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Abstract. The aim of this talk is to present a detailed, self-contained
and comprehensive account of the state of the art in representing and
reasoning with structured fuzzy knowledge. Fuzzy knowledge comes into
play whenever one has to deal with concepts for which membership is
a matter of degree (e.g., the degree of illness is a function of, among
others, the body temperature). Specifically, we address the case of the
fuzzy variants of conceptual languages of the OWL 2 family.

1 Introduction

Managing uncertainty and fuzziness is growing in importance in Semantic Web
research as recognised by a large number of research efforts in this direc-
tion [155,160]. Semantic Web Languages (SWL) are the languages used to pro-
vide a formal description of concepts, terms, and relationships within a given
domain, among which the OWL 2 family of languages is a major player [116].
OWL 2 has its logical grounding in Description Logics (DLs) [3] and the main
aim of fuzzifying DLs is then to allow dealing with fuzzy concepts occurring in
real world applications.

Uncertainty versus Fuzziness. One of the major difficulties, for those unfa-
miliar on the topic, is to understand the conceptual differences between uncer-
tainty and fuzziness. Specifically, we recall that there has been a long-lasting
misunderstanding in the literature of artificial intelligence and uncertainty mod-
elling, regarding the role of probability/possibility theory and vague/fuzzy the-
ory. A clarifying paper is [56]. We recall here the salient concepts.

Uncertainty. Under uncertainty theory fall all those approaches in which state-
ments rather than being either true or false, are true or false to some probability
or possibility (for example, “it will rain tomorrow”). That is, a statement is true
or false in any world/interpretation, but we are “uncertain” about which world
to consider as the right one, and thus we speak about e.g. a probability distribu-
tion or a possibility distribution over the worlds. For example, we cannot exactly
establish whether it will rain tomorrow or not, due to our incomplete knowledge
about our world, but we can estimate to which degree this is probable, possible,
or necessary.
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To be somewhat more formal, consider a propositional statement (formula) φ
(“tomorrow it will rain”) and a propositional interpretation (world) I. We may
see I as a function mapping propositional formulae into {0, 1}, i.e. I(φ) ∈ {0, 1}.
If I(φ) = 1, denoted also as I |= φ, then we say that the statement φ under
I is true, false otherwise. Now, each interpretation I depicts some concrete
world and, given n propositional letters, there are 2n possible interpretations. In
uncertainty theory, we do not know which interpretation I is the actual one and
we say that we are uncertain about which world is the real one that will occur.

To deal with such a situation, one may construct a probability distribu-
tion over the worlds, that is a function Pr mapping interpretations in [0, 1],
i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1, where Pr(I) indicates the probability

that I is the actual world under which to interpret the propositional statement
at hand. Then, the probability of a statement φ in Pr , denoted Pr(φ), is the sum
of all Pr(I) such that I |= φ, i.e.

Pr(φ) =
∑

I|=φ

Pr(I).

Fuzziness. On the other hand, under fuzzy theory fall all those approaches in
which statements (for example, “heavy rain”) are true to some degree, which is
taken from a truth space (usually [0, 1]). That is, the convention prescribing that
a proposition is either true or false is changed towards graded propositions. For
instance, the compatibility of “heavy” in the phrase “heavy rain” is graded and
the degree depends on the amount of rain is falling.1 Often we may find rough
definitions about rain types, such as:2

Rain. Falling drops of water larger than 0.5 mm in diameter. In forecasts, “rain”
usually implies that the rain will fall steadily over a period of time;

Light Rain. Rain falls at the rate of 2.6 mm or less an hour;
Moderate Rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;
Heavy Rain. Rain falls at the rate of 7.7 mm an hour or more.

It is evident that such definitions are quite harsh and resemble a bivalent (two-
valued) logic: e.g. a precipitation rate of 7.7mm/h is a heavy rain, while a pre-
cipitation rate of 7.6mm/h is just a moderate rain. This is clearly unsatisfactory,
as quite naturally the more rain is falling, the more the sentence “heavy rain”
is true and, vice-versa, the less rain is falling the less the sentence is true.

In other words, this means essentially, that the sentence “heavy rain” is
no longer either true or false as in the definition above, but is intrinsically
graded.

A more fine grained way to define the various types of rains is illustrated in
Fig. 1.
1 More concretely, the intensity of precipitation is expressed in terms of a precipitation

rate R: volume flux of precipitation through a horizontal surface, i.e. m3/m2s =
ms−1. It is usually expressed in mm/h.

2 http://usatoday30.usatoday.com/weather/wds8.htm.

http://usatoday30.usatoday.com/weather/wds8.htm
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Fig. 1. Light, moderate and heavy rain.

Light rain, moderate rain and heavy rain are called Fuzzy Sets in the lit-
erature [176] and are characterised by the fact that membership is a matter of
degree. Of course, the definition of fuzzy sets is frequently context dependent
and subjective: e.g. the definition of heavy rain is quite different from heavy
person and the latter may be defined differently among human beings.

From a logical point of view, a propositional interpretation maps a statement
φ to a truth degree in [0, 1], i.e. I(φ) ∈ [0, 1]. Essentially, we are unable to
establish whether a statement is entirely true or false due to the involvement of
vague/fuzzy concepts, such as “heavy”.

Note that all fuzzy statements are truth-functional, that is, the degree of
truth of every statement can be calculated from the degrees of truth of its con-
stituents, while uncertain statements cannot always be a function of the uncer-
tainties of their constituents [55]. For the sake of illustrative purpose, an example
of truth functional interpretation of propositional statements is as follows:

I(φ ∧ ψ) = min(I(φ), I(ψ))
I(φ ∨ ψ) = max(I(φ), I(ψ))
I(¬φ) = 1 − I(φ).

In such a setting one may be interested in the so-called notions of minimal (resp.
maximal) degree of satisfaction of a statement, i.e. minI I(φ) (resp. maxI I(φ)).

