRuleML meta-model captures the
common meaning of such terms as understood in the legal field and provides an
IRI for each metamodel term within the LegalRuleML metamodel namespace.

178 T. Athan et al.

These IRIs may be used whenever it is appropriate to refer to a “resource”, in
the sense of RDF, including as values of LegalRuleML attributes.

The element names of the LegalRuleML XML-based syntax are qualified
names, and all LegalRuleML attributes are unqualified.8 An XSLT transforma-
tion has been defined that converts a LegalRuleML document in the XML-based
syntax into RDF that employs the LegalRuleML metamodel vocabulary9.

In the following section we illustrate the connections among the various con-
cepts and their representation in the language.

8 Examples

We use a fragment of the US Code, Title 17, sec. 504, point (c) on copyright
infringement for presenting how LegalRuleML can model complex legal norms
in elegant way. Section 504 was modified seven times over several years. However
only three versions are relevant in our scenario: (i) the version entered into force
at Oct. 19, 1976; (ii) the version entered into force at Oct. 31, 1988; (iii) the
version entered into force at Dec. 9, 1999 that is valid till today. The original
version is:

17 USC Sec. 504
(c) Statutory Damages.
(1) Except as provided by clause (2) of this subsection, the copyright
owner may elect, at any time before final judgement is rendered, to
recover, instead of actual damages and profits, an award of statutory
damages for all infringements involved in the action, with respect to any
one work, for which any one infringer is liable individually, or for which
any two or more infringers are liable jointly and severally, in a sum of not
less than $250 or more than $10,000 as the court considers just. For the
purposes of this subsection, all the parts of a compilation or derivative
work constitute one work.
(2) In a case where the copyright owner sustains the burden of proving,
and the court finds that infringement was committed willfully, the court
in its discretion may increase the award of statutory damages to a sum of
not more than $50,000. In a case where the infringer sustains the burden
of proving, and the court finds, that such infringer was not aware and had
no reason to believe that his or her acts constituted an infringement of
copyright, the court in its discretion may reduce the award of statutory
damages to a sum of not less than $100.

The Copyright Act establishes conditions to protect various types of intellec-
tual property or work, by preventing, in general, the use of such works without
a license and by providing exceptions to the general provision.

8 Certain qualified attributes in external namespaces are imported into LegalRuleML.
9 https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/

schemas/xslt/triplifyMerger-ids.xsl.

https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/schemas/xslt/triplifyMerger-ids.xsl
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/schemas/xslt/triplifyMerger-ids.xsl

LegalRuleML: Design Principles and Foundations 179

For the purpose of this tutorial, the conditions can be paraphrased using the
following prescriptive rule:

R1: if a piece of work is covered by copyright, then it is forbidden to use it.

and its companion constitutive rule

C1: an infringer is defined as somebody who used a piece of work when
it was forbidden to use it.

The provisions in Section 504 can now be paraphrased as follows:

– R2: if the copyright owner claims statutory damages then the penalty for the
infringer is to pay statutory damages of between $250 and $10,000.

– R3: if the copyright owner sustains the burden of proof and the infringer
infringes copyright willfully then the penalty for the infringer is to pay statu-
tory damages of between $250 and $50,000.

– R4: if the infringer sustains the burden of proof and the infringer infringes
NOT willfully then the penalty for the infringer is to pay statutory damages
of between $100 and $10,000.

– Defeasability: R4 > R3 > R2.

Over time the penalties change as follow:

The prescriptive rule that represents the first case is the following:10

<lrml:PrescriptiveStatement key="ps2-tblock1">

<ruleml:Rule key=":rule2-tblock1" closure="universal">

<ruleml:if>

<ruleml:And>

<ruleml:Atom keyref=":rule0-ruleml-Atom1"/>

<ruleml:Atom key=":rule2-tblock1-ruleml-Atom1">

<ruleml:Rel iri="glevo:claimStatutoryDamages">

claims statutory damages

</ruleml:Rel>

<ruleml:Var type="lovo:copyrightOwner">X</ruleml:Var>

</ruleml:Atom>

</ruleml:And>

</ruleml:if>

<ruleml:then>

<lrml:Reparation keyref="#rep1-tblock1"/>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

10 The full LegalRuleML representation of section 504 is available from https://tools.
oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/
USC 17 504 context.lrml.

https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/USC_17_504_context.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/USC_17_504_context.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/USC_17_504_context.lrml

