
Wolfgang Faber
Adrian Paschke (Eds.)

Tu
to

ria
l

LN
CS

 9
20

3

11th International Summer School 2015
Berlin, Germany, July 31 – August 4, 2015
Tutorial Lectures

Reasoning Web
Web Logic Rules

 123

Lecture Notes in Computer Science 9203

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Wolfgang Faber • Adrian Paschke (Eds.)

Reasoning Web
Web Logic Rules

11th International Summer School 2015
Berlin, Germany, July 31 – August 4, 2015
Tutorial Lectures

123

Editors
Wolfgang Faber
University of Huddersfield
Huddersfield
UK

Adrian Paschke
FU Berlin Institut für Informatik
Berlin
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21767-3 ISBN 978-3-319-21768-0 (eBook)
DOI 10.1007/978-3-319-21768-0

Library of Congress Control Number: 2015944148

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains tutorial papers prepared for the 11th Reasoning Web Summer
School (RW 2015) held from July 31 to August 4, 2015, in Berlin, Germany. The
Reasoning Web series of annual summer schools was initiated in 2005 by the European
Network of Excellence REWERSE. Since 2005, the school has become the prime
educational event in the field of reasoning techniques on the Web, attracting both
young and established researchers.

The 2015 edition of the school was organized by the Institute for Computer Science,
Freie Universität Berlin, Germany, and the School of Computing and Engineering,
University of Huddersfield, UK. As with previous editions, this year’s summer school
was co-located with the 9th International Conference on Web Reasoning and Rule
Systems (RR 2015); this year there was also a collocation with the 9th International
Web Rule Symposium (RuleML, four of the lectures are joint with the RuleML pro-
gramme) and the 25th International Conference on Automated Deduction.

In 2015, the theme of the school was “Web Logic Rules.”
The research areas of the Semantic Web and Linked Data have received a lot of

attention in academia and industry recently. Since its inception in 2001, the Semantic
Web has aimed at enriching the existing Web with meta-data and processing methods,
so as to provide Web-based systems with intelligent capabilities such as context-
awareness and decision support. Over the years, the Semantic Web vision has been
driving many community efforts, which have invested substantial resources in devel-
oping vocabularies and ontologies for annotating their resources semantically. Besides
ontologies, rules have long been a central part of the Semantic Web framework and are
available as one of its fundamental representation tools, with logic serving as a unifying
foundation. Linked Data is a related research area that studies how one can make RDF
data available on the Web, and interconnect it with other data with the aim of
increasing its value for everybody. Many advanced capabilities required by Semantic
Web and Linked Data application scenarios call for reasoning. Thus, a perspective
centered on the reasoning techniques complementing other research efforts in this area
is desirable. The Summer School was devoted to this perspective, and provided insight
into the Semantic Web, Linked Data, ontologies, rules, and logic.

The tutorial papers cover the research topics addressed in the lectures by the dis-
tinguished invited speakers of the school. They are either in-depth surveys or shorter
papers containing references to existing work. These papers have been written as
accompanying material for the students of the summer school, to deepen their under-
standing and to serve as a reference for further detailed study.

We would like to thank everybody who made this event possible. First and fore-
most, the presenters of the lectures and their co-authors. Secondly, the members of our
scientific advisory board (Grigoris Antoniou, Nick Bassiliades, Diego Calvanese,
Thomas Eiter, Tim Furche, Pascal Hitzler, and Sebastian Rudolph) and the additional
reviewer (Lukas Schweizer). We are thankful for their advice, feedback, and their

timely reviews of the papers. Furthermore, we would like to thank the local organi-
zation team at Freie Universität Berlin, in particular Ralph Schäfermeier. We would
also like to thank our sponsors: the Artificial Intelligence journal, the Association for
Logic Programming, and Siemens. Last but not least, we would like to thank the team
of RR 2015, Balder ten Cate, Marco Maratea, Alessandra Mileo, Luca Pulina, and
Marco Montali, and the chairs of RuleML 2015, Nick Bassiliades, Georg Gottlob, and
Fariba Sadri, for the great collaboration in putting together all the details of the two
events.

June 2015 Wolfgang Faber
Adrian Paschke

VI Preface

Organization

Chairs

Wolfgang Faber University of Huddersfield, UK
Adrian Paschke Freie Universität Berlin, Germany

Scientific Advisory Board

Grigoris Antoniou University of Huddersfield, UK
Nick Bassiliades Aristotle University of Thessaloniki, Greece
Diego Calvanese Free University of Bozen-Bolzano, Italy
Thomas Eiter Vienna University of Technology, Austria
Tim Furche University of Oxford, UK
Pascal Hitzler Wright State University, USA
Sebastian Rudolph Technische Universität Dresden, Germany

Web Chair

Ralph Schäfermeier Freie Universität Berlin, Germany

Sponsorship Chair

Marco Maratea Università di Genova, Italy

Publicity Chair

Luca Pulina Università di Sassari, Italy

Additional Reviewer

Lukas Schweizer Technische Universität Dresden, Germany

Sponsors

Artificial Intelligence Journal

Association for Logic Programming

Siemens

VIII Organization

Contents

All About Fuzzy Description Logics and Applications 1
Umberto Straccia

Higher-Order Modal Logics: Automation and Applications. 32
Christoph Benzmüller and Bruno Woltzenlogel Paleo

Web Stream Reasoning: From Data Streams to Actionable Knowledge 75
Alessandra Mileo

Recommender Systems and Linked Open Data . 88
Tommaso Di Noia and Vito Claudio Ostuni

PSOA RuleML: Integrated Object-Relational Data and Rules 114
Harold Boley

LegalRuleML: Design Principles and Foundations. 151
Tara Athan, Guido Governatori, Monica Palmirani, Adrian Paschke,
and Adam Wyner

The Power of Semantic Rules in Rulelog: Fundamentals and Recent
Progress (Extended Abstract of Tutorial Presentation) 189

Benjamin N. Grosof, Michael Kifer, and Paul Fodor

Recent Advances in Datalog� . 193
Georg Gottlob, Michael Morak, and Andreas Pieris

Ontology-Mediated Query Answering with Data-Tractable
Description Logics . 218

Meghyn Bienvenu and Magdalena Ortiz

Answer Set Programming: A Tour from the Basics to Advanced
Development Tools and Industrial Applications. 308

Nicola Leone and Francesco Ricca

The TPTP World - Infrastructure for Automated Reasoning 327
Geoff Sutcliffe

Towards Embedded Answer Set Solving . 330
Torsten Schaub

Author Index . 333

http://dx.doi.org/10.1007/978-3-319-21768-0_1
http://dx.doi.org/10.1007/978-3-319-21768-0_2
http://dx.doi.org/10.1007/978-3-319-21768-0_3
http://dx.doi.org/10.1007/978-3-319-21768-0_4
http://dx.doi.org/10.1007/978-3-319-21768-0_5
http://dx.doi.org/10.1007/978-3-319-21768-0_6
http://dx.doi.org/10.1007/978-3-319-21768-0_7
http://dx.doi.org/10.1007/978-3-319-21768-0_7
http://dx.doi.org/10.1007/978-3-319-21768-0_8
http://dx.doi.org/10.1007/978-3-319-21768-0_9
http://dx.doi.org/10.1007/978-3-319-21768-0_9
http://dx.doi.org/10.1007/978-3-319-21768-0_10
http://dx.doi.org/10.1007/978-3-319-21768-0_10
http://dx.doi.org/10.1007/978-3-319-21768-0_10
http://dx.doi.org/10.1007/978-3-319-21768-0_10

All About Fuzzy Description Logics
and Applications

Umberto Straccia(B)

ISTI - CNR, Pisa, Italy
straccia@isti.cnr.it

http://www.umbertostraccia.it

Abstract. The aim of this talk is to present a detailed, self-contained
and comprehensive account of the state of the art in representing and
reasoning with structured fuzzy knowledge. Fuzzy knowledge comes into
play whenever one has to deal with concepts for which membership is
a matter of degree (e.g., the degree of illness is a function of, among
others, the body temperature). Specifically, we address the case of the
fuzzy variants of conceptual languages of the OWL 2 family.

1 Introduction

Managing uncertainty and fuzziness is growing in importance in Semantic Web
research as recognised by a large number of research efforts in this direc-
tion [155,160]. Semantic Web Languages (SWL) are the languages used to pro-
vide a formal description of concepts, terms, and relationships within a given
domain, among which the OWL 2 family of languages is a major player [116].
OWL 2 has its logical grounding in Description Logics (DLs) [3] and the main
aim of fuzzifying DLs is then to allow dealing with fuzzy concepts occurring in
real world applications.

Uncertainty versus Fuzziness. One of the major difficulties, for those unfa-
miliar on the topic, is to understand the conceptual differences between uncer-
tainty and fuzziness. Specifically, we recall that there has been a long-lasting
misunderstanding in the literature of artificial intelligence and uncertainty mod-
elling, regarding the role of probability/possibility theory and vague/fuzzy the-
ory. A clarifying paper is [56]. We recall here the salient concepts.

Uncertainty. Under uncertainty theory fall all those approaches in which state-
ments rather than being either true or false, are true or false to some probability
or possibility (for example, “it will rain tomorrow”). That is, a statement is true
or false in any world/interpretation, but we are “uncertain” about which world
to consider as the right one, and thus we speak about e.g. a probability distribu-
tion or a possibility distribution over the worlds. For example, we cannot exactly
establish whether it will rain tomorrow or not, due to our incomplete knowledge
about our world, but we can estimate to which degree this is probable, possible,
or necessary.
c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 1–31, 2015.
DOI: 10.1007/978-3-319-21768-0 1

2 U. Straccia

To be somewhat more formal, consider a propositional statement (formula) φ
(“tomorrow it will rain”) and a propositional interpretation (world) I. We may
see I as a function mapping propositional formulae into {0, 1}, i.e. I(φ) ∈ {0, 1}.
If I(φ) = 1, denoted also as I |= φ, then we say that the statement φ under
I is true, false otherwise. Now, each interpretation I depicts some concrete
world and, given n propositional letters, there are 2n possible interpretations. In
uncertainty theory, we do not know which interpretation I is the actual one and
we say that we are uncertain about which world is the real one that will occur.

To deal with such a situation, one may construct a probability distribu-
tion over the worlds, that is a function Pr mapping interpretations in [0, 1],
i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1, where Pr(I) indicates the probability

that I is the actual world under which to interpret the propositional statement
at hand. Then, the probability of a statement φ in Pr , denoted Pr(φ), is the sum
of all Pr(I) such that I |= φ, i.e.

Pr(φ) =
∑

I|=φ

Pr(I).

Fuzziness. On the other hand, under fuzzy theory fall all those approaches in
which statements (for example, “heavy rain”) are true to some degree, which is
taken from a truth space (usually [0, 1]). That is, the convention prescribing that
a proposition is either true or false is changed towards graded propositions. For
instance, the compatibility of “heavy” in the phrase “heavy rain” is graded and
the degree depends on the amount of rain is falling.1 Often we may find rough
definitions about rain types, such as:2

Rain. Falling drops of water larger than 0.5 mm in diameter. In forecasts, “rain”
usually implies that the rain will fall steadily over a period of time;

Light Rain. Rain falls at the rate of 2.6 mm or less an hour;
Moderate Rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;
Heavy Rain. Rain falls at the rate of 7.7 mm an hour or more.

It is evident that such definitions are quite harsh and resemble a bivalent (two-
valued) logic: e.g. a precipitation rate of 7.7mm/h is a heavy rain, while a pre-
cipitation rate of 7.6mm/h is just a moderate rain. This is clearly unsatisfactory,
as quite naturally the more rain is falling, the more the sentence “heavy rain”
is true and, vice-versa, the less rain is falling the less the sentence is true.

In other words, this means essentially, that the sentence “heavy rain” is
no longer either true or false as in the definition above, but is intrinsically
graded.

A more fine grained way to define the various types of rains is illustrated in
Fig. 1.
1 More concretely, the intensity of precipitation is expressed in terms of a precipitation

rate R: volume flux of precipitation through a horizontal surface, i.e. m3/m2s =
ms−1. It is usually expressed in mm/h.

2 http://usatoday30.usatoday.com/weather/wds8.htm.

http://usatoday30.usatoday.com/weather/wds8.htm

All About Fuzzy Description Logics and Applications 3

0
5 7.5

1.0

Heavy Rain

mm/h2.5

Light Rain Moderate Rain

Fig. 1. Light, moderate and heavy rain.

Light rain, moderate rain and heavy rain are called Fuzzy Sets in the lit-
erature [176] and are characterised by the fact that membership is a matter of
degree. Of course, the definition of fuzzy sets is frequently context dependent
and subjective: e.g. the definition of heavy rain is quite different from heavy
person and the latter may be defined differently among human beings.

From a logical point of view, a propositional interpretation maps a statement
φ to a truth degree in [0, 1], i.e. I(φ) ∈ [0, 1]. Essentially, we are unable to
establish whether a statement is entirely true or false due to the involvement of
vague/fuzzy concepts, such as “heavy”.

Note that all fuzzy statements are truth-functional, that is, the degree of
truth of every statement can be calculated from the degrees of truth of its con-
stituents, while uncertain statements cannot always be a function of the uncer-
tainties of their constituents [55]. For the sake of illustrative purpose, an example
of truth functional interpretation of propositional statements is as follows:

I(φ ∧ ψ) = min(I(φ), I(ψ))
I(φ ∨ ψ) = max(I(φ), I(ψ))
I(¬φ) = 1 − I(φ).

In such a setting one may be interested in the so-called notions of minimal (resp.
maximal) degree of satisfaction of a statement, i.e. minI I(φ) (resp. maxI I(φ)).

Uncertain Fuzzy Sentences. Let us recap: in a probabilistic setting each statement
is either true or false, but there is e.g. a probability distribution telling us how
probable each interpretation is, i.e. I(φ) ∈ {0, 1} and Pr(I) ∈ [0, 1]. In fuzzy
theory instead, sentences are graded, i.e. we have I(φ) ∈ [0, 1].

A natural question is: can we have sentences combining the two orthogonal
concepts? Yes, for instance, “there will be heavy rain tomorrow” is an uncertain
fuzzy sentence. Essentially, there is uncertainty about the world we will have
tomorrow, and there is fuzziness about the various types of rain we may have
tomorrow.

4 U. Straccia

From a logical point of view, we may model uncertain fuzzy sentences in the
following way:

– we have a probability distribution over the worlds, i.e. a function Pr mapping
interpretations in [0, 1], i.e. Pr(I) ∈ [0, 1], with

∑
I Pr(I) = 1;

– sentences are graded. Specifically, each interpretation is truth functional and
maps sentences into [0, 1], i.e. I(φ) ∈ [0, 1];

– for a sentence φ, we are interested in the so-called expected truth of φ, denoted
ET (φ), namely

ET (φ) =
∑

I
Pr(I) · I(φ).

Note that if I is bivalent (that is, I(φ) ∈ {0, 1}) then ET (φ) = Pr(φ).

Talk Overview. We present here some salient aspects dealing with fuzzy knowl-
edge in the context of the OWL 2 family of languages, specifically we address
fuzzy DLs. We refer the reader to [160] for an extensive presentation concerning
fuzzy OWL and other semantic web languages.

In the following, we briefly sketch the basic notions about Fuzzy Sets and
Fuzzy Logic, which we require then in the subsequent section about fuzzy DLs.

2 Basics: From Fuzzy Sets to Mathematical Fuzzy Logic

2.1 Fuzzy Sets Basics

The aim of this section is to introduce the basic concepts of fuzzy set theory.
To distinguish between fuzzy sets and classical (nonfuzzy) sets, we refer to the
latter as crisp sets. For an in-depth treatment we refer the reader to, e.g. [54,86].

From Crisp Sets to Fuzzy Sets. To better highlight the conceptual shift from
classical sets to fuzzy sets, we start with some basic definitions and well-known
properties of classical sets. Let X be a universal set containing all possible
elements of concern in each particular context. The power set, denoted 2A, of a set
A ⊂ X, is the set of subsets of A, i.e., 2A = {B | B ⊆ A}. Often sets are defined
by specifying a property satisfied by its members, in the form A = {x | P (x)},
where P (x) is a statement of the form “x has property P” that is either true or
false for any x ∈ X. Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h}.

In the above case we have B ⊆ A ⊆ X.
The membership function of a set A ⊆ X, denoted χA, is a function mapping

elements of X into {0, 1}, i.e. χA : X → {0, 1}, where χA(x) = 1 iff x ∈ A. Note
that for any sets A,B ∈ 2X , we have that

A ⊆ B iff ∀x ∈ X. χA(x) ≤ χB(x). (1)

All About Fuzzy Description Logics and Applications 5

The complement of a set A is denoted Ā, i.e. Ā = X \ A. Of course, ∀x ∈
X. χĀ(x) = 1 − χA(x). In a similar way, we may express set operations of
intersection and union via the membership function as follows:

∀x ∈ X. χA∩B(x) = min(χA(x), χB(x)) (2)
∀x ∈ X. χA∪B(x) = max(χA(x), χB(x)). (3)

The Cartesian product, A × B, of two sets A,B ∈ 2X is defined as A × B =
{〈a, b〉 | a ∈ A, b ∈ B}. A relation R ⊆ X × X is reflexive if for all x ∈ X
χR(x, x) = 1, is symmetric if for all x, y ∈ X χR(x, y) = χR(y, x). The inverse
of R is defined as function χR−1 : X × X → {0, 1} with membership function
χR−1(y, x) = χR(x, y).

As defined so far, the membership function of a crisp set A assigns a value
of either 1 or 0 to each individual of the universe set and, thus, discriminates
between being a member or not being a member of A.

A fuzzy set [176] is characterised instead by a membership function χA : X →
[0, 1], or denoted simply A : X → [0, 1]. With 2̃X we denote the fuzzy power set
over X, i.e. the set of all fuzzy sets over X. For instance, by referring to Fig. 1,
the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =

⎧
⎨

⎩

1 if R ≥ 7.5
(x − 5)/2.5 if R ∈ [5, 7.5)
0 otherwise.

As pointed out previously, the definition of the membership function may depend
on the context and may be subjective. Moreover, also the shape of such func-
tions may be quite different. Luckily, the trapezoidal (Fig. 2(a)), the triangular
(Fig. 2(b)), the L-function (left-shoulder function, Fig. 2(c)), and the R-function
(right-shoulder function, Fig. 2(d)) are simple, but most frequently used to spec-
ify membership degrees.

The usefulness of fuzzy sets depends critically on our capability to con-
struct appropriate membership functions. The problem of constructing mean-
ingful membership functions is a difficult one and we refer the interested reader
to, e.g. [86, Chap. 10]. However, one easy and typically satisfactory method to
define the membership functions (for a numerical domain) is to uniformly par-
tition the range of, e.g. precipitation rates values (bounded by a minimum and
maximum value), into 5 or 7 fuzzy sets using either trapezoidal functions (e.g. as
illustrated in Fig. 3), or using triangular functions (as illustrated in Fig. 4). The
latter one is the more used one, as it has less parameters.

The standard fuzzy set operations are defined for any x ∈ X as in Eqs. (2)
and (3). Note also that the set inclusion defined as in Eq. (1) is indeed crisp in
the sense that either A ⊆ B or A ⊆ B.

6 U. Straccia

)b()a(

)d()c(

Fig. 2. (a) Trapezoidal function trz (a, b, c, d); (b) Triangular function tri(a, b, c); (c)
L-function ls(a, b); and (d) R-function rs(a, b).

Fig. 3. Fuzzy sets construction using trapezoidal functions.

Fig. 4. Fuzzy sets construction using triangular functions.

Norm-Based Fuzzy Set Operations. Standard fuzzy set operations are not the
only ones that can be conceived to be suitable to generalise the classical Boolean
operations. For each of the three types of operations there is a wide class of
plausible fuzzy version. The most notable ones are characterised by the so-called
class of t-norms ⊗ (called triangular norms), t-conorms ⊕ (also called s-norm),

All About Fuzzy Description Logics and Applications 7

and negation � (see, e.g. [85]). An additional operator is used to define set
inclusion (called implication ⇒). Indeed, the degree of subsumption between two
fuzzy sets A and B, denoted A � B, is defined as infx∈X A(x) ⇒ B(x), where
⇒ is an implication function.

An important aspect of such functions is that they satisfy some properties
that one expects to hold (see Tables 1 and 2). Usually, the implication function
⇒ is defined as r-implication, that is,

a ⇒ b = sup {c | a ⊗ c ≤ b}.

Table 1. Properties for t-norms and s-norms.

Axiom name T-norm S-norm

Tautology/Contradiction a ⊗ 0 = 0 a ⊕ 1 = 1

Identity a ⊗ 1 = a a ⊕ 0 = a

Commutativity a ⊗ b = b ⊗ a a ⊕ b = b ⊕ a

Associativity (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

Monotonicity if b ≤ c, then a ⊗ b ≤ a ⊗ c if b ≤ c, then a ⊕ b ≤ a ⊕ c

Table 2. Properties for implication and negation functions.

Axiom name Implication function Negation function

Tautology/Contradiction 0 ⇒ b = 1, a ⇒ 1 = 1, 1 ⇒ 0 = 0 � 0 = 1, � 1 = 0

Antitonicity if a ≤ b, then a ⇒ c ≥ b ⇒ c if a ≤ b, then � a ≥ � b

Monotonicity if b ≤ c, then a ⇒ b ≤ a ⇒ c

Of course, due to commutativity, ⊗ and ⊕ are monotone also in the first
argument. We say that ⊗ is indempotent if a ⊗ a = a, for any a ∈ [0, 1]. For any
a ∈ [0, 1], we say that a negation function � is involutive iff � � a = a. Salient
negation functions are:

Standard or �Lukasiewicz Negation: �la = 1 − a;
Gödel Negation: �ga is 1 if a = 0, else is 0.

Of course, �Lukasiewicz negation is involutive, while Gödel negation is not.
Salient t-norm functions are:

Gödel t-norm: a ⊗g b = min(a, b);
Bounded Difference or �Lukasiewicz t-norm: a ⊗l b = max(0, a + b − 1);
Algebraic Product or Product t-norm: a ⊗p b = a · b;

Drastic Product: a ⊗d b =
{

0 when (a, b) ∈ [0, 1[×[0, 1[
min(a, b) otherwise

8 U. Straccia

Salient s-norm functions are:

Gödel s-norm: a ⊕g b = max(a, b);
Bounded Sum or �Lukasiewicz s-norm: a ⊕l b = min(1, a + b);
Algebraic Sum or Product s-norm: a ⊕p b = a + b − ab;

Drastic sum: a ⊕d b =
{

1 when (a, b) ∈]0, 1]×]0, 1]
max(a, b) otherwise

We recall that the following important properties can be shown about t-norms
and s-norms.

1. There is the following ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g

⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g.

2. The only idempotent t-norm is ⊗g.
3. The only t-norm satisfying a ⊗ a = 0 for all a ∈ [0, 1[is ⊗d.
4. There is the following ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d

⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d.

5. The only idempotent s-norm is ⊕g.
6. The only s-norm satisfying a ⊕ a = 1 for all a ∈]0, 1] is ⊕d.

The dual s-norm of ⊗ is defined as

a ⊕ b = 1 − (1 − a) ⊗ (1 − b). (4)

Some t-norms, s-norms, implication functions, and negation functions are shown
in Table 3. One usually distinguishes three different sets of fuzzy set operations
(called fuzzy logics), namely, �Lukasiewicz, Gödel, and Product logic; the popular
Standard Fuzzy Logic (SFL) is a sublogic of �Lukasiewicz logic as min(a, b) =
a⊗l (a ⇒l b) and max(a, b) = 1−min(1−a, 1−b). The importance of these three
logics is due to the Mostert–Shields theorem [114] that states that any continuous
t-norm can be obtained as an ordinal sum of these three (see also [67]).

The implication x ⇒ y = max(1 − x, y) is called Kleene-Dienes implication
in the fuzzy logic literature. Note that we have the following inferences: let
a ≥ n and a ⇒ b ≥ m. Then, under Kleene-Dienes implication, we infer that if
n > 1−m then b ≥ m. Under r-implication relative to a t-norm ⊗, we infer that
b ≥ n ⊗ m.

The composition of two fuzzy relations R1 : X×X → [0, 1] and R2 : X×X →
[0, 1] is defined as (R1 ◦ R2)(x, z) = supy∈X R1(x, y) ⊗ R2(y, z). A fuzzy relation
R is transitive iff R(x, z)� (R ◦ R)(x, z).

Fuzzy Modifiers. Fuzzy modifiers are an interesting feature of fuzzy set theory.
Essentially, a fuzzy modifier, such as very, more or less, and slightly, apply
to fuzzy sets to change their membership function.

All About Fuzzy Description Logics and Applications 9

Table 3. Combination functions of various fuzzy logics.

�Lukasiewicz logic Gödel logic Product logic SFL

a ⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)

a ⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a ⇒ b min(1 − a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1 − a, b)

� a 1 − a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1 − a

Table 4. Some additional properties of combination functions of various fuzzy logics.

Property �Lukasiewicz Logic Gödel Logic Product Logic SFL

x ⊗ �x = 0 + − − −
x ⊕ �x = 1 + − − −
x ⊗ x = x − + − +

x ⊕ x = x − + − +

� �x = x + − − +

x ⇒ y = �x ⊕ y + − − +

� (x ⇒ y) = x ⊗ � y + − − +

� (x ⊗ y) = �x ⊕ � y + + + +

� (x ⊕ y) = �x ⊗ � y + + + +

Fig. 5. Linear modifier lm(a, b).

Formally, a fuzzy modifier m represents a function

fm : [0, 1] → [0, 1].

For example, we may define fvery(x)= x2 and fslightly(x) =
√

x. In this way, we
may express the fuzzy set of very heavy rain by applying the modifier very to
the fuzzy membership function of “heavy rain” i.e.

χvery heavyrain(x) = fvery(χheavyrain(x)) = (χheavyrain(x))2 = (rs(5, 7.5)(x))2.

10 U. Straccia

A typical shape of modifiers is the so-called linear modifiers, as illustrated in
Fig. 5. Note that such a modifier can be parameterized by means of one parameter
c only, i.e. lm(a, b) = lm(c), where a = c/(c + 1), b = 1/(c + 1).

2.2 Mathematical Fuzzy Logic Basics

Given that the OWL 2 family of languages is grounded on Mathematical Logic,
it is quite natural to look at Mathematical Fuzzy Logic [67] to get inspiration
for a fuzzy logic extensions of the OWL family. So, we recap here briefly that
in Mathematical Fuzzy Logic, the convention prescribing that a statement is
either true or false is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but [0, 1]. This degree is called degree of truth of
the logical statement φ in the interpretation I. Fuzzy statements have the form
〈φ, r〉, where r ∈ [0, 1] (see, e.g. [66,67]) and φ is a statement, which encodes that
the degree of truth of φ is greater or equal r. A fuzzy interpretation I maps each
basic statement pi into [0, 1] and is then extended inductively to all statements:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ)
I(φ ∨ ψ) = I(φ) ⊕ I(ψ)
I(φ → ψ) = I(φ) ⇒ I(ψ)
I(φ ↔ ψ) = I(φ → ψ) ⊗ I(ψ → φ)
I(¬φ) = � I(φ)
I(∃x.φ) = supa∈ΔI Ia

x(φ)
I(∀x.φ) = infa∈ΔI Ia

x(φ),

(5)

where ΔI is the domain of I, and ⊗, ⊕, ⇒, and � are the t-norms, t-conorms,
implication functions, a negation functions we have seen in the previous section.3

One may also consider the following abbreviations:

φ ∧g ψ
def= φ ∧ (φ → ψ) (6)

φ ∨g ψ
def= (φ → ψ) → φ) ∧g (ψ → φ) → ψ) (7)

¬⊗φ
def= φ → 0. (8)

In case ⇒ is the r-implication based on ⊗, then ∧g (resp. ∨g) is interpreted as
Gödel t-norm (resp. s-norm), while ¬⊗ is interpreted as the negation function
related to ⊗.

A fuzzy interpretation I satisfies a fuzzy statement 〈φ, r〉, or I is a model of
〈φ, r〉, denoted I |= 〈φ, r〉, iff I(φ) ≥ r. We say that I is a model of φ if I(φ) = 1.
A fuzzy knowledge base (or simply knowledge base, if clear from context) is a set
of fuzzy statements and an interpretation I satisfies (is a model of) a knowledge
base, denoted I |= K, iff it satisfies each element in it.

We say 〈φ, n〉 is a tight logical consequence of a set of fuzzy statements K iff
n is the infimum of I(φ) subject to all models I of K. Notice that the latter is

3 The function Ia
x is as I except that x is interpreted as a.

All About Fuzzy Description Logics and Applications 11

equivalent to n= sup {r | K |= 〈φ, r〉}. n is called the best entailment degree of φ
w.r.t. K (denoted bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= 〈φ, r〉}. (9)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted
bsd(K, φ)) is

bsd(K, φ) = sup
I

{I(φ) | I |= K}. (10)

Of course, the properties of Table 4 immediately translate into equivalence among
formulae. For instance, the following equivalences hold (in brackets we indicate
the logic for which the equivalences holds)

¬¬φ ≡ φ (�L)
φ ∧ φ ≡ φ (G)

¬(φ ∧ ¬φ) ≡ 1 (�L, G,Π)
φ ∨ ¬φ ≡ 1 (�L).

Remark 1. Unlike the classical case, in general, we do not have that ∀x.φ
and ¬∃x.¬φ are equivalent. They are equivalent for �Lukasiewicz logic and
SFL, but are neither equivalent for Gödel nor for Product logic. For instance,
under Gödel negation, just consider an interpretation I with domain {a} and
I(p(a)) = u, with 0 < u < 1. Then I(∀x.p(x)) = u, while I(¬∃x.¬p(x)) = 1
and, thus, ∀x.p(x) ≡ ¬∃x.¬p(x).

We refer the reader to [160] for an overview of reasoning algorithms for fuzzy
propositional and First-Order Logics.

On Witnessed Models. We say that a fuzzy interpretation I is a witnessed inter-
pretation iff

I(∃x.φ) = Ia
x(φ), for some a ∈ ΔI (11)

I(∀x.φ) = Ia
x(φ), for some a ∈ ΔI . (12)

These equations say that the supremum (resp. infimum) are attained at some
point for a witnessed interpretation. Now, unlike the classical case, it may not
be true that Eqs. (11) and (12) hold for all I, i.e. I may not be witnessed.
For instance, for I with domain the natural numbers and In

x (A(x)) = 1 − 1/n,
we have that I(∃x.A(x)) = supn In

x (A(x)) = supn 1 − 1/n = 1, while in no
point In

x (A(x)) is 1. So, I is not witnessed (the argument for ∀ is similar). The
following important property can be shown (see, e.g. [67–70]) stating that in
�Lukasiewicz logic and, thus, in SFL, a fuzzy statement 〈φ, r〉 has a witnessed
fuzzy model iff it has a fuzzy model. This is not true for Gödel and product
logic however. Therefore, for �Lukasiewicz logic, we may restrict our attention to
witnessed models only. That is, �Lukasiewicz has the so-called witnessed model
property (there is a model iff there is witnessed model). Of course, if the truth
space is finite then any fuzzy logic has the witnessed model property as well.

12 U. Straccia

3 Fuzzy Description Logics and OWL 2

We have seen in the previous sections how to “fuzzify” classical sets and FOL.
In the latter case, fuzzy statements are of the form 〈φ, n〉, where φ is a statement
and n ∈ [0, 1].

The natural extension to fuzzy DLs [160] consists then in replacing φ with
appropriate expressions belonging to the DL family of languages, as we will
illustrate next.

3.1 Fuzzy DLs

Description Logics (DLs) [3] are the logical counterpart of the family of OWL
languages. So, to illustrate the basic concepts of fuzzy OWL, it suffices to show
the fuzzy DL case (see [108,160], for a survey). We recap that the basic ingredi-
ents are the descriptions of classes, properties, and their instances, such as

– a:C, such as a:Person � ∀hasChild.Femal, meaning that individual a is an
instance of concept/class C (here C is seen as a unary predicate);

– (a, b):R, such as (tom,mary):hasChild, meaning that the pair of individuals
〈a, b〉 is an instance of the property/role R (here R is seen as a binary predi-
cate);

– C � D, such as Person � ∀hasChild.Person, meaning that the class C is a
subclass of class D;

So far, several fuzzy variants of DLs have been proposed: they can be classified
according to

– the description logic resp. ontology language that they generalize [10,15,17,
18,21,53,103–107,109,110,128–130,134,140,146,147,150,154,170,175];

– the allowed fuzzy constructs [14,71,72,77–84,111,157];
– the underlying fuzzy logic [12,13,19,68,69,145,149,152];
– their reasoning algorithms and computational complexity results [4,5,8,9,11,

16,26–36,39,40,117,135,138,139,143,144,148,151,153,161,162,174,178].

We also refer the reader to [160] for a comprehensive survey.
In general, fuzzy DLs allow expressions of the form 〈a:C, n〉, stating that a

is an instance of concept/class C with degree at least n, i.e. the FOL formula
C(a) is true to degree at least n. Similarly, 〈C1 � C2, n〉 states a vague sub-
sumption relationships. Informally, 〈C1 � C2, n〉 dictates that the FOL formula
∀x.C1(x) → C2(x) is true to degree at least n. Essentially, fuzzy DLs are then
obtained by interpreting the statements as fuzzy FOL formulae and attaching a
weight n to DL statements, thus, defining so fuzzy DL statements.

As matter of example, consider the DL ALC (Attributive Language with
Complement), a major DL representative used to introduce new extensions to
DLs: the table below shows its syntax, semantics and provides examples. In the
table, a fuzzy interpretation I = (ΔI , ·I) consists of a nonempty set ΔI (the
domain) and of a fuzzy interpretation function ·I that assigns

All About Fuzzy Description Logics and Applications 13

– to each atomic concept A a function AI : ΔI → [0, 1];
– to each abstract role R a function RI : ΔI × ΔI → [0, 1];
– to each individual a an element aI ∈ ΔI such that aI = bI if a = b (unique

Name Assumption, UNA).

CI denotes the membership function of the fuzzy concept C with respect to the
fuzzy interpretation I. For x ∈ ΔI , CI(x) gives us the degree of being x an
element of the fuzzy concept C under I. Similarly, RI denotes the membership
function of the fuzzy role R with respect to I. For x, y ∈ ΔI , RI(x, y) gives us
the degree of being (x, y) an element of the fuzzy role R.

Syntax Semantics Example

C, D → � | �(x)
⊥ | ⊥(x)
A | AI(x) Human

C � D | CI(x) ⊗ DI(x) Human � Male

C � D | CI(x) ⊕ DI(x) Nice � Rich

C → D | CI(x) ⇒ DI(x) Nice → Rich

¬C | ¬CI(x) ¬Meat

∃R.C | sup
y∈ΔI RI(x, y) ⊗ CI(y) ∃has child.Blond

∀R.C inf
y∈ΔI RI(x, y) ⇒ CI(y) ∀has child.Human

C D inf
x∈ΔI CI(x) ⇒ DI(x) Happy F ather Man � ∃has child.F emale

a:C CI(aI) John:Happy F ather

(a, b):R RI(aI , bI) (John, Mary):Loves

The upper pane describes how concepts/classes can be formed, while the lower
pane shows the form of statements/axioms a knowledge base may be build of.
Axioms of the form C � D, called, General Inclusion Axioms (GCIs), dictated
that the class C is a subclass of the class D, a:C dictates that individual a is an
instance of class C, while (a, b):R states that 〈a, b〉 is an instance of the binary
relation R. The definition A = C, is used in place of having both A � C and
C � A, stating that class A is defined to be equivalent to C.

Fuzzy DLs [160] are then obtained by interpreting the statements as fuzzy
FOL formulae and attaching a weight n to DL statements, yielding fuzzy DL
statements, such as 〈C � D,n〉, 〈a:C, n〉 and 〈(a, b):R,n〉. The former is called
fuzzy GCI, while the latter two are called fuzzy assertions.

It is worth noting that one may find in fuzzy DLs also fuzzy statements of
the form 〈α � n〉, 〈α � n〉, 〈α > n〉, 〈α < n〉, and 〈α=n〉, stating that the degree
of truth of axiom α is bounded by •n, where • ∈ {� , � , > , < ,=}. We stick
here to the form 〈α, n〉, i.e. 〈α � n〉 only, by reminding that as graded axioms
are intended to be produced semi- or automatically, it is hardly conceivable that
they may have, e.g. the form 〈α � n〉, 〈α > n〉 or 〈α < n〉.

A fuzzy knowledge base is a tuple K = 〈T ,A〉, where now fuzzy axioms occur
in place of classical DL axioms. T ,A are called now fuzzy TBox (that is a finite
set of fuzzy GCIs) and fuzzy ABox (that is a finite set of fuzzy assertions),
respectively. An interpretation I is a model of a fuzzy statement 〈φ, n〉, denoted
I |= 〈φ, n〉 if φI ≥ n. We say that a fuzzy interpretation I satisfies (is a model
of) a fuzzy KB K = 〈T ,A〉 iff it satisfies each element in A and T . A fuzzy KB
K = 〈T ,A〉 entails an axiom E, denoted K |= E, iff every model of K satisfies
E. We say that two concepts C and D are equivalent, denoted C ≡K D iff in
evry model I of K and for all x ∈ ΔI , CI(x) = DI(x).

14 U. Straccia

As for the fuzzy FOL case, for concept assertion, role assertion, GCI or role
inclusion axiom φ, we say that 〈φ, n〉 is a tight logical consequence of K iff n
is the infimum of φI subject to all models I of K. Notice that the latter is
equivalent to

n= sup {r | K |= 〈φ, r〉}.

n is called the best entailment degree of φ w.r.t. K (denoted bed(K, φ)), i.e.

bed(K, φ) = sup {r | K |= 〈φ, r〉}. (13)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted
bsd(K, φ)) is

bsd(K, φ) = sup
I

{φI | I |= K}. (14)

For a concept C, we also say that the best satisfiability degree of C w.r.t. K
(denoted bsd(K, C)) is

bsd(K, C) = sup
I|=K

sup
x∈ΔI

CI(x).

Example 1. Consider the following background knowledge about cars encoded
as the fuzzy TBox:

Car � ∃HasPrice.Price
Sedan � Car

V an � Car
CheapPrice � Price

ModeratePrice � Price
ExpensivePrice � Price

〈CheapPrice � ModeratePrice, 0.7〉
〈ModeratePrice � ExpensivePrice, 0.4〉

CheapCar = Car � ∃HasPrice.CheapPrice
ModerateCar = Car � ∃HasPrice.ModeratePrice

ExpensiveCar = Car � ∃HasPrice.ExpensivePrice

Essentially, the vague concepts here are CheapPrice,ModeratePrice, and
ExpensivePrice and the graded GCIs declare to which extent there is a rela-
tionship among them.

The facts about two specific cars a and b are encoded with the following
fuzzy ABox A:

〈a:Sedan � ∃HasPrice.CheapPrice, 0.7〉
〈b:V an � ∃HasPrice.ModeratePrice, 0.8〉.

So, a is a sedan having a cheap price, while b is a van with a moderate price.
Under Gödel semantics it can be shown that

K |= 〈a:ModerateCar, 0.7〉
K |= 〈b:ExpensiveCar, 0.4〉.

All About Fuzzy Description Logics and Applications 15

Informally, in the former case the reasoning is as follows. As a is a sedan (at
least to degree 0.7), it is a car (at least to degree 0.7) and, thus, a is a car with a
cheap price (at least to degree 0.7). Therefore, by the definition of a cheap car,
a is, thus, a cheap car (at least to degree 0.7). In the latter case, as b is a van
(at least to degree 0.8), it is a car (at least to degree 0.8) and, thus, b is a car
with a moderate price (at least to degree 0.8). Therefore, as a moderate price is
to some degree an expensive price, b has, thus, an expensive price (at least to
degree min(0.8, 0.4) = 0.4). Eventually, by the definition of expensive car, b is,
thus, an expensive car (at least to degree 0.4).

Remark 2. Like for the fuzzy FOL case, for which ∀ and ∃ are not complementary
in general (see Remark 1), also for fuzzy DLs we have that ∀R.C and ¬∃R.¬C are
not equivalent in general, unlike the classical case. However, they are equivalent
under �Lukasiewicz logic and SFL.

Remark 3. It is worth noting that, w.l.o.g., an axiom 〈C � D,n〉 may be rewrit-
ten as 〈� � C → D,n〉

Remark 4 (Fuzzy DLs under SFL). [143], which presents fuzzy ALC under SFL,
proposes a slightly different semantics for fuzzy GCIs. In fact, in [143] a fuzzy
GCI is of the form C � D with semantics: I is a model of C � D iff for every
x ∈ ΔI we have that CI(x) ≤ DI(x). This is the same of any fuzzy axiom of
the form 〈� � C →x D, 1〉, where →x is an r-implication.

Acyclic Fuzzy Ontologies. Acyclic fuzzy ontologies play an important role in
fuzzy DLs both as they occur often in practice as well as from a computational
complexity point of view. Specifically, let us also introduce a restricted form of
TBoxes, i.e. acyclic TBoxes. That is, let T be a TBox in which the GCIs have
one of the following form

A �n C

A �̃ C

A =̃ C,

where A is a concept name, C is a concept, and A �n C is a shorthand for
〈� � A → C, n〉. We call the former two GCIs primitive and call the latter defi-
nitional. We say that A is the head of these axioms and C is the body. Further-
more, we also assume that no concept name A is in the head of more than one
axiom. Now, we say that

– concept name A directly uses concept name B w.r.t. T , denoted A →T B, if
A is the head of some axiom τ ∈ T such that B occurs in the body of τ ;

– concept name A uses concept name B w.r.t. T , denoted A �T B, if there
exist concept names A1, . . . , An, such that A1 = A, An = B and, for every
1 ≤ i < n, it holds that Ai →T Ai+1.

16 U. Straccia

Eventually, we say that a TBox T is cyclic (acyclic) if there is (no) A such that
A �T A. We say also that a fuzzy TBox is unfoldable if it is an acyclic TBox
which only contains inclusion axioms of the form A�̃C and if there is an A=̃C
then A does not occur in the head of any other axiom.

On Witnessed Models. As for fuzzy FOL, the use of infima (universal quantifica-
tion ∀) and suprema (existential quantification ∃) may lead to counterintuitive
behaviours (see also, e.g. [67–70]). For instance, consider the concept assertion
〈a:∃R.A, 1〉. Consider the interpretation I with domain N, aI = 1, and for all
n,m ∈ N

AI(n) = 1 − 1
n

RI(m,n) = 1.

Then for any n ∈ N , RI(aI , n) ⊗ AI(n) = AI(n) = 1 − 1
n < 1. However,

(∃R.A)I(aI) = sup
n∈N

RI(aI , n) ⊗ AI(n) = sup
n∈N

AI(n) = sup
n∈N

1 − 1
n

= 1.

That is, unlike the crisp case, notwithstanding there is no individual n of the
domain of I satisfying RI(aI , n) ⊗ AI(n) = 1, still, I satisfies the assertion
〈a:∃R.A, 1〉. Similar arguments apply to all of the expressions involving infima
and suprema. While such interpretations may exist in theory, they unlikely may
model any practical knowledge representation domain. Therefore, it is customary
to restrict the attention to witnessed models only.

Eventually, we recall from [7] the following property: in �Lukasiewicz logic,
thus, in SFL, an acyclic knowledge base K is satisfiable iff K has a finite model.
This property is not true if we drop the acyclicity condition, i.e., if arbitrary
CGIs may occur in the TBox (see [7], Theorem 3.3).

3.2 Salient Language Extensions

One may use additionally some special constructs to enhance the expressivity
of fuzzy DLs [14,23,25,146,160] such as fuzzy concrete domains, modifiers and
aggregation functions.

Fuzzy Concrete Domains. We rely on [146]. In general, a fuzzy concrete
domain, also called a fuzzy datatype theory D= 〈ΔD, ·D〉 consists of a datatype
domain ΔD and a mapping ·D that assigns to each data value an element of
ΔD, and assigns to every n-ary datatype predicate d an n-ary fuzzy relation over
ΔD. More specifically, fuzzy DLs do support unary datatypes only. Therefore,
·D maps indeed each datatype predicate into a function from ΔD to [0, 1].
Typical examples of datatype predicates d are the well known fuzzy membership
functions

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)

All About Fuzzy Description Logics and Applications 17

and the crisp membership functions

d := ≥v | ≤v | =v,

where, e.g. ≥v corresponds to the crisp set of data values that are greater than
or equal to the value v.

Concerning roles, a role R is either an object property or a datatype property.
An interpretation maps an object property into a function ΔI × ΔI → [0, 1],
while it maps a datatype property into a function ΔI ×ΔD → {0, 1}. A datatype
property does not have an inverse, but may be functional.

We also use an alphabet for concrete individuals, denoted v, and extend
an interpretation to concrete individuals by mapping them into ΔD. As for
individuals, we adopt the UNA, i.e., v1

I = v2
I if v1 = v2.

We can now extend concept expressions according to the following syntax:

C,D → ∀T.d | ∃T.d,

where d is a datatype and T is a datatype property.
For instance, the definition

HeavyRain = Rain � ∃hasPrecipitationRate.rs(5, 7.5),

where the datatype property hasPrecipitationRate has been declared func-
tional, corresponds to our definition of heavy rain seen in Sect. 1.

Modifiers. Fuzzy modifiers (see also [14,52,71–75,169]) such as very and
slightly, apply to fuzzy concepts to change their membership function. We
recall from Sect. 2.1 that a fuzzy modifier m represents a function fm : [0, 1] →
[0, 1]. Now, we extend the language of fuzzy concept constructors by allowing to
apply a modifier m to a concept C or a concrete domain predicate d: i.e.

C → m(C) | ∀T.m(d) | ∃T.m(d)

allowing, e.g. to define

V eryHeavyRain = Rain � ∃hasPrecipitationRate.very(rs(5, 7.5)) .

From a semantics point of view, we extend fuzzy interpretations in the obvi-
ous way

m(C)I(x) = fm(CI(x))

m(d)I(x) = fm(dD(x)).

Aggregation Operators. Eventually, we may extend fuzzy DLs by allowing
aggregation operators (such as the mean, median, weighted sum operators) to
aggregate concepts, as illustrated, e.g. in [23,24]. Given an n-ary aggregation

18 U. Straccia

operator @ : [0, 1]n → [0, 1], then we extend the language of fuzzy concepts by
allowing to apply @ to n concepts C1, . . . , Cn, i.e.

C → @(C1, . . . , Cn)

allowing, e.g. to express the concept

0.7 · ExpensiveHotel + 0.3 · LuxuriousHotel

denoting the fuzzy set of expensive and luxurious hotels, whose membership
function is the weighted sum of being an expensive and luxurious hotel.

From a semantics point of view, we extend fuzzy interpretations in the obvi-
ous way

@(C1, . . . , Cn)I(x) = @(CI
1 (x), . . . , CI

n (x)).

Applications. Fuzzy set theory and fuzzy logic [176] have proved to be suit-
able formalisms to handle fuzzy knowledge. Not surprisingly, fuzzy ontolo-
gies already emerge as useful in several applications, such as information
retrieval [2,37,101,166,167,171,177], recommendation systems [38,90,118,173],
image interpretation [47–49,113,137,141,142], the Semantic Web and the Inter-
net [44,120,131], ambient intelligence [50,51,100,127], ontology merging [42,
168], matchmaking [1,43,121–125,164,165], decision making [156], summa-
rization [89], robotics [57,58], machine learning [92–99,163] and many oth-
ers [6,46,59,76,88,91,102,112,119,126,132,157].

3.3 Representing Fuzzy OWL Ontologies in OWL

OWL [115] and its successor OWL 2 [45,116] are standard W3C languages for
defining and instantiating Web ontologies whose logical counterpart are classical
DLs. So far, several fuzzy extensions of DLs exists and some fuzzy DL reasoners
have been implemented, such as fuzzyDL [14], DeLorean [10], Fire [60,136],
SoftFacts [159], GURDL [64], GERDS [65], YADLR [87], FRESG [172] and
DLMedia [158,167].

Not surprisingly, each reasoner uses its own fuzzy DL language for represent-
ing fuzzy ontologies and, thus, there is a need for a standard way to represent
such information.

A first possibility would be to adopt as a standard one of the fuzzy extensions
of the languages OWL and OWL 2 that have been proposed, such as [63,133,
134]. However, as it is not expected that a fuzzy OWL extension will become
a W3C proposed standard in the near future, [20,22,25] identifies the syntactic
differences that a fuzzy ontology language has to cope with, and proposes to
use OWL 2 itself to represent fuzzy ontologies. More precisely, [25] uses OWL 2
annotation properties to encode fuzzy SROIQ(D) [160] ontologies. The use of
annotation properties makes it possible (i) to use current OWL 2 editors for
fuzzy ontology representation, and (ii) that OWL 2 reasoners discard the fuzzy

All About Fuzzy Description Logics and Applications 19

part of a fuzzy ontology, producing almost the same results as if it would not
exist. In order to support this methodology for fuzzy ontology representation,
[25] describes an implementation of a Protégé plug-in to edit fuzzy ontologies and
some parsers that translate fuzzy ontologies represented using this methodology
into the languages supported by some fuzzy DL reasoners.

Furthermore, the plug-in is integrated with the fuzzyDL [61] reasoner [9] and
makes it possible to submit queries to it. For the moment, such queries must be
expressed using the particular syntax supported by fuzzyDL.

We are not going into more detail here and refer the reader to [25] and the
FuzzyOWL2 web site [62], from which one may download some fuzzy OWL 2
ontologies as well, such as a fuzzy wine ontology, an ontology for matchmaking,
and multi-criteria decision making.

3.4 Reasoning Problems and Algorithms

In fuzzy DLs the following problems are of interest.

Consistency Problem:
– Is K satisfiable?
– Is C coherent, i.e. is CI(x) > 0 for some model I of K and x ∈ ΔI?

Instance Checking Problem:
– Does K |= 〈a:C, n〉 hold?

Subsumption Problem:
– Does K |= 〈C � D,n〉 hold?

Best Entailment Degree Problem:
– What is bed(K, φ)?

Best Satisfiability Degree Problem:
– What is bsd(K, φ)?

Instance Retrieval Problem:
– Compute the set {〈a, n〉 | n = bed(K, a:C)}.

Similarly as for the crisp case, all the above problems can be reduced to satisfi-
ability degree problems as long as the below presented reductions are supported
by the underlying DL language (if not then specific algorithms have been devel-
oped): indeed, we have

Remark 5. (Fuzzy DL problem reductions). The following problem reductions
hold:

– K is satisfiable iff bsd(K, a:⊥) > 0, where a is a new individual.
– C is coherent w.r.t. K iff one of the following holds:

• K ∪ {〈a:C>0〉} is satisfiable, where a is a new individual;
• K |= 〈C �⊥, 1〉;
• bsd(K, a:C) > 0, where a is a new individual.

– K |= 〈a:C, n〉 iff one of the following holds:
• K ∪ {〈a:C<n〉} is not satisfiable;
• bed(K, a:C) ≥ n.

20 U. Straccia

– K |= 〈C � D,n〉 iff one of the following holds:
• K ∪ {〈a:C → D<n〉} is not satisfiable, where a is a new individual;
• bed(K, C � D) ≥ n.

– We have that

bed(K, φ) = min x. such that K ∪ {〈φ≤x〉} satisfiable (15)
bsd(K, φ) = max x. such that K ∪ {〈φ≥x〉} satisfiable. (16)

Various reasoning methods have been worked out for fuzzy DLs (see [160]), which
can be classified in the following categories:

– Tableaux algorithms, extending the tableaux algorithms for classical DLs to
the fuzzy case.

– Tableaux algorithms and optimisation problems, using a tableaux algorithm
to reduce the reasoning to an optimisation problem.

– Automata-based algorithms, adopting similar ideas used to prove some results
in the classical case.

– Reduction to classical DLs, for which existing reasoning algorithms are well-
known.

– Reduction to propositional fuzzy logics, for which reasoning has been widely
studied.

We are not going to detail them here. However, let us point out that recently
there have been some unexpected surprises [4,5,7,41]. Reference [7] shows that
ALC with GCIs (i) does not have the finite model property under �Lukasiewicz
Logic or Product Logic, contrary to the classical case; (ii) illustrates that some
developed algorithms are neither complete not correct; and (iii) shows some
interesting conditions under which decidability is still guaranteed. References [4,
5] show that knowledge base satisfiability is an undecidable problem for Product
Logic. The same holds for �Lukasiewicz Logic as well [41]. In case the truth-space
is finite and defined a priori, decidability is guaranteed (see, e.g. [12,16,144]).

The generalisation of fuzzy OWL to the case in which an annotation n ∈ [0, 1]
is replaced with an annotation value λ taken from another structure such as a
complete lattice has been addressed in [149]. From a computational complexity
point of view, similar results hold as for the [0, 1] case [31,33,149]. While [149]
provides a decidability result in case the lattice is finite, [31] further improves
the decidability result by characterising the computational complexity of KB
satisfiability problem for ALC with GCIs over finite lattices being EXPTIME-
complete, as for the crisp variant, while [33] shows that the KB satisfiability
problem for ALC with GCIs over non finite lattices is undecidable.

4 Conclusions

We have provided a “crash course” through fuzzy DLs, by illustrating the basic
concepts involved in. For a more in depth presentation, we refer the reader
to [160].

All About Fuzzy Description Logics and Applications 21

References

1. Agarwal, S., Lamparter, S.: Smart: a semantic matchmaking portal for electronic
markets. In: CEC 2005: Proceedings of the Seventh IEEE International Con-
ference on E-Commerce Technology (CEC 2005), pp. 405–408. IEEE Computer
Society, Washington (2005)

2. Andreasen, T., Bulskov, H.: Conceptual querying through ontologies. Fuzzy Sets
Syst. 160(15), 2159–2172 (2009)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

4. Baader, F., Peñaloza, R.: Are fuzzy description logics with general concept inclu-
sion axioms decidable? In: Proceedings of 2011 IEEE International Conference on
Fuzzy Systems (Fuzz-IEEE 2011). IEEE Press (2011)

5. Baader, F., Peñaloza, R.: GCIs make reasoning in fuzzy DLs with the prod-
uct T-norm undecidable. In: Proceedings of the 24th International Workshop on
Description Logics (DL-11). CEUR Electronic Workshop Proceedings (2011)

6. Balaj, R., Groza, A.: Detecting influenza epidemics based on real-time semantic
analysis of Twitter streams. In: Proceedings of the 3rd International Conference
on Modelling and Development of Intelligent Systems (MDIS 2013), pp. 30–39
(2013)

7. Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in
some fuzzy description logics. Fuzzy Sets Syst. 172(1), 1–12 (2011)

8. Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy
SHOIN with fuzzy nominals and general concept inclusions. In: Proceedings of
the 2nd Workshop on Uncertainty Reasoning for the Semantic Web (URSW-06),
November 2006

9. Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy
SHOIN with fuzzy nominals and general concept inclusions. In: da Costa,
P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T.,
Nickles, M., Pool, M. (eds.) URSW 2005–2007. LNCS (LNAI), vol. 5327, pp.
174–188. Springer, Heidelberg (2008)

10. Bobillo, F., Delgado, M., Gómez-Romero, J.: Delorean: a reasoner for fuzzy OWL
1.1. In: Proceedings of the 4th International Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 2008), October 2008, vol. 423. CEUR Workshop
Proceedings (2008)

11. Bobillo, F., Delgado, M., Gómez-Romero, J.: Optimizing the crisp representa-
tion of the fuzzy description logic SROIQ. In: da Costa, P.C.G., d’Amato,
C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool,
M. (eds.) URSW 2005–2007. LNCS (LNAI), vol. 5327, pp. 189–206. Springer,
Heidelberg (2008)

12. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics
under Gödel semantics. Int. J. Approx. Reason. 50(3), 494–514 (2009)

13. Bobillo, F., Straccia, U.: A fuzzy description logic with product T-norm. In: Pro-
ceedings of the IEEE International Conference on Fuzzy Systems (Fuzz-IEEE-07),
pp. 652–657. IEEE Computer Society (2007)

14. Bobillo, F., Straccia, U.: fuzzyDL: an expressive fuzzy description logic reasoner.
In: 2008 International Conference on Fuzzy Systems (FUZZ-08), pp. 923–930.
IEEE Computer Society (2008)

22 U. Straccia

15. Bobillo, F., Straccia, U.: On qualified cardinality restrictions in fuzzy description
logics under �Lukasiewicz semantics. In: Magdalena, L., Ojeda-Aciego, M., Luis
Verdegay, J. (eds.) Proceedings of the 12th International Conference of Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU 2008), June 2008, pp. 1008–1015 (2008)

16. Bobillo, F., Straccia, U.: Towards a crisp representation of fuzzy description log-
ics under �Lukasiewicz semantics. In: An, A., Matwin, S., Raś, Z.W., Ślzak, D.
(eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 309–318.
Springer, Heidelberg (2008)

17. Bobillo, F., Straccia, U.: Extending datatype restrictions in fuzzy description
logics. In: Proceedings of the 9th International Conference on Intelligent Systems
Design and Applications (ISDA-09), pp. 785–790. IEEE Computer Society (2009)

18. Bobillo, F., Straccia, U.: Fuzzy description logics with fuzzy truth values. In:
Carvalho, J.P.B., Dubois, D., Kaymak, U., Sousa, J.M.C. (eds.) Proceedings of
the 13th World Congress of the International Fuzzy Systems Association and
6th Conference of the European Society for Fuzzy Logic and Technology (IFSA-
EUSFLAT 2009), July 2009, pp. 189–194 (2009)

19. Bobillo, F., Straccia, U.: Fuzzy description logics with general T-norms and
datatypes. Fuzzy Sets Syst. 160(23), 3382–3402 (2009)

20. Bobillo, F., Straccia, U.: An OWL ontology for fuzzy OWL 2. In: Rauch, J., Raś,
Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 151–160.
Springer, Heidelberg (2009)

21. Bobillo, F., Straccia, U.: Supporting fuzzy rough sets in fuzzy description logics.
In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 676–687.
Springer, Heidelberg (2009)

22. Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings
of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010),
July 2010, pp. 2695–2700. IEEE Press (2010)

23. Bobillo, F., Straccia, U.: Aggregation operators and fuzzy OWL 2. In: Proceedings
of the 20th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011),
June 2011, pp. 1727–1734. IEEE Press (2011)

24. Bobillo, F., Straccia, U.: Fuzzy ontologies and fuzzy integrals. In: Proceedings of
the 11th International Conference on Intelligent Systems Design and Applications
(ISDA 2011), November 2011, pp. 1311–1316. IEEE Press (2011)

25. Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J.
Approx. Reason. 52, 1073–1094 (2011)

26. Bobillo, F., Straccia, U.: On partitioning-based optimisations in expressive fuzzy
description logics. In: Proceedings of the 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2015), 2–5 August 2015. IEEE Press (2015)

27. Bobillo, F., Straccia, U.: Optimising fuzzy description logic reasoners with general
concept inclusions absorption. Fuzzy Sets Syst. http://www.sciencedirect.com/
science/article/pii/S0165011414004850

28. Bonatti, P.A., Tettamanzi, A.G.B.: Some complexity results on fuzzy descrip-
tion logics. In: Di Gesú, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS
(LNAI), vol. 2955, pp. 19–24. Springer, Heidelberg (2006)

29. Borgwardt, S., Distel, F., Peñaloza, R.: How fuzzy is my fuzzy description logic?
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
82–96. Springer, Heidelberg (2012)

30. Borgwardt, S., Distel, F., Peñaloza, R.: Non-Gödel negation makes unwitnessed
consistency undecidable. In: Proceedings of the 2012 International Workshop on
Description Logics (DL-2012), vol. 846. CEUR-WS.org (2012)

http://www.sciencedirect.com/science/article/pii/S0165011414004850
http://www.sciencedirect.com/science/article/pii/S0165011414004850

All About Fuzzy Description Logics and Applications 23

31. Borgwardt, S., Peñaloza, R.: Description logics over lattices with multi-valued
ontologies. In: Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence (IJCAI-11), pp. 768–773 (2011)

32. Borgwardt, S., Peñaloza, R.: Finite lattices do not make reasoning in ALCI
harder. In: Proceedings of the 7th International Workshop on Uncertainty Rea-
soning for the Semantic Web (URSW-11), vol. 778, pp. 51–62. CEUR-WS.org
(2011)

33. Borgwardt, S., Peñaloza, R.: Fuzzy ontologies over lattices with T-norms. In:
Proceedings of the 24th International Workshop on Description Logics (DL-11).
CEUR Electronic Workshop Proceedings (2011)

34. Borgwardt, S., Peñaloza, R.: A tableau algorithm for fuzzy description logics over
residuated de morgan lattices. In: Krötzsch, M., Straccia, U. (eds.) RR 2012.
LNCS, vol. 7497, pp. 9–24. Springer, Heidelberg (2012)

35. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Pro-
ceedings of the 13th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-12), pp. 232–242. AAAI Press, Rome (2012)

36. Bou, F., Cerami, M., Esteva, F.: Finite-valued �Lukasiewicz modal logic is
PSPACE-complete. In: Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI-11), pp. 774–779 (2011)

37. Calegari, S., Sanchez, E.: Object-fuzzy concept network: an enrichment of ontolo-
gies in semantic information retrieval. J. Am. Soc. Inf. Sci. Technol. 59(13), 2171–
2185 (2008)

38. Carlsson, C., Brunelli, M., Mezei, J.: Decision making with a fuzzy ontology. Soft
Comput. 16(7), 1143–1152 (2012)

39. Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-
valued product logic. In: Proceedings of the Twelfth International Conference
on Principles of Knowledge Representation and Reasoning (KR-10). AAAI Press
(2010)

40. Cerami, M., Straccia, U.: On the undecidability of fuzzy description
logics with GCIs with Lukasiewicz T-norm. Technical report, Comput-
ing Research Repository (2011). Available as CoRR technical report at
http://arxiv.org/abs/1107.4212

41. Cerami, M., Straccia, U.: Undecidability of KB satisfiability for �l-ALC with GCIs.
Unpublished manuscript, July 2011

42. Chen, R.-C., Bau, C.T., Yeh, C.-J.: Merging domain ontologies based on the
WordNet system and fuzzy formal concept analysis techniques. Appl. Soft Com-
put. 11(2), 1908–1923 (2011)

43. Colucci, S., Di Noia, T., Ragone, A., Ruta, M., Straccia, U., Tinelli, E.: Infor-
mative Top-k retrieval for advanced skill management. In: de Virgilio, R.,
Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management, Chap.
19. Springer, Heidelberg (2010)

44. Costa, P.C.G., Laskey, K.B., Lukasiewicz, T.: Uncertainty representation and rea-
soning in the semantic web. In: Semantic Web Engineering in the Knowledge
Society, pp. 315–340. IGI Global (2008)

45. Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F.,
Sattler, U.: OWL 2: the next step for OWL. J. Web Seman. 6(4), 309–322 (2008)

46. d’Aquin, M., Lieber, J., Napoli, A.: Towards a semantic portal for oncology using
a description logic with fuzzy concrete domains. In: Sanchez, E. (ed.) Fuzzy Logic
and the Semantic Web, Capturing Intelligence, pp. 379–393. Elsevier, New York
(2006)

http://arxiv.org/abs/1107.4212

24 U. Straccia

47. Dasiopoulou, S., Kompatsiaris, I.: Trends and issues in description logics
frameworks for image interpretation. In: Konstantopoulos, S., Perantonis, S.,
Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS, vol.
6040, pp. 61–70. Springer, Heidelberg (2010)

48. Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G.: Applying fuzzy DLs in the
extraction of image semantics. J. Data Seman. 14, 105–132 (2009)

49. Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G.: Investigating fuzzy DLs-based
reasoning in semantic image analysis. Multimed. Tools Appl. 49(1), 167–194
(2010)

50. Dı́az-Rodŕıguez, N., León-Cadah́ıa, O., Pegalajar-Cuéllar, M., Lilius, J., Delgado,
M.: Handling real-world context-awareness, uncertainty and vagueness in real-
time human activity tracking and recognition with a fuzzy ontology-based hybrid
method. Sensors 14(10), 18131–18171 (2014)

51. Dı́az-Rodŕıguez, N., Pegalajar-Cuéllar, M., Lilius, J., Delgado, M.: A fuzzy ontol-
ogy for semantic modelling and recognition of human behaviour. Knowl.-Based
Syst. 66, 46–60 (2014)

52. Dinh-Khac, D., Hölldobler, S., Tran, D.-K.: The fuzzy linguistic description logic
ALCFL. In: Proceedings of the 11th International Conference on Information
Processing and Managment of Uncertainty in Knowledge-Based Systems. IPMU-
06, pp. 2096–2103. E.D.K, Paris (2006)

53. Dubois, D., Mengin, J., Prade, H.: Possibilistic uncertainty and fuzzy features
in description logic. A preliminary discussion. In: Sanchez, E. (ed.) Capturing
Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, New York (2006)

54. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, Orlando (1980)
55. Dubois, D., Prade, H.: Can we enforce full compositionality in uncertainty calculi?

In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-
94), Seattle, Washington, pp. 149–154 (1994)

56. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued
logics: a clarification. Ann. Math. Artif. Intel. 32(1–4), 35–66 (2001)

57. Eich, M., Hartanto, R., Kasperski, S., Natarajan, S., Wollenberg, J.: Towards
coordinated multirobot missions for lunar sample collection in an unknown envi-
ronment. J. Field Robot. 31(1), 35–74 (2014)

58. Eich, T.: An application of fuzzy DL-based semantic perception to soil container
classification. In: IEEE International Conference on Technologies for Practical
Robot Applications (TePRA-13), pp. 1–6. IEEE Press (2013)

59. Fernández, C.: Understanding image sequences: the role of ontologies in cognitive
vision systems. Ph.D. thesis, Universitat Autònoma de Barcelona, Spain (2010)

60. Fire. http://www.image.ece.ntua.gr/∼nsimou/FiRE/
61. fuzzyDL. http://www.straccia.info/software/fuzzyDL/fuzzyDL.html
62. Fuzzy OWL 2 web ontology language (2011). ISTI - CNR. http://www.straccia.

info/software/FuzzyOWL/
63. Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings

of the 17th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI-05), pp. 562–567. IEEE Computer Society, Washington (2005)

64. Haarslev, V., Pai, H.-I., Shiri, N.: Optimizing tableau reasoning in ALC extended
with uncertainty. In: Proceedings of the 2007 International Workshop on Descrip-
tion Logics (DL-07) (2007)

65. Habiballa, H.: Resolution strategies for fuzzy description logic. In: Proceedings
of the 5th Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-07), vol. 2, pp. 27–36 (2007)

http://www.image.ece.ntua.gr/~nsimou/FiRE/
http://www.straccia.info/software/fuzzyDL/fuzzyDL.html
http://www.straccia.info/software/FuzzyOWL/
http://www.straccia.info/software/FuzzyOWL/

All About Fuzzy Description Logics and Applications 25

66. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 2, 2nd edn. Kluwer, Dordrecht (2001)

67. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
68. Hájek, P.: Making fuzzy description logics more general. Fuzzy Sets Syst. 154(1),

1–15 (2005)
69. Hájek, P.: What does mathematical fuzzy logic offer to description logic? In:

Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence,
Chap. 5, pp. 91–100. Elsevier, New York (2006)

70. Hájek, P.: On witnessed models in fuzzy logic. Math. Logic Q. 53(1), 66–77 (2007)
71. Hölldobler, S., Khang, T.D., Störr, H.-P.: A fuzzy description logic with hedges

as concept modifiers. In: Phuong, N.H., Nguyen, H.T., Ho, N.C., Santiprabhob,
P. (eds.) Proceedings InTech/VJFuzzy’2002, pp. 25–34. Institute of Information
Technology, Vietnam Center for Natural Science and Technology, Science and
Technics Publishing House, Hanoi (2002)

72. Hölldobler, S., Nga, N.H., Khang, T.D.: The fuzzy description logic ALCFH . In:
Proceeedings of the International Workshop on Description Logics (DL-05) (2005)

73. Hölldobler, S., Störr, H.-P., Khang, T.D.: The fuzzy description logic ALCFH
with hedge algebras as concept modifiers. J. Adv. Comput. Intel. 7(3), 294–305
(2003)

74. Hölldobler, S., Störr, H.-P., Khang, T.D.: A fuzzy description logic with hedges
and concept modifiers. In: Proceedings of the 10th International Conference on
Information Processing and Managment of Uncertainty in Knowledge-Based Sys-
tems, IPMU-04 (2004)

75. Hölldobler, S., Störr, H.-P., Khang, T.D.: The subsumption problem of the fuzzy
description logic ALCFH . In: Proceedings of the 10th International Conference
on Information Processing and Managment of Uncertainty in Knowledge-Based
Systems (IPMU-04) (2004)

76. Iglesias, J., Lehmann, J.: Towards integrating fuzzy logic capabilities into an
ontology-based inductive logic programming framework. In: Proceedings of the
11th International Conference on Intelligent Systems Design and Applications
(ISDA 2011), pp. 1323–1328 (2011)

77. Jiang, Y., Liu, H., Tang, Y., Chen, Q.: Semantic decision making using ontology-
based soft sets. Math. Comput. Model. 53(5–6), 1140–1149 (2011)

78. Jiang, Y., Tang, Y., Chen, Q., Wang, J., Tang, S.: Extending soft sets with descrip-
tion logics. Comput. Math. Appl. 59(6), 2087–2096 (2010)

79. Jiang, Y., Yong Tang, J., Wang, P.D., Tang, S.: Expressive fuzzy description logics
over lattices. Knowl.-Based Syst. 23, 150–161 (2010)

80. Jiang, Y., Tang, Y., Wang, J., Tang, S.: Reasoning within intuitionistic fuzzy
rough description logics. Inf. Sci. 179, 2362–2378 (2009)

81. Jiang, Y., Tang, Y., Wang, J., Tang, S.: Representation and reasoning of context-
dependant knowledge in distributed fuzzy ontologies. Expert Syst. Appl. 37(8),
6052–6060 (2010)

82. Jiang, Y., Wang, J., Deng, P., Tang, S.: Reasoning within expressive fuzzy rough
description logics. Fuzzy Sets Syst. 160(23), 3403–3424 (2009)

83. Yuncheng Jiang, J., Wang, S.T., Xiao, B.: Reasoning with rough description log-
ics: an approximate concepts approach. Inf. Sci. 179(5), 600–612 (2009)

84. Kang, D., Xu, B., Lu, J., Li, Y.: Reasoning for a fuzzy description logic with com-
parison expressions. In: Proceeedings of the International Workshop on Descrip-
tion Logics (DL-06). CEUR Workshop Proceedings (2006)

85. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic - Studia
Logica Library. Kluwer Academic Publishers, Dordrecht (2000)

26 U. Straccia

86. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall Inc., Upper Saddle River (1995)

87. Konstantopoulos, S., Apostolikas, G.: Fuzzy-DL reasoning over unknown fuzzy
degrees. In: Meersman, R., Tari, Z. (eds.) OTM-WS 2007, Part II. LNCS, vol.
4806, pp. 1312–1318. Springer, Heidelberg (2007)

88. Konstantopoulos, S., Karkaletsis, V., Bilidas, D.: An intelligent authoring envi-
ronment for abstract semantic representations of cultural object descriptions.
In: Proceedings of the EACL 2009 Workshop on Language Technology and
Resources for Cultural Heritage, Social Sciences, Humanities, and Education
(LaTeCHSHELT&R 2009), pp. 10–17 (2009)

89. Lee, C.-S., Jian, Z.-W., Huang, L.-K.: A fuzzy ontology and its application to
news summarization. IEEE Trans. Syst. Man Cybern. Part B 35(5), 859–880
(2005)

90. Lee, C.-S., Wang, M.H., Hagras, H.: A Type-2 fuzzy ontology and its application
to personal diabetic-diet recommendation. IEEE Trans. Fuzzy Syst. 18(2), 374–
395 (2010)

91. Letia, I.A., Groza, A.: Modelling imprecise arguments in description logic. Adv.
Electr. Comput. Eng. 9(3), 94–99 (2009)

92. Lisi, F.A., Straccia, U.: A logic-based computational method for the automated
induction of fuzzy ontology axioms. Fundamenta Informaticae 124(4), 503–519
(2013)

93. Lisi, F.A., Straccia, U.: A system for learning GCI axioms in fuzzy description
logics. In: Proceedings of the 26th International Workshop on Description Logics
(DL-13). CEUR Workshop Proceedings, vol. 1014, pp. 760–778. CEUR-WS.org
(2013)

94. Lisi, F.A., Straccia, U.: Can ILP deal with incomplete and vague structured
knowledge? In: Muggleton, S.H., Watanabe, H. (eds.) Latest Advances in Induc-
tive Logic Programming, Chap. 21, pp. 199–206. World Scientific, Singapore
(2014)

95. Lisi, F.A., Straccia, U.: Learning in description logics with fuzzy concrete
domains. Fundamenta Informaticae in press

96. Lisi, F.A., Straccia, U.: An inductive logic programming approach to learning
inclusion axioms in fuzzy description logics. In: 26th Italian Conference on Com-
putational Logic (CILC-11). CEUR Electronic Workshop Proceedings, vol. 810,
pp. 57–71 (2011)

97. Lisi, F.A., Straccia, U.: Towards learning fuzzy DL inclusion axioms. In: Petrosino,
A. (ed.) WILF 2011. LNCS, vol. 6857, pp. 58–66. Springer, Heidelberg (2011)

98. Lisi, F.A., Straccia, U.: Dealing with incompleteness and vagueness in inductive
logic programming. In: 28th Italian Conference on Computational Logic (CILC-
13). CEUR Electronic Workshop Proceedings, vol. 1068, pp. 179–193 (2013)

99. Lisi, F.A., Straccia, U.: A FOIL-like method for learning under incompleteness
and vagueness. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013.
LNCS, vol. 8812, pp. 123–139. Springer, Heidelberg (2014)

100. Liu, C., Liu, D., Wang, S.: Situation modeling and identifying under uncertainty.
In: Proceedings of the 2nd Pacific-Asia Conference on Circuits, Communications
and System (PACCS 2010), pp. 296–299 (2010)

101. Liu, C., Liu, D., Wang, S.: Fuzzy geospatial information modeling in geospatial
semantic retrieval. Adv. Math. Comput. Meth. 2(4), 47–53 (2012)

102. Liu, O., Tian, Q., Ma, J.: A fuzzy description logic approach to model manage-
ment in R&D project selection. In: Proceedings of the 8th Pacific Asia Conference
on Information Systems (PACIS-04) (2004)

All About Fuzzy Description Logics and Applications 27

103. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic web. In: Second International Conference on Rules and Rule
Markup Languages for the Semantic Web (RuleML-06), pp. 89–96. IEEE Com-
puter Society (2006)

104. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic web. Fundamenta Informaticae 82(3), 289–310 (2008)

105. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic
uncertainty and fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS
(LNAI), vol. 4724, pp. 187–198. Springer, Heidelberg (2007)

106. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z.,
Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg
(2007)

107. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under
vagueness for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM
2007. LNCS (LNAI), vol. 4772, pp. 16–30. Springer, Heidelberg (2007)

108. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Seman. 6, 291–308 (2008)

109. Lukasiewicz, T., Straccia, U.: Tightly coupled fuzzy description logic programs
under the answer set semantics for the semantic web. Int. J. Seman. Web Inf.
Syst. 4(3), 68–89 (2008)

110. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic
uncertainty and fuzzy vagueness. Int. J. Approx. Reason. 50(6), 837–853 (2009)

111. Mailis, T., Stoilos, G., Stamou, G.: Expressive reasoning with horn rules and
fuzzy description logics. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007.
LNCS, vol. 4524, pp. 43–57. Springer, Heidelberg (2007)

112. Mart́ınez-Cruz, C., van der Heide, A., Sánchez, D., Triviño, G.: An approximation
to the computational theory of perceptions using ontologies. Expert Syst. Appl.
39(10), 9494–9503 (2012)

113. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information
retrieval. J. ACM 48(5), 909–970 (2001)

114. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact mani-
fold with boundary. Ann. Math. 65, 117–143 (1957)

115. OWL web ontology language overview. W3C (2004). http://www.w3.org/TR/
owl-features/

116. OWL 2 web ontology language document overview. W3C (2009). http://www.
w3.org/TR/2009/REC-owl2-overview-20091027/

117. Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Expressive querying over fuzzy
DL-Lite ontologies. In: Twentieth International Workshop on Description Logics
(2007)

118. Pérez, I.J., Wikström, R., Mezei, J., Carlsson, C., Herrera-Viedma, E.: A new
consensus model for group decision making using fuzzy ontology. Soft Comput.
17(9), 1617–1627 (2013)

119. Quan, T.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic fuzzy ontology gener-
ation for semantic help-desk support. IEEE Trans. Ind. Inf. 2(3), 155–164 (2006)

120. Quan, T.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic fuzzy ontology gen-
eration for semantic web. IEEE Trans. Knowl. Data Eng. 18(6), 842–856 (2006)

121. Ragone, A., Straccia, U., Bobillo, F., Di Noia, T., Di Sciascio, E.: Fuzzy bilateral
matchmaking in e-marketplaces. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.)
KES 2008, Part III. LNCS (LNAI), vol. 5179, pp. 293–301. Springer, Heidelberg
(2008)