Uncertain Fuzzy Sentences. Let us recap: in a probabilistic setting each statement
is either true or false, but there is e.g. a probability distribution telling us how
probable each interpretation is, i.e. I(φ) ∈ {0, 1} and Pr(I) ∈ [0, 1]. In fuzzy
theory instead, sentences are graded, i.e. we have I(φ) ∈ [0, 1].

A natural question is: can we have sentences combining the two orthogonal
concepts? Yes, for instance, “there will be heavy rain tomorrow” is an uncertain
fuzzy sentence. Essentially, there is uncertainty about the world we will have
tomorrow, and there is fuzziness about the various types of rain we may have
tomorrow.
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From a logical point of view, we may model uncertain fuzzy sentences in the
following way:

– we have a probability distribution over the worlds, i.e. a function Pr mapping
interpretations in [0, 1], i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1;

– sentences are graded. Specifically, each interpretation is truth functional and
maps sentences into [0, 1], i.e. I(φ) ∈ [0, 1];

– for a sentence φ, we are interested in the so-called expected truth of φ, denoted
ET (φ), namely

ET (φ) =
∑

I
Pr(I) · I(φ).

Note that if I is bivalent (that is, I(φ) ∈ {0, 1}) then ET (φ) = Pr(φ).

Talk Overview. We present here some salient aspects dealing with fuzzy knowl-
edge in the context of the OWL 2 family of languages, specifically we address
fuzzy DLs. We refer the reader to [160] for an extensive presentation concerning
fuzzy OWL and other semantic web languages.

In the following, we briefly sketch the basic notions about Fuzzy Sets and
Fuzzy Logic, which we require then in the subsequent section about fuzzy DLs.

2 Basics: From Fuzzy Sets to Mathematical Fuzzy Logic

2.1 Fuzzy Sets Basics

The aim of this section is to introduce the basic concepts of fuzzy set theory.
To distinguish between fuzzy sets and classical (nonfuzzy) sets, we refer to the
latter as crisp sets. For an in-depth treatment we refer the reader to, e.g. [54,86].

From Crisp Sets to Fuzzy Sets. To better highlight the conceptual shift from
classical sets to fuzzy sets, we start with some basic definitions and well-known
properties of classical sets. Let X be a universal set containing all possible
elements of concern in each particular context. The power set, denoted 2A, of a set
A ⊂ X, is the set of subsets of A, i.e., 2A = {B | B ⊆ A}. Often sets are defined
by specifying a property satisfied by its members, in the form A = {x | P (x)},
where P (x) is a statement of the form “x has property P” that is either true or
false for any x ∈ X. Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h}.

In the above case we have B ⊆ A ⊆ X.
The membership function of a set A ⊆ X, denoted χA, is a function mapping

elements of X into {0, 1}, i.e. χA : X → {0, 1}, where χA(x) = 1 iff x ∈ A. Note
that for any sets A,B ∈ 2X , we have that

A ⊆ B iff ∀x ∈ X. χA(x) ≤ χB(x). (1)
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The complement of a set A is denoted Ā, i.e. Ā = X \ A. Of course, ∀x ∈
X. χĀ(x) = 1 − χA(x). In a similar way, we may express set operations of
intersection and union via the membership function as follows:

∀x ∈ X. χA∩B(x) = min(χA(x), χB(x)) (2)
∀x ∈ X. χA∪B(x) = max(χA(x), χB(x)). (3)

The Cartesian product, A × B, of two sets A,B ∈ 2X is defined as A × B =
{〈a, b〉 | a ∈ A, b ∈ B}. A relation R ⊆ X × X is reflexive if for all x ∈ X
χR(x, x) = 1, is symmetric if for all x, y ∈ X χR(x, y) = χR(y, x). The inverse
of R is defined as function χR−1 : X × X → {0, 1} with membership function
χR−1(y, x) = χR(x, y).

As defined so far, the membership function of a crisp set A assigns a value
of either 1 or 0 to each individual of the universe set and, thus, discriminates
between being a member or not being a member of A.

A fuzzy set [176] is characterised instead by a membership function χA : X →
[0, 1], or denoted simply A : X → [0, 1]. With 2̃X we denote the fuzzy power set
over X, i.e. the set of all fuzzy sets over X. For instance, by referring to Fig. 1,
the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =

⎧
⎨

⎩

1 if R ≥ 7.5
(x − 5)/2.5 if R ∈ [5, 7.5)
0 otherwise.

As pointed out previously, the definition of the membership function may depend
on the context and may be subjective. Moreover, also the shape of such func-
tions may be quite different. Luckily, the trapezoidal (Fig. 2(a)), the triangular
(Fig. 2(b)), the L-function (left-shoulder function, Fig. 2(c)), and the R-function
(right-shoulder function, Fig. 2(d)) are simple, but most frequently used to spec-
ify membership degrees.

The usefulness of fuzzy sets depends critically on our capability to con-
struct appropriate membership functions. The problem of constructing mean-
ingful membership functions is a difficult one and we refer the interested reader
to, e.g. [86, Chap. 10]. However, one easy and typically satisfactory method to
define the membership functions (for a numerical domain) is to uniformly par-
tition the range of, e.g. precipitation rates values (bounded by a minimum and
maximum value), into 5 or 7 fuzzy sets using either trapezoidal functions (e.g. as
illustrated in Fig. 3), or using triangular functions (as illustrated in Fig. 4). The
latter one is the more used one, as it has less parameters.

The standard fuzzy set operations are defined for any x ∈ X as in Eqs. (2)
and (3). Note also that the set inclusion defined as in Eq. (1) is indeed crisp in
the sense that either A ⊆ B or A 
⊆ B.
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Fig. 2. (a) Trapezoidal function trz (a, b, c, d); (b) Triangular function tri(a, b, c); (c)
L-function ls(a, b); and (d) R-function rs(a, b).

Fig. 3. Fuzzy sets construction using trapezoidal functions.

Fig. 4. Fuzzy sets construction using triangular functions.