180 T. Athan et al.

The <lrml:Reparation keyref="#rep1-tblock1"/> is a reference to the fol-
lowing fragment of code that connects penalty1 related to the time tblock1
with the prescriptive rule that is violated:

<lrml:Reparation key="rep1-tblock1">

<lrml:appliesPenalty keyref="#penalty1-tblock1"/>

<lrml:toPrescriptiveStatement keyref="#ps1"/>

</lrml:Reparation>

Finally the penalty is modelled as follows to represent the range of the sanction:

<lrml:PenaltyStatement key="penalty1-tblock1">

<lrml:Obligation key="penalty1-tblock1-obl1">

<ruleml:slot>

<lrml:Bearer iri="deovo:oblBearer"/>

<ruleml:Var>Y</ruleml:Var>

</ruleml:slot>

<ruleml:slot>

<lrml:AuxiliaryParty iri="deovo:auxParty"/>

<ruleml:Var>X</ruleml:Var>

</ruleml:slot>

<ruleml:Atom key=":penalty1-tblock1-obl1-axm1">

<ruleml:Rel iri="lovo:payStatutoryDamages"/>

<ruleml:slot>

<ruleml:Ind iri="lovo:payMin"/>

<ruleml:Ind>$250</ruleml:Ind>

</ruleml:slot>

<ruleml:slot>

<ruleml:Ind iri="lovo:payMax"/>

<ruleml:Ind>$10,000</ruleml:Ind>

</ruleml:slot>

</ruleml:Atom>

</lrml:Obligation>

</lrml:PenaltyStatement>

As a further illustration of the LegalRuleML modelling capabilities we propose
a real life case (taken from the Italian legal system and jurisprudence, origi-
nally discussed in [15]) depending on multiple (alternative) interpretation of a
norm, and we show possible formalisations of the case and the interpretations.
We are going to use the formal representations to illustrate the LegalRuleML
mechanisms to cope with the phenomenon of multiple interpretations. The case
is based on a dispute of Art. 1, Comma 2, Law 379/1990. The article recites.

The benefit referred to in comma 1 shall be paid in an amount equal
80 per cent of five-twelfths of the income earned and reported for tax
purposes by the freelancer in the second year preceding the year of appli-
cation.11

The case 18/96, Bologna Tribunal, Imola Section, concerns the interpretation of
the conjunction in the income earned and reported for tax purposes. . . .
11 L’indennità di cui al comma 1 viene corrisposta in misura pari all’80 per cento

di cinque dodicesimi del reddito percepito e denunciato ai fini fiscali dalla libera
professionista nel secondo anno precedente a quello della domanda.

LegalRuleML: Design Principles and Foundations 181

A fundamental and unalienable principle of legal language is its close connec-
tion with natural language; in particular, the interpretation of a textual provi-
sion should be the ordinary meaning conveyed by the text of the provision taking
into account its context in the act in which it appears and the purpose or object
underlying the act. For example, in the Italian legal systems this connection is
prescribed by Article 12 of the Preleggi, Italian Civil Code, stating.

In applying a statute, the interpreter should not attribute to it a meaning
different from that made evident by the proper meaning of the words and
by their connection, as well as by the intention of the law maker.12

Accordingly, the literal interpretation of the norm is given by the rule

earned(x, y − 2) ∧ reported(x, y − 2) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x), y) (1)

The arguments of the predicates earned and reported are the income x
earned/reported in the year in the second argument (y − 2). Similarly for
paybenefit where the function f encodes the computation of the value of the
benefit based on the value of the income x. However, according to the Italian
taxation legislation in force at the time of the dispute the income received in
one year is reported for tax purpose the year after the year it has been earned.
Thus, for example, the income earned in 1995 is reported in 1996. This principle
can be formulated as follows:

earned(x, y) → reported(x, y + 1) (2)
reported(x, y) → earned(x, y − 1) (3)

Consider now the Income constant obtained by applying the Russell’s definite
description operator (ι) on the conjunction in the left-hand side of (1).

Income = ιx(earned(x, y) ∧ reported(x, y)) (4)

The conclusion is that the constant Income is not denoting, i.e., the interpreta-
tion of Income is ∅, thus there is no income “entity” that is earned and reported
in one and the same year. Hence, the left hand side of the rule in (1) never holds,
and the rule never fires, against the intentions of the legislator.