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

28 U. Straccia

122. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Extending
datalog for matchmaking in P2P e-marketplaces. In: Ceci, M., Malerba, D., Tanca,
L. (eds.) 15th Italian Symposium on Advanced Database Systems (SEBD-07), pp.
463–470 (2007)

123. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Vague knowl-
edge bases for matchmaking in P2P e-marketplaces. In: Franconi, E., Kifer, M.,
May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 414–428. Springer, Heidelberg
(2007)

124. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Towards
a fuzzy logic for automated multi-issue negotiation. In: Hartmann, S., Kern-
Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 381–396. Springer,
Heidelberg (2008)

125. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Fuzzy match-
making in e-marketplaces of peer entities using datalog. Fuzzy Sets Syst. 160(2),
251–268 (2009)

126. Rodger, J.A.: A fuzzy linguistic ontology payoff method for aerospace real options
valuation. Expert Syst. Appl. 40(8), 2828–2840 (2013)

127. Rodŕıguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontolo-
gies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33
(2014)

128. Sanchez, D., Tettamanzi, A.G.B.: Generalizing quantification in fuzzy description
logics. In: Reusch, B. (ed.) Proceedings 8th Fuzzy Days in Dortmund. Springer,
Heidelberg (2004)

129. Sánchez, D., Tettamanzi, A.G.B.: Reasoning and quantification in fuzzy descrip-
tion logics. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005.
LNCS (LNAI), vol. 3849, pp. 81–88. Springer, Heidelberg (2006)

130. Sanchez, D., Tettamanzi, A.G.B.: Fuzzy quantification in fuzzy description logics.
In: Sanchez, E. (ed.) Capturing Intelligence: Fuzzy Logic and the Semantic Web.
Elsevier, New York (2006)

131. Sanchez, E. (ed.): Fuzzy Logic and the Semantic Web. Capturing Intelligence,
vol. 1. Elsevier Science, New York (2006)

132. Slav́ıček, V.: An ontology-driven fuzzy workflow system. In: van Emde Boas, P.,
Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS,
vol. 7741, pp. 515–527. Springer, heidelberg (2013)

133. Stoilos, G., Stamou, G., Pan, J.Z.: Fuzzy extensions of OWL: logical properties
and reduction to fuzzy description logics. Int. J. Approx. Reason. 51(6), 656–679
(2010)

134. Stoilos, G., Stamou, G.: Extending fuzzy description logics for the semantic web.
In: 3rd International Workshop of OWL: Experiences and Directions (2007)

135. Stoilos, G., Stamou, G., Pan, J., Tzouvaras, V., Horrocks, I.: The fuzzy descrip-
tion logic f-SHIN. In: International Workshop on Uncertainty Reasoning for the
Semantic Web (2005)

136. Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web.
IEEE Intel. Syst. 21(5), 84–87 (2006)

137. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrock, I.: A fuzzy description
logic for multimedia knowledge representation. In: Proceedings of the Interna-
tional Workshop on Multimedia and the Semantic Web (2005)

138. Stoilos, G., Stamou, G.B., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with
very expressive fuzzy description logics. J. Artif. Intel. Res. 30, 273–320 (2007)

All About Fuzzy Description Logics and Applications 29

139. Stoilos, G., Straccia, U., Stamou, G., Pan, J.Z.: General concept inclusions in
fuzzy description logics. In: Proceedings of the 17th Eureopean Conference on
Artificial Intelligence (ECAI-06), pp. 457–461. IOS Press (2006)

140. Straccia, U.: A fuzzy description logic. In: Proceedings of the 15th National Con-
ference on Artificial Intelligence (AAAI-98), Madison, USA, pp. 594–599 (1998)

141. Straccia, U.; Foundations of a logic based approach to multimedia document
retrieval. Ph.D. thesis, Department of Computer Science, University of Dortmund,
Dortmund, Germany, June 1999

142. Straccia, U.: A framework for the retrieval of multimedia objects based on four-
valued fuzzy description logics. In: Crestani, F., Pasi, G. (eds.) Soft Computing in
Information Retrieval: Techniques and Applications, pp. 332–357. Physica Verlag
(Springer Verlag), Heidelberg (2000)

143. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intel. Res. 14,
137–166 (2001)

144. Straccia, U.: Transforming fuzzy description logics into classical description logics.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–
399. Springer, Heidelberg (2004)

145. Straccia, U.: Uncertainty in description logics: a lattice-based approach. In: Pro-
ceedings of the 10th International Conference on Information Processing and
Managment of Uncertainty in Knowledge-Based Systems (IPMU-04), pp. 251–
258 (2004)

146. Straccia, U.: Description logics with fuzzy concrete domains. In: Bachus, F.,
Jaakkola, T. (eds.) 21st Conference on Uncertainty in Artificial Intelligence (UAI-
05), pp. 559–567. AUAI Press, Edinburgh (2005)

147. Straccia, U.: Fuzzy ALC with fuzzy concrete domains. In: Proceeedings of the
International Workshop on Description Logics (DL-05), pp. 96–103. CEUR, break
Edinburgh (2005)

148. Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the
11th International Conference on Information Processing and Managment of
Uncertainty in Knowledge-Based Systems, IPMU-06, pp. 2238–2245. E.D.K, Paris
(2006)

149. Straccia, U.: Description logics over lattices. Int. J. Uncertainty, Fuzziness Knowl.-
Based Syst. 14(1), 1–16 (2006)

150. Straccia, U.: Fuzzy description logic programs. In: Proceedings of the 11th Inter-
national Conference on Information Processing and Managment of Uncertainty
in Knowledge-Based Systems, IPMU-06, pp. 1818–1825. E.D.K, Paris (2006)

151. Straccia, U.: Towards Top-k query answering in description logics: the case of
DL-Lite. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 439–451. Springer, Heidelberg (2006)

152. Straccia, U.: Uncertainty and description logic programs over lattices. In: Sanche,
E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, Chap. 7, pp.
115–133. Elsevier, Amsterdam (2006)

153. Straccia, U.: Reasoning in �L-SHIF : an expressive fuzzy description logic under
�lukasiewicz semantics. Technical report TR-2007-10-18, Istituto di Scienza e Tec-
nologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy (2007)

154. Straccia, U.: Fuzzy description logic programs. In: Marsala, C., Bouchon-Meunier,
B., Yager, R.R., Rifqi, M. (eds.) Uncertainty and Intelligent Information Systems,
Chap. 29, pp. 405–418. World Scientific, Singapore (2008)

30 U. Straccia

155. Straccia, U.: Managing uncertainty and vagueness in description logics, logic
programs and description logic programs. In: Baroglio, C., Bonatti, P.A.,
Ma�luszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web.
LNCS, vol. 5224, pp. 54–103. Springer, Heidelberg (2008)

156. Straccia, U.: Multi criteria decision making in fuzzy description logics: a first step.
In: Velásquez, J.D., Ŕıos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part
I. LNCS, vol. 5711, pp. 78–86. Springer, Heidelberg (2009)

157. Straccia, U.: Towards spatial reasoning in fuzzy description logics. In: 2009 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE-09), pp. 512–517. IEEE
Computer Society (2009)

158. Straccia, U.: An ontology mediated multimedia information retrieval system. In:
Proceedings of the the 40th International Symposium on Multiple-Valued Logic
(ISMVL-10), pp. 319–324. IEEE Computer Society (2010)

159. Straccia, U.: Softfacts: a Top-k retrieval engine for ontology mediated access to
relational databases. In: Proceedings of the 2010 IEEE International Conference
on Systems, Man and Cybernetics (SMC-10), pp. 4115–4122. IEEE Press (2010)

160. Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC
Studies in Informatics Series. Chapman & Hall, Boca Raton (2013)

161. Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclu-
sions and fuzzy description logics. In: Proceedings of the 5th Conference of the
European Society for Fuzzy Logic and Technology (EUSFLAT-07), University of
Ostrava, Ostrava, Czech Republic, vol. 2, pp. 213–220 (2007)

162. Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions
and fuzzy description logics. Mathw. Soft Comput. 14(3), 247–259 (2007)

163. Straccia, U., Mucci, M.: pFOIL-DL: learning (fuzzy) EL concept descriptions from
crisp owl data using a probabilistic ensemble estimation. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing (SAC-15), pp. 345–352.
ACM, Salamanca (2015)

164. Straccia, U., Tinelli, E., Colucci, S., Di Noia, T., Di Sciascio, E.: Semantic-based
Top-k retrieval for competence management. In: Rauch, J., Raś, Z.W., Berka, P.,
Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 473–482. Springer, Heidelberg
(2009)

165. Straccia, U., Tinelli, E., Di Noia, T., Di Sciascio, E., Colucci, S.: Top-k retrieval
for automated human resource management. In: Proceedings of the 17th Italian
Symposium on Advanced Database Systems (SEBD-09), pp. 161–168 (2009)

166. Straccia, U., Visco, G.: DL-Media: an ontology mediated multimedia information
retrieval system. In: Proceeedings of the International Workshop on Description
Logics (DL-07), vol. 250. CEUR, Insbruck (2007)

167. Straccia, U., Visco, G.: DLMedia: an ontology mediated multimedia informa-
tion retrieval system. In: Proceedings of the Fourth International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW-08), Karlsruhe, Germany,
26 October 2008. CEUR Workshop Proceedings, vol. 423. CEUR-WS.org (2008)

168. Todorov, K., Hudelot, C., Popescu, A., Geibel, P.: Fuzzy ontology alignment using
background knowledge. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 22(1),
75–112 (2014)

169. Tresp, C., Molitor, R.: A description logic for vague knowledge. In: Proceedings
of the 13th European Conference on Artificial Intelligence (ECAI-98), Brighton
(England), August 1998

170. Venetis, T., Stoilos, G., Stamou, G., Kollias, S.: f-DLPs: extending description
logic programs with fuzzy sets and fuzzy logic. In: IEEE International Conference
on Fuzzy Systems (Fuzz-IEEE 2007) (2007)

All About Fuzzy Description Logics and Applications 31

171. Wallace, M.: Ontologies and soft computing in flexible querying. Control Cybern.
38(2), 481–507 (2009)

172. Wang, H., Ma, Z.M., Yin, J.: FRESG: a kind of fuzzy description logic reasoner.
In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690,
pp. 443–450. Springer, Heidelberg (2009)

173. Yaguinuma, C.A., Santos, M.T.P., Camargo, H.A., Reformat, M.: A FML-based
hybrid reasoner combining fuzzy ontology and mamdani inference. In: Proceedings
of the 22nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013)
(2013)

174. Lu, J., Li, Y., Xu, B., Kang, D.: Discrete tableau algorithms for SHI. In: Pro-
ceeedings of the International Workshop on Description Logics (DL-06). CEUR
(2006)

175. Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proceedings
of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91),
Sydney, Australia, pp. 472–477 (1991)

176. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
177. Zhang, L., Yu, Y., Zhou, J., Lin, C., Yang, Y.: An enhanced model for search-

ing in semantic portals. In: WWW 2005: Proceedings of the 14th International
Conference on World Wide Web, pp. 453–462. ACM Press, New York (2005)

178. Zhou, Z., Qi, G., Liu, C., Hitzler, P., Mutharaju, R.: Reasoning with fuzzy-EL+

ontologies using mapreduce. In: 20th European Conference on Artificial Intelli-
gence (ECAI-12), pp. 933–934. IOS Press (2012)

Higher-Order Modal Logics:
Automation and Applications

Christoph Benzmüller1(B) and Bruno Woltzenlogel Paleo2

1 Freie Universität Berlin, Berlin, Germany
c.benzmueller@fu-berlin.de

2 Vienna University of Technology, Vienna, Austria
bruno@logic.at

Abstract. These are the lecture notes of a tutorial on higher-order
modal logics held at the 11th Reasoning Web Summer School. After
defining the syntax and (possible worlds) semantics of some higher-
order modal logics, we show that they can be embedded into classi-
cal higher-order logic by systematically lifting the types of propositions,
making them depend on a new atomic type for possible worlds. This app-
roach allows several well-established automated and interactive reasoning
tools for classical higher-order logic to be applied also to modal higher-
order logic problems. Moreover, also meta reasoning about the embedded
modal logics becomes possible. Finally, we illustrate how our approach
can be useful for reasoning with web logics and expressive ontologies,
and we also sketch a possible solution for handling inconsistent data.

1 Introduction and Overview

Expressivity matters. Often problems can be elegantly encoded and solved in
expressive higher-order logics, while their encoding and/or solution in (theoret-
ically or practically) less expressive logics is significantly more involved or even
condemned to fail. A prominent example that well illustrates this issue for the
transition from first-order to higher-order logic is Boolos’ curious inference [29]
(which has been formalized with modern higher-order proof assistants [15]). In
higher-order logic there is a short, one page proof, whereas the corresponding
first-order proof is intractably long.

Another, more practical example from mathematics is Cantor’s theorem (the
set of all subsets of A, that is, the power set of A, has a strictly greater cardinality
than A itself). In classical higher-order logic Cantor’s theorem (surjective ver-
sion) can be encoded as ¬∃F∀G∃X.FX = G. Higher-order theorem provers can
solve this problem very efficiently, and their solution includes the detection and
application of the diagonalisation argument [8]. In fact, this theorem is today
often used as a very first test example for new higher-order theorem provers.
Other illustrating examples include McCarthy’s checkerboard problem or the
fixed point theorem [9].

C. Benzmüller—This work has been supported by the German Research Foundation
DFG under grants BE2501/9-1,2 and BE2501/11-1.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 32–74, 2015.
DOI: 10.1007/978-3-319-21768-0 2

Higher-Order Modal Logics: Automation and Applications 33

Modal logics [26] extend usual formal logic languages by adding modal oper-
ators (� and ♦) and are characterized by the necessitation rule, according to
which �A is a theorem if A is a theorem, even though A ⊃ �A is not necessarily
a theorem. Various notions, such as necessity and possibility, obligation and per-
mission, knowledge and belief, and temporal globality and eventuality, which are
ubiquitous in various application domains, have been formalized with the help
of modal operators.

In Philosophy, Gödel’s modern version of the ontological argument [43,65]
is an interesting example that uses modal operators to express metaphysical
necessity and possibility as fundamental notions. In knowledge representation,
higher-order logic’s expressivity is well-suited to automate meta-logical reasoning
about distinct formalisms, such as description logics and modal logics, establish-
ing and verifying correspondence results between them; and, furthermore, some
ontologies, such as SUMO [58], could benefit from a reformalisation using modal
operators.

Despite the importance of modal logics, general automated reasoning support
for them is still not as well-developed as for classical logics. Deduction tools
for modal logics are often limited to propositional, quantifier-free fragments or
tailored to particular modal logics and their applications; first-order automated
deduction techniques based on tableaux, sequent calculi and connection calculi
have only recently been generalized and implemented in a few new provers able
to directly cope with modalities [17,55].

Another approach is the embedding of first-order and even higher-order
modal logics (HOML) into classical higher-order logics (HOL) [20,21], for which
a range of robust and increasingly effective automated theorem provers has been
recently developed [12,28,30,48,50,54].

The embedding approach is flexible, because various modal logics (even with
multiple modalities or varying/cumulative domain quantifiers) can be easily sup-
ported by stating their characteristic axioms. Moreover, the approach is rela-
tively simple to implement, because it does not require any modification in the
source code of the higher-order prover. The prover can be used as is, and only
the input files provided to the prover must be specially encoded (using lifted
versions of connectives and logical constants instead of the usual ones). Further-
more, the efficacy and efficiency of the embedding approach has been confirmed
in philosophical benchmarks such as Gödel’s ontological argument and some of
its variants [13,19,24,56]. These qualities make embedding a convenient app-
roach for automated and interactive reasoning with propositional and quantified
modal logics and possibly many other prominent non-classical logics such as
hybrid logics and paraconsistent logics.

In these lecture notes, the syntax and semantics of higher-order logics
and higher-order modal logics are introduced and the embedding approach
is explained. Then some of the motivating applications described above are
explored in greater detail.

34 C. Benzmüller and B.W. Paleo

2 Higher-Order Modal Logic: Syntax and Semantic

In this section a higher-order modal logic (HOML) is defined by extending a
higher-order logic (HOL) with the modal operator �. An appropriate notion of
semantics for HOML is obtained by adapting Henkin semantics for HOL (cf. [39,
45]). The presentation in this section is borrowed from [19], which adapts [7,53].

HOML is a typed logic. More precisely, it is based on Church’s simple types.
Below only two base types are assumed, but other base types could be easily
added.

Definition 1. The set T of simple types is freely generated from the set of basic
types {o, μ} (o stands for Booleans and μ for individuals) using the function type
constructor →. We may avoid parentheses, and α → α → α then stands for
(α → (α → α)), that is, function types associate to the right.

The syntax of the HOML language is given below.

Definition 2. The grammar for HOML is:

s, t : := pα | Xα | (λXα sβ)α→β | (sα→β tα)β | (¬o→o so)o |
((∨o→o→oso) to)o | (∀(α→o)→o(λXα so))o | (�o→o so)o

where α, β ∈ T . pα denotes typed constants and Xα typed variables (distinct from
pα). Complex typed terms are constructed via abstraction and application. The
type of each term is given as a subscript. Terms so of type o are called formulas.
The logical connectives of choice are ¬o→o, ∨o→o→o, ∀(α→o)→o (for α ∈ T),
and �o→o. Type subscripts may be dropped if irrelevant or obvious. Similarly,
parentheses may be avoided. Binder notation ∀Xαso is used as shorthand for
∀(α→o)→o(λXα so), and infix notation s∨ t is employed instead of ((∨s) t). From
the above connectives, other logical connectives, such as �, ⊥, ∧, ⊃, ≡, ∃, and
♦, can be defined in the usual way.

Substitution and λ-conversion are defined as usual.

Definition 3. Substitution of a term Aα for a variable Xα in a term Bβ is
denoted by [A/X]B. Since we consider α-conversion implicitly, we assume the
bound variables of B avoid variable capture.

Definition 4. Two common relations on terms are given by β-reduction and η-
reduction. A β-redex has the form (λX s)t and β-reduces to [t/X]s. An η-redex
has the form (λX sX) where variable X is not free in s; it η-reduces to s. We
write s =β t to mean s can be converted to t by a series of β-reductions and
expansions. Similarly, s = betaηt means s can be converted to t using both β
and η. For each sα ∈ HOML there is a unique β-normal form and a unique
βη-normal form.

As a first step towards defining a semantics for HOML, frame structures are
introduced. Variables, constants and terms of HOML will subsequently be iden-
tified with objects provided in a frame.

Higher-Order Modal Logics: Automation and Applications 35

Definition 5. A frame D is a collection {Dα}α∈T of nonempty sets Dα, such
that Do = {T, F} (for truth and falsehood). The Dα→β are collections of func-
tions mapping Dα into Dβ.

Starting from a frame, the notion of a HOML model structure is introduced.

Definition 6. A model for HOML is a quadruple M = 〈W,R,D, {Iw}w∈W 〉,
where W is a set of worlds (or states), R is an accessibility relation between the
worlds in W , D is a frame, and for each w ∈ W , {Iw}w∈W is a family of typed
interpretation functions mapping constant symbols pα to appropriate elements of
Dα, called the denotation of pα in world w (the logical connectives ¬, ∨, ∀, and
� are always given the standard denotations, see below). Moreover, it is assumed
that the domains Dα→α→o contain the respective identity relations on objects of
type α (to overcome the extensionality issue discussed in [6]).

Variable assignments are a technical aid for the subsequent definition of an inter-
pretation function ‖.‖M,g,w for HOML terms. This interpretation function is
parametric over a model M , a variable assignment g and a possible world w.

Definition 7. A variable assignment g maps variables Xα to elements in Dα.
g[d/W] denotes the assignment that is identical to g, except for variable W ,
which is now mapped to d.

Definition 8. The value ‖sα‖M,g,w of a HOML term sα on a model M =
〈W,R,D, {Iw}w∈W 〉 in a world w ∈ W under variable assignment g is an ele-
ment d ∈ Dα defined in the following way:

1. ‖pα‖M,g,w = Iw(pα)
2. ‖Xα‖M,g,w = g(Xα)
3. ‖(sα→β tα)β‖M,g,w = ‖sα→β‖M,g,w(‖tα‖M,g,w)
4. ‖(λXα sβ)α→β‖M,g,w = the function f from Dα to Dβ such that f(d) =

‖sβ‖M,g[d/Xα],w for all d ∈ Dα

5. ‖(¬o→o so)o‖M,g,w = T if and only if ‖so‖M,g,w = F
6. ‖((∨o→o→o so) to)o‖M,g,w = T if and only if ‖so‖M,g,w = T or ‖to‖M,g,w = T
7. ‖(∀(α→o)→o(λXα so))o‖M,g,w = T if and only if for all d ∈ Dα we have

‖so‖M,g[d/Xα],w = T
8. ‖(�o→o so)o‖M,g,w = T if and only if for all v ∈ W with wRv we have

‖so‖M,g,v = T

Standard semantics does not allow a complete mechanization of HOML. For this
reason, Henkin style semantics is introduced here and assumed in the remainder.
Henkin semantics allows a complete mechanization of HOML (at least in theory).

Definition 9. A model M = 〈W,R,D, {Iw}w∈W 〉 is called a standard model if
and only if for all α, β ∈ T we have Dα→β = {f | f : Dα −→ Dβ}. In a Henkin
model function spaces are not necessarily full. Instead it is only required that
Dα→β ⊆ {f | f : Dα −→ Dβ} (for all α, β ∈ T) and that the valuation function
‖ · ‖M,g,w from above is total (i.e., every term denotes). Any standard model is
obviously also a Henkin model. We consider Henkin models in the remainder.

36 C. Benzmüller and B.W. Paleo

Truth in a model, validity in a model M and general validity are defined as
usual.

Definition 10. A formula so is true in model M for world w under assignment
g if and only if ‖so‖M,g,w = T ; this is also denoted as M, g,w |= so. A formula
so is called valid in M if and only if M, g,w |= so for all w ∈ W and all
assignments g. Finally, a formula so is called valid, which we denote by |= so,
if and only if so is valid for all M .

The definitions above introduce higher-order modal logic K. In order to obtain
logics KB, KD, S4 and S5, for example, respective conditions on accessibility
relation R are postulated: R is a symmetric relation in logic KB, and it is an
equivalence relation in logic S5. If these restriction apply, we use the notations
|=KB and |=S5. In a similar way we may introduce further logics between K and
S5, such as KD, S4, KD45, etc.

An important issue for quantified modal logics is whether constant domain or
varying domain semantics is considered. The definitions above assume constant
domains. An adaptation to varying or cumulative domains is straightforward
(cf. [37]).

3 Semantic Embedding in Classical Higher-Order Logic

A crucial aspect of modal logics [26] is that the so-called necessitation rule allows
�A to be derived if A is a theorem, but A ⊃ �A is not necessarily a theorem.
Naive attempts to define the modal operators � and ♦ may easily be unsound
in this respect. To avoid this issue, the possible world semantics of modal logics
can be explicitly embedded into HOL [20,21].

The embedding technique described in this section is related to labeling tech-
niques [38]. However, the expressiveness of HOL can be exploited in order to
encode the labels within the logical language itself. HOML is embedded into
HOL by systematically lifting the types of propositions, making them depend
on a new atomic type for possible worlds. This approach allows several well-
established automated and interactive reasoning tools for HOL to be applied
also to HOML problems. Moreover, also meta reasoning about the embedded
modal logics becomes possible [14]. The presentation in this section is adapted
from [17,19].

3.1 Classical Higher-Order Logic: Syntax and Semantic

HOL is easily obtained from HOML by removing the modal operator � from
the grammar, and by dropping the set of possible worlds W and the accessibility
relation R from the definition of a model. Nevertheless, we explicitly state the
most relevant definitions for the particular notion of HOL as employed in this
paper. One reason is that we do want to carefully distinguish the HOL and
HOML languages in the remainder (we use boldface fonts for HOL and standard
fonts for HOML). There is also a subtle, but harmless, difference in the HOL

Higher-Order Modal Logics: Automation and Applications 37

language defined here in comparison to the language in standard presentations:
here three base types are employed, whereas usually only two base types are
considered. The third base type plays a crucial role in our embedding of HOML
in HOL.

Definition 11. The set T of simple types freely generated from a set of basic
types {o,μ, ι} using the function type constructor →. o is the type of Booleans,
μ is the type of individuals, and ι is the type of possible worlds below. As before
we may avoid parentheses.

Definition 12. The grammar for higher-order logic HOL is:

s, t : := pα | Xα | (λXα sβ)α→β | (sα→β tα)β | ¬o→o so |
((∨o→o→o so) to) | ∀(α→o)→o(λXα so)

where α,β ∈ T . The text from Definition 2 analogously applies, except that we
do not consider the modal connectives � and ♦.

The definitions for substitution (Definition 3), β- and η-reduction (Definition 4),
frame (Definition 5), and assignment (Definition 7) remain unchanged.

Definition 13. A model for HOL is a tuple M = 〈D, I〉, where D is a frame,
and I is a family of typed interpretation functions mapping constant symbols
pα to appropriate elements of Dα, called the denotation of pα (the logical con-
nectives ¬, ∨, and ∀ are always given the standard denotations, see below).
Moreover, we assume that the domains Dα→α→o contain the respective identity
relations.

Definition 14. The value ‖sα‖M,g of a HOL term sα on a model M = 〈D, I〉
under assignment g is an element d ∈ Dα defined in the following way:

1. ‖pα‖M,g = I(pα)
2. ‖Xα‖M,g = g(Xα)
3. ‖(sα→β tα)β‖M,g = ‖sα→β‖M,g(‖tα‖M,g)
4. ‖(λXα sβ)α→β‖M,g = the function f from Dα to Dβ such that f(d) =

‖sβ‖M,g[d/Xα] for all d ∈ Dα

5. ‖(¬o→o so)o‖M,g = T if and only if ‖so‖M,g = F
6. ‖((∨o→o→o so) to)o‖M,g = T if and only if ‖so‖M,g = T or ‖to‖M,g = T
7. ‖(∀(α→o)→o(λXα so))o‖M,g = T if and only if for all d ∈ Dα we have

‖so‖M,g[d/Xα] = T

The definition for standard and Henkin models (Definition 9), and for truth in a
model, validity, etc. (Definition 10) are adapted in the obvious way, and we use
the notation M, g |= so, |= so. Moreover, we write Γ |= Δ (for sets of formulas
Γ and Δ) if and only if there is a model M = 〈D, I〉 and an assignment g such
that M, g |= so for all so ∈ Γ and M, g |= to for at least one to ∈ Δ. As for
HOML, we assume Henkin semantics in the remainder.

38 C. Benzmüller and B.W. Paleo

3.2 Semantic Embedding

Before we now present the embedding of HOML in HOL a clarifying remark
concerning flexible and rigid constant symbols is required.

Remark 1. In Definition 6, constants are assumed to be flexible, because their
interpretations may depend on worlds. A constant pα is said to be rigid if it
has the same interpretation in all worlds (i.e. there exists d ∈ Dα such that for
all worlds w, Iw(pα) = d). For the sake of simplicity, we assume from now on
(except in Sect. 5.4) that for every type α different from o, all constant symbols
pα are rigid. With this assumption, we may work with a non-world-indexed
interpretation function I for types different from o. Clearly, I is then chosen so
that I(pα) = Iw(pα) for all w and for all pα.

The encoding of HOML in HOL is simple: we identify HOML formulas of type
o with certain HOL formulas (predicates) of type ι → o. The HOL type ι → o
is abbreviated in the remainder as σ.

Definition 15. We define for each HOML type α ∈ T the associated raised
HOL type �α� as follows:

�μ� = μ

�o� = σ = ι → o

�α → β� = �α� → �β�

Hence, all HOML terms are rigid, except for those of type o.

Definition 16. HOML terms sα are associated with type-raised HOL terms
�sα� in the following way:

�pα� = p�α�

�Xα� = X�α�

�(sα→β tα)� = (�sα→β� �tα�)
�(λXα sβ)� = (λ�Xα� �sβ�)
�(¬o→o so)� = (¬̇σ→σ �sα�)

�((∨o→o→o so) to)� = ((∨̇σ→σ→σ �sα�) �tα�)
�((∀(α→o)→o (λXα sβ)� = (∀̇(α→σ)→σ (λ�Xα� �sβ�)

�(�o→o so)� = (�̇σ→σ �sα�)

where ¬̇, ∨̇, ∀̇, and �̇ are the type-raised modal HOL connectives associated
with the corresponding modal HOML connectives. They are defined as follows
(where rι→ι→o is a new constant symbol in HOL associated with the accessibility
relation R of HOML):

¬̇σ→σ = λsσ λWι ¬ (s W)

∨̇σ→σ→σ = λsσ λtσ λWι s W ∨ t W

Higher-Order Modal Logics: Automation and Applications 39

∀̇(α→σ)→σ = λsα→σ λWι ∀Xα s X W

�̇σ→σ = λsσ λWι ∀Vι ¬(rι→ι→o W V) ∨ s V

As before, we write ∀̇Xα sσ as shorthand for ∀̇(α→σ)→σ(λXα sσ). Further
operators, such as �̇, ⊥̇, ∧̇, ⊃̇, ≡̇, ♦̇, and ∃̇ (∃̇Xα sσ is used as shorthand
for ∃̇(α→σ)→σ(λXα sσ)) can now be easily defined. Moreover, we can define
further modal operators, such as the difference modality D, the global modality
E, nominals with !, and the @ operator (cf. [21]). The above equations can be
treated as abbreviations in HOL theorem provers. Alternatively, they can be stated
as axioms where = is either Leibniz equality or primitive equality (if additionally
provided in the HOL grammar, as is the case for most modern HOL provers).

As a consequence of the above embedding we can express HOML proof prob-
lems elegantly in the type-raised syntax of HOL. By rewriting or expanding
definitions, we can reduce these representations to corresponding statements
containing only the basic HOL connectives ¬o→o, ∨o→o→o, and ∀(α→o)→o.

Example 1. The HOML formula �∃Pμ→o P aμ is associated with the type raised
HOL formula �̇ ∃̇Pμ→σ P aμ, which rewrites into the following βη-normal HOL
term of type σ

λWι ∀Vι ¬(r W V) ∨ ¬∀Pμ→σ ¬(P aμ V)

Next, we define validity of type-raised modal HOL propositions sσ in the obvious
way: sσ is valid if and only if for all possible worlds wι we have wι ∈ sσ, that
is, if and only if (sσ wι) holds.

Definition 17. Validity is modeled as an abbreviation for the following λ-term:

valid = λsι→o∀Wι s W

(alternatively, we could define validity simply as ∀(ι→o)→o). Instead of valid sσ

we also use the notation [sσ].

Example 2. We analyze whether the type raised modal HOL formula
�̇ ∃̇Pμ→σ (P aμ) is valid or not. For this, we formalize the HOL proof problem
[�̇ ∃̇Pμ−→σ (P aμ)], which expands into ∀Wι ∀Vι ¬(r W V) ∨ ¬∀Pμ→σ ¬
(P aμ V). It is easy to check that this term is valid in Henkin semantics: put
P = λXμλYι.�.

3.3 Soundness and Completeness

Theorem 1. (Soundness and Completeness). For all HOML formulas so

we have:

|= so if and only if |=[�so�]

40 C. Benzmüller and B.W. Paleo

Proof sketch: The proof adapts the ideas presented in [21]. By contraposition it
is sufficient to show �|= so if and only if �|= [�so�], that is, ‖so‖M,g,w (for some
HOML model M , assignment g, and w) if and only if ‖∀Wι �so� W‖M,g (for
some HOL model M and assignment g) if and only if ‖�so� W‖M,g[w/W] (for
some M , g, and w). We easily get the proof by choosing the obvious correspon-
dences between D and D, W and Dι, I and I, g and g, R and rι→ι→o, and w
and w. �

From Theorem 1 we, for example, get the following corollaries:

|=KB so if and only if (symmetric rι→ι→o) |= [�so�]

|=S5 so if and only if (equiv-rel rι→ι→o) |= [�so�]

where symmetric and equiv-rel are defined in an obvious way. Analogous
corollaries can be stated for other normal modal logics including, for example,
KD and S4.

3.4 Logic Variations

The semantics of a higher-order modal logic depends on subtle and often implicit
assumptions. In the following two subsubsections, we explicitly discuss which
assumptions have been made in the previous sections and how different choices
would lead to different higher-order modal logics.

Constant, Varying and Cumulative Domains. In the previous sections we
have focused on quantification over constant domains, which assumes that all
individuals in Dμ actually exist in all worlds. Alternatively, quantified modal
logics may also use quantification over varying domains, which assumes that the
subset of individuals actually existing in a world w may depend on w.

Techniques for handling varying domain quantification in the embedding of
first-order modal logics in HOL have been outlined in [17], and they can be
extended to higher-order modal logics as well. For this, the following modifica-
tions are required:

1. The definition of ∀̇ (for type (μ → σ) → σ, which encodes first-order quantifica-
tion, is modified as follows: ∀̇ = λsμ�σ λwι ∀xμ ExistsInWx w ⊃ s x w,
where the relation ExistsInWμ�ι�o (for ’Exists in world’) relates individuals
with worlds. The sets {x | ExistsInWx w} are the possibly varying individ-
ual domains associated with the worlds w.

2. A non-emptiness axiom for these individual domains is added:
∀wι∃xμExistsInWx w.

3. For each individual constant symbol c in the proof problem an axiom
∀wι ExistsInW c w is postulated; these axioms enforce the designation of c
in the individual domain of each world w. Analogous designation axioms are
required for function symbols.

Higher-Order Modal Logics: Automation and Applications 41

Modifications 1–3 adapt the HOL approach to varying domains. For the special
case of cumulative domains, in which the varying domains are assumed to be
increasing along the accessibility relation r , an additional modification is needed:

4. The axiom ∀xμ ∀vι ∀wι ExistsInWx v ∧ r v w ⇒ ExistsInWx w is
added.

If we were using a richer higher-order logic with not only simple types but
also dependent types, we could achieve varying domains without using existence
predicates, by making the type of individuals depend on worlds.

Rigidity and Flexibility. In the previous sections, it is assumed that all terms
(except terms of boolean type) are rigid : independent of the world. The alterna-
tive option of flexible terms can be easily handled by type-raising. For example,
a flexible HOML constant symbol kingOfFranceμ would be mapped to a type-
raised (and thus world-dependent) HOL constant symbol kingOfFranceι→μ.
Higher-order modal logics with flexible terms may, for example, be useful for
dealing with certain kinds of inconsistency, as discussed in Sect. 5.4.

4 Reasoning Tools for Higher-Order Modal Logic

The above approach to automate HOML in HOL can be employed in combina-
tion with any ATP system that is sound and (possibly) complete for HOL with
Henkin semantics. The embeddings approach is particularly simple to imple-
ment, because it does not require any modification in the source code of the
HOL prover.

4.1 TPTP thf0-compliant Reasoning Tools

An encoding of second-order modal logic KB in HOL using the concrete TPTP
thf0-syntax1 [71] is exemplarily provided in Fig. 1.2 The lifted modal connectives
¬̇, ∨̇, ∧̇, ⊃̇, �̇, ♦̇, ∀̇ and ∃̇ are in this representation called mnot, mor, mand,
mimplies, mbox, mdia, mforall and mexists. Since thf0 does not support
polymorphism, a generic modeling of mforall and mexists is not possible here
and concrete instances of these quantifiers for individuals and sets of individuals
(properties) are provided instead. Of course, further copies of these definitions
could be added and adapted in order to obtain quantifiers for higher-types.
1 thf stands for typed higher-order form and it refers to a family of syntax formats

for higher-order logic. So far only the fully developed thf0 format, for simple type
theory, is in practical use.

2 In thf0, which is a concrete syntax for HOL, $i and $o represent the HOL base
types i and o (Booleans). $i>$o encodes a function (predicate) type. Predicate
application, as in A(X, W), is encoded as ((A@X)@W) or simply as (A@X@W), i.e.,
function/predicate application is represented by @; universal quantification and λ-
abstraction as in λAi→o∀Wi(A W) and are represented as in ^[X:$ i>$ o]:![W:$

i]:(A@W); comments begin with %.

42 C. Benzmüller and B.W. Paleo

The given set of axioms turns any thf0-compliant HOL-ATP in a reason-
ing tool for second-order modal logic KB. Examples for thf0-compliant provers
are LEO-II [12], Satallax [30], Isabelle [54], agsyHOL [50], HOLyHammer [48],
cocATP and Nitpick [28]. Nitpick is specialized in (counter-)model finding. The
other systems are in the first place theorem provers, although Satallax and LEO-
II may occasionally also find countermodels for given non-valid conjectures.

The thf0-encoding from Fig. 1 has been applied and tested with the provers
LEO-II, Satallax and Nitpick in the context of our work on the ontological

Fig. 1. HOL encoding of second-order modal logic KB in thf0-syntax. Modal formulas
are mapped to HOL predicates (with type $i>$o); type $i now stands for possible
worlds. The modal connectives ¬ (mnot), ∨ (mor) and � (mbox), universal quantification
for individuals (mall ind) and for sets of individuals (mall indset) are introduced in
lines 7–18. Validity of lifted modal formulas is defined in the standard way (lines 20–21).
Symmetry of accessibility relation r is postulated in lines 23–26. Hence, second-order
KB is realized here; for logic K the symmetry axiom can be dropped.

Higher-Order Modal Logics: Automation and Applications 43

Fig. 2. TPTP thf0-encoding of theorem T3 in Scott’s adaptation (see also Fig. 11) of
Gödel’s ontological argument [19,65].

44 C. Benzmüller and B.W. Paleo

argument for the existence of God [19]; more on this study will be provided in
Sect. 5.3. Figure 2 presents a most prominent proof problem from these stud-
ies in thf0-syntax. In Fig. 2 an improved (but more spacious) formatting is
employed; such a formatting can easily be obtained with the help of the TPTP2X
or TPTP4X tools of Sutcliffe’s SystemOnTPTP infrastructure [70].

In the context of first-order modal logic (FML) theorem proving, the FMLto-
HOL tool [23] has been developed, which converts problems in FML, formulated
in qmf-syntax [63] (which extends the TPTP fol-syntax [70] with operators
#box and #dia), into HOL problems in thf0-syntax. FMLtoHOL automatically
transforms constant domain FML problems in corresponding HOL problems [21].
The tool has been extended to also support varying and cumulative domains.
At present FMLtoHOL supports modal logics from L := {K,K4,D,D4,T,S4,S5}.

The FMLtoHOL tool has been exemplarily applied in combination with a
meta-prover for HOL. This meta-prover exploits the SystemOnTPTP infrastruc-
ture [70] and sequentially schedules the HOL reasoners LEO-II, Satallax,
Isabelle, agsyHOL and Nitpick. The system has been evaluated with respect
to 580 benchmark problems in the QMLTP library [63]. As a side contribution,
the complete translation of the QMLTP library (for all logics in L, all different
domain conditions, and both options as explained in (C)) into HOL (resp. thf0)
resulted in 7 × 3 × 2 × 580 = 24360 new problems.3

Experiments [23] show that the FMLtoHOL approach to automate FMLs is
very competitive. Regarding the combined performance (number of proved or
refuted problems) the HOL approach performed best in this study.

4.2 Interactive Proof Assistants – Isabelle

The TPTP THF embedding of HOML is very useful for flexible proof automation
of HOML with off-the-shelf HOL-ATPs. Unfortunately, however, it is not partic-
ularly well suited for enabling user interaction at an intuitive abstraction level.
In this subsection we therefore briefly illustrate how the embedding of HOML
can be encoded and exploited in the interactive proof assistant Isabelle/HOL.
A very useful tool of Isabelle/HOL is Sledgehammer [27], which connects the
Isabelle core system with external ATPs, including remote calls to the LEO-II
and Satallax provers running at the SystemOnTPTP infrastructure in Miami.

An embedding of HOML with constant domain semantics in Isabelle/HOL
is presented in the upper part of Fig. 3, which displays the content of an Isabelle
theory file named QML.thy.4 Note that in the definition of mforall and mexists
a type variable ‘a is used. Thus, in contrast to the non-polymorphic TPTP
THF encoding of second-order modal logic from above, polymoprhic quantifiers
are introduced here to obtain full HOML. Additional quantifiers for varying
domains can easily be added, this is illustrated in the lower part of Fig. 3.5

3 The 3480 problems for logic S4 can be download from http://christoph-benzmueller.
de/papers/THF-S4-ALL.zip.

4 See file QML.thy available at https://github.com/FormalTheology/GoedelGod/blob/
master/Formalizations/Isabelle/.

5 See file QML var.thy at the github url from above.

http://christoph-benzmueller.de/papers/THF-S4-ALL.zip
http://christoph-benzmueller.de/papers/THF-S4-ALL.zip
https://github.com/FormalTheology/GoedelGod/blob/master/Formalizations/Isabelle/
https://github.com/FormalTheology/GoedelGod/blob/master/Formalizations/Isabelle/

Higher-Order Modal Logics: Automation and Applications 45

An obvious advantage of Isabelle is its comparably good notation support in the
user interface. The connectives mnot, mor, mand, mimplies, mbox, mdia,
mforall and mexists are displayed here as m¬, m∨, m∧, m→, �, ♦, ∀ and ∃.

Figure 4 exemplarily displays the development of Gödel’s ontological argu-
ment (in Scott’s version, cf. Fig. 11) in Isabelle/HOL. Varying domain quantifiers
for individuals are employed in this particular encoding; see e.g. the occurrence
of ∀e in Axiom A2 and the occurrence of ∃e in Theorem T3. Note that the
second-order quantifier ∀, as used for instance in T1, is a constant domain quan-
tifier. Hence, we here illustrate the flexibility of the embeddings approach, in
which we can even easily mix different types of quantifiers. Note that proofs in
Fig. 4 are fully automatic; here Isabelle’s Metis prover is used. However, Metis
has to be called here with the appropriate assumptions. When using Sledgeham-
mer instead, for example, in combination with LEO-II, Satallax or other ATPs,
the respective assumptions can be avoided in the Sledgehammer call and will be
automatically determined.

4.3 Interactive Proof Assistants – Coq

We have already seen how the embedding approach is flexible and effective for
fully automated reasoning. However, one may wonder whether the embedding
approach is adequate also for intuitive interactive reasoning, when the user
proves theorems by interacting with a proof assistant such as Coq. In this section,
we study this question, and show that the answer is positive.

One major concern is whether the embedding could be a disturbance to the
user. Fortunately, by using Coq’s Ltac tactic language, we are able to define
intuitive new tactics that hide the technical details of the embedding from the
user. The resulting infra-structure for modal reasoning within Coq provides a user
experience where modalities can be handled transparently and straightforwardly.
Therefore, a user with basic knowledge of modal logics and Coq’s tactics should
be able to use (and extend) our implementation with no excessive overhead. It
should be straightforward to analogously implement respective tactics in other
interactive proof assistants, including Isabelle/HOL.

As before, the first step in the shallow embedding of modal logics is the
declaration of a type for worlds. Modal propositions are then not of type Prop
but of a lifted type o that depends on possible worlds (o corresponds to σ in the
Isabelle/HOL encoding from before):

Parameter i: Type. (* Type for worlds *)
Parameter u: Type. (* Type for individuals *)
Definition o := i -> Prop. (* Type of modal propositions *)

Possible worlds are connected by an accessibility relation, which can be repre-
sented in Coq by a parameter r, as follows:

Parameter r: i -> i -> Prop. (* Accessibility relation for worlds *)

46 C. Benzmüller and B.W. Paleo

Fig. 3. Isabelle/HOL embedding of HOML K (above), and the subsequent extension
of this theory by varying domain quantifiers ∀e and ∃e for individuals.

As before, all modal connectives are simply lifted versions of the usual logical
connectives. Notations are used to allow the modal connectives to be used as
similarly as possible to the usual connectives. As before, the prefix “m” is used
to distinguish the modal connectives: if � is a connective on type Prop, m� is a
connective on the lifted type o of modal propositions.

Higher-Order Modal Logics: Automation and Applications 47

Definition mnot (p: o)(w: i) := ~ (p w).
Notation"m~ p" := (mnot p) (at level 74, right associativity).

Definition mand (p q:o)(w: i) := (p w) /\ (q w).
Notation "p m/\ q" := (mand p q) (at level 79, right associativity).

Definition mor (p q:o)(w: i) := (p w) \/ (q w).
Notation "p m\/ q" := (mor p q) (at level 79, right associativity).

Definition mimplies (p q:o)(w:i) := (p w) -> (q w).
Notation "p m-> q" := (mimplies p q) (at level 99, right associativity).

Definition mequiv (p q:o)(w:i) := (p w) <-> (q w).
Notation "p m<-> q" := (mequiv p q) (at level 99, right associativity).

Definition mequal (x y: u)(w: i) := x = y.
Notation "x m= y" := (mequal x y) (at level 99, right associativity).

Fig. 4. Scott’s version of Gödel’s ontological argument encoded and proved in
Isabelle/HOL. Varying domain quantifiers for individuals are mixed with constant
domain quantifiers for properties of individuals.

48 C. Benzmüller and B.W. Paleo

Likewise, modal quantifiers are lifted versions of the usual quantifiers. Coq’s type
system with dependent types is particularly helpful here. The modal quantifiers
A and E are defined as depending on a type t. Therefore, they can quantify over
variables of any type. Moreover, the curly brackets indicate that t is an implicit
argument that can be inferred by Coq’s type inference mechanism. This allows
notations6 (i.e. mforall and mexists) that mimic the notations for Coq’s usual
quantifiers (i.e. forall and exists).
Definition A {t: Type}(p: t -> o)(w: i) := forall x, p x w.
Notation "’mforall’ x , p" := (A (fun x => p))

(at level 200, x ident, right associativity) : type_scope.
Notation "’mforall’ x : t , p" := (A (fun x:t => p))

(at level 200, x ident, right associativity,
format "’[’’mforall’’/’ x : t ,’/’ p’]’")

: type_scope.

Definition E {t: Type}(p: t -> o)(w: i) := exists x, p x w.
Notation "’mexists’ x , p" := (E (fun x => p))

(at level 200, x ident, right associativity) : type_scope.
Notation "’mexists’ x : t , p" := (E (fun x:t => p))

(at level 200, x ident, right associativity,
format "’[’’mexists’’/’ x : t ,’/’ p’]’")

: type_scope.

The modal operators ♦ (possibly) and � (necessarily) are defined accordingly
to their meanings in the possible world semantics. �p holds at a world w iff p
holds in every world w1 reachable from w. ♦p holds at world w iff p holds in
some world w1 reachable from w.
Definition box (p: o) := fun w => forall w1, (r w w1) -> (p w1).
Definition dia (p: o) := fun w => exists w1, (r w w1) /\ (p w1).

A modal proposition is valid iff it holds in every possible world. This notion of
modal validity is encoded by the following defined predicate:
Definition V (p: o) := forall w, p w.

To prove a modal proposition p (of type o) within Coq, the proposition (V p)
(of type Prop) should be proved instead. To increase the transparency of the
embedding to the user, the following notation is provided, allowing [p] to be
written instead of (V p).
Notation "[p]" := (V p).

Interactive theorem proving in Coq, and likewise in other interactive proof
assistants, is usually done with tactics, imperative commands that reduce the
theorem to be proven (i.e. the goal) to simpler subgoals, in a bottom-up manner.
The simplest tactics can be regarded as rules of a natural deduction calculus7

6 The keyword fun indicates a lambda abstraction: fun x => p (or fun x:t => p)
denotes the function λx : t.p, which takes an argument x (of type t) and returns p.

7 The underlying proof system of Coq (the Calculus of Inductive Constructions (CIC)
[57]) is actually more sophisticated and minimalistic than the calculus shown in
Fig. 5. But the calculus shown here suffices for the purposes of this tutorial. This
calculus is classical, because of the double negation elimination rule. Although CIC
is intuitionistic, it can be made classical by importing Coq’s classical library, which
adds the axiom of the excluded middle and the double negation elimination lemma.

Higher-Order Modal Logics: Automation and Applications 49

(e.g. as those shown in Fig. 5). For example: the intro tactic can be used to
apply the introduction rules for implication and for the universal quantifier; the
apply tactic corresponds to the elimination rules for implication and for the
universal quantifier; split performs conjunction introduction; exists can be
used for existential quantifier introduction and destruct for its elimination.

To maximally preserve user intuition in interactive modal logic theorem prov-
ing, the embedding via the possible world semantics should be as transparent
as possible to the user. Fortunately, the basic Coq tactics described above auto-
matically unfold the shallowest modal definition in the goal. Therefore, they can
be used with modal connectives and quantifiers just as they are used with the
usual connectives and quantifiers. The situation for the new modal operators,
on the other hand, is not as simple, unfortunately.

Since the modal operators are, in our embedding, essentially just abbre-
viations for quantifiers guarded by reachability conditions, the typical tactics
for quantifiers can be used, in principle. However, this exposes the user to the
technicalities of the embedding, requiring him to deal with possible worlds and

⊥
A

⊥E
B

A ⊃ B
⊃I

A
n

....
B

A ⊃ B
⊃n

I
A A ⊃ B

B
⊃E

¬¬A
A

¬¬E
A B
A ∧ B

∧I
A ∧ B

A
∧E1

A ∧ B
B

∧E2

A ∨ B

A....
C

B....
C

C
∨E

A
A ∨ B

∨I1
B

A ∨ B
∨I2

A[α]

∀xτ .A[x]
∀I

∀xτ .A[x]

A[t]
∀E

A[t]

∃xτ .A[x]
∃I

∃xτ .A[x]

A[α]
....
C

C
∃E

α must respect the usual eigen-variable conditions.

¬A is an abbreviation for A ⊃ ⊥.

Rules for αβη-equality and axioms (or rules) for extensionality are omitted here since
they are not important for the rest of the tutorial. For a full, sound and Henkin-complete,
classical higher-order natural deduction calculus, see [16].

Fig. 5. Rules of a (classical) natural deduction calculus

50 C. Benzmüller and B.W. Paleo

their reachability explicitly. In order to obtain transparency also for the modal
operators, we can implement the following specialized tactics using Coq’s Ltac
language.

When applied to a goal of the form ((box p) w0), the tactic box i will
introduce a fresh new world w and then introduce the assumption that w is
reachable from w0. The new goal will be (p w).

Ltac box_i := let w := fresh "w" in let R := fresh "R"
in (intro w at top; intro R at top).

If the hypothesis H is of the form ((box p) w0) and the goal is of the form
(q w), the tactic box e H H1 creates a new hypothesis H1: (p w). The tactic
box elim H w1 H1 is an auxiliary tactic for box e. It creates a new hypothesis
H1: (p w1), for any given world w1, not necessarily the goal’s world w. It is also
responsible for automatically trying (by assumption) to solve the reachability
guard conditions, releasing the user from this burden.

Ltac box_elim H w1 H1 := match type of H with
((box ?p) ?w) => cut (p w1);

[intros H1 | (apply (H w1); try assumption)] end.

Ltac box_e H H1:= match goal with | [|- (_ ?w)] => box_elim H w H1 end.

If the hypothesis H is of the form ((dia p) w0), the tactic dia e H generates a
new hypothesis H: (p w) for a fresh new world w reachable from w0.

Ltac dia_e H := let w := fresh "w" in let R := fresh "R" in
(destruct H as [w [R H]]; move w at top; move R at top).

The tactic dia i w transforms a goal of the form ((dia p) w0) into the simpler
goal (p w) and automatically tries to solve the guard condition that w must be
reachable from w0.

Ltac dia_i w := (exists w; split; [assumption | idtac]).

If the new modal tactics above are regarded from a natural deduction point of
view, they correspond to the inference rules shown in Fig. 6. Because of this
correspondence and the Henkin-completeness of the modal natural deduction
calculus8, the tactics allow the user to prove any valid modal formula without
having to unfold the definitions of the modal operators.

The labels that name boxes in the inference rules of Fig. 6 are precisely the
worlds that annotate goals and hypotheses in Coq with the modal embedding.
A hypothesis of the form (p w), where p is a modal proposition of type o and w
is a world of type i indicates that p is an assumption created inside a box with
name w.
8 The natural deduction calculus with the rules from Figs. 5 and 6 is sound and com-

plete relatively to the calculus of Fig. 5 extended with a necessitation rule and the
modal axiom K [67]. Starting from a sound and Henkin-complete natural deduction
calculus for classical higher-order logic (cf. Fig. 5), the additional modal rules in
Fig. 6 make it sound and Henkin-complete for the rigid higher-order modal logic K.

Higher-Order Modal Logics: Automation and Applications 51

ω :

....
A

�A
�I

�A

w :

A....

�E
�A

ω :

A....

�E

w :

....
A

�A
�I

eigen-box condition:
�I and �E are strong modal rules:

ω must be a fresh name for the box they access
(in analogy to the eigen-variable condition for strong quantifier rules).
Every box must be accessed by exactly one strong modal inference.

boxed assumption condition:
assumptions should be discharged within the box where they are created.

Fig. 6. Rules for modal operators

Finally, the tactic mv, standing for modal validity, replaces a goal of the form
[p] (or equivalently (V p)) by a goal of the form (p w) for a fresh arbitrary
world w.
Ltac mv := match goal with [|- (V _)] => intro end.

In order to illustrate the tactics described above, we show Coq proofs for two
simple but useful modal lemmas. The first lemma resembles modus ponens, but
with formulas under the scope of modal operators.
Lemma mp_dia:

[mforall p, mforall q, (dia p) m-> (box (p m-> q)) m-> (dia q)].
Proof. mv.
intros p q H1 H2. dia_e H1. dia_i w0. box_e H2 H3. apply H3. exact H1.
Qed.

The proof of this lemma is displayed as a natural deduction proof in Fig. 7.
As expected, Coq’s basic tactics (e.g. intros and apply) work without modifi-
cation. The intros p q H1 H2 tactic application corresponds to the universal
quantifier and implication introduction inferences in the bottom of the proof. The
apply H3 tactic application corresponds to the implication elimination inference.
The ♦E , ♦I and �E inferences correspond, respectively, to the dia e H1, dia i
w0 and box e H2 H3 tactic applications. The internal box named w0 is accessed
by exactly one strong modal inference, namely ♦E .

The same lemma could be proved without the new modal tactics, as shown
below. But this is clearly disadvantageous, for several reasons: the proof script
becomes longer; the definitions of modal operators must be unfolded, either
explicitly (as done below) or implicitly in the user’s mind; tactic applications
dealing with modal operators cannot be easily distinguished from tactic applica-
tions dealing with quantifiers; and hypotheses about the reachability of worlds
(e.g. R1 below) must be handled explicitly. In summary, without the modal tac-
tics, a convenient and intuitive correspondence between proof scripts and modal
natural deduction proofs would be missing.

52 C. Benzmüller and B.W. Paleo

Fig. 7. Natural deduction proof of mp dia

Lemma mp_dia_alternative:
[mforall p, mforall q, (dia p) m-> (box (p m-> q)) m-> (dia q)].

Proof. mv.
intros p q H1 H2. unfold dia. unfold dia in H1. unfold box in H2.
destruct H1 as [w0 [R1 H1]]. exists w0. split.

exact R1.
apply H2.

exact R1.
exact H1.

Qed.

The second useful lemma allows negations to be pushed inside modalities, and
again the modal tactics allow this to be proved conveniently and elegantly.

Lemma not_dia_box_not: [mforall p, (m~ (dia p)) m-> (box (m~ p))].
Proof. mv.
intro p. intro H. box_i. intro H2. apply H. dia_i w0. exact H2.
Qed.

The embedding and the new tactics allow convenient interactive reasoning for
modal logic K within Coq. The axiom K is easily derivable:

Theorem K:
[mforall p, mforall q, (box (p m-> q)) m-> (box p) m-> (box q)].

Proof. mv.
intros p q H1 H2. box_i. box_e H1 H3. apply H3. box_e H2 H4. exact H4.
Qed.

For other modal logics beyond K, their frame conditions, which constrain the
reachability relation, must be stated as Coq axioms.

Axiom reflexivity: forall w, r w w.

Axiom transitivity: forall w1 w2 w3, (r w1 w2) -> (r w2 w3) -> (r w1 w3).

Axiom symmetry: forall w1 w2, (r w1 w2) -> (r w2 w1).

Hilbert-style modal logic axioms, such as for example T, can be easily derived
from their corresponding frame conditions:

Theorem T: [mforall p, (box p) m-> p].
Proof. mv.
intro p. intro H. box_e H H1. exact H1. apply reflexivity.
Qed.

Higher-Order Modal Logics: Automation and Applications 53

In a strong modal logic such as S5 (which requires all three frame conditions
specified above), sequences of modal operators can be collapsed to a single modal
operator. One such collapsing principle is specified and proven below. By apply-
ing it iteratively, any sequence ♦ . . . ♦�p could be collapsed to �p.

Theorem dia_box_to_box: [mforall p, (dia (box p)) m-> (box p)].
Proof. mv.
intros p H1. dia_e H1. box_i. box_e H1 H2. exact H2. eapply transitivity.

apply symmetry. exact R.
exact R0.

Qed.

It should be easily possible to analogously define corresponding HOML tactics
within other interactive proof assistants, including Isabelle/HOL.

5 Applications

Propositional and quantified modal logics have (potential) applications in vari-
ous fields, including, for instance, philosophy, verification, artificial intelligence
agent technologies, law and linguistics (cf. [26] and the references therein). There-
fore, the techniques described in these lecture notes – convenient embeddings for
leveraging higher-order automated theorem provers and proof assistants for rea-
soning within and about modal logics – may serve as a starting point for many
interesting projects, as illustrated in the following subsections.

5.1 Description Logics

Given that the embeddings approach can handle higher-order modal logics it is
not surprising that the approach is also applicable to prominent description log-
ics. For example, an Isabelle/HOL embedding of the prominent description logic
ALC [11], see Fig. 8, is presented in Fig. 9. Note in particular the close correspon-
dence between the embeddings of the ALC connectives and their corresponding
semantical characterisations in Fig. 8.

Moreover, in Fig. 9 we present a simple reasoning example. Here we are
interested to check whether the concept (∃married Human) subsumes the con-
cept HappyMan which is defined in the displayed TBox as HappyMan .=
Human � ∼Female � (∃married Doctor) � (∀hasChild(Doctor � Professor))

In Fig. 10 we exemplarily prove the soundness of the standard ALC tableau
rules, and we also show the correspondence between ALC and the propositional
modal logic K. Note that in the embedding of propositional modal logic we
here work with generic box and diamond operators which receive as first argu-
ment their accessibility relation r (of course, we could have done this also in
the previous sections of these lecture notes). Apparently, from the perspective of
the embeddings approach, the correspondence between ALC and propositional
modal logic K becomes entirely trivial, essentially just a syntax variation. And
this is exactly what the relationship between the two logics actually is.

54 C. Benzmüller and B.W. Paleo

Syntax Semantics Description Example

A AI ⊆ ΔI atomic concept Human, Female, . . .
r rI ⊆ ΔI × ΔI binary relation married, . . .
⊥ ∅ empty concept

 ΔI universal concept

∼A ΔI \ AI complement ∼ Female
A � B AI ∪ BI disjunktion Female � Male
A � B AI ∩ BI conjunction Female � Human
∃r C {x|∃y.rI(x, y) ∧ CI(y)} existential role restriction ∃married Female
∀r C {x|∀y.rI(x, y) → CI(y)} universal role restriction ∀ married Female

A � B AI ⊆ BI B subsumes A Doctor � Human
A

.
= B AI � BI and BI � AI A defined by B Parent

.
=

Human �
∃hasChild Human

Fig. 8. Description logic ALC

5.2 Expressive Ontologies and Context

The study of notions of context has a long history in philosophy, linguis-
tics, and artificial intelligence. In artificial intelligence, a major motivation
has been to resolve the problem of generality of computer programs as iden-
tified by McCarthy [51]. The generality aspect of context scrutinizes flexible
combinations (nestings) of contexts in combination with rich context descrip-
tions. Giunchiglia [40] additionally emphasizes the locality aspect and the need
for structured representations of knowledge. The locality aspect is particularly
important for large knowledge bases, where the challenge is to effectively identify
and access information that is relevant within a given reasoning context.

Different approaches to formalizing and mechanizing context have been pro-
posed in the last decades. Many of these are outlined in the literature [1,3,66].
McCarthy [52] has pioneered the modeling of contexts as first class objects
(in first-order logic) and he introduced the predicate ist. For example, in his
approach the expression ist(context of(“Ben’s Knowledge”), likes(Sue, Bill))
encodes that proposition Sue likes Bill is true in the context of Ben’s knowl-
edge. A motivation for McCarthy’s approach is actually to avoid modal logics
(here for the modeling of Ben’s knowledge). His line of research has been fol-
lowed by a number of researchers, including, for example, Guha (who has put
contexts into Cyc), Buvac and Mason [31,44]. Also Giunchiglia and Serafini [41]
avoid modal logics and propose the use of so called multilanguage systems. They
show various equivalence results to common modal logics, but they also discuss
several properties of multilanguage systems not supported in modal logics.

All of the above approaches avoid a higher-order perspective on context.
However, we think that a solid higher-order perspective on context can be very
valuable for various reasons. On the theory side the twist between formalisms
based on modal logic and formalisms based on first-order logic seems to dissolve,

Higher-Order Modal Logics: Automation and Applications 55

Fig. 9. Embedding of ALC in HOL

since both modal logics (and other non-classical logics) and first-order logics are
just natural fragments of HOL. Moreover, modal (and other) contexts can be
elegantly combined and nested in HOL, so that a flexible solution to McCarthy’s
generality problem appears in reach. Also the locality aspect can be addressed.
The means for this is provided by relevance filtering and premise selection [4,49].

Expressive ontologies such as the Suggested Upper Merged Ontology
SUMO [58] or CYC [62] already contain a small but significant number of
higher-order representations, cf. [22]. Most importantly, they employ embed-
ded formulas (formulas at term positions), and these constructs are in fact used
for modeling contexts as proposed by McCarthy, including temporal, epistemic,
or doxastic contexts. The basic idea for modeling such contexts, for example, in

56 C. Benzmüller and B.W. Paleo

Fig. 10. Various meta-results on ALC in HOL

SUMO is simple. A statement like (loves Bill Mary) is restricted, for instance,
to the year 2009 by wrapping it (at subterm level) into respective context infor-
mation:

(holdsDuring (Y earFn 2009) (loves Bill Mary))

Similarly, the statement can be put into an epistemic or doxastic context:

(knows/believes Ben (loves Bill Mary))

Higher-Order Modal Logics: Automation and Applications 57

Moreover, contexts can be flexibly combined and the embedded formulas may
be complex:

(believes Bill (knows Ben (forall(?X) ((woman?X) => (loves Bill ?X))))

The similarity to McCarthy’s approach is obvious.
Another higher-order construct used in SUMO is the set (or class) constructor

KappaFn. It takes two arguments, a variable and a formula, and returns the set
(or class) of things that satisfy the formula. Moreover, SUMO allows the use of
relation and function variables.

A crucial requirement in the context of SUMO and similar expressive ontolo-
gies thus is to support flexible context reasoning in combination with other first-
order and even higher-order reasoning aspects. A particular challenge thereby is
to appropriately handle modal contexts, since their naive treatment may easily
lead to incorrect respectively unintuitive reasoning results. As a solution we pro-
pose to encode SUMO axioms as axioms in HOML and to apply the embeddings
approach to automate reasoning for SUMO. We will outline this proposal in the
remainder of this section.

To illustrate the reasoning with modal contexts in SUMO we consider an
example. In this example we want to answer query (C1) from axiom (A1):

(holdsDuring (Y earFn 2009) (and(likes Mary Bill) (likes Sue Bill))) (A1)

(holdsDuring (Y earFn 2009) (likes ?X Bill)) (C1)

The challenge is to reason about the embedded formulas within the temporal con-
text (holdsDuring (YearFn 2009) . . .). In our example, the embedded formula in the
query does not match the embedded formula in the premise, however, it is infer-
able from it. The first-order quoting technique for reasoning with such embedded
formulas presented by Pease and Sutcliffe [59], which encodes embedded formu-
las as strings, fails for this query. There are possible further “tricks” though
which could eventually be applied. For example, we could split axiom (A1) in a
pre-processing step into (holdsDuring (YearFn 2009) (likes Mary Bill)) and (holds-

During (YearFn 2009) (likes Sue Bill)). However, such simple tricks quickly reach
their limits when considering more involved embedded reasoning problems. The
following modification of our example illustrates the challenge:

(holdsDuring ?Y (likes Mary Bill)) (A2)

(holdsDuring (YearFn 2009) (forall (?X)(=>(likes Mary ?X) (likes Sue ?X))))

(A3)

(holdsDuring (YearFn ?Y) (likes Sue ?X)) (C2)

The embedded quantified formula in this example well illustrates that the reason-
ing tasks may quickly become non-trivial for approaches based on translations
to first-order logic.

58 C. Benzmüller and B.W. Paleo

In the above examples we have (silently) assumed that the semantics of the
logic underlying SUMO is a classical, bivalent logic, meaning that Boolean exten-
sionality (BE) is valid:

(<=> (<=> ?P ?Q) (equal ?P ?Q)) (BE)

The left to right direction of (BE) says that there are not more than two truth
values, respectively that whenever two formulas A and B can be shown equivalent
then their denotations must be the same, namely either true or false. Once we
have established equivalence between formulas A and B in a bivalent logic, then,
in any formula C in this logic, we may substitute occurrences of A by B (and vice
versa). The important aspect is that this principle not only applies to occurrences
of A or B at formula level but also to occurrences at term level. For example,
(and (likes Mary Bill) (likes Sue Bill)) and (and (likes Sue Bill) (likes Mary Bill)) are
obviously equivalent, and hence, by Boolean extensionality, they have identical
denotations. Thus, they can always be substituted by each other, also at the
term level positions as in this situation:

(holdsDuring (YearFn 2009) (and (likes Mary Bill) (likes Sue Bill))) (A4)

(holdsDuring (YearFn 2009) (and (likes Sue Bill) (likes Mary Bill))) (C3)

Boolean extensionality seems fine for the particular temporal contexts of our
previous examples. In fact, these examples have been chosen to raise the impres-
sion that Boolean extensionality is generally a natural and useful requirement
for SUMO and similar ontologies. However, as we will show next, it quickly leads
to counterintuitive inferences in other modal contexts. We illustrate this for epis-
temic and doxastic contexts. Assume that in given, concrete situation (ABox)
we have:

(knows Chris (equal Chris Chris)) (A5)

(likes Mary Bill) (A6)

(knows Chris (forall (?X) (=> (likes Mary ?X) (likes Sue ?X))) (A7)

(knows Chris (likes Sue Bill)) (C4)

Assuming Boolean extensionality, the query (C4) follows from Axioms (A5)-
(A7), even though we have not explicitly stated the fact (knows Chris (likes

Mary Bill)). Intuitively, however, assuming that Chris actually knows that Mary
likes Bill seems mandatory for enabling the proof of the query. Hence, we here
(re-)discover a well known issue: modalities have to be treated with great care in
classical, bivalent logics.

A solution to this problem is to model SUMO’s modal operators as proper
modalities in HOML respectively in HOL via our embedding approach. That is,
instead of translating SUMO directly into classical logic we propose to translate
SUMO into HOML respectively HOL. This enables the mapping of epistemic

Higher-Order Modal Logics: Automation and Applications 59

contexts like (knowsPeter <whatever>) or doxastic contexts like (believesPeter <

whatever>) to proper modalities in modal logic like �KnowledgePeter <whatever>

and �BelievesPeter <whatever>. The need for quantifiers and for multiple modal-
ities is obvious from our examples so far. We may add respective axioms in
order to appropriately characterize the modalities we obtain and to specify their
interaction. For example, to appropriately characterize �KnowledgePeter as an
epistemic modality we may use the S5 axioms and to characterize �BelievesPeter

as a doxastic modality we may use the S45 axioms. Moreover, an inclusion axiom
between Peter’s knowledge and Peter’s beliefs can be added. Alternatively, we
may postulate corresponding conditions for the respective accessibility relations,
cf. the symmetry condition in lines 37–14 in Fig. 1 for logic KB.

We illustrate the approach with the above example. In order to capture the
ABox-like status of these axioms, we introduce a fresh constant symbol cw (of
world type i) to represent the current situation (as current world). The SUMO
axioms (A5)-(A7) and the query (C4) are now mapped to9

(�KnowledgeChris(equal Chris Chris)) cw) (A5)

((likes Mary Bill) cw) (A6)

((�KnowledgeChris)(forall(?X)(=> (likes Mary ?X) (likes Sue ?X))) cw) (A7)

((�KnowledgeChris)(likes Sue Bill) cw) (C4)

Moreover, appropriate axioms need to be generated and added for each epis-
temic and doxastic modal operator. For example, for the epistemic modality
�KnowledgeChris the following S5 axioms can be added. Since these axioms are
supposed to be valid in all situations (TBox-like information), they are stated
with the validity operator [.].

[∀φμ�o �KnowledgeChris φ ⊃ φ]

[∀φμ�o ♦KnowledgeChris φ ⊃ �KnowledgeChris ♦KnowledgeChris φ]

Alternatively, we may simply postulate reflexivity and seriality for the accessi-
bility relation KnowledgeChris.

Subsequently the above problem can be expanded in the embeddings app-
roach into a proper HOL encoding, and then HOL reasoners can be applied for
proving or refuting it. In fact, the mapped example in HOML is not valid and
HOL-ATPs are able to detect a counter model, which is what we wanted to
achieve. However, if we replace (A6) by (�KnowledgeChris (likes Mary Bill) cw),
then the problem can be quickly proved.

Note that the sketched approach scales for other modal operators in SUMO
besides knows and believes. Most importantly, it even supports their flexible com-
bination and bridge rules can be easily postulated.
9 More elegantly, we could employ an @cw-operator; for example, (A6) would then be

encoded as @cw(likesMaryBill) (see also Sect. 5.4).

60 C. Benzmüller and B.W. Paleo

5.3 Metaphysics

In this subsection we illustrate the use of the embeddings approach for the for-
malization and verification of Scott’s version [65] of Gödel’s ontological argument
for God’s existence [13,19]; cf. Fig. 11. This proof was chosen mainly for two rea-
sons. Firstly, it requires not only modal operators, but also higher-order quan-
tification. Therefore, it is beyond the reach of specialized propositional and first-
order (modal) theorem provers. Secondly, this argument addresses an ancient
problem in Philosophy and Metaphysics, which has nevertheless received a lot
of attention in the last 15 years, because of the discovery of the modal collapse
[68,69]. This proof lies in the center of a vast and largely unexplored application
domain for automated and interactive theorem provers.

Attempts to prove the existence (or non-existence) of God by means of
abstract ontological arguments are an old tradition in philosophy and theol-
ogy. Gödel’s proof [42] is a modern culmination of this tradition, following par-
ticularly the footsteps of Leibniz. Various slightly different versions of axioms
and definitions have been considered by Gödel and by several philosophers who
commented on his proof (cf. [2,5,33,36,69]).

Thanks to the embedding approach, Gödel’s theorem stating God’s necessary
existence was automatically proven from his five axioms using fully automated
higher-order theorem provers [13,19].

The respective encodings and the results of a series of recent experiments with
LEO-II (version 1.6.2), Satallax (version 2.7), and Nitpick (version 2013) are
provided in Fig. 12. The first row marked with T1, for example, shows that the-
orem T1 follows from axioms A2 and A1 (where only the ⊃-direction is needed);
LEO-II and Satallax confirm this in 0.1 s. The experiments have been carried out
w.r.t. the logics K and/or KB, and w.r.t. constant (const) and varying (vary)
domain semantics for the domains of individuals. The exact dependencies (avail-
able axioms and definitions) are displayed for each single problem. The results of
the prover calls are given in seconds. ‘—’ means timeout. ‘THM’, ‘CSA’, ‘SAT’,
and ‘UNS’ are the reported result statuses; they stand for ‘Theorem’, ‘Coun-
terSatisfiable’, ‘Satisfiable’, and ‘Unsatisfiable’, respectively. The experiments
were executed remotely using calls to LEO-II, Satallax, and Nitpick installed
at Sutcliffe’s SystemOnTPTP infrastructure [70] at the University of Miami,
which comprises of standard 2.80 GHz computers with 1 GB memory. An exam-
ple problem from these experiments has been presented in Fig. 2.

Several interesting and partly novel findings have been discovered by the
HOL-ATPs, including:

1. The axioms and definitions from Fig. 11 are consistent (cf. CO in Fig. 12).
2. Logic K is sufficient for proving T1, C and T2.
3. For proving the final theorem T3, logic KB is sufficient (and for K a coun-

termodel is reported). This is highly relevant since several philosophers have
criticized Gödel’s argument for the use of logic S5.

4. Only for T3 the HOL-ATPs still fail to produce a proof directly from the
axioms; thus, T3 remains an interesting benchmark problem; T1, C, and T2
are rather trivial for HOL-ATPs.

Higher-Order Modal Logics: Automation and Applications 61

A1 Either a property or its negation is positive, but not both:

∀φ[P (¬φ) ≡ ¬P (φ)]

A2 A property necessarily implied by a positive property is positive:

∀φ∀ψ[(P (φ) ∧ �∀x[φ(x) ⊃ ψ(x)]) ⊃ P (ψ)]

T1 Positive properties are possibly exemplified:

∀φ[P (φ) ⊃ �∃xφ(x)]

D1 A God-like being possesses all positive properties:

G(x) ≡ ∀φ[P (φ) ⊃ φ(x)]

A3 The property of being God-like is positive:

P (G)

C Possibly, God exists:
�∃xG(x)

A4 Positive properties are necessarily positive:

∀φ[P (φ) ⊃ � P (φ)]

D2 An essence of an individual is a property possessed by it and necessarily implying any
of its properties:

φ ess. x ≡ φ(x) ∧ ∀ψ(ψ(x) ⊃ �∀y(φ(y) ⊃ ψ(y)))

T2 Being God-like is an essence of any God-like being:

∀x[G(x) ⊃ G ess. x]

D3 Necessary existence of an individ. is the necessary exemplification of all its essences:

NE(x) ≡ ∀φ[φ ess. x ⊃ �∃yφ(y)]

A5 Necessary existence is a positive property:

P (NE)

T3 Necessarily, God exists:
�∃xG(x)

Fig. 11. Scott’s version of Gödel’s ontological argument [65].

5. Gödel’s original version of the proof [43], which omits conjunct φ(x) in the
definition of essence (cf. D2’), seems inconsistent (cf. the failed consistency
check for CO’ in Fig. 12). As far as we are aware of, this is a new result.

62 C. Benzmüller and B.W. Paleo

Fig. 12. HOL encodings and experiment results for the ontological argument from
Fig. 11.

6. Gödel’s axioms imply what is called the modal collapse (cf. MC in Fig. 12)
φ ⊃ �φ, that is, contingent truth implies necessary truth (which can even be
interpreted as an argument against free will; cf. [69]). MC is probably the
most fundamental criticism put forward against Gödel’s argument.

7. All of the above findings hold for both constant domain semantics and varying
domain semantics (for the domain of individuals).

The above findings, in particular (7), illustrate that the modal reasoning
framework described here has a great potential towards a flexible support sys-
tem for computational theoretical philosophy. In fact, Gödel’s ontological argument
has been verified and even automated not only for one particular setting of logic
parameters, but these logic parameters have been varied and the validity of the
argument has been reconfirmed (or falsified, cf. D2’ and CO’) for the modified
setting. Moreover, our framework is not restricted to a particular theorem prov-
ing system, but has been fruitfully employed with some of the most prominent
automated theorem provers available to date. A semi-automatic verification of
Gödel’s argument was also realized in Isabelle, with partial automation via
Sledgehammer, Nitpick and Metis (see Figs. 3 and 4) [18].

When a fully automatic or semi-automatic verification is performed, the for-
mal proof structure is hidden and may not correspond to the informal structure
of the argument. In order to verify the exact argument in all detail, a fully
interactive and fine-grained formalization is needed. We show and discuss such

Higher-Order Modal Logics: Automation and Applications 63

a formalization in Coq (version 8.4pl5) below. In contrast to the formalization in
Isabelle [18], the formalization in Coq used no automation. This was a deliberate
choice, mainly because it allowed a qualitative evaluation of the convenience of
the embedding approach for interactive theorem proving.

The formalization shown below aims at being as similar as possible to Dana
Scott’s version of the proof [65]. The formulation and numbering of axioms, def-
initions and theorems is the same as in Scott’s notes. Even the Coq proof scripts
follow precisely all the steps in Scott’s notes. Scott’s assertions are emphasized
below with comments. Furthermore, the deliberate preference for simple tactics
(mostly intro, apply and the modal tactics described in Sect. 4.3) results in proof
scripts that closely correspond to common natural deduction proofs.

Gödel’s proof requires Coq’s classical logic libraries as well as the Modal library
developed by us and described in Sect. 4.3.

Require Import Coq.Logic.Classical Coq.Logic.Classical_Pred_Type Modal.

In Scott’s notes, classicality occurs in uses of the principle of proof by contra-
diction. In order to clearly indicate where classical logic is needed in the proof
scripts, a simple tactic that simulates proof by contradiction was created:

Ltac proof_by_contradiction H := apply NNPP; intro H.

Gödel’s theory has a single higher-order constant, Positive, which ought to hold
for properties considered positive in a moral sense.

(* Constant predicate that distinguishes positive properties *)
Parameter Positive: (u -> o) -> o.

God is defined as a being possessing all positive properties, and five axioms
are stated to characterize positivity. The first part of the proof culminates in
corollary1 and establishes that God’s existence is possible.