Norm-Based Fuzzy Set Operations. Standard fuzzy set operations are not the
only ones that can be conceived to be suitable to generalise the classical Boolean
operations. For each of the three types of operations there is a wide class of
plausible fuzzy version. The most notable ones are characterised by the so-called
class of t-norms ⊗ (called triangular norms), t-conorms ⊕ (also called s-norm),
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and negation � (see, e.g. [85]). An additional operator is used to define set
inclusion (called implication ⇒). Indeed, the degree of subsumption between two
fuzzy sets A and B, denoted A � B, is defined as infx∈X A(x) ⇒ B(x), where
⇒ is an implication function.

An important aspect of such functions is that they satisfy some properties
that one expects to hold (see Tables 1 and 2). Usually, the implication function
⇒ is defined as r-implication, that is,

a ⇒ b = sup {c | a ⊗ c ≤ b}.

Table 1. Properties for t-norms and s-norms.

Axiom name T-norm S-norm

Tautology/Contradiction a ⊗ 0 = 0 a ⊕ 1 = 1

Identity a ⊗ 1 = a a ⊕ 0 = a

Commutativity a ⊗ b = b ⊗ a a ⊕ b = b ⊕ a

Associativity (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

Monotonicity if b ≤ c, then a ⊗ b ≤ a ⊗ c if b ≤ c, then a ⊕ b ≤ a ⊕ c

Table 2. Properties for implication and negation functions.

Axiom name Implication function Negation function

Tautology/Contradiction 0 ⇒ b = 1, a ⇒ 1 = 1, 1 ⇒ 0 = 0 � 0 = 1, � 1 = 0

Antitonicity if a ≤ b, then a ⇒ c ≥ b ⇒ c if a ≤ b, then � a ≥ � b

Monotonicity if b ≤ c, then a ⇒ b ≤ a ⇒ c

Of course, due to commutativity, ⊗ and ⊕ are monotone also in the first
argument. We say that ⊗ is indempotent if a ⊗ a = a, for any a ∈ [0, 1]. For any
a ∈ [0, 1], we say that a negation function � is involutive iff � � a = a. Salient
negation functions are:

Standard or �Lukasiewicz Negation: �la = 1 − a;
Gödel Negation: �ga is 1 if a = 0, else is 0.

Of course, �Lukasiewicz negation is involutive, while Gödel negation is not.
Salient t-norm functions are:

Gödel t-norm: a ⊗g b = min(a, b);
Bounded Difference or �Lukasiewicz t-norm: a ⊗l b = max(0, a + b − 1);
Algebraic Product or Product t-norm: a ⊗p b = a · b;

Drastic Product: a ⊗d b =
{

0 when (a, b) ∈ [0, 1[×[0, 1[
min(a, b) otherwise
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Salient s-norm functions are:

Gödel s-norm: a ⊕g b = max(a, b);
Bounded Sum or �Lukasiewicz s-norm: a ⊕l b = min(1, a + b);
Algebraic Sum or Product s-norm: a ⊕p b = a + b − ab;

Drastic sum: a ⊕d b =
{

1 when (a, b) ∈]0, 1]×]0, 1]
max(a, b) otherwise

We recall that the following important properties can be shown about t-norms
and s-norms.

1. There is the following ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g

⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g.

2. The only idempotent t-norm is ⊗g.
3. The only t-norm satisfying a ⊗ a = 0 for all a ∈ [0, 1[ is ⊗d.
4. There is the following ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d

⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d.

5. The only idempotent s-norm is ⊕g.
6. The only s-norm satisfying a ⊕ a = 1 for all a ∈]0, 1] is ⊕d.

The dual s-norm of ⊗ is defined as

a ⊕ b = 1 − (1 − a) ⊗ (1 − b). (4)

Some t-norms, s-norms, implication functions, and negation functions are shown
in Table 3. One usually distinguishes three different sets of fuzzy set operations
(called fuzzy logics), namely, �Lukasiewicz, Gödel, and Product logic; the popular
Standard Fuzzy Logic (SFL) is a sublogic of �Lukasiewicz logic as min(a, b) =
a⊗l (a ⇒l b) and max(a, b) = 1−min(1−a, 1−b). The importance of these three
logics is due to the Mostert–Shields theorem [114] that states that any continuous
t-norm can be obtained as an ordinal sum of these three (see also [67]).

The implication x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication
in the fuzzy logic literature. Note that we have the following inferences: let
a ≥ n and a ⇒ b ≥ m. Then, under Kleene-Dienes implication, we infer that if
n > 1−m then b ≥ m. Under r-implication relative to a t-norm ⊗, we infer that
b ≥ n ⊗ m.

The composition of two fuzzy relations R1 : X×X → [0, 1] and R2 : X×X →
[0, 1] is defined as (R1 ◦ R2)(x, z) = supy∈X R1(x, y) ⊗ R2(y, z). A fuzzy relation
R is transitive iff R(x, z)� (R ◦ R)(x, z).

Fuzzy Modifiers. Fuzzy modifiers are an interesting feature of fuzzy set theory.
Essentially, a fuzzy modifier, such as very, more or less, and slightly, apply
to fuzzy sets to change their membership function.
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Table 3. Combination functions of various fuzzy logics.

�Lukasiewicz logic Gödel logic Product logic SFL

a ⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)

a ⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a ⇒ b min(1 − a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1 − a, b)

� a 1 − a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1 − a

Table 4. Some additional properties of combination functions of various fuzzy logics.

Property �Lukasiewicz Logic Gödel Logic Product Logic SFL

x ⊗ �x = 0 + − − −
x ⊕ �x = 1 + − − −
x ⊗ x = x − + − +

x ⊕ x = x − + − +

� �x = x + − − +

x ⇒ y = �x ⊕ y + − − +

� (x ⇒ y) = x ⊗ � y + − − +

� (x ⊗ y) = �x ⊕ � y + + + +

� (x ⊕ y) = �x ⊗ � y + + + +

Fig. 5. Linear modifier lm(a, b).

Formally, a fuzzy modifier m represents a function

fm : [0, 1] → [0, 1].