Based on the textual provision two possible interpretations are possible: in
the first interpretation the temporal expression “in the second year preceding the
year of application” refers to the income earned in the second year preceding the
application, while in the second interpretation it refers to the income reported
for tax purposed in the second year preceding the application. For example, for
an application in year 1998, the first interpretation bases the computation on

12 Nell’applicare la legge non si può ad essa attribuire altro senso che quello fatto palese
dal significato proprio delle parole secondo la connessione di esse, e dalla intenzione
del legislatore.

182 T. Athan et al.

the income earned in 1996 (and reported in 1997), while for the second interpre-
tation, the value of the benefit is computed starting from the income reported
in 1996 (and earned in 1995). Accordingly, the first interpretation, the interpre-
tation proposed by the freelancer in the case, can be formalised by the rule

earned(x, y − 2) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x), y) (5)

Similarly the second interpretation, the interpretation proposed by the employer,
can be represented by the rule13

reported(x, y − 2) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x), y) (6)

The task of the Judge was to decide which of the two interpretations has to be
used for the application of the norm. In the case the Judge argued in favour of
the interpretation advanced by the freelancer.

We presented three possible interpretations of the norm, the literal interpre-
tation, the interpretation of the freelancer and the interpretation of the employer.
Here we are going to present the LegalRuleML fragments required to encode the
formalisations corresponding to the three interpretations. The formalisations of
these three statements can be represented as prescriptive rules which are encoded
by <lrml:PrescriptiveStatement> elements in LegalRuleML, each containing
one <ruleml:Rule> Template. The following fragment corresponds to the literal
interpretation, i.e., (1)

<lrml:PrescriptiveStatement key="literal">

<ruleml:Rule closure="universal" key=":literal-template">

<ruleml:if>

<ruleml:And>

<ruleml:Atom key=":atom-earned">

<ruleml:Rel iri="lovo:earned"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr>

<ruleml:Fun iri="glevo:subtract"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">2</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

<ruleml:Atom key=":atom-reported">

<ruleml:Rel iri="lovo:reported"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr>

<ruleml:Fun iri="glevo:subtract"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">2</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

</ruleml:And>

13 Alternatively, we could use earned(x, y − 3) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x)),

while, from a formal point of view, it is semantically equivalent to (6) it is less close
in meaning to the textual provision than its counterpart: the temporal reference in
the argument would “third year preceding the year of the application”.

LegalRuleML: Design Principles and Foundations 183

</ruleml:if>

<ruleml:then>

<lrml:Obligation key="obl-paybenefit">

<ruleml:slot>

<lrml:Bearer/>

<ruleml:Var>Employer</ruleml:Var>

</ruleml:slot>

<ruleml:slot>

<lrml:AuxiliaryParty/>

<ruleml:Var>Freelancer</ruleml:Var>

</ruleml:slot>

<ruleml:Atom>

<ruleml:Rel iri="lovo:paybenefit"/>

<ruleml:Expr>

<ruleml:Fun iri="glevo:80_percent_of_five-twelfths_of"/>

<ruleml:Var>income</ruleml:Var>

</ruleml:Expr>

<ruleml:Var>year</ruleml:Var>

</ruleml:Atom>

</lrml:Obligation>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

Since LegalRuleML is built on top of RuleML we can reuse all RuleML facili-
ties, in particular we can use <ruleml:Expr> and <ruleml:Fun> to encode the
computation of the benefit to be paid to the freelancer.

The next snippet captures the interpretation of the freelancer, i.e., (5).

<lrml:PrescriptiveStatement key="freelancer">

<ruleml:Rule closure="universal" key=":freelancer-template">

<ruleml:if>

<ruleml:Atom keyref=":atom-earned"/>

</ruleml:if>

<ruleml:then>

<lrml:Obligation keyref="#obl-paybenefit"/>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

Notice that inside this statement we can use keyrefs to refer to the elements
already defined in the statement corresponding to the literal interpretation. Sim-
ilar considerations apply to the statement modelling (6), the employer’s inter-
pretation, below.

<lrml:PrescriptiveStatement key="employer">

<ruleml:Rule closure="universal" key=":employer-template">

<ruleml:if>

<ruleml:Atom keyref=":atom-reported"/>

</ruleml:if>

<ruleml:then>

<lrml:Obligation keyref="#keyobl-paybenefit"/>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

184 T. Athan et al.

The following LegalRuleML Constitutive Statement represents the principle
expressed in (2), that earned income will be reported in the following year.
Because a Constitutive Statement defines concepts and does not prescribe behav-
iours, the consequent of its <ruleml:Rule> Template does not contain deontic
operators.