(* Axiom A1 (divided into two directions):
either a property or its negation is positive, but not both *)

Axiom axiom1a :
[mforall p, (Positive (fun x: u => m~(p x))) m-> (m~ (Positive p))].

Axiom axiom1b :
[mforall p, (m~ (Positive p)) m-> (Positive (fun x: u => m~ (p x)))].

(* Axiom A2:
a property necessarily implied by a positive property is positive *)

Axiom axiom2: [mforall p, mforall q,
Positive p m/\ (box (mforall x, (p x) m-> (q x))) m-> Positive q].

(* Theorem T1: positive properties are possibly exemplified *)
Theorem theorem1: [mforall p, (Positive p) m-> dia (mexists x, p x)].
Proof. mv.
intro p. intro H1. proof_by_contradiction H2. apply not_dia_box_not in H2.
assert (H3: ((box (mforall x, m~ (p x))) w)). (* Scott *)

box_i. intro x. assert (H4: ((m~ (mexists x : u, p x)) w0)).
box_e H2 G2. exact G2.
clear H2 R H1 w. intro H5. apply H4. exists x. exact H5.

assert (H6: ((box (mforall x, (p x) m-> m~ (x m= x))) w)). (* Scott *)
box_i. intro x. intros H7 H8. box_elim H3 w0 G3. eapply G3. exact H7.
assert (H9: ((Positive (fun x => m~ (x m= x))) w)). (* Scott *)

apply (axiom2 w p (fun x => m~ (x m= x))). split.

64 C. Benzmüller and B.W. Paleo

exact H1.
exact H6.

assert (H10: ((box (mforall x, (p x) m-> (x m= x))) w)). (* Scott *)
box_i. intros x H11. reflexivity.
assert (H11 : ((Positive (fun x => (x m= x))) w)). (* Scott *)

apply (axiom2 w p (fun x => x m= x)). split.
exact H1.
exact H10.

apply axiom1a in H9. contradiction.
Qed.

(* Definition D1:
God: a God-like being possesses all positive properties *)

Definition G(x: u) := mforall p, (Positive p) m-> (p x).

(* Axiom A3: the property of being God-like is positive *)
Axiom axiom3: [Positive G].

(* Corollary C1: possibly, God exists *)
Theorem corollary1: [dia (mexists x, G x)].
Proof. mv. apply theorem1. apply axiom3. Qed.

The second part of the proof consists in showing that if God’s existence is possible
then it must be necessary (lemma2). The controversial S5 principle dia box to box

is used.

(* Axiom A4: positive properties are necessarily positive *)
Axiom axiom4: [mforall p, (Positive p) m-> box (Positive p)].

(* Definition D2:
essence: an essence of an individual is a property possessed by it
and necessarily implying any of its properties *)

Definition Essence(p: u -> o)(x: u) :=
(p x) m/\ mforall q, ((q x) m-> box (mforall y, (p y) m-> (q y))).

Notation"p ’ess’ x" := (Essence p x) (at level 69).

(* Theorem T2: being God-like is an essence of any God-like being *)
Theorem theorem2: [mforall x, (G x) m-> (G ess x)].
Proof. mv. intro g. intro H1. unfold Essence. split.

exact H1.
intro q. intro H2. assert (H3: ((Positive q) w)).

proof_by_contradiction H4. unfold G in H1. apply axiom1b in H4.
apply H1 in H4. contradiction.

cut (box (Positive q) w). (* Scott *)
apply K. box_i. intro H5. intro y. intro H6.
unfold G in H6. apply (H6 q). exact H5.

apply axiom4. exact H3.
Qed.

(* Definition D3:
necessary existence: necessary existence of an individual
is the necessary exemplification of all its essences *)

Definition NE(x: u) := mforall p, (p ess x) m-> box (mexists y, (p y)).

(* Axiom A5: necessary existence is a positive property *)
Axiom axiom5: [Positive NE].

Lemma lemma1: [(mexists z, (G z)) m-> box (mexists x, (G x))].
Proof. mv.
intro H1. destruct H1 as [g H2]. cut ((G ess g) w). (* Scott *)

assert (H3: (NE g w)). (* Scott *)
unfold G in H2. apply (H2 NE). apply axiom5.
unfold NE in H3. apply H3.

apply theorem2. exact H2.

Higher-Order Modal Logics: Automation and Applications 65

Qed.

Lemma lemma2: [dia (mexists z, (G z)) m-> box (mexists x, (G x))].
Proof. mv.
intro H. cut (dia (box (mexists x, G x)) w). (* Scott *)

apply dia_box_to_box.
apply (mp_dia w (mexists z, G z)).

exact H.
box_i. apply lemma1.

Qed.

(* Theorem T3: necessarily, a God exists *)
Theorem theorem3: [box (mexists x, (G x))].
Proof. mv. apply lemma2. apply corollary1. Qed.

(* Corollary C2: There exists a god *)
Theorem corollary2: [mexists x, (G x)].
Proof. mv. apply T. apply theorem3. Qed.

5.4 Paraconsistent Reasoning Through Higher-Order Hybrid Logics

Inconsistencies pose a significant challenge to proper reasoning in the web. It is
well-known that classical logic validates the principle of explosion, according to
which every proposition follows from a contradiction (ex contractione quodlibet).
Hence, any inconsistency in the vast knowledge available in the web, no matter
how tiny, insignificant, unreliable, exceptional or irrelevant it is to our query,
would render classical reasoners useless.

Several approaches have been proposed to overcome this challenge. The diver-
sity of approaches reflects the large variety of kinds of inconsistency that we can
encounter. For example, contradictory pieces of information may be due to errors
made by ourselves; or they may merely express divergent opinions from other
sources. Or perhaps two statements may contradict one another because one
of them expresses a general rule that is not always applicable, while the other
describes an exception to the rule. If we adhered to dialetheism, contradictions
in a theory could even be taken to reflect actual contradictions in models where
statement could be simultaneously true and false. Depending on the situation, we
may wish to, for instance, revise the data (i.e. our beliefs) [60,64], do default rea-

soning preferring exceptions to general rules, simply ignore contradictions when
they are irrelevant [35,61] to the reasoning task at hand, or use non-classical
paraconsistent logics that block the principle of explosion [25,34,72].

In this section we informally sketch a logic that is adequate for applications
where data originates from different independent sources, which are assumed
to be separately consistent but possibly mutually inconsistent. Such a scenario
is common in the web, where we must do the best reasoning we can despite
the limited control over the information provided by (often not fully trusted)
data sources. The basic idea of this logic goes back to the modal discussive log-

ics of Jaskowski [46,47], in which the fact that a participant/source claims p is
expressed by ♦p. These logics exhibit a paraconsistent behavior in the following
sense: if two participants make contradictory claims such as q and ¬q, an arbi-
trary proposition r is not implied, because ♦q ∧ ♦¬q ⊃ r is not valid. Jaskowski’s
logics assume the modal axiom T (�p ⊃ p), which in this context expresses the
fact that a proposition holds if all participants unanimously claim it.

66 C. Benzmüller and B.W. Paleo

Fig. 13. Higher-order hybrid logics

In Jaskowski’s Discussive logics each participant/source is a distinct possible
world. Their main limitation is the impossibility of referring to each partici-
pant/source/world explicitly, because ♦ and � are the only available modalities.
A problematic consequence of this parsimony is, for instance, the lack of modus
ponens relative to the claims of a single participant: if a participant claims p

and later claims p ⊃ q, these claims are formalized as ♦p and ♦(p ⊃ q); but
then, unfortunately, ♦q cannot be deduced. Discussive logics try to remedy this
problem in ways (cf. [10]) that may seem unnatural and unnecessary after the
advent of hybrid logics, which extend modal logics with nominals and the @

modality. In a hybrid discussive logic, as proposed here, the claims p and p ⊃ q

by a participant j could be formalized as @jp and @j(p ⊃ q). Hence, information
about who claimed what is preserved. Furthermore, the @ modality gives greater
flexibility and control over which sources/participants to trust. In addition to
trusting the consensus (�p ⊃ p), it becomes possible to declare that a particular
source s is trusted, by stating that (@sp ⊃ p).

With the embedding approach, it is trivial to define nominals and the @

modality, because worlds are already syntactically explicit. This is shown in
Fig. 13.

Note that we have in fact already employed the @ modality in Sect. 5.2 in
the axioms (A5)-(A7) and conjecture (C4).

Once we have a higher-order hybrid modal logic at our disposal, we assign
each information source to a different world, and we may reason explicitly about
inconsistencies between the information sources. This is shown in Fig. 14. The
fact that Nitpick finds a counter-model for the principle of explosion demon-
strates that this logic is paraconsistent.

Figure 15 shows a toy example of reasoning with two sources of information,
the TV channels CNN and Russia Today (RT), which disagree with each other
about the qualities of the president of Russia. If we simply believed everything
that we hear from CNN and RT, our beliefs would be inconsistent. The hybrid

Higher-Order Modal Logics: Automation and Applications 67

Fig. 14. Paraconsistency

modal logic proposed here allow us to be skeptikal about our information sources
and possibly choose which source we would like to trust.

Distinct sources of information may disagree not only on the propositional
level but also on their understanding of properties and individuals. Consider,
for example, a model with two worlds: m (Mars) and e (Earth); and consider
whether the sentence �blue�(sky�) (“necessarily the sky is blue”) is true in this
model. From an external absolute perspective, the sky is assumed to be blue�

in Earth and red� in Mars, and therefore, if blue� were considered to be a rigid

property (equal to the absolute notion of “blue”, so that blue� = blue�), the
sentence would be clearly false, because the sky is not blue� in Mars. However,
if blue� were considered to be a flexible property (i.e. depending on worlds), the
sentence would be ambiguous. In fact, also sky� refers to a different thing in each
world and hence it could also be considered as a flexible individual dependent on
worlds. These ambiguities become clear when we try to translate the sentence
to classical higher-order logic and they are resolved when we opt for one of the
following four possible translations:

A: ∀ w w′.(rww′) ⊃ (((blue� w′)(sky� w′)) w′)
B: ∀ w w′.(rww′) ⊃ (((blue� w)(sky� w′)) w′)
C: ∀ w w′.(rww′) ⊃ (((blue� w′)(sky� w)) w′)
D: ∀ w w′.(rww′) ⊃ (((blue� w)(sky� w)) w′)

68 C. Benzmüller and B.W. Paleo

Fig. 15. An example of conflicting sources of information

These translations differ on the world that is taken for grounding flexible
constants (e.g. blue� and sky�) under the scope of modal operators. Translation
A, for example, grounds the flexible constants on the world w′ introduced by
the modal operator, while translation D grounds them on the current world w.
If the Martian understanding of blue� is equal to the absolute notion of red (i.e.
(blue� m) = red) (and, likewise for Earth, (blue� e) = blue), then translation A
would be true.

Flexible constants (properties or individuals) may be useful for reasoning
with many knowledge bases (e.g. in description logics or expressive ontologies
such as SUMO) having overlapping names for concepts or objects. Merely merg-
ing these knowledge bases could easily lead to inconsistencies (e.g. with the
sky being both blue, according to the Earthling knowledge base, and not blue,
according to the Martian knowledge base). Instead, embedding these knowledge
bases into a higher-order hybrid logic, with each knowledge base occupying a
separate world and flexible constants used for conflicting concepts and objects,
provides a simple and safe alternative to avoid inconsistencies.

Higher-Order Modal Logics: Automation and Applications 69

The language of quantified modal logic defined in Sect. 2 does not allow the
user to specify on which world a flexible property or object should be grounded.
There is also no way for flexible and rigid properties/objects to be used together.
The semantic embedding described in Sect. 3.2 assumes that they are all rigid.
An alternative would be to assume that they are flexible and ground them on the
world introduced by the closest modal operator (e.g. as in translation A). Fitting
[36] discusses yet another possibility, at least for certain kinds of properties intro-
duced by higher-order quantifiers: they are grounded to the world where they
were introduced (i.e. a modal formula such as ∃ψ.�ψ(c) (where c is assumed to be
a rigid constant) would be translated10 as ∀w.∃ψ.∀w′.(r w w′) ⊃ (ψw)(c), and
not as ∀w.∃ψ.∀w′.(r w w′) ⊃ (ψw′)(c) because w is the world having scope
over the existential quantifier introducing ψ).

Instead of being content with the language of higher-order modal logic from
Sect. 3.2 and then choosing either the rigid translation or some flexible transla-
tion, an even more interesting possibility, whose details remain for future work,
would be to enrich the language of higher-order quantified modal logic, in order to
empower the user to conveniently specify how flexible terms should be grounded.
What currently prevents this is that the worlds implicitly introduced by modal
operators are hidden. Therefore, one approach would be to enrich the language
with modal operators that explicitly expose the introduced worlds. The four
alternative disambiguations of �blue�(sky�) discussed above, for example, could
then be written as follows in the enriched language:

A: �w′bluew′
(skyw′

)

B: �w′bluew(skyw′
)

C: �w′bluew′
(skyw)

D: �w′bluew(skyw)

where w would be the current world, by convention.
With embeddings, enriching the language in this manner is easy, as shown

in Figs. 16 and 17.
Another approach would be to use a nameless bound variable notation [32]

for worlds, as follows:

A: �blue0(sky0)

B: �blue1(sky0)

C: �blue0(sky1)

D: �blue1(sky1)

where the superscript indices are de-Bruijn indices indicating the nameless bound
world that should be used for grounding.

Achieving such nameless notation in Isabelle is made possible by the advanced
feature of syntax translations, as exemplified in the formalization of Hoare
Logic [73].
10 Fitting [36] (pp. 83ff) actually does not use a translation to higher-order logic, where

worlds become part of the syntax. But what he does, using his style of syntax
(which distinguishes extensional and intensional types), is essentially analogous to
the translation described here.

70 C. Benzmüller and B.W. Paleo

Fig. 16. Explicitly binding modalities

Fig. 17. Example using explicitly binding modalities

Higher-Order Modal Logics: Automation and Applications 71

6 Conclusion

In these lecture notes, we have explained the latest developments in automated
reasoning for higher-order modal logics. We have also surveyed recent and poten-
tial applications of such expressive logics. This is a vast and exciting direction
of research, which has become possible by the high degree of maturity achieved
by current higher-order theorem provers and proof assistants.

Acknowledgments. We would like to thank João Marcos for consistently useful dis-
cussions about discussive logics and paraconsistency. Various persons have contributed
or positively influenced this line of research in the past, including, Larry Paulson, Chad
Brown, Geoff Sutcliffe, and Jasmin Blanchette.

References

1. Web semantics: Science, services and agents on the world wide web, special issue
on reasoning with context in the semantic web, vol. 12–13, pp. 1–160 (2012)

2. Adams, R.M.: Introductory Note to *1970. In: Feferman, S., et al. (eds.) Kurt
Gödel, Collected Works, vol. III. Oxford University Press, New York (1995)

3. Akman, V., Surav, M.: Steps toward formalizing context. AI Mag. 17(3), 55–72
(1996)

4. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)

5. Anderson, A.C., Gettings, M.: Gödel’s ontological proof revisited. In: Hájek, P.
(ed.) Gödel ’96: Logical foundations of mathematics, computer science and physics.
Lecture Notes in Logic, vol. 6, pp. 167–172. Springer, Berlin (1996)

6. Andrews, P.B.: General models and extensionality. J. Symb. Logic 37(2), 395–397
(1972)

7. Andrews, P.B.: Church’s type theory. In: Zalta, E.N. (ed.), The Stanford Encyclo-
pedia of Philosophy. Spring 2014 edition, 2014

8. Andrews, P.B., Miller, D.A.: Eve Longini Cohen, and Frank Pfenning. Automating
higher-order logic. In: Bledsoe, W.W., Loveland, D.W., et al., Automated Theorem
Proving: After 25 Years, vol. 29 of Contemporary Mathematics series, pp. 169–192.
American Mathematical Society (1984)

9. Andrews, P.B., Bishop, M.: On sets, types, fixed points, and checkerboards. In:
Miglioli, P., Moscato, U., Mundici, D., Ornaghi, D. (eds.) Theorem Proving with
Analytic Tableaux and Related Methods. LNCS, vol. 1071, pp. 1–15. Springer,
Heidelberg (1996)

10. Marcos, J.: Modality and paraconsistency. The Logica Yearbook, pp. 213–222
(2005)

11. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

12. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II - a cooperative auto-
matic theorem prover for higher-order logic. In: Proceedings of IJCAR 2008, num-
ber 5195 in LNAI, pp. 162–170. Springer, Berlin (2008)

72 C. Benzmüller and B.W. Paleo

13. Benzmüller, C., Woltzenlogel Paleo, B.: Formalization, Mechanization and
Automation of Gödel’s Proof of God’s Existence. arXiv:1308.4526 (2013)

14. Benzmüller, C.: Verifying the modal logic cube is an easy task (for higher-order
automated reasoners). In: Siegler, S., Wasser, N. (eds.) Walther Festschrift. LNCS,
vol. 6463, pp. 117–128. Springer, Heidelberg (2010)

15. Benzmüller, C., Brown, C.: The curious inference of Boolos in MIZAR and
OMEGA. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof -
Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar, and
Rhetoric, vol. 10(23), pp. 299–388. The University of Bialystok, Polen (2007)

16. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extension-
ality. J. Symb. Logic 69(4), 1027–1088 (2004)

17. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-
order modal logics. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi,
P., Heintz, F., Lucas, P. (eds.), ECAI 2012, Frontiers in Artificial Intelligence and
Applications, vol. 242, pp. 163–168. IOS Press, Montpellier (2012)

18. Benzmüller, C., Woltzenlogel Paleo, B.: Gödel’s God in Isabelle/HOL. Arch. For-
mal Proofs, 2013 (2013)

19. Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of
God’s existence with higher-order automated theorem provers. In: Schaub, T.,
Friedrich, G., O’Sullivan, B., (eds.), ECAI 2014, Frontiers in Artificial Intelligence
and Applications, vol. 263, pp. 93–98, IOS Press (2014)

20. Benzmüller, C., Paulson, L.: Exploring properties of normal multimodal logics in
simple type theory with LEO-II. In: Benzmüller, C., Brown, C., Siekmann, J.,
Statman, R. (eds.), Reasoning in Simple Type Theory – Festschrift in Honor of
Peter B. Andrews on His 70th Birthday, Studies in Logic, Mathematical Logic and
Foundations, pp. 386–406, College Publications (2008)

21. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory.
Logic Univers. (Spec. Issue Multimodal Logics) 7(1), 7–20 (2013)

22. Benzmüller, C., Pease, A.: Higher-order aspects and context in SUMO. J. Web
Seman. (Spec. Issue Reasoning with context in the Semant. Web) 12–13, 104–117
(2012)

23. Benzmüller, Christoph, Raths, Thomas: HOL based first-order modal logic provers.
In: McMillan, Ken, Middeldorp, Aart, Voronkov, Andrei (eds.) LPAR-19 2013.
LNCS, vol. 8312, pp. 127–136. Springer, Heidelberg (2013)

24. Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of
the Anderson-Hájek ontological controversy. In: Silvestre, R.S., Béziau, J.-Y. (eds.),
Handbook of the 1st World Congress on Logic and Religion, Joao Pessoa, Brasil
(2015)

25. Beziau, J.Y., Carnielli, W., Gabbay, D.: Handbook of Paraconsistency. College
Publications, London (2007)

26. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic, Vol-
ume 3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., New York
(2006)

27. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. J. Autom. Reasoning 51(1), 109–128 (2013)

28. Blanchette, Jasmin Christian, Nipkow, Tobias: Nitpick: A counterexample genera-
tor for higher-order logic based on a relational model finder. In: Kaufmann, Matt,
Paulson, Lawrence C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer,
Heidelberg (2010)

29. Boolos, G.: A curious inference. J. Philos. Logic 16, 1–12 (1987)

http://arxiv.org/pdf/1308.4526

Higher-Order Modal Logics: Automation and Applications 73

30. Brown, C.E.: Satallax: An automated higher-order prover. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) Automated Reasoning. LNCS, vol. 7364, pp. 111–
117. Springer, Heidelberg (2012)

31. Bucav, S., Buvac, V., Mason, I.A.: Metamathematics of contexts. Fundamenta
Informaticae 23(3), 263–301 (1995)

32. Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning 49(3),
363–408 (2012)

33. Corazzon, R.: Contemporary bibliography on ontological arguments. http://www.
ontology.co/biblio/ontological-proof-contemporary-biblio.htm

34. da Costa, N.C.A., Alves, E.H.: Semantical analysis of the calculi cn. Notre Dame
J. Formal Logic 18(4), 621–630 (1977)

35. Dunn, J.M., Restall, G.: Relevance logic. Handbook of Philosophical Logic 6, 1–136
(2002)

36. Fitting, M.: Types, Tableaux and Gödel’s God, Kluwer (2002)
37. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthese Library. Kluwer,

Netherlands (1998)
38. Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press, Oxford (1996)
39. Gallin, D.: Intensional and Higher-Order Modal Logic. North Holland, New York

(1975)
40. Giunchiglia, F.: Contextual reasoning. Epistemologia (Special Issue on Languages

and Machines) 16, 345–364 (1993)
41. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do

without modal logics. Artif. Intell. 65(1), 29–70 (1994)
42. Gödel, K.: Collected Works, Unpublished Essays and Letters. Ontological Proof,

pp. 65–85. Oxford University Press, Oxford (1970)
43. Gödel, K.: Appx.A: Notes in Kurt Gödel’s Hand. In: [70], pp. 144–145 (2004)
44. Guha, R.V.: Context: A Formalization and Some Applications. Ph.D. thesis,

Stanford University (1991)
45. Henkin, L.: Completeness in the theory of types. J. Symb. Logic 15(2), 81–91

(1950)
46. Jaśkowski, S.: Rachunek zdań dla systemów dedukcyjnych sprzecznych. Stud. Soc.

Scientiarun Torunesis 1(5), 55–77 (1948)
47. Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Stud.

Logica. 24, 143–157 (1969)
48. Kaliszyk, C., Urban, J.: Hol(y)hammer: online ATP service for HOL light. Math.

Comput. Sci. 9(1), 5–22 (2015)
49. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas.

J. Symb. Comput. 69, 109–128 (2015)
50. Lindblad, F.: agsyHOL website. https://github.com/frelindb/agsyHOL
51. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–

1035 (1987)
52. McCarthy, J.: Notes on formalizing context. In: Proceedings of IJCAI 1993, pp.

555–562 (1993)
53. Muskens, R.: Higher order modal logic. In: Blackburn, P., et al. (eds.) Handbook

of Modal Logic, pp. 621–653. Elsevier, Dordrecht (2006)
54. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Berlin (2002)
55. Otten, J.: Mleancop: A connection prover for first-order modal logic. In: Demri,

S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning. LNCS, vol. 8562, pp.
269–276. Springer, Switzerland (2014)

http://www.ontology.co/biblio/ontological-proof-contemporary-biblio.htm
http://www.ontology.co/biblio/ontological-proof-contemporary-biblio.htm
https://github.com/frelindb/agsyHOL

74 C. Benzmüller and B.W. Paleo

56. Woltzenlogel Paleo, B., Benzmüller, C.: Formal theology repository. (https://
github.com/FormalTheology/GoedelGod)

57. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions. In:
Delahaye, D., Woltzenlogel Paleo, B. (eds.), All about Proofs, Proofs for All, Math-
ematical Logic and Foundations. College Publications, London (2015)

58. Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)
59. Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutcliffe, G.,

Urban, J., Schulz, S. (eds.), Proceedings of the CADE-21 Workshop on Empirically
Successful Automated Reasoning in Large Theories (ESARLT), CEUR Workshop
Proceedings, vol. 257, CEUR-WS.org (2007)

60. Priest, G.: Paraconsistent belief revision. Theoria 67, 214–228 (2001)
61. Priest, G., Sylvan, R.: Simplified semantics for basic relevant logics. J. Philos. Logic

(1992)
62. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc:

Expressivity and efficiency in a common-sense ontology. In: Shvaiko P. (ed.), Papers
from the AAAI Workshop on Contexts and Ontologies: Theory, Practice and Appli-
cations, Pittsburgh, Pennsylvania, USA, 2005. Technical report WS-05-01 pub-
lished by The AAAI Press, Menlo Park, California, July 2005

63. Raths, Thomas, Otten, Jens: The QMLTP problem library for first-order modal
logics. In: Gramlich, Bernhard, Miller, Dale, Sattler, Uli (eds.) IJCAR 2012. LNCS,
vol. 7364, pp. 454–461. Springer, Heidelberg (2012)

64. Restall, G., Slaney, J.: Realistic belief revision. In: Proceedings of the Second World
Conference in the Fundamentals of Artificial Intelligence, pp. 367–378 (1995)

65. Scott, D.: Appx.B: Notes in Dana Scott’s Hand. In: [70], pp. 145–146 (2004)
66. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artif. Intell.

155, 41–67 (2004)
67. Siders, A., Woltzenlogel Paleo, B.: A variant of Gödel’s ontological proof

in a natural deduction calculus. (github.com/FormalTheology/GoedelGod/blob/
master/Papers/InProgress/NaturalDeduction/GodProof-ND.pdf?raw=true)

68. Sobel, J.H.: Gödel’s ontological proof. In On Being and Saying. Essays for Richard
Cartwright, pp. 241–261, MIT Press (1987)

69. Sobel, J.H.: Logic and Theism: Arguments for and Against Beliefs in God.
Cambridge University Press, Cambridge (2004)

70. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

71. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)

72. Tanaka, K.: Three schools of paraconsistency. The Australas. J. Logic 1, 28–42
(2003)

73. Wenzel, M.: Hoare logic in isabelle. http://isabelle.in.tum.de/dist/library/HOL/
HOL-Isar Examples/Hoare.html

https://github.com/FormalTheology/GoedelGod
https://github.com/FormalTheology/GoedelGod
http://github.com/FormalTheology/GoedelGod/blob/master/Papers/InProgress/NaturalDeduction/GodProof-ND.pdf?raw=true
http://github.com/FormalTheology/GoedelGod/blob/master/Papers/InProgress/NaturalDeduction/GodProof-ND.pdf?raw=true
http://isabelle.in.tum.de/dist/library/HOL/HOL-Isar_Examples/Hoare.html
http://isabelle.in.tum.de/dist/library/HOL/HOL-Isar_Examples/Hoare.html

Web Stream Reasoning: From Data Streams
to Actionable Knowledge

Alessandra Mileo(B)

Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
alessandra.mileo@insight-centre.org

Abstract. A fast growing torrent of data is being created by compa-
nies, social networks, mobile phones, smart homes, public transport vehi-
cles, healthcare devices, and other modern infrastructures. Being able to
unlock the potential hidden in this torrent of data would open unprece-
dented opportunities to improve our daily lives that were not possible
before. Advances in the Internet of Things (IoT), Semantic Web and
Linked Data research and standardization have already established for-
mats and technologies for representing, sharing and re-using (dynamic)
knowledge on the Web. However, transforming data into actionable
knowledge requires to cater for (i) automatic mechanisms to discover
and integrate heterogeneous data streams on the fly and extract pat-
terns for applications to use, (ii) concepts and algorithms for context and
quality-aware integration of semantic data streams, and (iii) the ability to
synthesize domain-driven commonsense knowledge (and answers derived
from it) with expressive inference that can capture decision analytics in
a scalable way. In the first part of this lecture we will characterize the
main approaches to stream processing for the Web of Data, showing how
data quality and context can guide semantic integration. In the second
part of this lecture we will focus on rule-based Web Stream Reasoning
and illustrate how scalability and uncertainty issues can be addressed in
a rule-based approach. We will discuss new challenges and opportunities
in Web Stream Reasoning, briefly considering economical and societal
impact in real application scenarios in a smart city context, and we will
conclude by providing a brief overview of ongoing research and standard-
ization activities in this area.

Keywords: Stream reasoning · Continuous query processing · Quality
of information · Logic programming · Semantic web · Inductive logic
reasoning

1 Introduction

The Semantic Web and the growing interests in linking data for sharing, re-use,
and understanding has started to intersect with the domain of Big Data [38].

This research has been partially supported by Science Foundation Ireland (SFI)
under grant No. SFI/12/RC/2289 and EU FP7 CityPulse Project under grant
No.603095. http://www.ict-citypulse.eu.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 75–87, 2015.
DOI: 10.1007/978-3-319-21768-0 3

http://www.ict-citypulse.eu

76 A. Mileo

To be successful and efficient in this joint space, we must consider the impact of
the volume, variety, and velocity of data on the Web similarly to the Big Data
world. The use of RDF as the common data model helped in dealing with the
variety of information, while various software technologies – such as advanced
RDF triplestores – are handling the volume of already available data. However,
the problem of velocity, i.e., frequently produced and streamed data still presents
some open challenges [10,11].

Applications that can process streaming data incrementally are required for
sensor networks and the Internet of Things (IoT), Smart Grids, Smart Cities,
health care and assisted living, security, social network analysis, financial plan-
ning, etc. In these domains it is not only necessary to make sense of the data very
quickly but also to do so in the context of “static” background knowledge such as
planning goals, plans, capacities and physical layouts. These real-world require-
ments necessitate to move the processing paradigms for vast amounts of data
from the current batch-like approaches (e.g., distributed and parallel computing
with MapReduce) towards processing of data streams and stream reasoning in
near-real-time.

Advances on Semantic Web & Linked Data research and standards have
already provided formats and technologies for representing and sharing knowl-
edge on the Web. In the last few years, Semantic Web technologies such as RDF,
OWL, SPARQL have provided mechanisms and related engines for continuously
querying semantic data streams [5,7,22] and for semantic complex event process-
ing [2,20,21]. Despite their potentials for dealing with data that changes in high
volume at high frequency, these solutions can not properly deal with the noisy
and imprecise nature of data in dynamic domains such as those mentioned earlier
in this section, which are characterized by incomplete information, uncertainty,
inconsistencies, preferences and qualitative optimization.

Dealing with these characteristics of dynamic information requires complex
reasoning capabilities such as the ability of managing defaults, common-sense,
preferences, recursion, and non-determinism which might be required for more
expressive reasoning tasks. Logic-based non-monotonic reasoners can perform
such computationally intensive tasks but available solutions are suitable for data
that changes in low volumes at low frequency and therefore their applicability
is limited.

This lecture will characterize IoT Intelligence solutions based on their scala-
bility and expressivity, and will explore their synergies and potentials to be used
as a pipeline for scalable and expressive Web Stream Reasoning. Approaches and
techniques to handle uncertainty and context-driven information integration will
also be presented.

The remainder of the material is structured as follows: Sect. 2 identifies the
IoT Intelligence layers considering their expressivity and scalability based on the
underlying semantics of existing systems. Section 3 provides some pointers and
principles for RDF stream processing and Semantic Complex Event Processing,
touching upon quality-aware information integration. Section 4 focuses on the
non-monotonic reasoning layer and discusses the latest directions in this area,

Web Stream Reasoning: From Data Streams to Actionable Knowledge 77

including hybrid mechanisms where non-monotonic logics and inductive reason-
ing are combined to deal with uncertainty. Section 5 concludes by presenting
recent developments on formal generalizations and standards.

2 IoT Intelligence Layers

Scenarios and requirements for Stream Reasoning have been presented in [27]
considering applications for smart grids and smart cities, health monitoring,
social media and logistics among others. If we consider existing approaches and
solutions for transforming IoT data produced as web streams into knowledge,
we can characterize them into three main layers based on the expressivity of
the reasoning tasks they support. The conceptual representation of these layers
is indicated in Fig. 1. Several interesting approaches are flourishing, which try
to extend existing systems for web stream reasoning with cross-layer features.
However, we argue existing solutions can be associated to one of these conceptual
layer:

Stream Query Processing Layer: This layer includes systems which rely
on SPARQL extensions to deal with streaming data. In principle they support
all the features and operators of SPARQL 1.1, although implementations might
vary, and they have the ability to process and semantically integrate static and
dynamic Linked Data.

Example 1. Let us consider data about taxis in a smart city (inspired by the last
DEBS Grand Challenge1 based on NYC open data). Finding the most frequent
routes, the most profitable pick-up or drop-off point, the neighborhoods in which
pick-up/drop-off increased, or comparing taxi rides with areas served with public
transportation are all examples of stream query processing, where dynamic data
streams about taxi rides, and static linked data about bus routes or GeoNames
need to be semantically integrated.

Semantic Complex Event Processing (SCEP) Layer: Systems in this layer
aim at combining stream query processing with operators for complex event pat-
tern detection. These approaches are mostly based on rules for pattern detection
using logical operators, and go beyond the current support provided by stream
query processing engines to the SPARQL 1.1 semantics. Approaches and systems
for semantic complex event processing have leveraged engines for stream query
processing and complex event processing in combination, in order to achieve
better trade-offs when it comes to expressivity vs. scalability.

Example 2. Let us consider a Social Sensing scenario where we aim at detecting
some specific patterns in the interactions among people. In order to detect the
most active subjects (e.g. subjects that have been in more than 10 interactions
in the last half an hour) stream query processing with aggregates would be
enough. But if we want to detect whenever two subjects have moved from one
1 http://www.debs2015.org/call-grand-challenge.html.

http://www.debs2015.org/call-grand-challenge.html

78 A. Mileo

room X to another room Y , maybe counting how many times this happened
for two specific rooms or for two specific subjects, or finding all the sequences
of rooms < X,Y > for which the counting is higher than a threshold, then we
fall into complex event processing and need to make sure certain operators are
supported: we need to keep track of the status of certain events (i.e. a subject
being with another subject and moving from a room to another) and identify
sequences and repetitions of such events.

Stream Reasoning Layer: This layer is concerned with approaches to pro-
ducing new logical conclusions from a given set of input facts, by applying a
set of rules. It is the more expressive and less explored layer of web stream
reasoning, and it includes approaches that are able to deal with uncertainty,
non-monotonicity, defaults and common sense inference. In this lecture we con-
sider rule-based approaches to non-monotonic stream reasoning and presents
some principles and directions in this area.

Example 3. Let us consider a geo-fencing scenario similar to the one described
in [28]. People wear RFID tags and move around a building or an area such as an
airport or a shopping mall, equipped with RFID readers producing streams of
position information. Within the area, we have defined “geo-fences”, i.e., virtual
perimeter for a real-world area which are used to mark particular spaces as
“off-limits”. Rule-based inference that considers conflicts, non-monotonicity, and
uncertainty are required to detect when a particular area is at risk and what are
the different ways somebody could breach the geo-fence. When we introduce
noise in the sensory input, and constraints based on adjacency of certain areas,
conflicts can be detected and noise needs to be filtered out. This can be done
with rule-based approach by encoding optimization (e.g. minimizing the error)
or by using probabilistic approaches to rule-based inference.

Cross-Layer Processing: Recent approaches attempt to improve scalability
by relying on systems from the underlying layers to filter and aggregate sensor
data into events or complex events, and then use results of this pre-processing to
perform complex inference. For example, few approaches have combined SCEP
systems with production rules systems [32,36], although they often trade expres-
siveness for response time. Relying on underlying mechanisms for Strem Query
Processing in order to filter relevant data has also been considered as a way to
reduce the size of the input for the more expressive layers, as in the combination
with Stream Query Processing and Answer Set Programming [28].
In this lecture we are mainly concerned with the following requirements from
real world applications:

– Expressivity: Deduction processes aim at deriving knowledge from data, and
the underlying semantics dictates how complex and expressive an inference
language is; application scenarios that require to deal with default knowledge,
preferential and probabilistic rules, non-determinisms and recursion require
more expressive stream reasoning formalisms that are sitting at the top layer
of IoT Intelligence, identified as Layer 3 in Fig. 1;

Web Stream Reasoning: From Data Streams to Actionable Knowledge 79

Fig. 1. IoT intelligence layers

– Efficiency: Some real world applications demand for low latency processing
and require a timely response; this can be challenging with high volumes
of incoming data, since it requires to design solutions that can achieve low
latency and high throughput, possibly sacrificing expressivity;

– Quality-Aware Stream Processing: When it comes to application and
services, quality constraints and requirements might vary; being able to iden-
tify the quality of a stream, being it part of input data or resulting from a
processing step, Quality of Information (QoI) can play a crucial role not only
in providing better solutions but also in solving inconsistencies and conflicts;

– Uncertainty Management: IoT data can be incomplete, contradictory and
noisy, which requires to deal with uncertainty and approximation without
loosing structural and causal connections between data and event streams.

These requirements have been only partially addressed in existing systems
across the three layers. As part of this lecture, we will provide an overview of
to what extent existing approaches to IoT Intelligence meet these requirements,
and this will help identifying the gaps in existing solutions for Web Stream
Reasoning2.

3 RDF Stream Processing

The ability to process RDF streams requires to adapt the RDF data model
to capture data items that flow continuously over time, forming unbounded
sequences of data. To date several stream processing engines have been proposed
for processing RDF streams as Linked Data and the semantic web community
2 Slides will be available for download from http://www.streamreasoning.org/events/.

http://www.streamreasoning.org/events/

80 A. Mileo

has been active in this area, defining vocabularies and languages to represent
and process RDF streams.

As a consequence, more and more semantic data streams have appeared
on the open, loosely governed and heterogeneous Web environment, increasing
dramatically the potentials for observable events to be captured and processed.
This attracted the attention of the CEP community and the Semantic Web
community to join forces towards bridging this semantic gap.

Advances in Semantic Web and Linked Data research and standardization
have established formats and technologies for representing, sharing and re-using
knowledge on the Web, including streaming data such as social content and the
Internet of Things [33]. As a result, the Web of Data is today overwhelmed with
events, which has contributed to an unprecedented shift in the quantity and
quality of dynamic information enabling complex knowledge to be linked and
available for processing.

Acknowledging the need of semantics for better interpretation of such a
massive amount of events, the Semantic Web community has moved towards
Semantic Complex Event Processing (or SCEP) which uses ontological models
to filter, aggregate and interpret complex events based on their semantic cor-
relation. Beyond the continuous identification of complex semantic events via
query processing, the need for more expressive rules to enhance reasoning capa-
bilities in transforming events to actionable knowledge has also been recently
investigated, as well as the introduction of mechanisms to deal with noisy data
by using quality-aware complex event processing.

In the remainder of this section we will provide a quick overview and a few
pointers on RDF stream processing and quality-aware event composition.

3.1 Linked Streams Data Processing

As Linked Data facilitates the data integration process among heterogenous
collections, Linked Stream Data has the same goal with respect to data streams.
Considering streams as another form of Linked Data bridges the gap between
dynamic and static data sources, and makes it possible to query and integrate
them in a single framework.

Stream query processing is under active research for several years in Database
as well as in the Semantic Web community [5,8,22,25] and interesting solutions
have been proposed to process static and dynamic structured data via continuous
queries [5–7,22].

Unlike query processing for linked datasets which is mostly pull-based and
one-time only, in Linked Stream Data processing new data items are produced
continuously, the data is often valid only during a time window, and it is contin-
ually pushed to the query processor. Queries are continuous, i.e., they are regis-
tered once and then are evaluated continuously over time against the changing
dataset. The results of a continuous query are updated as new data appears. We
refer the reader to [23] for an overview of Linked Stream Data processing, which
highlights basic requirements, language syntax and semantics, different process-
ing methods and the advantages and disadvantages of existing approaches.

Web Stream Reasoning: From Data Streams to Actionable Knowledge 81

3.2 Semantic Complex Event Processing (SCEP)

The combination of Complex Event Processing (CEP) and semantic technologies
plays a key role in enabling IoT Intelligence in such a way to improve flexibility
and expressivity of current Linked Stream Data processing. There is a need
to cater for available background knowledge when detecting and responding to
complex events, motivated in many application scenarios where it is important
to seamlessly integrate changes into CEP systems, translating events, patterns
and reactions into operations in a declarative way.

Semantic Complex Event Processing (SCEP) [9,34] started in recent years,
and a number of systems exist [1,2,20,21]. These systems support operators that
are not natively implemented in Linked Stream Data processing engines, such
as the ability to detect complex event patterns as sequences, temporally ordered
events and repetitions. Unlike stream query processing systems, SCEP engines
do not have the ability to process structured streams as Linked Data, but they
support background knowledge and some form of (monotonic) reasoning.

For these reasons, in the scope of this lecture we position them in a different
layer and we separate them from non-monotonic reasoning approaches, which
we will be investigating more in details in Sect. 4.

Rule-based SCEP has been investigated in the last decade, with a grow-
ing scientific community that is also active in standardization activities. This
includes initiatives around RuleML and reaction rules [32] as well as Prolog-
based approaches for processing complex events [31]. We invite the readers to
consult surveys and tutorials on SCEP available at http://wiki.ruleml.org/index.
php/Reaction RuleML.

3.3 Quality-Aware SCEP

SCEP has been proved to be efficient for processing streams with high frequency
and complex query semantics. Recent developments in Internet-of-Things (IoT)
and Smart City applications bring new challenges to conventional SCEP systems,
e.g., incorporating heterogeneous event sources, formats or event stream process-
ing engines. Moreover, there is a need to explore automatic ways to recover the
system from erroneous states, and to discover and compose event streams accord-
ing to application requirements and constraints. Solving this problem often boils
down to automatically discover what streaming sources can best answer complex
event requests and identify which event source should be considered to match
specific quality requirements from users and applications.

Non-functional properties, e.g.: quality-of-service (QoS) properties, can play
a pivotal role in guiding such selection if used as dimensions for finding the
optimal event service composition plan that provides the best available results.
Existing publish/subscribe based event systems and middleware use proprietary
event advertisement and subscription formats (which leads to silo architectures)
and provide limited supports for non-functional requirements related to event
subscriptions [26].

http://wiki.ruleml.org/index.php/Reaction_RuleML
http://wiki.ruleml.org/index.php/Reaction_RuleML

82 A. Mileo

To address these issues, a body of work has been proposed that integrates
SCEP systems with Service Oriented Architecture (SOA) [15]. This approach
directly addresses the problem of dealing with data quality of streams and uses
it not only to provide the best available semantic complex event plan, but also
to support the engineering side of practical deployments by helping to plan what
performance parameters work best under a given input load.

4 Web Stream Reasoning

Stream Reasoning for the (Semantic) Web is mainly concerned with the ability to
deal with the imperfect nature of web streams, so that inference algorithms can
be successfully applied to a variety of real-world applications. As mentioned in
Sect. 1, streaming sources can sometimes behave erratically and generate incom-
plete and noisy data. Without proper mechanisms, stream reasoning systems
can then be caught up in attempting to deal with situations involving conflicting
knowledge (e.g. temperature sensors providing a value of 20C and fire detectors
alerting of a fire). Even worse, a system can end up failing when it enters an
undecidable reasoning state due to contradiction or non-determinism. This hap-
pens when there are several possible conclusions or solutions as a result of given
observations, or when there is no outcome satisfying all given constraints. For
example each traffic light in a crossing can be red, yellow or green in different
combinations, and there are constraints on synchronization between them; simi-
larly, there are different possible paths for going form A to B and there might be
constraints and preferences on time, distance, CO2 intake, safety of the road etc.
that determine which solution is best. Non-monotonic formalisms can help deal-
ing with logical contradiction, incompleteness and non-determinisms in stream
reasoning by embracing incomplete and noisy streams and presenting results as
a set of plausible (possibly ranked) solutions. This leads to a system which is
more robust and expressive than any current stream reasoning implementation
for the (Semantic) Web. As a result, Non-Monotonic Reasoning (NMR) tech-
niques for (Semantic) Web Streams can be seen as having high potential impact
in a variety of real-world applications.

The ability of dealing with incomplete and noisy input streams is one of the
capabilities induced by non-monotonicity, but providing support for dealing with
conflicts, defaults, qualitative preferences, constraints, and non-determinism
requires computationally intensive reasoning.

A few approaches have been investigated that aims at supporting NMR
for big data. The prominent categories of such approaches rely on either the
Well-Founded Semantics (WFS) and defeasible reasoning, or the Stable Model
Semantics and Answer Set Programming (ASP). Given the complexity of NMR
reasoning over streams, cross-layer approaches that leverage processing at differ-
ent level of complexity is recently being investigated. In what follows we briefly
summarize the approaches in each of these categories, that will be covered in
this lecture.

Web Stream Reasoning: From Data Streams to Actionable Knowledge 83

4.1 Large-Scale Defeasible Reasoning with MapReduce

Authors in [3,35] focus on distributed methods for non-monotonic rule-based
reasoning. Their current works perform parallel defeasible reasoning under the
assumption of stratification which imposed a severe limitation considering the
range of allowed rule set. Also, they focus on optimization of WFS computa-
tion based on MapReduce. Despite these approaches might have computational
advantages over the more complex ASP-based approaches, the implementation
based on MapReduce makes them suitable for embarrassingly parallel problems
but not for problems with exponential complexity. Additionally, the available
implementations based on MapReduce do not natively support stream processing
concepts such as time-decay model and sliding window, making it less intuitive
to specify problems in terms of stream reasoning tasks. We will briefly illustrate
the core idea behind these approaches.

4.2 Web Stream Reasoning with Answer Set Programming

Developments on the Datalog side are evolving in this directions, and exten-
sions of Datalog towards the logic paradigm of Answer Set Programming
(ASP) [4,17,24] have been implementing these reasoning capabilities which can
go far beyond the capabilities of existing query engines. Logic programming
dialects like Datalog with negation, covered by ASP, are viewed as a natural
basis for the Semantic Web rule layer [13], but the full expressivity of ASP
introduces new challenges concerning the trade-off between expressivity and scal-
ability, especially in a streaming scenario. Therefore, when dealing with NMR
approaches based on ASP, particular attention should be given to the scalability
of such systems. The development of stream reasoning systems based on the
Stable Model Semantics focuses on extending the well established declarative
complex reasoning framework of ASP with dynamic data. M. Gebser et al. [16]
proposed modeling approaches for continuous stream reasoning based on reac-
tive ASP, utilizing time-decaying logic programs to capture sliding window data
in a natural way. This is a first step towards gearing ASP to continuous reason-
ing tasks. However, these approaches still mainly process on low changing data
and relatively smaller data sizes. Do et al. [12] also utilize ASP in their stream
reasoning system and the approach is based on the DLV engine [14], which does
not deal with continuous and window-based reasoning over data stream within
the reasoner.

4.3 Cross-Layer Web Stream Reasoning with ASP

NMR for Semantic Web Streams has only started to be investigated in recent
years and no commercial systems beyond a few small-scale research prototypes
exist. There is little scientific work which tries to capitalize on the synergies
between stream query processing and stream reasoning and there is a quickly
growing demand for software solutions that can efficiently process web streams
and perform complex reasoning tasks on noisy and incomplete input. A similar

84 A. Mileo

approach is proposed in [28], where the authors present the StreamRule frame-
work as a combination of linked stream data processing and NMR in ASP.

In this lecture we will mostly focus on ASP-based approaches to NMR, rely-
ing on existing solvers that support stream processing features and uncertainty
management via rule learning. As mentioned earlier in this section, ASP-based
approaches are computationally more expensive than parallel approaches based
on defeasible reasoning, but they are suitable for problems with exponential
complexity. We will investigate a new line of research that leverages cross-layer
processing of streams, combining approaches across the three layers of Fig. 1. Our
main assumption is that we can efficiently perform NMR by utilizing approaches
from both stream processing and stream reasoning, when combined correctly
under a common and sound model. Focusing on NMR methods, we will explore
approaches and open challenges for web stream reasoning which rely on the syn-
ergies between RDF stream processing and rule-based inference. The two main
directions we will consider in this lecture are:

– Combined approaches that rely on web stream reasoning layers at lower com-
plexity to reduce the size of the input and increase scalability at the higher
levels [18,28];

– Hybrid approaches to uncertainty management, which combine declarative
non-monotonic reasoning with inductive inference and learning [29,30].

We will provide an overview of prototypical tools and showcase how they can
be used in a smart city context3.

5 Conclusive Remarks

In this lecture we provide an overview of Web Stream Reasoning, considered
as the application of reasoning techniques to help deriving actionable knowl-
edge from web data streams. Stream reasoning is an unexplored yet high impact
research area and encompasses a series of new multidisciplinary approach that
can provide the abstractions, foundations, methods, and tools required to inte-
grate data streams, semantic representations, complex events, and reasoning
systems [37].

A variety of concrete applications highlight clearly the need for scalable web
stream reasoning and the importance of characterizing the expressivity vs. scal-
ability trade-off to tackle the efficiency and expressivity challenges. Approaches
that incrementally filter, process and aggregate web streams to enable higher
level inference are in their infancy and they are only one possible direction to
address such challenges. Even though IoT intelligence in modern applications
often requires expressive and scalable languages and methods for web stream rea-
soning, current approaches rely on different underlying formalisms which require
the use of an external reasoner and expensive mapping and synchronization
between the different layers, with consequent negative impact on scalability.

3 http://www.ict-citypulse.eu.

http://www.ict-citypulse.eu

Web Stream Reasoning: From Data Streams to Actionable Knowledge 85

Promising research activities are ongoing to address these challenges. Some of
them worth mentioning include the DHSR project4 and the W3C RDF Stream
Processing Working Group (RSP WG)5. The DHSR project aims at providing
a strong model-based semantic foundation to distributed heterogeneous stream
reasoning. RSP WG standardization activities are fostering the semantic commu-
nity to define a common and extensible core model for RDF stream processing,
envisioning an ecosystem of streaming and static RDF data sources whose data
can be combined through standard models, languages and protocols. Relevant
research is being carried forward in the context of the EU FP7 project CityPulse,
where mechanisms for adaptive RDF stream processing and dynamic data-driven
heuristics for scalable NMR over streams are being investigated [19].

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic. N.: ET-SPARQL: a unified language
for event processing and stream reasoning. In: Proceedings of the 20th WWW
Conference, pp. 635–644, ACM (2011)

2. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in etalis. Semant. Web 3(4), 397–407 (2011)

3. Antoniou, G., Batsakis, S., Tachmazidis, I.: Large-scale reasoning with (semantic)
data. In: Proceedings of the 4th International Conference on Web Intelligence,
Mining and Semantics (WIMS 2014), p. 1, ACM (2014)

4. Baral, C.: Knowledge Representation Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

5. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying rdf
streams with C-SPARQL. SIGMOD Rec. 39(1), 20–26 (2010)

6. Bolles, Andre, Grawunder, Marco, Jacobi, Jonas: Streaming SPARQL - Extend-
ing SPARQL to process data streams. In: Bechhofer, Sean, Hauswirth, Manfred,
Hoffmann, Jörg, Koubarakis, Manolis (eds.) ESWC 2008. LNCS, vol. 5021, pp.
448–462. Springer, Heidelberg (2008)

7. Calbimonte, J., Jeung, H., Corcho, Ó., Aberer, K.: Enabling query technologies for
the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)

8. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data
management applications. In: VLDB 2002, pp. 215–226, VLDB Endowment (2002)

9. Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A First Step Towards
Stream Reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008.
LNCS, vol. 5468, pp. 72–81. Springer, Heidelberg (2009)

10. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! rea-
soning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

11. Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.:
Order matters! harnessing a world of orderings for reasoning over massive data. J.
Semant. Web 4(2), 219–231 (2012)

12. Do, Thang M., Loke, Seng W., Liu, Fei: Answer set programming for stream rea-
soning. In: Butz, Cory, Lingras, Pawan (eds.) Canadian AI 2011. LNCS, vol. 6657,
pp. 104–109. Springer, Heidelberg (2011)

4 http://www.kr.tuwien.ac.at/research/projects/dhsr/.
5 https://www.w3.org/community/rsp/.

http://www.kr.tuwien.ac.at/research/projects/dhsr/
https://www.w3.org/community/rsp/

86 A. Mileo

13. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with
rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler,
U. (eds.) Reasoning Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg
(2006)

14. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Dlv-hex: Dealing with semantic
web under answer-set programming. In: The Proceedings of the 4th International
Semantic Web Conference (2005)

15. Gao, F., Curry, E., Ali, M.I., Bhiri, S., Mileo, A.: QoS-Aware complex event service
composition and optimization using genetic algorithms. In: Franch, X., Ghose,
A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 386–393.
Springer, Heidelberg (2014)

16. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Answer set programming for stream reasoning (2013). CoRR abs/1301.1392

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic Programming, vol. 161
(1988)

18. Germano, S., Pham, T.-L., Mileo, A.: Web stream reasoning in practice: on the
expressivity vs. scalability tradeoff. In: Web Reasoning and Rule Systems - 9th
International Conference, RR 2014, Berlin, Germany, 5–6 August 2015, page to
appear. Proceedings (2015)

19. W. S. R. in Practice: on the Expressivity vs. Scalability tradeoff. Stefano germano
and thu-le pham and alessandra mkileo. In: Web Reasoning and Rule Systems -
9th International Conference, RR 2015, Berlin, Germany, 4–5 August 2015, page
to appear. Proceedings (2015)

20. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over rdf data streams. In: Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, pp.58–68, ACM (2012)

21. Lanzanasto, N., Komazec, S., Toma, I.: Reasoning over real time data
streams (2012). http://www.envision-project.eu/wp-content/uploads/2012/11/
D4-8 v1-0.pdf

22. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011)

23. Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked stream data processing.
In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp.
245–289. Springer, Heidelberg (2012)

24. Lifschitz, V.: Answer set programming and plan generation. AI 138(1), 39–54
(2002)

25. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive con-
tinuous queries over streams. In: 2002 ACM SIGMOD International Conference on
Management of Data, pp. 49–60, ACM, New York (2002)

26. Mahambre, S.P., Kumar, M., Bellur, U.: A taxonomy of qos-aware, adaptive event-
dissemination middleware. IEEE Internet Comput. 11(4), 35–44 (2007)

27. Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: Reasoning
over dynamic data. Web Semant.: Sci. Serv. Agents World Wide Web 25, 24–44
(2014)

28. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: A non-
monotonic stream reasoning system for the semantic web. In: Faber, W., Lembo,
D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013)

http://arxiv.org/abs/1301.1392
http://www.envision-project.eu/wp-content/uploads/2012/11/D4-8_v1-0.pdf
http://www.envision-project.eu/wp-content/uploads/2012/11/D4-8_v1-0.pdf

Web Stream Reasoning: From Data Streams to Actionable Knowledge 87

29. Nickles, M., Mileo, A.: Probabilistic inductive logic programming based on answer
set programming (2014). CoRR abs/1405.0720

30. Nickles, M., Mileo, A.: Web stream reasoning using probabilistic answer set pro-
gramming. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741,
pp. 197–205. Springer, Heidelberg (2014)

31. Paschke, A.: Rules and logic programming for the web. In: Polleres, A., d’Amato,
C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 326–381. Springer, Heidelberg (2011)

32. Paschke, A., Boley, H.: Rule responder: Rule-based agents for the semant. prag-
matic web. Int. J. Artif. Intell. Tools 20(6), 1043–1081 (2011)

33. Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Comput.
12(4), 78–83 (2008)

34. Stuckenschmidt, H., Ceri, S., Della Valle, E., Van Harmelen, F., di Milano, P.:
Towards expressive stream reasoning. In: Proceedings of the Dagstuhl Seminar on
Semantic Aspects of Sensor Networks (2010)

35. Tachmazidis, I., Antoniou, G., Faber, W.: Efficient computation of the well-founded
semantics over big data (2014). CoRR abs/1405.2590

36. Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and
streams of events. In: Proceedings of the 6th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS 2012, pp. 302–313. ACM, New York (2012)

37. Valle, E.D., Ceri, S., Harmelen, F.V., Fensel, D.: It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

38. Zaino, J.: Big data and the semantic web: Their paths will cross. http://
semanticweb.com/big-data-and-the-semantic-web-their-paths-will-cross b32027

http://arxiv.org/abs/1405.0720
http://arxiv.org/abs/1405.2590
http://semanticweb.com/big-data-and-the-semantic-web-their-paths-will-cross_b32027
http://semanticweb.com/big-data-and-the-semantic-web-their-paths-will-cross_b32027

Recommender Systems and Linked Open Data

Tommaso Di Noia1(B) and Vito Claudio Ostuni2

1 SisInf Lab, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy
tommaso.dinoia@poliba.it

2 Pandora Media Inc., 2101 Webster Street, Oakland, CA 9461, USA
vostuni@pandora.com

Abstract. The World Wide Web is moving from a Web of hyper-linked
documents to a Web of linked data. Thanks to the Semantic Web tech-
nological stack and to the more recent Linked Open Data (LOD) initia-
tive, a vast amount of RDF data have been published in freely accessible
datasets connected with each other to form the so called LOD cloud. As of
today, we have tons of RDF data available in the Web of Data, but only
a few applications really exploit their potential power. The availability
of such data is for sure an opportunity to feed personalized information
access tools such as recommender systems. We present an overview on
recommender systems and we sketch how to use Linked Open Data to
build a new generation of semantics-aware recommendation engines.

1 Introduction

The recent emergence of social networks and pervasive mobile devices has con-
tributed to the publication of a massive amount of information on the Web. We
entered into an era of Information Overload: more information is produced than
what we can really consume and process. Just to have an idea of what it means in
practice, we know1 that in just one minute about 694,445 searches are performed
on Google, more than 6,600 pictures are uploaded on Flickr, about 13,000 hours
of music streaming is done by the personalized Internet radio provider Pandora
and so on.

Potentially, such enormous and heterogeneous collection of information allows
users to find anything they may be looking for. However, in practice humans
cannot process so much information without the assistance of any automatic
filtering tool. Recommender Systems (RSs) [49] are a family of information fil-
tering tools which have proven to be valuable means in assisting users to find,
in a personalized manner, what is relevant for them in such overflowing complex
information spaces. They provide users with personalized access to large collec-
tions of resources. On the one hand in the last twenty years we have assisted
to the proliferation of this new kind of information filtering tools, namely rec-
ommender systems, which have proven to be very useful in supporting users
in dealing with everyday decision making tasks in complex scenarios. Examples

1 http://www.go-gulf.com/blog/60-seconds/.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 88–113, 2015.
DOI: 10.1007/978-3-319-21768-0 4

http://www.go-gulf.com/blog/60-seconds/

Recommender Systems and Linked Open Data 89

of such tasks are buying a product, looking for an accommodation or choosing
the right movie to watch, just to cite few examples. On the other hand in the
same temporal period we have also observed a shift from a Web conceived exclu-
sively for humans to a Web of Data where information is made available also for
machines.

Together with the appearing of social networks and Internet-enabled mobile
devices, the Web has moved from a Web of hyper-linked Documents to one
where both documents and data are linked. Thanks to the Semantic Web spread
and to the more recent Linked Open Data (LOD) initiative, a vast amount
of structured semantic data have been published in freely accessible datasets.
More and more semantic data are published following the Linked Data [10]
principles, that enable to set up links between objects in different data sources
by connecting information in a single global data space: the Web of Data.

The matter in question is how to leverage the progresses made in the LOD
field for improving that of recommender systems and vice versa. Here we see
how the semantics encoded in the Linked Open Data can be used for improving
traditional recommender systems. Actually, it is particularly interesting also to
notice that such techniques can be used the other way around.

In this paper we introduce all the notions and elements needed to build and
evaluate the effectiveness of a RS which leverages the data accessible in the LOD
cloud. In the next section, we briefly review the recommendation problem and
then in Sect. 3 we describe some basic metrics to evaluate the performance of a
recommendation engine. In Sect. 4 we discuss on how to exploit the knowledge
encoded in the Linked Open Data cloud to design a semantics-aware recom-
mender system while in Sect. 5 we present some relevant related work.

2 Recommender Systems

Recommender Systems (RSs) are software tools and techniques providing
suggestions for items to be of use to a user [49]. Such suggestions can relate to
different decision-making processes, such as what users to connect to in a social
network, what product to buy, what music to listen to, or what movie to watch.
Products, music, movies are all examples of items in specific recommendation
scenarios. Nowadays, almost every online service has a recommendation feature.
Pandora2, Netflix3, Linkedin4 and many others use recommendation functional-
ities in their systems to engage the users and offer them a better service.

The main aim of RSs is to help users in satisfying their information needs
when dealing with huge information spaces. To achieve this, RSs try to select
the subset of items which best match the users’ preferences and tastes. Among
the several definitions given in the literature, we report the one proposed by [15]
which says: the recommender system term indicates any system that produces
individualized recommendations as output or has the effect of guiding the user
2 http://www.pandora.com/.
3 http://www.netflix.com.
4 http://www.linkedin.com.

http://www.pandora.com/
http://www.netflix.com
http://www.linkedin.com

90 T. Di Noia and V.C. Ostuni

Fig. 1. Example of Information Overload scenario.

in a personalized way to interesting or useful objects in a large space of possible
options.

In Fig. 1 an example of typical Information Overload scenario is depicted
where the user is exposed to a set of movies and does not know which one
to select. If we contextualize this example to real situations where the user is
overwhelmed with thousands/millions of items, then it is easy to imagine that
it is very hard for her to make the right choice without any assistance.

In principle, the primary aim of both recommendation systems and search
systems is to satisfy users’ information needs. Nonetheless, there are quite a
few fundamental differences between the two technologies. Towards the end of
2006, Jeffrey O’Brien, a Fortune writer, talking about recommender systems on
the Web, quoted5 “The Web, they say, is leaving the era of search and entering
one of discovery. What’s the difference? Search is what you do when you’re
looking for something. Discovery is when something wonderful that you didn’t
know existed, or didn’t know how to ask for, finds you”. Compared to search
systems, recommender systems provide the possibility for users to discover new
resources that they may have not initially thought about, without the necessity
of formulating their needs explicitly.

2.1 The Recommendation Problem

A formal formulation of the recommendation problem has been given in [2] and
it is defined as follows. Let U represent the set of users and I the set of items in
the system. Potentially, both sets can be very large. Let f : U × I → R, where
R is a totally ordered set, be a utility function measuring the usefulness of item
i ∈ I for user u ∈ U . Then, the recommendation problem consists in finding
for each user u such item imax,u ∈ I maximizing the utility function f . More
formally, this corresponds to the following:

∀u ∈ U, imax,u = arg maxi∈I f(u, i)
5 http://archive.fortune.com/magazines/fortune/fortune archive/2006/11/27/

8394347/index.htm.

http://archive.fortune.com/magazines/fortune/fortune_archive/2006/11/27/8394347/index.htm
http://archive.fortune.com/magazines/fortune/fortune_archive/2006/11/27/8394347/index.htm

Recommender Systems and Linked Open Data 91

Typically, the utility of an item is represented by a rating, which indicates
how a particular user liked a particular item. The central problem of recom-
mender systems is that the utility is not defined on the whole U × I space, but
only a subset of it is actually available. For each user only a portion of her rat-
ings is known. Hence, the main task of the system concerns the estimation of
the utility function from the available data. Once the utility function is obtained
it can be used to predict unknown values and recommendations are eventually
generated by selecting for each user the best N items with highest utility (top-N
recommendation list).

2.2 Users, Items and Ratings

As described in the formal definition of the recommendation problem, at the
base of each RS there are three main essential elements which are: users, items
and ratings. Usually such information are represented all together by means of
a user-item ratings matrix. Such ratings matrix consists of a table where each
row represents a user, each column represents a specific item, and each entry
represents the rating given by the user to the particular item. Usually, such
matrix results very sparse in practice because users rate only a small portion
of items. Figure 2 shows an example of user-item ratings matrix in a movie RS
where users express their preferences to the items (movies) by using a five points
rating scale. The items with a question mark (unknown rating) are unseen for
the corresponding user.

Users. Users are those actors of the system who are provided with recommen-
dations. Users can be represented in different ways depending on the recom-
mendation techniques used to compute recommendations. In order to provide
personalized recommendations the system has to model and maintain informa-
tion about their preferences. In a content-based RS users’ preferences can be
represented in a more transparent way by means of attribute/term vectors in a
heuristic-based approach, by means of a model in a model-based approach or by
means of knowledge representation tools (ontologies, rules, etc.).

Items. Item is the general term used to denote the resource the system recom-
mends to users. Items may be characterized by their complexity and their value
or utility [49]. Examples of items with low complexity and value are: news, Web
pages, books, movies. While examples of more complex and higher value items
can range from mobile phones, laptops to financial services, jobs and travels.
Depending on the system and the recommendation technique the item content
can be more or less structured and complex. It can range from just a numeric
ID in a collaborative filtering system a to a a bag of keywords or set of attribute
value pairs in a content-based system till to an ontology-based description in
systems using a domain ontology.

92 T. Di Noia and V.C. Ostuni

Fig. 2. Example of user-item ratings matrix in a movie recommendation scenario.

Ratings. The most important thing RSs rely on is the availability of up to date
information about users’ preferences in the form of users’ feedback. Depending
on the way such information is collected, users’ feedback can be classified as
explicit or implicit. In the former case feedback come in the form of ratings.
The user is asked to provide her opinion about an item on a rating scale which
can be either numerical (e.g. 1–5 stars) or ordinal (strongly agree, agree, neutral,
disagree, strongly disagree) or also binary (like/dislike). Although the explicit
feedback case is more common in literature mostly due to the availability of
many datasets with ratings, in practice is more common the case where the
system gathers implicit feedback from the user. A system can infer the user
preferences by monitoring user’s behaviour without any bother to the user.

From Rating Prediction to Ranking. In the formulation of the recommen-
dation problem given above the system is mainly seen as a predictive system
in the way that the main goal is to accurately predict ratings. Such problem is
known as the rating prediction task. However, the ultimate goal of the system
in most situations is to provide the user with a ranked list of recommendations,
namely top-N recommendations. As pointed out by [20] in many commercial
systems, the best bet recommendations are shown, but the predicted rating values
are not. This is usually referred to as a top-N recommendation task, where
the goal of the recommender system is to find a few specific items which are
supposed to be most appealing to the user. Other researchers [47] have refereed
to such task also using a different terminology, namely item recommendation
task, that is the task of predicting a personalized ranking on a set of items.

2.3 Recommendation Techniques

Depending on the the way the utility function is estimated and the availabil-
ity of additional data about the characteristics of items for example, there are
different types of recommendation techniques. The main two are: collaborative

Recommender Systems and Linked Open Data 93

filtering and content-based. Besides these two, there also other approaches such
as knowledge-based, demographic and community-based just to cite a few. A
complete list of techniques is given in [16] and in [49]. An important class of
recommender systems which are often used in real systems are the hybrid rec-
ommenders [15] which combine different strategies to improve their separate
performance and obtain higher recommendation quality.

Collaborative Filtering Recommendation. Collaborative Filtering is the
process of filtering or evaluating items using the opinions of other people [52].
In this approach personalized recommendations for a target user are generated
using opinions of users having similar tastes to those of the target user [48]. The
main assumption in this approach is that users with similar preferences in the
past will have similar preferences in the future.

Differently from any other technique the only input data that CF-RSs need
is the user-item ratings matrix. Figure 3 shows a simple example of collaborative
filtering case corresponding to the user-item ratings ratings matrix depicted in
Fig. 2. If we consider Alice as target user, as said before, recommendations are
generated considering the ratings given by other users with similar tastes. In this
particular case, both John and Alice have similar tastes because they both rated
similarly Argo and Righteous Kill. The system can exploit John’s ratings for
estimating Alice’s unknown ratings. The basic intuition behind this method is
that since John really likes Heat then also Alice may like it.

According to [12] there are two main types of collaborative filtering methods:
memory-based and model-based. Memory-based CF uses a particular type of

Fig. 3. Illustration of a CF-based recommender system.

94 T. Di Noia and V.C. Ostuni

Machine Learning methods that is the nearest neighborhood (k-NN) algorithm.
The main property of such approach is that it does not require any preliminary
model building phase because predictions are made by aggregating the ratings
of the closest neighbours. On the contrary, model-based techniques first learn a
predictive model which is eventually used to make predictions.

Memory-based approaches can be classified either in user-based or item-
based. The user-based approach consists of predicting the relevance of an item
for the target user by a linear combination of her neighbour’s ratings, weighted
by the similarity between the target user and such neighbours. One of the first
implementation of such approach is the one presented in [48] which considers the
rating deviations from the user’s and neighbour’s rating means (r̄u). Prediction
for the active user u and target item i is computed as:

ru,i = r̄u +

∑K
j=1(ruj ,i − r̄u) · wu,uj

∑|U |
j=1 wu,uj

where K is the number of neighbors for user u and wu,uj
is the similarity weight

between the active user u and neighbor uj defined by the Pearson correlation
coefficient:

wu,uj
=

∑
i(ru,i − r̄u) · (ruj ,i − r̄uj

)
√∑

i=1(ru,i − r̄u)2 ·
√∑

i=1(ruj ,i − r̄uj
)2

For a more detailed list of similarity measures and aggregation function please
refer to [2]. The item-based CF approach bases on the usage of the same
correlation-based or cosine-based techniques to compute similarities between
items instead of users. The idea is to derive a notion of item similarity from
user rating or purchase behavior and recommend items similar to those the user
has already said they like. In [23] such idea has been applied to compute top-N
item recommendations in e-commerce scenarios.

While at the beginning most of the research in this area focused on memory-
based approaches, in the last years more attention has been paid to model-based
techniques. In particular mode after the Netflix competition which showed that
model-based techniques have higher accuracy [32]. The most adopted model-
based approaches are the matrix factorization or latent factor models [33] which
apply some form of dimensionality reduction on the user item ratings matrix to
map both users and items into a joint lower dimensional latent factor space.

Even if collaborative filtering is the most widely adopted approach it can
suffer from different drawbacks. First of all, to work properly it needs enough
rating data to find meaningful correlations among items or users. This is main
known as sparsity or cold-start problem [53]. In relation to that, there are
two specific issues which are the new user and new item problem. When a
new user enters the system till she has not rated a sufficient number of items the
system is unable to compute reliable similarities with other users. When a new
item is added to the catalog there is no way to recommend it before till no ratings
about it are obtained. A typical way to tackle such cold-start problems is to

Recommender Systems and Linked Open Data 95

combine collaborative-filtering with content-based approaches. Another problem
of CF is the so called Grey sheep problem, that is the inability of the system
to properly treat users with very unusual preferences since the system is unable
to find other similar users.

Content-Based Recommendation. Content-based RSs recommend an item
to a user based upon a description of the item and a profile of the user’s inter-
ests [46]. Briefly, the basic process performed by a content-based recommender
consists in matching up the attributes of a user profile in which preferences and
interests are stored, with the attributes of a content object (item) [36].

Differently from collaborative filtering, such recommendation approach relies
on the availability of content features describing the items. Such features can
be extracted from unstructured or semi-structured item descriptions by using
proper Natural Language Processing (NLP) techniques or can be obtained from
structured data as the case of tabular data in a relational database. A high level
architecture of a content-based RS is presented in [36] (Fig. 5).

Figure 4 shows an example of content-based approach with reference to the
user Alice. As we can see, differently from the CF case in this approach movies
are provided with attributes, such as actors, genres, etc. The other difference is
that only the target user is considered in the recommendation process. The basic
intuition behind this approach is that since Alice likes Argo she might like Heat
because they both belong to the Drama genre.

There are two main content-based recommendation approaches: heuristic-
based or model-based.

Approaches using heuristic functions have their roots in Information
Retrieval and Information Filtering. Items are recommended based on a com-
parison between their content and a user profile. The idea is to represent both
items and users using typical IR techniques [6], e.g. vectors of terms, and com-
pute a match between their representations. The user profile consists in a vector
of terms built from the analysis of the items liked by the user. A typical approach
is to use the Vector Space Model (VSM) [5] where items and user profiles can be
represented as weighted vectors computed using the tf-idf formula [5]. The match

Fig. 4. Illustration of a content-based RS.

96 T. Di Noia and V.C. Ostuni

Fig. 5. Example of model-based CB-RS.

between items and user profile vectors can be computed using cosine similarity
and eventually the most similar items to the user profile are recommended.

Model-based approaches [45] use Machine Learning techniques to learn a
model of the user’s preferences by analyzing the content characteristics of items
the user rated. Specifically, a regression or classification model is learnt from a
collection of items for which past user’s ratings are available. The training set
consists of item feature vectors labelled with ratings. Eventually, such learnt user
model can be used for estimating the unknown ratings. This process is usually
done for each user separately.

Differently from the heuristic-based case where the user model can be seen as
an explicit representation of the user preferences (a vector containing the most
preferred terms by the user), in this case the user profile is represented as a
function obtained by means of an inductive learning process. Such function can
be a complete black box or have a more interpretable form depending on the
machine learning algorithm adopted.

A possible limitation of model-based approaches with respect heuristic-based
ones is that the learning algorithm does not build a model with acceptable
accuracy until it sees a relatively large number of examples (e.g. 50) [61].

Content-based methods can have several limitations. Maybe the main one
is the content overspecialization which consists in the incapability of the
system to recommend relevant items which are different to the ones the user
already knows. Related to the previous issue, there is also the portfolio effect
problem consisting in the redundancy and low diversity among the items in the
recommendation lists.

Another limitation affecting CB systems is the limited content analysis.
The quality of CB recommendations depends on the vailability and quality of
features extracted from the items content.

For a complete and detailed description of content-based techniques for rec-
ommendations please refer to [36,46].

Recommender Systems and Linked Open Data 97

Knowledge-Based Recommandation. Both collaborative and content-based
approaches work very well for all those domains where we have a user with an
interaction history with the system. This is the case for instance of movies,
books or music. Actually, there are some domains where it is quite difficult to
have the user interacting with the system over the time. We may think of a
student who wants to enroll at university or someone looking for a house to
buy. In both cases it is unlikely that the users interact with the corresponding
systems many times. Nevertheless, the information overload problem holds also
in these situations and the help of a RS is highly desirable. A recommender
system should guide the user through the set of possible choices by guessing or
explicitly asking for her preferences. By combining its knowledge on the user
desires and the one on the specific domain, the system selects a ranked list of
items to be shown to the user. These classes of applications are classified as
knowledge-based recommender systems [26].

Such systems are very often also referred to as conversational recommender
systems [14]. Indeed, the user’s preferences are elicited during her interaction
with the system that may in turn ask her explicit questions regarding some
characteristics of the item she is looking for. All these user requirements may vary
in importance going from strict/hard to soft/graded requirements. Moreover,
they can be updated while the user interplays with the application. Besides
these user-generated constraints, as stated before, the system may also be aware
of other constraint that are specific of the knowledge domain such as “if the
house has a big garden then it cannot be in the city center”.

We basically have two main types of knowledge-based recommender sys-
tems: case-based [13] and constraint-based [19,24,62] depending on the approach
adopted in the representation and reasoning with user requirements and domain
knowledge.

Hybrid Recommendation. The main idea behind hybrid recommender sys-
tems is to combine two or more classes of algorithms in order to mitigate the
weaknesses of the individual approaches and obtain better recommendation qual-
ity. In [15] a taxonomy of several hybridization schemes is given which consists
in the following list:

– Weighted: the scores provided by the individual recommenders are combined
using a linear combination or a voting scheme;

– Switching: a special case of the previous type considering binary weights such
that one recommender is turned on and the others are turned off;

– Mixed: recommendations generated from several recommenders are presented
together at the same time by means of certain ranking or combination
strategy;

– Feature combination: the features used by different recommenders are inte-
grated and combined into a single data source, which is finally used by a single
recommender;

– Cascade: the recommendation is performed as a sequential process where each
recommender refines the recommendations given by the previous one;

98 T. Di Noia and V.C. Ostuni

– Feature augmentation: the output from one recommender is used as an addi-
tional input feature for other recommender;

– Meta-level: the model generated by one recommender is used as the input for
another recommender.

Most common example of hybridization is the combination of collaborative and
content strategies for mitigating CF limitations such as cold start and sparsity.

Semantics-Aware Recommendation. One of the main limitation of tradi-
tional content-based approaches is that they completely ignore the semantics
associated to the item attributes because they rely on keyword-based represen-
tations. Keyword-based approaches to user profiling are unable to capture the
semantics of user interests [22] because they are primarily driven by a string
matching operation which suffers from problems of polysemy, the presence of
multiple meanings for one term, and synonymy, multiple terms having the same
meaning.

Furthermore, such textual approaches are incapable of capturing more com-
plex relationships among objects at a deeper semantic level based on the inher-
ent properties associated with these objects [21]. For example let us consider
two generic movies m1 and m2, which have a1 and a2 as directors, respec-
tively. Let make the case that even if the two movies have different directors
a1 and a2, those directors have however many things in common such as they
both were born in the same country and they both won a particular award. It is
reasonable to assume that if a user likes m1 because of a1 then she might like
with a certain degree m2 because a2 is similar to a1. In this case, an approach
based on keyword matching would fail because the two values for the attribute
director are different. When considering plain keyword representations possible
relations among structured objects are completely missed. The system needs a
better representation of the items content.

As described in [36] semantic analysis and its integration in personaliza-
tion models is one of the most innovative and interesting approaches proposed
in literature to solve those problems. The key idea is the adoption of knowl-
edge bases for annotating items and representing profiles in order to obtain a
“semantic” interpretation of the user information needs.

The core idea behind Semantics-aware Recommender Systems then, is to use
ontological knowledge to describe items in order to have a deeper and more
structured representation of their content.

The availability of additional semantic knowledge can allow the system to
go beyond the simple keyword matching. Common-sense and domain-specific
knowledge may be useful to give some meaning to the content of items, thus help-
ing to generate more informative features than “plain” attributes [56]. Example
of semantics-aware RSs can be any content-based or hybrid recommender where
items are described by means of domain ontologies.

It is easy to see that depending on the addressed domain, we may build
a semantics-aware RS that falls either in the content-based category or in the
knowledge-based one.