For example, we may define fvery(x)= x2 and fslightly(x) =
√

x. In this way, we
may express the fuzzy set of very heavy rain by applying the modifier very to
the fuzzy membership function of “heavy rain” i.e.

χvery heavyrain(x) = fvery(χheavyrain(x)) = (χheavyrain(x))2 = (rs(5, 7.5)(x))2.
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A typical shape of modifiers is the so-called linear modifiers, as illustrated in
Fig. 5. Note that such a modifier can be parameterized by means of one parameter
c only, i.e. lm(a, b) = lm(c), where a = c/(c + 1), b = 1/(c + 1).

2.2 Mathematical Fuzzy Logic Basics

Given that the OWL 2 family of languages is grounded on Mathematical Logic,
it is quite natural to look at Mathematical Fuzzy Logic [67] to get inspiration
for a fuzzy logic extensions of the OWL family. So, we recap here briefly that
in Mathematical Fuzzy Logic, the convention prescribing that a statement is
either true or false is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but [0, 1]. This degree is called degree of truth of
the logical statement φ in the interpretation I. Fuzzy statements have the form
〈φ, r〉, where r ∈ [0, 1] (see, e.g. [66,67]) and φ is a statement, which encodes that
the degree of truth of φ is greater or equal r. A fuzzy interpretation I maps each
basic statement pi into [0, 1] and is then extended inductively to all statements:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ)
I(φ ∨ ψ) = I(φ) ⊕ I(ψ)
I(φ → ψ) = I(φ) ⇒ I(ψ)
I(φ ↔ ψ) = I(φ → ψ) ⊗ I(ψ → φ)
I(¬φ) = �I(φ)
I(∃x.φ) = supa∈ΔI Ia

x(φ)
I(∀x.φ) = infa∈ΔI Ia

x(φ),

(5)

where ΔI is the domain of I, and ⊗, ⊕, ⇒, and � are the t-norms, t-conorms,
implication functions, a negation functions we have seen in the previous section.3

One may also consider the following abbreviations:

φ ∧g ψ
def= φ ∧ (φ → ψ) (6)

φ ∨g ψ
def= (φ → ψ) → φ) ∧g (ψ → φ) → ψ) (7)

¬⊗φ
def= φ → 0. (8)

In case ⇒ is the r-implication based on ⊗, then ∧g (resp. ∨g) is interpreted as
Gödel t-norm (resp. s-norm), while ¬⊗ is interpreted as the negation function
related to ⊗.

A fuzzy interpretation I satisfies a fuzzy statement 〈φ, r〉, or I is a model of
〈φ, r〉, denoted I |= 〈φ, r〉, iff I(φ) ≥ r. We say that I is a model of φ if I(φ) = 1.
A fuzzy knowledge base (or simply knowledge base, if clear from context) is a set
of fuzzy statements and an interpretation I satisfies (is a model of) a knowledge
base, denoted I |= K, iff it satisfies each element in it.

We say 〈φ, n〉 is a tight logical consequence of a set of fuzzy statements K iff
n is the infimum of I(φ) subject to all models I of K. Notice that the latter is

3 The function Ia
x is as I except that x is interpreted as a.
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equivalent to n= sup {r | K |= 〈φ, r〉}. n is called the best entailment degree of φ
w.r.t. K (denoted bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= 〈φ, r〉}. (9)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted
bsd(K, φ)) is

bsd(K, φ) = sup
I

{I(φ) | I |= K}. (10)

Of course, the properties of Table 4 immediately translate into equivalence among
formulae. For instance, the following equivalences hold (in brackets we indicate
the logic for which the equivalences holds)

¬¬φ ≡ φ (�L)
φ ∧ φ ≡ φ (G)

¬(φ ∧ ¬φ) ≡ 1 (�L, G,Π)
φ ∨ ¬φ ≡ 1 (�L).

Remark 1. Unlike the classical case, in general, we do not have that ∀x.φ
and ¬∃x.¬φ are equivalent. They are equivalent for �Lukasiewicz logic and
SFL, but are neither equivalent for Gödel nor for Product logic. For instance,
under Gödel negation, just consider an interpretation I with domain {a} and
I(p(a)) = u, with 0 < u < 1. Then I(∀x.p(x)) = u, while I(¬∃x.¬p(x)) = 1
and, thus, ∀x.p(x) 
≡ ¬∃x.¬p(x).

We refer the reader to [160] for an overview of reasoning algorithms for fuzzy
propositional and First-Order Logics.

On Witnessed Models. We say that a fuzzy interpretation I is a witnessed inter-
pretation iff

I(∃x.φ) = Ia
x(φ), for some a ∈ ΔI (11)

I(∀x.φ) = Ia
x(φ), for some a ∈ ΔI . (12)

These equations say that the supremum (resp. infimum) are attained at some
point for a witnessed interpretation. Now, unlike the classical case, it may not
be true that Eqs. (11) and (12) hold for all I, i.e. I may not be witnessed.
For instance, for I with domain the natural numbers and In

x (A(x)) = 1 − 1/n,
we have that I(∃x.A(x)) = supn In

x (A(x)) = supn 1 − 1/n = 1, while in no
point In

x (A(x)) is 1. So, I is not witnessed (the argument for ∀ is similar). The
following important property can be shown (see, e.g. [67–70]) stating that in
�Lukasiewicz logic and, thus, in SFL, a fuzzy statement 〈φ, r〉 has a witnessed
fuzzy model iff it has a fuzzy model. This is not true for Gödel and product
logic however. Therefore, for �Lukasiewicz logic, we may restrict our attention to
witnessed models only. That is, �Lukasiewicz has the so-called witnessed model
property (there is a model iff there is witnessed model). Of course, if the truth
space is finite then any fuzzy logic has the witnessed model property as well.
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3 Fuzzy Description Logics and OWL 2

We have seen in the previous sections how to “fuzzify” classical sets and FOL.
In the latter case, fuzzy statements are of the form 〈φ, n〉, where φ is a statement
and n ∈ [0, 1].