<lrml:ConstitutiveStatement key="tax1">

<ruleml:Rule closure="universal">

<ruleml:if>

<ruleml:Atom>

<ruleml:Rel iri="lovo:earned"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Var>year</ruleml:Var>

</ruleml:Atom>

</ruleml:if>

<ruleml:then>

<ruleml:Atom>

<ruleml:Rel iri="lovo:reported"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr key=":year+1">

<ruleml:Fun iri="glevo:add"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">1</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>

Similarly, the following fragment represents the principle that reported income
was earned in the previous year, as expressed in (3).

<lrml:ConstitutiveStatement key="tax2">

<ruleml:Rule closure="universal">

<ruleml:if>

<ruleml:Atom>

<ruleml:Rel iri="lovo:reported"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Var>year</ruleml:Var>

</ruleml:Atom>

</ruleml:if>

<ruleml:then>

<ruleml:Atom>

<ruleml:Rel iri="lovo:earned"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr key=":year-1">

<ruleml:Fun iri="glevo:subtract"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">1</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>

After the renderings of the alternative interpretations and the relationships
between the predicates earned and reported given by the three constitutive

LegalRuleML: Design Principles and Foundations 185

rules, we have to specify that they are mutually exclusive formalisation of the
same norm. This can be achieved by the following Alternatives element that
represents a mutually-exclusive collection of renderings of the Legal Norms from
the Legal Source #ls1. The <lrml:LegalSource> with key #ls1, not shown in
the text, contains the references to the actual text of the norm.

<lrml:Alternatives key="maternity-alts">

<lrml:Comment> These alternatives are mutually

incompatible formalizations of the same legal source: keyref="#ls1".

</lrml:Comment>

<lrml:hasAlternative keyref="#literal" />

<lrml:hasAlternative keyref="#freelancer" />

<lrml:hasAlternative keyref="#employer" />

</lrml:Alternatives>

A <lrml:Context> element is used to render a collection of Associations, e.g.
the Association of a Legal Source with a rendering of it as a LegalRuleML
Statement, or to constrain other Contexts with respect to Alternatives. The
following Context establishes a constraint that at most one of the Alternatives
from the collection #maternity-alts may be selected by each Context:

<lrml:Context key="maternity-alts-ctxt">

<lrml:appliesAssociations keyref="#asn-alts"/>

<lrml:appliesAlternatives keyref="#maternity-alts"/>

</lrml:Context>

The Context metadata, e.g. authorship, source, authority, temporal and juris-
dictional properties, are specified in an external (to the Context) Association
element with identifier asn-alts, not shown in the paper, which is referenced
using keyref. Similarly other Context elements (also not shown in the paper)
are given with the metadata about the authors of the various Statements. This
permits to establish the provenance of the interpretations.

In the following fragment, a particular Alternative – that proposed by
the freelancer – is selected, leading to the generation of the corresponding
<ruleml:Rule> from the rule Template :freelancer-template.

<lrml:Context key="adjudication">

<lrml:appliesAssociation keyref="#asn-adjudication"/>

<lrml:inScope keyref="#freelancer"/>

</lrml:Context>

Unlike the first Context element, this one contains an <lrml:inScope> element.
Such Contexts render interpretations that select one or more Statements as their
scope of interpretation. When a Context is processed for presentation or infer-
ence, Legal Rules14 are generated from the <ruleml:Rule> Templates of in-scope
Statements, annotated and optionally modified semantically by the Associations
of the Context.
14 In this paper, we focus on Prescriptive and Constitutive Statements, which

always lead to generated Legal Rules. However, in the general case, e.g.
<lrml:FactualStatement>, something other than a Legal Rule may be generated
when a Statement is in scope.

186 T. Athan et al.

In this example the external Association asn-adjudication links the meta-
data for the adjudication of the case with a particular rendering of the norm,
the rendering freelancer, corresponding to the interpretation proposed by the
freelancer and confirmed by the judge15.