Recommender Systems and Linked Open Data 99

3 Recommender Systems Evaluation

Several different recommendation approaches have been proposed in the last
years. Generally, some of those different approaches can perform differently
depending on the domain and on the task or other conditions such as sparseness
of the ratings matrix. Clearly identifying the best algorithm for a given purpose
has proven challenging, in part because researchers disagree on which attributes
should be measured, and on which metrics should be used for each attribute [29].
Due to different reasons, the evaluation of recommender systems is inherently
difficult to perform. For example different algorithms may be better or worse on
different data sets or they may have different evaluation goals depending on the
task. Furthermore, based on the adopted evaluation strategy, results may vary
considerably.

An extensive review of evaluation metrics and techniques is provided in [29].

3.1 Metrics and Protocols

The most common aspect of recommendation quality measured in offline exper-
imentations is accuracy. The literature on recommender systems typically dis-
tinguishes between two ways of measuring recommendation accuracy [59] which
can be reconducted to two different main tasks which are rating prediction
and ranking or top-N recommendations. Most of the evaluation methodologies
adopted to asses the performances of recommendation systems are derived from
the well established methodologies developed in the Information Retrieval field.
This is particularly true when the system is used for top-N recommendation
tasks. As reported in [7] although there are many commonalities between IR and
recommendation systems there are also important differences to take into consid-
eration. Two of the most significant ones regard the nature and the availability
of relevance information about items. While in IR the relevance of a document
with respect to a query is objective and is assessed by domain experts, in the
RS field each user has her personal relevance for items which is determined by
her ratings. Furthermore, in IR there is almost complete knowledge about such
relevance information. This is not true at all for RSs because the system has
knowledge only about a small portion of ratings for each user.

This latter aspect is crucial when evaluating ranking accuracy because some
assumptions about the unknown ratings must be done. In [59] the authors argue
that the main difference between the evaluation of the rating prediction and
ranking tasks consists in how the training and test data are considered. They say
that rating prediction is concerned with only the observed ratings, while ranking
typically accounts for all items in the collection, whether the user has rated them
or not. Hence, they present two protocols for evaluating ranking accuracy: all
unrated items and rated test-items. The all unrated items protocol consists
in creating a top-N recommendation list for each user by predicting a score
for every item not rated by that particular user, whether the item appears in
the user test set or not. Then, performance metrics are computed comparing
recommendation lists with test data. The main assumption in this methodology

100 T. Di Noia and V.C. Ostuni

is that all the unrated items are considered to be irrelevant for the user with the
effect of underestimating real recommendation quality. However, the authors of
[59] argue that since the user-experience in top-N recommendation applications
depends on the ranking of all items, this is a better evaluation methodology than
the rated test-items one where only rated test items are considered for generating
the top-N list. In fact, this latter method is the one adopted in evaluating the
rating prediction task by using error based metrics.

Accuracy Metrics. Traditionally, the most popular metrics to measure the
accuracy in the rating prediction task are error based metrics such as Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The main goal
in the rating prediction task is to predict the rating value that a user would
assign to an item. Then the evaluation consists in predicting ratings r̂u,i for a
test set TS of user-item pairs (u, i) for which the true ratings ru,i are known.

MAE =
1

|TS|
∑

(u,i)∈TS

| ˆru,i − ru,i| (1)

RMSE =

√
√
√
√

1
|TS|

∑

(u,i)∈TS

(ˆru,i − ru,i)2 (2)

Such error based metrics can be useful for measuring rating prediction accuracy.
Despite the large adoption of error metrics in the past several recent studies
[9,20] have demonstrated that the accurate prediction of ratings does not imply
the best top-N ranking of items. In case one wants to use such metrics for
measuring the accuracy of top-N recommendations the main limitation of such
metrics is that they do not make any distinction between the errors made on the
high rated items and the errors made for the rest of the items.

More appropriate measures for evaluating top-N recommendation accuracy
are precision-oriented metrics which take into account the ranked list of items.
Examples of such metrics are Precision, Recall and Normalized Discounted
Cumulative Gain. They are usually computed considering incremental list sizes,
that is considering items up to a given ranking position (N). Typical values for
N are 1, 5, 10, 25, 50, 100.

Precision and recall are binary metrics in the sense that they require binary
rating data. Hence, we need to distinguish between relevant and not relevant
items for the user. For example in a 5 points ratings scale, 4 and 5 ratings may
be considered as relevant. In case of implicit feedback with unary rating data
instead, all rated items can be considered as relevant.

Precision@N for user u (Pu@n) is computed as the fraction of top-N recom-
mended items appearing in the user test set and which are relevant for the user,
while Recall@N (Ru@N) is computed as the ratio of top-N recommended items
appearing in the user test set which are also relevant to the number of relevant
items in the user test set.

Pu@N =
|Lu(N) ∩ TS+

u |
n

(3)

Recommender Systems and Linked Open Data 101

Ru@N =
|Lu(N) ∩ TS+

u |
|TS+

u |
(4)

where TS+
u is the set of relevant test items for u and Lu(N) the ranked recom-

mendation list up to position N . Both metrics are inversely related, typically an
improvement in recall produces a decrease in precision.

Differently from precision and recall, the normalized discounted cumulative
gain nDCG metric takes into account both relevance and rank position. Denoting
with ru,k the rating given by user u to the item in position k in the top-N list,
then nDCG@N for u can be defined as:

nDCG@N =
1

IDCG@N

n∑

k=1

2ru,k − 1
log2(1 + k)

(5)

where IDCG@N indicates the score obtained by an ideal or perfect ranking of
Lu(N) and acts as normalization factor. When using the all unrated items
protocol for those items with no rating in the test set a fixed default value can
be assumed as suggested in [59].

Other Metrics. As pointed out by [39], the most accurate recommendations
according to the standard metrics are sometimes not the recommendations that
are most useful to users. Many researchers in the past proposed several metrics
to measure the quality of the system from different perspectives. For example,
an algorithm may provide very accurate recommendations but only for a small
proportion of users or recommend only too popular items.

Some important qualities which have considered in literature besides accu-
racy regard the the ability of the system to compute diverse and novel sugges-
tions. The novelty of a piece of information generally refers to how different it
is with respect to “what has been previously seen”, by a specific user, or by a
community as a whole. A possible way to compute recommendation novelty is
to look at the popularity distribution of items. The Entropy-Based Novelty
(EBN) [8] expresses the ability of a recommender system to suggest less popular
items, i.e. items not known by a wide number of users. In particular, for each
user’s recommendation list Lu(N), the novelty is computed as:

EBNu@N = −
∑

i∈Lu(N)

pi · log2 pi

where:

pi =
|{u ∈ U | i is relevant to u}|

|U |

In such formulation the lower EBNu@N , the better the novelty. A broader
discussion of novelty metrics is given in [60]. The aim of diversity metrics instead
is to measure how diverse is the recommendation list. A well adopted diversity
metric to measure the degree of diversification of the recommendation list is the
Intra-List Diversity (ILD) [64].

102 T. Di Noia and V.C. Ostuni

Other important qualities of a system are catalog and user coverage. User
coverage is the proportion of users to whom the system can recommend items.
Catalog coverage is the percentage of the available items that are effec-
tively recommended. A metric for measuring catalog coverage or equivalently,
aggregate diversity [1], is the diversity-in-top-N metric presented in [1].

ADiv@N =
|
⋃

u∈U Lu(N)|
|I|

Low values of aggregated diversity indicate that all users are being recommended
almost the same few items. This corresponds to a low level of personalization of
the system.

4 Linked Open Data for Recommender Systems

Nowadays the Web of Data represents a huge repository of different kinds
of knowledge spanning from sedimentary-one such as encyclopedic, linguistic,
common-sense and so on, to real-time one such as data streams, events, etc.
Several works on ontological or semantics-aware recommender systems have
been proposed in the past before the LOD initiative was officially launched
[3,17,22,40,41,55,56,63]. Most of them exploit item’s ontological knowledge to
boost collaborative filtering systems or to build better content-based ones. Such
approaches have been shown to be particularly effective in solving some draw-
backs of pure collaborative methods such as cold start and data sparsity, two
well known problems in the recommender systems world. However, we argue
that those approaches are not particularly suited for working with LOD datasets
and new techniques are required for properly incorporating LOD into RSs and
effectively exploiting their semantics.

We recognize two main reasons why new approaches are needed. The first
reason is that those ontological recommendation algorithms developed before the
LOD initiative referred principally to the usage of specific domain ontologies and
taxonomies. LOD datasets have the peculiarity of being published according to the
Semantic Web technologies and of using a graph-based data model. Such aspects
require specific models and paradigms for their effective usage and incorporation
into recommender systems.

Past works on ontology-based RSs base on the usage of taxonomies, con-
trolled vocabulary and limited domain ontologies. With the advent of LOD new
interesting possibilities appear for realizing better recommendation applications.
The main advantages of using LOD for content-based and hybrid recommender
systems can be summarized as:

– Availability of a great amount of multi-domain and ontological knowledge
freely available for feeding the system;

– Semantic Web standards and technologies to retrieve the required data and
hence no need for content analysis tasks for obtaining a structured represen-
tation of the items content;

– The ontological and relational nature of the data allows the system to analyze
item descriptions at a semantic level.

Recommender Systems and Linked Open Data 103

Table 1. Datasets by domain.

Domain Datasets

Government 183

Publications 96

Life sciences 83

User-generated content 48

Cross-domain 41

Media 22

Geographic 21

Social web 520

Multi-domain Knowledge. Depending on the dataset, there is the availability
of multi-relational data related to different domains. We can get data about
geographic locations, music, movies, art, people, facts, and general common-
sense knowledge (see Table 1 [54]). If we consider encyclopedic datasets such as
DBpedia [34] or Freebase [11], we have access to a huge amount of factual knowl-
edge referring to a variety of topics. As pointed out by [56] factual and common
sense knowledge bases can provide the system with the “cultural” background
knowledge needed to compute an accurate content analysis. Another important
advantage of datasets as DBpedia is their multi-lingual nature which grants the
development of cross-language applications [43].

Standardized Access to Data. The usage of Linked Open Data datasets to
retrieve information related to an item eases the pre-processing steps performed
by the Content Analyzer [36] – the module of a CB-RS in charge of extracting
relevant information from item descriptions – since the data is already structured
in an ontological way and represented by using Semantic Web standards.

LOD datasets can be queried by means of their respective SPARQL endpoints.
For DBpedia, it allows anyone to ask complex queries about any topic available in
Wikipedia. For example, we can obtain information about which actors starred
in the movie Pulp Fiction via a simple SPARQL query:

PREFIX dbpedia: <http://dbpedia.org/resource/>

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT ?actor WHERE {

dbpedia:Pulp_Fiction dbpedia-owl:starring ?actor.

}

Starting from the previous query we see how to extract rich data related to a
specific resource/item as well as to a bunch of them. Given the URI corresponding
to an item, it is possible for instance to extract the associated sub-graph by
performing various SPARQL queries using a breadth-first search strategy up to a
limited depth.

104 T. Di Noia and V.C. Ostuni

Semantic Analysis. The main advantage of using LOD is the availability of well
structured graph-based item descriptions. In fact, items are connected to entities
by means of semantic relations. Such entities are classified in more or less com-
plex classes. The semantics of those classes and relations is described by means
of ontologies. For example if we consider the resource dbpedia:Bruce Willis
in DBpedia, it is instance of the class dbpedia-owl:Person which in turn
is sub-class of dbpedia-owl:Agent. In such ontology it is also defined the
semantics of properties. For example the property dbpedia-owl:starring
which connects dbpedia:Pulp Fiction to dbpedia:Bruce Willis has domain
dbpedia-owl:Work and range dbpedia-owl:Actor which is sub-class of
dbpedia-owl:Person.

Thanks to the semantic relations among entities the system can perform a
deeper semantic analysis of the item content. In a keyword-based representation
the system is limited to compute the syntactic match between keywords. Instead,
thanks to the availability of semantic entities the system can potentially detect
complex associations between the user profile and the items.

4.1 Feeding Recommender Systems with LOD

There are several aspects to consider in order to effectively incorporate LOD in
recommendation applications. Ultimately, the goal is to provide the system with
background knowledge about the domain of interest in the form of a knowledge
graph. In Fig. 6 we show a high level architecture of a component in charge of
retrieving portions of the LOD graph regarding the items in the system which
are used to form the knowledge graph. Such component consists of two main
modules: the Item Linker and the Item Graph Analyzer.

Item Linker. The Item Linker addresses the task of linking the items in the
system with the corresponding resources in the LOD knowledge bases. The aim
of such component is bridging the gap between between the items in the cata-
log and LOD. We have hypothesized two main ways for performing the linking
task: Direct Item Linking, Item Description Linking. This module takes
as input any dataset in the LOD cloud and the list of items in the catalog with
associated side information, if available, and returns either the mapping between
items and URIs or the set of URIs found in each item description, depending on
the way the task is performed.

Direct Item Linking. This approach is the more straightforward way for accessing
LOD datasets. However, it requires that items have to be LOD resources, otherwise
it cannot be used.

Item Description Linking. This approach bases on the exploitation of side infor-
mation about the items such as textual descriptions or attributes. Such infor-
mation can be used as input for entity linking tools in order to have access to
LOD resources and link them to the item. Specifically, entity linking is the task

Recommender Systems and Linked Open Data 105

Fig. 6. High-level architecture for feeding RSs with LOD.

of linking the entity mentioned in the text with the corresponding real world
entity in the existing knowledge base [57].

Item Graph Analyzer. This module is responsible of the extraction from the
knowledge base of a descriptive and informative subgraph for each item, that
is a set of RDF triples somehow related to the item resource. Eventually, all the
extracted portions of LOD can be merged to obtain a specific knowledge graph
representative of the domain of interest covered by the recommender. It takes
as input the list of items URI returned by the Item Linker and returns a set of
RDF triples for each item.

Performing some SPARQL queries for obtaining a set of RDF triples related
to the item is an easy task, however extracting an informative and compact
subgraph descriptive of the item is not. Potentially, each item resource may
be connected to a big portion of the LOD graph. However, not all entities and
relations may be informative and descriptive of the item content. Moreover, too
much information may be problematic to handle.

After all, the main advantage of using LOD is that data are structured in an
ontological way. Hence, one can consider specific classes and/or properties for
extracting the subgraph of interest. The problem is how to use such information
about classes and properties. Some properties can be very useful for a particular
task and not for others. For example, the dbpedia-owl:country property can
be useful in a location-based service, but maybe it is not in a movie recommen-

106 T. Di Noia and V.C. Ostuni

dation system. Speaking about classes, in a single domain recommender, class
information is not that informative. For example in a movie recommender we can
omit to consider the Movie class as feature because it would represent redundant
information (all items – movies – are instances of the same class). Conversely,
in a cross-domain system classes and relations among them may be very useful.

Several strategies to select a relevant subset of RDF triples for each item
may be considered and adopted. One strategy can be to manually define a set
of properties or sequences of properties by using some domain knowledge. One
can automatically obtain a set of object properties related to the domain of
interest by performing a SPARQL query like the following:

PREFIX dbpedia: <http://dbpedia.org/resource/>

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT distinct(?p) where{

?s ?p ?o.

?s rdf:type dbpedia-owl:Film.

?p rdf:type owl:ObjectProperty.

}

4.2 Which Classes of RSs?

Due to the very rich and structured knowledge layer represented in the data
available in the LOD cloud we may think to build different classes of recommender
systems with respect to the ones introduced in Sect. 2. In particular we are
allowed to build:

– heuristic-based content-based recommender systems;
– model-based content-based recommender systems;
– hybrid recommender systems;
– knowledge-based recommender systems.

4.3 Evaluating LOD-based RSs

There are many datasets available for the evaluation of recommender systems.
However, such datasets are not appropriate for evaluating LOD-based recommen-
dation algorithms because they do not contains links to URIs. In order to evaluate
LOD-based RSs we can use three datasets belonging to three different domains
which are movies, music and book. These datasets contain mappings between
items (movies, artists, books) and their corresponding DBpedia URIs. The map-
pings for the datasets is available at http://sisinflab.poliba.it/semanticweb/lod/
recsys/datasets/. In the following we describe the main characteristics of the
three datasets.

http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/

Recommender Systems and Linked Open Data 107

Movielens. This dataset is based on the MovieLens 1M dataset6 released by
the GroupLens research group. The original dataset contains 1,000,209 1–5 stars
ratings given by 6,040 users to 3,883 movies. We found a valid mapping for 3,148
out of the all movies.

LibraryThing. The second dataset is derived from the LibraryThing 7

dataset8. This dataset is related to the book domain and contains 7,112 users,
37,231 books and 626,000 ratings ranging from 1 to 10. In this case we found a
match for 8,170 books.

LastFM. While the first two datasets contain explicit feedback data, this third
dataset is based on implicit feedback consisting of user-artist listening data. This
dataset comes from recent initiatives on information heterogeneity and fusion
in recommender systems9 [18]. It has been built on top of the Last.fm music
system10. The original dataset contains 1,892 users, 17,632 artists and 92,834
relations between a user and a listened artist together with their corresponding
listening counts. For this dataset we found a match for 9,490 out of a total of
17,632 artists.

5 Related Work

Many researches in the past have proposed different ways of using domain ontolo-
gies and taxonomies to improve the quality of conventional RSs.

In [37] the authors presented a content-based filtering approach wherein user
and item profiles are described in terms of concepts belonging to a domain tax-
onomy. Specifically, the user profile is built by aggregating the concepts of items
preferred by the user. The computation of the matching between user and item
profiles base on a similarity function able to exploit the hierarchical taxonomy
structure. They propose different possible matches between user and item such
as exact or partial and different match scores depending also on the hierarchi-
cal distance between concepts. Such approach can be seen as a particular case
of heuristic-based content recommendation technique where items are described
using a domain taxonomy.

In [40] the authors describe an approach for ontological user profiling and an
application of such approach for building a research paper recommendation sys-
tem. In such system both research papers and user profiles are described in terms
of topics organized in taxonomy. Each time the user browses a paper, the related
topics are added to his profile together with the broader topics in the taxonomy.
Those broader topics however just receive a smaller portion of the original topics.

6 http://www.grouplens.org/node/73.
7 http://www.librarything.com.
8 http://www.macle.nl/tud/LT/.
9 http://ir.ii.uam.es/hetrec2011/datasets.html.

10 http://www.lastfm.com.

http://www.grouplens.org/node/73
http://www.librarything.com
http://www.macle.nl/tud/LT/
http://ir.ii.uam.es/hetrec2011/datasets.html
http://www.lastfm.com

108 T. Di Noia and V.C. Ostuni

In this way also general topics were added to the user profile in order to have a
deeper content representation. Recommendations were eventually computed con-
sidering the correlation between the user’s topics of interest and papers classified
to those topics. In [41] the authors present a semantically enhanced collaborative
filtering approach where structured semantic knowledge about items is used in
conjunction with user-item ratings to create a combined similarity measure for
item comparisons. Taxonomic information is used in [63] to represents the user’s
interest in categories of products. Consequently, user similarity is determined
by common interests in categories and not by common interests in items. In [3]
the authors present an approach that infers user preferences from rating data
using an item ontology. The system collaboratively generates recommendations
using the ontology and infers preferences during similarity computation. Another
hybrid ontological recommendation system is proposed in [17] where user pref-
erences and item features are described by semantic concepts to obtain users’
clusters corresponding to implicit Communities of Interest.

A semantic content-collaborative hybrid recommender is presented in [22]
which computes similarities between users relying on their content-based profiles.
The particularity of such work is the usage of sense-based user profiles instead of
keyword-based ones. Such semantic profiles are obtained by integrating machine
learning algorithms for text categorization with a word sense disambiguation
strategy based exclusively on the lexical knowledge stored in WordNet. Most
of the presented works used ontologies to compute better user-user or item-
item similarities in memory-based collaborative filtering approaches. However
little work has been done in exploiting ontologies for computing model-based
recommendations. A detailed description of recommendation techniques based
on ontological filtering is given in [30,36].

In the last few years with the availability of Linked Open Data a new class
of recommender systems has emerged which can be named as LOD-based recom-
mender systems. This new typology of recommendation methods is attracting
increasingly interest in both the communities of Semantic Web and Recom-
mender Systems.

Most of the proposed works regarding this topic tried to reuse and adapt some
of the ideas presented in the context of ontological RSs to LOD datasets which
have their own characteristics, while others proposed new approaches specifi-
cally suited for working with Linked Data technologies and others proposed new
applications of recommendation technologies for Linked Data. In what follows
we review the most significant contributions.

One of the first approaches that exploits Linked Open Data for building
recommender systems is [28]. Here the authors, for the first time propose a
recommender system fed by Linked Open Data. In [27] the authors present a
knowledge-based framework leveraging DBpedia for computing cross-domain rec-
ommendations. In [35] the authors propose a graph-based recommendation app-
roach utilizing model- and memory-based link prediction methods. In [38] LOD
datasets are used for personalized exploratory search using a spreading activa-
tion method. They use a spreading activation method with the purpose of finding
semantic relatedness between items belonging to different domains. dbrec [44] is a

Recommender Systems and Linked Open Data 109

music content-based recommender system leveraging the DBpedia dataset. They
define the Linked Data Semantic Distance in order to find semantic distances
between resources and then compute recommendations.

A full SPARQL-based recommendation engine named RecSPARQL is pre-
sented in [4]. The proposed tool extends the syntax and semantics of SPARQL
to enable a generic and flexible way for collaborative filtering and content-based
recommendations over arbitrary RDF graphs. The authors of [58] propose an app-
roach for topic suggestions based on some proximity measures defined on the top
of the DBpedia graph.

In [31] the authors present an event recommendation system based on linked
data and user diversity. A semantic-aware extension of the SVD++ model,
named SemanticSVD++, is presented in n [50]. It incorporates semantic cat-
egories of items into the model. The model is able also to consider the evolution
over time of user’s preferences. In [51] the authors improve their previous work
for dealing with cold-start items by introducing a vertex kernel for getting knowl-
edge about the unrated semantic categories starting from those categories which
are known. Another interesting direction about the usage of LOD for content-
based RSs is explored in [42] where the authors present Contextual eVSM, a
content-based context-aware recommendation framework that adopts a seman-
tic representation based on distributional models and entity linking techniques.
In particular entity linking is used to detect entities in free text and map them
to LOD.

Finally, in [25] the authors propose the usage of recommendation techniques
for providing personalized access to Linked Data. The proposed recommendation
method is a user-user collaborative filtering recommender wherein the similarity
between the users takes into account the commonalities and informativeness of
the resources instead of treating resources as plain identifiers.

References

1. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using
ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

3. Anand, S.S., Kearney, P., Shapcott, M.: Generating semantically enriched user
profiles for web personalization. ACM Trans. Internet Technol. 7(4), October 2007

4. Ayala, V.A.A., Przyjaciel-Zablocki, M., Hornung, T., Schätzle, A., Lausen, G.:
Extending SPARQL for recommendations. In: Proceedings of Semantic Web Infor-
mation Management on Semantic Web Information Management, SWIM 2014, pp.
1:1–1:8. ACM, New York (2014)

5. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology behind Search. Addison-Wesley Professional, Boston (2011)

6. Balabanović, M., Shoham, Y.: Fab: Content-based, collaborative recommendation.
Commun. ACM 40(3), 66–72 (1997)

110 T. Di Noia and V.C. Ostuni

7. Belloǵın, A.: Performance prediction and evaluation in recommender systems: an
information retrieval perspective. Ph.D. thesis, Escuela Politécnica Superior Depar-
tamento de Ingenieŕıa Informática (2012)

8. Belloǵın, A., Cantador, I., Castells, P.: A study of heterogeneity in recommenda-
tions for a social music service. In: Proceedings of the 1st International Workshop
on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2010,
pp. 1–8. ACM, New York (2010)

9. Bellogin, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recom-
mender systems: an algorithmic comparison. In: Proceedings of the Fifth ACM
Conference on Recommender Systems, RecSys 2011, pp. 333–336. ACM, New York
(2011)

10. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant.
Web Inf. Syst 5(3), 1–22 (2009)

11. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, pp. 1247–1250. ACM, New York (2008)

12. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI 1998, pp. 43–52 (1998)

13. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowl. Eng. Rev. 20(3), 315–320 (2005)

14. Burke, R.: Knowledge-based recommender systems. In: Kent, A. (ed.) Encyclopedia
of Library and Information Science, vol. 69, pp. 181–201. CRC Press, Boca Raton
(2000)

15. Burke, R.D.: Hybrid recommender systems: survey and experiments. User Model.
User-Adapt. Interact. 12(4), 331–370 (2002)

16. Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg
(2007)

17. Cantador, I., Belloǵın, A., Castells, P.: A multilayer ontology-based hybrid recom-
mendation model. AI Commun. Special Issue Recomm. Syst. 21(2—-3), 203–210
(2008)

18. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogene-
ity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th
ACM Conference on Recommender systems, RecSys 2011. ACM, New York (2011)

19. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: Knowledge
elicitation for query refinement in a semantic-enabled e-marketplace. In: Proceed-
ings of the 7th International Conference on Electronic Commerce, ICEC 2005, pp.
685–691. ACM, New York (2005)

20. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
Top-N recommendation tasks. In: Proceedings of the Fourth ACM Conference on
Recommender Systems, RecSys 2010, pp. 39–46. ACM, New York (2010)

21. Dai, H., Mobasher, B.: A road map to more effective web personalization: integrat-
ing domain knowledge with web usage mining. In: Proceedings of the International
Conference on Internet Computing, IC 2003, Las Vegas, Nevada, USA, 23–26 June
2003, vol. 1, pp. 58–64 (2003)

22. Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that
exploits wordnet-based user profiles for neighborhood formation. User Model. User-
Adapt. Inter. 17(3), 217–255 (2007)

Recommender Systems and Linked Open Data 111

23. Deshpande, M., Karypis, G.: Item-based Top-N recommendation algorithms. ACM
Trans. Inf. Syst. 22(1), 143–177 (2004)

24. Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-
monotonic reasoning: a description logic approach. J. Artif. Int. Res. 29(1), 269–
307 (2007)

25. Dojchinovski, M., Vitvar, T.: Personalised access to linked data. In: Janowicz, K.,
Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp.
121–136. Springer, Heidelberg (2014)

26. Felfernig, A., Burke, R.: Constraint-based recommender systems: technologies and
research issues. In: Proceedings of the 10th International Conference on Electronic
Commerce, ICEC 2008, pp. 3:1–3:10. ACM, New York (2008)

27. Fernández-Tob́ıas, I., Cantador, I., Kaminskas, M., Ricci, F.: A generic semantic-
based framework for cross-domain recommendation. In: Proceedings of the 2nd
International Workshop on Information Heterogeneity and Fusion in Recommender
Systems, HetRec 2011, pp. 25–32. ACM, New York (2011)

28. Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recom-
mender systems. Linked data meets artificial intelligence. In: AAAI Spring Sym-
posium (2010)

29. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

30. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems and
the next-generation web. In: Recommender Systems, pp. 253–288. Cambridge Uni-
versity Press, Cambridge (2010)

31. Khrouf, H., Troncy, R.: Hybrid event recommendation using linked data and user
diversity. In: Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys 2013, pp. 185–192. ACM, New York (2013)

32. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434. ACM,
New York (2008)

33. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

34. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6(2),
167–195 (2015)

35. Lommatzsch, A., Plumbaum, T., Albayrak, S.: A linked dataverse knows better:
boosting recommendation quality using semantic knowledge. In: Proceedings of
the 5th International Conference on Advances in Semantic Processing, pp. 97–103.
IARIA, Wilmington (2011)

36. Lops, P., Gemmis, M., Semeraro, G.: Content-based recommender systems: state
of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 73–105. Springer, USA (2011)

37. Maidel, V., Shoval, P., Shapira, B., Taieb-Maimon, M.: Evaluation of an ontology-
content based filtering method for a personalized newspaper. In: Proceedings of
the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne,
Switzerland, 23–25 October 2008, pp. 91–98 (2008)

38. Marie, N., Corby, O., Gandon, F., Ribière, M.: Composite interests’ exploration
thanks to on-the-fly linked data spreading activation. In: Proceedings of the 24th
ACM Conference on Hypertext and Social Media, HT 2013, pp. 31–40. ACM,
New York (2013)

112 T. Di Noia and V.C. Ostuni

39. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accu-
racy metrics have hurt recommender systems. In: CHI 2006 Extended Abstracts
on Human Factors in Computing Systems, CHI EA 2006, pp. 1097–1101. ACM,
New York (2006)

40. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in
recommender systems. ACM Trans. Inf. Syst. 22, 54–88 (2004)

41. Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on
the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou,
M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer,
Heidelberg (2004)

42. Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Combining distributional
semantics and entity linking for context-aware content-based recommendation. In:
Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.)
UMAP 2014. LNCS, vol. 8538, pp. 381–392. Springer, Heidelberg (2014)

43. Narducci, F., Palmonari, M., Semeraro, G.: Cross-language semantic retrieval and
linking of E-Gov services. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann,
C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013,
Part II. LNCS, vol. 8219, pp. 130–145. Springer, Heidelberg (2013)

44. Passant, A.: Measuring semantic distance on linking data and using it for resources
recommendations. In: Proceedings of the AAAI Spring Symposium “Linked Data
Meets Artificial Intelligence”, vol. 3 (2010)

45. Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification
ofinteresting web sites. Mach. Learn. 27(3), 313–331 (1997)

46. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321,
pp. 325–341. Springer, Heidelberg (2007)

47. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI
Press, Arlington (2009)

48. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: CSCW 1994, Proceedings of
the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA,
22–26 October 1994, pp. 175–186 (1994)

49. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems
Handbook. Springer, USA (2011)

50. Rowe, M.: SemanticSVD++: incorporating semantic taste evolution for predicting
ratings. In: 2014 IEEE/WIC/ACM International Conferences on Web Intelligence,
WI 2014 (2014)

51. Rowe, M.: Transferring semantic categories with vertex kernels: recommendations
with SemanticSVD++. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,
Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014, Part I. LNCS, vol. 8796, pp. 341–356. Springer, Heidelberg (2014)

52. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recom-
mender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web
2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

53. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics
for cold-start recommendations. In: Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2002, pp. 253–260. ACM, New York (2002)

Recommender Systems and Linked Open Data 113

54. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A.,
Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble,
C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg
(2014)

55. Semeraro, G., Degemmis, M., Lops, P., Basile, P.: Combining learning and word
sense disambiguation for intelligent user profiling. In: IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, 6–12 January 2007, pp. 2856–2861 (2007)

56. Semeraro, G., Lops, P., Basile, P., de Gemmis, M.: Knowledge infusion into content-
based recommender systems. In: Proceedings of the Third ACM Conference on
Recommender Systems, RecSys 2009, pp. 301–304, ACM, New York (2009)

57. Shen, W., Wang, J., Luo, P., Wang, M.: Linden: linking named entities with knowl-
edge base via semantic knowledge. In: Proceedings of the 21st International Con-
ference on World Wide Web, WWW 2012, pp. 449–458. ACM, New York (2012)

58. Stankovic, M., Breitfuss, W., Laublet, P.: Linked-data based suggestion of relevant
topics. In: Proceedings of the 7th International Conference on Semantic Systems,
I-Semantics 2011, pp. 49–55. ACM, New York (2011)

59. Steck, H.: Evaluation of recommendations: rating-prediction and ranking. In: Rec-
Sys, pp. 213–220 (2013)

60. Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for
recommender systems. In: Proceedings of the Fifth ACM Conference on Recom-
mender Systems, RecSys 2011, pp. 109–116. ACM, New York (2011)

61. Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User
Model. User-Adap. Inter. 11(1–2), 19–29 (2001)

62. Zanker, M., Jessenitschnig, M., Schmid, W.: Preference reasoning with soft con-
straints in constraint-based recommender systems. Constraints 15(4), 574–595
(2010)

63. Ziegler, C.-N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of
product recommendations. In: Proceedings of the Thirteenth ACM International
Conference on Information And Knowledge Management, CIKM 2004, pp. 406–
415. ACM, New York (2004)

64. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommenda-
tion lists through topic diversification. In: Proceedings of the 14th International
Conference on World Wide Web, WWW 2005, pp. 22–32. ACM, New York (2005)

PSOA RuleML: Integrated Object-Relational
Data and Rules

Harold Boley(B)

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
harold.boley@unb.ca

Abstract. Object-relational combinations are reviewed with a focus on
the integrated Positional-Slotted, Object-Applicative (PSOA) RuleML.
PSOA RuleML permits a predicate application (atom) to be without or
with an Object IDentifier (OID) – typed by the predicate as its class –
and, orthogonally, the predicate’s arguments to be positional, slotted,
or combined. This enables six uses of atoms, which are systematically
developed employing examples in presentation syntaxes derived from
RuleML/POSL and RIF-BLD, and visualized in Scratch Grailog. These
atoms, asserted as facts, are retrieved by object-relational look-in queries.
On top of such facts, PSOA rules and their inferential querying are
explored, e.g. permitting F-logic-like frames derived from relational
joins. A use case of bidirectional SQL-PSOA-SPARQL transformation
(schema/ontology mapping) is shown. Objectification and the presenta-
tion plus (XML-)serialization syntaxes of PSOA RuleML are described.
The first-order model-theoretic semantics is formalized, blending (OID-
over-)slot distribution, as in RIF, with integrated psoa terms, as in
RuleML. The PSOATransRun implementation is surveyed, translating
PSOA RuleML to TPTP (PSOA2TPTP) or Prolog (PSOA2Prolog).

1 Introduction

Data has recently obtained the status of what might be called “raw and processed
material for all endeavors”. In analogy to the many distinctions for materials
(e.g., concerning, ‘externally’, their cost and logistics, and, ‘internally’, their
plasticity and reactivity), both external and internal distinctions can also be
made in the realm of (complex) data. External distinctions for data include
“proprietary vs. open” (e.g., on an intranet vs. on the Internet, particularly the
Web) and, orthogonally, “siloed vs. linked”, with two popular choices in italics.1

Internal distinctions include a couple that is often described by the contrasting
data paradigms of relations (below: “predicate-centered, positional” data), e.g. in
the SQL-queried Deep Web, vs. graphs (below: “object-centered, slotted” data),
e.g. in the SPARQL-queried Semantic Web.

This divide has also led to separate relational and graph rule paradigms
that capture knowledge for processing the data (e.g., for inferencing/reasoning

1 http://en.wikipedia.org/wiki/Linked open data.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 114–150, 2015.
DOI: 10.1007/978-3-319-21768-0 5

http://en.wikipedia.org/wiki/Linked_open_data

PSOA RuleML 115

with them). Projects involving both relations and graphs are thus impeded by
the paradigm boundaries, from modeling to implementation. These boundaries
can be bridged or even dissolved by languages combining the relational and
graph paradigms for data as well as rules:

– A heterogeneous combination (an amalgamation), as in F-logic [1] and RIF
[2], allows atomic formulas in the separated relational and graph language
paradigms for data as well as rules, possibly mixed within the same rule.

– The homogeneous combination (an integration) Positional-Slotted, Object-
Applicative (PSOA) RuleML [3]2 blends the atomic relational and graph for-
mulas themselves into a uniform kind of atom, allowing language-internal
transformation of data as well as rules.

In PSOA RuleML, data, i.e. ground (variable-less) facts, include (table-row-
like) relational atoms without an Object IDentifier (OID) and with positional
arguments vs. (graph-node-like) graph atoms with an OID and slotted argu-
ments (for the node’s outgoing labeled edges). What we call ‘slots’ is often called
‘attributes’, ‘properties’, or ‘roles’. Each PSOA slot can have one or more values.
Rules (implications) can use non-ground (variable-containing) versions of all of
the above atoms anywhere in their conditions (bodies) and conclusions (heads).

Generally, the relational vs. graph distinction can be based on two orthogonal
dimensions, creating a system of four quadrants. Expanding one of the dimen-
sions, the object-relational integration in PSOA RuleML is achieved by permit-
ting an atom to be predicate-centered (without an OID) or object-centered3

(with an OID) – every OID being typed by the predicate as its class – and,
orthogonally, the predicate’s arguments to be positional (a sequence), slotted
(a bag of pairs), or both (a positional-plus-slotted combination). The resulting
positional-slotted object-applicative (psoa)4 atoms can be used in six ways, as
in this psoa table (quadrants 1. to 4. expanded by combined options 5. and 6.):

Of the six options, positional data are widely used under names like ‘tuples’,
‘vectors’, ‘lists’, and (1-dimensional) ‘arrays’ (mostly 1.). Likewise, slotted data
2 http://wiki.ruleml.org/index.php/PSOA RuleML.
3 With ‘object-centered’ rather than ‘object-oriented’ atoms we refer to atoms that

have a typed OID described by slots and/or positional arguments. Object-Oriented
Programming (OOP) usually only employs descriptive slots but not positional argu-
ments; on the other hand, OOP allows the re-assignment of slot fillers (instance
variables) while object-centered modeling – as its declarative core – only allows the
refinement of non-ground slot fillers and – in PSOA RuleML – positional arguments.

4 We use the upper-cased “PSOA” as a qualifier for the language and the lower-cased
“psoa” for its terms.

http://wiki.ruleml.org/index.php/PSOA_RuleML

116 H. Boley

include ‘objects’, ‘records’, ‘maps’, and ‘property lists’ (usually 4.). All six are
illustrated with variations of the family-example atoms from [3,4]5:

1. Predicate-centered, positional atoms (relationships), without an OID and
with an – ordered – sequence of arguments, e.g. a Husb × Wife relationship
family(Joe Sue).

2. Object-centered, positional atoms (shelves), with an OID and with a sequence
of arguments, e.g. inst1#family(Joe Sue) with family-typed OID inst1.

3. Predicate-centered, slotted atoms (pairships), without an OID and with an
– unordered – multi-set of slots (each a pair of a slot name and a slot filler),
e.g. family(husb->Joe wife->Sue) or family(wife->Sue husb->Joe).

4. Object-centered, slotted atoms (frames), with an OID and with a multi-set
of slots, e.g. inst1#family(husb->Joe wife->Sue) or commuted (as in 3.).

5. Predicate-centered, positional+slotted atoms (relpairships), without an OID
and with both a sequence of arguments and a multi-set of slots, e.g. a 3-slot,
2-argument atom family(child->Pete dog->Fido dog->Toby Joe Sue).

6. Object-centered, positional+slotted atoms (shelframes), with an OID and
with both an argument sequence and a slot multi-set, e.g. an inst1-
identified atom (cf. 5.) inst1#family(child->Pete dog->Fido dog->Toby
Joe Sue).

The original family-example rule from [3] illustrates one combination of these
six uses of psoa atoms in conditions and conclusions: Its predicate-centered,
positional atoms in the condition (1.) derive a predicate-centered, slotted atom
in the conclusion (3.). The following family-rule variant illustrates a conjunction
of two predicate-centered, positional atoms – a relational join – deriving an
object-centered, slotted atom (4.) – an F-logic-like frame – with the application
of a fresh function name, famid, to ?Hu and ?Wi denoting the OID dependent on
them but not on ?Ch (in this preview, free variables are assumed to be universal):

famid(?Hu ?Wi)#family(husb->?Hu wife->?Wi child->?Ch) :-

And(married(?Hu ?Wi) kid(?Wi ?Ch))

With its OID function, this rule crosses from Datalog to Horn-logic expressivity.
PSOA RuleML is a (head-existential-)extended Horn-logic language (with

equality) that systematizes the variety of RIF-BLD terms6 by generalizing its
positional and slotted (“named-argument”) terms as well as its frame and mem-
bership terms. It can be extended in various ways, e.g. with Negation As Failure
(NAF), augmenting RuleML’s MYNG configurator [5] for the syntax and adapt-
ing the RIF-FLD-specified NAF dialects for the semantics. Conversely, PSOA
RuleML is being developed as a module that is pluggable into larger (RuleML)
logic languages, thus making them likewise object-relational (cf. Sect. 6).

5 http://wiki.ruleml.org/index.php/Grailog#Family Example.
6 http://www.w3.org/TR/rif-bld/#Terms.

http://wiki.ruleml.org/index.php/Grailog#Family_Example
http://www.w3.org/TR/rif-bld/#Terms

PSOA RuleML 117

This paper gives a tutorial-style overview of PSOA RuleML, spanning from
conceptual foundation, to data model, to fact and rule querying, to use case, to
syntax, to semantics, to implementation. Specifically, the paper:

– visualizes all psoa terms in Grailog, where (n-ary) directed hyperarcs [4] – of
directed hypergraphs – are used for positional terms, and (binary) directed
arcs – of directed ‘graphs’ in the narrow sense – are used for slotted terms;

– uses (‘functional’) terms p(...) with a predicate symbol p, taking them as
atomic formulas as in Relfun, HiLog, and RIF, which – along with equality –
is a basis for universal functional-logic programming as in Curry [6];

– is about instance frames (frame atoms) and other psoa atoms employed as
queries and facts, as well as about rules having frames etc. as their conditions
and/or conclusions; it is not about (signature) declarations, as e.g. for frames
in F-logic; however, integrity rules can be defined over arbitrary psoa terms,
as e.g. for relationships in Dexter [7];

– uses ordinary constants as Object IDentifiers, which can logically connect
(distributed) frames and other psoa atoms describing the same OID, e.g.
after disassembling (slotributing) a frame into its smallest (RDF-triple-like)
single-slot parts at compile- or interpretation/run-time;

– uses class membership oid ∈ class (written RIF-like: oid#class) as the ‘back-
bone’ of (typed) frames etc., where a missing oid is provided by the system
(e.g. as a Skolem constant or existential variable) and the absence of class
typing is expressed by the Top class, specifying the root of the class hierarchy;

– is only about (monotonically) deriving new frames etc., and does not go into
negation (as failure) or into frame retraction or updating, although the latter
operations can again use OIDs to refer to frames (cf. N3 [8]);

– focuses on an SQL-SPARQL interoperation use case about (sub)addresses
(Sect. 5), while other use cases are about clinical intelligence [9], music
albums7, and geospatial rules [10]8.

This section introduced object-relational combinations, focused on the PSOA
RuleML integration. Next, the paper develops the PSOA data model with a sys-
tematically varied example in presentation syntaxes derived from RuleML/POSL
and RIF-BLD, and in a neat Grailog visualization syntax. Subsequently, such
ground atoms are asserted as ground facts and queried by ground or non-ground
atoms, followed by a non-ground OID-existential PSOA fact and its querying.
Based on similar facts, PSOA rules and their querying are being explored. The
paper then shows a use case of bidirectional SQL-PSOA-SPARQL transforma-
tion (schema/ontology mapping). It continues with defining objectification as
well as the presentation and serialization syntaxes of PSOA RuleML. Next, it
formalizes the model-theoretic semantics, blending (OID-over-)slot distribution,
as in RIF, with integrated psoa terms, as in RuleML. Finally, the paper sur-
veys the PSOATransRun implementation, translating PSOA RuleML knowledge
bases and queries to TPTP (PSOA2TPTP) or Prolog (PSOA2Prolog).
7 http://www.cs.unb.ca/∼boley/papers/MusicAlbumKB.txt.
8 http://wiki.ruleml.org/index.php/Geospatial Rules.

http://www.cs.unb.ca/~boley/papers/MusicAlbumKB.txt
http://wiki.ruleml.org/index.php/Geospatial_Rules

118 H. Boley

2 Grailog-Visualized Data Model of PSOA RuleML

The data model of PSOA RuleML, based on a long tradition of similar distinc-
tions in the space of data, is structured by the two main (orthogonal) dimensions
of “predicate-centered vs. object-centered” and “positional vs. slotted”. These
dimensions permit a more precise terminology than is possible, e.g., with JSON’s
array vs. object distinction [11]9, which (in spite of JSON’s “object” notion) cor-
responds only to our “positional vs. slotted” dimension.

Our data model will be intuitively explained through a corresponding PSOA
RuleML subset of Grailog [4]10 extended with branch lines, for multiple, ‘split-
out’ (hyper)arcs, and using the novel Scratch Grailog visualization, which empha-
sizes connecting lines (rather than surrounding boxes). In logical languages, data
are conceived as ground (variable-free) facts often given in a (symbolic) presen-
tation syntax. We will use Grailog “skewer figures”11 as a corresponding (graph-
ical) visualization syntax for PSOA facts integrating relations and objects. Our
(Scratch) Grailog figures will visualize the connectivity within a set of label-
nodes,12 where color coding will show the correspondence to the symbolic facts.
The following subsections will visualize the PSOA RuleML systematics in Sect. 1
of six uses of facts from n-ary relationships, to frames, to integrated object-
relational atoms. While the focus will be on single-tuple atoms, the generaliza-
tion to multi-tuple atoms will be exemplified in Sects. 2.1 and 2.2. Throughout,
we will vary a running ‘betweenness’ example for illustration.

2.1 Predicate-Centered, Positional Atoms (Relationships)

Predicate-centered, positional atoms (often called relationships) represent n-ary
positional information (n≥ 0), i.e. the left-to-right-ordered connection of n argu-
ments into a tuple, where the kind of tuple is represented by a relation name
applied to the arguments. In Grailog, each relationship becomes a directed hyper-
arc (directed hyperedge),13 which is depicted as an arrow shaft starting at the
labelnode for the relation name or at a branch line, cutting through the label-
nodes for the n-1 initial arguments in the order they occur, and ending with an
arrow head at the labelnode for the nth argument. Labelnodes for relation names
as well as for arguments can be shared by several hyperarcs.

The sample Grailog figures, right below, visualize 3-ary relational between-
ness with hyperarcs (connecting four labelnodes) for two relationships applying
the relation name betweenRel, in blue, to three individuals (geographic entities)

9 http://wiki.ruleml.org/index.php/RuleML in JSON.
10 http://wiki.ruleml.org/index.php/Grailog.
11 The usual “stick figures” for directed graphs – connecting pairs of nodes with arrows –

are generalized to “skewer figures” for directed hypergraphs – each (bendable) skewer
holding arbitrarily many nodes together in a totally ordered fashion.

12 A labelnode can be used as a label (relation) or as a node (argument).
13 In the following, “hyperarc” will be used as an abbreviation for “directed hyperarc”.

http://wiki.ruleml.org/index.php/RuleML_in_JSON
http://wiki.ruleml.org/index.php/Grailog

PSOA RuleML 119

as arguments, in red. The variant without branch lines can be seen as a shortcut
for the variant with branch lines, shown here in preparation for extensions.14

The corresponding relational PSOA facts in POSL-like [12]15 and RIF-like
Presentation syntax, further below, employ traditional parenthesized relation
applications. Here, the POSL-vs.-RIF difference is only in the use of separator
(comma vs. white-space) and terminator (period vs. newline) symbols.16

Grailog-Style Visualization Syntax (Without Branch Lines):

betweenRel

canadapacific atlantic

usa

mexico

Grailog-Style Visualization Syntax (With Branch Lines):

betweenRel

canadapacific atlantic

usa

mexico

POSL-like Presentation Syntax:
betweenRel(pacific, canada, atlantic).

betweenRel(canada, usa, mexico).

RIF-like Presentation Syntax:
betweenRel(pacific canada atlantic)

betweenRel(canada usa mexico)

Notice that the relation name betweenRel as well as the argument canada are
shared by the two hyperarcs but become copied in the two facts.

The alternative sample Grailog figure, right below, is a visualization that
extends the two above vertical branch lines such that they meet, obtaining a
single branch line, and uses a single unary betweenRel hyperarc pointing to it.
14 Branch lines permit multiple attachment points for visualizing multiple tuples [3],

exemplified below, as well as (multiple) slots, to be introduced in Sect. 2.3.
15 The POsitional-SLotted language started integrating positional and slotted syntaxes:

http://ruleml.org/submission/ruleml-shortation.html.
16 This is partly due to the RIF-like Presentation syntax used here being somewhat

simplified w.r.t. the one used by PSOA RuleML tools: in particular, the “ ” prefix
is omitted from local constants, except for system-generated ones.

http://ruleml.org/submission/ruleml-shortation.html

120 H. Boley

Likewise, also as for relational tables (e.g., in SQL), the multiple copies of
the relation name can be avoided in the PSOA RuleML facts. The corresponding
relational psoa term, further below, replaces the two separate facts for the same
relation with a single multi-tuple (specifically, double-tuple) fact.

Grailog-Style Visualization Syntax (With Branch Line):

betweenRel

canadapacific atlantic

usa

mexico

POSL-like Presentation Syntax:
betweenRel(pacific, canada, atlantic; canada, usa, mexico).

RIF-like Presentation Syntax:
betweenRel([pacific canada atlantic] [canada usa mexico])

For the frequent case of n-ary relations with of n = 1, needed in the next sub-
section, hyperarcs (connecting two labelnodes) point from the relation labelnode
or branch line directly to the only argument labelnode.17

2.2 Object-Centered, Positional Atoms (Shelves)

Object-centered, positional atoms (here called shelves) describe an OID with n
positional arguments (n≥ 0). A shelf thus endows an n-tuple with an OID, typed
by the relation/class, keeping the positional representation of n-ary relationships
in Sect. 2.1.

The sample Grailog figure, right below (objectifying the variant with branch
lines in Sect. 2.1), visualizes two OIDs, a1 and a2, in orange, typed by the rela-
tion/class name betweenObjRel, in blue, and two 3-tuples with the three indi-
viduals as arguments, in red. The corresponding psoa term facts, further below,
employ syntaxes augmenting with OIDs the parenthesized relation-application
syntaxes for the three positional arguments from the relationship: The POSL-
like version specifies the OID at the beginning of the argument sequence, where
a hat/caret/circumflex (“^”) sign – think of it as a ‘property/slot insertion’
character – is used as an infix separating the OID from the slots. The RIF-like
version specifies the OID along with its typing relation/class, where a hash (“#”)
sign – think of it as a ‘set/class membership’ character (“∈”) – is used as an
infix separating the OID from the relation/class.

17 For the infrequent case of n = 0, not needed in this paper, hyperarcs (‘connecting’ one
labelnode) degenerate to an outgoing arrow head attached to the relation labelnode
or branch line.

PSOA RuleML 121

Grailog-Style Visualization Syntax:

betweenObjRel

a1

a2

canadapacific atlantic

usa

mexico

POSL-like Presentation Syntax:
betweenObjRel(a1ˆpacific, canada, atlantic).

betweenObjRel(a2ˆcanada, usa, mexico).

RIF-like Presentation Syntax:
a1#betweenObjRel(pacific canada atlantic)

a2#betweenObjRel(canada usa mexico)

This shelf version is like the relational version in Sect. 2.1 in that it keeps
the three positional arguments for both hyperarcs. It is like the frame version in
Sect. 2.4 in that it introduces two relation/class-typed OIDs.

Notice that the use of the same OID for multiple facts/hyperarcs is allowed,
e.g. replacing the two above OIDs, a1 and a2, with a single OID, a0.

POSL-like Presentation Syntax:
betweenObjRel(a0ˆpacific, canada, atlantic).

betweenObjRel(a0ˆcanada, usa, mexico).

RIF-like Presentation Syntax:
a0#betweenObjRel(pacific canada atlantic)

a0#betweenObjRel(canada usa mexico)

Similarly as in Sect. 2.1, these can be merged into a single multi-tuple (specifi-
cally, double-tuple) fact.18

18 Such merging of tuples – and (later) slots – centered on the same OID is called
‘centralization’. It constructs one object-identified psoa term from a given set
of equally identified psoa terms. Centralization will be assumed when illustrat-
ing the proof-theoretic semantics in Sects. 3 and 4. It is the inverse of tupri-
bution – and slotribution – to be introduced in Sect. 7. Harvesting the set of
all psoa terms with a fixed OID from a distributed network – e.g. published
on the Web – can use techniques analogous to finding all RDF triples hav-
ing a fixed resource as their subject (cf. http://www.w3.org/wiki/TaskForces/
CommunityProjects/LinkingOpenData/SemanticWebSearchEngines). This is a non-
trivial task, since such OIDs and resources normally are not dereferenceable locators
themselves but occur within documents at other locators (although, ideally, those
documents have filename extensions like .ruleml and .rdf, respectively).

http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines

122 H. Boley

POSL-like Presentation Syntax:
betweenObjRel(a0ˆpacific, canada, atlantic; canada, usa, mexico).

RIF-like Presentation Syntax:
a0#betweenObjRel([pacific canada atlantic] [canada usa mexico])

The corresponding Grailog-style visualization syntax could likewise keep the
two a0 nodes separate, e.g. for layout purposes, or merge them into a single a0
node with a single unary betweenObjRel hyperarc pointing to it.

2.3 Predicate-Centered, Slotted Atoms (Pairships)

Predicate-centered, slotted atoms (here called pairships)19 apply a relation/class
to n non-positional attribute-value pairs (often called slots) (n ≥ 0). In Grailog,
a pairship is depicted as a relation/class node pointing, with a unary hyperarc,
to a branch line having n outgoing circle-shaft slot arrows, each using a label
for the attribute and a target node for the value. The order in which slot arrows
emanate from a branch line is immaterial (like for arrows emanating from a
node, as in Sect. 2.4).

The sample Grailog figure, right below (re-representing the same information
as the version in Sect. 2.1), visualizes 3-slot betweenness of two pairships that
apply the relation name betweenObj, in blue, to a branch line for three slots,
with labels outer1, inner, and outer2, in magenta, targeting three individuals as
values, in red. The corresponding pairship facts, further below, employ syntaxes
modifying the relationship syntax of Sect. 2.1: In both the POSL- and RIF-
like versions, a ‘dash-greater’ right-arrow (“->”) sign – think of it as a ‘has
value/filler’ character (“→”) – is used as an infix separating a slot attribute
(name) and value (filler). As in Grailog, the order in which slots occur in an
atom is immaterial. In lexicographic normal form, slots are ordered alphabetically
according to, primarily, their names and, secondarily, their fillers.

Grailog-Style Visualization Syntax:

betweenObj

canadapacific atlantic

usa

mexico

outer1

inner

outer2

outer1

inner

outer2

POSL-like Presentation Syntax:
betweenObj(outer1->pacific; inner->canada; outer2->atlantic).

betweenObj(outer1->canada; inner->usa; outer2->mexico).

19 In RIF called “named-argument terms” [2].

PSOA RuleML 123

RIF-like Presentation Syntax:
betweenObj(outer1->pacific inner->canada outer2->atlantic)

betweenObj(outer1->canada inner->usa outer2->mexico)

The following correspondences lead from the relational version in Sect. 2.1 to
the current version: The three positional arguments become the values (fillers)
of three non-positional slots with attributes (names) outer1, inner, and outer2.
The shared betweenRel becomes the shared betweenObj. The shared argument
canada becomes a shared value (filler).

As a second sample, the Grailog figure, right below, visualizes two pairships
that apply the relation name, betweenObjRel, in blue, to two slots, with labels
orientation and dimension20, targeting three new individuals, as values, in red.
The corresponding pairship facts, further below, employ the pairship syntaxes
from above.

Grailog-Style Visualization Syntax:

betweenObjRel

2

westEast

northSouth

orient

dim

dim

orient

POSL-like Presentation Syntax:
betweenObjRel(dim->2; orient->westEast).

betweenObjRel(dim->2; orient->northSouth).

RIF-like Presentation Syntax:
betweenObjRel(dim->2 orient->westEast)

betweenObjRel(dim->2 orient->northSouth)

This version is like the pairship version above but represents new information.

2.4 Object-Centered, Slotted Atoms (Frames)

Object-centered, slotted atoms (often called frames) describe an OID with n
non-positional attribute-value pairs (often called slots) (n≥0), where the kind
of object is represented by a class name typing the OID. In Grailog, a frame
is depicted as a typing relation/class node pointing, with a unary hyperarc, to

20 The figure’s representation of dimension = 2 indicates that this betweenness is rel-
ative to a 2D plane (rather than, say, to a 3D sphere).

124 H. Boley

a central OID node having n outgoing bullet-shaft (OID-marking) slot arrows,
each using a label for the attribute and a target node for the value. A frame can
thus be seen as a pairship (as in Sect. 2.3) enriched by an OID that results from
expanding the branch line to an entire OID box, and from filling the (empty)
circles of outgoing arrow shafts so they become (solid) bullets.

The sample Grailog figure, right below (OID-enriching the first figure in
Sect. 2.3), visualizes object-centered 3-slot betweenness with central nodes, b1
and b2, in orange, for the OIDs of two frames typed by the relation name
betweenObj, in blue, and three slots, with labels outer1, inner, and outer2, in
magenta, targeting three individuals as values, in red. The corresponding psoa
frame facts, further below, employ syntaxes enriching the pairship syntaxes.

Grailog-Style Visualization Syntax:

betweenObj

b1

b2

canadapacific atlantic

usa

mexico

outer1

inner

outer2

outer1

inner

outer2

POSL-like Presentation Syntax:
betweenObj(b1ˆouter1->pacific; inner->canada; outer2->atlantic).

betweenObj(b2ˆouter1->canada; inner->usa; outer2->mexico).

RIF-like Presentation Syntax:
b1#betweenObj(outer1->pacific inner->canada outer2->atlantic)

b2#betweenObj(outer1->canada inner->usa outer2->mexico)

The following correspondences lead from the relational version in Sect. 2.1
to the current version, complementing both of their characteristics: (1) The
anonymous relationships become frames with OIDs b1 and b2. (2) The three
positional arguments become the values (fillers) of three slots with attributes
(names) outer1, inner, and outer2. Moreover, the shared betweenRel becomes
the shared betweenObj. The shared argument canada becomes a shared value
(filler).

As a second sample, the Grailog figure, right below (OID-enriching the second
pairship figure of Sect. 2.3), again visualizes the two OIDs of Sect. 2.2, a1 and a2,
in orange, typed by their relation/class name, betweenObjRel, in blue, but now
described by two slots, with labels orient and dim, targeting three individuals,
as values, in red. The corresponding frame facts, further below, employ the frame
syntaxes from above.

PSOA RuleML 125

Grailog-Style Visualization Syntax:

betweenObjRel

a1

a2

2

westEast

northSouth

dim

orient

dim

orient

POSL-like Presentation Syntax:
betweenObjRel(a1ˆdim->2; orient->westEast).

betweenObjRel(a2ˆdim->2; orient->northSouth).

RIF-like Presentation Syntax:
a1#betweenObjRel(dim->2 orient->westEast)

a2#betweenObjRel(dim->2 orient->northSouth)

This version is like the frame version above but introduces new information
describing its OIDs.

2.5 Predicate-Centered, Positional+Slotted Atoms (Relpairships)

Predicate-centered, positional+slotted atoms (here called relpairships) blend the
relationships of Sect. 2.1 and pairships of Sect. 2.3 as follows. A branch line typed
by the relation/class is shared for a relationship and a pairship. The branch line
has an outgoing circle-shaft hyperarc arrow for the relationship part’s tuple
and outgoing circle-shaft slot arrows for the pairship part’s slots. The order
between the hyperarc arrow and the slot arrows emanating from a branch line
is immaterial (like for arrows emanating from a node, as in Sect. 2.6).

The sample Grailog figure, right below, visualizes two relpairships, each com-
posed of a relationship (as the variant with branch lines in Sect. 2.1) and a pair-
ship (as in Sect. 2.3). The relationship parts use two branch lines, typed by the
relation/class name betweenObjRel, in blue, and two 3-tuples with the three
individuals as arguments, in red. The pairship parts use the same two branch
lines, additionally having two slots each, with labels orient and dim, and tar-
geting three further individuals, as values, in red. The corresponding relpairship
facts, further below, employ an integrated syntax blending the three positional
arguments from the relationship and the two slots from the pairship. As in
Grailog, the order between the tuple of positional arguments and the multi-set
of slots occurring in an atom is immaterial. In left-slot normal form, the multi-set
of slots precedes the tuple. In right-slot normal form, it follows the tuple. These
normal forms can be combined with the lexicographic normal form of Sect. 2.3
to, respectively, lexicographic left-slot normal form and lexicographic right-slot

126 H. Boley

normal form. Here we use left-slot normal form, because it directly corresponds
to the Grailog figures, while earlier papers have used right-slot normal form.

Grailog-Style Visualization Syntax:

betweenObjRel

2

canadapacific atlantic

usa

mexico

westEast

northSouth

orient

dim

dim

orient

POSL-like Presentation Syntax:
betweenObjRel(dim->2; orient->westEast; pacific, canada, atlantic).

betweenObjRel(dim->2; orient->northSouth; canada, usa, mexico).

RIF-like Presentation Syntax:
betweenObjRel(dim->2 orient->westEast pacific canada atlantic)

betweenObjRel(dim->2 orient->northSouth canada usa mexico)

This version is a ‘disjoint union’ of the second pairship version in Sect. 2.3 and
the relationship version in Sect. 2.1, ‘plugging together’ their information over
the same branch lines. The graphical overlay thus becomes a logical conjunction,
as expected.

2.6 Object-Centered, Positional+Slotted Atoms (Shelframes)

Object-centered, positional+slotted atoms (here called shelframes) blend the
shelves of Sect. 2.2 and frames of Sect. 2.4 as follows. An OID typed by the
relation/class is shared for a shelf and a frame. The OID is described with both
the shelf’s tuple and the frame’s slots. Equivalently, a shelframe can be seen as
a relpairship (as in Sect. 2.5) enriched by an OID.

The sample Grailog figure, right below, visualizes two shelframes, each com-
posed of a shelf (as in Sect. 2.2) and a frame (as the second version in Sect. 2.4).
They can also be seen as OID enrichments of the relpairships in Sect. 2.5. The
shelf parts center on two OIDs, a1 and a2, in orange, typed by the relation/-
class name betweenObjRel, in blue, and two 3-tuples with the three individuals
as arguments, in red. The frame parts center on the same two OIDs, addition-
ally describing each with two slots, having labels orient and dim, and targeting
three further individuals, as values, in red. The corresponding shelframe facts,
further below, employ an integrated syntax blending the three positional shelf
arguments and the two frame slots.

PSOA RuleML 127

Grailog-Style Visualization Syntax:

betweenObjRel

a1

a2

2

canadapacific atlantic

usa

mexico

westEast

northSouth

dim

orient

dim

orient

POSL-like Presentation Syntax:
betweenObjRel(a1ˆdim->2; orient->westEast; pacific, canada, atlantic).

betweenObjRel(a2ˆdim->2; orient->northSouth; canada, usa, mexico).

RIF-like Presentation Syntax:
a1#betweenObjRel(dim->2 orient->westEast pacific canada atlantic)

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

This version is a ‘disjoint union’ of the second frame version in Sect. 2.4 and
the shelf version in Sect. 2.6, ‘plugging together’ their information over the same
OIDs. The graphical overlay thus becomes a logical conjunction, as expected.

3 PSOA Facts for Look-in Querying

The Grailog data model of PSOA RuleML in Sect. 2 will serve as the foundation
for PSOA RuleML fact querying discussed in the current section, which – along
with rule querying in the next section – will illustrate PSOA RuleML’s proof-
theoretic semantics in preparation for the model-theoretic semantics discussed
in Sect. 7.

We will introduce the notion of ‘look-in’ querying, which generalizes look-up
querying by ‘looking’ for psoa query terms ‘in’ asserted psoa fact terms. The
below definitions of ‘equal to’ and ‘part of’ for psoa fact and query terms can
be understood in terms of their graph counterparts: For graph equality and
parthood, the attachment order of hyperarcs and slot arrows is immaterial; this
can be easily gleaned from the relevant sample visualizations in Sect. 2. These
definitions correspond to slotribution and tupribution in the model-theoretic
semantics of Sect. 7, Definition 5, “Psoa formula”, and in the transformational
semantics of Sect. 8: The proof-theoretic check that a query term is ‘part of’
a fact term becomes the model-theoretic/transformational reformulation of the
query term into a conjunction of a membership term and single-slot plus single-
tuple terms against the likewise reformulated fact term.

128 H. Boley

Two elementary binary relations between arbitrary psoa terms are defined:

– A psoa term t1 is equal to a psoa term t2 if t1 and t2 can be made (syntactically)
identical by renaming any (universally or existentially) bound variables, omit-
ting any duplicate slots (entire pairs) and argument tuples (entire sequences),
and reordering any slots and argument tuples in t1 and in t2.

– A psoa term t1 is part of a psoa term t2 if t1 is equal to a version of t2 that
omits zero or more slots and/or entire argument tuples from t2. A psoa term
t1 is proper part of a psoa term t2 if t1 is part of t2 and t1 is not equal to t2.

A set of PSOA ground atoms, e.g. as visualized in Sect. 2, can be asserted as
ground facts in a Knowledge Base (KB) and then be queried by ground or non-
ground atoms, some of which will succeed while others will fail. This exemplifies a
basic notion of the proof-theoretic semantics with positive (success) and negative
(fail) entailment tests, KB � q and KB �� q, respectively. Look-in ground and
non-ground querying will be defined below, where the former is a special case of
the latter.

Look-in Ground Querying: Consider a ground KB k and a ground query q.
k � q (resp., k �� q) iff there exists (resp., does not exist) a ground fact g in k
such that q is part of g.

Since positional+slotted atoms include both positional and slotted atoms, we
will focus on them in the following, i.e. on Sects. 2.5 and 2.6. Also, we will use
the (RIF-like) symbolic presentation syntax only, hence color will be omitted.

For example, consider the following ground atom from Sect. 2.6, asserted as
a double-slot, single-tuple ground fact in a single-fact sample KB:

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

This ground atom can be retrieved by issuing an identical ground atom as a
ground query (special case of ‘equal to’), yielding a success message; it cannot be
retrieved by issuing a ground query that is not part of the ground fact, e.g. one
that expects alaska in place of canada, yielding a failure message; it can again
be retrieved when commuting (‘equal to’ as ‘non-proper part of’) or omitting
slots and/or tuples (‘proper part of’), but not when commuting the positional
arguments or adding/deleting some of them within a tuple, or when inserting
slots and/or tuples, or when using a different OID:

a2#betweenObjRel(dim->2 orient->northSouth [canada usa mexico])

success % Desugared positional arguments with square brackets for tuple

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

success % Syntactic-sugar version is identical to fact

a2#betweenObjRel(dim->2 orient->northSouth alaska usa mexico)

fail % Different constant in same position of tuple

a2#betweenObjRel(orient->northSouth dim->2 canada usa mexico)

success % Commuted two slots

PSOA RuleML 129

a2#betweenObjRel(canada usa mexico dim->2 orient->northSouth)

success % Swapped both slots with entire tuple

a2#betweenObjRel(dim->2 canada usa mexico orient->northSouth)

success % Swapped one slot with entire tuple

a2#betweenObjRel(orient->northSouth canada usa mexico)

success % Omitted one slot (query is proper part of fact)

a2#betweenObjRel(canada usa mexico orient->northSouth)

success % Omitted one slot and swapped other slot with entire tuple

a2#betweenObjRel(canada usa mexico)

successs % Omitted both slots

a2#betweenObjRel(dim->2 orient->northSouth)

success % Omitted entire tuple

a2#betweenObjRel(orient->northSouth)

success % Omitted entire tuple and one slot

a2#betweenObjRel()

success % Omitted entire tuple and both slots

a2#betweenObjRel(dim->2 orient->northSouth usa canada mexico)

fail % Commuted positional arguments of tuple

a2#betweenObjRel(dim->2 orient->northSouth alaska canada usa mexico)

fail % Added element to tuple

a2#betweenObjRel(dim->3 orient->northSouth canada usa mexico)

fail % Different filler for one slot

a2#betweenObjRel(dim->2 orient->northSouth start->1867 canada usa mexico)

fail % Inserted slot

a2#betweenObjRel(dim->2 orient->northSouth

[canada usa mexico] [estonia latvia lithuania])

fail % Inserted tuple

a2#betweenObjRel(dim->2 orient->northSouth usa mexico)

fail % Deleted positional argument of tuple

a2#betweenObjRel(usa mexico)

fail % Deleted positional argument of tuple

a1#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

fail % Different OID

130 H. Boley

betweenObjRel(dim->2 orient->northSouth canada usa mexico)

success % Omitted OID

Apart from the OID-sensitive final two ground queries, all of the above ground
queries work the same when omitting the OID specification, “a2#”, both from
the ground fact and from these queries; hence they also cover Sect. 2.5. The
success of the final ground query, without an OID, against the ground fact with
an OID is due to objectification to be further discussed in Sect. 6.

The ground atom can also be retrieved by issuing a non-ground query,21 using
non-ground/ground matching, by first ‘grounding’ the query by consistently sub-
stituting all query variables with corresponding ground subterms (remembering
these variable bindings for the answer) and then doing retrieval with the ground
query as for look-in ground querying above.

Look-in Non-ground Querying: Consider a ground KB k and a non-ground
query q. k � q (resp., k �� q) iff there exist (resp., do not exist) a ground fact g
in k and a substitution s such that s applied to q gives q’ and q’ is part of g.

For example, given the above sample KB, the following non-ground queries
succeed with the variable bindings shown (for which success is understood,
where variables are marked by a “?” prefix) or fail without a variable binding:

a2#betweenObjRel(dim->2 orient->northSouth ?X usa mexico)

?X = canada

a2#betweenObjRel(dim->2 orient->northSouth ?X usa ?Z)

?X = canada

?Z = mexico

a2#betweenObjRel(dim->2 orient->northSouth ?X usa ?X)

fail % No consistent positional-argument substitution possible

a2#betweenObjRel(dim->2 orient->?V canada usa mexico)

?V = northSouth

a2#betweenObjRel(dim->?U orient->?V canada usa mexico)

?U = 2

?V = northSouth

a2#betweenObjRel(dim->?U orient->?U canada usa mexico)

fail % No consistent slot-filler substitution possible

a2#betweenObjRel(orient->?V canada usa mexico)

?V = northSouth

a2#betweenObjRel(?S->2 orient->northSouth canada usa mexico)

?S = dim % Slot-name variable bound to slot name

21 As usual in Logic Programming, a non-ground query is understood to have existential
quantification for all free variables. For basic LP terminology and notions see [13].

PSOA RuleML 131

a2#betweenObjRel(?S->2 ?T->northSouth canada usa mexico)

?S = dim

?T = orient

a2#betweenObjRel(?S->2 ?S->northSouth canada usa mexico)

fail % No consistent slot-name substitution possible

?I#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

?I = a2 % OID variable bound to OID

?I#betweenObjRel(canada usa mexico)

?I = a2

KBs containing non-ground facts are implicit in KBs of rules (specifically,
with empty bodies) to be discussed in Sect. 4. As an example, consider a single-
fact sample KB containing the following non-ground atom modifying the one
from Sect. 2.6, asserted as an OID-existential fact stating:
“Every ?M is in an ?O-identified betweenObjRel relationship – with dimension =
2 and orientation = north-to-south – of the North Pole, ?M, and the South
Pole.”22

Forall ?M (

Exists ?O (?O#betweenObjRel(dim->2 orient->northSouth

northPole ?M southPole))

)

While the earlier ground fact has an OID constant, a2, the current non-
ground fact has an OID variable, ?O, that is existentially quantified in the scope
of a universal variable, ?M: For each ?M binding, there is a dependent ?O binding.

This non-ground fact can be retrieved by ground queries as follows, using
ground/non-ground matching:

a2#betweenObjRel(dim->2 orient->northSouth northPole usa southPole)

fail % Existential fact does not assert specific OID

a1#betweenObjRel(dim->2 orient->northSouth northPole usa southPole)

fail % Existential fact does not assert specific OID

?#betweenObjRel(dim->2 orient->northSouth northPole usa southPole)

success

?#betweenObjRel(dim->2 orient->northSouth northPole eu southPole)

success

?#betweenObjRel(dim->2 orient->northSouth northPole usa eu southPole)

fail % Too many elements in query tuple

22 Betweenness with dimension = 2 for geographical entities assumes some projection
of the globe to a 2D coordinate system.

132 H. Boley

betweenObjRel(dim->2 orient->northSouth northPole usa southPole)

success

The first and second queries, employing respective constants, a2 and a1, in the
OID position, fail since the corresponding Exists variable ?O of the fact does not
need to denote them nor any named constant. In the third and fourth queries,
the anonymous OID variable “?” causes binding-free success because it unifies
with ?O but prevents the creation of a (named-)variable binding.

The non-ground fact can also be retrieved by non-ground queries as follows,
using non-ground/non-ground unification:

a2#betweenObjRel(dim->2 orient->northSouth ?X usa southPole)

?X = northPole

a2#betweenObjRel(dim->2 orient->northSouth ?X usa ?Z)

?X = northPole

?Z = southPole

a2#betweenObjRel(dim->2 orient->northSouth ?X usa ?X)

fail % No consistent positional-argument substitution possible

?I#betweenObjRel(dim->2 orient->northSouth northPole usa southPole)

?I = skolem1(usa)

?I#betweenObjRel(northPole usa southPole)

?I = skolem2(usa)

In the fourth query, the OID query variable ?I is successfully bound to a Skolem
function application, skolem1(usa), generated from the Exists by the PSOA-
TransRun system. Similarly, in the fifth query.

4 PSOA Rules for Inferential Querying

PSOA RuleML fact querying can be done interactively by the user, as presented
in Sect. 3, but fact – and rule – querying can also take place in the conditions of
PSOA RuleML rules, as will be discussed in the current section. Using rules, the
user’s interactive querying becomes inferential. Rule querying is realized by res-
olution [13], which employs unification for consistent instantiation – ultimately,
grounding – of a (possibly non-ground) query and the (possibly non-ground)
conclusion of the rule to be applied to it. In PSOA RuleML, after grounding,
the query must be checked to be ‘part of’ the rule conclusion in the sense defined
in Sect. 3. For the PSOA sublanguage using only single-tuple psoa terms, this
is similar to POSL’s [12] unification involving queries that have anonymous rest
slots (“!?”), as implemented in OO jDREW [14]23.

23 http://www.jdrew.org/oojdrew/.

http://www.jdrew.org/oojdrew/

PSOA RuleML 133

As we have seen, commuting of positional arguments is not supported by
fact querying – and it would not make sense for arbitrary pairs of such argu-
ments of relations like betweenObjRel. However, it is possible to use rule defi-
nition and querying to selectively specify derivable properties such as the com-
mutativity (symmetry) of certain arguments, e.g. the two outer arguments of
betweenObjRel. We define a rule whose derived symmetric tuples are identified
by the OID symm(?O), depending, via a function symm, on the orignal tuples,
identified by the OID ?O. Following our fact reproduced from Sects. 2.6 and 3,
the rule states:

“For every ?Out1, ?In, ?Out2, and ?O, a symm(?O)-identified betweenObjRel
relationship – with orientation south-to-north – of ?Out2, ?In, and ?Out1 holds if
an ?O-identified betweenObjRel relationship – with orientation north-to-south –
of ?Out1, ?In, and ?Out2 holds.”

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

Forall ?Out1 ?In ?Out2 ?O (

symm(?O)#betweenObjRel(orient->southNorth ?Out2 ?In ?Out1) :-

?O#betweenObjRel(orient->northSouth ?Out1 ?In ?Out2)

)

The ‘colon-dash’ (“:-”) sign – think of it as an ‘if’ symbol (a kind of “←”) –
separates the conclusion from the condition of a rule.

In order to prevent recursive rules, e.g. for commutativity, from repeatedly
undoing and redoing their own derivation results, flag-like slots such as the
orientation slot come in handy. On backward reasoning for query answering
with our above rule, the slot filler will be switched from southNorth in the con-
clusion to northSouth in the condition, preventing recursive rule application.
When this condition is posed as a new query, only our fact will be applicable,
terminating rule derivation after one step.

This (non-ground) rule and ground fact can be used for the derivation of
ground and non-ground queries as follows (intermediate derivation steps are
traced using indentation):

symm(a2)#betweenObjRel(dim->2 orient->southNorth mexico usa canada)

fail % Query is not part of grounded rule conclusion

symm(a2)#betweenObjRel(orient->southNorth mexico usa canada)

a2#betweenObjRel(orient->northSouth canada usa mexico)

success % Query is identical to grounded rule conclusion

symm(a2)#betweenObjRel(orient->southNorth mexico usa ?X)

a2#betweenObjRel(orient->northSouth ?X usa mexico)

?X = canada

?I#betweenObjRel(orient->southNorth mexico usa ?X)

a2#betweenObjRel(orient->northSouth ?X usa mexico)

?I = symm(a2)

?X = canada

134 H. Boley

?I#betweenObjRel(orient->southNorth ?Z usa ?X)

a2#betweenObjRel(orient->northSouth ?X usa ?Z)

?I = symm(a2)

?X = canada

?Z = mexico

?I#betweenObjRel(orient->southNorth ?X usa ?X)

a2#betweenObjRel(orient->northSouth ?X usa ?X)

fail % No consistent positional-argument substitution possible

symm(?J)#betweenObjRel(orient->?V mexico usa canada)

a2#betweenObjRel(orient->northSouth canada usa mexico)

?J = a2

?V = southNorth

Another rule can be used to derive new frames, specifically GeoUnit frames.
Following our recurring fact, the rule states:
“For every ?Out1, ?In, ?Out2, and ?O, an ?In-identified GeoUnit relationship
– with northern neighbor ?Out1 and southern neighbor ?Out2 – holds if an
?O-identified betweenObjRel relationship – with orientation north-to-south – of
?Out1, ?In, and ?Out2 holds.”