The natural extension to fuzzy DLs [160] consists then in replacing φ with
appropriate expressions belonging to the DL family of languages, as we will
illustrate next.

3.1 Fuzzy DLs

Description Logics (DLs) [3] are the logical counterpart of the family of OWL
languages. So, to illustrate the basic concepts of fuzzy OWL, it suffices to show
the fuzzy DL case (see [108,160], for a survey). We recap that the basic ingredi-
ents are the descriptions of classes, properties, and their instances, such as

– a:C, such as a:Person � ∀hasChild.Femal, meaning that individual a is an
instance of concept/class C (here C is seen as a unary predicate);

– (a, b):R, such as (tom,mary):hasChild, meaning that the pair of individuals
〈a, b〉 is an instance of the property/role R (here R is seen as a binary predi-
cate);

– C � D, such as Person � ∀hasChild.Person, meaning that the class C is a
subclass of class D;

So far, several fuzzy variants of DLs have been proposed: they can be classified
according to

– the description logic resp. ontology language that they generalize [10,15,17,
18,21,53,103–107,109,110,128–130,134,140,146,147,150,154,170,175];

– the allowed fuzzy constructs [14,71,72,77–84,111,157];
– the underlying fuzzy logic [12,13,19,68,69,145,149,152];
– their reasoning algorithms and computational complexity results [4,5,8,9,11,

16,26–36,39,40,117,135,138,139,143,144,148,151,153,161,162,174,178].

We also refer the reader to [160] for a comprehensive survey.
In general, fuzzy DLs allow expressions of the form 〈a:C, n〉, stating that a

is an instance of concept/class C with degree at least n, i.e. the FOL formula
C(a) is true to degree at least n. Similarly, 〈C1 � C2, n〉 states a vague sub-
sumption relationships. Informally, 〈C1 � C2, n〉 dictates that the FOL formula
∀x.C1(x) → C2(x) is true to degree at least n. Essentially, fuzzy DLs are then
obtained by interpreting the statements as fuzzy FOL formulae and attaching a
weight n to DL statements, thus, defining so fuzzy DL statements.

As matter of example, consider the DL ALC (Attributive Language with
Complement), a major DL representative used to introduce new extensions to
DLs: the table below shows its syntax, semantics and provides examples. In the
table, a fuzzy interpretation I = (ΔI , ·I) consists of a nonempty set ΔI (the
domain) and of a fuzzy interpretation function ·I that assigns
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– to each atomic concept A a function AI : ΔI → [0, 1];
– to each abstract role R a function RI : ΔI × ΔI → [0, 1];
– to each individual a an element aI ∈ ΔI such that aI 
= bI if a 
= b (unique

Name Assumption, UNA).

CI denotes the membership function of the fuzzy concept C with respect to the
fuzzy interpretation I. For x ∈ ΔI , CI(x) gives us the degree of being x an
element of the fuzzy concept C under I. Similarly, RI denotes the membership
function of the fuzzy role R with respect to I. For x, y ∈ ΔI , RI(x, y) gives us
the degree of being (x, y) an element of the fuzzy role R.

Syntax Semantics Example

C, D → � | �(x)
⊥ | ⊥(x)
A | AI(x) Human

C � D | CI(x) ⊗ DI(x) Human � Male

C � D | CI(x) ⊕ DI(x) Nice � Rich

C → D | CI(x) ⇒ DI(x) Nice → Rich

¬C | ¬CI(x) ¬Meat

∃R.C | sup
y∈ΔI RI(x, y) ⊗ CI(y) ∃has child.Blond

∀R.C inf
y∈ΔI RI(x, y) ⇒ CI(y) ∀has child.Human

C 
 D inf
x∈ΔI CI(x) ⇒ DI(x) Happy F ather 
 Man � ∃has child.F emale

a:C CI(aI) John:Happy F ather

(a, b):R RI(aI , bI) (John, Mary):Loves

The upper pane describes how concepts/classes can be formed, while the lower
pane shows the form of statements/axioms a knowledge base may be build of.
Axioms of the form C � D, called, General Inclusion Axioms (GCIs), dictated
that the class C is a subclass of the class D, a:C dictates that individual a is an
instance of class C, while (a, b):R states that 〈a, b〉 is an instance of the binary
relation R. The definition A = C, is used in place of having both A � C and
C � A, stating that class A is defined to be equivalent to C.

Fuzzy DLs [160] are then obtained by interpreting the statements as fuzzy
FOL formulae and attaching a weight n to DL statements, yielding fuzzy DL
statements, such as 〈C � D,n〉, 〈a:C, n〉 and 〈(a, b):R,n〉. The former is called
fuzzy GCI, while the latter two are called fuzzy assertions.

It is worth noting that one may find in fuzzy DLs also fuzzy statements of
the form 〈α � n〉, 〈α � n〉, 〈α > n〉, 〈α < n〉, and 〈α=n〉, stating that the degree
of truth of axiom α is bounded by •n, where • ∈ {� , � , > , < ,=}. We stick
here to the form 〈α, n〉, i.e. 〈α � n〉 only, by reminding that as graded axioms
are intended to be produced semi- or automatically, it is hardly conceivable that
they may have, e.g. the form 〈α � n〉, 〈α > n〉 or 〈α < n〉.

A fuzzy knowledge base is a tuple K = 〈T ,A〉, where now fuzzy axioms occur
in place of classical DL axioms. T ,A are called now fuzzy TBox (that is a finite
set of fuzzy GCIs) and fuzzy ABox (that is a finite set of fuzzy assertions),
respectively. An interpretation I is a model of a fuzzy statement 〈φ, n〉, denoted
I |= 〈φ, n〉 if φI ≥ n. We say that a fuzzy interpretation I satisfies (is a model
of) a fuzzy KB K = 〈T ,A〉 iff it satisfies each element in A and T . A fuzzy KB
K = 〈T ,A〉 entails an axiom E, denoted K |= E, iff every model of K satisfies
E. We say that two concepts C and D are equivalent, denoted C ≡K D iff in
evry model I of K and for all x ∈ ΔI , CI(x) = DI(x).