9 Conclusion

The tutorial introduces LegalRuleML, a markup up language with a rich set
of features and vocabulary. The language is guided by design principles and
illustrated with some examples. LegalRuleML is intended to model legal rules
and to facilitate reasoning with them by fulfilling the most important require-
ments in the legal domain such as the use of deontic operators, defeasible logic,
and temporal parameters along with the qualification of the norms (e.g., con-
stitutive, prescriptive, reparation, penalty) and the connection between legal
sources and metadata of the rules. In addition to an XML syntax, LegalRuleML
provides a methodology for analysing legal texts and for formally representing
norms. LegalRuleML permits the representation of alternative interpretations of
the same part of legal text, adhering to legal practice. The <lrml:Association>
structure helps to compose different properties and to connect such compositions
with rules or fragment of rules (e.g., Atom). The metamodel of LegalRuleML
is the main pillar of the vocabulary design, helping to guide consistent mod-
elling over time and allowing the language to evolve and be extended. However,
sometimes LegalRuleML is too verbose, flexible, or detailed, making it diffi-
cult to properly manually manage the markup. The flexibility the XML-schema
is especially difficult, for it does not impose some conceptual constraints that
are important for the analysis. For these reasons, some tools are now emerg-
ing to help legal knowledge engineers, who many not be familiar with XML or
RDF principles, to correctly apply LegalRuleML. Other tools can be applied to
LegalRuleML representations and reason with them. RAWE is a web editor that
supports a legal knowledge engineer to model norms starting from the original
legal text [28]. SPINdle is a legal reasoner that implements defeasible reasoning
and the temporal reasoning [25]. PROVA is an open-source rule language that
can be used by LegalRuleML to manage the temporal parameters and to inte-
grate with Reaction RuleML (https://prova.ws/). There are also tools provided
in the LegalRuleML OASIS repository to serialize RDF files in favour of the
Semantic Web linked open data model. Considering these tools, the application
of LegalRuleML is promising; it is well supported by a robust design, a firm
basis in legal theory, a sound XML syntax, and illustrations of how the language
is applied.

15 The full example is available from https://tools.oasis-open.org/version-control/bro-
wse/wsvn/legalruleml/trunk/examples/approved/maternity alternatives compact.
lrml.

https://prova.ws/
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/approved/maternity_alternatives_compact.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/approved/maternity_alternatives_compact.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/approved/maternity_alternatives_compact.lrml

LegalRuleML: Design Principles and Foundations 187

References

1. Adida, B., Birbeck, M., McCarron, S., Herman, I.: RDFa core 1.1 - third edition.
http://www.w3.org/TR/rdfa-core/#s curies

2. Alchourrón, C.E., Bulygin, E.: Permission and permissive norms. In: Krawietz, W.,
et al. (eds.) Theorie der Normen, pp. 349–371. Duncker & Humblot, Berlin (1984)

3. Antoniou, G.: Defeasible logic with dynamic priorities. Int. J. Intell. Syst. 19(5),
463–472 (2004)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)

5. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.:
OASIS LegalRuleML. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Law, pp. 3–12, New York (2013)

6. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: Legal
interpretations in LegalRuleML. In: Villata, S., Peroni, S., Palmirani, M. (eds.)
Proceedings of the Semantic Web for the Law and Second Jurix Doctoral Con-
sortium Workshops (SW4LAW+JURIX-DC 2014). CEUR Workshop Proceedings,
vol. 1296, CEUR-WS.org (2014)

7. Bench-Capon, T., Coenen, F.P.: Isomorphism and legal knowledge based systems.
Artif. Intell. Law 1(1), 65–86 (1992)

8. Brickley, D., Guha, R.V.: RDF schema 1.1. http://www.w3.org/TR/rdf-schema/
9. Dattolo, A., Di Iorio, A., Duca, S., Feliziani, A.A., Vitali, F.: Structural patterns

for descriptive documents. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE
2007. LNCS, vol. 4607, pp. 421–426. Springer, Heidelberg (2007)

10. de Saussure, F.: Cours de Linguistique Générale. Payot, Lausanne (1916)
11. Dworkin, R.: The model of rules I. In Taking Rights Seriously. Harvard University

Presss, Cambridge, MA (1977)
12. Gordon, T., Prakken, H., Walton, D.: The Carneades model of argument and

burden of proof. Artif. Intell. 171, 875–896 (2007)
13. Gordon, T.F.: The Pleadings Game-An Artificial Intelligence Model of Procedural

Justice. Springer, New York (1995)
14. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule

interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

15. Governatori, G.: Un modello formale per il ragionamento giuridico. Ph.D. thesis,
CIRFID, Università di Bologna (1997)

16. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(2–3), 181–216 (2005)

17. Governatori, G.: On the relationship between Carneades and defeasible logic. In:
van Engers, T. (ed.) Proceedings of the 13th International Conference on Artificial
Intelligence and Law (ICAIL 2011), pp. 31–40. ACM Press (2011)