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

Forall ?Out1 ?In ?Out2 ?O (

?In#GeoUnit(neighborNorth->?Out1 neighborSouth->?Out2) :-

?O#betweenObjRel(orient->northSouth ?Out1 ?In ?Out2)

)

This rule and fact can be used for the derivation of ground and non-ground
queries as follows (where the final query asks: “Which GeoUnit ?I has Canada
as its northern neighbor?”):

usa#GeoUnit(neighborNorth->canada neighborSouth->mexico)

?O#betweenObjRel(orient->northSouth canada usa mexico)

success % Query is identical to grounded rule conclusion

usa#GeoUnit(neighborSouth->mexico neighborNorth->canada)

?O#betweenObjRel(orient->northSouth canada usa mexico)

success % Query is equal to grounded rule conclusion

usa#GeoUnit(neighborNorth->canada neighborSouth->?OutX)

?O#betweenObjRel(orient->northSouth canada usa ?OutX)

?OutX = mexico

usa#GeoUnit(neighborNorth->canada)

?O#betweenObjRel(orient->northSouth canada usa ?Out2)

success % Query is proper part of grounded rule conclusion

mexico#GeoUnit(neighborNorth->canada)

PSOA RuleML 135

?O#betweenObjRel(orient->northSouth canada mexico ?Out2)

fail % OID cannot be proved to be in inner position

?I#GeoUnit(neighborNorth->canada)

?O#betweenObjRel(orient->northSouth canada ?I ?Out2)

?I = usa

While the first three queries specify both the neighborNorth and neighborSouth
slots (albeit the third uses a free filler variable, ?OutX), the remaining queries spec-
ify only the neighborNorth slot. In the subsequent derivation, the omission of the
neighborSouth slot, hence of a fixed value for its filler, amounts to keeping that
filler open as a free variable, ?Out2.

Let us finally proceed to an OID-(head-)existential rule, which can be used
to derive new psoa terms, specifically compassRose psoa terms. Following our
recurring fact and an analogous one, the rule states:
“For every ?Out1, ?Out2, ?Out3, ?Out4, ?In, ?O1, and ?O2, an existentially quan-
tified ?O-identified compassRose relationship – with western, northern, eastern,
and southern values ?Out1, ?Out2, ?Out3, and ?Out4, respectively – holds of
?In if a conjunction of an ?O1-identified betweenObjRel relationship – with ori-
entation north-to-south – of ?Out1, ?In, and ?Out2 holds, and an ?O2-identified
betweenObjRel relationship – with orientation west-to-east – of ?Out3, ?In, and
?Out4 holds.”

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

a3#betweenObjRel(dim->2 orient->westEast pacific usa atlantic)

Forall ?Out1 ?Out2 ?Out3 ?Out4 ?In ?O1 ?O2 (

Exists ?O (

?O#compassRose(west->?Out3 north->?Out1 east->?Out4 south->?Out2 ?In)

) :-

And(?O1#betweenObjRel(orient->northSouth ?Out1 ?In ?Out2)

?O2#betweenObjRel(orient->westEast ?Out3 ?In ?Out4))

)

The rule conclusion uses four slots representing the cardinal compass directions,
?Out1 through ?Out4, and a single ‘positional’ argument, ?In, representing
the rose center. The rule condition uses an explicit And conjunction for ?In-
intersecting northSouth- and westEast-oriented betweenObjRel relationship
queries. While the first rule of this section employs a user-provided (Skolem-like)
function, symm, for the conclusion OID, the current rule wraps the entire conclu-
sion (head) into an existential (Exists) scope for the OID variable ?O. However,
our PSOATransRun implementation of this (head-)existential rule transforms
the Exists into a system-provided Skolem function, depending on the enclosing
universal variables including the condition OIDs ?O1 and ?O2.

This rule and the two facts can be used for the derivation of ground and
non-ground queries as follows:

a4#compassRose(west->pacific north->canada east->atlantic south->mexico usa)

fail % Existential rule does not assert specific OID

136 H. Boley

?#compassRose(west->pacific north->canada east->atlantic south->mexico usa)

And(a2#betweenObjRel(orient->northSouth canada usa mexico)

a3#betweenObjRel(orient->westEast pacific usa atlantic))

success % Left-slot normal query is identical to grounded rule conclusion

?#compassRose(usa west->pacific north->canada east->atlantic south->mexico)

And(a2#betweenObjRel(orient->northSouth canada usa mexico)

a3#betweenObjRel(orient->westEast pacific usa atlantic))

success % Right-slot normal query is equal to grounded rule conclusion

?#compassRose(south->mexico west->pacific)

And(a2#betweenObjRel(orient->northSouth ?Out1 ?In mexico)

a3#betweenObjRel(orient->westEast pacific ?In ?Out4))

success % Query is proper part of grounded rule conclusion

?I#compassRose(west->pacific north->canada east->atlantic south->mexico usa)

And(a2#betweenObjRel(orient->northSouth canada usa mexico)

a3#betweenObjRel(orient->westEast pacific usa atlantic))

?I = skolem3(canada mexico pacific atlantic usa a2 a3)

?I#compassRose(west->?W north->?N east->?E south->?S ?C)

And(a2#betweenObjRel(orient->northSouth ?N ?C ?S)

a3#betweenObjRel(orient->westEast ?W ?C ?E))

?I = skolem4(canada mexico pacific atlantic usa a2 a3)

?W = pacific

?N = canada

?E = atlantic

?S = mexico

?C = usa

The first query, while employing a new constant, a4, in the OID position, fails
since the corresponding Exists variable ?O of the rule does not need to denote
it nor any named constant. In the second to fourth queries, the anonymous OID
variable “?” causes binding-free success because it unifies with ?O but prevents
the creation of a (named-)variable binding. In the fifth query, the OID query
variable ?I is successfully bound to a Skolem function application, skolem3(...
a2 a3), generated from the Exists by the PSOATransRun system. Similarly, in
the sixth query, which is maximally non-ground, except for its fixed compassRose
relation/class.

5 SQL-PSOA-SPARQL Interoperation Use Case

Suppose you are working on a project using SQL queries over relational data and
then proceeding to SPARQL queries over graph data to be used as a metadata
repository. Or, vice versa, on a project complementing SPARQL with SQL for
querying an evolving mass-data store. Or, on a project using SQL and SPARQL
from the beginning. In all of these projects, object-relational interoperability
issues may arise.

PSOA RuleML 137

This section explains a use case on bidirectional SQL-PSOA-SPARQL trans-
formation (schema/ontology mapping) for interoperability. The pivotal transfor-
mation between the relational and object-centered paradigms is expressed in a
language-internal manner within PSOA RuleML itself.

The use case represents addresses as (flat) relational facts and as – subaddress-
containing – (nested) object-centered facts, as shown for the Seminaris address
below.24 The OID-conclusion direction of implication from the relational to the
object-centered (frame) paradigm is given as the first rule below; the OID-
condition direction from the object-centered (frame) to the relational paradigm
is given as the second rule:

addressRel("Seminaris" "Takustr. 39" "14195 Berlin") % relational fact

r1#addressObj(name->"Seminaris" % object-centered fact

place->r2#placeObj(street->"Takustr. 39"

town->"14195 Berlin"))

Forall ?Name ?Street ?Town (% OID-conclusion rule

Exists ?O1 ?O2 (?O1#addressObj(name->?Name

place->?O2#placeObj(street->?Street

town->?Town))) :-

addressRel(?Name ?Street ?Town)

)

Forall ?Name ?Street ?Town ?O1 ?O2 (% OID-condition rule

addressRel(?Name ?Street ?Town) :-

?O1#addressObj(name->?Name

place->?O2#placeObj(street->?Street

town->?Town))

)

While these rules define the most cross-paradigmatic cases, versions for the
intermediate psoa terms could also be defined, e.g. for shelves and pairships.

Besides directly retrieving the relational fact, the OID-condition rule and the
object-centered fact can be used for the derivation of relational queries as follows
(corresponding to the RDF-to-RDB data mapping direction [16]):

addressRel("Seminaris" ?S "14195 Berlin")

?O1#addressObj(name->"Seminaris"

place->?O2#placeObj(street->?S

town->"14195 Berlin"))

?S = "Takustr. 39"

Besides directly retrieving the object-centered fact, the OID-conclusion rule
and the relational fact can be used for the derivation of object-centered queries
as follows (corresponding to the RDB-to-RDF data mapping direction [17]):
24 Earlier (flat and nested) positional versions have been used to explain XML-

to-XML transformation (http://www.cs.unb.ca/∼boley/cs6795swt/cs6795swt-XML.
pdf). Later, a similar use case was employed to demonstrate SPINMap for RDF-to-
RDF transformation [15].

http://www.cs.unb.ca/~boley/cs6795swt/cs6795swt-XML.pdf
http://www.cs.unb.ca/~boley/cs6795swt/cs6795swt-XML.pdf

138 H. Boley

?O1#addressObj(name->"Seminaris"

place->?O2#placeObj(street->?S

town->"14195 Berlin"))

addressRel("Seminaris" ?S "14195 Berlin")

?O1 = skolem5("Seminaris" "Takustr. 39" "14195 Berlin")

?O2 = skolem6("Seminaris" "Takustr. 39" "14195 Berlin")

?S = "Takustr. 39"

If the object-centered PSOA RuleML fact is replaced by corresponding RDF
triple facts, the OID-condition PSOA RuleML rule can also be used for the
language-internal transformation of SQL-like queries to SPARQL-like queries
as follows (‘neutral’ column headings Coli, with 1 ≤ i ≤ 3, are used to avoid
providing slot-name-like information, thus keeping SQL purely positional):25

EXISTS -- SQL

(SELECT * FROM addressRel

WHERE Col1=‘Seminaris’ AND Col2=‘Wikingerufer 7’ AND Col3=‘14195 Berlin’)

addressRel("Seminaris" "Wikingerufer 7" "14195 Berlin") % PSOA

?O1#addressObj(name->"Seminaris" % PSOA

place->?O2#placeObj(street->"Wikingerufer 7"

town->"14195 Berlin"))

ASK {?O1 rdf:type addressObj. ?O1 name "Seminaris". # SPARQL

?O1 place ?O2.

?O2 rdf:type placeObj. ?O2 street "Wikingerufer 7".

?O2 town "14195 Berlin".}

fail % Wrong street

EXISTS -- SQL

(SELECT * FROM addressRel

WHERE Col1=‘Seminaris’ AND Col2=‘Takustr. 39’ AND Col3=‘14195 Berlin’)

addressRel("Seminaris" "Takustr. 39" "14195 Berlin") % PSOA

?O1#addressObj(name->"Seminaris" % PSOA

place->?O2#placeObj(street->"Takustr. 39"

town->"14195 Berlin"))

ASK {?O1 rdf:type addressObj. ?O1 name "Seminaris". # SPARQL

?O1 place ?O2.

25 Alternatively, given column headings like Name, Street, and Town, the input conver-
sion for PSOA could skip the relationship addressRel("Seminaris" "Wikingerufer

7" "14195 Berlin"), but generate a pairship addressRel(name->"Seminaris"

street->"Wikingerufer 7" town->"14195 Berlin"), already closer to the level of
frames and SPARQL.

PSOA RuleML 139

?O2 rdf:type placeObj. ?O2 street "Takustr. 39".

?O2 town "14195 Berlin".}

success

SELECT * FROM addressRel -- SQL

WHERE Col1=‘Seminaris’

addressRel("Seminaris" ?S ?T) % PSOA

?O1#addressObj(name->"Seminaris" % PSOA

place->?O2#placeObj(street->?S

town->?T))

SELECT ?S ?T # SPARQL

WHERE {?O1 rdf:type addressObj. ?O1 name "Seminaris".

?O1 place ?O2.

?O2 rdf:type placeObj. ?O2 street ?S.

?O2 town ?T.}

?S = "Takustr. 39"

?T = "14195 Berlin"

The paradigm-crossing translation step is thus done by the OID-condition
rule completely within PSOA RuleML, starting at SQL queries “lifted” to PSOA
and ending at SPARQL queries “dropped” from PSOA.26 Bridging the paradigm
chasm from relations to objects constitutes one direction of PSOA RuleML’s
interoperation capability.

In the other direction, if the relational PSOA RuleML fact is replaced by a
corresponding SQL table row, the OID-conclusion PSOA RuleML rule can be
used for the language-internal transformation of SPARQL-like queries to SQL-
like queries as follows:

ASK {?O1 rdf:type addressObj. ?O1 name "Seminaris". # SPARQL

?O1 place ?O2.

?O2 rdf:type placeObj. ?O2 street "Wikingerufer 7".

?O2 town "14195 Berlin".}

?O1#addressObj(name->"Seminaris" % PSOA

place->?O2#placeObj(street->"Wikingerufer 7"

town->"14195 Berlin"))

addressRel("Seminaris" "Wikingerufer 7" "14195 Berlin") % PSOA

EXISTS -- SQL

(SELECT * FROM addressRel

WHERE Col1=‘Seminaris’ AND Col2=‘Wikingerufer 7’ AND Col3=‘14195 Berlin’)

26 The “lift” and “drop” terminology for conversions at the input and output interfaces
has been introduced in http://yosemiteproject.org, and is related to the “lifting” and
“lowering” terminology of http://www.w3.org/TR/sawsdl/#schemaMapping.

http://yosemiteproject.org
http://www.w3.org/TR/sawsdl/#schemaMapping

140 H. Boley

fail % Wrong street

ASK {?O1 rdf:type addressObj. ?O1 name "Seminaris". # SPARQL

?O1 place ?O2.

?O2 rdf:type placeObj. ?O2 street "Takustr. 39".

?O2 town "14195 Berlin".}

?O1#addressObj(name->"Seminaris" % PSOA

place->?O2#placeObj(street->"Takustr. 39"

town->"14195 Berlin"))

addressRel("Seminaris" "Takustr. 39" "14195 Berlin") % PSOA

EXISTS -- SQL

(SELECT * FROM addressRel

WHERE Col1=‘Seminaris’ AND Col2=‘Takustr. 39’ AND Col3=‘14195 Berlin’)

success

SELECT ?S ?T # SPARQL

WHERE {?O1 rdf:type addressObj. ?O1 name "Seminaris".

?O1 place ?O2.

?O2 rdf:type placeObj. ?O2 street ?S.

?O2 town ?T.}

?O1#addressObj(name->"Seminaris" % PSOA

place->?O2#placeObj(street->?S

town->?T))

addressRel("Seminaris" ?S ?T) % PSOA

SELECT * FROM addressRel -- SQL

WHERE Col1=’Seminaris’

?S = "Takustr. 39"

?T = "14195 Berlin"

The reach of the PSOA-internal transformation can be increased at the
PSOA/SPARQL interfaces. First, ‘unnested’ PSOA intermediaries are intro-
duced as follows, where the placeObj frame is extracted into a conjunction,
leaving behind a copy of its OID variable ?O2:

And(?O1#addressObj(name->"Seminaris"

place->?O2)

?O2#placeObj(street->?S

town->?T))

These are then used to split the above ‘unnesting’ PSOA-to-SPARQL transfor-
mations and ‘nesting’ SPARQL-to-PSOA transformations into unnesting/nest-
ing PSOA-to-PSOA transformations and clerical PSOA/SPARQL conversions.

PSOA RuleML 141

Besides for interoperation, the transformation into unnested sublanguages can
also be used for the implementation of nested PSOA RuleML.

6 PSOA RuleML Syntax

The (RIF-like) presentation and (RuleML/XML) serialization syntaxes of PSOA
RuleML will be discussed in this section. First, the objectification of the OID-less
subset of (atomic and rule) psoa formulas in presentation syntax is introduced.
Second, variants of the OID-containing superset of (atomic) psoa formulas in
presentation syntax are illustrated, while details (e.g., on the variety of constants
such as document-local vs. Web-IRI-global) are specified in [3]. Third, versions
of PSOA RuleML serialization syntax are considered.

Object Identifier Assumption: An atomic formula (predicate application)
without an OID is assumed to be a shorthand for this formula with an implicit
OID, which is made syntactically explicit by objectification (see below) before
the atomic formula is endowed with semantics (cf. Sect. 7). Since RIF does not
make the OID assumption, it has to separately specify the semantics of its OID-
less subset, mainly for “named-argument terms” (pairships).

Objectification Algorithm: This may be seen as mapping the three rows of
the psoa table in Sect. 1 to their 2nd (“object-centered”) column. Basically, while
a ground fact can be given a fixed OID (that the user neglected to provide), a
non-ground fact or rule conclusion needs an OID for each grounding.

These formulas, when OID-less, are objectified by syntactic transformation:
The OID of a ground fact is a new constant generated by the ‘new local constant’
(a stand-alone “ ”, corresponding to “ # ” in [18]), where each occurrence of “ ”
denotes a distinct name, not occurring elsewhere (i.e., a Skolem constant); the
OID of a non-ground fact or of an atomic formula in a rule conclusion, f(...) ,
is a new, existentially scoped variable ?i , resulting in Exists ?i (?i#f(...)) ;
the OID of any other atomic formula, including in a rule condition (also usable
as a query), is a new variable generated by the ‘anonymous variable’ (a stand-
alone “ ? ”).

In our PSOATransRun implementation (cf. Sect. 8), the objectification algo-
rithm is realized as an ANTLR tree walker. Objectification transforms the three
uses of psoa facts in Sects. 2.1, 2.3, and 2.5 to, respectively, the three uses in
Sects. 2.2, 2.4, and 2.6.

For example, the relational fact betweenRel(pacific canada atlantic) in
Sect. 2.1 is objectified to a shelf version like the a1-identified shelf fact in
Sect. 2.2, #betweenRel(pacific canada atlantic), and – if 1 is the first new
constant from 1, 2, . . . – to 1#betweenRel(pacific canada atlantic). The
query betweenRel(?X canada ?Z) is syntactically transformed to the query
?#betweenRel(?X canada ?Z), i.e. – if ?1 is the first new variable in ?1, ?2, . . . – to
?1#betweenRel(?X canada ?Z). Posed against the fact, it succeeds, with variable
bindings ?1 = 1, ?X = pacific, and ?Z = atlantic.

For the general case of (arbitrary) psoa terms in [3], k slots and m tuples are
permitted (k ≥ 0, m ≥ 0), with tuple i having length ni (1 ≤ i ≤ m, ni ≥ 0),

142 H. Boley

where we use both the left-slot and right-slot normal forms of Sect. 2.5 (after
objectification):

left-slot o # f(p1->v1 ... pk->vk [t1,1 ... t1,n1] ... [tm,1 ... tm,nm])
right-slot o # f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

We distinguish three cases (explained here for the left-slot normal form):

m > 1 For multi-tuple psoa terms, square brackets are necessary (see above).
m = 1 For single-tuple psoa terms, focused in this paper, square brackets can

be omitted (see Positional+Slotted and Positional below).
m = 0 For tuple-less psoa terms, frames arise (see Slotted and Member below).

Color coding shows syntactic variants for the cases m = 1 and k = m = 0
(single-tuple brackets and zero-argument parentheses are optional):

Positional+Slotted: o # f(p1->v1 ... pk->vk [t1 ... tn])
Positional: o # f([t1 ... tn])
Slotted: o # f(p1->v1 ... pk->vk)
Member: o # f()

An EBNF Grammar for the (RIF-like) presentation syntax of PSOA RuleML
can be found in [3], Sect. 2.5.

Regarding the XML serialization syntax, PSOA RuleML is integrated with
the earlier RuleML family as follows. We start with a pure PSOA version of the
Hornlog RuleML sublanguage of the Deliberation RuleML subfamily of RuleML.
We then proceed to a PSOA version extended with “positional rests” from Horn-
log RuleML. We finally give a Hornlog RuleML version extended with multiple
tuples from PSOA RuleML. Other sublanguages of Deliberation RuleML can
also be complemented by pure and extended PSOA versions and be given multi-
ple tuples. Similarly, for the Reaction RuleML subfamily of RuleML. The schema
specification of PSOA RuleML/XML in MYNG can reflect these versions in a
modular fashion.

The pure PSOA version of a multi-tuple psoa atom augments the content
of the RuleML <Atom> node element27 with <Tuple> node elements, different
from RuleML’s <Plex> and RIF’s <List> elements. The above left-slot normal
form results in the following XML serialization, where the primed meta-variables
p′
i, v

′
i, and t′i,j indicate recursive XML serializations of their above presentation-

syntax versions (the style attribute uses the value "distribution" to specify
built-in slotribution and tupribution):

27 For an example-based introduction to the basic tags of Deliberation RuleML see
http://ruleml.org/papers/Primer.

http://ruleml.org/papers/Primer

PSOA RuleML 143

The extended PSOA version refines the above serialization by using an
optional <repo> edge element from Hornlog RuleML (in POSL-like presenta-
tion syntax corresponding to a “|” infix) to specify a “positional rest” within
a tuple (on the level of the entire atom, the style attribute still specifies
"distribution"):

Conversely, Hornlog RuleML can be generalized to multiple tuples from
PSOA RuleML without specifying PSOA’s built-in tupribution, instead using
a new optional <retu> edge to specify the “rest of tuples”, i.e. further tuples.
Combined with Hornlog RuleML’s optional <resl> edge (in POSL-like presen-
tation syntax corresponding to a “!” infix) for the “rest of slots”, i.e. for further
slots – hence without specifying built-in slotribution either – the following XML
serialization is obtained (as in Hornlog RuleML, no style attribute is required):

<Atom>
<oid><Ind>o</Ind></oid><op><Rel>f</Rel></op>
<s l o t>p′

1 v′
1</s l o t> . . . <s l o t>p′

k v′
k</s l o t>

<r e s l >rs′</r e s l >
<Tuple>t′1,1 ... t′1,n1<repo>rp′

1</repo></Tuple> . . .
<Tuple>t′m,1 ... t′m,nm

<repo>rp′
m</repo></Tuple>

<retu>rt′</retu>
</Atom>

When the three above serializations are re-specialized to a single-tuple psoa
atom (i.e., for m = 1), the <Tuple> ... </Tuple> wrapper can be just omitted.

7 PSOA RuleML Semantics

The traces given in Sects. 3, 4, and 5 exemplify PSOA RuleML’s proof-theoretic
semantics using backward reasoning directly for the PSOA sources (queries,
facts, and rules). PSOA RuleML’s model-theoretic semantics also involves trans-
formations on the sources, either as a preparatory step (objectification) or as
restrictions on truth valuation (slotribution and tupribution).

In the following, key parts of the semantics definitions from [3] are presented
for objectified multi-tuple psoa terms in right-slot normal form.

Truth valuation of PSOA RuleML formulas is defined as a mapping TValI
in two steps: 1. A mapping I generically bundles various mappings from the
semantic structure, I; I maps a formula to an element of the domain D . 2. A
mapping I truth takes such a domain element to the set of truth values, TV .

Definition 4, case 3, as part of a semantic structure, introduces the total
mapping I psoa:

144 H. Boley

I psoa maps D to total functions that have the general form D ind ×
SetOfFiniteBags(D* ind) × SetOfFiniteBags(D ind × D ind) → D . This map-
ping interprets psoa terms, uniformly combining positional, slotted, and frame
terms, as well as class memberships. An argument d ∈ D of I psoa uniformly rep-
resents the function or predicate symbol of positional terms and slotted terms,
and the object class of frame terms, as well as the class of memberships. An
element o ∈ D ind of the resulting total functions represents an object of class d,
which is described with two bags.

– A finite bag of finite tuples {<t1,1, ..., t1,n1>, ..., <tm,1, ..., tm,nm>} ∈
SetOfFiniteBags(D* ind), possibly empty, represents positional information.
Here D* ind is the set of all finite tuples over the domain D ind.

– A finite bag of attribute-value pairs {<a1,v1>, ..., <ak,vk>} ∈
SetOfFiniteBags(D ind × D ind), possibly empty, represents slotted infor-
mation.

The generic recursive mapping I is defined from terms to their subterms and
ultimately to D , for the case of psoa terms using I psoa:

I (o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk)) =
I psoa(I (f))(I (o),

{<I (t1,1), ..., I (t1,n1)>, ..., <I (tm,1), ..., I (tm,nm)>},
{<I (a1), I (v1)>, ..., <I (ak), I (vk)>})

When, as in the below Definition 5, case 3, I is applied to a psoa term, its
total function is obtained from I psoa applied to the recursively interpreted class
argument f. The application of the resulting total function to the recursively
interpreted other parts of a psoa term denotes the term’s interpretation in term’s
interpretation in D . PSOA RuleML’s use of the class f, rather than the OID
o, for the I psoa argument is justified by the class being always user-controlled
for psoa terms, even if ‘defaulted’ to the ‘catch-all’ total function obtained from
I psoa applied to the interpretation 	 of the root class Top. On the other hand,
the OID o – which in RIF-BLD is used for the I frame argument – need not be
user-controlled in PSOA but can be system-generated via objectification, e.g.
as an existential variable or a (Skolem) constant, so is not suited to obtain the
total function for a psoa term.

Definition 5, cases 3 and 8, recursively define truth valuation TValI for psoa
formulas and rule implications, based on the above I and on a mapping I truth

from D to TV :

Psoa formula :
TValI(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk)) =
I truth(I (o#f([t1,1 ... t1,n1] ... [tm,1...tm,nm] a1->v1 ... ak->vk))).

Since the formula consists of an object-typing membership, a bag of tuples rep-
resenting a conjunction of all the object-centered tuples (tupribution), and a bag
of slots representing a conjunction of all the object-centered slots (slotribution),
the following restriction is used, where m ≥ 0 and k ≥ 0:

PSOA RuleML 145

– TValI(o#f([t1,1...t1,n1]...[tm,1...tm,nm] a1->v1... ak->vk)) = t
if and only if
TValI(o # f) =
TValI(o#Top([t1,1...t1,n1])) =...= TValI(o#Top([tm,1...tm,nm])) =
TValI(o#Top(a1->v1)) = ... = TValI(o#Top(ak->vk)) =
t.

Observe that on the right-hand side of the “if and only if” there are
1+m+k subformulas splitting the left-hand side into an object membership,
m object-centered positional formulas, each associating the object with a
tuple, and k object-centered slotted formulas, i.e. ‘triples’, each associating
the object with an attribute-value pair. All parts on both sides of the “if
and only if” are centered on the object o, which connects the subformulas
on the right-hand side (the first subformula providing the o-member class f,
the remaining m+k ones using the root class Top).

For the root class, Top, and all o ∈ D , TValI(o # Top) = t.
To ensure that all members of a subclass are also members of its superclasses,

i.e., o # f and f ## g imply o # g, the following restriction is imposed:
– For all o, f, g ∈ D , if TValI(o # f) =TValI(f ## g) = t then
TValI(o # g) = t.

Rule implication :

– TValI(conclusion :- condition) = t, if either TValI(conclusion) = t or
TValI(condition) = f.

– TValI(conclusion :- condition) = f otherwise.

To exemplify the transformations, let us reconsider the GeoUnit KB of Sect. 4,
focussing on the rule. Objectification acts as an identity transformation on this
input rule, since the psoa atoms in both its condition and conclusion already
have OIDs (two different variables, ?O and ?In). Slotribution and tupribution,
however, transform the rule such that both its condition and conclusion become
a conjunction linked by their OID variable. At that point, the psoa atoms have
become minimal (three single-slot frames and one single-tuple shelf), so repeated
slotribution and tupribution act as identity transformations on that output rule,
which – also insensitive to objectification – is a fixpoint for these transformations.
Adding a ‘centralization’ back arrow for the inverse of slotribution/tupribution,
we obtain a bidirectional transformation scheme:

a2#betweenObjRel(dim->2 orient->northSouth canada usa mexico)

Forall ?Out1 ?In ?Out2 ?O (

?In#GeoUnit(neighborNorth->?Out1 neighborSouth->?Out2) :-

?O#betweenObjRel(orient->northSouth ?Out1 ?In ?Out2)

)

slotribution/tupribution
�

centralization

146 H. Boley

And(a2#betweenObjRel

a2#Top(dim->2)

a2#Top(orient->northSouth)

a2#Top(canada usa mexico))

Forall ?Out1 ?In ?Out2 ?O (

And(?In#GeoUnit

?In#Top(neighborNorth->?Out1)

?In#Top(neighborSouth->?Out2)) :-

And(?O#betweenObjRel

?O#Top(orient->northSouth)

?O#Top(?Out1 ?In ?Out2))

)

While slotribution and tupribution of psoa terms is built into the semantics,
namely into the above Definition 5, case 3, these transformations can also be
performed statically, as pre-processing steps.

8 PSOA RuleML Implementation

In order to support reasoning in PSOA RuleML, we have implemented PSOA-
TransRun as an open-source framework system, generally referred to as PSOA-
TransRun[translation, runtime], with a pair of subsystems plugged in as parame-
ters [3,19,20].28 The translation subsystem is a chain of translators mapping a
KB and queries from PSOA RuleML to an intermediate language. The runtime
subsystem executes KB queries in the intermediate language and extracts the
results. Our focus has been on translators, reusing the targeted runtime systems
as ‘black boxes’. For the intermediate languages we have chosen the first-order
subset, TPTP-FOF, of TPTP [21]29 and the Horn-logic subset of ISO Prolog
[22]. Since these are also standard languages, their translation subsystems of
PSOATransRun serve both for PSOA RuleML implementation and interopera-
tion [20].

The chain targeting TPTP requires fewer translation steps since TPTP sys-
tems, being first-order-logic provers, directly accommodate the extra expressiv-
ity of PSOA (particularly, head existentials introduced by objectification). The
chain targeting ISO Prolog requires more translation steps since ISO Prolog
has the lower expressivity of Horn logic (particularly, requiring head existen-
tials to be translated to Skolem function applications). Both translator chains
start with parsing PSOA RuleML’s (RIF-like) presentation syntax into Abstract
Syntax Trees (ASTs). They then perform their transformation steps on AST
representations of the PSOA sources, using slotribution/tupribution-introduced
‘primitive’ PSOA RuleML constructs, namely membership terms, slot terms,
and tuple terms. Finally, they map the finished AST representations to TPTP

28 http://wiki.ruleml.org/index.php/PSOA RuleML#Implementation.
29 TPTP-FOF is also targeted by http://wiki.ruleml.org/index.php/TPTP RuleML.

http://wiki.ruleml.org/index.php/PSOA_RuleML#Implementation
http://wiki.ruleml.org/index.php/TPTP_RuleML

PSOA RuleML 147

or ISO Prolog presentation syntax as the intermediate languages – over distin-
guished predicates memterm, sloterm, and tupterm defined by TPTP or Prolog
clauses – to be executed by the respective runtime systems. The translators are
written in Java 1.6 and ANTLR v330.

The following subsections will survey our two implemented PSOATrans-
Run instantiations, the parameterized PSOATransRun[PSOA2TPTP, Vampire-
Prime] and PSOATransRun[PSOA2Prolog, XSBProlog].

We have also implemented the PSOA RuleML API [23]31, which uses JAXB
to parse PSOA RuleML/XML syntax into abstract syntax objects, and translates
these into PSOA RuleML’s RIF-like presentation syntax.

8.1 With PSOA2TPTP to VampirePrime

The PSOATransRun[PSOA2TPTP, VampirePrime] instantiation [19]32, real-
ized by Gen Zou and Reuben Peter-Paul with guidance from the author
and Alexandre Riazanov, combines the PSOA2TPTP translator and the
VampirePrime runtime system. The runtime system consists of the C++-
implemented VampirePrime, accessed through Java.

PSOA2TPTP performs objectification (cf. Sect. 6) as well as slotribution and
tupribution (cf. Sect. 7). PSOA2TPTP then maps the transformation result to
TPTP.

VampirePrime33 is an open-source first-order reasoner. KBs and queries in
the intermediate TPTP language can also be run on other TPTP systems that
allow extracting answers (variable bindings) from successful results.

This PSOA2TPTP instantiation is available online34 for interactive explo-
ration, with documentation in the above-linked RuleML Wiki page. The sam-
ple PSOA KB textbox, pre-filled by the system, shows the easy transcription
of our (RIF-like) presentation-syntax examples into executable PSOA RuleML:
According to the EBNF referenced in Sect. 6, the PSOA syntax is completed by
a Document/Group wrapper for KBs and the “ ” prefix for local constants.

8.2 With PSOA2Prolog to XSB Prolog

The PSOATransRun[PSOA2Prolog, XSBProlog] instantiation [20]35, realized by
Gen Zou with guidance from the author, combines the PSOA2Prolog translator
and the XSB Prolog runtime system. The runtime system consists of the C++-
implemented XSB Prolog, accessed via a Java API36.

30 http://www.antlr.org.
31 https://github.com/sadnanalmanir/PSOARuleML-API.
32 http://psoa2tptp.googlecode.com.
33 http://riazanov.webs.com/software.htm.
34 http://psoa-ruleml.rhcloud.com.
35 http://psoa.ruleml.org/transrun/0.7/local/.
36 http://interprolog.com.

http://www.antlr.org
https://github.com/sadnanalmanir/PSOARuleML-API
http://psoa2tptp.googlecode.com
http://riazanov.webs.com/software.htm
http://psoa-ruleml.rhcloud.com
http://psoa.ruleml.org/transrun/0.7/local/
http://interprolog.com

148 H. Boley

PSOA2Prolog augments the translation chain of PSOA2TPTP in Sect. 8.1
and performs a different target mapping. PSOA2Prolog is composed of a source-
to-source normalizer followed by a mapper to a pure Prolog (Horn logic) subset
of the ISO Prolog subset of XSB Prolog. The normalizer is composed of five
transformation layers, namely objectification, Skolemization, slotribution/tupri-
bution, flattening, as well as rule splitting. Each layer is a self-contained com-
ponent that can be reused for processing PSOA KBs in other applications. The
mapper performs a recursive transformation from the normalization result to
Prolog clauses.

XSB Prolog37 is a fast Prolog engine, which we use for processing a pure
ISO Prolog subset. While this ISO Prolog subset can also be run on other Pro-
log engines, XSB Prolog is targeted because it enables tabling, supporting both
termination and efficiency. XSB Prolog executes queries over KBs in the inter-
mediate Prolog language, and the PSOATransRun framework system performs
answer extraction.

9 Conclusions

The integrated object-relational data and rules of PSOA RuleML enable a
novel approach to semantic modeling and analysis based on positional-slotted,
object-applicative terms. PSOA RuleML’s data model visualized in Grailog
provides the logical foundation and visual intuition via the psoa-table sys-
tematics of six uses of psoa atoms in queries and facts as well as conditions
and conclusions of rules. PSOA RuleML allows direct (look-in and inferen-
tial) querying over heterogeneous data sets. Moreover, PSOA RuleML serves
as an intermediate language for bidirectional query transformation, e.g. between
SQL and SPARQL. The syntax and semantics capture the essence of PSOA
RuleML’s object-relational integration. Two implemented open-source PSOA-
TransRun instantiations, one also usable online, allow rapid PSOA RuleML
prototyping. Besides the PSOA RuleML test cases on the RuleML Wiki,
there are PSOA RuleML use cases such as MusicAlbumKB and Geospa-
tialRules. The latter started with a Datalog+ rulebase for the Region Con-
nection Calculus (RCC) [10] and is being expanded into a Hornlog+-like
rulebase over psoa-generalized RCC atoms. Future PSOA RuleML applica-
tions are envisioned for data querying and interchange in the domains of
biomedicine, finance, and social media.

Acknowledgements. Many thanks go to Gen Zou for helpful discussions on multiple
drafts of this paper and for spearheading the PSOATransRun implementation. I want
to thank Tara Athan, Sadnan Al Manir, Alexandre Riazanov, and Robert Kirby for
reviewing earlier partial versions. I extend my thanks to Michael Genesereth, Sudhir
Agarwal, Abhijeet Mohapatra, and Eric Kao for comments on a PSOA RuleML presen-
tation in the Computational Logic Seminar, and to Michael Genesereth and the entire
Stanford Logic Group for hosting my research stay. My thankfulness goes to Richard

37 http://xsb.sourceforge.net.

http://xsb.sourceforge.net

PSOA RuleML 149

Waldinger for comments at various occasions, and for hosting my recent SRI visits.
The 11th Reasoning Web Summer School (RW 2015) reviewer and organizers are
thanked for early feedback and for running this event. NSERC is thanked for its support
through Discovery Grants.

References

1. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42(4), 741–843 (1995)

2. Boley, H., Kifer, M.: RIF Basic Logic Dialect (2nd edn), February 2013 W3C
Recommendation. http://www.w3.org/TR/rif-bld

3. Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-Slotted,
Object-Applicative Rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

4. Boley, H.: Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules. In:
Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML
2013. LNCS, vol. 8035, pp. 52–67. Springer, Heidelberg (2013)

5. Athan, T., Boley, H.: The MYNG 1.01 Suite for Deliberation RuleML 1.01: Taming
the Language Lattice. In: Patkos, T., Wyner, A., Giurca, A., (eds.). Proceedings
of the RuleML 2014 Challenge, at the 8th International Web Rule Symposium,
Prague, Czech Republic, Volume 1211 of CEUR, August 2014

6. Hanus (ed.), M.: Curry: An Integrated Functional Logic Language (Vers. 0.8.3).
http://www-ps.informatik.uni-kiel.de/currywiki/ media/documentation/report.
pdf (February 2014)

7. Agarwal, S., Mohapatra, P., Genesereth, M., Boley, H.: Rule-based exploration
of structured data in the browser. In: Bassiliades, N., et al. (eds.) RuleML 2015.
LNCS, vol. 9202, pp. 161–175. Springer, Heidelberg (2015)

8. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: a logical
framework for the world wide web. Theor. Pract. Logic Program. (TPLP) 8(3),
249–269 (2008)

9. Riazanov, A., Rose, G.W., Klein, A., Forster, A.J., Baker, C.J.O., Shaban-Nejad,
A., Buckeridge, D.L.: Towards clinical intelligence with SADI semantic web ser-
vices: a case study with hospital-acquired infections data. In: Proceedings of the
4th International Workshop on Semantic Web Applications and Tools for the Life
Sciences, SWAT4LS 2011, pp. 106–113. ACM New York (2012)

10. Zou, G.: GeospatialRules: A Datalog+ RuleML Rulebase for Geospatial Reasoning.
In: Patkos, T., Wyner, A., Giurca, A. (eds.) Challenge+DC@RuleML. Volume 1211
of CEUR Workshop Proceedings., CEUR-WS.org (2014)

11. Crockford, D.: Introducing JSON (May 2009) Format home page. http://json.org
12. Boley, H.: Integrating positional and slotted knowledge on the semantic web. J.

Emerg. Technol. Web Intell. 4(2), 343–353 (2010)
13. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, New York

(1987)
14. Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B.: The OO jDREW reference

implementation of RuleML. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML
2005. LNCS, vol. 3791, pp. 218–223. Springer, Heidelberg (2005)

15. Knublauch, H.: SPINMap: SPARQL-based Ontology Mapping with a
Graphical Notation (April 2011) Composing the Semantic Web: A
tool developer’s blog on ontology development for the Semantic Web
and beyond, http://composing-the-semantic-web.blogspot.ca/2011/04/
spinmap-sparql-based-ontology-mapping.html

http://www.w3.org/TR/rif-bld
http://www-ps.informatik.uni-kiel.de/currywiki/_media/documentation/report.pdf
http://www-ps.informatik.uni-kiel.de/currywiki/_media/documentation/report.pdf
http://json.org
http://composing-the-semantic-web.blogspot.ca/2011/04/spinmap-sparql-based-ontology-mapping.html
http://composing-the-semantic-web.blogspot.ca/2011/04/spinmap-sparql-based-ontology-mapping.html

150 H. Boley

16. Brunnbauer, M.: RDF2RDB - convert RDF data to relational databases (2012).
http://www.netestate.de/en/software-development/rdf2rdb/

17. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
World Wide Web Consortium, Recommendation REC-r2rml-20120927 (September
2012)

18. Yang, G., Kifer, M.: Reasoning about Anonymous Resources and Meta Statements.
In: Spaccapietra, Stefano, March, Sal, Aberer, Karl (eds.) Journal on Data Seman-
tics I. LNCS, vol. 2800, pp. 69–97. Springer, Heidelberg (2003)

19. Zou, G., Peter-Paul, R., Boley, H., Riazanov, A.: PSOA2TPTP: a reference transla-
tor for interoperating PSOA RuleML with TPTP reasoners. In: Bikakis, A., Giurca,
A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 264–279. Springer, Heidelberg (2012)

20. Zou, G., Boley, H.: PSOA2Prolog: object-relational rule interoperation and imple-
mentation by translation from PSOA RuleML to ISO prolog. In: Bassiliades, N.,
et al. (eds.) Rule Technologies: Foundations, Tools, and Applications. LNCS, vol.
9202, pp. 176–192. Springer, Heidelberg (2015)

21. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

22. ISO/IEC 13211-1: Prolog - part 1: General core (1995)
23. Al Manir, M.S., Riazanov, A., Boley, H., Baker, C.J.O.: PSOA RuleML API: a

tool for processing abstract and concrete syntaxes. In: Bikakis, A., Giurca, A.
(eds.) RuleML 2012. LNCS, vol. 7438, pp. 280–288. Springer, Heidelberg (2012)

http://www.netestate.de/en/software-development/rdf2rdb/

LegalRuleML:
Design Principles and Foundations

Tara Athan1, Guido Governatori2(B), Monica Palmirani3,
Adrian Paschke4, and Adam Wyner5

1 Athan Services, West Lafayette, USA
2 NICTA Queensland, Brisbane, Australia

guido.governatori@nicta.com.au
3 CIRSFID, University of Bologna, Bologna, Italy

4 Corporate Semantic Web, Freie Universitat, Berlin, Germany
5 University of Aberdeen, Aberdeen, UK

Abstract. This tutorial presents the principles of the OASIS Legal-
RuleML applied to the legal domain and discusses why, how, and when
LegalRuleML is well-suited for modelling norms. To provide a framework
of reference, we present a comprehensive list of requirements for devis-
ing rule interchange languages that capture the peculiarities of legal rule
modelling in support of legal reasoning. The tutorial comprises syntactic,
semantic, and pragmatic foundations, a LegalRuleML primer, as well as
use case examples from the legal domain.

Keywords: LegalRuleML · RuleML · Legal rule modelling · Meta
model

1 Introduction

The objective of the LegalRuleML Technical Committee (TC) is to extend
RuleML with formal features specific to legal norms, guidelines, policies and
reasoning; that is, the TC defines a standard (expressed with XML-schema and
Relax NG) that is able to represent the particularities of the legal normative rules
with a rich, articulated, and meaningful markup language. The features are:

– defeasibility of rules and defeasible logic;
– deontic operators (e.g., obligations, permissions, prohibitions, rights);
– semantic management of negation;
– temporal management of rules and temporality in rules;
– classification of norms (i.e., constitutive, prescriptive);
– jurisdiction of norms;
– isomorphism between rules and natural language normative provisions;

G. Governatori—NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the
ICT Centre of Excellence Program.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 151–188, 2015.
DOI: 10.1007/978-3-319-21768-0 6

152 T. Athan et al.

– identification of parts of the norms (e.g., bearer, conditions);
– authorial tracking of rules.

Some matters are out of the scope of the TC and LegalRuleML such as specifica-
tions of core or domain legal ontologies. For the full motivation for LegalRuleML
and its relationships with other approaches the reader is referred to [5,30].

The main principles of LegalRuleML are as follows.

Multiple Semantic Annotations: A legal rule may have multiple semantic anno-
tations, where these annotations represent different legal interpretations. Each
such annotation appears in a separate annotation collection as internal or exter-
nal metadata. A range of parameters provide the interpretation with respect to
provenance, applicable jurisdiction, logical interpretation of the rule, and others.

Tracking the LegalRuleML Creators: As part of the provenance information,
a LegalRuleML document or any of its fragments can be associated with its
creators. This is important to establish the authority and trust of the knowledge
base and annotations. Among the creators of the document can be the authors
of the text, knowledge base, and annotations, as well as the publisher of the
document.

Linking Rules and Provisions: LegalRuleML includes a mechanism, based on
IRI, that allows many to many (N:M) relationships among the rules and the
textual provisions: multiple rules are embedded in the same provision, several
provisions contribute to the same rule. This mechanism may be managed in the
metadata collections, permitting extensible management, avoiding redundancy
in the IRI definition, and avoiding errors in the associations.

Temporal Management: LegalRuleML’s universe of discourse contains a variety
of entities: provisions, rules, applications of rules, references to text, and refer-
ences to physical entities. All of these entities exist and change in time; their
histories interact in complicated ways. Legal RuleML represents these temporal
issues in unambiguous fashion. In particular, a rule has parameters which can
vary over time, such as its status (e.g., strict, defeasible, defeater), its validity
(e.g., repealed, annulled, suspended), and its jurisdiction (e.g., only in EU, only
in US). In addition, a rule has temporal aspects such as internal constituency of
the action, the time of assertion of the rule, the efficacy, enforcement, and so on.

Formal Ontology Reference: LegalRuleML is independent from any legal ontol-
ogy and logic framework. However it includes a mechanism, based on IRIs, for
pointing to reusable classes of a specified external ontology.

LegalRuleML is Based on RuleML: LegalRuleML reuses and extends concepts
and syntax of RuleML wherever possible, and also adds novel annotations.
RuleML includes Reaction RuleML.

Mapping: LegalRuleML is mappable to RDF triples for Linked Data reuse.

LegalRuleML: Design Principles and Foundations 153

2 Functionalities

Specifically, LegalRuleML facilitates the following functionalities.

(F1) Supports modelling different types of rules. There are constitutive rules,
which define concepts or institutional actions that are recognised as such
by virtue of the defining rules (e.g. the legal definition of “transfer property
ownership”); and there are prescriptive rules, which regulate actions or the
outcome of actions by making them obligatory, permitted, or prohibited.

(F2) Represents normative effects. There are many normative effects that fol-
low from applying rules, such as obligations, permissions, prohibitions, and
more articulated effects. Rules are also required to regulate methods for
detecting violations of the law and to determine the normative effects trig-
gered by norm violations, such as reparative obligations, which are meant
to repair or compensate violations. These constructions can give rise to
very complex rule dependencies, because the violation of a single rule can
activate other (reparative) rules, which in turn, in case of their violation,
refer to other rules, and so forth.

(F3) Implements defeasibility [13,31,34]. In the law, where the antecedent of a
rule is satisfied by the facts of a case (or via other rules), the conclusion
of the rule presumably, but not necessarily, holds. The defeasibility of legal
rules consists of the means to identify exceptions and conflicts along with
mechanisms to resolve conflicts.

(F4) Implements isomorphism [7]. To ease validation and maintenance, there
should be a one-to-one correspondence between collections of rules in the
formal model and the units of (controlled) natural language text that
express the rules in the original legal sources, such as sections of legislation.

(F5) Alternatives: often legal documents are left ambiguous on purpose to cap-
ture open–ended aspects of the domain they are intended to regulate. At the
same time legal documents are meant to be interpreted by end users. This
means that there are cases where multiple (and incompatible) interpreta-
tions of the same textual source are possible. LegalRuleML offers mecha-
nisms to specify such interpretations and to select one of them based on
the relevant context.

(F6) Manages rule reification [13]. Rules are objects with properties, such as
Jurisdiction, Authority, Temporal attributes [21,22,29]. These elements are
necessary to enable effective legal reasoning.

3 Criteria of Good Language Design

The syntax design should follow from semantic intuitions from the subject matter
domain - labelling entities, properties, and relations as well as some of the type
constraints amongst them that guide how the labels are combined and used.

Criteria of Good Language Design are:

– Minimality, which requires that the language provides only a small set of
needed language constructs, i.e., the same meaning cannot be expressed by
different language constructs.

154 T. Athan et al.

– Referential transparency, which means that the same language construct
always expresses the same semantics regardless of the context in which it
is used.

– Orthogonality, where language constructs are independent of each other, thus
permitting their systematic combination.

– Pattern-based design, where design patterns are a distillation of common wis-
dom in organizing the structural parts, the grammar and the constraints of
a language. Some of them are listed in [9] and as XML Patterns1. Inside of
LegalRuleML we introduce five design patterns.

– Meta-model based, where the meta-model for a language, also called the
abstract syntax, defines the vocabulary for describing the language, including
syntactic categories.

LegalRuleML was designed based on such principles. In particular its vocabulary
is inspired by terms from the legal domain, which then facilitates its use by users
familiar with the domain.

The LegalRuleML meta-model captures the common meaning of domain
terms as understood in the legal field, formalizes the connections among the
various concepts and their representation in the language, and provides an RDF-
based abstract syntax. RDFS [8] is used to define the LegalRuleML metamodel,
and graphs of the RDFS schemas accompany the following discussions about the
domain concepts.2

4 Modelling Norms

According to scholars of legal theory [34], norms can be represented by rules
with the form

if A1, ..., An then C

where A1, . . . , An are the pre-conditions of the norm, C is the effect of the
norm, and if . . . then . . . is a normative conditional, which are generally defea-
sible and do not correspond to the if-then material implication of propositional
logic. Norms are meant to provide general principles, but at the same time they
can express exceptions to the principle. It is well understood in Legal Theory
[14,34] that, typically, there are different types of “normative conditionals”, but
in general normative conditionals are defeasible. Defeasibility is the property
that a conclusion is open in principle to revision in case more evidence to the
contrary is provided. Defeasible reasoning is in contrast to monotonic reasoning
of propositional logic, where no revision is possible. In addition, defeasible rea-
soning allows reasoning in the face of contradictions, which gives rise to ex false
quodlibet in propositional logic. One application of defeasible reasoning is the
ability to model exceptions in a simple and natural way.

1 http://www.xmlpatterns.com/.
2 https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/sche-

mas/rdfs/# trunk schemas rdfs .

http://www.xmlpatterns.com/
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/scheschemas/rdfs/#_trunk_schemas_rdfs_
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/schemas/rdfs/#_trunk_schemas_rdfs_

LegalRuleML: Design Principles and Foundations 155

4.1 Defeasibility

The first use of defeasible rules is to capture conflicting rules/norms without
making the resulting set of rules inconsistent. Given that ¬expression means the
negation of expression, the following two rules conclude with the negation of
each other

body1 ⇒ head
body2 ⇒ ¬head

Without defeasibile rules, rules with conclusions that are negations of each other
could give rise, should body1 and body2 both hold, to a contradiction, i.e., head
and ¬head , and consequently ex falso quodlibet. Instead, defeasible reasoning is
sceptical; that is, in case of a conflict such as the above, it refrains from taking any
of the two conclusions, unless there are mechanisms to solve the conflict (see the
discussion below on the superiority relation). Notice that an application of this
is to model exceptions. Exceptions limit the applicability of basic norms/rules,
for example:

body ⇒ head
body , exception condition ⇒ ¬head

In this case, the second rule is more specific than the first, and thus it forms
an exception to the first, i.e., a case where the rule has extra conditions that
encode the exception, blocking the conclusion of the first rule. Often, exceptions
in defeasible reasoning can be simply encoded as

body ⇒ head
exception condition ⇒ ¬head

In the definition of rules as normative conditionals made up of preconditions and
effect, we can see a rule as a binary relationship between the set of preconditions
(or body or antecedent) of the rule, and the (legal) effect (head or conclusion)
of the rule. Formally, a rule can be defined by the following signature:

body × head

We can then investigate the nature of such a relationship. Given two sets, we
have the following seven possible relationships describing the “strength” of the
connections between the body and the head of a rule:

body always head
body sometimes head

body not complement head
body no relationship head

body always complement head
body sometimes complement head

body not head

156 T. Athan et al.

In defeasible logic we can represent the relationships using the following formal-
isation of rules (rule types):

body → head
body ⇒ head
body � head
body → ¬head
body ⇒ ¬head
body � ¬head

There is no need to have a rule for the case where there is no relationship between
the head and the body. The following table summarises the relationships, the
notation used for them, and the strength of the relationship.3

body always head body → head Strict rule
body sometimes head body ⇒ head Defeasible rule
body not complement head body � head Defeater
body no relationship head
body always complement head body → ¬head Strict rule
body sometimes complement head body ⇒ ¬head Defeasible rule
body not head body � ¬head Defeater

The meaning of the different types of rules is as follows:
For a strict rule body → head the interpretation is that every time the body

holds then the head holds.
For a defeasible rule body ⇒ head the reading is when the body holds, then,

typically, the head holds. Alternatively we can say that the head holds when
the body does unless there are reasons to assert that the head does not hold.
This captures that it is possible to have exceptions to the rule/norm, and it is
possible to have prescriptions for the opposite conclusion.

For a defeater body � head the intuition is as follows: defeaters are rules that
cannot establish that the head holds. Instead they can be use to specify that
the opposite conclusion does not hold. In argumentation two types of defeaters
are recognized: defeaters used when an argument attacks the preconditions of
another argument (or rule); other defeaters used when there is no relationship
between the premises of an argument (preconditions of a rule or body) and the
conclusion of the argument (effect of the rule or head).

Given the possibility to have conflicting rules, i.e., rules with opposite or
contradictory heads, we have, for example

body1 ⇒ head
body2 ⇒ ¬head

Systems for defeasible reasoning include mechanisms to solve such conflicts. Dif-
ferent methods to solve conflicts have been proposed: specificity, salience, and
3 The syntax presented here is based on Defeasible Logic, see [4,27].

LegalRuleML: Design Principles and Foundations 157

a preference relation. According to specificity, in case of a conflict between two
rules, the most specific rule prevails over the less specific one, where a rule is
more specific if its body subsumes the body of the other rule. For salience, each
rule has an attached salience or weight, where in case of a conflict between two
rules, the one with the greatest salience or weight prevails over the other. A
preference relation (also known as superiority relation) defines a binary relation
over rules, where an element of the relation states the relative strength between
two rules. Thus, in case of a conflict between two rules, if the preference relation
is defined over such rules, the strongest of the two rules wins over the other.

Various researchers have taken different views on such methods. Specificity
corresponds to the well know legal principle of lex specialis. [32] argues that
specificity is not always appropriate for legal reasoning and that there are other
well understood legal principles such as lex superior and lex posterior that apply
instead. [32] cites cases in which the lex specialis principle might not be the one
used to solve the conflict, for example, a more specific article from a local council
regulation might not override a less specific constitutional norm. [32] proposes
to use a dynamic preference relation to handle conflicting rules. The preference
relation is dynamic in the sense that it is possible to argue about which instances
of the relation hold and under which circumstances. [3] proposes that instances
of the superiority relation appear in the head of rules, namely:

body ⇒ superiority

where superiority is a statement with the form

r1 > r2

where r1 and r2 are rule identifiers.
Reference [12] proposes Carneades as a rule-based argumentation system suit-

able for legal reasoning which uses weights attached to the arguments (rules) to
solve conflicts and to define proof standards. [17] shows how to use the weights
to generate an equivalent preference relation, and, consequently, how to capture
the proposed proof standards. In addition, [17] shows that there are situations
where a preference relation cannot be captured by using weights on the rules.

To handle defeasibility, LegalRuleML has to capture the superiority relation
and the strength of rules. For the superiority relation, LegalRuleML offers the
element <Overrides>, which defines a relationship of superiority cs2 overrides
cs1, where cs2 and cs1 are Legal Statement identifiers.4 These elements are
included through hasQualification roles.

<lrml:hasQualification>

<lrml:Overrides over="#cs1" under="#cs2"/>

</lrml:hasQualification>

For the representation of the strength of rules, LegalRuleML has two options:
The first is to include it in a <Context> element, where a <Context> specifies

a context in which the rule is applied:
4 LegalRuleML defines a Legal Statement as an expression of a Legal Rule or a part

of a Legal Rule where a Legal Rule is a formal representation of a Legal Norm.

158 T. Athan et al.

<lrml:Context key="ruleInfo2">

<lrml:appliesStrength iri="deovo:defeasible2"/>

<lrml:toStatement keyref="#cs1"/>

</lrml:Context>

The second (and optional) way to express the qualification of the rule is directly
inside of the rule, through a hasStrength role. The difference is that <Context>
localises the strength of a rule, while hasStrength in effect relates the strength
to the rule in all contexts:

<lrml:hasStrength>

<lrml:Defeater key="str4"/>

</lrml:hasStrength>

Fig. 1. Partial Metamodel for Defeasible Concepts. LegalRuleML and RuleML classes
are labelled with a ‘C’ in a circle, LegalRuleML properties with a ‘P’ in a triangle. The
Formula and AtomicFormula classes are imported from RuleML.

4.2 Constitutive and Prescriptive Norms

As we have discussed, a Legal Rule can be seen as binary relationship between
its antecedent (a set of formulas, encoding the pre-conditions of a norm, repre-
sented in LegalRuleML by a formula, where multiple pre-conditions are joined
by some logical connective) and its conclusion (the effect of the norm, repre-
sented by a formula). It is possible to have different types of relations. In the
previous section, we examined one such aspect: the strength of the link between
the antecedent and the conclusion. Similarly, we can explore a second aspect,
namely what type of effect follows from the pre-condition of a norm. In Legal
Theory norms are classified mostly in two main categories: constitutive norms
and prescriptive norms, which will be then represented as constitutive rules (also

LegalRuleML: Design Principles and Foundations 159

Fig. 2. Partial Metamodel for Statement Subclasses.

known as counts-as rules) and prescriptive rules.5 The (partial) meta-model for
the notions described in this section is depicted in Fig. 2.

The function of constitutive norms is to define and create so called institu-
tional facts [36], where an institutional fact is how a particular concept is under-
stood in a specific institution. Thus, constitutive rules provide definitions of the
terms and concepts used in a jurisdiction. On the other hand, prescriptive rules
dictate the obligations, prohibitions, permissions, etc. of a legal system, along
with the conditions under which the obligations, prohibitions, permissions, etc.
hold. LegalRuleML uses deontic operators to capture such notions (see Sect. 4.3).
Deontic operators are meant to qualify formulas. A Deontic operator takes as
its argument a formula and returns a formula. For example, given the (atomic)
formula PayInvoice(guido), meaning ‘Guido pays the invoice’, and the deontic
operator [OBL] (for obligation), the application of the deontic operator to the
formula generates the new (deontic) formula [OBL]PayInvoice(guido), meaning
that “it is obligatory that Guido pays the invoice”.

The following is the LegalRuleML format for prescriptive rules. Notice, that
in LegalRuleML, legal rules are captured by the broader class of Statement and
the hasTemplate property links a prescriptive or constitutive statement (see Fig. 2
for the different types of statements available in LegalRuleML) to its template, a
fragment of RuleML syntax with root ruleml:Rule that denotes a class of rules.

<lrml:PrescriptiveStatement key="ps1">
<lrml:hasTemplate>

<ruleml:Rule key=":key1">
<lrml:hasStrength>

strength of the rule
</lrml:hasStrength>
<ruleml:if>

5 Reference [14] identify more types of norms/rules. However, most of them can be
reduced to the two types described here insofar as the distinction is not on structure
of the rules but it depends on the meaning of the content (specific effect) of the
rules, while keeping the same logical format.

160 T. Athan et al.

formula, including deontic formula
</ruleml:if>
<ruleml:then>

<lrml:SuborderList>
list of deontic formulas

</lrml:SuborderList>
</ruleml:then>

</ruleml:Rule>
</lrml:hasTemplate>

</lrml:PrescriptiveStatement>

The difference between constitutive rules and prescriptive rules is in the content of
the head, where the head of a prescriptive rule is a list of deontic formulas which
is called a suborder list (see Sect. 4.3 below), and represented in LegalRuleML by
the <lrml:Suborder> element. Syntactically, a suborder list of one element can be
rendered in LegalRuleML as just the element. Prescriptive and constitutive rules
can have deontic formulas in their set of preconditions (antecedent or body). The
conclusion (head) of a constitutive rule cannot be a deontic formula, nor can it be
a compound formula that contains a deontic formula.

<lrml:ConstitutiveStatement key="ps1">
<ruleml:Rule key=":key1">

<lrml:hasStrength>
strength of the rule

</lrml:hasStrength>
<ruleml:if>

formula, including deontic formula
</ruleml:if>
<ruleml:then>

non-deontic formula
</ruleml:then>

</ruleml:Rule>
</lrml:ConstitutiveStatement>

4.3 Deontic

One of the functions of norms is to regulate the behaviour of their subjects by
imposing constraints on what the subjects can or cannot do, what situations are
deemed legal, and which ones are considered to be illegal. There is an impor-
tant difference between the constraints imposed by norms and other types of
constraints. Typically a constraint means that the situation described by the
constraint cannot occur. For example, the constraint A means that if ¬A (the
negation of A, that is, the opposite of A) occurs, then we have a contradiction,
or in other terms, we have an impossible situation. Norms, on the other hand,
can be violated. Namely, given a norm that imposes the constraint A, yet we
have a situation where ¬A, we do not have a contradiction, but rather a viola-
tion, or in other terms we have a situation that is classified as “illegal”. From
a logical point of view, we cannot represent the constraint imposed by a norm
simply by A, since the conjunction of A and ¬A is a contradiction. Thus we need
a mechanism to identify the constraints imposed by norms. This mechanism is
provided by modal operators, in particular, deontic operators.

LegalRuleML: Design Principles and Foundations 161

Modal and Deontic Operators. Modal logic is an extension of classical logic
with modal operators. A modal operator applies to a proposition to create a new
proposition. The meaning of a modal operator is to “qualify” the truth of the
proposition that the operator applies to. The basic modal operators are those of
necessity and possibility. Accordingly, given a proposition p expressing, for exam-
ple that “the snow is white” and the necessity modal operator [NEC], [NEC]p is
the proposition expressing that “necessarily the snow is white”. Typically, the
necessity and possibility operators are the dual of each other, namely:

[NEC]p ≡ ¬[POS]¬p

[POS]p ≡ ¬[NEC]¬p

The modal operators have received different interpretations: for example, neces-
sity can be understood as logical necessity, physical necessity, epistemic necessity
(knowledge), doxastic necessity (belief), temporal necessity (e.g., always in the
future), deontic necessity (obligatory), and many more.

In the context of normative reasoning and representation of norms the focus is
on the concepts of deontic necessity and deontic possibility. These two correspond
to the notions of Obligation, and Permission. In addition, we consider the notion
of Prohibition, which corresponds to the operator of deontic impossibility. For
something to be “deontically necessary” means that it holds in all situations
deemed legal; similarly something is “deontically possible” if there is at least
one legal state where it holds. Finally, “deontically impossible” indicates that
something does not hold in any legal state. More specifically a legal state is
a state where there are no violations. Thus LegalRuleML defines Obligation
as a Deontic Specification6 for a state, an act, or a course of action to which a
Bearer is legally bound, and which, if it is not achieved or performed, results in a
violation; similarly a Prohibition is a Deontic Specification for a state, an act, or
a course of action to which a Bearer is legally bound, and which, if it is achieved
or performed, results in a violation. A Permission is a Deontic Specification
indicating that the Bearer has no Obligation or Prohibition to the contrary.

We will use [OBL] for the modal/deontic operator of Obligation, [PERM] for
Permission, and [FOR] for Prohibition (or Forbidden).

Standard deontic logic assumes the following relationships between the oper-
ators:

[OBL]p ≡ ¬[PERM]¬p

If p is obligatory, then its opposite, ¬p, is not permitted.

[FOR]p ≡ [OBL]¬p

If p is forbidden then its opposite is Obligatory. Alternatively, a Prohibition can
be understood as Obligation of the negation.

The following is an example of mathematical statement of a Prescriptive
Rule:

p1, . . . , pn, [DEON1]pn+1, . . . , [DEONm]pn+m ⇒ [DEON]q
6 Deontic Specification is the class that includes the various deontic notions used in

LegalRuleML.

162 T. Athan et al.

The antecedent, p1, . . . , pn, [DEON1]pn+1, . . . , [DEONm]pn+m, conditions the
applicability of the norm in the consequent [DEON]q; that is, when the antecedent
conditions are met, then the consequent is the deontic effect of them. Thus, given
the antecedent, the rule implies [DEON]q.

The operators of Obligation, Prohibition and Permission are typically consid-
ered the basic ones, but further refinements are possible, for example, two types
of permissions have been discussed in the literature on deontic logic: weak per-
mission (or negative permission) and strong permission (or positive permission).
Weak permission corresponds to the idea that some A is permitted if ¬A is not
provable as mandatory. In other words, something is allowed by a code only when
it is not prohibited by that code [38]. The concept of strong permission is more
complicated, as it amounts to the idea that some A is permitted by a code if and
only if such a code explicitly states that A is permitted, typically as an exception
to the prohibition of A or the obligation of its contrary, i.e., ¬A. It follows that a
strong permission is not derived from the absence of a prohibition, but is explic-
itly formulated in a permissive (prescriptive) norm [2]. An example of an explicit
permissive norm is manifested by a “U-turn permitted” sign exposed at a traffic
light, which derogates the (general) prohibition to U-turn at traffic lights.

Refinements of the concept of obligation have been proposed as well. For
example it is possible to distinguish between achievement and maintenance
obligations, where an achievement obligation is an obligation that is fulfilled
if what the obligation prescribes holds at least once in the period when the
obligation holds, while a maintenance obligation must be obeyed for all the
instants when it holds (see [18] for a classification of obligations).

LegalRuleML is neutral about the different subclasses of the deontic oper-
ators; to this end LegalRuleML is equipped with a mechanism to point to the
semantics of various Deontic Specifications in a document. The first mechanism
is provided by the iri attribute of a Deontic Specification for example:

<lrml:Obligation

key="oblig1"

iri="http://example.org/deontic/vocab#achievementobligation">

...

</lrml:Obligation>

The second alternative is to use an Association to link a Deontic Specification
to its meaning using the applyModality element, namely:

<lrml:Association>

<lrml:appliesModality

iri="http://example.org/deontic/vocab#maintenanaceobligation"/>

<lrml:toTarget keyref="#oblig101"/>

</lrml:Association>‘

Furthermore, Obligations, Prohibitions and Permissions in LegalRuleML are
directed operators [24], thus they have parties (e.g. Bearer), specifying, for exam-
ple, who is the subject of an Obligation or who is the beneficiary of a Permission.

<lrml:Obligation iri="http://example.org/deontic/vocab#obl1">

<ruleml:slot>

<lrml:Bearer iri="http://example.org/deontic/vocab#oblBearer"/>

LegalRuleML: Design Principles and Foundations 163

<ruleml:Ind>Y</ruleml:Ind>

</ruleml:slot>

<ruleml:Atom key=":atom2">

<ruleml:Rel iri="#rel2"/>

<ruleml:Ind>X</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

Violation, Suborder, Penalty and Reparation. Obligations can be vio-
lated; according to some legal scholars, the possibility of being violated can be
used to define an obligation. A violation means that the content of the obligation
has not been met. It is important to notice that a violation does not result in
an inconsistency. A violation is, basically, a situation where we have

([OBL]p) and ¬p

One of the characteristics of norms is that having violated them, a penalty can
be introduced to compensate for the violation, where a penalty is typically a
Deontic Specification. To model this feature of norms and legal reasoning [20]
introduced what is called here a suborder list, and [16] showed how to combine
them with defeasible reasoning for the modelling of (business) contracts. As we
have mentioned above, a suborder list is a list of deontic formulas, e.g., formulas
of the form [D]A, where [D] is one of [OBL] (Obligation), [FOR] (Prohibition,
or forbidden), [PERM] (Permission) and [RIGHT] (Right). Syntactically, a sub-
order list of one element can be rendered in LegalRuleML as just the element.
To illustrate the meaning of suborder lists, consider the following example:

[OBL]A, [OBL]B, [FOR]C, [PERM]D

The expression means that A is obligatory, but if it is violated, i.e., we have its
opposite ¬A, then the obligation comes into force to compensate for the violation
of [OBL]A with [OBL]B. If also this Obligation of B is violated, then we have
[FOR]C, the Prohibition of C. At this stage, if we have a Violation of such a
Prohibition, i.e., we have C, then the Permission of D kicks in. Obligations and
Prohibitions should not be preceded by Permissions and Rights in a suborder
list, for the semantics of suborder lists is such that an element holds in the list
only if all the elements that precede it in the list have been violated. It is not
possible to have a Violation of a Permission, so it cannot serve a purpose in
the suborder list. Accordingly, an element following a permission in a suborder
list would never hold. See [19] for a full discussion on the issue of permissions
and suborder lists. [16,20] also discuss mechanisms to combine the suborder lists
from different rules. For example, given the rules

body ⇒ [OBL]A
¬A ⇒ [OBL]B

Here the body of the second rule is the negation of the content of the oblig-
ation in the head of the first rule. It is possible to merge the two rules above in
the following rule

body ⇒ [OBL]A, [OBL]B

164 T. Athan et al.

stating that one compensates for the violation of the obligation of A with the
obligation of B. This suggests that suborder lists provide a simple and con-
venient mechanism to model penalties. It is not uncommon for a legal text
(e.g., a contract) to include sections about penalties, where one penalty is pro-
vided as compensation for many norms. To model this and to maintain the
isomorphism between a source and its formalisation, LegalRuleML includes a
<PenaltyStatement> element, the scope of which is to represent a statement
of a penalty as a suborder list (including the trivial non-empty list of a single
element).

<lrml:PenaltyStatement key="pen1">
<lrml:SuborderList>

list of deontic formulas
</lrml:SuborderList>

</lrml:PenaltyStatement>

LegalRuleML not only models penalties, but aims to connect the penalty state-
ment with the corresponding Reparation element:

<lrml:Reparation key="rep1">

<lrml:appliesPenalty keyref="#pen1"/>

<lrml:toPrescriptiveStatement keyref="#ps1"/>

</lrml:Reparation>

With the temporal model of LegalRuleML (see Sect. 5.4), we can model a unique
prescriptive statement (e.g., a prohibition) and several penalties that are updated
over time according to the modifications of the law. Dynamically, the legal rea-
soner can point out the correct penalty according to the time of the crime (e.g.,
an obligation to pay statutory damage $500 in 2000, $750 in 2006, $1000 in 2010).

Fig. 3. Partial Metamodel for Deontic Concepts. LogicalFormula, Term and Atomic-
Formula classes are imported from RuleML.

LegalRuleML: Design Principles and Foundations 165

4.4 Alternatives

In the legal interpretation theory [37] norms are interpreted by the judges in
order to apply them to the concrete cases. Sometime the legal interpretation
theories conflict and diverge from each other [11,23,33]. Linguistic elements are
added to this also for different reasons such as jurisdiction (e.g., national and
regional level) or for competences (e.g., civil or criminal court). The practice
of law over time has developed its own catalogue of hermeneutical principles,
a range of techniques to interpret the law, such as catalogued and discussed in
[35]. In addition, in Linguistics, issues about interpretation have long been of
central concern (see among others [10,26]), where the need for interpretation
arises given that the meanings (broadly construed) of “linguistic signs”, (e.g.,
words, sentences, and discourses), can vary depending on participants, context,
purpose, and other parameters. Interpretation is, then, giving the meaning of
the linguistic signs for a given set of parameters.

LegalRuleML endeavours not to account for how different interpretations
arise, but to provide a mechanism to record and represent them. We have four
different templates:

The element <lrml:Alternatives> permits to express all these interpreta-
tion templates. The following LegalRuleML fragments illustrate how to represent
the four cases above (the first case shows the normalized serialization, while the
rest show the compact serialization).

166 T. Athan et al.

Case 1:

<lrml:Alternatives key="alt1">

<lrml:fromLegalSources>

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

</lrml:LegalSources>

</lrml:fromLegalSources>

<lrml:hasAlternative keyref="#ps1"/>

<lrml:hasAlternative keyref="#ps2"/>

</lrml:Alternatives>

Case 2:

<lrml:Alternatives key="alt2">

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

<lrml:hasLegalSource keyref="#ref2"/>

</lrml:LegalSources>

<lrml:hasAlternative keyref="#ps1"/>

<lrml:hasAlternative keyref="#ps2"/>

</lrml:Alternatives>

Case 3:

<lrml:Alternatives key="alt3">

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

</lrml:LegalSources>

<lrml:hasAlternative keyref="#ss1"/>

<lrml:hasAlternative keyref="#ss2"/>

</lrml:Alternatives>

<lrml:Statements key="ss1">

<lrml:ConstitutiveStatement keyref="#ps1"/>

<lrml:ConstitutiveStatement keyref="#ps2"/>

</lrml:Statements>

<lrml:Statements key="ss2">

<lrml:ConstitutiveStatement keyref="#ps3"/>

</lrml:Statements>

Case 4:

<lrml:Alternatives key="alt3">

<lrml:LegalSources>

<lrml:hasLegalSource keyref="#ref1"/>

<lrml:hasLegalSource keyref="#ref2"/>

</lrml:LegalSources>

<lrml:hasAlternative keyref="#ss1"/>

<lrml:hasAlternative keyref="#ss2"/>

</lrml:Alternatives>

<lrml:Statements key="ss1">

<lrml:ConstitutiveStatement

keyref="#ps1"/>

<lrml:ConstitutiveStatement

LegalRuleML: Design Principles and Foundations 167

keyref="#ps2"/>

</lrml:Statements>

<lrml:Statements key="ss2">

<lrml:ConstitutiveStatement

keyref="#ps1"/>

<lrml:ConstitutiveStatement

keyref="#ps3"/>

</lrml:Statements>

Fig. 4. Partial Metamodel for Alternatives Concepts.

A possible use of the LegalRuleML alternatives mechanism is in legal disputes
where the alternatives can be used to model the (different) interpretations of
a piece of legislation by the parties involved in the dispute; a comprehensive
illustration of this is provided in Sect. 8 based on [6].

5 Meta Data of the Norms

5.1 Sources and Isomorphism

For legal rule modelling, it is important to maintain the connection between
the formal norms and the legally binding textual statements that express the
norms for several reasons. Legal knowledge engineers and end users should know
and be able to track the textual source of the formal representation. Further-
more, because the legal text is the only legally binding element, the connection
between text and the rule(s) (or fragment of rule) guarantees the provenance,
authoritativeness, and authenticity of the rules modelled by the legal knowledge
engineer. In addition, legal experts (judges, lawyers, legal operators) request a
mechanism to connect text and rules for legibility and validation of the rules.
Finally, because the legal sources of rules change over time, the formal rules
need to be updated according to the textual changes; as there is usually no
automatic mechanism to correlate and track modifications to rules, the con-
nection between text and rules helps to do so. For these reasons LegalRuleML

168 T. Athan et al.

includes a mechanism for managing this connection, which is called “isomor-
phism” in the AI & Law community. The mechanism must support a fine gran-
ularity (rules, fragments of rules, atoms, fragments of atoms connected with
provisions, fragments of provisions, letters, numbers, paragraphs, sentences, and
words) as well as to represent temporal modifications. LegalRuleML dedicates
two collections (<lrml:References>, <lrml:LegalSources>) to annotate the
original legal sources. In Sect. 6 the mechanism for creating an N:M relationship
with rules (e.g., many rules associated with one textual provision; many legal
source fragments for one rule) will be described.

<lrml:References> is the collection dedicated to record non-IRI based iden-
tifier sources, and the attribute refIDSystemName is able to annotate the naming
convention used. In the following example we refer to the Akoma Ntoso relative
IRI of the section 504 of the US Code, following the naming convention of the
XML-schema in Akoma Ntoso7:

<lrml:References refType="http://example.legalruleml.org/lrml#LegalSource">

<lrml:Reference

refersTo="ref1"

refID="/akn/us/act/uscode/eng@/main#title17-chp5-sec504-clsa-lst1-pnt1"

refIDSystemName="AkomaNtoso3.0-2015-04-16"/>

</lrml:References>

<lrml:LegalSource> is the construct dedicated to record the IRI based iden-
tifier sources. The following example define the source of the U.S. Code,
section 504, paragraph 1, title 17 published in the Cornell University portal
http://www.law.cornell.edu/:

<lrml:LegalSources>

<lrml:LegalSource

key="ref2"

sameAs="http://www.law.cornell.edu/uscode/text/17/504#psection-1"/>

</lrml:LegalSource>

</lrml:LegalSources>

The list of the resources connected with the legal rules that are modelled in
a LegalRuleML document are defined once in the first part of the XML file.
This minimizes redundant definitions of the resources and avoids errors. As we
see later, using the attribute value specified in @key, rules (or fragments of a
rule) can be connected to References or LegalSources. The <lrml:Association>
construct links LegalSources and References with rules (or fragment of rule), thus
implementing the N:M relationship.

7 Akoma Ntoso is an XML vocabulary for representing legal, legislative, parliamentary
and judiciary documents in a structured and semantic manner. Akoma Ntoso is man-
aged by the LegalDocML TC of OASIS. https://www.oasis-open.org/committees/
tc home.php?wg abbrev=legaldocml.

http://www.law.cornell.edu/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legaldocml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legaldocml

LegalRuleML: Design Principles and Foundations 169

Fig. 5. Metamodel for LegalSource concepts.

5.2 Jurisdiction and Authority

The Jurisdiction element is a geographic area or subject-matter over which an
Authority applies its legal power. It annotates the legal rules that are applicable
to a given region (e.g., the rules applicable only in the United States of America
in contrast to other countries in the world).

<lrml:Jurisdictions>

<lrml:Jurisdiction key="us"

sameAs="http://example.org/jurisdiction#unitedStatesOfAmerica"/>

</lrml:Jurisdictions>

We can use Jurisdiction also to specify a limited subject-matter, for instance,
legal rules which are applicable only to the executive departments.

<lrml:Jurisdictions>

<lrml:Jurisdiction key="exd"

sameAs="http://example.org/jurisdiction#executiveDepartments"/>

</lrml:Jurisdictions>

Similarly, authority qualifies the rules with respect to the authenticity of the
provenance of the formal model. Authority is a person or organization with the
power to create, endorse, or enforce Legal Norms.

<lrml:Authorities>

<lrml:Authority key="congress"

sameAs="unibo:organization.owl#congress">

<lrml:hasType iri="lrmlv:Legislature"/>

</lrml:Authority>

</lrm:Authorities>

170 T. Athan et al.

Fig. 6. Metamodel for authority and jurisdiction metadata concepts.