14 U. Straccia

As for the fuzzy FOL case, for concept assertion, role assertion, GCI or role
inclusion axiom φ, we say that 〈φ, n〉 is a tight logical consequence of K iff n
is the infimum of φI subject to all models I of K. Notice that the latter is
equivalent to

n= sup {r | K |= 〈φ, r〉}.

n is called the best entailment degree of φ w.r.t. K (denoted bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= 〈φ, r〉}. (13)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted
bsd(K, φ)) is

bsd(K, φ) = sup
I

{φI | I |= K}. (14)

For a concept C, we also say that the best satisfiability degree of C w.r.t. K
(denoted bsd(K, C)) is

bsd(K, C) = sup
I|=K

sup
x∈ΔI

CI(x).

Example 1. Consider the following background knowledge about cars encoded
as the fuzzy TBox:

Car � ∃HasPrice.Price
Sedan � Car

V an � Car
CheapPrice � Price

ModeratePrice � Price
ExpensivePrice � Price

〈CheapPrice � ModeratePrice, 0.7〉
〈ModeratePrice � ExpensivePrice, 0.4〉

CheapCar = Car � ∃HasPrice.CheapPrice
ModerateCar = Car � ∃HasPrice.ModeratePrice

ExpensiveCar = Car � ∃HasPrice.ExpensivePrice

Essentially, the vague concepts here are CheapPrice,ModeratePrice, and
ExpensivePrice and the graded GCIs declare to which extent there is a rela-
tionship among them.

The facts about two specific cars a and b are encoded with the following
fuzzy ABox A:

〈a:Sedan � ∃HasPrice.CheapPrice, 0.7〉
〈b:V an � ∃HasPrice.ModeratePrice, 0.8〉.

So, a is a sedan having a cheap price, while b is a van with a moderate price.
Under Gödel semantics it can be shown that

K |= 〈a:ModerateCar, 0.7〉
K |= 〈b:ExpensiveCar, 0.4〉.
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Informally, in the former case the reasoning is as follows. As a is a sedan (at
least to degree 0.7), it is a car (at least to degree 0.7) and, thus, a is a car with a
cheap price (at least to degree 0.7). Therefore, by the definition of a cheap car,
a is, thus, a cheap car (at least to degree 0.7). In the latter case, as b is a van
(at least to degree 0.8), it is a car (at least to degree 0.8) and, thus, b is a car
with a moderate price (at least to degree 0.8). Therefore, as a moderate price is
to some degree an expensive price, b has, thus, an expensive price (at least to
degree min(0.8, 0.4) = 0.4). Eventually, by the definition of expensive car, b is,
thus, an expensive car (at least to degree 0.4).

Remark 2. Like for the fuzzy FOL case, for which ∀ and ∃ are not complementary
in general (see Remark 1), also for fuzzy DLs we have that ∀R.C and ¬∃R.¬C are
not equivalent in general, unlike the classical case. However, they are equivalent
under �Lukasiewicz logic and SFL.

Remark 3. It is worth noting that, w.l.o.g., an axiom 〈C � D,n〉 may be rewrit-
ten as 〈� � C → D,n〉

Remark 4 (Fuzzy DLs under SFL). [143], which presents fuzzy ALC under SFL,
proposes a slightly different semantics for fuzzy GCIs. In fact, in [143] a fuzzy
GCI is of the form C � D with semantics: I is a model of C � D iff for every
x ∈ ΔI we have that CI(x) ≤ DI(x). This is the same of any fuzzy axiom of
the form 〈� � C →x D, 1〉, where →x is an r-implication.

Acyclic Fuzzy Ontologies. Acyclic fuzzy ontologies play an important role in
fuzzy DLs both as they occur often in practice as well as from a computational
complexity point of view. Specifically, let us also introduce a restricted form of
TBoxes, i.e. acyclic TBoxes. That is, let T be a TBox in which the GCIs have
one of the following form

A �n C

A �̃ C

A =̃ C,

where A is a concept name, C is a concept, and A �n C is a shorthand for
〈� � A → C, n〉. We call the former two GCIs primitive and call the latter defi-
nitional. We say that A is the head of these axioms and C is the body. Further-
more, we also assume that no concept name A is in the head of more than one
axiom. Now, we say that

– concept name A directly uses concept name B w.r.t. T , denoted A →T B, if
A is the head of some axiom τ ∈ T such that B occurs in the body of τ ;

– concept name A uses concept name B w.r.t. T , denoted A �T B, if there
exist concept names A1, . . . , An, such that A1 = A, An = B and, for every
1 ≤ i < n, it holds that Ai →T Ai+1.
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Eventually, we say that a TBox T is cyclic (acyclic) if there is (no) A such that
A �T A. We say also that a fuzzy TBox is unfoldable if it is an acyclic TBox
which only contains inclusion axioms of the form A�̃C and if there is an A=̃C
then A does not occur in the head of any other axiom.

On Witnessed Models. As for fuzzy FOL, the use of infima (universal quantifica-
tion ∀) and suprema (existential quantification ∃) may lead to counterintuitive
behaviours (see also, e.g. [67–70]). For instance, consider the concept assertion
〈a:∃R.A, 1〉. Consider the interpretation I with domain N, aI = 1, and for all
n,m ∈ N

AI(n) = 1 − 1
n

RI(m,n) = 1.

Then for any n ∈ N , RI(aI , n) ⊗ AI(n) = AI(n) = 1 − 1
n < 1. However,

(∃R.A)I(aI) = sup
n∈N

RI(aI , n) ⊗ AI(n) = sup
n∈N

AI(n) = sup
n∈N

1 − 1
n

= 1.

That is, unlike the crisp case, notwithstanding there is no individual n of the
domain of I satisfying RI(aI , n) ⊗ AI(n) = 1, still, I satisfies the assertion
〈a:∃R.A, 1〉. Similar arguments apply to all of the expressions involving infima
and suprema. While such interpretations may exist in theory, they unlikely may
model any practical knowledge representation domain. Therefore, it is customary
to restrict the attention to witnessed models only.