18. Governatori, G.: Business process compliance: An abstract normative framework.
IT Inf. Technol. 55(6), 231–238 (2013)

19. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Philos. Logic 42(6), 799–829 (2013)

20. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australas. J. Logic 4, 193–215 (2006)

21. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annul-
ments in defeasible logic. Logic J. IGPL 18(1), 157–194 (2010)

http://www.w3.org/TR/rdfa-core/#s_curies
http://www.w3.org/TR/rdf-schema/

188 T. Athan et al.

22. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defea-
sible logic. In: Proceedings of the 10th International Conference on Artificial Intel-
ligence and Law (ICAIL 2005), pp. 25–34. ACM (2005)

23. Hart, H.: The Concept of Law, 2nd edn. Clarendon Press, Oxford (1994)
24. Herrestad, H., Krogh, C.: Obligations directed from bearers to counterparts. In:

Proceedings of the Fifth International Conference on Artificial Intelligence and
Law (ICAIL 1995), pp. 210–218 (1995)

25. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer,
Heidelberg (2009)

26. Lappin, S. (ed.): The Handbook of Contemporary Semantic Theory. Blackwell
Publishers, Cambridge (1997)

27. Nute, D.: Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 3, chapter Defeasible Logic, pp. 353–395. Oxford University Press, Oxford,
1994

28. Palmirani, M., Cervone, L., Bujor, O., Chiappetta, M.: RAWE: an editor for rule
markup of legal texts. In: Fodor, P., Roman, D., Anicic, D., Wyner, D., Palmirani,
M., Sottara, D., Lévy, F. (eds.) Joint Proceedings of the 7th International Rule
Challenge, the Special Track on Human Language Technology and the 3rd RuleML
Doctoral Consortium. CEUR Workshop Proceedings, Seattle, USA, 11–13 July
2013, vol. 1004, CEUR-WS.org (2013)

29. Palmirani, M., Governatori, G., Contissa, G.: Temporal dimensions in rules mod-
elling. In: Winkels, R. (ed.) JURIX. Frontiers in Artificial Intelligence and Appli-
cations, vol. 223, pp. 159–162. IOS Press, Amsterdam (2010)

30. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
LegalRuleML: XML-based rules and norms. In: Palmirani, M. (ed.) RuleML -
America 2011. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011)

31. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting argument in
legal reasoning. Artif. Intell. Law 4(3–4), 331–368 (1996)

32. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. J. Appl. Non Class. Logics 7(1), 25–75 (1997)

33. Raz, J.: Between authority and interpretation: on the theory of law and practical
reason. Oxford University Press, Oxford (2009)

34. Sartor, G.: Legal reasoning: A cognitive approach to the law. In: Pattaro, E.,
Rottleuthner, H., Shiner, R.A., Peczenik, A., Sartor, G. (eds.) A Treatise of Legal
Philosophy and General Jurisprudence, vol. 5. Springer, Berlin (2005)

35. Scalia, A., Garner, B.A.: Reading Law: The Interpretation of Legal Texts. West,
Minneapolis (2012)

36. Searle, J.R.: The Construction of Social Reality. The Free Press, New York (1996)
37. Nicos Stavropoulos. Legal interpretivism. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Summer 2014 edition (2014)
38. Georg Henrik von Wright: Norm and action: A logical inquiry. Routledge and

Kegan Paul, London (1963)

	LegalRuleML: Design Principles and Foundations
	1 Introduction
	2 Functionalities
	3 Criteria of Good Language Design
	4 Modelling Norms
	4.1 Defeasibility
	4.2 Constitutive and Prescriptive Norms
	4.3 Deontic
	4.4 Alternatives

	5 Meta Data of the Norms
	5.1 Sources and Isomorphism
	5.2 Jurisdiction and Authority
	5.3 Agent, Figure, Role
	5.4 Time and Events

	6 Association and Context
	6.1 Association
	6.2 Context

	7 Concrete XML-based Syntax Design
	7.1 XML Elements vs. Attributes
	7.2 Node and Edge Elements
	7.3 Specialization of Language Constructs with Attributes and Header Elements
	7.4 Generic Elements
	7.5 Normalized and Compact Serialization
	7.6 Design Patterns
	7.7 IRI References, CURIES, and the Xsd:ID Datatype

	8 Examples
	9 Conclusion
	References