5.3 Agent, Figure, Role

An Agent is an entity that acts or has the capability to act. An Agent could be
a physical person, a database, or a bot; for this reason we have the sub-element
<lrml:hasType> that expresses the category of agent.

<lrml:Agents>

<lrml:Agent key="mp"

sameAs="http:example.org/agents#MonicaPalmirani">

<lrml:hasType iri="http://example.org/types#Person"/>

</lrml:Agent>

<lrml:Agent key="ta"

sameAs="http://example.org/agents#TaraAthan"/>

</lrml:Agents>

The Agent usually is the author of the rule model and he/she/it can act in
a particular function (e.g., as senator). A Figure in LegalRuleML is an instanti-
ation of a function by an Actor, and an Actor could be an Agent or a Figure.

<lrml:Figures>

<lrml:hasMemberType

iri="http://example.org/figure-types#LegislativeFigure"/>

<lrml:Figure key="fs">

<lrml:hasFunction iri="http://example.org/functions#Senator"/>

<lrml:hasActor keyref="#ta"/>

</lrml:Figure>

</lrml:Figures>

In the end we associate the Actor that fills a Role (using <lrml:filledBy>)
for a particular rule.

LegalRuleML: Design Principles and Foundations 171

<lrml:Roles>

<lrml:Role key="role1" iri="http://example.org/roles#author">

<lrml:filledBy keyref="#mp"/>

<lrml:filledBy keyref="#ta"/>

<lrml:forExpression keyref="#rule1a"/>

</lrml:Role>

<lrml:Role key="role2" iri="http://example.org/roles#author">

<lrml:filledBy keyref="#mp"/>

<lrml:forExpression keyref="#atom2a"/>

<lrml:forExpression keyref="#atom2b"/>

</lrml:Role>

</lrml:Roles>

Using this mechanism we can filter all the rules modelled by a particular Actor
when he/she/it acts as a particular figure; for instance, we can filter for all the
rules modelled by President Obama when he is acting as chief executive and not
as the commander-in-chief of the United States Armed Forces.

Fig. 7. Partial metamodel for agent, figure and role metadata concepts. AgentClass is
imported as URI from dublin core.

5.4 Time and Events

Legal texts are often amended as a society or judicial system evolves. Norms and
rules are valid in a particular interval of time and with respect to three main
legal axes: when they come into force (entry or enforceability), when they effect

172 T. Athan et al.

the intended or desired result (efficacy), and when they apply (applicability).
In this section, we model the external temporal dimensions of the norms (e.g.,
when the norm is valid) and not the temporal dimensions of the complex events
that are the content of the textual provision (e.g., when a person is to present a
tax application). Therefore, we only model the intervals and temporal parame-
ters that define the period of validity of the rules. Moreover, in keeping with the
sources, it is important to link the temporal parameters to any part of a rule
(e.g., atom, rel, ind, if, then, etc.) with a very fine granularity. The follow-
ing fragment shows the definition of the instant time using the <ruleml:Time>
element wrapped by the <lrml:Times> collection element:

<lrml:Times>

<ruleml:Time key="t1">

<ruleml:Data xsi:type="xs:dateTime">

1978-01-01T01:01:00.0Z

</ruleml:Data>

</ruleml:Time>

<ruleml:Time key="t2">

<ruleml:Data xsi:type="xs:dateTime">

1989-03-01T01:01:00.0Z

</ruleml:Data>

</ruleml:Time>

</lrml:Times>

The time instants are combined in intervals according with the legal temporal
characteristics, e.g. enforceability, efficacy, applicability. In the following case the
tblock1 defines the interval [t1, t2] of efficacy.

<lrml:TemporalCharacteristics key="tblock1">

<lrml:TemporalCharacteristic key="e1-b">

<lrml:forStatus iri="lrmlv:Efficacious"/>

<lrml:hasStatusDevelopment iri="lrmlv:Starts"/>

<lrml:atTime keyref="#t1"/>

</lrml:TemporalCharacteristic>

<lrml:TemporalCharacteristic key="e1-e">

<lrml:forStatus iri="lrmlv:Efficacious"/>

<lrml:hasStatusDevelopment iri="lrmlv:Ends"/>

<lrml:atTime keyref="#t2"/>

</lrml:TemporalCharacteristic>

</lrml:TemporalCharacteristics>

After this definition of the time interval or instant, it is possible to asso-
ciate them to the legal sources using the <lrml:Association> element or the
<lrml:Context> element (see Sect. 6) for associating the temporal parameters
with any part of the rule formalization.

LegalRuleML: Design Principles and Foundations 173

Fig. 8. Partial Metamodel for Temporal Metadata Concepts. Individuals are repre-
sented by triangular icons with the letter ‘I’. Event and Time classes are imported
from RuleML.

6 Association and Context

6.1 Association

To avoid redundancy, we have the element <Association> which can be used
to group meta information referring to several rules or portions of them. In
the following example we have two associations inside of the collection element
<Associations>. The first <Association> applies the temporal parameters of
tblock1 to the prescriptive statements 1 and 2. In the second one authority and
jurisdiction properties are applied to prescriptive statements 1 and 3:

<lrml:Associations key="sourceBlock1">

<lrml:Association>

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

<lrml:toTarget keyref="#ps1"/>

<lrml:toTarget keyref="#ps2"/>

</lrml:Association>

<lrml:Association>

<lrml:appliesAuthority keyref="ex:#congress"/>

<lrml:appliesJurisdiction keyref="ex:#us"/>

<lrml:toTarget keyref="#ps1"/>

<lrml:toTarget keyref="#ps3"/>

174 T. Athan et al.

</lrml:Association>

</lrml:Associations>

This LegalRuleML language construct permits a large flexibility without repli-
cating the information and so maintains the XML representation neatly, cleanly,
compactly, and with fewer redundancies and errors. The parameters that we can
associate are:

<lrml:appliesModality iri="deovo:obl"/>

for expressing modality;

<lrml:appliesSource keyref="#sec504-clsc-pnt1"/>

for connecting LegalSources or References;

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

for connecting temporal parameters;

<lrml:appliesStrength iri="lrmlv:Defeasible"/>

for qualifying the strength of a rule according to the defeasibility categorization;

<lrml:appliesAuthority keyref="authorities:congress"/>

for assigning the authority of the editor of the rule;

<lrml:appliesJurisdiction keyref="jurisdictions:us"/>

for assigning the jurisdiction to a rule.

Fig. 9. Partial metamodel for context concepts.

LegalRuleML: Design Principles and Foundations 175

6.2 Context

A rule may be differently interpreted according to a variety of parameters associ-
ated with a particular situation. For instance, sometimes an alternative interpre-
tation of a textual source of a rule (and its associated formalisation) is associated
with a jurisdiction, e.g., regional, national, or international levels, meaning that
in one jurisdiction, the rule is interpreted one way, while in another jurisdiction,
it is interpreted in another way. Similarly, temporal parameters (e.g., efficacy,
enforceability) can change over time due to the normative modifications, and
these changes can also affect the strength of the norms.

To represent such parameters, we introduce the <lrml:Context> element,
which permits the description of all the characteristics that are linked to a par-
ticular rule (e.g., rule1) using the operator <applies*>, substituting the * with
different relationships (see Sect. 6.1). Additionally to the previous relationships
we add also the following:

<lrml:appliesAssociations keyref="#assoc1"/>

<lrml:appliesAlternatives keyref="#alt2"/>

The mechanism combines the relationships and the target rules, and it acts as a
bridge between metadata and rules or fragments of them. The following example
shows rules rule1 and rule4 connected with a LegalSource section 504, point 2,
under the authority of Congress, valid in the jurisdiction of the USA, associated
with the association #assoc1 and constrained by the alternatives represented in
#alt2.

<lrml:Context key="ruleInfo4" hasCreationDate="#t1">

<lrml:appliesSource keyref="#sec504-clsc-pnt2"/>

<lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

<lrml:appliesStrength iri="lrmlv:Defeater"/>

<lrml:appliesAuthority keyref="authorities:congress"/>

<lrml:appliesJurisdiction keyref="jurisdictions:us"/>

<lrml:appliesAssociations keyref="#assoc1"/>

<lrml:appliesAlternatives keyref="#alt2"/>

<lrml:inScope keyref="#rule1"/>

<lrml:inScope keyref="#rule4"/>

</lrml:Context>

7 Concrete XML-based Syntax Design

The concrete XML-based syntax for LegalRuleML was designed based on the
principles in Sect. 3, as well as certain design principles that are specific to
XML-based syntaxes.

7.1 XML Elements vs. Attributes

A common design decision for XML-based languages is whether to use an XML
element or an attribute to represent a particular abstract syntactic feature. Gen-
eral guidelines are:

176 T. Athan et al.

– If the information in question could be itself marked up with elements, put it
in an element, because attributes cannot contain such complex content;

– If the information is suitable for attribute form (i.e., not complex), but could
end up as multiple attributes of the same name on the same element, use child
elements instead, avoiding list datatypes for attributes;

– If the information is required to be in a standard XML schema attribute type
such as ID, IDREF, ENTITY, KEYREF, use an attribute;

– If the information should not be normalized for white space, use elements
(XML processors normalize attributes in ways that can change the raw text
of the attribute value.).

Additional general markup conventions developed in RuleML are adopted in
LegalRuleML, providing common principles for the merged language hierarchy.

7.2 Node and Edge Elements

There is a distinction between type (also called node) elements and role (also
called edge) elements, the element name of the former starting with an upper case
letter, and the latter with a lower case letter. Node elements correspond to classes
of the metamodel while edge elements correspond to relationships between mem-
bers of these classes. Edge elements correspond, in general, to “object” properties
in the metamodel, where the range is a subclass of rdfs:Resource. Node ele-
ments alternate with edge elements, forming a bipartite pattern, often called a
striped syntax (e.g., the striped RDF/XML syntax).

7.3 Specialization of Language Constructs with Attributes
and Header Elements

Main XML elements are used for representing general language constructs as
recursive trees while XML attributes and nonrecursive header elements are used
for distinguishing specializations of a given main element. (Attributes are also
used for rendering names that are IRIs, as in RDF.) Syntactic and semantic
variation can thus be achieved by different attribute values and header elements
rather than requiring a different element name. Consider the case of M general
language constructs, all of which may be specialized by P attributes, each with
N predefined values. With this approach, a vocabulary of size M + N ∗ (P + 1)
is able to express M ∗ NP specialized language constructs. In practice, not all
specializing components are appropriate for all general language constructs, so
the actual reduction of vocabulary is not as dramatic as the example, but still
significant.

7.4 Generic Elements

In addition to predefined values, a number of RuleML and LegalRuleML
attributes are allowed values which are IRIs, providing extension points for user-
defined syntactic and semantic variation. A generic element is a main element

LegalRuleML: Design Principles and Foundations 177

whose semantics is underspecified unless an attached attribute or header ele-
ment provides a predefined value or an IRI pointer to a user-defined semantics
(e.g., <Obligation> is a generic deontic operator.) In contrast, non-generic main
elements have either a fixed semantics (e.g., <References>), or a default seman-
tics specified by a profile reference which may be modified through the use of
semantic variant attributes (e.g., <ruleml:And>).

7.5 Normalized and Compact Serialization

In many cases, edge elements are redundant because they could be reconstructed
based on the type or position of the parent and child node elements. RuleML
syntax allows such edges to be optionally skipped, called the stripe-skipped seri-
alization. LegalRuleML syntax allows the two extreme cases - either no edges
are skipped in the document (the normalized serialization) or all skippable edges
in the document are omitted (the compact seralization). The normalized seri-
alization may be reconstructed from a document in stripe-skipped or compact
serialization by applying the normalizer XSLT transformation.

7.6 Design Patterns

Inside of LegalRuleML we employ five well-known design patterns:

– container, which is a structure of elements having independent existence (e.g.,
<Context> can include several <Association> sub-elements);

– collection, a subpattern of container that is in the form of a list of elements
of the same type (e.g., <Roles> that is a sequence of <Role> elements);

– recursive element (e.g., <Obligation> can include other <Obligation> ele-
ments);

– marker, an element that uses attribute @sameAs for identifying a source, e.g.,
<lrml:LegalSource key="sec504-clsa-pnt1"

sameAs="UScode:title17-chp5-sec504-clsa-lst1-pnt1"/>

– composite elements that are made up of different dependent parts, (e.g., a rule
<Rule> consists of an antecedent <if> and conclusion <then>).

7.7 IRI References, CURIES, and the Xsd:ID Datatype

Syntactic labels are attached to fragments of LegalRuleML syntax with the
@key attribute, and are referenced with @keyref. On LegalRuleML elements,
the datatype of @key values is xsd:ID, as is used in HTML for same-document
references, while the datatype of @keyref is either an IRI reference (xsd:anyURI)
or a CURIE [1].

The names of elements and attributes in the XML syntax of LegalRuleML
are inspired by terms from the legal domain, which then facilitates the use by
users familiar with this domain. The LegalRuleML meta-model captures the
common meaning of such terms as understood in the legal field and provides an
IRI for each metamodel term within the LegalRuleML metamodel namespace.

178 T. Athan et al.

These IRIs may be used whenever it is appropriate to refer to a “resource”, in
the sense of RDF, including as values of LegalRuleML attributes.

The element names of the LegalRuleML XML-based syntax are qualified
names, and all LegalRuleML attributes are unqualified.8 An XSLT transforma-
tion has been defined that converts a LegalRuleML document in the XML-based
syntax into RDF that employs the LegalRuleML metamodel vocabulary9.

In the following section we illustrate the connections among the various con-
cepts and their representation in the language.

8 Examples

We use a fragment of the US Code, Title 17, sec. 504, point (c) on copyright
infringement for presenting how LegalRuleML can model complex legal norms
in elegant way. Section 504 was modified seven times over several years. However
only three versions are relevant in our scenario: (i) the version entered into force
at Oct. 19, 1976; (ii) the version entered into force at Oct. 31, 1988; (iii) the
version entered into force at Dec. 9, 1999 that is valid till today. The original
version is:

17 USC Sec. 504
(c) Statutory Damages.
(1) Except as provided by clause (2) of this subsection, the copyright
owner may elect, at any time before final judgement is rendered, to
recover, instead of actual damages and profits, an award of statutory
damages for all infringements involved in the action, with respect to any
one work, for which any one infringer is liable individually, or for which
any two or more infringers are liable jointly and severally, in a sum of not
less than $250 or more than $10,000 as the court considers just. For the
purposes of this subsection, all the parts of a compilation or derivative
work constitute one work.
(2) In a case where the copyright owner sustains the burden of proving,
and the court finds that infringement was committed willfully, the court
in its discretion may increase the award of statutory damages to a sum of
not more than $50,000. In a case where the infringer sustains the burden
of proving, and the court finds, that such infringer was not aware and had
no reason to believe that his or her acts constituted an infringement of
copyright, the court in its discretion may reduce the award of statutory
damages to a sum of not less than $100.

The Copyright Act establishes conditions to protect various types of intellec-
tual property or work, by preventing, in general, the use of such works without
a license and by providing exceptions to the general provision.

8 Certain qualified attributes in external namespaces are imported into LegalRuleML.
9 https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/

schemas/xslt/triplifyMerger-ids.xsl.

https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/schemas/xslt/triplifyMerger-ids.xsl
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/schemas/xslt/triplifyMerger-ids.xsl

LegalRuleML: Design Principles and Foundations 179

For the purpose of this tutorial, the conditions can be paraphrased using the
following prescriptive rule:

R1: if a piece of work is covered by copyright, then it is forbidden to use it.

and its companion constitutive rule

C1: an infringer is defined as somebody who used a piece of work when
it was forbidden to use it.

The provisions in Section 504 can now be paraphrased as follows:

– R2: if the copyright owner claims statutory damages then the penalty for the
infringer is to pay statutory damages of between $250 and $10,000.

– R3: if the copyright owner sustains the burden of proof and the infringer
infringes copyright willfully then the penalty for the infringer is to pay statu-
tory damages of between $250 and $50,000.

– R4: if the infringer sustains the burden of proof and the infringer infringes
NOT willfully then the penalty for the infringer is to pay statutory damages
of between $100 and $10,000.

– Defeasability: R4 > R3 > R2.

Over time the penalties change as follow:

The prescriptive rule that represents the first case is the following:10

<lrml:PrescriptiveStatement key="ps2-tblock1">

<ruleml:Rule key=":rule2-tblock1" closure="universal">

<ruleml:if>

<ruleml:And>

<ruleml:Atom keyref=":rule0-ruleml-Atom1"/>

<ruleml:Atom key=":rule2-tblock1-ruleml-Atom1">

<ruleml:Rel iri="glevo:claimStatutoryDamages">

claims statutory damages

</ruleml:Rel>

<ruleml:Var type="lovo:copyrightOwner">X</ruleml:Var>

</ruleml:Atom>

</ruleml:And>

</ruleml:if>

<ruleml:then>

<lrml:Reparation keyref="#rep1-tblock1"/>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

10 The full LegalRuleML representation of section 504 is available from https://tools.
oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/
USC 17 504 context.lrml.

https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/USC_17_504_context.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/USC_17_504_context.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/tutorial/USC_17_504_context.lrml

180 T. Athan et al.

The <lrml:Reparation keyref="#rep1-tblock1"/> is a reference to the fol-
lowing fragment of code that connects penalty1 related to the time tblock1
with the prescriptive rule that is violated:

<lrml:Reparation key="rep1-tblock1">

<lrml:appliesPenalty keyref="#penalty1-tblock1"/>

<lrml:toPrescriptiveStatement keyref="#ps1"/>

</lrml:Reparation>

Finally the penalty is modelled as follows to represent the range of the sanction:

<lrml:PenaltyStatement key="penalty1-tblock1">

<lrml:Obligation key="penalty1-tblock1-obl1">

<ruleml:slot>

<lrml:Bearer iri="deovo:oblBearer"/>

<ruleml:Var>Y</ruleml:Var>

</ruleml:slot>

<ruleml:slot>

<lrml:AuxiliaryParty iri="deovo:auxParty"/>

<ruleml:Var>X</ruleml:Var>

</ruleml:slot>

<ruleml:Atom key=":penalty1-tblock1-obl1-axm1">

<ruleml:Rel iri="lovo:payStatutoryDamages"/>

<ruleml:slot>

<ruleml:Ind iri="lovo:payMin"/>

<ruleml:Ind>$250</ruleml:Ind>

</ruleml:slot>

<ruleml:slot>

<ruleml:Ind iri="lovo:payMax"/>

<ruleml:Ind>$10,000</ruleml:Ind>

</ruleml:slot>

</ruleml:Atom>

</lrml:Obligation>

</lrml:PenaltyStatement>

As a further illustration of the LegalRuleML modelling capabilities we propose
a real life case (taken from the Italian legal system and jurisprudence, origi-
nally discussed in [15]) depending on multiple (alternative) interpretation of a
norm, and we show possible formalisations of the case and the interpretations.
We are going to use the formal representations to illustrate the LegalRuleML
mechanisms to cope with the phenomenon of multiple interpretations. The case
is based on a dispute of Art. 1, Comma 2, Law 379/1990. The article recites.

The benefit referred to in comma 1 shall be paid in an amount equal
80 per cent of five-twelfths of the income earned and reported for tax
purposes by the freelancer in the second year preceding the year of appli-
cation.11

The case 18/96, Bologna Tribunal, Imola Section, concerns the interpretation of
the conjunction in the income earned and reported for tax purposes. . . .
11 L’indennità di cui al comma 1 viene corrisposta in misura pari all’80 per cento

di cinque dodicesimi del reddito percepito e denunciato ai fini fiscali dalla libera
professionista nel secondo anno precedente a quello della domanda.

LegalRuleML: Design Principles and Foundations 181

A fundamental and unalienable principle of legal language is its close connec-
tion with natural language; in particular, the interpretation of a textual provi-
sion should be the ordinary meaning conveyed by the text of the provision taking
into account its context in the act in which it appears and the purpose or object
underlying the act. For example, in the Italian legal systems this connection is
prescribed by Article 12 of the Preleggi, Italian Civil Code, stating.

In applying a statute, the interpreter should not attribute to it a meaning
different from that made evident by the proper meaning of the words and
by their connection, as well as by the intention of the law maker.12

Accordingly, the literal interpretation of the norm is given by the rule

earned(x, y − 2) ∧ reported(x, y − 2) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x), y) (1)

The arguments of the predicates earned and reported are the income x
earned/reported in the year in the second argument (y − 2). Similarly for
paybenefit where the function f encodes the computation of the value of the
benefit based on the value of the income x. However, according to the Italian
taxation legislation in force at the time of the dispute the income received in
one year is reported for tax purpose the year after the year it has been earned.
Thus, for example, the income earned in 1995 is reported in 1996. This principle
can be formulated as follows:

earned(x, y) → reported(x, y + 1) (2)
reported(x, y) → earned(x, y − 1) (3)

Consider now the Income constant obtained by applying the Russell’s definite
description operator (ι) on the conjunction in the left-hand side of (1).

Income = ιx(earned(x, y) ∧ reported(x, y)) (4)

The conclusion is that the constant Income is not denoting, i.e., the interpreta-
tion of Income is ∅, thus there is no income “entity” that is earned and reported
in one and the same year. Hence, the left hand side of the rule in (1) never holds,
and the rule never fires, against the intentions of the legislator.

Based on the textual provision two possible interpretations are possible: in
the first interpretation the temporal expression “in the second year preceding the
year of application” refers to the income earned in the second year preceding the
application, while in the second interpretation it refers to the income reported
for tax purposed in the second year preceding the application. For example, for
an application in year 1998, the first interpretation bases the computation on

12 Nell’applicare la legge non si può ad essa attribuire altro senso che quello fatto palese
dal significato proprio delle parole secondo la connessione di esse, e dalla intenzione
del legislatore.

182 T. Athan et al.

the income earned in 1996 (and reported in 1997), while for the second interpre-
tation, the value of the benefit is computed starting from the income reported
in 1996 (and earned in 1995). Accordingly, the first interpretation, the interpre-
tation proposed by the freelancer in the case, can be formalised by the rule

earned(x, y − 2) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x), y) (5)

Similarly the second interpretation, the interpretation proposed by the employer,
can be represented by the rule13

reported(x, y − 2) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x), y) (6)

The task of the Judge was to decide which of the two interpretations has to be
used for the application of the norm. In the case the Judge argued in favour of
the interpretation advanced by the freelancer.

We presented three possible interpretations of the norm, the literal interpre-
tation, the interpretation of the freelancer and the interpretation of the employer.
Here we are going to present the LegalRuleML fragments required to encode the
formalisations corresponding to the three interpretations. The formalisations of
these three statements can be represented as prescriptive rules which are encoded
by <lrml:PrescriptiveStatement> elements in LegalRuleML, each containing
one <ruleml:Rule> Template. The following fragment corresponds to the literal
interpretation, i.e., (1)

<lrml:PrescriptiveStatement key="literal">

<ruleml:Rule closure="universal" key=":literal-template">

<ruleml:if>

<ruleml:And>

<ruleml:Atom key=":atom-earned">

<ruleml:Rel iri="lovo:earned"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr>

<ruleml:Fun iri="glevo:subtract"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">2</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

<ruleml:Atom key=":atom-reported">

<ruleml:Rel iri="lovo:reported"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr>

<ruleml:Fun iri="glevo:subtract"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">2</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

</ruleml:And>

13 Alternatively, we could use earned(x, y − 3) ⇒
[
OBLauxiliary=freelancer

bearer=employer

]
paybenefit(f(x)),

while, from a formal point of view, it is semantically equivalent to (6) it is less close
in meaning to the textual provision than its counterpart: the temporal reference in
the argument would “third year preceding the year of the application”.

LegalRuleML: Design Principles and Foundations 183

</ruleml:if>

<ruleml:then>

<lrml:Obligation key="obl-paybenefit">

<ruleml:slot>

<lrml:Bearer/>

<ruleml:Var>Employer</ruleml:Var>

</ruleml:slot>

<ruleml:slot>

<lrml:AuxiliaryParty/>

<ruleml:Var>Freelancer</ruleml:Var>

</ruleml:slot>

<ruleml:Atom>

<ruleml:Rel iri="lovo:paybenefit"/>

<ruleml:Expr>

<ruleml:Fun iri="glevo:80_percent_of_five-twelfths_of"/>

<ruleml:Var>income</ruleml:Var>

</ruleml:Expr>

<ruleml:Var>year</ruleml:Var>

</ruleml:Atom>

</lrml:Obligation>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

Since LegalRuleML is built on top of RuleML we can reuse all RuleML facili-
ties, in particular we can use <ruleml:Expr> and <ruleml:Fun> to encode the
computation of the benefit to be paid to the freelancer.

The next snippet captures the interpretation of the freelancer, i.e., (5).

<lrml:PrescriptiveStatement key="freelancer">

<ruleml:Rule closure="universal" key=":freelancer-template">

<ruleml:if>

<ruleml:Atom keyref=":atom-earned"/>

</ruleml:if>

<ruleml:then>

<lrml:Obligation keyref="#obl-paybenefit"/>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

Notice that inside this statement we can use keyrefs to refer to the elements
already defined in the statement corresponding to the literal interpretation. Sim-
ilar considerations apply to the statement modelling (6), the employer’s inter-
pretation, below.

<lrml:PrescriptiveStatement key="employer">

<ruleml:Rule closure="universal" key=":employer-template">

<ruleml:if>

<ruleml:Atom keyref=":atom-reported"/>

</ruleml:if>

<ruleml:then>

<lrml:Obligation keyref="#keyobl-paybenefit"/>

</ruleml:then>

</ruleml:Rule>

</lrml:PrescriptiveStatement>

184 T. Athan et al.

The following LegalRuleML Constitutive Statement represents the principle
expressed in (2), that earned income will be reported in the following year.
Because a Constitutive Statement defines concepts and does not prescribe behav-
iours, the consequent of its <ruleml:Rule> Template does not contain deontic
operators.

<lrml:ConstitutiveStatement key="tax1">

<ruleml:Rule closure="universal">

<ruleml:if>

<ruleml:Atom>

<ruleml:Rel iri="lovo:earned"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Var>year</ruleml:Var>

</ruleml:Atom>

</ruleml:if>

<ruleml:then>

<ruleml:Atom>

<ruleml:Rel iri="lovo:reported"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr key=":year+1">

<ruleml:Fun iri="glevo:add"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">1</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>

Similarly, the following fragment represents the principle that reported income
was earned in the previous year, as expressed in (3).

<lrml:ConstitutiveStatement key="tax2">

<ruleml:Rule closure="universal">

<ruleml:if>

<ruleml:Atom>

<ruleml:Rel iri="lovo:reported"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Var>year</ruleml:Var>

</ruleml:Atom>

</ruleml:if>

<ruleml:then>

<ruleml:Atom>

<ruleml:Rel iri="lovo:earned"/>

<ruleml:Var>income</ruleml:Var>

<ruleml:Expr key=":year-1">

<ruleml:Fun iri="glevo:subtract"/>

<ruleml:Var>year</ruleml:Var>

<ruleml:Data xsi:type="xs:integer">1</ruleml:Data>

</ruleml:Expr>

</ruleml:Atom>

</ruleml:then>

</ruleml:Rule>

</lrml:ConstitutiveStatement>

After the renderings of the alternative interpretations and the relationships
between the predicates earned and reported given by the three constitutive

LegalRuleML: Design Principles and Foundations 185

rules, we have to specify that they are mutually exclusive formalisation of the
same norm. This can be achieved by the following Alternatives element that
represents a mutually-exclusive collection of renderings of the Legal Norms from
the Legal Source #ls1. The <lrml:LegalSource> with key #ls1, not shown in
the text, contains the references to the actual text of the norm.

<lrml:Alternatives key="maternity-alts">

<lrml:Comment> These alternatives are mutually

incompatible formalizations of the same legal source: keyref="#ls1".

</lrml:Comment>

<lrml:hasAlternative keyref="#literal" />

<lrml:hasAlternative keyref="#freelancer" />

<lrml:hasAlternative keyref="#employer" />

</lrml:Alternatives>

A <lrml:Context> element is used to render a collection of Associations, e.g.
the Association of a Legal Source with a rendering of it as a LegalRuleML
Statement, or to constrain other Contexts with respect to Alternatives. The
following Context establishes a constraint that at most one of the Alternatives
from the collection #maternity-alts may be selected by each Context:

<lrml:Context key="maternity-alts-ctxt">

<lrml:appliesAssociations keyref="#asn-alts"/>

<lrml:appliesAlternatives keyref="#maternity-alts"/>

</lrml:Context>

The Context metadata, e.g. authorship, source, authority, temporal and juris-
dictional properties, are specified in an external (to the Context) Association
element with identifier asn-alts, not shown in the paper, which is referenced
using keyref. Similarly other Context elements (also not shown in the paper)
are given with the metadata about the authors of the various Statements. This
permits to establish the provenance of the interpretations.

In the following fragment, a particular Alternative – that proposed by
the freelancer – is selected, leading to the generation of the corresponding
<ruleml:Rule> from the rule Template :freelancer-template.

<lrml:Context key="adjudication">

<lrml:appliesAssociation keyref="#asn-adjudication"/>

<lrml:inScope keyref="#freelancer"/>

</lrml:Context>

Unlike the first Context element, this one contains an <lrml:inScope> element.
Such Contexts render interpretations that select one or more Statements as their
scope of interpretation. When a Context is processed for presentation or infer-
ence, Legal Rules14 are generated from the <ruleml:Rule> Templates of in-scope
Statements, annotated and optionally modified semantically by the Associations
of the Context.
14 In this paper, we focus on Prescriptive and Constitutive Statements, which

always lead to generated Legal Rules. However, in the general case, e.g.
<lrml:FactualStatement>, something other than a Legal Rule may be generated
when a Statement is in scope.

186 T. Athan et al.

In this example the external Association asn-adjudication links the meta-
data for the adjudication of the case with a particular rendering of the norm,
the rendering freelancer, corresponding to the interpretation proposed by the
freelancer and confirmed by the judge15.

9 Conclusion

The tutorial introduces LegalRuleML, a markup up language with a rich set
of features and vocabulary. The language is guided by design principles and
illustrated with some examples. LegalRuleML is intended to model legal rules
and to facilitate reasoning with them by fulfilling the most important require-
ments in the legal domain such as the use of deontic operators, defeasible logic,
and temporal parameters along with the qualification of the norms (e.g., con-
stitutive, prescriptive, reparation, penalty) and the connection between legal
sources and metadata of the rules. In addition to an XML syntax, LegalRuleML
provides a methodology for analysing legal texts and for formally representing
norms. LegalRuleML permits the representation of alternative interpretations of
the same part of legal text, adhering to legal practice. The <lrml:Association>
structure helps to compose different properties and to connect such compositions
with rules or fragment of rules (e.g., Atom). The metamodel of LegalRuleML
is the main pillar of the vocabulary design, helping to guide consistent mod-
elling over time and allowing the language to evolve and be extended. However,
sometimes LegalRuleML is too verbose, flexible, or detailed, making it diffi-
cult to properly manually manage the markup. The flexibility the XML-schema
is especially difficult, for it does not impose some conceptual constraints that
are important for the analysis. For these reasons, some tools are now emerg-
ing to help legal knowledge engineers, who many not be familiar with XML or
RDF principles, to correctly apply LegalRuleML. Other tools can be applied to
LegalRuleML representations and reason with them. RAWE is a web editor that
supports a legal knowledge engineer to model norms starting from the original
legal text [28]. SPINdle is a legal reasoner that implements defeasible reasoning
and the temporal reasoning [25]. PROVA is an open-source rule language that
can be used by LegalRuleML to manage the temporal parameters and to inte-
grate with Reaction RuleML (https://prova.ws/). There are also tools provided
in the LegalRuleML OASIS repository to serialize RDF files in favour of the
Semantic Web linked open data model. Considering these tools, the application
of LegalRuleML is promising; it is well supported by a robust design, a firm
basis in legal theory, a sound XML syntax, and illustrations of how the language
is applied.

15 The full example is available from https://tools.oasis-open.org/version-control/bro-
wse/wsvn/legalruleml/trunk/examples/approved/maternity alternatives compact.
lrml.

https://prova.ws/
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/approved/maternity_alternatives_compact.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/approved/maternity_alternatives_compact.lrml
https://tools.oasis-open.org/version-control/browse/wsvn/legalruleml/trunk/examples/approved/maternity_alternatives_compact.lrml

LegalRuleML: Design Principles and Foundations 187

References

1. Adida, B., Birbeck, M., McCarron, S., Herman, I.: RDFa core 1.1 - third edition.
http://www.w3.org/TR/rdfa-core/#s curies

2. Alchourrón, C.E., Bulygin, E.: Permission and permissive norms. In: Krawietz, W.,
et al. (eds.) Theorie der Normen, pp. 349–371. Duncker & Humblot, Berlin (1984)

3. Antoniou, G.: Defeasible logic with dynamic priorities. Int. J. Intell. Syst. 19(5),
463–472 (2004)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)

5. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.:
OASIS LegalRuleML. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Law, pp. 3–12, New York (2013)

6. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: Legal
interpretations in LegalRuleML. In: Villata, S., Peroni, S., Palmirani, M. (eds.)
Proceedings of the Semantic Web for the Law and Second Jurix Doctoral Con-
sortium Workshops (SW4LAW+JURIX-DC 2014). CEUR Workshop Proceedings,
vol. 1296, CEUR-WS.org (2014)

7. Bench-Capon, T., Coenen, F.P.: Isomorphism and legal knowledge based systems.
Artif. Intell. Law 1(1), 65–86 (1992)

8. Brickley, D., Guha, R.V.: RDF schema 1.1. http://www.w3.org/TR/rdf-schema/
9. Dattolo, A., Di Iorio, A., Duca, S., Feliziani, A.A., Vitali, F.: Structural patterns

for descriptive documents. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE
2007. LNCS, vol. 4607, pp. 421–426. Springer, Heidelberg (2007)

10. de Saussure, F.: Cours de Linguistique Générale. Payot, Lausanne (1916)
11. Dworkin, R.: The model of rules I. In Taking Rights Seriously. Harvard University

Presss, Cambridge, MA (1977)
12. Gordon, T., Prakken, H., Walton, D.: The Carneades model of argument and

burden of proof. Artif. Intell. 171, 875–896 (2007)
13. Gordon, T.F.: The Pleadings Game-An Artificial Intelligence Model of Procedural

Justice. Springer, New York (1995)
14. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule

interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

15. Governatori, G.: Un modello formale per il ragionamento giuridico. Ph.D. thesis,
CIRFID, Università di Bologna (1997)

16. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(2–3), 181–216 (2005)

17. Governatori, G.: On the relationship between Carneades and defeasible logic. In:
van Engers, T. (ed.) Proceedings of the 13th International Conference on Artificial
Intelligence and Law (ICAIL 2011), pp. 31–40. ACM Press (2011)

18. Governatori, G.: Business process compliance: An abstract normative framework.
IT Inf. Technol. 55(6), 231–238 (2013)

19. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Philos. Logic 42(6), 799–829 (2013)

20. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australas. J. Logic 4, 193–215 (2006)

21. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annul-
ments in defeasible logic. Logic J. IGPL 18(1), 157–194 (2010)

http://www.w3.org/TR/rdfa-core/#s_curies
http://www.w3.org/TR/rdf-schema/

188 T. Athan et al.

22. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defea-
sible logic. In: Proceedings of the 10th International Conference on Artificial Intel-
ligence and Law (ICAIL 2005), pp. 25–34. ACM (2005)

23. Hart, H.: The Concept of Law, 2nd edn. Clarendon Press, Oxford (1994)
24. Herrestad, H., Krogh, C.: Obligations directed from bearers to counterparts. In:

Proceedings of the Fifth International Conference on Artificial Intelligence and
Law (ICAIL 1995), pp. 210–218 (1995)

25. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer,
Heidelberg (2009)

26. Lappin, S. (ed.): The Handbook of Contemporary Semantic Theory. Blackwell
Publishers, Cambridge (1997)

27. Nute, D.: Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 3, chapter Defeasible Logic, pp. 353–395. Oxford University Press, Oxford,
1994

28. Palmirani, M., Cervone, L., Bujor, O., Chiappetta, M.: RAWE: an editor for rule
markup of legal texts. In: Fodor, P., Roman, D., Anicic, D., Wyner, D., Palmirani,
M., Sottara, D., Lévy, F. (eds.) Joint Proceedings of the 7th International Rule
Challenge, the Special Track on Human Language Technology and the 3rd RuleML
Doctoral Consortium. CEUR Workshop Proceedings, Seattle, USA, 11–13 July
2013, vol. 1004, CEUR-WS.org (2013)

29. Palmirani, M., Governatori, G., Contissa, G.: Temporal dimensions in rules mod-
elling. In: Winkels, R. (ed.) JURIX. Frontiers in Artificial Intelligence and Appli-
cations, vol. 223, pp. 159–162. IOS Press, Amsterdam (2010)

30. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
LegalRuleML: XML-based rules and norms. In: Palmirani, M. (ed.) RuleML -
America 2011. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011)

31. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting argument in
legal reasoning. Artif. Intell. Law 4(3–4), 331–368 (1996)

32. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. J. Appl. Non Class. Logics 7(1), 25–75 (1997)

33. Raz, J.: Between authority and interpretation: on the theory of law and practical
reason. Oxford University Press, Oxford (2009)

34. Sartor, G.: Legal reasoning: A cognitive approach to the law. In: Pattaro, E.,
Rottleuthner, H., Shiner, R.A., Peczenik, A., Sartor, G. (eds.) A Treatise of Legal
Philosophy and General Jurisprudence, vol. 5. Springer, Berlin (2005)

35. Scalia, A., Garner, B.A.: Reading Law: The Interpretation of Legal Texts. West,
Minneapolis (2012)

36. Searle, J.R.: The Construction of Social Reality. The Free Press, New York (1996)
37. Nicos Stavropoulos. Legal interpretivism. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Summer 2014 edition (2014)
38. Georg Henrik von Wright: Norm and action: A logical inquiry. Routledge and

Kegan Paul, London (1963)

The Power of Semantic Rules in Rulelog:
Fundamentals and Recent Progress

(Extended Abstract of Tutorial Presentation)

Benjamin N. Grosof(B), Michael Kifer, and Paul Fodor

Coherent Knowledge Systems, LLC., Mercer Island, USA
benjamin.grosof@coherentknowledge.com

1 Introduction

In this tutorial, we provide a comprehensive and up-to-date introduction to
the fundamental concepts and recent progress in the area of Rulelog, a leading
approach to semantic rules knowledge representation and reasoning. Rulelog
is expressively powerful, computationally affordable, and has capable efficient
implementations. A large subset of Rulelog is in draft as an industry standard1

to be submitted to RuleML2 and W3C3 as a dialect of Rule Interchange Format
(RIF) [2,3].

2 Rulelog Logical Language and Capabilities

Rulelog extends well-founded declarative logic programs (LP) with:

– Strong meta-reasoning, including higher-order syntax (Hilog) [4], reification
[20], and rule ids (within the logical language).

– Explanations of inferences [1].
– Efficient higher-order defaults, including “argumentation theories” [17,18].
– Flexible probabilistic reasoning, including distribution semantics [14], eviden-

tial probability [13], and tight integration with inductive machine learning are
key areas of recent technology progress and ongoing R&D.

– Bounded rationality, including restraint—a “control knob” to ensure that the
computational complexity of inference is worst-case polynomial time [1,7].

– “Omni-directional” disjunction and existential quantifiers in the rule heads [9].
– Object-orientation and frame syntax [12], which subsumes RDF triples.
– Sound tight integration of first-order-logic ontologies including OWL and

several other lesser features, including aggregation operators and integrity
constraints.

We will cover many of these features in the tutorial.
1 http://ruleml.org/rif/rulelog/rif/RIF-Rulelog.html.
2 http://www.ruleml.org.
3 http://www.w3.org.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 189–192, 2015.
DOI: 10.1007/978-3-319-21768-0 7

http://ruleml.org/rif/rulelog/rif/RIF-Rulelog.html
http://www.ruleml.org
http://www.w3.org

190 B.N. Grosof et al.

3 Rulelog Implementation Techniques

Implementation techniques for Rulelog inferencing include transformational
compilations and extensions of tabling algorithms from logic programming.
“Tabling” here means smart caching of subgoals and conclusions together with
incremental revision of the cached conclusions when facts or rules are dynami-
cally added or deleted [15,16]. “Tabling” is thus a mixture of backward-direction
and forward-direction inferencing. There are both open-source and commercial
tools for Rulelog that vary in their range of expressive completeness and of
user convenience. They are interoperable with databases and spreadsheets, and
complement inductive machine learning and natural language processing tech-
niques. The most complete system today for Rulelog is Ergo4, a commercial
platform suite from Coherent Knowledge Systems5. Flora-26, an open source
system, implements a significant subset of Rulelog reasoning [11,19,21].

4 Textual Rulelog

Time permitting, we will discuss “Textual” Rulelog, in which Rulelog is rendered
in a natural language, such as English. ErgoText is a commercial realization of
this approach. Using Rulelog to interpret and generate English is a key area of
ongoing research and development [9].

5 Applications

Using Ergo, we will illustrate the various applications of the Rulelog technol-
ogy in a wide range of tasks and domains in business, government, and science.
We will tour areas of recent applications progress, which include: legal/policy
compliance, e.g., in financial services; education/tutoring; and e-commerce mar-
keting [5,6,8,10].

6 Additional Tutorial Material

Previous, longer but now less up-to-date, tutorials on Rulelog were given at our
earlier tutorial at AAAI-13 [7].

References

1. Andersen, C., Benyo, B., Calejo, M., Dean, M., Fodor, P., Grosof, B.N., Kifer,
M., Liang, S., Swift, T.: Advanced knowledge base debugging for rulelog. In: Joint
Proceedings of the 7th International Rule Challenge, the Special Track on Human
Language Technology and the 3rd RuleML Doctoral Consortium, Seattle, USA,
July 11–13, 2013 (2013). http://ceur-ws.org/Vol-1004/paper8.pdf

4 http://coherentknowledge.com/ergo-suite-platform-technology/.
5 http://coherentknowledge.com.
6 http://flora.sourceforge.net.

http://ceur-ws.org/Vol-1004/paper8.pdf
http://coherentknowledge.com/ergo-suite-platform-technology/
http://coherentknowledge.com
http://flora.sourceforge.net

The Power of Semantic Rules in Rulelog: Fundamentals and Recent Progress 191

2. Boley, H., Kifer, M.: RIF Basic logic dialect, February 2013. http://www.w3.org/
TR/rif-bld/, W3C Recommendation. http://www.w3.org/TR/rif-bld/

3. Boley, H., Kifer, M.: RIF Framework for logic dialects, February 2013. http://www.
w3.org/TR/rif-fld/, W3C Recommendation. http://www.w3.org/TR/rif-fld/

4. Chen, W., Kifer, M., Warren, D.: HiLog: a foundation for higher-order logic pro-
gramming. J. Logic Program. 15(3), 187–230 (1993)

5. Fibo technology summit at semtechbiz: Financial industry and sem tech leaders
discuss ontology evaluation tools, flora-2’s potential, and more, July 2013.
http://www.dataversity.net/fibo-technology-summit-at-semtechbiz-financial-indu-
stry-and-sem-tech-leaders-discuss-ontology-evaluation-tools-flora-2s-potential-and-
more/

6. Grosof, B., Dean, M., Kifer, M.: Semantic web rules: Fundamentals, applica-
tions, and standards, tutorial presented at AAAI-2013, July 2013. http://silk.
semwebcentral.org/

7. Grosof, B., Swift, T.: Radial restraint: a semantically clean approach to bounded
rationality for logic programs. In: AAAI Conference on Artificial Intelligence. AAAI
(2013)

8. Grosof, B.N., Burstein, M.H., Dean, M., Andersen, C., Benyo, B., Ferguson, W.,
Inclezan, D., Shapiro, R.: A SILK graphical UI for defeasible reasoning, with a
biology causal process example. In: Palmirani, M., Shafiq, M.O., Francesconi, E.,
Vitali, F. (eds.) Proceedings of the RuleML-2010 Challenge, at the 4th Inter-
national Web Rule Symposium, Washington, DC, USA, October, 21–23, 2010.
CEUR Workshop Proceedings, vol. 649. CEUR-WS.org (2010). http://ceur-ws.
org/Vol-649/paper12.pdf

9. Grosof, B.N.: Rapid text-based authoring of defeasible higher-order logic formulas,
via textual logic and rulelog. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner,
A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 2–11. Springer, Heidel-
berg (2013). http://dx.doi.org/10.1007/978-3-642-39617-5 2

10. Grosof, B.: Making very expressive rules practical in logic and text, November
2013. invited talk. http://coherentknowledge.com/wp-content/uploads/2013/05/
DecisionCamp2013-talk-v7-1-BNG.pdf

11. Kifer, M.: Flora-2: an object-oriented knowledge base language. The Flora-2 Web
Site (2015). http://flora.sourceforge.net

12. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42, 741–843 (1995)

13. Kyburg, H., Teng, C.: Uncertain Inference. Cambridge University Press, Cambridge
(2001)

14. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic
logic programming under the distribution semantics. Theor. Pract. Logic Program.
13(2), 279–302 (2013)

15. Swift, T., Warren, D.S.: XSB: extending the power of prolog using tabling. Theor.
Pract. Logic Program. (TPLP) 12(1–2), 157–187 (2012)

16. Swift, T.: Incremental tabling in support of knowledge representation
and reasoning. TPLP 14(4–5), 553–567 (2014). http://dx.doi.org/10.1017/
S1471068414000209

17. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with
defaults and argumentation theories. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 432–448. Springer, Heidelberg (2009)

18. Wan, H., Kifer, M., Grosof, B.: Defeasibility in answer set programs with defaults
and argumentation rules. Semant. Web J. 5, 81–98 (2014)

http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/rif-fld/
http://www.w3.org/TR/rif-fld/
http://www.w3.org/TR/rif-fld/
http://www.dataversity.net/fibo-technology-summit-at-semtechbiz-financial-industry-and-sem-tech-leaders-discuss-ontology-evaluation-tools-flora-2s-potential-and-more/
http://www.dataversity.net/fibo-technology-summit-at-semtechbiz-financial-industry-and-sem-tech-leaders-discuss-ontology-evaluation-tools-flora-2s-potential-and-more/
http://www.dataversity.net/fibo-technology-summit-at-semtechbiz-financial-industry-and-sem-tech-leaders-discuss-ontology-evaluation-tools-flora-2s-potential-and-more/
http://silk.semwebcentral.org/
http://silk.semwebcentral.org/
http://ceur-ws.org/Vol-649/paper12.pdf
http://ceur-ws.org/Vol-649/paper12.pdf
http://dx.doi.org/10.1007/978-3-642-39617-5_2
http://coherentknowledge.com/wp-content/uploads/2013/05/DecisionCamp2013-talk-v7-1-BNG.pdf
http://coherentknowledge.com/wp-content/uploads/2013/05/DecisionCamp2013-talk-v7-1-BNG.pdf
http://flora.sourceforge.net
http://dx.doi.org/10.1017/S1471068414000209
http://dx.doi.org/10.1017/S1471068414000209

192 B.N. Grosof et al.

19. Yang, G., Kifer, M.: FLORA: implementing an efficient DOOD system using a
tabling logic engine. In: Palamidessi, C., et al. (eds.) CL 2000. LNCS (LNAI), vol.
1861, p. 1078. Springer, Heidelberg (2000)

20. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements
on the semantic web. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on
Data Semantics I. LNCS, vol. 2800, pp. 69–97. Springer, Heidelberg (2003)

21. Yang, G., Kifer, M., Zhao, C.: Flora-2: a rule-based knowedge representation
and inference infrastructure for the semantic web. In: Meersman, R., Schmidt,
D.C. (eds.) CoopIS/DOA/ODBASE 2003. LNCS, vol. 2888, pp. 671–688. Springer,
Heidelberg (2003)

Recent Advances in Datalog±

Georg Gottlob1, Michael Morak2(B), and Andreas Pieris2

1 Department of Computer Science, University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
{morak,pieris}@dbai.tuwien.ac.at

Abstract. This tutorial, which is a continuation of the tutorial “Dat-
alog and Its Extensions for Semantic Web Databases” presented in the
Reasoning Web 2012 Summer School, discusses recent advances in the
Datalog± family of languages for knowledge representation and reason-
ing. These languages extend plain Datalog with key modeling features
such as existential quantification (signified by the “+” symbol), and at
the same time apply syntactic restrictions to achieve decidability of onto-
logical reasoning and, in some relevant cases, also tractability (signi-
fied by the symbol “−”). In this tutorial, we first introduce the main
Datalog± languages that are based on the well-known notion of guard-
edness. Then, we discuss how these languages can be extended with
important features such as disjunction and default negation.

1 Introduction

Data and knowledge based systems have been playing a dominant role in com-
puter science since the 70 s when organizations massively adopted them to sup-
port their business operations and decision making activities. Yet, in the last
decade, such systems became even more popular as data and knowledge turn
out to be an intrinsic part of every individual and collective activity in our
society. In this setting, a major problem is to represent information in such a
way that software programs can access it and act as if they really understand
its semantics. On the one hand, initiatives such as the semantic web defined
languages like RDF(S) and OWL to support the creation of semantically anno-
tated data, enabling ontological querying and reasoning. On the other hand, the
Linked Open Data (LOD) community produced very large amounts of semanti-
cally enriched data that enabled a multitude of data-driven semantic web appli-
cations. The need for efficient processing of semantic data stimulated several
research initiatives addressing data management problems such as representa-
tion, storage and querying.

The present tutorial, which is actually a continuation of the tutorial “Datalog
and Its Extensions for Semantic Web Databases” presented in the Reasoning
Web 2012 Summer School [29], is intended for people familiar with the basics
of database and semantic web technologies who want to explore the connection
between modeling languages used in these fields, and their practical adoption
for knowledge representation and data management purposes in more depth.
c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 193–217, 2015.
DOI: 10.1007/978-3-319-21768-0 8

194 G. Gottlob et al.

1.1 A Bit of History

The data management problems we are facing today are not completely new.
As an example, in the late 70 s, Datalog [1,19] emerged as a prominent language
from logic programming [32]. The term Datalog was coined by David Maier and
reflects the intention of devising a counterpart of Prolog—the most prominent
rule-based formalism in computer science—for data processing. While Prolog
is undecidable in general, if we consider the program as fixed, Datalog enjoys
tractable reasoning complexity w.r.t. the size of the input database. Datalog’s
original aim was to be used as an expressive language for querying relational
data; in fact, it adds recursion to the relational algebra, and therefore goes
beyond the expressive power of classical select-project-join queries. Recursion is
still important today for reasoning over complex paths in graph-like data which
is abundant, for example, in the context of social networks and the semantic web.

Applications of Datalog include reasoning about semi-structured data, data
integration, routing, security policy management, enterprise decision automation
and many others. As a consequence, Datalog has evolved into a first-class for-
malism with efficient implementations such as DLV [23] and Clingo [25]. On the
other hand, since Datalog rules are a representation of clauses in the function-
free Horn fragment of first-order logic (FOL), Datalog revealed itself relevant
also for semantic web applications such as ontological modeling and reasoning.

Example 1. Consider, as an example, the following Datalog rules expressing the
knowledge that every female and every male is a person.

person(X) ← female(X) person(X) ← male(X).

Intuitively, to construct the set of all persons, we need to take into account the
union of all females and males. In other words, some objects can be inferred to be
persons, even without stating this fact explicitly. Datalog also provides a natural
solution to some fundamental reasoning problems, such as the computation of
the transitive closure of a binary relation, and is thus adequate for reasoning
about graph reachability or connectedness. The rules

ancestor(X,Y) ← parent(X,Y)
ancestor(X,Z) ← parent(X,Y), ancestor(Y,Z)

express the ancestor relation between persons. Notice that in the last rule the
predicate ancestor occurs in both sides of ←, which is an example of a recursive
definition that is not possible in relational algebra. ��

From the other side, ontology languages for the semantic web were also
designed to be able to express ontological information as the one above. In
this setting, ontologies written in ontology languages are intended to describe
and structure complex web resources, making them readily available for manip-
ulation by automated agents. The different ontology languages of the semantic
web are based on the family of description logics (DLs) [6] which, in turn, are
decidable fragments of FOL equipped with a convenient syntax.

Recent Advances in Datalog 195

DLs model a domain of interest in terms of concepts and roles, where concepts
are interpreted as sets of individuals (i.e., constants), and roles as binary relations
over them. A DL knowledge base K = (T ,A) consists of a TBox T and an
ABox A. The TBox T consists of axioms, where the most common axioms are
statements of inclusion (α �β) between pairs of concepts or roles. The ABox
A is a set of facts about the participation of individuals in concepts and roles.
In database terms, an ABox can be seen as a (possibly incomplete) relational
database with unary and binary relations only, while a TBox is a set of expressive
integrity constraints over the data.

As an example, consider the DL called SHIF , which has most of the features
of the OWL languages. SHIF concepts are built by applying concept construc-
tors on roles and other concepts. We use letters A,B,C for concept names and
R,S for role names. A SHIF ABox A consists of ground atomic formulae of
the form R(a, b) and A(a), where R is a role and A is a concept. A SHIF TBox
T consists of axioms of one of the following forms:
(1) A� B �C is a concept inclusion. The complex concept A� B stands for

intersection of A and B, and the whole axiom states that each object that
is both A and B is also C. This axiom translates into the FOL formula
∀X pA(X)∧pB(X) → pC(X), where the predicates pA, pB , and pC represent
the FOL predicates corresponding to the concept (resp., role) names. As an
example, the axiom Parent�Male�Father can express the knowledge that
male parents are fathers.

(2) A� B �C is another form of concept inclusion, stating that each object
that is A must also be B or C. The axiom can be written as the
FOL formula ∀X pA(X) → pB(X) ∨ pC(X). As an example, the axiom
Person�Female�Male states that every person must be female or male.

(3) A� ∀R.B is an inclusion employing on the right hand side a complex concept
∀R.B, denoting the set of all the objects such that all R “neighbors” are B,
and is captured by ∀X∀Y pR(X,Y) → pB(Y). The whole axiom translates
into the first-order logic formula ∀X∀Y pA(X) ∧ pR(X,Y) → pB(Y). An
example of this axiom could be MetalDevice� ∀hasPart.Metal stating that
all parts of a metal device are made of metal.

(4) A� ∃R.B is an inclusion employing yet another kind of complex concept
∃R.B on the right. ∃R.B denotes the set of objects that have an R “neighbor”
that is B, and is captured by ∀X∃Y pR(X,Y) ∧ pB(Y). The full axiom
translates into the formula ∀X pA(X) → ∃Y pR(X,Y)∧pB(Y). For example,
we can use Student� ∃attends.Course to express the requirement that each
student must attend at least one course.

(5) A� � 1R.B restricts the number of R “neighbors” of type B that A can
have, and can make parts of R functional (functionality constraints are com-
mon integrity constraints in databases). The axiom says that each object
that is A can be related via the role R to at most one object that is B.
This axiom translates into the formula ∀X∀Y1∀Y2 pA(X) ∧ pR(X,Y1) ∧
pB(Y1) ∧ pR(X,Y2) ∧ pB(Y2) → Y1 = Y2. An example of this axiom could
be Person� � 1 hasIdSocialSecNum, stating that a person can have at most
one social security number.

196 G. Gottlob et al.

(6) An axiom A disj B states disjointness between concepts A and B, e.g.,
Student disj Professor states that students and professors are disjoint sets.
The axiom translates into the formula ∀X pA(X) ∧ pB(X) → ⊥.

(7) R � S expresses the inclusion of R in S, e.g., brotherOf � relativeOf captures
the knowledge that brothers are relatives. This axiom translates into the
formula ∀X∀Y pR(X,Y) → pS(X,Y) of first-order logic.

(8) An axiom R inv S allows to define inverse roles, and is translated into first-
order logic as ∀X∀Y pR(X,Y) ↔ pS(Y,X). For example, a is child of b iff b
is a parent of a. This can be expressed as parentOf inv childOf.

(9) Finally, the axiom trans(R) expresses transitivity of the role R, and is trans-
lated into the formula ∀X∀Y ∀Z pR(X,Y) ∧ pR(Y,Z) → pR(X,Z).

Example 2. Consider the Datalog rules of Example 1. The same can be (rather
succinctly) expressed in DL syntax as

Female�Person (1)
Male�Person (2)
parentOf � ancestorOf (3)
trans (ancestorOf) (4)

where (1,2) are concept inclusions, (3) is a role inclusion, and (4) states that the
role ancestor is transitive. ��

Datalog and DLs have several commonalities but also significant differences
which need to be reconciled in order to make them interoperable in semantic web
applications as also noticed in [35]. Differences include disjunction and existential
quantification in DL ontologies, as well as the different assumptions underlying
the semantics of the languages (e.g., open vs closed-world assumption). Table 1
shows a partial translation of SHIF into Datalog. As it can be seen, some
expressions have no Datalog counterpart.

(1) An axiom A� B � C expresses disjunctive information and thus cannot be
directly expressed in plain Datalog. One possibility is to employ, bearing
the computational cost, disjunctive Datalog, which does support rules of the
form pB(X) ∨ pC(X) ← pA(X) [22].

(2) Notice that the translation of a functional constraint A� � 1R.B into
first-order logic involves the equality predicate. Due to the slight semantic
differences between DLs and Datalog, equality is treated differently in the
two settings. For instance, in contrast to Datalog, DLs do not employ the
so-called unique name assumption (UNA). Different constants are treated as
different domain objects by the Datalog semantics, yet a pair of constants
may denote the same object in the standard semantics of first-order logic
(and therefore DLs).

(3) A disjointness constraint A disj B can cause inconsistency of an ontol-
ogy. E.g., the ontology K = 〈A, T 〉, where A = {Blue(ball),Red(ball)} and
T = {Red disj Blue}, is inconsistent, i.e., the first-order theory underlying

Recent Advances in Datalog 197

Table 1. From the DL SHIF to Datalog

A B C

A B C

A R.B

A R.B

A 1R.B

R S

A disj B

R inv S

trans(R)

R(a, b)

A(b)

pC(X) ← pA(X), pB(X)

N/A

pB(Y) ← pA(X), pR(X,Y)

N/A

N/A

pS(X,Y) ← pR(X,Y)

N/A

pS(X,Y) ↔ pR(Y,X)

pR(X,Z) ← pR(X,Y), pR(Y,Z)

pR(a, b) ←
pA(b) ←

K is unsatisfiable. Unfortunately, plain Datalog does not have inconsistent
programs and thus a satisfiability-preserving translation for disjointness con-
straints is not possible, in general.

(4) The axiom A� ∃R.B, whose translation into first-order logic involves exis-
tential quantification, exposes a crucial difference between Datalog and DLs.
Datalog was designed and intended for reasoning over finite databases, under
the assumption that only the objects explicitly mentioned in the database
exist. In contrast, DL-based ontologies support existential quantification,
and are thus able to refer to objects that are not explicitly named in the
ontology.

1.2 Research Challenges

We note that existential quantification and disjunction play an important role
in knowledge representation. They are in fact necessary to represent important
constructs of common ontology languages. Adding existential quantification to
Datalog is the most interesting and relevant extension. Unfortunately, a naive
extension of Datalog with existential quantified variables in the head is unde-
cidable [10], and thus our task is non-trivial. We will try to identify meaningful
fragments of Datalog with existential variables in the head that (i) have suffi-
cient expressiveness for the above applications, but still retain the decidability
of reasoning, and (ii) can be enriched with disjunction without sacrificing decid-
ability. Notice that the obtained formalisms are actually members of Datalog±,
that is, a recently introduced family of knowledge representation languages [13].

Due to the existential quantification, correct and terminating reasoning algo-
rithms require to develop methods for reasoning about infinite structures without
explicitly building them. In the area of DLs and modal logic, decidability, algo-
rithms and complexity results have been shown for various logics that do not
exhibit finite models. Most of these fragments allow for only a limited number

198 G. Gottlob et al.

of variables (often two), and impose some form of guardedness, which can be
roughly understood as a syntactically restricted form of quantification that only
allows to talk about relations between objects that are close to each other in a
structure, and results in regular models that are conveniently similar to trees.
While guardedness is of course a limitation, it is often claimed to be a robust
reason for decidability [30]. Furthermore, there is wide evidence suggesting that
guardedness is not overly restrictive for many knowledge representation prob-
lems, and it is implicitly or explicitly present in many of the popular languages.
Inspired by the above considerations, we will present guarded extensions of Dat-
alog as a solution to our problems.

Remark. The problem of adding existentially quantified variables in Datalog
was the main subject of the tutorial “Datalog and Its Extensions for Semantic
Web Databases” presented in the Reasoning Web 2012 Summer School [29]. The
main subject of the present tutorial is to understand how the guarded-based
languages discussed in [29] can be enriched with disjunction, which, as discussed
above, is a crucial feature for knowledge representation purposes.

1.3 Roadmap

In Sect. 2, we provide some preliminary notions about relational databases and
queries. Syntax and semantics of Datalog is presented in Sect. 3, while syntax
and semantics of Datalog∃,∨, that is, the extension of Datalog with existential
quantification and disjunction, is presented in Sect. 4. In Sect. 5, we focus on
guarded Datalog∃,∨, and we give an overview of the complexity results on query
answering. A similar complexity overview is given for a key subclass of guarded
Datalog∃,∨, called linear Datalog∃,∨, in Sect. 6. Finally, Sect. 7 collects several
useful pointers to further reading material, and in particular to works that inves-
tigate the extension of Datalog∃ with default negation, a useful modeling feature
that goes beyond DLs and Datalog∃,∨.

2 Preliminaries

In this section, we briefly recall some basics on relational databases, homomor-
phisms and (Boolean) conjunctive queries.

2.1 Relational Databases

Let C, N and V be pairwise disjoint infinite countably sets. The elements of C
are called constants (constitute the normal domain of a database), the elements
of N are called (labeled) nulls (used as placeholders for unknown values, and thus
can be also seen as (globally) existentially quantified variables), and the elements
of V are called (regular) variables (used in queries and dependencies). A fixed
lexicographic order is assumed on C ∪ N, such that every value in N follows
all those in C. We denote by X sequences (or sets) of variables X1, . . . , Xk.
Throughout, let [n] = {1, . . . , n}, for every integer n � 1.

Recent Advances in Datalog 199

A relational schema R (or simply schema) is a set of relational symbols (or
predicates), each with its associated arity. A position p[i], in a schema R, is
identified by a predicate p ∈ R and its i-th argument. A term t is a constant
(t ∈ C), labeled null (t ∈ N), or variable (t ∈ V). An atomic formula (or simply
atom) has the form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. For an atom a, we denote as dom(a) and var(a) the set of its terms
and the set of its variables, respectively. These notations naturally extend to
sets of atoms. For convenience, usually conjunctions and disjunctions of atoms
are treated as sets of atoms. A relational instance (or simply instance) I for a
schema R is a (possibly infinite) set of atoms of the form p(t), where p is an
n-ary predicate of R, and t is an n-tuple of constants and nulls. A database D is
a finite instance where only constants occur. Whenever an instance I is treated
as a logical formula, in fact it is the formula ∃X (

∧
a∈I I), where X contains a

variable Xz for each null z in I.

2.2 Homomorphisms

A substitution from a set of symbols S to a set of symbols S′ is a function
h : S → S′ defined as follows: ∅ is a substitution (empty substitution), and if h
is a substitution, then h∪{s → s′} is a substitution, where s ∈ S and s′ ∈ S′. If
s → s′ ∈ h, then we write h(s) = s′. The restriction of h to T ⊆ S, denoted h|T ,
is the substitution h′ = {t → h(t) | t ∈ T}. A homomorphism from a set of atoms
A to a set of atoms A′ is a substitution h : C ∪ N ∪ V → C ∪ N ∪ V such that:
(i) if t ∈ C, then h(t) = t; and (ii) if p(t1, . . . , tn) ∈ A, then h(p(t1, . . . , tn)) =
p(h(t1), . . . , h(tn)) ∈ A′.

2.3 Conjunctive Queries

A conjunctive query (CQ) q over a schema R is a first-order formula
∃Y(ϕ(X,Y)), where ϕ is a conjunction of atoms over R with variables from
X ∪ Y ⊂ V, and possibly constants of C. The arity of q is defined as the car-
dinality of X, i.e., the number of free variables occurring in ∃Y(ϕ(X,Y)). A
0-ary CQ is called Boolean CQ (BCQ). An n-ary union of conjunctive queries
(UCQ) over R is a disjunction of a finite number of n-ary CQs over R. By abuse
of notation, sometimes we consider a UCQ as set of CQs. The answer to an
n-ary CQ q = ∃Y(ϕ(X,Y)) over an instance I, denoted q(I), is the set of all
tuples of constants t ∈ Cn for which there exists a homomorphism h such that
h(ϕ(X,Y)) ⊆ I and h(X) = t. A BCQ has only the empty tuple as possible
answer, in which case it is said to have a positive answer. Formally, a BCQ has
a positive answer over I, written as I |= q, if q(I) �= ∅. The answer to an n-ary
UCQ Q over an instance I, denoted Q(I), is the set of n-tuples

⋃
q∈Q q(I). The

answer to a union of BCQs over I is positive, written as I |= Q, if Q(I) �= ∅.

3 Datalog: Syntax and Semantics

Datalog (see, e.g., [1,19]) has been used as a paradigmatic database programming
and query language for over three decades. While it is rarely used directly as

200 G. Gottlob et al.

a query language in corporate application contexts, Datalog has influenced the
development of popular query languages such as SQL, whose newer versions
allow one to express recursive queries.

3.1 Syntax

A Datalog rule ρ is an expression of the form

a0 ← a1, . . . , an,

where n � 0, a0, . . . , an are atoms over a relational schema which contain con-
stants of C and variables of V, and each variable occurring in a0 must appear in
at least one of a1, . . . , an. The atom a0 is called the head, denoted head(ρ), while
the set of atoms {a1, . . . , an} is called the body, denoted body(ρ). In other terms,
a Datalog rule is a function-free Horn clause. A Datalog program P is a finite
set of Datalog rules. An extensional predicate is a predicate that does not occur
in the head of any rule of P , while an intensional predicate is a predicate that
occurs in the head of some rule of P . The extensional (database) schema of P ,
denoted EDB(P), consists of all the extensional predicates of P , whose values
are given via an input database, while the intensional schema of P , denoted
IDB(P), consists of all the intensional predicates of P , whose values are com-
puted by the program. The schema of P , written SCH (P), is the set of predicates
EDB(P) ∪ IDB(P). As we shall see, the semantics of a Datalog program is a
mapping from databases for EDB(P) to databases for IDB(P).

Example 3. Consider the Datalog program Pgraph consisting of

sp reachable(X) ← sp node(X)
sp reachable(Y) ← edge(X,Y), sp reachable(X),

which takes as input EDB a directed graph given by a binary edge relation, plus
a set of special nodes of this graph given by a unary relation sp node. Clearly,

EDB(Pgraph) = {edge, sp node} and IDB(Pgraph) = {sp reachable}.

The above (recursive) program computes the set sp reachable of all vertices in
the graph that are reachable from special nodes. ��

3.2 Semantics

An interesting and elegant property of Datalog is the fact the there are three
different but equivalent approaches to defining its semantics: a model-theoretic
approach where the Datalog rules are considered as logical sentences asserting
a property of the desired result, a fixpoint approach where the semantics are
defined as a particular solution of a fixpoint equation, and a proof-theoretic
approach which is based on obtaining proofs of facts. In the sequel, we discuss
the fixpoint semantics; for details on the other approaches we refer the interested
reader to [1, Chap. 12].

Recent Advances in Datalog 201

Fig. 1. Directed graph for Example 4.

Fixpoint Semantics. The fixpoint semantics of Datalog programs relies on an
operator called the immediate consequence operator, which produces new facts
starting from known facts. The semantics of P on an input database D, denoted
P (D), is defined as the smallest solution of a fixpoint equation involving that
operator.

Let P be a Datalog program and D a database for SCH (P). A fact a is an
immediate consequence for D and P if either a ∈ D, or there exists a rule a0 ←
a1, . . . , an in P and a homomorphism h such that h({a1, . . . , an}) ⊆ D and a =
h(a0). The immediate consequence operator of P , denoted TP , is the mapping
from databases for SCH (P) to databases for SCH (P) defined as follows: for
each database D, TP (D) = {a | a is an immediate consequence for D and P}. We
write T i

P (D) for the result obtained by applying TP i times starting from D.
Formally, T 0

P (D) = D and T i+1
P (D) = TP (T i

P (D)); let Tω
P (D) =

⋃
i�0 T i

P (D).
From the fact that D ⊆ TP (D) and the monotonicity of TP , it is clear that
T i

P (D) ⊆ T i+1
P (D), for each i � 0. It is well-known that for a Datalog program P

and a database D for EDB(P), Tω
P (D) is the minimum fixpoint of TP containing

D. Interestingly, Tω
P (D) can be obtained by applying TP finitely many times.

More precisely, given a Datalog program P , for each database D there exists an
integer kD (which depends on D) such that Tω

P (D) = T kD

P (D). The semantics
of P on D is defined as Tω

P (D).

Example 4. Consider the program Pgraph given in Example 3, and the database

D = {edge(v1, v3), edge(v2, v3), edge(v3, v4),
edge(v4, v5), edge(v5, v3), sp node(v1)}

for the schema EDB(Pgraph); the graph G encoded by D is depicted in Fig. 1,
where the special node is shaded. Clearly,

TPgraph
(D) = D ∪ {sp reachable(v1)}

T 2
Pgraph

(D) = TPgraph
(D) ∪ {sp reachable(v3)}

T 3
Pgraph

(D) = T 2
Pgraph

(D) ∪ {sp reachable(v4)}
T 4

Pgraph
(D) = T 3

Pgraph
(D) ∪ {sp reachable(v5)}

T 5
Pgraph

(D) = T 4
Pgraph

(D).

Hence, Pgraph(D) = Tω
P (D) = T 4

P (D). ��

202 G. Gottlob et al.

3.3 Query Answering Under Datalog

Consider a Datalog program P and a database D for EDB(P). Given an n-ary
CQ q = ∃Y(ϕ(X,Y)) over SCH (P), the answer to q w.r.t. P and D is the
set of n-tuples {t | t ∈ q(P (D))}. The complexity of deciding whether a tuple
of constants belongs to the answer of q w.r.t. P and D is PTime-complete in
data complexity, and ExpTime-complete in combined complexity. Recall that
the data complexity is calculated by considering only the database as part of
the input, while the combined complexity is calculated by taking, apart from the
database, also the query and the program as part of the input. For more details
on the complexity of Datalog see, e.g., [29].

4 Datalog∃,∨: Syntax and Semantics

Datalog was designed and intended for reasoning over finite databases, assuming
that only the values explicitly mentioned in the extensional database exist. For
ontological reasoning, however, it would be desirable that an extended version
of Datalog could be able to express the existence of certain values that are not
necessarily from the EDB domain. This can be achieved by allowing existen-
tially quantified variables in rule heads. Another key feature for representing
ontologies, which is not expressible by Datalog rules, is disjunction that allows
for non-deterministic reasoning.

Example 5. As said, ontology languages are based on DLs. Such formalisms can
express, for instance, (i) each parent of a parent is a grandparent of a human,
and vice versa; and (ii) each human is male or female, and vice versa. This is
captured by the following axioms:

∃parentOf.isparent ≡ ∃grandparentOf.human
human ≡ male � female.

In an appropriate extended version of Datalog, the same can be expressed as:

∃Z grandparentOf (X,Z) ← parentOf (X,Y), isparent(Y)
human(Y) ← grandparentOf (X,Y)

∃Z parentOf (X,Z) ← grandparentOf (X,Y), human(Y)
isparent(Y) ← parentOf (X,Y)

male(X) ∨ female(X) ← human(X)
human(X) ← male(X)
human(X) ← female(X).

Observe that all the predicates occurring in the above program appear both
in the body and in the head of some rule. Therefore, in the desired extended
version of Datalog, we no longer require the distinction between extensional and
intensional predicates. ��

Recent Advances in Datalog 203

Recently a family of Datalog-based languages, called Datalog±, which is a
new framework for tractable ontology querying, has been introduced [14]. The
precise aim of Datalog± is to extend Datalog with key modeling features, while
preserving not only decidability but also tractability of query answering in data
complexity. The feature of existential quantification has been extensively dis-
cussed in the tutorial paper [29] presented in the Reasoning Web 2012 Summer
School. As said, the present paper is a continuation of [29], where the feature of
existential quantification together with the feature of disjunction are considered.

4.1 Syntax

A Datalog∃,∨ rule ρ is an expression of the form

γ1 ∨ . . . ∨ γm ← a1, . . . , an,

where a1, . . . , an are atoms over a relational schema that contain constants of
C and variables of V, and, for each i ∈ [m], γi is an expression ∃Y i

1 . . . ∃Y i
mi

bi,
where mi � 0, {Y i

1 , . . . , Y i
mi

} ⊂ V, ({Y i
1 , . . . , Y i

mi
} ∩ var({a1, . . . , an})) = ∅, and

bi is an atom that contains constants of C and variables of ({Y i
1 , . . . , Y i

mi
} ∪

var({a1, . . . , an})). The expression γ1 ∨ . . . ∨ γm is called the head , denoted
head(ρ), while the set of atoms {a1, . . . , an} is called the body , denoted body(ρ).
A Datalog∃,∨ program P is a finite set of Datalog∃,∨ rules. The schema of P ,
written SCH (P), is the set of predicates occurring in P . Notice that SCH (P) is
not partitioned, as in plain Datalog programs, into extensional and intensional
predicates. Obviously, the program given in Example 5 is a Datalog∃,∨ program.

4.2 Semantics

To define the semantics of Datalog∃,∨ we follow an approach similar to the fix-
point semantics of Datalog programs, i.e., given a Datalog∃,∨ program P and an
input database D, P (D) is defined as the least fixpoint of a monotonic opera-
tor. This can be achieved by exploiting the disjunctive chase introduced in [21],
that is, an extension of the well-known chase procedure. Each disjunctive chase
step “branches” out several instances, each satisfying one of the disjuncts of
the Datalog∃,∨ rule that is applied, and thus the result of the disjunctive chase
is, in general, a set of instances (and not a single instance as that of the clas-
sical chase). The disjunctive chase works on an instance through the so-called
(disjunctive) chase rule:

Chase Rule. Consider an instance I, and a Datalog∃,∨ rule ρ of the form

γ1 ∨ . . . ∨ γm ← a1, . . . , an

as define above. We say that ρ is applicable to I if there exists a homomor-
phism h such that h(body(ρ)) ⊆ I, and the result of applying ρ to I with h is
the set {I1, . . . , Im}, where Ii = I∪h′(γi), for each i ∈ [m], and h′ ⊇ h is such
that h′(Y) is a “fresh” null not occurring in I, and following lexicographically
all those in I, for each Y ∈ {Y i

1 , . . . , Y i
mi

}. For such an application, which
defines a single chase step, we write I〈ρ, h〉{I1, . . . , Im}.

204 G. Gottlob et al.

A disjunctive chase tree of a database D and a Datalog∃,∨ program P is a
(possibly infinite) tree such that the root is D, and for every node I, assuming
that {I1, . . . , Im} are the children of I, there exists ρ ∈ P and a homomorphism
h such that I〈ρ, h〉{I1, . . . , Im}. The disjunctive chase algorithm for D and P
consists of an exhaustive application of chase steps in a fair fashion, which
leads to a disjunctive chase tree T of D and P ; let chase(D,P) be the set
{I|I is a leaf of T}. Notice that each leaf of T is well-defined as the least fixpoint
of a monotonic operator. The semantics of P and D, denoted P (D), is defined
as the set of instances chase(D,P).

4.3 Query Answering Under Datalog∃,∨

Consider a Datalog∃,∨ program P and a database D for SCH (P). Given an
n-ary CQ q = ∃Y(ϕ(X,Y)) over SCH (P), the answer to q w.r.t. P and D,
denoted q(P,D), is the set of n-tuples {t | t ∈ q(I), for each I ∈ P (D)}. The
query answering problem under Datalog∃,∨, called CQ-Answering, is defined
as follows: given a database D, a Datalog∃,∨ program P , an n-ary CQ q, and a
tuple t ∈ Cn, decide whether t ∈ q(P,D).

At this point, one may observe that, in contrast to plain Datalog, the instance
P (D) is not unique since the result of the chase of D and P depends on the order
that the rules of P are executed. In other words, different chase sequences may
yield different results. However, P (D) is unique up to homomorphic equivalence;
implicit in [21]. More precisely, assuming that C1 and C2 are possible results of
the chase of D and P , the following hold: (i) for each instance I ∈ C2, there
exists an instance J ∈ C1 and a homomorphism h such that h(J) ⊆ I; and (ii)
for each instance I ∈ C1, there exists an instance J ∈ C2 and a homomorphism
h such that h(J) ⊆ I. This immediately implies that

{t | t ∈ q(I), for each I ∈ C1} = {t | t ∈ q(I), for each I ∈ C2}

and therefore, for CQ answering purposes, P (D) is unique.

4.4 The Challenge of Infinity

Recall that for a Datalog program P and an input database D, P (D) is finite
and it is always possible to construct it. In fact, the fixpoint semantics of Datalog
programs provide an efficient (w.r.t. the size of the data) algorithm, based on
the immediate consequence operator, which constructs P (D). Unfortunately,
the situation changes dramatically if P is a Datalog∃,∨ program. Due to the
existentially quantified variables in rule heads, P (D) may consist of infinitely
many instances of infinite size, and is thus not explicitly computable. It is an
easy exercise to verify that this is the case for the database {p(a, b)}, and the
program consisting of the rules

∃Z p(Y,Z) ← p(X,Y) and s(X) ∨ s(Y) ← p(X,Y).