Eventually, we recall from [7] the following property: in �Lukasiewicz logic,
thus, in SFL, an acyclic knowledge base K is satisfiable iff K has a finite model.
This property is not true if we drop the acyclicity condition, i.e., if arbitrary
CGIs may occur in the TBox (see [7], Theorem 3.3).

3.2 Salient Language Extensions

One may use additionally some special constructs to enhance the expressivity
of fuzzy DLs [14,23,25,146,160] such as fuzzy concrete domains, modifiers and
aggregation functions.

Fuzzy Concrete Domains. We rely on [146]. In general, a fuzzy concrete
domain, also called a fuzzy datatype theory D= 〈ΔD, ·D〉 consists of a datatype
domain ΔD and a mapping ·D that assigns to each data value an element of
ΔD, and assigns to every n-ary datatype predicate d an n-ary fuzzy relation over
ΔD. More specifically, fuzzy DLs do support unary datatypes only. Therefore,
·D maps indeed each datatype predicate into a function from ΔD to [0, 1].
Typical examples of datatype predicates d are the well known fuzzy membership
functions

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)
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and the crisp membership functions

d := ≥v | ≤v | =v,

where, e.g. ≥v corresponds to the crisp set of data values that are greater than
or equal to the value v.

Concerning roles, a role R is either an object property or a datatype property.
An interpretation maps an object property into a function ΔI × ΔI → [0, 1],
while it maps a datatype property into a function ΔI ×ΔD → {0, 1}. A datatype
property does not have an inverse, but may be functional.

We also use an alphabet for concrete individuals, denoted v, and extend
an interpretation to concrete individuals by mapping them into ΔD. As for
individuals, we adopt the UNA, i.e., v1

I 
= v2
I if v1 
= v2.

We can now extend concept expressions according to the following syntax:

C,D → ∀T.d | ∃T.d,

where d is a datatype and T is a datatype property.
For instance, the definition

HeavyRain = Rain � ∃hasPrecipitationRate.rs(5, 7.5),

where the datatype property hasPrecipitationRate has been declared func-
tional, corresponds to our definition of heavy rain seen in Sect. 1.

Modifiers. Fuzzy modifiers (see also [14,52,71–75,169]) such as very and
slightly, apply to fuzzy concepts to change their membership function. We
recall from Sect. 2.1 that a fuzzy modifier m represents a function fm : [0, 1] →
[0, 1]. Now, we extend the language of fuzzy concept constructors by allowing to
apply a modifier m to a concept C or a concrete domain predicate d: i.e.

C → m(C) | ∀T.m(d) | ∃T.m(d)

allowing, e.g. to define

V eryHeavyRain = Rain � ∃hasPrecipitationRate.very(rs(5, 7.5)) .

From a semantics point of view, we extend fuzzy interpretations in the obvi-
ous way

m(C)I(x) = fm(CI(x))

m(d)I(x) = fm(dD(x)).

Aggregation Operators. Eventually, we may extend fuzzy DLs by allowing
aggregation operators (such as the mean, median, weighted sum operators) to
aggregate concepts, as illustrated, e.g. in [23,24]. Given an n-ary aggregation
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operator @ : [0, 1]n → [0, 1], then we extend the language of fuzzy concepts by
allowing to apply @ to n concepts C1, . . . , Cn, i.e.

C → @(C1, . . . , Cn)

allowing, e.g. to express the concept

0.7 · ExpensiveHotel + 0.3 · LuxuriousHotel

denoting the fuzzy set of expensive and luxurious hotels, whose membership
function is the weighted sum of being an expensive and luxurious hotel.

From a semantics point of view, we extend fuzzy interpretations in the obvi-
ous way

@(C1, . . . , Cn)I(x) = @(CI
1 (x), . . . , CI

n (x)).

Applications. Fuzzy set theory and fuzzy logic [176] have proved to be suit-
able formalisms to handle fuzzy knowledge. Not surprisingly, fuzzy ontolo-
gies already emerge as useful in several applications, such as information
retrieval [2,37,101,166,167,171,177], recommendation systems [38,90,118,173],
image interpretation [47–49,113,137,141,142], the Semantic Web and the Inter-
net [44,120,131], ambient intelligence [50,51,100,127], ontology merging [42,
168], matchmaking [1,43,121–125,164,165], decision making [156], summa-
rization [89], robotics [57,58], machine learning [92–99,163] and many oth-
ers [6,46,59,76,88,91,102,112,119,126,132,157].

3.3 Representing Fuzzy OWL Ontologies in OWL

OWL [115] and its successor OWL 2 [45,116] are standard W3C languages for
defining and instantiating Web ontologies whose logical counterpart are classical
DLs. So far, several fuzzy extensions of DLs exists and some fuzzy DL reasoners
have been implemented, such as fuzzyDL [14], DeLorean [10], Fire [60,136],
SoftFacts [159], GURDL [64], GERDS [65], YADLR [87], FRESG [172] and
DLMedia [158,167].

Not surprisingly, each reasoner uses its own fuzzy DL language for represent-
ing fuzzy ontologies and, thus, there is a need for a standard way to represent
such information.

A first possibility would be to adopt as a standard one of the fuzzy extensions
of the languages OWL and OWL 2 that have been proposed, such as [63,133,
134]. However, as it is not expected that a fuzzy OWL extension will become
a W3C proposed standard in the near future, [20,22,25] identifies the syntactic
differences that a fuzzy ontology language has to cope with, and proposes to
use OWL 2 itself to represent fuzzy ontologies. More precisely, [25] uses OWL 2
annotation properties to encode fuzzy SROIQ(D) [160] ontologies. The use of
annotation properties makes it possible (i) to use current OWL 2 editors for
fuzzy ontology representation, and (ii) that OWL 2 reasoners discard the fuzzy
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part of a fuzzy ontology, producing almost the same results as if it would not
exist. In order to support this methodology for fuzzy ontology representation,
[25] describes an implementation of a Protégé plug-in to edit fuzzy ontologies and
some parsers that translate fuzzy ontologies represented using this methodology
into the languages supported by some fuzzy DL reasoners.