Recent Advances in Datalog 205

This is not surprising since query answering is undecidable even if we focus on
Datalog∃ programs; implicit in [10]. Worse than that, undecidability holds even
if both the program and the query are fixed, and only the database is given as
input [12]. It is thus necessary to identify meaningful fragments of Datalog∃,∨

for which query answering is decidable, and also tractable in data complexity.
In what follows we discuss such fragments of Datalog∃,∨ that are based on the
well-known notion of guardedness.

5 Guarded Datalog∃,∨

Guardedness, proposed by Andréka et al. [4], is a well-known restriction of first-
order logic that ensures decidability of satisfiability, i.e., the problem of deciding
whether a first-order theory has at least one model. Inspired by the guarded
fragment of first-order logic, guarded Datalog∃ has been proposed in [12], and
can be naturally extended to guarded Datalog∃,∨. A guarded Datalog∃,∨ rule ρ is
a Datalog∃,∨ rule, where at least one atom a ∈ body(ρ) contains all the variables
occurring in body(ρ), i.e., var(a) = var(body(ρ)). The rightmost such atom is
called the guard of ρ. A guarded Datalog∃,∨ program P is a finite set of guarded
Datalog∃,∨ rules. It is straightforward to verify that the Datalog∃,∨ program
given in Example 5 is guarded.

The decidability of CQ-Answering under guarded Datalog∃,∨ follows from
the fact that the result of the chase of a database w.r.t. to a guarded Datalog∃

program has finite treewidth, i.e., is a treelike structure; for more details we refer
the reader to [12]. The complexity of CQ-Answering under guarded Datalog∃,∨

programs has been investigated in [11], while the complexity of the same problem
when the input query is an atomic query, i.e., a single atom, has been investigated
in [28]. In the case of atomic queries the problem is dubbed CQ1-Answering.
In what follows, we first focus in Sect. 5.1 on arbitrary conjunctive queries, and
then we proceed in Sect. 5.2 with atomic queries.

5.1 Arbitrary Conjunctive Queries

Combined Complexity. Let us first focus on the combined complexity of our
problem, and recall the following result established in [11]:

Theorem 1. CQ-Answering under guarded Datalog∃,∨ is 2ExpTime-
complete in the combined complexity.

The upper bound is obtained by first relating our problem to the problem of
querying a first-order sentence, and then provide a polynomial time reduction to
the problem of query answering under the guarded fragment of first-order logic,
which is in 2ExpTime [9]. Consider a database D, a Datalog∃,∨ program P , an
n-ary CQ q, and a tuple t ∈ Cn. The problem of deciding whether t belongs
to the answer of q w.r.t. P and D is tantamount to the problem of deciding
whether the first-order sentence (D ∧ ΣP) entails q(t), where ΣP is obtained by
associating to each rule

206 G. Gottlob et al.

∨

i∈[m]

∃Y i
1 . . . ∃Y i

mi
bi ← a1, . . . , an

occurring in P , with var(body(ρ)) = {X1, . . . , Xk}, the first-order sentence

∀X1 . . . ∀Xk

⎛

⎝a1 ∧ . . . ∧ an →
∨

i∈[m]

∃Y i
1 . . . ∃Y i

mi
bi

⎞

⎠ .

It remains to show that (D∧ΣP) falls in the guarded fragment of first-order logic.
Recall that this logic, introduced in [4], is a collection of first-order formulas with
some syntactic restrictions in the quantification pattern, which is analogous to
the relativized nature of modal logic. Formally, the guarded fragment of first-
order logic (GFO) is the smallest set of formulas over a schema R

1. containing all atomic R-formulas;
2. closed under the logical connectives ¬, ∧, ∨, →; and
3. if a is an R-atom or an equality atom containing all the variables of X ∪ Y,

and ϕ is a GFO formula with free variables contained in (X ∪ Y), then

∀X (a → ϕ) and ∃X (a ∧ ϕ)

are GFO formulas as well.

It is not difficult to show that (D∧ΣP) is a GFO sentence. Assume, for example,
that in P we have the rule ∃Z s(X,Z) ← p(X,Y), t(Y), where p(X,Y) is the
guard, which in turn implies that in ΣP we have the sentence ∀X∀Y (p(X,Y) ∧
s(Y) → ∃Z t(X,Z)). The latter can be rewritten as the GFO sentence

∀X∀Y (p(X,Y) → (s(Y) → ∃Z t(X,Z))).

By following the same approach, every sentence of ΣP can be equivalently rewrit-
ten as a GFO sentence, and obtain Σ̂P . Since (D ∧ Σ̂P) is a GFO sentence, the
desired upper bound follows.

The argument for the lower bound is a little more complex. We can show that
it is possible to simulate an alternating Turing machine that uses exponential
space — it is well-known that alternating ExpSpace equals 2ExpTime [20]. We
will give here a rough idea of the proof techniques needed to achieve this. First,
we need a way to generate a sequence of configurations, where each such config-
uration is represented by 2n null values. Secondly, we need a way to compare the
same cell of two subsequent configurations. With these two conditions fulfilled,
we can simulate an alternating Turing machine which uses exponential space
as follows: for each configuration, guess a state and the head position; for each
cell in the configuration, guess the tape content; compare two adjacent cells in
a configuration to the same two cells in the subsequent configuration and check,
using a query, whether the transition function is violated. Note that the query
will thus be true iff the transition function is violated (i.e., when we make a
wrong guess). The only case where the query is false is if there is a model that

Recent Advances in Datalog 207

represents a valid, accepting configuration of the Turing machine. In order to
describe in more detail how this can be done, let us fix some notation.

The proof is in fact by a reduction from the non-acceptance problem of
an alternating exponential space Turing machine M on the empty input. Let
M = (S,Λ, δ, s0), where S = S∀ � S∃ � {sa} � {sr} is a finite set of states
partitioned into universal states, existential states, an accepting state and a
rejecting state, Λ = {0, 1,�} is the tape alphabet with � being the blank symbol,
δ : S×Λ → (S×Λ×{−1,+1})2 is the transition function, and s0 ∈ S is the initial
state. We assume that M is well-behaved and never tries to read beyond its tape
boundaries, always halts, and uses exactly 2n tape cells. Furthermore, we assume
that a rejecting configuration does not have a subsequent configuration, while
an accepting configuration has only itself as a subsequent configuration. Finally,
we assume that s0 ∈ S∃, and also that every universal configuration is followed
by two existential configurations and vice versa. The above assumptions can be
made, without sacrificing the generality of our proof, since the non-acceptance
problem of M remains 2ExpTime-hard.

In order to represent configurations of the Turing machine M , we will use
atoms of the form conf [s](b1, . . . , bn, a, h, t, p, n1, n2), where s ∈ S is the state
of the encoded configuration and is part of the predicate, (b1, . . . , bn) ∈ {0, 1}n

is an integer from {0, . . . , 2n − 1} in binary notation which represents the index
of the encoded cell with a be its content, h ∈ {0, 1} and h = 1 iff the cursor of
M is at the encoded cell, and t, p, n1 and n2 represent the current (t for this),
the previous and the next two configurations, respectively. E.g., assuming that
n = 3, conf [s](1, 0, 1,�, 1, z1, z2, z3, z4), where {z1, . . . , z4} ⊂ N, says that the
state of the configuration z1 (nulls are used to represent configurations) is s, the
fifth cell contains the blank symbol, the cursor is at the fifth cell, the previous
configuration of z1 is z2, and the next two configurations of z1 are z3 and z4.

The first step, generating trees of subsequent configurations, can easily be
achieved using the following rules: for each s ∈ S∀,

∨

(s1,s2)∈S×S

∃N3 . . . ∃N6 conf 0[s1](N1, T,N3, N4), conf 0[s2](N2, T,N5, N6)

← conf 0[s](T, P,N1, N2)

and for each s ∈ S∃,
∨

s′∈S

∨

i∈{1,2}
∃N3∃N4 conf 0[s

′](Ni, T,N3, N4) ← conf 0[s](T, P,N1, N2).

Note that T, P,N1 and N2 stand for this configuration, previous configuration
and the next two configurations, respectively.

Next, in order to generate the tape cells, we need to generate every binary
number of length n, as previously discussed. For 0 < i < n, the rule:

conf i[s](X1, . . . , Xi−1, 0, T, P,N1, N2), conf i[s](X1, . . . , Xi−1, 0, T, P,N1, N2)
← conf i−1[s](X1, . . . , Xi−1, T, P,N1, N2)

208 G. Gottlob et al.

generates, from a binary number of length i−1 both following binary numbers of
length i. It follows immediately that conf n-type atoms will represent all possible
binary numbers of length n as desired. Finally, with a simple rule we rename
conf n to conf , in order to get rid of some tedious notation.

We now need to guess the tape content. The following rule, for each s ∈ S:
∨

a∈{0,1,�}
conf [s](X1, . . . , Xn, a,H, T, P,N1, N2)

← conf n[s](X1, . . . , Xn,H, T, P,N1, N2)

takes care of this. In a similar, but slightly more complicated fashion, the position
of the head can be guessed, and we end up with atoms of the form

conf [s](b1, . . . , bn, a, h, t, p, n1, n2)

as desired. It thus only remains to check whether the sequence of configurations
guessed by our rules indeed represent a valid configuration of our Turing machine.

As discussed we will check the opposite: Our query should be true whenever
there is an error. In order to achieve this, we need to compare the same tape cell
in two subsequent configurations. But now, finding the same tape cell is easy:
Two atoms of the form conf [s](b1, . . . , bn, a, h, t, p, n1, n2) represent the same
tape cell, if they agree on their b1, . . . , bn bits. Therefore, we will simply take the
set of all possible transitions not compatible with the transition function, and
construct a query checking for this error. For example, when a change from 1 to
0 under the head is not allowed in (universal) state s, the relevant query could
simply be as follows:

conf [s](X1,X2,X3, 1, 1, T, P,N1, N2) ∧ conf [s′](X1,X2,X3, 0, 0, N1, T,N3, N4)

Note that, for brevity, we have skipped the existential quantifiers. Omitting some
small details, it can be seen that a disjunction of such queries representing all
invalid transitions now fulfils our requirement: The query is false iff we can guess
a valid computation of the Turing machine M , which, by construction of M can
only be an accepting computation. We thus have our lower bound as desired.
Notice that we originally wanted to state this lower bound for CQs, but we have
constructed a union of CQs. This is not a problem, as the following lemma shows:

Lemma 1. Consider a Datalog∃,∨ program P , a database D for SCH (P), and
an n-ary UCQ Q over SCH (P). A Datalog∃,∨ program P ′, a database D′ for
SCH (P ′), and an n-ary CQ q over SCH (P ′) can be constructed in polynomial
time such that Q(P,D) = q(P ′,D′).

Let us give an intuitive explanation of how the transformation from UCQs
to CQs works: Each predicate p of the underlying schema is replaced with a new
predicate p′ with arity arity(p) + 1. This extra position holds a marker, either
t (for true) or f (for false). Every database atom gets the value t at this new
position, which implies that is a valid atom. Moreover, each rule is extended so

Recent Advances in Datalog 209

that it simply propagates this position unaltered to the head. A copy of each
CQ in the given UCQ is added to the database (variables are replaced by new
distinct constants) with f at the new position. Clearly, every CQ in the given
UCQ trivially maps to the database, with f at the new position. However, all
the valid atoms, i.e., the atoms that can be derived by the chase for D and P ,
have t at the new position. We can now replace disjunctions in the UCQ by
conjunctions (and thus convert the UCQ into a CQ), and just check that for at
least one query its new position maps to t. This can simply be done by adding
to the database atoms of the form or(·, ·, ·) encoding the logical or, connecting
all the subqueries of the original UCQ via such or predicates, and stating that
the end result must be t. This concludes the proof sketch of Theorem 5.

Note that the above proof sketch uses unbounded predicate arity and a set
of rules that depends on the size of the Turing machine M . In [11], it was shown
however, that the same lower bound even holds if only a fixed set of rules using
only unary and binary predicates are used. The complexity in this case jumps
from NP in case of guarded Datalog∃ to 2ExpTime when disjunction is allowed,
which serves to show that disjunction is indeed a very powerful construct.

Data Complexity. Having seen the results for the combined complexity, let us
turn our attention to the case were both the query and the set of rules is fixed,
and only the database is considered as input, and recall the following result
established in [11]:

Theorem 2. CQ-Answering under guarded Datalog∃,∨ is co-NP-complete in
the data complexity.

As for the combined complexity, the corresponding upper bound is obtained
by exploiting results on query answering under GFO formulas, which was shown
to be feasible in co-NP in the data complexity [9]. As we have previously seen,
every guarded Datalog∃,∨ program can be equivalently rewritten as a GFO sen-
tence. Thus, the result in [9] carries over to our CQ-Answering problem.

Regarding the lower bound, it is well known that CQ-Answering under
guarded Datalog∃,∨ is co-NP-hard in data complexity, as shown in [17, The-
orem 4.5]; in fact, this result shows that CQ-Answering under a Description
Logic TBox with a single axiom of the form A1 � A2 � A3, where each Ai is an
atomic concept, which in turn is equivalent to the rule A2 (X)∨A3 (X) ← A1 (X),
is co-NP-hard in the data complexity. Such a rule is clearly a guarded Datalog∃,∨

rule, and thus the result carries over directly to our CQ-Answering problem.

5.2 Atomic Queries

Combined Complexity. It is clear that, as an atomic query is simply a special
case of an arbitrary conjunctive query, the 2ExpTime upper bound immediately
applies to atomic queries. Interestingly, with minor modifications, we can also
show that the lower bound discussed above, can also be suitably adapted to give
the corresponding lower bound even for atomic queries. Note that in the original

210 G. Gottlob et al.

proof idea, we construct CQs that only contain two or three atoms, and where
almost all variables are joined. Let us recall the example given in Sect. 5.1, for a
universal state s:

conf [s](X1,X2,X3, 1, 1, T, P,N1, N2) ∧ conf [s′](X1,X2,X3, 0, 0, N1, T,N3, N4)

Note that only P,N3 and N4 do not participate in a join. The idea is to project
these variables out, so that each atom in the query contains the same variables.
This can be done by using the following three rules:

conf P [s](X1, . . . , Xn, C,H, T, P) ← conf [s](X1, . . . , Xn, C,H, T, P,N1, N2)
conf L[s](X1, . . . , Xn, C,H, T,N1) ← conf [s](X1, . . . , Xn, C,H, T, P,N1, N2)
conf R[s](X1, . . . , Xn, C,H, T,N2) ← conf [s](X1, . . . , Xn, C,H, T, P,N1, N2).

Note that P , L and R stand for previous, next left, and next right configuration,
respectively. We can now rewrite our query to look as follows:

conf x[s](X1,X2,X3, 1, yes, T,N) ∧ conf P [s′](X1,X2,X3, 0, no,N, T).

where x ∈ {L,R}. Observe that each atom in the query contains all the variables,
and it can now simply be added as a guarded rule:

error ← conf x[s](X1,X2,X3, 1, yes, T,N) ∧ conf P [s′](X1,X2,X3, 0, no,N, T).

In general, this process can be applied to any query from our original UCQ. Once
all the sub-queries are added as rules, we now need a query that checks whether
there is a rule whose rule-body is true (i.e., where the sub-query is true). This
can now be done with an atomic query that simply asks for the propositional
atom error . Therefore, for guarded Datalog∃,∨ rules, the combined complexity
remains unchanged:

Theorem 3. CQ1-Answering under guarded Datalog∃,∨ is 2ExpTime-comp.
in the combined complexity.

Data Complexity. Let us now have a look at the data complexity of atomic
query answering under guarded Datalog∃,∨. As with the combined complexity,
for guarded Datalog∃,∨ rules, the data complexity of answering atomic queries
remains the same as in the general case.

The upper bound clearly carries over, while the lower bound follows from
a result in [2] where they show that the co-NP-complete problem 3-UNSAT,
that is, unsatisfiability of propositional formulas in 3-DNF, can be reduced to
a fixed guarded Datalog∃,∨ program via a so-called metainterpreter. The prin-
ciple is simple: Store each clause in the database, and then, using the metain-
terpreter written using guarded Datalog∃,∨ rules, assign truth values to every
literal in every clause. Finally, a rule checks for errors in the truth assignment
(i.e., whether some clause becomes true) and derives a propositional atom error ,
if this is the case. Now, one only needs to check the atomic query error , which
is false iff the input 3-DNF formula is unsatisfiable. We thus have the following:

Theorem 4. CQ1-Answering under guarded Datalog∃,∨ is co-NP-complete
in the data complexity.

Recent Advances in Datalog 211

6 Linear Datalog∃,∨

In this section, we focus on a key subclass of guarded Datalog∃,∨, called linear
Datalog∃,∨, which further restricts the rules by allowing only one body-atom in
rules (which is automatically a guard). As for guarded Datalog∃,∨, we first focus
in Sect. 6.1 on arbitrary conjunctive queries, and then we proceed in Sect. 6.2
with atomic queries.

6.1 Arbitrary Conjunctive Queries

Surprisingly, in the case of linear Datalog∃,∨, which clearly is a much weaker sub-
set of guarded Datalog∃,∨, the (combined and data) complexity of query answer-
ing remains unchanged, as the following theorem, established in [11], states:

Theorem 5. CQ-Answering under linear Datalog∃,∨ is 2ExpTime-complete
in the combined complexity, and co-NP-complete in the data complexity.

In case of the combined complexity, clearly the upper bound can be inher-
ited, as it holds for a more general language, that is, guarded Datalog∃,∨. For the
lower bound, by carefully inspecting the construction of our 2ExpTime lower
bound construction for guarded Datalog∃,∨, it becomes apparent that in fact
only linear rules were used there. It turns out that it is indeed the case that
the whole reduction can be achieved using only linear Datalog∃,∨ rules. There-
fore the 2ExpTime-hardness proof also applies to the current setting, and the
completeness result follows.

In case of the data complexity, the co-NP upper bound can again be inherited
from guarded Datalog∃,∨, and the corresponding lower bound holds for only one
rule of the form A2 (X)∨A3 (X) ← A1 (X), which is clearly linear. We therefore
obtain the co-NP-completeness result.

6.2 Atomic Queries

Although under guarded Datalog∃,∨ answering atomic queries does not reduce
the complexity of the problem, under linear Datalog∃,∨ answering atomic queries
does result in a reduction in complexity when compared to arbitrary CQs. This
holds for both the combined and the data complexity, and in the latter case we
even have a case where the problem is tractable. Note that until now, all upper
bounds were obtained by reductions to query answering under the guarded frag-
ment of first-order logic, a well-known and well-studied expressive logic. However,
for linear Datalog∃,∨ rules and atomic queries, this is unfortunately not possi-
ble, as we do not obtain tight upper bounds. More refined techniques are thus
needed. We will start with an investigation of the combined complexity, and then
proceed to the data complexity.

212 G. Gottlob et al.

Combined Complexity. We recall the following result established in [28]:

Theorem 6. CQ1-Answering under linear Datalog∃,∨ is ExpTime-complete
in the combined complexity.

The desired upper bound is obtained by reducing our problem to the prob-
lem of deciding whether a proof-tree exists, that is, a tree structure that encodes
the finite part of each model of the given database w.r.t. the given set of linear
Datalog∃,∨ rules due to which the query is entailed, and then exhibit an alter-
nating algorithm for deciding whether such a structure exists. Let us give some
more details about proof-trees.

Due to linearity, in order to entail an atomic query in a given model, there
needs to be a sequence of atoms, starting from a single database atom, along a
sequence of linear rules where the head of the previous rule always satisfies the
body of the next, such that the last head atom matches the query. For answering
atomic queries, we may in fact focus our attention on a single database atom.
Intuitively, derivations from separate database atoms cannot interact with each
other, because the body of linear rules is a single atom. Thus, the chase derives
a separate sub-model for each atom in the database. A model is thus simply a
combination of one possible sub-model from each database atom. Consequently,
if there does not exist a database atom where all its possible sub-models entail
the query, it is always possible to construct a model where the query is not
entailed (simply pick only sub-models that do not entail the query). Formally,
the above argument gives us the following auxiliary result:

Lemma 2. Consider a linear Datalog∃,∨ program P , database D for SCH (P),
an n-ary atomic query q over SCH (P), and a tuple t ∈ Cn. Then, t ∈ q(P,D)
iff there exists a ∈ D such that t ∈ q(P, {a}).

Using the above result, we know that we can focus on a single database atom
(say a ∈ D), for query answering. Towards developing an algorithm, we need to
be able to represent the finite initial part of all the models derived from atom a,
that is responsible for the entailment of the query. The formal construct used to
do this is called a proof-tree. This is a tree where each node is an atom, the root
is atom a and each edge is labeled with a linear rule, such that the parent node
maps to the body of the rule, and one head disjunct maps to the child node.
Further, if the rule has n disjuncts in the head, there must be n children, one
mapping to each disjunct.

Example 6. Consider the linear Datalog∃,∨ program consisting of the rules

ρ1 : r(Y,X) ← p(X,Y) ρ2 : p(X,Y) ∨ t(X,X) ← r(X,Y)
ρ3 : p(X,Y) ← t(X,Y) ρ4 : ∃Z s(Y,Z) ← r(X,Y).

Possible proof-trees from the atom r(a, b) w. r. t. P are shown in Fig. 2. ��

As can be seen from the above example, a proof-tree intuitively represents
all the choices made via disjunctive rules, combined in one structure. If we can

Recent Advances in Datalog 213

Fig. 2. Possible proof-trees from r(a, b) w. r. t. Σ.

find a proof-tree where each leaf node can be homomorphically mapped to a
given atomic query q, then we say the proof-tree is valid for q. In particular, in
the above example, proof-tree (a) is valid w. r. t. the atomic (Boolean) queries
∃X s(a,X) and ∃X∃Y s(X,Y), while proof-tree (b) is valid w. r. t. ∃X s(b,X)
and w. r. t. ∃X∃Y s(X,Y).

Given an n-ary atomic query q and a tuple t ∈ Cn, it is clear that if such a
valid proof-tree from some atom a w. r. t. a linear Datalog∃,∨ program P and q(t)
exists, then t ∈ q(P, {a}). In fact, in [28] it is shown, via an intricate argument
involving skolemization of the rules of P , that also the other direction holds.
Thus, atomic query answering is equivalent to deciding whether a proof-tree
exists. The latter, as shown in [28], can be achieved via an alternating algorithm
that builds the branches of a proof-tree in parallel computations. Each step of
this algorithm uses polynomial space, and since alternating polynomial space
coincides with exponential time, we obtain the desired upper bound.

The corresponding lower bound is an adaptation of a proof in [18], where it is
implicitly shown that atomic query answering under (non-disjunctive) inclusion
dependencies, a sub-language of linear Datalog∃ is PSpace-hard, via simulation
of a correspondingly space-bounded Turing machine. Using the same techniques
employed in Sect. 5.1, the proof can be straightforwardly extended to simulate an
alternating Turing machine using polynomial space, when disjunction is allowed
(i.e., when we use linear Datalog∃,∨ rules). Details can be found in [28].

Data Complexity. Let us now turn to the case where the set of rules is fixed,
and thus the atomic query is also fixed, and recall the following result from [28]:

Theorem 7. CQ1-Answering under linear Datalog∃,∨ is in AC0 in the data
complexity.

The above tractability result is shown by establishing that the problem under
consideration is first-order rewritable, i.e., it can be reduced to the problem of

214 G. Gottlob et al.

evaluating a first-order query over a database. Notice that first-order rewritabil-
ity was first introduced in the context of description logics [16]. Consider a lin-
ear Datalog∃,∨ program P , an n-ary atomic query q over SCH (P), and a tuple
t ∈ Cn. Let C be the constants occurring in q(t), and N = {z1, . . . , zm} be a
set of nulls, where m is the maximum arity over all predicates of SCH (P). Let
base(q(t), P) be the set of all atoms that can be formed using terms of (C ∪ N)
and predicates of SCH (P). Let B = {b | b ∈ base(q(t), P) and t ∈ q(P, {b})},
and μ be a renaming substitution that maps each z ∈ N into a distinct vari-
able Xz ∈ V. We define the first-order query qP as

∨
b∈B ∃Xz1 . . . ∃Xzm

μ(b).
In fact, qP is a UCQs, where each disjunct is an atomic query. It is easy to
see that |B| ≤ r · (2m)m, where r is the number of predicates of SCH (P).
Since, as discussed above, CQ1-Answering under linear Datalog∃,∨ is feasible
in exponential time, we conclude that the set B, and thus the query qP , can
be constructed in exponential time. It can be shown that qP is a sound and
complete rewriting: for every database D, t ∈ q(P,D) iff D |= qP . Intuitively, qP

contains, by construction, all possible images of atoms that will make q(t) true.
Thus, if we find an atom in our database that matches such an image, we can
safely conclude that t ∈ q(P,D). Conversely, if we do not find such a match, we
can conclude that the database does not contain any atom that will satisfy q(t)
w. r. t. P , which in turn implies that t �∈ q(P,D). Note that as we are in the data
complexity case, the original query q and the program P are fixed. Thus, query
qP can be constructed in constant time. Since, as shown by [36], the evaluation
of first-order queries is feasible in AC0 in data complexity, and since a union of
atomic queries is clearly a first-order formula, the claim follows.

7 Further Reading

7.1 Disjunction

Apart from guarded and linear Datalog∃, several other classes of guarded-based
Datalog∃ programs have been investigated. More precisely,

– The class of weakly-guarded programs, an extension of guarded programs
where the guard atom must cover only the body-variables that occur at
affected positions, i.e., positions at which a null value can appear during the
construction of the chase, has been investigated in [12];

– The class of frontier-guarded programs, an extension of guarded programs
where the guard atom must contain only the frontier, i.e., the set of variables
that appear both in the body and the head, has been studied in [7]; and

– The class of weakly-frontier-guarded programs, which extends both weak-
guardedness and frontier-guardedness, has been studied in [7].

The addition of disjunction to the above guarded-based formalisms has been
considered in [11]. CQ-Answering under weakly-(frontier-)guarded Datalog∃,∨

is 2ExpTime-complete in the combined complexity, and ExpTime-complete
in the data complexity; the same holds even if we focus on atomic queries.

Recent Advances in Datalog 215

Now, in the case of frontier-guarded Datalog∃,∨, both CQ-Answering and
CQ1-Answering are 2ExpTime-complete in the combined complexity, and
co-NP-complete in the data complexity, i.e., frontier-guarded Datalog∃,∨

and guarded Datalog∃,∨ have the same combined and data complexity. Note that
in [11] more refined complexity metrics have also been investigated. In particu-
lar, apart from the combined and the data complexity, also the settings where (i)
the arity of the underlying schema is bounded by an integer constant, and (ii) the
given program is fixed, have been studied.

A class of Datalog∃ programs, which is inherently different than the guarded-
based formalisms discussed so far, is sticky Datalog∃ [15]. Although query answer-
ing under this formalism is decidable, and actually tractable in data complexity,
the situation changes dramatically once we add disjunction. It is known that
query answering under sticky Datalog∃,∨ is undecidable, even when the program
and the query are fixed; for the details see [34].

7.2 Default Negation

Another interesting modeling feature, which cannot be expressed using
Datalog∃,∨ rules, is default negation. Adding negation to known decidable
Datalog∃ languages is an intriguing new problem that has given rise to a flour-
ishing research activity over the last few years. A short discussion on existing
approaches to enrich Datalog∃ with default negation follows:

– Stratified Negation. Stratified negation for guarded Datalog∃ was inves-
tigated in [13], and extended to the more expressive formalism of weakly-
guarded Datalog∃ in [5]. Stratified negation is well-behaved in the sense that
its addition does not sacrifice decidability, and the complexity remains the
same. However, stratified negation is limited, and this has motivated the inves-
tigation of more expressive types of negation, namely well-founded and stable
model negation.

– Well-Founded Negation. Two different variants of the well-founded seman-
tics (WFS) for guarded Datalog∃ were considered in [27,31]. The version of [31]
studies the standard WFS for logic programming with function symbols, where
the unique name assumption (UNA) is assumed: different Skolem terms are
not unifiable. The second variant, called equality-friendly WFS [27], does not
use the UNA. The standard WFS for sticky Datalog∃ has been recently inves-
tigated in [3].

– Stable Model Negation. Negation under the stable model semantics for
(weakly-)guarded Datalog∃ was investigated in [26], while for sticky Datalog∃

was recently studied in [3]. In [8,33], acyclicity and stratification conditions
are proposed for Datalog∃ with negation, which identify languages that have
finite and/or unique stable models. The FDNC programs in [24] combine
default negation and function symbols; decidability is obtained by restrict-
ing the structure of rules to one of seven predefined forms. One of the crucial
conditions that FDNC programs must satisfy is similar to guardedness.

216 G. Gottlob et al.

Acknowledgements. This research has received support from the EPSRC Pro-
gramme Grant EP/M025268/ “VADA: Value Added Data Systems – Principles and
Architecture”, and the Austrian Science Fund (FWF), project Y698 “Decodyn”.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive datalog with existential
quantifiers: Semantics, decidability, and complexity issues. TPLP 12(4–5), 701–718
(2012)

3. Alviano, M., Pieris, A.: Default negation for non-guarded existential rules. In:
PODS (2015, to appear)

4. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. J. Philos. Logic 27(3), 217–274 (1998)

5. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS, pp. 14–26 (2014)

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

7. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

8. Baget, J., Garreau, F., Mugnier, M., Rocher, S.: Extending acyclicity notions for
existential rules. In: ECAI, pp. 39–44 (2014)

9. Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. Log. Meth.
Comput. Sci. 10(2) (2014)

10. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: ICALP,
pp. 73–85 (1981)

11. Bourhis, P., Morak, M., Pieris, A.: The impact of disjunction on query answering
under guarded-based existential rules. In: IJCAI (2013)

12. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

13. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

14. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: A family
of logical knowledge representation and query languages for new applications. In:
LICS, pp. 228–242 (2010)

15. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The
query answering problem. Artif. Intell. 193, 87–128 (2012)

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

17. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

18. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

19. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

20. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

Recent Advances in Datalog 217

21. Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints. In:
Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572,
pp. 225–238. Springer, Heidelberg (2002)

22. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

23. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for
non-monotonic reasoning. In: LPNMR, pp. 364–375 (1997)

24. Eiter, T., Simkus, M.: FDNC: decidable nonmonotonic disjunctive logic programs
with function symbols. ACM Trans. Comput. Log., 11(2) (2010)

25. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

26. Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Stable model semantics for
guarded existential rules and description logics. In: KR

27. Gottlob, G., Hernich, A., Kupke, C., Lukasiewicz, T.: Equality-friendly well-
founded semantics and applications to description logics. In: AAAI (2012)

28. Gottlob, G., Manna, M., Morak, M., Pieris, A.: On the complexity of ontological
reasoning under disjunctive existential rules. In: Rovan, B., Sassone, V., Widmayer,
P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 1–18. Springer, Heidelberg (2012)

29. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for seman-
tic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012.
LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012)

30. Grädel, E.: On the restraining power of guards. J. Symbolic Logic 64(4), 1719–1742
(1999)

31. Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-founded semantics for
extended datalog and ontological reasoning. In: PODS, pp. 225–236 (2013)

32. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1987)
33. Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic

existential rules. In: IJCAI (2013)
34. Morak, M.: The Impact of Disjunction on Reasoning under Existential Rules. Ph.D.

Thesis, University of Oxford, Oxford, Oxfordshire, UK (2015)
35. Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in

the semantic web. J. Web Sem. 5(4), 240–250 (2007)
36. Vardi, M.Y.: On the complexity of bounded-variable queries. In: PODS, pp. 266–

276 (1995)

Ontology-Mediated Query Answering
with Data-Tractable Description Logics

Meghyn Bienvenu1(B) and Magdalena Ortiz2(B)

1 LRI - CNRS and Université Paris Sud, Orsay, France
meghyn@lri.fr

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
ortiz@kr.tuwien.ac.at

Abstract. Recent years have seen an increasing interest in ontology-
mediated query answering, in which the semantic knowledge provided
by an ontology is exploited when querying data. Adding an ontology has
several advantages (e.g. simplifying query formulation, integrating data
from different sources, providing more complete answers to queries), but
it also makes the query answering task more difficult. In this chapter,
we give a brief introduction to ontology-mediated query answering using
description logic (DL) ontologies. Our focus will be on DLs for which
query answering scales polynomially in the size of the data, as these
are best suited for applications requiring large amounts of data. We will
describe the challenges that arise when evaluating different natural types
of queries in the presence of such ontologies, and we will present algorith-
mic solutions based upon two key concepts, namely, query rewriting and
saturation. We conclude the chapter with an overview of recent results
and active areas of ongoing research.

1 Introduction

Since the seminal works in the field [50,53,110,144], there has been steadily grow-
ing interest in ontology-mediated query answering (OMQA), in which the seman-
tic knowledge provided by an ontology is exploited when querying data. Adding
an ontology has several advantages. First, by providing an enriched vocabu-
lary that closely matches users’ conceptualization of the application domain, an
ontology makes it easier for users to formulate their queries. Moreover, the ontol-
ogy can be used to integrate different data sources through a single conceptual
model, facilitating access to them in a uniform and transparent way. Finally,
OMQA can provide users with more complete answers to their queries, by tak-
ing into account not only the facts explicitly stored in the data, but also facts
that are implicit consequences of the data and the domain knowledge. Unfortu-
nately, enriching data with domain knowledge also has a downside: it makes the

This work has been supported by ANR project PAGODA (ANR-12-JS02-007-01)
and the Austrian Science Fund (FWF) project T515.

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 218–307, 2015.
DOI: 10.1007/978-3-319-21768-0 9

Ontology-Mediated Query Answering 219

query answering task significantly more difficult, both conceptually and algo-
rithmically. The specific challenges that arise depend upon which languages are
used for expressing the query and the ontological knowledge.

In this chapter, we consider ontologies formulated using description log-
ics (DLs), which are a family of decidable fragments of classical first-order
predicate logic that are often used for knowledge representation and reason-
ing. DLs are arguably the most popular formalisms for representing ontological
knowledge nowadays, notably providing the logical underpinnings for the W3C-
standardized OWL web ontology languages [170]. There are a multitude of differ-
ent DLs of varying expressivity, ranging from very simple to highly expressive.
Significant research efforts have been devoted to understanding the computa-
tional complexity of different reasoning tasks, including the query answering
tasks that are the focus of this chapter. The resulting complexity landscape can
be used to select the most appropriate DL for a given application. In the case
of OMQA applications involving large amounts of data, this complexity analysis
has revealed Horn DLs – so named because they are expressible in the Horn
fragment of first-order logic – as especially relevant, as query answering in the
presence of Horn DL ontologies can be performed in polynomial time in the size
of the data, for some important types of queries. Prominent Horn DLs include
the logics of the DL-Lite and EL families, which are the basis of the OWL profiles
known as OWL 2 QL and OWL 2 EL [159].

This chapter is organized as follows. We begin in Sect. 2 by recalling the
syntax and semantics of description logic knowledge bases and introducing some
popular Horn DLs. In Sect. 3, we formally introduce the problem of ontology-
mediated query answering and compare it to the closely related problem of query-
ing relational databases. We also explain how we will measure the complexity
of query answering and briefly introduce the two main algorithmic techniques
(query rewriting and saturation) that underlie most of the querying algorithms
that have been proposed for Horn DL ontologies. The following three sections
are devoted to different query languages: instance queries in Sect. 4, conjunc-
tive queries in Sect. 5, and navigational queries in Sect. 6. In each of these sec-
tions, we will illustrate the kinds of natural queries that can be expressed in the
query languages, describe the challenges that arise when evaluating them in the
presence of ontologies, present algorithmic solutions involving query rewriting
and/or saturation, and summarize what is known about the complexity of the
query answering task for different DLs. In Sect. 7, we show the difficulties that
arise when querying DL knowledge bases using more expressive query languages
involving negation or recursion. The final section of this chapter provides an
overview of recent work on OMQA and areas of ongoing research.

This chapter aims to provide a relatively detailed introduction to the area
of ontology-mediated query answering with Horn DL ontologies. We chose to
focus on Horn DLs in order to showcase the versatility of query rewriting and
saturation techniques for handling a variety of different types of queries, includ-
ing navigational queries that have only recently been considered for OMQA.
Although we briefly discuss results and techniques for non-Horn DLs and try
to give a relatively complete picture of the complexity landscape, the present

220 M. Bienvenu and M. Ortiz

chapter should by no means be considered a comprehensive survey of the field.
For a detailed treatment of OMQA as it relates to more expressive DLs, we refer
to [163,168] and references therein. For introductions to OMQA that focus on
DL-Lite and the corresponding OWL 2 QL profile and provide more details on
the use of database systems, we direct readers to the tutorials [48,128].

2 Horn Description Logics

In this section, we give a short introduction to description logics and how they
are used for describing ontological knowledge. We try to keep it concise, since
extensive introductory texts on the topic have been published elsewhere. Readers
less familiar with DLs may find useful the long and detailed introductions in
[190], and in the first part of [168], or the short basic overview in [137].

2.1 Description Logic Basics

In description logics, a domain of interest is described using a DL vocabulary
consisting of three countably infinite, pairwise disjoint sets of symbols:

– the set NC of concept names, to capture classes of objects
– the set NR of role names, to capture binary relations between objects
– the set NI of individual names (often abbreviated to individuals), to refer to

specific individual objects.

Note that a DL vocabulary can be seen as a restricted first-order logic (FO)
vocabulary containing only unary predicates (concept names), binary predicates
(role names), and constants (individual names).

From a DL vocabulary, we can build expressions that reflect the knowledge
about our domain. In general, we use two kinds of statements:

– Terminological axioms specify general properties of concepts and roles, and
constrain the way all objects in the domain can participate in the different
concepts and roles.

– Assertions are facts about specific objects in the domain, that is, they assert
that an individual participates in some concept, or that some role holds
between a pair of individuals.

Each DL offers a different syntax for the terminological axioms and different com-
binations of concept constructors and role constructors that allow us to build
complex concept and roles from the symbols in the vocabulary. Table 1 summa-
rizes some DL concept and role constructors, as well as the most common forms
of axioms and assertions.

As the inverse role constructor occurs in many of the DLs considered in this
chapter, we introduce some dedicated notation and terminology. We use N±

R to
denote the set NR ∪ {r− | r ∈ NR} and use the generic term role to refer to
elements of N±

R . We define the inverse inv(R) of a role as follows: if R is a role
name r ∈ NR, then inv(R) = r−, and if R is of the form r−, then inv(R) = r.

Ontology-Mediated Query Answering 221

Table 1. Syntax and semantics of DL concept and role constructors, TBox axioms,
and ABox assertions. Here a, b denote individual names, A denotes a concept name,
C(i) denotes a (complex) concept, r ∈ NR denotes a role name, R denotes a role, and
m ∈ N denotes a natural number.

Name Syntax Semantics

Top concept � ΔI Concepts

Bottom concept ⊥ ∅
Nominal {a} {aI}
Negation ¬C ΔI \ CI

Conjunction C1 � C2 C1
I ∩ C2

I

Disjunction C1 � C2 C1
I ∪ C2

I

Existential restriction ∃R.C {d1 | there exists (d1, d2) ∈ RI with d2 ∈ CI}
Universal restriction ∀R.C {d1 | d2 ∈ CI for all (d1, d2) ∈ RI}
(Qualified) number �m R.C {d1 | m ≤ ∣

∣{d2 | (d1, d2) ∈ RI and d2 ∈ CI}∣
∣}

restrictions �m R.C {d1 | m ≥ ∣
∣{d2 | (d1, d2) ∈ RI and d2 ∈ CI}∣

∣}

Inverse r− {(d2, d1) | (d1, d2) ∈ rI} Roles

Role negation ¬R (ΔI × ΔI) \ RI

Concept inclusion C � D CI ⊆ DI TBox Axioms

Role inclusion R � S RI ⊆ SI

Transitivity axiom trans(R) RI ◦ RI ⊆ RI

Concept assertion A(a) aI ∈ AI ABox Assertions

Role assertion r(a, b) (aI , bI) ∈ RI

Definition 1. A TBox is a finite set of terminological axioms and an ABox is
a finite set of assertions. A knowledge base (KB) K = (T ,A) is composed of a
TBox T and an ABox A.

A signature is a set of concept and role names, and the signature of a
TBox T , written sig(T), is the set of concept names and role names that occur in
T . Signatures of ABoxes and KBs are defined and denoted analogously. Finally,
for a given signature Σ, we say that an ABox A is a Σ-ABox if sig(A) ⊆ Σ.

Example 1. For the examples in this chapter, we will consider the domain of
food, dishes and menus offered by restaurants. The vocabulary we use to model
this domain contains concept names for food items, like IceCream or Meat, and for
more general types of food, such as vegetarian-friendly options (VegFriendly) or
spicy dishes (SpicyDish). We also use concept names for notions like Restaurant,
Menu and Dish. The role name hasIngredient is used to relate dishes and their
ingredients, and contains is a generalization (or superrole) of hasIngredient that
can also relate foods with components (such as lactose or gluten) that would not
typically be considered as ingredients. The role name hasCourse relates menus

222 M. Bienvenu and M. Ortiz

to the dishes they contain as courses, and we may also have specialized versions
of this role like hasDessert and hasMain. We can also use role names to say
that a restaurant offers some menu, or that it serves a dish. For individuals that
represent specific menus, dishes, and restaurants, we use italic, lower-case letters.

With this vocabulary in place, we can write ABox assertions such as:

offers(r,m) hasMain(m, p1) PenneArrabiata(p1)
hasDessert(m, d1) IceCream(d1) serves(r, p2)
PizzaCalabrese(p2) serves(r, d2) Tiramisu(d2)

which intuitively express that some restaurant (r) offers a menu (m) with penne
arrabiata and ice cream, and it also serves pizza calabrese and tiramisu.

We give some examples of TBox axioms that express general knowledge about
this domain. Here C ≡ D is shorthand for the pair of axioms C � D and D �C.

∃hasCourse.� � Menu (1)

∃hasCourse−.� � Dish (2)
hasDessert � hasCourse (3)

hasMain � hasCourse (4)
Menu � �1 hasMain.� (5)

FullMenu ≡ �3 hasCourse.� (6)
PizzaCalabrese � Pizza 	 ∃hasIngredient.PizzaDough (7)
PenneArrabiata � ∃hasIngredient.Pasta (8)

PizzaDough
 Tiramisu
 Pasta � ∃contains.Gluten (9)
GlutenFree ≡ ∀contains.¬Gluten (10)

hasIngredient � contains (11)
trans(contains) (12)

The concept inclusions (1) and (2) state respectively that the domain of
hasCourse consists of menus, and its range consists of dishes. The role inclu-
sions (3) and (4) express that hasDessert and hasMain are specializations (or
subroles) of the role hasCourse, since desserts and mains are types of courses.
Concept inclusion (5) stipulates that a menu can only have one main course. The
axiom (6) defines full menus as menus that have at least three courses. Axiom (7)
states that pizza calabrese is a kind of pizza that has as ingredient pizza dough.
The following axiom (8) says that penne arriabiata has pasta as an ingredient.
In (9), it is stated that pizza dough, tiramisu and pasta all contain gluten, and
(10) defines the gluten-free as the class of entities not containing gluten. The
role inclusion (11) expresses that hasIngredient is a subrole of contains, and (12)
asserts the transitivity of the relation contains. �

There are a wide range of DLs offering different shapes of axioms and different
concept and role constructors. For example, the well-known description logic
ALC allows only for concept inclusions C � D as TBox axioms, where C and

Ontology-Mediated Query Answering 223

D are complex concepts built using negation, conjunction, disjunction, exis-
tential restrictions, and universal restrictions, from the atomic concepts that
include concept names, top and bottom. The DL S extends ALC with transitiv-
ity axioms. The presence of additional constructors or axiom types is denoted by
additional letters in the name of the logics. For example, the letter H denotes the
presence of role inclusions in the TBox. The letter I denotes that inverse roles
can be used as a role constructor in the TBox axioms, O denotes the presence
of nominals as a concept constructor, and Q denotes the presence of qualified
number restrictions. In this way, we obtain a large number of different DLs like
ALCI, ALCHQ, SHIQ, SHOIQ, and so on1. We note that the knowledge base
in Example 1 is a SHIQ knowledge base.

Before moving on to the semantics of DLs, a small remark is in order concern-
ing the syntax of ABox assertions. For a DL L, an L ABox is sometimes defined
as a set of assertions of the forms C(a) and R(a, b), where C and R are possibly
complex concepts and roles in L. In this chapter, for simplicity, ABox assertions
take the forms A(a) and r(a, b) only, independently of the DL in question. For
our purposes, this simplification is without any loss of generality. Indeed, it is
well known that complex assertions C(a) can be replaced by assertions AC(a)
for a fresh concept name AC , provided that AC � C is added to the TBox. Role
assertions r−(a, b) can be replaced by r(b, a), and as inverses are the only role
constructor in almost all DLs we consider (the only exception is DL-Lite, dis-
cussed further), this is the only kind of complex assertions that could occur. It
will be clear from what follows that these transformations preserve the semantics
of KBs and that they have no impact on the computational complexity of any
of the reasoning and query answering problems we consider.

2.2 Semantics

The semantics of DLs is defined using the notion of interpretations.

Definition 2 (Interpretation, Models). An interpretation I is a pair
(ΔI , ·I) where ΔI is a non-empty set called the domain, and ·I is an inter-
pretation function that maps:

– each concept name A ∈ NC to a set AI ⊆ ΔI ,
– r ∈ NR to a set of pairs rI ⊆ ΔI × ΔI , and
– each individual a ∈ NI to some aI ∈ ΔI , in such a way that aI �= bI whenever

a �= b.

The interpretation function is extended to complex concept and roles as specified
in the upper right portion of Table 1.

1 The order of the letters is irrelevant, although some orderings are more frequent in
the literature than others, e.g., SHIQ, vs. SHQI. We also point out that some DLs
impose additional restrictions, for example, restricting the interaction of number
restrictions and transitive roles in SHIQ and SHOIQ.

224 M. Bienvenu and M. Ortiz

Note that this is essentially the traditional notion of interpretation from first-
order logic, but restricted to unary and binary predicates, and constants.

Using interpretations, we can define the notions of models, satisfiability, and
entailment. The satisfaction I |= ξ of a TBox axiom or ABox assertion ξ in an
interpretation I is defined in the lower right part of Table 1. An interpretation I
is called a model of a TBox T , written I |= T , if I |= ξ for every axiom ξ
in T . Similarly, I is a model of an ABox A, written I |= A, if I |= ξ for
every assertion ξ in A. If both I |= T and I |= A, then we call I a model
of the KB K = (T ,A), and we write I |= (T ,A) (or, I |= K). We call a KB
K satisfiable (or consistent) if it has at least one model. Entailment is defined
in the expected way: a TBox axiom or ABox assertion ξ is said to be entailed
from a KB K (in symbols: K |= ξ) if I |= ξ for every model I of K. We can
also define the corresponding notions of entailment w.r.t. TBoxes and ABoxes:
T |= ξ if (T , ∅) |= ξ, and A |= ξ if (∅,A) |= ξ.

Remark 1. Note that, by definition, interpretations give meaning to all the sym-
bols in the infinite vocabulary NC ∪ NR ∪ NI. Alternatively, interpretations can
be defined for a possibly finite signature that contains all the relevant symbols,
including the signature of the KB at hand. Since the interpretation of all symbols
not occurring in a KB or query is irrelevant to their satisfaction, both semantics
are equivalent. Moreover, in definitions and examples, we will allow interpreta-
tions to be (finitely) specified for the relevant signature only, and disregard the
interpretation of all irrelevant symbols.

Remark 2. Observe that in Definition 2 we require distinct constants to be inter-
preted as different objects in ΔI . That is, we make the unique name assumption
(UNA). This assumption is sometimes made in DLs, and sometimes not. We
have chosen to adopt the UNA because it is closer to the intended semantics of
ABoxes as data repositories, and hence more natural for the OMQA setting we
consider. We should emphasize that this assumption is not central to the results
and techniques presented in this chapter, which are valid both with or without
the UNA. It can be noted however that there do exist cases, not covered in this
chapter, in which the complexity of query answering depends on whether the
UNA is adopted (see e.g., [10]).

2.3 Some Popular Horn Description Logics

In this chapter, we focus on a specific class of DLs known as Horn DLs, whose
core feature is that they are incapable of expressing any form of disjunction.
This lack of disjunction means that Horn DL knowledge bases can be translated
into the Horn fragment of first-order logic.

We first introduce two important sub-families of Horn DLs based upon the
‘lightweight’ logics DL-Lite and EL, which support efficient reasoning at the cost
of limited expressiveness.

Ontology-Mediated Query Answering 225

DL-Lite Family. The constructors available in the different DLs of the DL-
Lite family were selected in order to express the main features present in con-
ceptual and data models, like ISA-relations between classes, class disjointness,
domain and range restrictions on roles, functionality constraints, and mandatory
(non-)participation constraints. This makes (large fragments of) the formalisms
used in databases and software engineering, like entity-relationship and UML
class diagrams, expressible as DL-Lite knowledge bases. At the same time, the
DL-Lite family (first proposed in [50,52]) was designed to support efficient rea-
soning in data-oriented applications, even in the presence of large amounts of
data. Due to their carefully tailored expressivity and good computational prop-
erties, DLs of the DL-Lite family have become extremely popular as ontology
languages. This can be witnessed by the recent inclusion of the OWL 2 QL profile
[159], based upon DL-Lite, in the latest version of the OWL standard.

In the DL-Lite family, there are no universal restrictions, and existential
restrictions can only be of the form ∃R.� and are thus abbreviated to ∃R.
The basic DL-Lite dialect, sometimes denoted DL-Litecore , only allows concept
inclusions of the forms B1 �B2 and B1 �¬B2, where each Bi is either a concept
name or an existential restriction ∃R with R ∈ N±

R . We note that negative concept
inclusions of the form B1 � ¬B2 can also be written as (concept) disjointness
constraints B1 	 B2 � ⊥; both syntaxes are widely used. Axioms of the form
∃r � B are often called domain restrictions, since they enforce that the domain
of role r is contained in the concept B; similarly, axioms of the form ∃r− � B
are called range restrictions. In DL-Lite, it is also common to allow negative
concept and role assertions ¬B(a) and ¬R(a, b) in the ABox. We do not allow
them explicitly here, since ¬B(a) can be simulated using an assertion B̄(a) for
a fresh concept name B̄(a), and adding B̄ �¬B to the TBox. Likewise, ¬R(a, b)
can be simulated via R̄(a, b) and R̄ � ¬R, where R̄ fresh role name.

One of the most popular dialects of DL-Lite is DL-LiteR, which additionally
allows for role inclusions of the forms R�S and R�¬S, where R,S ∈ N±

R . We will
focus on DL-LiteR when discussing the DL-Lite family in this chapter. Another
prominent dialect of DL-Lite is DL-LiteF , which extends DL-Lite by allowing
axioms of the form (funct P), which are just an abbreviation of ���1R.�. There
are a great many other DL-Lite dialects that have been considered, see [10] for
a detailed discussion.

Example 2. Among the axioms in Example 1, only (1) and (2) are expressible
in the core dialect of DL-Lite. They would usually be written as follows:

∃hasCourse � Menu ∃hasCourse− � Dish

In DL-LiteR, we can also have (3), (4) and (11), and we can simulate (7) using
an additional role name hasIngredientPizzaDough as follows:

PizzaCalabrese � Pizza

PizzaCalabrese � ∃hasIngredientPizzaDough

∃hasIngredientPizzaDough− � PizzaDough

hasIngredientPizzaDough � hasIngredient

226 M. Bienvenu and M. Ortiz

We can simulate the existential restrictions in the right-hand-side of axioms
(8) and (9) in a similar fashion, and replace the axiom with disjunction on
the left-hand side by three axioms, each with one concept name. However, we
cannot express qualified existential restrictions on the left-hand side of axioms,
nor number restrictions as in (5) and (6), universal restrictions as in (10), or
transitivity axioms.

In DL-LiteF , we have a restricted form of number restrictions, and we can
express (5) using func(hasMain). �

EL Family. Like DL-Lite, the EL description logic offers tractable reasoning at
the cost of limited expressivity. The constructors offered by EL and its extensions
[19] make them particularly well suited for medical and life science terminologies.
Several important large-scale ontologies are written using DLs of the EL family,
including the Gene Ontology [205], the NCI thesaurus [199] (a cancer ontology),
and most notably, SNOMED CT, a comprehensive medical ontology2 that is
used by the health-care systems of several countries (including the US and UK).

EL is the fragment of ALC that allows for arbitrary use of concept conjunc-
tion and existential restrictions, but no negation, concept disjunction, or uni-
versal restrictions. Atomic concepts consist of concept names and �, but do not
include ⊥. As EL cannot express any form of contradictory or negative informa-
tion, EL KBs are trivially satisfiable. In order to be able to express disjointness
of concepts, it is common to extend EL by allowing ⊥ as an atomic concept. The
resulting DL, which has essentially the same computational properties as plain
EL [19], is usually denoted EL⊥.

Like ALC, EL and EL⊥ can be extended with the additional features from
Table 1 to obtain DLs like ELH, ELHO, ELI⊥, ELHI⊥, etc. Some additions, like
role hierarchies, have no impact on the positive computational properties of EL
and EL⊥, while others, like inverse roles, significantly increase the complexity
of reasoning. A detailed discussion of the complexity of reasoning in EL and
extensions can be found in [19,20].

The OWL 2 EL profile [159] is based on the EL family, and in particular
on a DL sometimes called ELRO+, which is in turn a variant of EL++ [19].
Both of these languages extend ELH⊥ with additional features like nominals
and complex role inclusion axioms of the form r1 · . . . · rn � r, which intuitively
mean that the pairs of objects in the composition of the ri also belong to r.
In particular, transitivity can be expressed using axioms of the form r · r � r.
ELRO+ also allows range restrictions (without allowing inverses in general).
We do not consider these logics in detail here, but we remark that OWL 2
EL corresponds to the so-called regular fragment of ELRO+, which imposes
a regularity condition on the complex role inclusions to ensure that the set
{r1 · . . . · rn | T |= r1 · . . . · rn � r} of role chains implying a role name r can be
represented using a finite automaton.

Example 3. Of the TBox axioms in the example, (1), (7), and (8), are all in the
core EL, while (9) can be split into three EL axioms. ELH can also express (3),
2 http://www.ihtsdo.org/snomed-ct.

http://www.ihtsdo.org/snomed-ct

Ontology-Mediated Query Answering 227

Table 2. Syntax of normalized Horn KBs. �(conds) means that only axioms satisfying
conds are allowed for the form in question. Here A(i) and B denote atomic concepts
from NC ∪ {�}, while R and S are from NR ∪ {r− | r ∈ NR}.

TBox axioms DL-LiteR EL ELHI⊥ Horn-SHIQ
A1 � · · · � An � B �(n = 1) � � �
A1 � · · · � An � ⊥ �(n = 2) � �
A � ∃R.B �(B = �) �(R ∈ NR) � �
∃R.B � A �(B = �) �(R ∈ NR) � �
A � �1 R.B �
A � �m R.B �
R � S � � �
R � ¬S �
trans(R) �
ABox assertions

A(a) � � � �
r(a, b) � � � �

(4) and (11). The axiom restricting the range of hasCourse is expressible in ELI
and ELRO+. The inclusion GlutenFree � ∀contains.¬Gluten can be equivalently
expressed in ELI⊥ as

Gluten 	 ∃contains−.GlutenFree � ⊥

However, the other direction, ∀contains.¬Gluten� GlutenFree is not expressible in
any DL of the EL family. The transitivity axiom (12) is expressible in (regular)
ELRO+ and EL++. �

It is sometimes convenient to assume that EL and ELHI⊥ TBoxes are in a
normal form that only allows axioms of the forms indicated in Table 2. It is
well known that TBoxes can be efficiently transformed into this normal form
by introducing fresh concept names. For the sake of comparison, we have also
included in the table the syntax of DL-LiteR, assuming a similar normalization.
We introduce another important Horn DL, called Horn-SHIQ, that is not part
of the DL-Lite or EL families.

Horn-SHIQ. The description logic Horn-SHIQ is the disjunction-free frag-
ment of the well-known DL SHIQ. It supports many of the expressive features
of SHIQ, like transitivity and number restrictions, but as we will see later, it
is better behaved computationally. The formal definition of Horn-SHIQ syn-
tax is rather complicated, since fully eliminating disjunction requires taking into
account complex interactions between constructors, and in particular, which sub-
formulas occur implicitly under the scope of negation. The full definition can be
found in [136]. Here we instead give only the definition of normalized TBoxes,

228 M. Bienvenu and M. Ortiz

which allow for axioms of all the forms listed in Table 2 except for R � ¬S.3

Additionally, in a (Horn-)SHIQ TBox T , all roles R occurring in a number
restriction �nR.C or �n R.C must be simple, which means that there does not
exist a role S such that trans(S) ∈ T and T |= S � R. We note that axioms of
the form A � ∀R.B are usually allowed in Horn-SHIQ. We have omitted them
from our syntax, but they can be equivalently expressed as ∃inv(R).A � B.

Example 4. Most of the axioms in our example TBox are expressible in Horn-
SHIQ, with the exception of axioms (6) and (10), for which we can only express
one half of the stated equivalences:

FullMenu � �3 hasCourse.� (6′)

∃contains−.GlutenFree 	 Gluten � ⊥ (10′)

The other halves of (6) and (10)

∀contains.¬Gluten � GlutenFree �3 hasCourse.� � FullMenu

cannot be expressed in Horn-SHIQ, nor in any other Horn DL. �

Horn Logics and Universal Models. We have mentioned that the main
distinguishing feature of Horn DLs is that they can be viewed as subsets of the
well-known Horn fragment of first-order logic. Semantically, the crucial property
this ensures is that, for every satisfiable KB K, there exists a universal model of K
that can be homomorphically embedded into any other model. Intuitively, this
model satisfies all the constraints expressed by K in the minimal, most general
way, and it witnesses all entailments. We will present later in the chapter a
concrete way of constructing such a model and explain how it can be exploited
for answering different kinds of queries.

Unfortunately, this crucial property is lost in non-Horn DLs, which provide
means of expressing disjunctive knowledge. The complexity results we will dis-
cuss in this chapter illustrate how the lack of a universal model has a negative
impact on the complexity of reasoning.

Example 5. Consider the KB consisting of one ABox assertion and two TBox
axioms:

PastaDish(d) PastaDish � Dish PastaDish � ∃hasIngredient.Pasta

The following interpretation, with ΔI = {od, op}, is a model of this KB:

dI = od hasIngredientI = {(od, op)} PastaDishI = {od}
DishI = {od} PastaI = {op}

3 SHIQ does not support negative role inclusions. These could be added at no com-
putational cost, and they are expressible in extensions of SHIQ for which reasoning
has the same complexity, like ZIQ [57] and the simple fragment of SRIQ [109].

Ontology-Mediated Query Answering 229

This model is universal: every model of the KB contains an object interpreting
d as an instance of Dish and PastaDish, related via hasIngredient to some object
that is an instance of Pasta. This is the minimal structure that needs to be
present in an interpretation for it to be a model of the KB.

Now suppose we add the axiom Pasta � freshPasta
 driedPasta. We exhibit
two interpretations I1 and I2, with the same domain as I, which are both models
of the extended KB:

hasIngredientI1 = {(od, op)} PastaDishI1 = {od} freshPastaI1 = {op}
DishI1 = {od} PastaI1 = {op} driedPastaI1 = ∅

hasIngredientI2 = {(od, op)} PastaDishI2 = {od} freshPastaI1 = ∅
DishI2 = {od} PastaI2 = {op} driedPastaI2 = {op}

Observe that I1 is not (homomorphically) contained in I2, and I2 is not (homo-
morphically) contained in I1, which shows that there is no universal model of
this KB. �

3 Ontology-Mediated Query Answering

In this section, we will formally define the problem of ontology-mediated query
answering, discuss how the complexity of this task can be measured, and intro-
duce two key algorithmic techniques for OMQA. This will lay the necessary
foundations for later sections, in which we will present concrete algorithms and
complexity results for different query languages and DLs.

As ontology-mediated query answering is closely related to the more well-
studied problem of querying relational databases, the first part of this section
will recall some key notions from databases and discuss the important differences
between the two settings.

3.1 Databases and ABoxes

Recall from the preceding section that in description logics, data is stored in
the ABox as a set of assertions of the forms A(a) and r(a, b), where A is a
concept name, r a role name, and a, b are individuals. From the first-order logic
point of view, ABox assertions are simply facts built from unary and binary
relation symbols and constants. ABoxes provide an incomplete description of
the considered application domain, in the sense that everything stated in the
ABox is assumed to be true, but facts which are not present in the ABox are
not assumed to be false. This is known as the open-world assumption and is a
desirable property in our setting as it allows us to leave the truth of some facts
unspecified and to be able to infer new pieces of information from the explicit
information asserted in ABox and TBox.

Relational databases constitute one of the most common ways of storing data
in modern information systems. Relational database instances (which we will
often abbreviate to databases) can be defined similarly to ABoxes as finite sets

230 M. Bienvenu and M. Ortiz

of facts P (a1, . . . , an), where P is a relation symbol of arity n ≥ 0. In addition to
allowing facts of arbitrary arity, databases differ from ABoxes in another impor-
tant respect: they are interpreted under the closed-world assumption, meaning
that all facts that are contained in the database are assumed true and those that
are absent are assumed to be false. Concretely, this means that every database
instance D corresponds to the unique first-order interpretation ID whose domain
ΔID contains all constants appearing in D and which interprets every relation
symbol P as {a | P (a) ∈ D} and every constant as itself.

Remark 3. Databases make the standard names assumption, which consists in
interpreting constants as themselves. Note that this is strictly stronger than the
unique names assumption discussed in Sect. 2.1.

The next example illustrates the difference between ABoxes and databases.

Example 6. Let D and A1 be respectively the database and ABox corrresponding
to the following set of facts (assertions):

Cake(d1) IceCream(d2) Dessert(d3) hasDessert(m, d4)

The database D corresponds to the interpretation ID defined as follows:

– ΔID = {m, d1, d2, d3, d4}
– CakeID = {d1}
– IceCreamID = {d2}
– DessertID = {d3}
– hasDessertID = {(m, d4)}
– cID = c for every c ∈ {m, d1, d2, d3, d4}
According to the interpretation ID, there are five entities (m, d1, d2, d3, d4), and
only d3 belongs to Dessert.

The interpretation ID is a model of the ABox A1, but A1 has (infinitely)
many other models, including the interpretation J defined as follows4:

– ΔID = {m,m′, d1, d2, d3, d4, d7, e, f4, g}
– CakeID = {d1, d3, e}
– IceCreamID = {d2, f4}
– DessertID = {d1, d2, d3, d4, e, f4}
– hasDessertID = {(m, d4), (m′, d3)}
– cID = c for every c ∈ {m, d1, d2, d3, d4}
The interpretation J contains additional domain elements that are not explicitly
mentioned in A1, and it also makes true some assertions that are not present
in A1. For example, there are now six entities (including the ABox individuals
d1, d2, d3, and d4) that belong to the class Dessert. Since some models of A1

state that d1 is a dessert, and others do not, the truth of this assertion is left
undefined by A1. However, if we add a TBox containing the information that all
cakes are desserts (Cake � Dessert), then this will eliminate some of the models
and allow us to infer that d1 is a dessert. �
4 Note that for simplicity, and to facilitate the comparison with ID, the interpreta-

tion J interprets individuals as themselves. However, we could instead have chosen
domain elements distinct from the individual names.

Ontology-Mediated Query Answering 231

3.2 Querying Databases

Queries provide the means of accessing the data stored in database instances.
There are several different query languages that have been proposed for rela-
tional databases, each providing a formal syntax for constructing queries and a
semantics that defines the result of evaluating a query on a given database. For-
mally, the semantics of a query q specifies for every database D the set ans(q,D)
of answers of q over D, where the answers take the form of tuples of constants
from D. Since databases correspond to interpretations, we can alternatively view
database queries as mappings from interpretations to tuples of domain elements.
Note that although databases correspond to finite interpretations, it is typically
straightforward to extend the semantics of queries to arbitrary interpretations,
and so we may assume that ans is defined for all interpretations, finite or infinite.
Thus, for the purposes of this chapter, a query q of arity n ≥ 0 associates with
every interpretation I a subset ans(q, I) ⊆ (ΔI)n. Note that when n = 0, the
query q is called Boolean, and ans(q, I) can take one of two values: the empty
tuple () (meaning q holds in I) or ∅ (q does not hold).

We introduce next two specific database query languages that will play an
important role in this chapter, namely, first-order queries and Datalog queries.

First-Order Queries. A common way of specifying queries is to use formulas
from some logic, with first-order logic being the standard choice. A first-order
(FO) query is a first-order formula built from relational atoms P (t1, . . . , tn) and
equality atoms t1 = t2 (with each ti a constant or variable) using the Boolean
connectives (∨,∧,¬,→) and universal and existential quantifiers (∀x, ∃x). The
free variables of FO queries will be called answer variables, and the arity of an
FO query is defined as its number of answer variables. Given an interpretation I,
an FO query ϕ with answer variables (x1, . . . , xn), and a tuple (e1, . . . , en) of
elements from ΔI , we use I |= ϕ[(x1, . . . , xn) �→ (e1, . . . , en)] to denote that the
FO formula ϕ is satisfied in I under the variable assignment that maps each xi

to ei. The semantics of an FO query ϕ with answer variables x = (x1, . . . , xn)
is defined using this notion of satisfaction:

ans(q, I) = {e = (e1, . . . , en) ∈ (ΔI)n | I |= ϕ[x �→ e]}

An FO query ϕ is called domain independent if ans(ϕ, I) = ans(ϕ,J) for every
pair of interpretations I,J such that ·I = ·J , i.e., I and J interpret all predicate
and constant symbols identically.

We remark that domain-independent first-order queries provide the logical
underpinnings of SQL, which is the most widely used query language in com-
mercial database systems. Every domain independent first-order quey can be
translated into an equivalent SQL query, which means that such queries can be
evaluated using standard relational database management systems.

Remark 4. Unless stated otherwise, all first-order queries considered in this
chapter are domain independent.

232 M. Bienvenu and M. Ortiz

Datalog Queries. Datalog is a rule-based formalism that originated from work
on logic programming and has been extensively studied within the database
community as a powerful language for expressing recursive queries (see e.g. [66]
and Chaps. 12–13 of [1]). A Datalog rule takes the form

Pn(tn) ← P1(t1), . . . , Pn−1(tn−1)

where each Pi(t i) is a relational atom. We call Pn(tn) the head of the rule and
P1(t1), . . . , Pn−1(tn−1) the rule body. Datalog rules are required to satisfy the
following safety condition: every variable that appears in the rule head must also
occur in one of the atoms of the rule body. A Datalog program consists of a finite
set of Datalog rules, and a Datalog query is a pair (Π,Q) where Π is a Datalog
program and Q is a relation symbol that appears in Π.

Every Datalog rule can be viewed as a first-order sentence5: simply reverse
the direction of the implication symbol, take the conjunction of the body atoms,
and quantify universally over all variables. For example, consider the following
Datalog rule and its corresponding FO sentence:

Q(v, u) ← P (v, x), T (x, u, w) � ∀xuvw (P (v, x)∧T (x, u, w)) → Q(v, u)

We will say that a first-order interpretation I is a model of a Datalog rule if I is
a model of the corresponding FO sentence, and we call I a model of a Datalog
program Π just in the case that I is a model of every rule in Π.

Recall that we view sets of facts as interpretations, hence the semantics of a
Datalog program is defined relative to a given interpretation that corresponds
to an (extensional) database. Given an interpretation J and a Datalog program
Π, we will call an interpretation I a minimal model of Π relative to J just in
the case that the following conditions hold:

1. ΔI = ΔJ

2. cI = cJ for every constant c
3. I is a model of Π
4. for every other interpretation I ′ that satisfies the three preceding conditions,

we have that P I ⊆ P I′
for every relation symbol P .

In fact, it can be shown that for every interpretation J and Datalog program Π
there is a unique minimal model of Π relative to I. Using the minimal model,
we may define the semantics of Datalog queries as follows:

ans((Π,Q), I) = QJ where I is the minimal model of Π relative to J

Remark 5. Datalog queries can also be given a procedural semantics, in which
the minimal model is computed by an exhaustive application of the Datalog
rules starting from the initial set of facts in the database (or the initial relations
in the interpretation).

5 More precisely, Datalog rules correspond to function-free Horn clauses.

Ontology-Mediated Query Answering 233

3.3 Querying Description Logic Knowledge Bases

In principle, any query language defined for databases can be used to query
description logic knowledge bases. From the syntactic point of view, the only
difference is that in place of arbitrary relation symbols, we will use concept and
role names. It is less obvious how to lift the semantics of queries to DL knowl-
edge bases, as DL KBs typically have multiple models, whereas the semantics
of queries only states how to obtain answers from a single interpretation. The
solution is to adopt so-called certain answer semantics6, in which we consider
those answers that hold with respect to each of the KB’s models. The intuition
is that since we do not know which of the KB’s models provides the correct
description of the application domain, we can only be confident in those answers
that can be obtained from every model of the KB.

Definition 3 (Certain Answers). Let K = (T ,A) be a DL KB, and let q be
an n-ary query. The set cert(q,K) of certain answers to q over K is defined as
follows:

{(a1, . . . , an) ∈ Ind(A)n | (aI
1 , . . . , aI

n) ∈ ans(q, I) for every I ∈ Mods(K)}

Remark 6. Observe that certain answers are defined as tuples of individuals,
rather than tuples of domain elements. This distinction is important since we do
not make the standard names assumption, and so an individual may be mapped
to different elements in different models of the KB.

Remark 7. If we consider Boolean FO queries, then certain answer semantics
corresponds to logical entailment. Indeed, the DL KB can be expressed as a FO
theory, and the problem is to determine whether the query (an FO sentence)
holds in every model of the KB. By contrast, the evaluation of Boolean FO
queries over databases corresponds to model checking, since we need to check
whether the query (FO sentence) holds w.r.t. to a given FO interpretation. It is
well known that logical entailment is more difficult than model checking, and so
it is no surprise that ontology-mediated query answering is a more challenging
computational task than query answering in databases.

We illustrate the notion of certain answers on an example.

Example 7. We consider the KB K1 consisting of the ‘dessert’ ABox A1 from
Example 6 and the following TBox T1:

Cake � Dessert IceCream � Dessert hasDessert � hasCourse

∃hasCourse � Menu ∃hasDessert− � Dessert

Suppose that we are interested in finding all desserts, i.e., we wish to find all
certain answers to the query q1 = Dessert(x). Since there are five individuals in
the ABox, there are five potential certain answers. We argue that four of them
are indeed certain answers:
6 The certain answer semantics is also used in other contexts, such as incomplete

databases [112], data integration [142], and data exchange [6].

234 M. Bienvenu and M. Ortiz

– d1 ∈ cert(q,K1), since Cake(d1) ∈ A1 and Cake�Dessert ∈ T1, and so we must
have dI

1 ∈ DessertI for every model I of K1

– d2 ∈ cert(q1,K1), since IceCream(d2) ∈ A1 and IceCream � Dessert ∈ T1

– d3 ∈ cert(q1,K1), since Dessert(d3) appears explicitly in A1

– d4 ∈ cert(q1,K1), since hasDessert(m, d4)∈A1 and hasDessert− � Dessert ∈ T1

The fifth individual, m, is not a certain answer to q1 w.r.t. K1. To see why, let
us extend the interpretation J from Example 6 by setting:

– hasCourseJ = {(m, d4), (m, g), (m′, d3), (m′, g)}
– MenuJ = {m,m′}

It can be verified that J is a model of K1, yet mJ = m does not belong to
DessertJ . �

In this chapter, our main focus will be on the problem of ontology-mediated
query answering, which will consist in computing the certain answers of queries
over a DL KB. We will be particularly interested in understanding how the com-
plexity of this task varies depending on the query language and description logic
considered. For the purposes of analyzing the complexity of ontology-mediated
query answering, we will recast OMQA as a decision problem7:

Problem: Q answering in L (with Q a query language and L a DL)
Input: An n-ary query q ∈ Q, an ABox A, a TBox T formulated in L,

and a tuple a ∈ Ind(A)n

Question: Does a belong to cert(q, (T ,A))?

To solve the problem of Q answering in L, we must devise a decision procedure,
that is, an algorithm that satisfies the following three requirements:

– Termination: the procedure is guaranteed to halt on any input
– Soundness: if the procedure returns ‘yes’, then a ∈ cert(q,K)
– Completeness: if a ∈ cert(q,K), then the procedure returns ‘yes’

We remark that if we have such a decision procedure, then we can use it to solve
the original task of computing all certain answers. Indeed, we can enumerate
all tuples of the same arity as the query, and for each, we can use the decision
procedure to check whether or not the tuple is a certain answer.

According to certain answer semantics, if we pose an n-ary query q to an
unsatisfiable KB K, then every n-tuples of individuals from K is a certain answer,
and so we will answer ‘yes’ for every tuple. Thus, query answering is trivial when
the KB is unsatisfiable. It follows that to obtain a decision procedure for Q
answering in L, it suffices to provide decision procedures for the following two
problems: (i) satisfiability of L KBs, and (ii) Q answering over satisfiable L KBs.

7 We recall that a decision problem (alternatively known as a recognition problem) is
a problem with a yes-or-no answer.

Ontology-Mediated Query Answering 235

3.4 Complexity of Query Answering

We have seen in the previous subsection how the problem of ontology-mediated
query answering can be formulated as a decision problem. Database query evalu-
ation can be similarly recast as a decision problem: we are given as input a query
q, database D, and tuple of constants a , and the problem is to decide whether
a ∈ cert(q, ID). When we speak of the complexity of OMQA or database query
evaluation, we will always mean the complexity of these decision problems. In
what follows, we assume that we have a function | · | that assigns to each of the
objects (queries, TBoxes, ABoxes, databases, tuples) appearing in the input a
natural number corresponding to the size of the object, e.g. the length of its
string representation according to some suitable encoding. For example, |T | will
denote the size of TBox T .

The complexity of decision problems can be measured in different ways,
depending on which inputs we choose to count and which we treat as fixed.
When analyzing the complexity of query answering, there are two commonly
considered complexity measures [209]:

– Combined complexity is measured as a function of the size of the whole input,
that is, |q| + |T | + |A| + |a | in the case of OMQA and |q| + |D| + |a | in the
case of database query evaluation8.

– Data complexity is with respect to the size of the data, that is, |A| for OMQA
and |D| in the database setting. The sizes of all other inputs are treated as
fixed constants and so they do not contribute to the complexity.

Combined complexity corresponds to the ‘classical’ way of measuring complex-
ity, in which we consider all of the inputs to the decision problem and treat
them equally. If we show that a problem is in polynomial time for combined
complexity, then this is a good indication that the problem can be efficiently
solved in practice. However, a problem that is intractable in combined complex-
ity may nonetheless be prove feasible on typical inputs. Indeed, database query
evaluation has been proven intractable in combined complexity for all of the
commonly considered query languages, yet modern database systems are able to
answer most user queries instantaneously. The key observation is that the queries
encountered in practice are typically quite small, and their size is negligible when
compared to the size of the (typically very large) database, and so the real pre-
dictor of performance is how querying algorithms scale with respect to the size of
the database. For this reason, data complexity is generally considered the more
useful complexity measure for databases. In the setting of ontology-mediated
query answering, in addition the query and ABox, we have a TBox whose size
can vary widely, from a few dozen axioms up to tens (or even hundreds) of thou-
sands. However, it seems reasonable to assume that in most OMQA applications
the ABox will be significantly larger than the TBox, so data complexity is also
very relevant in this setting.

Computational complexity [9,172] provides a hierarchy of different complex-
ity classes that can be used to classify problems according to the amount of
8 We typically omit |a | since we have |a | ≤ |q| · |A| (or |a | ≤ |q| · |D|).

236 M. Bienvenu and M. Ortiz

resources (time, space) that are required in order to solve them. In this paper,
we will make use of the following complexity classes, which are ordered according
to inclusion with each class being included in those later in the list:

– AC0: problems that can be solved by a uniform family of circuits of constant
depth and polynomial size, with unlimited fan-in AND gates and OR gates.

– NLogSpace: problems that can be solved in non-deterministic logarithmic
space.

– P: problems that can be solved in polynomial time.
– NP (resp. coNP): problems that can be solved (resp. whose complement can

be solved) in non-deterministic polynomial time.
– PSpace: problems that can be solved in polynomial space.
– Exp: problems that can be solved in single-exponential time.

It is known that AC0 is strictly contained in the class LogSpace of all problems
solvable in deterministic logarithmic space, which in particular means that it is
a proper subclass of P.

The following theorems summarize what is known about the complexity of
evaluating first-order and Datalog queries over databases:

Theorem 1 ([209,210]). First-order query evaluation is in AC0 in data com-
plexity and PSpace-complete in combined complexity.

Theorem 2 ([113,209]). Datalog query evaluation is P-complete in data com-
plexity and Exp-complete in combined complexity.

In later sections, we will investigate the complexity of answering different forms
of queries over knowledge bases formulated using the Horn DLs introduced in
Sect. 2. As we shall see, in contrast to expressive DLs, for which answering even
the simplest queries is coNP-hard in data complexity, it is possible to design
query answering algorithms for Horn DLs that scale polynomially in the size of
the ABox. It is for this reason that we sometimes use the term ‘data-tractable’
when referring to Horn DLs.