Furthermore, the plug-in is integrated with the fuzzyDL [61] reasoner [9] and
makes it possible to submit queries to it. For the moment, such queries must be
expressed using the particular syntax supported by fuzzyDL.

We are not going into more detail here and refer the reader to [25] and the
FuzzyOWL2 web site [62], from which one may download some fuzzy OWL 2
ontologies as well, such as a fuzzy wine ontology, an ontology for matchmaking,
and multi-criteria decision making.

3.4 Reasoning Problems and Algorithms

In fuzzy DLs the following problems are of interest.

Consistency Problem:
– Is K satisfiable?
– Is C coherent, i.e. is CI(x) > 0 for some model I of K and x ∈ ΔI?

Instance Checking Problem:
– Does K |= 〈a:C, n〉 hold?

Subsumption Problem:
– Does K |= 〈C � D,n〉 hold?

Best Entailment Degree Problem:
– What is bed(K, φ)?

Best Satisfiability Degree Problem:
– What is bsd(K, φ)?

Instance Retrieval Problem:
– Compute the set {〈a, n〉 | n = bed(K, a:C)}.

Similarly as for the crisp case, all the above problems can be reduced to satisfi-
ability degree problems as long as the below presented reductions are supported
by the underlying DL language (if not then specific algorithms have been devel-
oped): indeed, we have

Remark 5. (Fuzzy DL problem reductions). The following problem reductions
hold:

– K is satisfiable iff bsd(K, a:⊥) > 0, where a is a new individual.
– C is coherent w.r.t. K iff one of the following holds:

• K ∪ {〈a:C>0〉} is satisfiable, where a is a new individual;
• K 
 |= 〈C �⊥, 1〉;
• bsd(K, a:C) > 0, where a is a new individual.

– K |= 〈a:C, n〉 iff one of the following holds:
• K ∪ {〈a:C<n〉} is not satisfiable;
• bed(K, a:C) ≥ n.
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– K |= 〈C � D,n〉 iff one of the following holds:
• K ∪ {〈a:C → D<n〉} is not satisfiable, where a is a new individual;
• bed(K, C � D) ≥ n.

– We have that

bed(K, φ) = min x. such that K ∪ {〈φ≤x〉} satisfiable (15)
bsd(K, φ) = max x. such that K ∪ {〈φ≥x〉} satisfiable. (16)

Various reasoning methods have been worked out for fuzzy DLs (see [160]), which
can be classified in the following categories:

– Tableaux algorithms, extending the tableaux algorithms for classical DLs to
the fuzzy case.

– Tableaux algorithms and optimisation problems, using a tableaux algorithm
to reduce the reasoning to an optimisation problem.

– Automata-based algorithms, adopting similar ideas used to prove some results
in the classical case.

– Reduction to classical DLs, for which existing reasoning algorithms are well-
known.

– Reduction to propositional fuzzy logics, for which reasoning has been widely
studied.

We are not going to detail them here. However, let us point out that recently
there have been some unexpected surprises [4,5,7,41]. Reference [7] shows that
ALC with GCIs (i) does not have the finite model property under �Lukasiewicz
Logic or Product Logic, contrary to the classical case; (ii) illustrates that some
developed algorithms are neither complete not correct; and (iii) shows some
interesting conditions under which decidability is still guaranteed. References [4,
5] show that knowledge base satisfiability is an undecidable problem for Product
Logic. The same holds for �Lukasiewicz Logic as well [41]. In case the truth-space
is finite and defined a priori, decidability is guaranteed (see, e.g. [12,16,144]).

The generalisation of fuzzy OWL to the case in which an annotation n ∈ [0, 1]
is replaced with an annotation value λ taken from another structure such as a
complete lattice has been addressed in [149]. From a computational complexity
point of view, similar results hold as for the [0, 1] case [31,33,149]. While [149]
provides a decidability result in case the lattice is finite, [31] further improves
the decidability result by characterising the computational complexity of KB
satisfiability problem for ALC with GCIs over finite lattices being EXPTIME-
complete, as for the crisp variant, while [33] shows that the KB satisfiability
problem for ALC with GCIs over non finite lattices is undecidable.

4 Conclusions

We have provided a “crash course” through fuzzy DLs, by illustrating the basic
concepts involved in. For a more in depth presentation, we refer the reader
to [160].
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8. Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy
SHOIN with fuzzy nominals and general concept inclusions. In: Proceedings of
the 2nd Workshop on Uncertainty Reasoning for the Semantic Web (URSW-06),
November 2006
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Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 151–160.
Springer, Heidelberg (2009)

21. Bobillo, F., Straccia, U.: Supporting fuzzy rough sets in fuzzy description logics.
In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 676–687.
Springer, Heidelberg (2009)

22. Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings
of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010),
July 2010, pp. 2695–2700. IEEE Press (2010)

23. Bobillo, F., Straccia, U.: Aggregation operators and fuzzy OWL 2. In: Proceedings
of the 20th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011),
June 2011, pp. 1727–1734. IEEE Press (2011)

24. Bobillo, F., Straccia, U.: Fuzzy ontologies and fuzzy integrals. In: Proceedings of
the 11th International Conference on Intelligent Systems Design and Applications
(ISDA 2011), November 2011, pp. 1311–1316. IEEE Press (2011)

25. Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J.
Approx. Reason. 52, 1073–1094 (2011)

26. Bobillo, F., Straccia, U.: On partitioning-based optimisations in expressive fuzzy
description logics. In: Proceedings of the 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2015), 2–5 August 2015. IEEE Press (2015)

27. Bobillo, F., Straccia, U.: Optimising fuzzy description logic reasoners with general
concept inclusions absorption. Fuzzy Sets Syst. http://www.sciencedirect.com/
science/article/pii/S0165011414004850

28. Bonatti, P.A., Tettamanzi, A.G.B.: Some complexity results on fuzzy descrip-
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