3.5 Techniques for Ontology-Mediated Query Answering

We have seen that in general, ontology-mediated query answering is more com-
plex than database query evaluation, since we must consider all models of a KB
rather than the single interpretation associated with a database. Query rewrit-
ing and saturation are two techniques that can be used to bridge this gap and
enable the use of existing database systems for OMQA. These two techniques
underlie most of the OMQA algorithms that have been developed for Horn DLs,
including those that will be presented in this chapter.

Query Rewriting. The basic idea behind query rewriting is as follows. In a first
step, we rewrite the input query into a new query that contains all the relevant
information from the TBox. In a second step, we pass the rewritten query to

Ontology-Mediated Query Answering 237

a database system for evaluation over the ABox, which is treated as a (closed-
world) database instance. Query rewriting thus provides a means of reducing the
OMQA problem to the more well-studied problem of database query evaluation.

We now formalize the notion of a rewriting of a query. Note that we will
use IA to denote the finite interpretation obtained by viewing A as a database.
More precisely: ΔIA = Ind(A), AIA = {a | A(a) ∈ A} (for every A ∈ NC), rIA =
{(a, b) | r(a, b) ∈ A} (for every r ∈ NR), and aIA = a (for every a ∈ Ind(A)).

Definition 4 (Rewriting of a Query). Let T be a DL TBox, let Σ be a
finite signature, and let q, q′ be two queries. We say that q′ is a rewriting of
q w.r.t. T , Σ just in the case that cert(q, (T ,A)) = ans(q′, IA) for every Σ-
ABox A. We call q′ a rewriting of q w.r.t. T , Σ relative to consistent ABoxes if
cert(q, (T ,A)) = ans(q′, IA) for every Σ-ABox A such that (T ,A) is satisfiable.

Remark 8. The signature Σ specifies the concept and role names that can appear
in ABoxes of the considered application. To simplify the presentation, we will
sometimes omit mention of Σ, when it is unimportant to the discussion at hand.

Example 8. Reconsider the query q1 = Dessert(x) and KB K1 = (T1,A1) from
Example 7. It can be verified that the query

q′
1 = Dessert(x) ∨ Cake(x) ∨ IceCream(x) ∨ ∃y.hasDessert(y, x)

is a rewriting of q1 w.r.t. T1. Intuitively, this is because q′
1 captures the four ways

to infer, using the axioms in T1, that a given ABox individual is an instance of
the concept Dessert.

If we evaluate q′
1 over IA1 (which is identical to ID from Example 6), we

obtain ans(q′
1, IA1) = {d1, d2, d3, d4}. Indeed:

– d1 is an answer to the disjunct Cake(x), due to the assertion Cake(d1)
– d2 is an answer to the disjunct IceCream(x), due to the assertion IceCream(d2)
– d3 is an answer to the disjunct Dessert(x), due to the assertion Dessert(d3)
– d4 is an answer to the disjunct ∃y.hasDessert(y, x), due to the assertion

hasDessert(m, d4)

We can therefore conclude that cert(q1,K1) = {d1, d2, d3, d4}. �

We can define an analogous notion of rewriting for testing KB satisfiability.

Definition 5. (Rewriting of Unsatisfiability). Let T be a DL TBox, let Σ
be a finite signature, and let q⊥ be a Boolean query. We call q⊥ a rewriting of
unsatisfiability w.r.t. T , Σ if for every Σ-ABox A, we have cert(q, (T ,A)) = ()
iff (T ,A) is unsatisfiable.

The preceding notions of rewriting can be further specialized by adding to the
above definitions the requirement that the query q′ (resp. q⊥) be an FO or
Datalog query, yielding the notions of FO rewritings and Datalog rewritings.

In the same way as query answering can be decomposed into satisfiability
checking and query answering w.r.t. satisfiable KBs, one can show that it is

238 M. Bienvenu and M. Ortiz

sufficient to be able to construct rewritings of unsatisfiability and rewritings of
queries relative to consistent ABoxes. Indeed, if we have an FO rewriting q⊥
of unsatisfiability w.r.t. T , Σ and an FO rewriting q′ of q w.r.t. T , Σ relative
to consistent ABoxes, then these can be combined to obtain an FO rewriting
of q w.r.t. T , Σ (over arbitrary Σ-ABoxes). Basically, if q has answer variables
x1, . . . , xn, then the desired rewriting takes the form q′ ∨ (q⊥ ∧ qΣ

ind(x1) ∧ . . . ∧
qΣ
ind(xn)), where qΣ

ind is a unary query that retrieves all of the individuals that
occur in a given Σ-ABox. Using a similar construction, we can show that it is
possible to construct a Datalog rewriting of a query by combining a Datalog
rewriting of the query relative to consistent ABoxes with a Datalog rewriting of
unsatisfiability.

It is important to keep in mind that the existence of a rewriting is not
guaranteed: it is possible to find queries and TBoxes for which no FO (resp.
Datalog) rewriting exists. Moreover, as the next example illustrates, the existence
of a rewriting depends upon the type of rewriting we consider.

Example 9. The query Spicy(x) has no FO rewriting w.r.t. the TBox

{∃hasIngredient.Spicy � Spicy}.

Intuitively, we would like to use the following (infinite) query, which looks for
hasIngredient chains that start at x and end at an individual asserted to be Spicy:

Spicy(x) ∨ ∃x′(hasIngredient(x, x′) ∧ Spicy(x′))

∨ ∃x′x′′(hasIngredient(x, x′) ∧ hasIngredient(x′, x′′) ∧ Spicy(x′′)) ∨ . . .

It can be proven, using techniques from finite model theory (see the introductory
texts [76,145]), that no FO query that is equivalent to this infinite disjunction.

However, this same query and TBox possesses a Datalog rewriting. Indeed,
it suffices to take the single-rule Datalog program

Π = {Spicy(x) ← hasIngredient(x, y),Spicy(y)}

and use Spicy as the distinguished relation. In this particular case, the Datalog
program is just a translation of the TBox, but this is not the case in general. �

Most of the work to date has focused on FO rewritings, since (domain-
independent) FO queries can be translated into SQL statements and evaluated
using highly optimized relational database management systems. However, Dat-
alog rewritings, which can be passed to Datalog engines for evaluation, are also
popular as they are applicable to a wider range of DLs.

Saturation. We have seen that standard database querying algorithms are
incomplete for OMQA since they do not take into account the information pro-
vided by the TBox. Query rewriting addresses this problem by rewriting the
query so as to incorporate the relevant information from the TBox. By contrast,
saturation-based approaches to OMQA work by rendering explicit (some of) the

Ontology-Mediated Query Answering 239

implicit information contained in the KB, making it available for query evalua-
tion. In simple cases, saturation involves completing the ABox by adding those
assertions that are logically entailed from the KB, and then evaluating the query
over the saturated ABox. In more complex cases, we might have to have to enrich
the ABox in other ways (perhaps adding new ABox individuals to act as wit-
nesses for the existential restrictions), or we may need to combine saturation
with query rewriting. Indeed, unlike query rewriting, for which we could for-
mulate precise definitions of what constitutes a rewriting, saturation is a more
abstract concept that englobes a variety of different approaches whose common-
ality is that they enrich the KB with some additional information, which can
then be exploited for various reasoning tasks (in our case, query answering).
Saturation-based reasoning techniques have been employed in a variety of areas,
sometimes under different names: forward chaining, materialization, deductive
closure, and consequence-based reasoning.

Example 10. We return to our running example about desserts. By ‘applying’
the inclusions in the TBox T1 to the ABox A1, we obtain a new saturated KB
K′

1 with the following additional assertions:

– Dessert(d1), using Cake(d1) and Cake � Dessert
– Dessert(d2), using IceCream(d2) and IceCream � Dessert
– hasCourse(m, d4), using hasDessert(m, d4) and hasDessert � hasCourse
– Menu(m), using hasCourse(m, d4) and ∃hasCourse � Menu
– Dessert(d4), using hasDessert(m, d4) and ∃hasDessert− � Dessert

Once we have computed K′
1, answering our query Dessert(x) is as simple as

reading off the individuals that appear in a Dessert assertion: d1, d2, d3, d4. We
observe that this is the same result as was obtained in Example 8 by means of
query rewriting. Note however that the saturation process is performed inde-
pendently of the query, so we infer not only those assertions needed to answer
the specific query at hand, but also those needed to answer future queries. For
example, using the same saturated KB K′

1, we find that m is the unique certain
answer to the query Menu(x). �

4 Instance Queries

In this section, we begin our exploration of ontology-mediated query answering
by considering a very simple type of query that can be used to find all individ-
uals that belong to a given concept or role. Up until the mid-2000s, work on
querying DL knowledge bases focused almost exclusively on such queries, which
are commonly known as instance queries.

Definition 6 (Instance Queries). An instance query (IQ) takes one of the
following two forms:

– A(x) where A ∈ NC (concept instance query)
– r(x, y) where r ∈ NR (role instance query)

240 M. Bienvenu and M. Ortiz

Algorithm ComputeSubsumees
Input: DL-LiteR TBox T , concept B ∈ NC ∪ {∃R | R ∈ N±

R }
1. Initialize Subsumees = {B} and Examined = ∅.
2. While Subsumees \ Examined �= ∅

(a) Select D ∈ Subsumees \ Examined and add D to Examined.
(b) For every concept inclusion C � D ∈ T

– If C �∈ Subsumees, add C to Subsumees
(c) For every role inclusion R � S ∈ T such that D = ∃S.

– If ∃R �∈ Subsumees, add ∃R to Subsumees
(d) For every role inclusion R � S ∈ T such that D = ∃inv(S).

– If ∃inv(R) �∈ Subsumees, add ∃inv(R) to Subsumees.
3. Return Subsumees.

Fig. 1. Algorithm for computing subsumees of a given concept in DL-LiteR.

Remark 9. The restriction to concept names in the preceding definition is with-
out loss of generality. Indeed, suppose that we want to find all individuals that
belong to C, where C is an arbitrary concept formulated in the DL we are con-
sidering. This can be accomplished by taking a fresh concept name AC , adding
the inclusion C � AC to the TBox, and using the instance query AC(x).

In the remainder of this section, we will see how the techniques of query rewrit-
ing and saturation introduced in Sect. 3.5 can be applied to the problem of IQ
answering (which is more commonly referred to as instance checking). We will
consider three representative Horn DLs: DL-LiteR, EL, and ELHI⊥.

4.1 Instance Checking in DL-LiteR via Query Rewriting

We begin by considering the problem of instance checking over DL-LiteR knowl-
edge bases. Both query rewriting and saturation-based approaches have been
proposed in the literature [52]. We present a procedure based upon rewriting
IQs into first-order queries since this is the more commonly used approach for
DLs in the DL-Lite family. Moreover, it provides us with a simple setting in
which to demonstrate this technique.

As mentioned in Sect. 3.5, to construct an FO-rewriting of an instance query
q w.r.t. T , Σ, it suffices to construct

– an FO-rewriting of q w.r.t. T , Σ relative to consistent ABoxes, and
– an FO-rewriting of unsatisfiability w.r.t. T , Σ.

Indeed, if we have these two rewritings, then they can be straightforwardly com-
bined to obtain an FO-rewriting of q that works for all Σ-ABoxes.

As a first step, we present in Fig. 1 a procedure ComputeSubsumees that takes
as input a DL-Lite concept B (that is, either a concept name or an exisential
concept ∃R with R ∈ N±

R) and a DL-LiteR TBox T and outputs the set of all DL-
Lite concepts C such that T |= C � B. Such concepts are called the subsumees

Ontology-Mediated Query Answering 241

Algorithm ComputeSubroles
Input: DL-LiteR TBox T , role R ∈ N±

R

1. Initialize Subroles = {R} and Examined = ∅.
2. While Subroles \ Examined �= ∅

(a) Select S ∈ Subroles \ Examined and add S to Examined.
(b) For every role inclusion U � S or inv(U) � inv(S) in T

– If U �∈ Subsumees, add U to Subsumees
3. Return Subroles.

Fig. 2. Algorithm for computing subroles of a given role in DL-LiteR.

of B w.r.t. T , and intuitively they capture all of the different reasons for an
individual to be counted as a member of B. The algorithm ComputeSubsumees
uses a backward chaining mechanism to iteratively compute the subsumees of B.
The set Subsumees is used to store the subsumees that have been identified so
far, and Examined keeps track of which concepts in Subsumees have already been
examined. When examining a concept D, we add to Subsumees all those concepts
that are direct subsumees of D, i.e., those for which we can infer the subsumption
relationship using a single inclusion from T .

We illustrate the functioning of ComputeSubsumees on an example.

Example 11. Consider the DL-LiteR TBox T2 consisting of the following axioms:

ItalianDish � Dish VegDish � Dish Dish � ∃hasIngredient

∃hasCourse− � Dish hasMain � hasCourse hasDessert � hasCourse

We run ComputeSubsumees on the input (T2,Dish) in order to compute all of the
concepts that imply Dish. In Step 1, we initialize Subsumees to {Dish}. In the
first iteration of the while loop, we have no choice but to select Dish. In Step
2(b), we will add ItalianDish, VegDish, and ∃hasCourse− to Subsumees due to the
inclusions ItalianDish�Dish, VegDish�Dish, and ∃hasCourse−�Dish respectively.
Note that we cannot use the inclusion Dish�∃hasIngredient to add ∃hasIngredient,
since Dish appears on the left-hand side of the inclusion. Steps 2(c) and 2(d)
are inapplicable since Dish is not an existential restriction. We will therefore
return to the start of the while loop and select a new unexamined concept from
Subsumees. Nothing new will be added to Subsumees when examining ItalianDish
and VegDish, since these concepts do not appear on the right-hand side of any
inclusions in T2. However, when we examine ∃hasCourse−, we will add both
hasMain− and hasDessert−, due to the role inclusions hasMain � hasCourse and
hasDessert�hasCourse (this occurs in Step 2(c)). It can be verified that no further
concepts will be added, and so the output of ComputeSubsumees will be

{Dish, ItalianDish,VegDish,∃hasCourse−,∃hasMain−,∃hasDessert−}.

We remark that these concepts capture all of the different ways of inferring that
an individual is a member of Dish using the knowledge expressed in T2. �

242 M. Bienvenu and M. Ortiz

Observe that there are at most 3|T | concepts that can be added to Subsumees,
since there are at most |T | concept names appearing in T and at most 2|T |
concepts of the forms ∃r(−) with r a role name occurring in T . As concepts are
never removed from Subsumees, and each concept in Subsumees is examined at
most once, it follows that ComputeSubsumees runs in polynomial time in |T |.
One can further show that on input (A, T) the algorithm outputs exactly the
set of subsumees of A w.r.t. T .

In Fig. 2, we introduce an analogous procedure ComputeSubroles for roles.
One can show that the procedure runs in polynomial time in |T | and a role S
belongs to ComputeSubroles(R, T) just in the case that T |= S � R.

Next, we introduce a function ρx that translates concepts into FO queries.
The variable x in the subscript of ρx indicates that the query should use x as
the answer variable. The definition of ρx is what one would expect:

– ρx(A) = A(x) for A ∈ NC

– ρx(∃r) = ∃y.r(x, y) for r ∈ NR

– ρx(∃r−) = ∃y.r(y, x) for r ∈ NR

We can similarly introduce a function ρxy that maps roles to FO queries, using
x, y as the first and second distinguished variables:

– ρxy(r) = r(x, y) for r ∈ NR

– ρxy(r−) = r(y, x) for r ∈ NR

We now have the necessary machinery to construct the desired FO-rewritings.
To obtain a rewriting of A(x) w.r.t. T relative to consistent ABoxes, we simply
take the disjunction of the queries obtained by applying ρx to the concepts in
ComputeSubsumees(A, T):

RewriteIQ(A, T) =
∨

C∈ComputeSubsumees(A,T)

ρx(C)

The construction is similar if we have a role instance query r(x, y):

RewriteIQ(r, T) =
∨

S∈ComputeSubsumees(r,T)

ρx,y(S)

Observe that an individual a belongs to the answer of RewriteIQ(A, T) on IA
just in the case that there is an assertion in A that asserts the membership of a
in one of the subsumees of A w.r.t. T . Under the assumption that the KB (T ,A)
is satisfiable, we can show that the latter statement holds iff a is a certain answer
to A(x) over (T ,A). Similar considerations apply to role instance queries.

Theorem 3. For every finite signature Σ, concept name A (resp. role name r)
and DL-LiteR TBox T , the query RewriteIQ(A, T) (resp. RewriteIQ(r, T)) is an
FO-rewriting of A(x) (resp. r(x, y)) w.r.t. T , Σ relative to consistent ABoxes.

Ontology-Mediated Query Answering 243

Remark 10. We can sometimes use the ABox signature Σ to simplify rewritings.
Indeed, it is easy to see that the preceding theorem continues to hold if we remove
from RewriteIQ(A, T) and RewriteIQ(r, T) all disjuncts that contain a concept or
role name that does not belong to Σ.

We continue our previous example to illustrate the rewriting construction.

Example 12. Consider the IQ q2 = Dish(x) and the TBox T2 from Example 11.
We have seen that ComputeSubsumees(Dish, T2) contains the following concepts:

Dish, ItalianDish,VegDish,∃hasCourse−,∃hasMain−,∃hasDessert−

We will therefore obtain the following rewriting of q2 w.r.t. T2 relative to con-
sistent ABoxes:

RewriteIQ(Dish, T2) =Dish(x) ∨ ItalianDish(x) ∨ VegDish(x) ∨ ∃y.hasCourse(y, x)
∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)

In fact, because T2 does not contain any inclusions expressing disjointness, we
know that every ABox is consistent with T2, and so the preceding rewriting will
give the correct result for all ABoxes. If we evaluate the query RewriteIQ(Dish, T2)
over the ABox consisting of the assertions

hasMain(m, d1) hasDessert(m, d2) VegDish(d3)

then we will obtain the following certain answers:

– d1, because of the disjunct ∃y.hasMain(y, x)
– d2, because of the disjunct ∃y.hasDessert(y, x)
– d3, because of the disjunct VegDish(x)

�
For unsatisfiability, we proceed in two steps, first showing how to define an FO
query that detects violation of a single disjointness constraint, and then showing
how these rewritings can be combined to obtain a rewriting of unsatisfability.
For negative concept inclusion A � ¬B, we can use the following Boolean query
that checks for the existence of an individual belonging to A 	 B by considering
all possible ways of choosing a subsumee of A and a subsumee of B:

RewriteDisjoint(A,B, T) =
∨

C∈ComputeSubsumees(A,T)
D∈ComputeSubsumees(B,T)

∃x.(ρx(C) ∧ ρx(D))

For a negative role inclusion R�¬S, we can define in a similar fashion a Boolean
query that checks if there exists a pair of individuals that belongs to both of the
roles R and S:

RewriteDisjoint(R,S, T) =
∨

U∈ComputeSubroles(R,T)
V ∈ComputeSubroles(S,T)

∃x, y.(ρx,y(U) ∧ ρx,y(V))

244 M. Bienvenu and M. Ortiz

To obtain a rewriting of unsatisfiability w.r.t. T , it then suffices to take the
disjunction of the FO queries associated with the negative inclusions in T :

RewriteUnsat(T) =
∨

G�¬H∈T
RewriteDisjoint(G,H, T)

Indeed, it can be shown that a DL-LiteR KB (T ,A) is unsatisfiable if and only
if one of the negative inclusions in T is violated.

Theorem 4. For every finite signature Σ and DL-LiteR TBox T , the query
RewriteUnsat(T) is an FO-rewriting of unsatisfiability w.r.t. T , Σ.

The following example illustrates the construction of a rewriting of unsatisfiabil-
ity and how such a rewriting can be combined with a rewriting of an IQ relative
to consistent ABoxes to obtain a rewriting that works for all ABoxes.

Example 13. We consider a variant T3 of the preceding TBox that contains two
disjointness constraints:

∃hasCourse− � Dish hasMain � hasCourse hasDessert � hasCourse

hasMain � ¬hasDessert Dish � ¬∃hasCourse

For the first negative inclusion hasMain � ¬hasDessert, we obtain the following
FO query:

RewriteDisjoint(hasMain, hasDessert, T3) = ∃x, yhasMain(x, y) ∧ hasDessert(x, y)

since hasMain and hasDessert do not have any subroles (aside from themselves).
For the second negative inclusion Dish � ¬∃hasCourse, each of the concepts Dish
and ∃hasCourse has multiple subsumees:

ComputeSubsumees(Dish, T3) = {Dish,∃hasCourse−,∃hasMain−,∃hasDessert−}
ComputeSubsumees(∃hasCourse, T3) = {∃hasCourse,∃hasMain,∃hasDessert}

The FO query RewriteDisjoint(Dish,∃hasCourse, T3) expressing the violation of
Dish � ¬∃hasCourse will contain 12 disjuncts, corresponding to the 4 choices of
a subsumee of Dish and the 3 choices for ∃hasCourse:

∨

r∈
{hasCourse,
hasMain,

hasDessert}

∃x.(Dish(x) ∨ ∃y.r(x, y)) ∨
∨

r,s∈
{hasCourse,
hasMain,

hasDessert}

∃x.(∃y.r(y, x) ∧ ∃y.s(x, y))

Combining the preceding FO queries yields the following rewriting of unsatisfi-
ability w.r.t. T3:

RewriteUnsat(T) =RewriteDisjoint(hasMain, hasDessert, T)
∨ RewriteDisjoint(Dish,∃hasCourse, T)

Ontology-Mediated Query Answering 245

In order to construct an FO-rewriting of Dish(x) w.r.t. T3, we will need to com-
pute RewriteIQ(Dish, T3), which can be done as in Example 12. We will also need
to construct a query that returns all individuals that appear in some ABox asser-
tion. The definition of this query will depend on the ABox signature Σ. If we
take Σ = sig(T3), then we could use the following query:

qΣ
ind(x) =Dish(x) ∨ ∃y.hasCourse(x, y) ∨ ∃y.hasMain(x, y) ∨ ∃y.hasDessert(x, y)

∨ ∃y.hasCourse(y, x) ∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)

By combining these queries, we obtain a rewriting of q2 = Dish(x) w.r.t.
T3, sig(T3):

RewriteIQ(Dish, T3) ∨ (RewriteUnsat(T3) ∧ qΣ
ind)

Now let us consider what happens when we evaluate the preceding query over a
sig(T3)-ABox A. When (T3,A) is satisfiable, RewriteUnsat(T3) evaluates to false
over IA, and so we must satisfy the first disjunct RewriteIQ(Dish, T3). If (T3,A)
is unsatisfiable, then RewriteUnsat(T3) evaluates to true and qind will retrieve all
of the individuals that appear in A. �

We have shown that for every IQ q, DL-LiteR TBox T , and ABox signature Σ,
it is possible to construct an FO rewriting of q w.r.t. T , Σ, and thus we can
reduce instance checking to FO query evaluation over databases. Importantly,
this reduction is independent of the ABox, which means that the instance check-
ing problem has the same low data complexity as the evaluation of FO queries
over databases.

Theorem 5 (Follows from Results in [52], see also [10]). In DL-LiteR,
satisfiability and instance checking are in AC0 for data complexity.

Regarding combined complexity, it is possible to obtain a P upper bound by
observing that the rewriting procedure runs in polynomial time in |T | and pro-
duces an FO query that, because of its restricted syntax, can be answered in
polynomial time in |A| (recall that when we analyze the complexity of query
answering, we consider the decision problem of testing whether a given tuple
is a (certain) answer). This upper bound can be improved to NLogSpace by
employing a non-deterministic logarithmic space procedure that guesses a single
disjunct in the rewriting of the IQ and verifies that the input tuple satisfies this
disjunct. An alternative proof of NLogSpace membership proceeds by reducing
instance checking in DL-LiteR to the satisfiablity problem of first-order Krom
formulas, which is known to be complete for NLogSpace [10].

Theorem 6 ([10]). In DL-LiteR, satisfiability and instance checking are both
NLogSpace-complete for combined complexity.

We remark that the preceding complexity results hold not only for DL-LiteR but
also for several other DL-Lite dialects (like DL-LiteF and DL-LiteA) and can be
shown using similar techniques (see [10,52] for more details).

246 M. Bienvenu and M. Ortiz

4.2 Saturation-Based Procedure for Instance Checking in EL
We will next consider the problem of instance checking in EL, which is the basic
member of the EL family of Horn DLs. Unlike DL-LiteR, the first-order query
rewriting approach cannot be used in general to handle EL KBs, since there exist
pairs of IQs and TBoxes for which no FO rewriting exists (a concrete example
was provided in Example 9). Instead, we will show how instance checking can
be performed using a simple saturation-based approach. As we shall in the next
subsection, this approach can be extended to handle more expressive Horn DLs.

To simplify the presentation of the saturation procedure, we will assume that
the considered EL KBs have been normalized, that is, they only contain TBox
inclusions of the following forms:

A1 	 . . . 	 An � B A � ∃r.B ∃r.A � B

where A(i), B ∈ NC ∪ {�}, r ∈ NR, and n ≥ 1. As mentioned in Sect. 2, this
assumption is without loss of generality since every EL KB K can be transformed
into a normalized KB K′ that has the same logical consequences as K over the
signature of K. This transformation can be performed in polynomial time and
will not impact the complexity results obtained in this subsection.

In Table 3, we present a set of five saturation (or inference) rules that can
be used to infer new inclusions and assertions from a given EL knowledge base.
These rules essentially correspond to a subset of the rules proposed in [19] for
reasoning in an extension of EL called EL++, but use a syntax that is closer
to that found in recent works on consequence-based reasoning in DLs. Each of
the rules in Table 3 acts as a template that can be instantiated using different
concept and role names to obtain a rule instantiation of the form

α1, . . . , αn

β

where α1, . . . , αn, β are TBox inclusions or ABox assertions. We call α1 . . . αn

the premises of the rule instantiation and β its conclusion. A rule instantiation
ρ is said to be applicable to a KB K if K contains all of the premises of ρ but
does not contain ρ’s conclusion. If ρ is applicable to K, then applying it means
adding the conclusion of ρ to K.

Example 14. Consider the knowledge base K2 that comprises the inclusions:

PenneArrabiata � Dish PenneArrabiata � Spicy Spicy 	 Dish � SpicyDish

The following instantiation of rule T1 is applicable to K2:

PenneArrabiata � Spicy PenneArrabiata � Dish Spicy 	 Dish � SpicyDish

PenneArrabiata � SpicyDish

To apply this rule instantiation, we add PenneArrabiata � SpicyDish to K2. �

Ontology-Mediated Query Answering 247

Table 3. Saturation rules for EL. Here r ∈ NR and A, B, D, E ∈ NC ∪ {�}.

A � Bi (1 ≤ i ≤ n) B1 � . . . � Bn � D

A � D
T1

A � B B � ∃r.D

A � ∃r.D
T2

A � ∃r.B B � D ∃r.D � E

A � E
T3

A1 � . . . � An � B Ai(a) (1 ≤ i ≤ n)

B(a)
A1

∃r.B � A r(a, b) B(b)

A(a)
A2

Note that in what follows, we will slightly abuse terminology and speak simply
of rules and rule applications, rather than (applications of) rule instantiations.

By inspecting the rules in Table 3, we immediately observe that because of the
syntactic restrictions on the conclusions of the saturation rules, there are only
finitely many axioms and assertions that can be produced over a given finite
signature. It follows that an exhaustive application of the saturation rules to a
KB is guaranteed to terminate and produce a finite (saturated) KB. Moreover,
the result of the saturation process does not depend on the order in which the
rules are applied, so we make speak of the saturation of a KB.

The following example illustrates the computation of the saturation of a KB.

Example 15. Consider the EL KB K3 whose TBox contains the inclusions

PenneArrabiata � ∃hasIngredient.ArrabiataSauce (13)
PenneArrabiata � PastaDish (14)

PastaDish � Dish (15)
PastaDish � ∃hasIngredient.Pasta (16)

ArrabiataSauce � ∃hasIngredient.Peperoncino (17)
Peperoncino � Spicy (18)

∃hasIngredient.Spicy � Spicy (19)
Spicy 	 Dish � SpicyDish (20)

and whose ABox consists of the single assertion

PenneArrabiata(p). (21)

If we apply the saturation rules from Table 3, then we obtain the new axioms
and assertions listed below. Note that we indicate on the right the rule that was
applied, followed by the axioms and/or assertions used as premises.

ArrabiataSauce � Spicy T3 : (17), (18), (19) (22)
PenneArrabiata � Spicy T3 : (13), (22), (19) (23)

248 M. Bienvenu and M. Ortiz

PenneArrabiata � Dish T1 : (14), (15) (24)
PenneArrabiata � ∃hasIngredient.Pasta T2 : (14), (16) (25)
PenneArrabiata � SpicyDish T1 : (23), (24), (20) (26)
Spicy(p) A1 : (23), (21) (27)
Dish(p) A1 : (24), (21) (28)
SpicyDish(p) A1 : (28), (27) (29)

It can be verified that nothing further can be inferred using the rules. �

In addition to ensuring finite termination, the saturation rules from Table 3
possess two other important properties. First, they are sound, that is, they only
allow us to derive axioms and assertions that are logical consequences. Secondly,
they are complete for instance checking, by which we mean that allow us to derive
all entailed ABox assertions. These properties can be established by adapting
proofs of similar results in [19].

Theorem 7. Let K be an EL knowledge base, and let K′ be obtained by exhaus-
tively applying the rules in Table 3 to K∪{A � A,A � � | A ∈ NC∩sig(K)}∪{��
�} ∪ {�(a) | a ∈ Ind(A)} up to saturation. Then for every ABox assertion α,
we have K |= α iff α ∈ K′.

Remark 11. To ensure completeness, before running the saturation rules, we first
add to the KB some trivially entailed inclusions (of the forms A�A,A��) and
assertions9 (of the form �(a)). Alternatively, we could introduce saturation rules
with empty premises that generate these inclusions and assertions. In practice,
one could simply allow these inclusions and assertions to be used as premises
during the saturation process, without adding them.

Remark 12. The rules in Table 3 do not allow us to generate all entailed concept
inclusions, and indeed, this is a good thing since there can be infinitely many
(non-equivalent) concept inclusions that are entailed from a given KB. How-
ever, we can show that these rules are sufficient to obtain all entailed concept
inclusions between concept names (we say that the rule calculus is complete for
classification).

By Theorem 7, we can perform instance checking by exhaustively applying the
saturation rules to the KB, and then checking if the resulting saturated KB
contains the desired assertion.

Example 16. Reconsider the KB K3 and its saturation from Example 15. The
individual p is a certain answer to the IQ SpicyDish(x) w.r.t. K3 since the asser-
tion SpicyDish(p) is present in the saturation of K3. However, p is not a certain
answer to Peperoncino(x) w.r.t. K3, since Peperoncino(p) was not derived. �

9 In this section, it will prove convenient to allow ABox assertions using the atomic
concepts � and ⊥, in addition to concept names. Refer to Sect. 2 for discussion.

Ontology-Mediated Query Answering 249

A closer inspection reveals that the saturation procedure runs in polynomial
time in |K|. Indeed, at each iteration, we must produce at least one new concept
inclusion or ABox assertion of one of the following forms:

A � B A � ∃r.B A(a) r(a, b)

which is built using only the individuals, concept names and role names from K,
and there are only polynomially many such axioms and assertions. We therefore
obtain a P upper bound on the combined complexity of instance checking in EL.
This result was first established in [19], and a matching P lower bound for data
complexity was provided in [59].

Theorem 8 ([19,59]). Instance checking in EL is P-complete for both the data
and combined complexity measures.

4.3 Instance Checking in ELHI⊥

In this final subsection on instance checking, we move to a richer Horn DL,
ELHI⊥, which integrates constructors from DL-LiteR and EL. We will present
a saturation procedure for ELHI⊥ that is similar in spirit to our EL saturation
procedure but contains additional rules to handle the new constructors. This sat-
uration procedure will provide a method of performing satisfiability and instance
checking over ELHI⊥ KBs. Moreover, we shall see that inclusions obtained by
saturating the TBox can be used to built Datalog rewritings of satisfiability and
instance queries. The ELHI⊥ saturation rules will resurface again in Sect. 5,
where they will be used to construct universal models.

As in the preceding subsection, we will assume that the input ELHI⊥ KB
is in normal form, i.e., it contains only TBox inclusions of the forms

A1 	 . . . 	 An � D A � ∃R.B ∃R.A � B R � S

where A(i), B ∈ NC ∪ {�}, D ∈ NC ∪ {�,⊥}, R,S ∈ N±
R , and n ≥ 1.

The saturation rules for ELHI⊥ are displayed in Table 4. They have been
adapted from the saturation calculus Horn-SHIQ from [81] (itself adapted from
an earlier calculus from [117]). Rules T4 and rule T5 handle role inclusions and
the ⊥ concept respectively. Rules T7 is a more elaborate version of the EL rule
T3, adapted to handle the presence of role inclusions and inverse roles. Note
that due to the presence of inverse roles, it is necessary to allow conjunctions in
existential concepts. Rule T6 provides a means of introducing new concepts into
such conjunctions. To understand rule T8, it is helpful to recall that ∃inv(S).A�
B can be equivalently expressed as A�∀S.B. The rule adds A as a condition on
the right-hand side, which allows B to be added to the existential on the left-
hand side of the inclusion. Finally, we introduce three additional ABox saturation
rules. Rule A3 is like A2 except that is concerns inverse roles, and rules A4-A5
are used to infer new role assertions using derived role inclusions.

The notions of rule instantiation, applicable rule, and rule application are
essentially the same as for EL. Note however that when working with axioms

250 M. Bienvenu and M. Ortiz

Table 4. Saturation rules for ELHI⊥. Here r ∈ NR, R, S ∈ N±
R , A, B ∈ NC ∪ {�, ⊥},

and M and N (′) are conjunctions of concepts from NC ∪ {�, ⊥}.

{A � Bi}n
i=1 B1 � . . . � Bn � D

A � D
T1

R � S S � T

R � T
T4

M � ∃R.(N � ⊥)

M � ⊥
T5

M � ∃R.(N � N ′) N � A

M � ∃R.(N � N ′ � A)
T6

M � ∃R.(N � A) ∃S.A � B R � S

M � B
T7

M � ∃R.N ∃inv(S).A � B R � S

M � A � ∃R.(N � B)
T8

A1 � . . . � An � B Ai(a) (1 ≤ i ≤ n)

B(a)
A1

∃r.B � A r(a, b) B(b)

A(a)
A2

∃r−.B � A r(b, a) B(b)

A(a)
A3

r � s r(a, b)

s(a, b)
A4

r � s− r(a, b)

s(b, a)
A5

containing conjunctions, we will treat conjunctions as sets. That is, we will
assume that there are no repeated conjuncts, and we will not pay attention
to the order of conjuncts. Thus, if a rule instantiation contains a premise
A � ∃R.(B 	 C 	 D), and the KB contains the equivalent (but syntactically
distinct) inclusion A � ∃R.(D 	 B 	 C), then we will consider that the premise
is present in the KB when deciding whether the rule instantiation is applicable.
Likewise, if a rule instantiation has D � ∃R.(A 	 B) as a conclusion, and the
KB already contains D � ∃R.(B 	 A), then the rule instantiation will not be
considered applicable.

We are now ready to describe the saturation procedure. Given an ELHI⊥
knowledge base K = (T ,A), we first enrich the KB with inclusions and assertions
that are trivially entailed:

T ′ = T ∪ {A � A,A � � | A ∈ (NC ∩ sig(K)) ∪ {�}}
∪ {inv(R) � inv(S) | S � R ∈ T }

A′ = A ∪ {�(a) | a ∈ Ind(A)}

We then exhaustively apply the rules in Table 4 to (T ′,A′) until nothing new can
be derived (finite termination is guaranteed due to the restricted syntax of the
inclusions in rule conclusions). We will denote the resulting KB by saturate(K).
If we instead apply the rules only to T ′, then we will use saturate(()T) to denote
the resulting TBox.

The next theorem resumes the key properties of saturate(K). It can be proven
by adapting the proofs of similar results for Horn-SHIQ [81].

Ontology-Mediated Query Answering 251

Theorem 9. For every ELHI⊥ knowledge base K, we have:

1. K |= α for every α ∈ saturate(K).
2. If K is unsatisfiable, then ⊥(a) ∈ saturate(K) for some a ∈ Ind(K).
3. If K is satisfiable and K |= α with α an ABox assertion, then α ∈ saturate(K).

By the preceding theorem, to determine whether a given KB is satisfiable, it
suffices to compute saturate(K) and check whether it contains an assertion of the
form ⊥(a). Instance checking is also trivial once saturate(K) has been computed:
to test whether K |= α, with K a satisfiable KB and α an ABox assertion, we
merely need to check whether α appears in saturate(K).

Example 17. Let K4 be the ELHI⊥ KB consisting of the TBox T4:

∃contains−.VegFriendly � VegFriendly (30)
hasIngredient � contains (31)
Meat 	 VegFriendly � ⊥ (32)

BologneseSauce � ∃hasIngredient.Meat (33)

and the ABox whose assertions are:

VegFriendly(d) (34)
hasIngredient(d, b) (35)
BologneseSauce(b) (36)

We observe that K4 is unsatisfiable. Indeed, the inclusion ∃contains−.VegFriendly�
VegFriendly and assertions VegFriendly(d) and hasIngredient(d, b) together imply
that b is VegFriendly. We also know that b has an ingredient of type Meat, due to
BologneseSauce(b) and BologneseSauce�∃hasIngredient.Meat. Since hasIngredient
is a subrole of contains, it follows that b contains this unnamed ingredient. We can
therefore use inclusion (30) to conclude that this ingredient is VegFriendly. This
contradicts the disjointness constraint Meat 	 VegFriendly � ⊥ which states that
it is not possible to belong to both Meat and VegFriendly.

We now show how the unsatisfiability of K4 can be discovered by means of
the saturation rules from Table 4. To begin, we use rule T8 and the inclusions
(33), (30), and (31) to derive

BologneseSauce 	 VegFriendly � ∃hasIngredient.(Meat 	 VegFriendly) (37)

Next, we can apply rule T6 to the preceding inclusion and (32) to infer

BologneseSauce 	 VegFriendly � ∃hasIngredient.(Meat 	 VegFriendly 	 ⊥) (38)

Then, using the preceding inclusion and rule T5, we obtain

BologneseSauce 	 VegFriendly � ⊥ (39)

252 M. Bienvenu and M. Ortiz

Finally, by applying the ABox saturation rules, we reach a contradiction:

contains(d, b) A4 : (31), (35) (40)
VegFriendly(b) A3 : (31), (40) (41)
⊥(b) A1 : (15), (39) (42)

Since ⊥(b) has been derived, we can conclude that K4 is unsatisfiable. �
A simple examination of the rules in Table 4 reveals that all derived axioms and
assertions take one of the following forms:

R � S M � A M � ∃R.N A(a) r(a, b)

where r ∈ NR, R,S ∈ N±
R , A ∈ NC ∪ {�,⊥}, M,N are conjunctions of concepts

from NC ∪ {�,⊥}, and all individual names, concept names, and role names
appear in K. As the number of distinct (non-equivalent) axioms and assertions
of these forms is at most single-exponential in the size of K, it follows that
saturate(K) can be computed in single-exponential time in |K|, which yields an
Exp upper bound for satisfiability and instance checking. This upper bound,
which can be derived from Exp upper bounds for non-Horn DLs (see e.g., [71]),
cannot be further improved. Indeed, matching Exp lower bounds follow from
the Exp-hardness of subsumption in ELI [20].

Theorem 10. In ELHI⊥, satisfiability and instance checking are Exp-
complete in combined complexity.

Observe that the TBox saturation rules do not depend on the ABox saturation
rules, so it is possible to first fully saturate the TBox, and then in a second step,
apply the ABox rules. We further remark that the ABox saturation rules can be
viewed as Datalog rules which use concept names, role names, and the special
concepts � and ⊥ as predicate symbols. Formally, we can associate with each
ELHI⊥ TBox T and ABox signature Σ the Datalog program Π(T , Σ) defined
as follows:

Π(T , Σ) = {B(x) ← A1(x), . . . , An(x) | A1 	 . . . 	 An � B ∈ saturate(T)}∪
{B(x) ← A(y), r(x, y) | ∃r.A � B ∈ T }∪
{B(y) ← A(x), r(x, y) | ∃r−.A � B ∈ T }∪
{s(x, y) ← r(x, y) | r � s ∈ saturate(T), s ∈ NR}∪
{s(y, x) ← r(x, y) | r � s− ∈ saturate(T), s ∈ NR}∪
{�(x) ← A(x) | A ∈ NC ∩ Σ}∪
{�(x) ← r(x, y) | r ∈ NR ∩ Σ}∪
{�(x) ← r(y, x) | r ∈ NR ∩ Σ}

Note that first five sets of Datalog rules making up Π(T , Σ) are in one-to-one
correspondence with the five ABox saturation rules A1-A5, with rules in the i-th
line of the definition of Π(T , Σ) corresponding the ABox saturation rule Ai (for
1 ≤ i ≤ 5). The last three sets of Datalog rules merely serve to populate � with
all of the individuals in the ABox.

Ontology-Mediated Query Answering 253

Example 18. Consider again the TBox T4 from Example 17, and let Σ = sig(T4).
The Datalog program Π(T , Σ) associated with T4 and Σ contains the rules:

⊥(x) ← Meat(x),VegFriendly(x)
⊥(x) ← BologneseSauce(x),VegFriendly(x)

VegFriendly(y) ← VegFriendly(x), hasIngredient(x, y)
contains(x, y) ← hasIngredient(x, y)

each corresponding to an inclusion from saturate(T4). The program additionally
contains rules for populating � (one rule for each concept name in T4, and two for
each role name) and rules corresponding to the translations of trivial inclusions
like Meat � Meat and Meat � � (these latter rules could simply be omitted). �

The following theorem, which is a consequence of Theorem 9, resumes the impor-
tant properties of the Datalog program Π(T , Σ).

Theorem 11. For every finite signature Σ and ELHI⊥ KB K = (T ,A) with
sig(A) ⊆ Σ:

1. K is unsatisfiable iff ans((Π(T , Σ),⊥), IA) �= ∅;
2. If K is satisfiable, then for all A ∈ NC, r ∈ NR, and a, b ∈ Ind(A):

– K |= A(a) iff a ∈ ans((Π(T , Σ), A), IA);
– K |= r(a, b) iff (a, b) ∈ ans((Π(T , Σ), r), IA).

It follows from the first statement of the preceding theorem that the Datalog
query (Π(T , Σ) ∪ {Q⊥ ← ⊥(x)}, Q⊥) is a rewriting of unsatisfiability w.r.t.
T , Σ. The second statement asserts that (Π(T , Σ), A) (resp. (Π(T , Σ), r)) is a
Datalog rewriting of the IQ A(x) (resp. r(x, y)) w.r.t. T , Σ relative to consistent
ABoxes. As discussed in Sect. 3.5, these rewritings can be combined together in
order to obtain Datalog rewritings that hold for all ABoxes.

Since the construction of the Datalog program Π(T , Σ) is independent of the
ABox (and polynomial w.r.t. |Σ|), and Datalog query evaluation is P-complete in
data complexity, we obtain a P upper bound on the data complexity of instance
checking and satisfiability in ELHI⊥. This positive result, which was first estab-
lished in [111] for Horn-SHIQ, is the best that we could hope for given that
instance checking (resp. satisfiability) is already P-hard in the sublogic EL (resp.
EL⊥).

Theorem 12 ([111]). In ELHI⊥, satisfiability and instance checking are P-
complete in data complexity.

5 (Unions of) Conjunctive Queries

Instance queries are rather limited as a query language, as they do not allow
us to express the natural selections and joins over relations that are common in
standard database query languages. For this reason, the majority of works on

254 M. Bienvenu and M. Ortiz

OMQA in the last decade have adopted conjunctive queries (CQs) as the basic
query language.

CQs are a special class of first-order queries which allow only for conjunctions
of positive atoms and existential quantification. CQs capture the plain select-
project-join fragment of relational algebra and SQL, as well as the basic graph
patterns that lie at the heart of SPARQL [106], which is the standard query
language for OWL and RDF. It has been documented that a large percentage of
queries posed to industrial database systems fall into this fragment. By taking
disjunctions of such queries, sharing the same free variables, we obtain unions
of CQs, another prominent query language. CQs and UCQs play a central role
in traditional databases, and they are the query languages of choice in areas like
data integration and data exchange [6,142].

Definition 7 ((Unions of) Conjunctive Queries). A conjunctive query
(CQ) is a first-order query q(x) of the form

∃y.P1(t1) ∧ · · · ∧ Pn(tn)

where every variable contained in some ti is contained in either x or y. Recall
that the free variables x are called the answer variables of q, and that the arity
of the query is the length of the tuple x.

A union of CQs (UCQ) is a first-order query q(x) of the form

q1(x) ∨ · · · ∨ qn(x)

where all the qi(x) are CQs with the same tuple x of answer variables.

Let q(x) = ∃y .ϕ(x ,y) be a CQ. Recall that ans(q, I) = {e = (e1, . . . , en) ∈
(ΔI)n | I |= ∃y .ϕ[x �→ e]}. Since the variables in y are existentially quantified,
we have that I |= ∃y .ϕ[x �→ e] just in the case that there exists a variable
assignment π that extends (x1, . . . , xn) �→ (e1, . . . , en) by additionally mapping
the variables in y to objects in ΔI in such a way that I |= ϕ[π]. We call such
a mapping π a match for q in I.

Remark 13. A popular alternative syntax for CQs and UCQs is to write them
as Datalog rules. A CQ corresponds to a single Datalog rule

q(x) = ∃y .P1(t1) ∧ · · · ∧ Pn(tn) � q(x) ← P1(t1), . . . , Pn(tn)

while a UCQ is written as a set of rules with the same head predicate:

q(x) = ∃y1.P
1
1 (t11) ∧ · · · ∧ P 1

n1
(t1n1

) q(x) ← P 1
1 (t11), . . . , P 1

n1
(t1n1

)

∨ ∃y2.P
2
1 (t21) ∧ · · · ∧ P 2

n2
(t2n2

) q(x) ← P 2
1 (t21), . . . , P 2

n(t2n)
... �

...
∨ ∃y�.P

�
1 (t�

1) · · · P �
n�

(t�
n�

) q(x) ← P �
1 (t�

1), . . . , P �
n�

(t�
n�

)

We now illustrate some queries that can be expressed as CQs or UCQs.

Ontology-Mediated Query Answering 255

Example 19. Consider the following queries:

q3(y, x) = ∃z.serves(x, y) ∧ hasIngredient(y, z) ∧ Spicy(z)
q4(y, x) = q1(x, y) ∨

∃z, z′.serves(x, y) ∧ hasIngredient(y, z) ∧ hasIngredient(z, z′),Spicy(z′)

The first query is a CQ that retrieves dishes y that contain a spicy ingredient,
together with the establishment x where they are served. The query q4 is a UCQ
that finds pairs of y and x as in q3, but it also retrieves the pair y, x if y has an
ingredient that in turn contains a spicy ingredient. �
While some very restricted forms of (U)CQs can be expressed as instance queries
by defining the query as a concept in the TBox, the arbitrary use of variables in
CQs makes them a strict generalization of IQs.

We discuss in this section how to answer UCQs over ELHI⊥ knowledge
bases. We assume in what follows that we are always given a satisfiable K as an
input, since query answering over unsatisfiable knowledge bases is trivial, and
we can test for satisfiability in advance using the procedure discussed in Sect. 4.3
(which has no higher complexity than any of the procedures described below).

5.1 Canonical Model Construction

As a preliminary step, we will show how to define a universal model of a given
satisfiable ELHI⊥ KB using the saturated TBox obtained by applying the rules
in Sect. 4.3. This universal model will play a central role in the query answering
techniques developed in this and the following section.

Given a satisfiable ELHI⊥ KB K = (T ,A), we consider the interpretation
IT ,A (alternatively denoted IK) defined as follows. The domain ΔIT ,A consists
of sequences of the form aR1M1 . . . RnMn (n ≥ 0), where a ∈ Ind(A), and for
every i ≥ 1, Ri ∈ N±

R and Mi is a conjunction of concepts from NC ∪ {�}. More
precisely, ΔIT ,A consists of all sequences aR1M1 . . . RnMn that satisfy:

– If n ≥ 1, then there exists B1 	 . . . 	 Bm � ∃R1.M1 ∈ saturate(T) such that
Bj(a) ∈ saturate(K) for every 1 ≤ j ≤ m.

– For every 1 ≤ i < n, Mi � ∃Ri+1.Mi+1 ∈ saturate(T).

To complete the definition of IT ,A, we must fix the interpretation of the indi-
vidual names, concept names, and role names from K. This is done as follows10:

aIT ,A = a

AIT ,A = {a ∈ Ind(A) | A(a) ∈ saturate(K)}∪
{e ∈ ΔIT ,A \ Ind(A) | e = e′RM and A ∈ M}

rIT ,A = {(a, b) | r(a, b) ∈ saturate(K)}∪
{(e1, e2) | e2 = e1S M and S � r ∈ saturate(T)}∪
{(e2, e1) | e2 = e1S M and S � r− ∈ saturate(T)}

10 Recall that we treat conjunctions of concepts as sets. Abusing notation, we use
A ∈ M to mean that A is a conjunct of M .

256 M. Bienvenu and M. Ortiz

It is easy to show that IK is a model of K, and we will henceforth refer to it as
the canonical model of K.

Note that the domain of IK contains the individuals in A, and additional
objects whose existence if implied by the axioms in saturate(T) of the form
M � ∃R.N . The latter objects are called anonymous and defined in such a way
that if aR1M1 . . . RnMn is in ΔIK , then so is aR1M1 . . . Rn−1Mn−1. Hence these
objects naturally form tree-like structures rooted at the individuals. Moreover,
if we take the undirected graph that has the domain of IK as nodes and an
(undirected) edge between two objects e, e′ whenever (e, e) ∈ rIK for some r ∈
NR, then we obtain a structure that can be viewed as comprising different parts:

– the restriction to the individuals, which is an arbitrary graph sometimes called
the core of IK,

– a set of potentially infinite trees of anonymous objects, each of which is rooted
at one of the individuals in the core, as we have discussed

For this reason, IK is often associated with a forest and it is given names such
as a (pseudo-) forest model, see e.g. [57,58,89,90]. This forest-like structure is a
useful property that is exploited by many algorithms, and in particular by the
ones we discuss in this chapter.

We now illustrate the construction of canonical models on a simple example:

Example 20. Consider the KB K5 whose TBox T5 contains the following axioms:

PenneArrabiata � ∃hasIngredient.Penne

Penne � Pasta

PenneArrabiata � ∃hasIngredient.ArrabiataSauce

ArrabiataSauce � ∃hasIngredient.Peperoncino

Peperoncino � Spicy

PizzaCalabrese � ∃hasIngredient.Nduja

Nduja � Spicy

and whose ABox is as follows:

serves(r, b) serves(r, p) PenneArrabiata(b) PizzaCalabrese(p)

Note that saturate(T5) contains, additionally to the axioms above, the following
axioms that result from applications of T6:

PenneArrabiata � ∃hasIngredient.(Penne 	 Pasta)
ArrabiataSauce � ∃hasIngredient.(Peperoncino 	 Spicy)
PizzaCalabrese � ∃hasIngredient.(Nduja 	 Spicy)

The canonical model IK5 of this knowledge base is depicted in Fig. 3. For read-
ability, we use the following abbreviations for the anonymous objects:

Ontology-Mediated Query Answering 257

rp
PizzaCalabrese

b
PenneArrabiata

e1
Nduja, Spicy

e2

Penne,Pasta

e3 ArrabiataSauce

e4
Peperoncino, Spicy

serves serves

hasIngredient hasIngredient hasIngredient

hasIngredient

Fig. 3. Canonical model IK5of the knowledge base K5 in Example 20. We use blue for
ABox individuals and yellow for anonymous objects.

e1 = p hasIngredient (Nduja 	 Spicy)
e2 = b hasIngredient (Penne 	 Pasta)
e3 = b hasIngredient ArrabiataSauce
e4 = b hasIngredient ArrabiataSauce hasIngredient (Peperoncino 	 Spicy) �

The crucial property of IK is that it is a universal model of K, that is, it is
‘contained’ in every model of K. For each model I of K, we can define a homo-
morphism from IK to I, which is a function h : ΔIK → ΔI such that

– h(aIK) = aI for each individual a in K,
– e ∈ AIK implies h(e) ∈ AI for every concept name A, and
– (e, e′) ∈ rIK implies (h(e), h(e′)) ∈ rI for every role name r.

It is not hard to see that matches of CQs are preserved under homomorphisms:

Fact 1. Let q be a CQ, and h a homomorphism from an interpretation I to an
interpretation J . If π is a match for q in I, then the mapping h ◦ π obtained by
composing π with h is a match for q in J .

The importance of this property lies in the fact that, for an arbitrary CQ or
UCQ q, every answer to q in IK is an answer to q in every model of K. Since
the converse also holds (an answer to q in every model is clearly also an answer
to q in the particular model IK), the certain answers to q over K coincide with
the answers to q over IK.

Theorem 13. Let K be a satisfiable ELHI⊥ knowledge base, let q(x) = q1(x)∨
. . . ∨ qn(x) be a UCQ, and let a be a tuple of individuals of the same arity as x.
Then a ∈ cert(q,K) iff a ∈ ans(q, IK) iff a ∈ ans(qi, IK) for some 1 ≤ i ≤ n.

This result has been shown even for significantly more expressive query languages
than UCQs (for example, positive first-order queries and Datalog queries), and it
allows us to focus on the simpler problem of evaluating a CQ over the canonical
model only, instead of considering the possibly infinitely many models that a
knowledge base may possess.

258 M. Bienvenu and M. Ortiz

Example 21. Let K5 and T5 be the knowledge base and TBox from Example 20,
and recall the queries q3 and q4 from Example 19. The match with x �→ r,
y �→ p and z �→ e1 shows that (p, r) ∈ ans(q3, IK5), and there are no further
answers, hence ans(q1, IK5) = {(p, r)}. For q4, we also have (p, r) ∈ ans(q4, IK5),
but in this case, we additionally get (b, r) ∈ ans(q4, IK5), as witnessed by the
assignment x �→ r, y �→ b, z �→ e3 and z′ �→ e4, which is a match for the second
disjunct. Hence ans(q4, IK5) = {(p, r), (b, r)}. We therefore obtain the following
certain answers over K5:

cert(q3,K5) = {(p, r)} cert(q4,K5) = {(p, r), (b, r)}.

�
5.2 Conjunctive Query Answering in ELHI⊥

By Theorem 13, to design a procedure for answering UCQs over ELHI⊥ KBs,
it is sufficient to focus on the problem of testing whether a ∈ ans(q, IK) for a
given tuple a , KB K and CQ q(x). By definition, a ∈ ans(q, IK) iff a is the
image of x under some match π. In relational databases, a standard way to
determine the existence of such a match is take an assignment that maps x to
a , extend it non-deterministically by assigning an individual in the database
to each existentially quantified variable, and finally to test whether the guessed
assignment π is a match, that is, whether A(π(x)) and R(π(x), π(y)) are present
in the database for every query atom A(x) or R(x, y).

In the presence of ontologies, the situation is more complicated. First, we
have seen that an assertion may hold because it is implied by K, without syn-
tactically occurring in the ABox A. Hence, in the simple algorithm outlined in
the preceding paragraph, we would need to replace the syntactic containment of
assertions in the database by an instance check K |= A(π(x)) or K |= A(π(x)),
which can be carried out using the procedure described in Sect. 4.3. However,
even with this adaptation, the resulting procedure would not be complete. A sec-
ond and more challenging problem is that when guessing a variable assignment,
it is not enough to map every existentially quantified variable to an individual,
as we may need to consider mappings to anonymous objects in ΔIK in order
to find the desired match. For instance, in the previous example, we saw that
we needed to map z �→ e1 to obtain (p, r) ∈ ans(q3, IK5) and that we have to
map z �→ e3 and z �→ e4 to get (b, r) ∈ ans(q4, IK5). There can be infinitely
many anonymous objects in IK, and we do not know in advance which of them
may occur in the image of the match. Hence there are infinitely many different
matches that may need to be considered, and it is not apparent how to devise
an effective procedure over this infinite search space.

We tackle this problem next. One possible solution would be to characterize
a finite set O of anonymous objects from ΔIK and show that whenever there
exists a match for a CQ in IK, there exists a match that ranges over the named
individuals and O only. Some existing techniques implicitly rely on a charac-
terization of this set O, but only for specific combinations of a query q and a
TBox T , see e.g., [80,148,164].

Ontology-Mediated Query Answering 259

Here we take a different approach and present an algorithm [81] that rewrites
the query in such a way that we do not need to consider mappings to the anony-
mous objects, but we can instead restrict our attention to matches to named
individuals. More specifically, given a CQ q(x), we construct a UCQ rewT (q)
(with the same answer variables x) with the property that a ∈ ans(q, IK) iff
there is a disjunct q′ in rewT (q) and a match π for q′ in IK such that π(x) = a
and the range of π contains only named individuals.

The intuition underlying the rewriting procedure is as follows. Suppose q has
an existential variable x, and there is a match π for q in IK such that π(x) is
an anonymous object in the tree part of IK, and it has no descendant in the
image of π. Then for all atoms R(y, x) or R(x, y) of q, the ‘neighbor’ variable y
must be mapped to the parent p of π(x) in IK. A rewriting step chooses such a
variable x, together with an existential axiom M � ∃S.N from saturate(T) such
that all atoms of q involving x are satisfied provided the parent p is an instance
of M . Then the algorithm can ‘clip off’ x, eliminating all query atoms involving
it, and adding instead fresh atoms to ensure that the parent p satisfies M . The
resulting query q′ has a match π′ that is similar to π, but crucially, the length
of the longest path occurring in the image of π′ is strictly shorter than for π. By
repeating this procedure, we can clip off all variables matched in the tree part to
obtain shorter and shorter matches, until we end up with a set of queries such
that, if they have a match in IK, then they have a match whose range contains
only ABox individuals.

Definition 8. For a CQ q and a ELHI⊥ TBox T , we write q →T q′ if q′ can
be obtained from q by applying the following steps:

(S1) Select in q an arbitrary existentially quantified variable x such that there
are no atoms of the form R(x, x) in q.

(S2) Replace each role atom of the form R(x, y) in q, where y and R are arbi-
trary, by the atom inv(R)(y, x).

(S3) Let Vp = {y | R(y, x) ∈ q for someR}, and select some M � ∃S.N ∈
saturate(T) such that

(a) S � R ∈ saturate(T) for every R(y, x) ∈ q, and
(b) {A | A(x) ∈ q} ⊆ N .

(S4) Drop from q every atom that contains x.
(S5) Select a variable y ∈ Vp and replace every occurrence of y′ ∈ Vp in q by y.
(S6) Add the atoms {A(y) | A ∈ M} to q.

We write q →∗
T q′ if q = q0 and q′ = qn for some finite rewrite sequence q0 →T

q1 · · · →T qn, n ≥ 0. Furthermore, we let rewT (q) = {q′ | q →∗
T q′}.

In (S1) we guess an existentially quantified variable x (we exclude variables
appearing in self-loops as such variables cannot be mapped to anonymous
objects). For convenience, in (S2), we invert all atoms of the form R(x, y), so
that x always appears in the second position of role atoms. In (S3), we let Vp be
the set of all ‘neighbor’ variables y of x for which there is an atom R(y, x) in q;

260 M. Bienvenu and M. Ortiz

intuitively, every such variable y must be mapped to the parent p of π(x). We
also select a TBox inclusion that ensures the existence of a suitable child π(x),
under the assumption that the left-hand side of the inclusion is satisfied at p.
Then we can clip off x in (S4), merge all variables of Vp in (S5), and add to q
new atoms that enforce satisfaction of the concepts appearing on the left-hand
side of the selected axiom in (S6).

Example 22. Consider the second disjunct of q4, that is, the following CQ:

q5(y, x) = ∃z, z′.serves(x, y) ∧ hasIngredient(y, z) ∧ hasIngredient(z, z′) ∧ Spicy(z′)

Recall that (b, r) ∈ ans(q5, IK), as witnessed by the match π(x) = r, π(y) =
b, π(z) = e3, and π(z′) = e4. In our running example, a possible rewriting
step for q5 could select in (S1) the variable z′ (which intuitively means that
we guess that π(z′) is a leaf in the image of q5 under some match, as is the
case for the match π). Then there is nothing to do in (S2), and in (S3) we see
that Vp = {z} is the only variable that has to be mapped to the parent of
π(z′). We need to select some axiom M � ∃S.N ∈ saturate(T5) that ensures the
satisfaction of all atoms involving z′, that is, of hasIngredient(z, z′) and Spicy(z′).
We see that ArrabiataSauce � ∃hasIngredient.Spicy is such an axiom, so in (S4)
and (S6), we drop the atoms hasIngredient(z, z′) and Spicy(z′) and replace them
by ArrabiataSauce(z) (we may skip (S5) since |Vp| = 1). Summing up, after one
rewriting step we get:

q′
5(y, x) = ∃z.serves(x, y) ∧ hasIngredient(y, z) ∧ ArrabiataSauce(z)

Note that every match of q′
5 can be extended to a match of q5, hence the rewriting

procedure does not introduce any incorrect answers. The motivation for intro-
ducing q′

5 is that the image of a match of q′
5 goes one step less deep into the

anonymous part of the canonical model than the corresponding match for q5. In a
second rewriting step, we again choose to eliminate z, and we get that Vp = {y}.
We select in (S3) the axiom PenneArrabiata�∃hasIngredient.ArrabiataSauce, since
mapping y to an instance of PenneArrabiata suffices to make the atoms that
involve z (namely, hasIngredient(y, z) and ArrabiataSauce(z)) true. We can then
replace these atoms by PenneArrabiata(y) to obtain

q′′
5 (y, x) = serves(x, y) ∧ PenneArrabiata(y)

Now we have obtained a query q′′
5 that has a match (π(x) = r, π(y) = b) where

all variables are mapped to individuals. Moreover, by virtue of the rewriting
process, we know that the match for q′′

5 implies the existence of a corresponding
match for q5, and so we have (b, r) ∈ ans(q5, IK5). �

The rewriting procedure that we have just presented is a slightly simplified
version of the one defined in [81] for Horn-SHIQ, and the results in that paper
imply the following theorem.

Ontology-Mediated Query Answering 261

Theorem 14. Let K = (T ,A) be a satisfiable ELHI⊥ knowledge base, and
let q(x) be a CQ. Then a ∈ cert(q,K) iff there is some q′ ∈ rewT (q) and an
assignment π from the variables in q′ to Ind(A) such that π(x) = a and π is a
match for q in IK.

Importantly, since Ind(A) is bounded, for each q′ ∈ rewT (q), there are only
a bounded number of candidate assignments π (in fact, single-exponentially
many). We need to check whether one of these candidate matches π is indeed
a match, that is, all of its atoms are satisfied under π. We can test each candi-
date assignment in turn, using the instance checking algorithms from Sect. 4.3
to decide whether a given query atom is satisfied under a given assignment. By
Theorem 14, the approach we have just described yields a terminating, sound,
and complete decision procedure for CQ answering in ELHI⊥.

The procedure also has an optimal worst-case combined and data complexity.
For combined complexity, we know that computing saturate(T) is feasible in
single exponential time. The cardinality of the set of rewritten queries rewT (q)
is single exponential in |T | and |q|, since it only contains queries whose variables
are a subset of the variables in q, and concept and role names that appear
in T . Moreover, the set rewT (q) can be computed in single exponential time.
Once rewT (q) has been computed, we can consider the single-exponentially many
candidate assignments of the variables for each q′ ∈ rewT (q), and for each such
assignment, we need to do a number of instance checks that is linear in the size
of q′; by Theorem 12, instance checking can be performed in single exponential
time. Since already consistency and instance checking in ELI are hard for single
exponential time [19], the resulting Exp bound is optimal.

As for data complexity, we note that rewT (q) can be computed in constant
time for a fixed T and q, and the number of candidate assignments π is poly-
nomial in the size of the ABox. Since instance checking is in P regarding data
complexity, we obtain:

Theorem 15. CQ answering in ELHI⊥ and Horn-SHIQ is Exp-complete in
combined complexity and P-complete in data complexity.

We remark that the same bounds hold for Horn-SHIQ, which is in fact the logic
for which this rewriting procedure was developed.

With minor adaptations, we can use the same technique to obtain optimal
bounds for ELH and DL-LiteR. For combined complexity, we can devise an
algorithm that runs in non-deterministic polynomial time. First, we compute
saturate(T) in polynomial time. Then we can non-deterministically guess and
build the right q′ ∈ rewT (q), guess a candidate assignment π, and check in
polynomial time if it is a match. Indeed, to determine whether an assignment
is a match, we must perform a polynomial number of instance checks, and each
check can be done in polynomial time for ELH and DL-LiteR. This NP bound
is optimal, since CQ answering is already NP-hard over an ABox alone, seen
as a database, and with no TBox. For data complexity, instance checking in EL
is hard for P, and we can easily obtain a matching upper bound for ELH: the
set rewT (q) can be obtained in polynomial time, there are only polynomially

262 M. Bienvenu and M. Ortiz

candidate assignments for the rewritten queries, and testing for a match only
needs a polynomial number of polynomial-time instance checks. In DL-LiteR,
we will see that our techniques can be used to obtain an FO rewriting, yielding
membership in AC0. These bounds are summarized in the next theorem.

Theorem 16. CQ answering in ELH and DL-LiteR is NP-complete in com-
bined complexity. For ELH the data complexity is P-complete, and for DL-LiteR
the data complexity is in AC0.

We note that the results in this theorem are anterior to [81]. The upper bounds
for DL-LiteR follow from the seminal papers on the DL-Lite family and the
original PerfectRef query rewriting algorithm [50,52], and the upper bounds for
CQ answering in EL were first established in [133,134,186]. In Sect. 8, we will
give a brief overview of subsequent work aimed at developing, optimizing, and
implementing efficient CQ answering algorithms for these and related logics.

We close this subsection by considering different possible ways of translating
Theorem 14 into a concrete query answering algorithm.

A Datalog Rewriting Approach for CQs in ELHI⊥. A first option is to
define a Datalog rewriting. Indeed, since rewT (q) is a UCQ, it can be viewed
as a set Πrew of Datalog rules that all use the same head predicate Q. By
Theorem 14, (Πrew, Q) will give the correct answer to q if evaluated over the
enriched ABox consisting of all assertions that are entailed from the KB. To
obtain this completed ABox, we may exploit the Datalog program Π(T , Σ) from
Sect. 4.3, which has the property that for every Σ-ABox A and every concept or
role assertion P (t), T ,A |= P (t) iff t ∈ ans(IA, (Π(T , Σ), P)). It follows that
the query (Π(T , Σ) ∪ Πrew, Q) is a Datalog rewriting of q w.r.t. T , Σ relative to
consistent ABoxes.

A Combined Approach for CQs in ELHI⊥. Another possibility is to use
Theorem 14 as the basis of a combined approach in the spirit of [152] that uses
both saturation and rewriting. As saturate(K) contains all the assertions entailed
by T and A, it suffices to pose the UCQ rewT (q) over (the interpretation corre-
sponding to) the assertions in saturate(K) viewed as a database. Compared to the
pure Datalog rewriting approach, the combined approach has the advantage that
we can use standard relational database systems, which are more mature than
Datalog engines. Its main drawback is that the saturated version of the ABox
needs to be recomputed whenever the KB is modified (see Sect. 8 for further
discussion of combined approaches to OMQA).

An FO Rewriting Approach for CQs in DL-LiteR. We can also use the
rewritten set of queries as the basis of an FO rewriting approach for DL-LiteR.
We know that to determine whether a ∈ cert(q,K), we only need to decide
whether there is some q′ ∈ rewT (q) and an assignment π from the variables
in q′ to Ind(A) such that T ,A |= P (π(t)) for each atom P (t) in q. We can
exploit our rewriting algorithm for instance checking in DL-LiteR (Sect. 4.1),
and replace in the queries q′ ∈ rewT (q) each atom A(t) by RewriteIQ(A, T) and
each atom r(t, t′) by RewriteIQ(r, T). The result of this replacement is a (positive)

Ontology-Mediated Query Answering 263

FO query11 qrew that is a rewriting of q w.r.t. T relative to consistent ABoxes.
As discussed in Sects. 3 and 4, the latter rewriting can be combined with an FO
rewriting of unsatisfiability to obtain an FO rewriting of q w.r.t. T that works
for all ABoxes over the given signature. Since the data complexity of answering
FO queries over relational databases is in AC0, this yields the remaining upper
bound in Theorem 16.

5.3 Related Results and Discussion

We close this section with a short discussion of other results that are related to
answering CQs and other positive fragments of FO queries in the presence of
(both Horn and non-Horn) DL ontologies.

Other Results on CQ Answering in Horn DLs. For members of the EL
family, including EL++ and some other fragments not contained in ELHI⊥, the
first complexity results for CQ answering were established in [133,134,186]. An
important result common to the three works was that CQ answering is unde-
cidable for EL++. Both [186], [134] present fragments that are NP-complete for
combined complexity, while [133] focused on data complexity. A PSpace upper
bound for a fragment of regular EL++ was obtained in [135]. More recently, a
tight NP upper bound was shown for the fragment of regular ELRO+ that
restricts complex role assumptions to transitivity axioms [202], and a tight
PSpace upper bound was obtained for (full) regular ELRO+ that corresponds
to OWL 2 EL [201,203].

For more expressive Horn DLs, like Horn-SHIQ, there are fewer results. The
query rewriting technique we have discussed in this section was proposed in [81]
for Horn-SHIQ, and it shares core ideas with previous algorithms for EL [186]
and DL-Lite [188]. The complexity bounds for Horn-SHIQ had been obtained
already in [78], but with a different algorithm less suited for implementation.
Recent work has considered the more expressive Horn logics Horn-SHOIQ and
Horn-SROIQ and generalizations of CQs with a limited form of recursion [166];
we will discuss this in Sect. 6.4.

Unions of Conjunctive Queries and Positive Existential Queries. In
this section, we have mainly focused on CQs, but by Theorem 13, we know that
the obtained results extend to UCQs. In fact, the universal model property also
applies to positive existential queries (PEQs), a class of FO queries that general-
ize CQs by allowing arbitrary combinations of conjunctions and disjunctions of
atoms. Since every positive FO formula can be put into disjunctive normal form
(i.e., rewritten as a disjunction of conjunctions), PEQs have the same expressive
power as UCQs, although they can be exponentially more succinct. The com-
plexity results for (U)CQ answering in Horn DLs can be easily transferred to

11 If desired, we could use standard equivalence-preserving transformations to turn qrew
into an equivalent UCQ.

264 M. Bienvenu and M. Ortiz

PEQs. The core idea is that to when checking whether a candidate assignment
is a match for the query, one also considers a choice of a subset of the query
atoms whose satisfaction leads to the PEQ being satisfied. If we consider data
complexity, enumerating all possible choices of subsets of query atoms requires
only constant time. If we consider combined complexity, then CQ answering
is already NP-hard, so an additional step that non-deterministically guesses a
suitable ‘good’ subset of query atoms causes no further increase in complexity.

Results for Non-Horn DLs. Recall that for DLs that are capable of expressing
disjunction, a universal model does not exist in general, so to decide whether a
given tuple is an answer to a UCQ

∨
i qi, we need to verify that in every model I

of the KB K, we have a ∈ ans(qi, I) for some qi. The loss of a universal model has
a major impact on the complexity of query answering. Data complexity becomes
coNP-complete-hard [164,193], and for combined complexity, query answering
typically becomes harder by one exponential. Over the last decade, 2Exp upper
bounds for answering CQs or extensions thereof have been obtained for many
expressive DLs for which satisfiability and entailment are Exp-complete, such
as SHIQ [56,89], SHOQ [90], ZIQ, ZOQ, and ZOI [57]. These bounds apply
for PEQs as well, and they are tight for CQs in every DL that contains ALCI
[147] or SH [80]. For all DLs between ALC and ALCHQ, the succinctness gap
between PEQs and UCQs makes a difference: UCQs can be answered in single-
exponential time [147,167], but PEQs need double-exponential time in the worst
case [169].

The results above have been obtained using a variety of techniques, such
as automata [57,58], resolution [158,176], or modified tableaux [144,164]. In
most other cases, query answering algorithms can be viewed as comprising two
main steps. In the first step, partial assignments from the query variables to the
individuals occurring in the ABox are used to generate an exponential number
of new query answering problems that can be answered over restricted tree-like
interpretations. In a second stage, queries over tree-shaped interpretations are
answered using techniques like rolling-up [54,89,110] that encodes the queries
into concepts, or knot [79,82] and domino [78] techniques that break all possible
interpretations into small structures.

The loss of the universal model property is particularly problematic for DLs
that simultaneously support inverse roles, nominals, and number restrictions, like
ALCOIQ and its extensions, since these logics also lack the forest-like models
that other logics enjoy. This makes the query answering problem so challenging
that it has still not been successfully solved. Answering CQs is known to be
hard for N2Exp for ALCOIQ (in fact, for the slightly weaker ALCOIF) [91],
and decidable for ALCHOIQ [191], but no elementary upper bounds on its
complexity have been established. For SHOIQ, decidability of CQs remains
open, although UCQs are known to be undecidable in the closely related logic
that extends ALCOIQ with a transitive closure operator on roles [165].

Ontology-Mediated Query Answering 265

6 Navigational Queries

The last decade has seen a huge growth of applications that store and query
data that has a relatively simple structure, but that is highly connected and
does not comply to a fixed, rigid relational schema. This includes, for example,
applications in which the data stems from the so-called web of linked data,
or from social, biological, and chemical networks. While CQs and UCQs are the
predominant query languages for relational databases, they are widely considered
to be insufficient for this kind of applications, since they cannot express even
basic reachability queries or retrieve pairs of objects that are connected by a path
with certain features. Instead, for querying this kind of data, one is interested
in so-called ‘navigational’ query languages.

The most basic navigational query language is regular path queries (RPQs),
which allow one to find all pairs of objects that are connected by a chain of
roles (binary relations, in the database setting) that comply with a given regular
language. In two-way RPQs (2RPQs), the vocabulary of the regular language
comprises both roles and their inverses. We note that 2RPQs lie at the heart of
XPath [69], which is the standard query language for querying XML documents,
and are also present in SPARQL 1.1 [106], where they go by the name of property
paths. By combining (2)RPQs and CQs, we obtain conjunctive (2)RPQs, allowing
one to search for patterns that conjunctively combine regular paths.

Within the database community, there have been considerable research efforts
devoted to studying the properties of these navigational query languages, devel-
oping query answering algorithms for them, and extending these languages with
yet more features to meet the needs of applications. In the past few years, the DL
research community has also begun to explore the use of navigational query lan-
guages for OMQA. This chapter provides an overview of this recent and ongoing
line of research.

6.1 Regular Path Queries and Their Extensions

We start by formally defining the language of C2RPQs. They are syntactically
very similar to CQs, but the atoms of the form R(t, t′) are generalized to L(t, t′),
where L is a regular language over the alphabet of role names and their inverses.
Intuitively, a pair of objects satisfies such an atom if they are connected via
a chain of roles whose label belongs to L. The language L can be represented
either by regular expressions or non-deterministic finite state automata (NFAs);
the latter representation is known to be exponentially more succinct [77]. We
note that the complexity results we mention in this chapter were shown for
regular expressions in the case of lower bounds, and NFA for upper bounds,
hence they all hold independently of the representation.

Definition 9. Recall that N±
R contains all role names and their inverses. A con-

junctive two-way regular path query (C2RPQ) has the form q(x) = ∃y.ϕ where
x and y are tuples of variables, and ϕ is a conjunction of atoms of the forms:

(i) A(t), where A ∈ NC and t ∈ NI ∪ x ∪ y, and

266 M. Bienvenu and M. Ortiz

(ii) L(t, t′), where L is (an NFA or regular expression defining) a regular lan-
guage over N±

R ∪ {A? | A ∈ NC}, and t, t′ ∈ NI ∪ x ∪ y.

Conjunctive (one-way) regular path queries (CRPQs) are obtained by disallow-
ing symbols from N±

R \ NR in atoms of type (ii). Two-way regular path queries
(2RPQs) consist of a single atom of type (ii) such that t and t′ are both answer
variables. Regular path queries (RPQs) are 2RPQs that do not use any roles
from N±

R \ NR.

To define the semantics of C2RPQs, we proceed as for CQs by defining a notion
of match. As a first step, we must specify how the atoms of the form L(t, t′)
should be interpreted.

A path from e0 to en in interpretation I is a sequence e0u1e1u2 . . . unen with
n ≥ 0 such that every ei is an element from ΔI , every ui is a symbol from
N±

R ∪ {A? | A ∈ NC}, and for every 1 ≤ i ≤ n:

– If ui = A?, then ei−1 = ei ∈ AI ;
– If ui = R ∈ N±

R , then (ei−1, ei) ∈ RI .

The label λ(p) of path p = e0u1e1u2 . . . unen is the word u1u2 . . . un. Note that
if p = e0, then we define λ(p) to be ε. For every language L over N±

R ∪{A? | A ∈
NC}, the semantics of L w.r.t. interpretation I is defined as follows:

LI = {(e0, en) | there is some path p from e0 to en with λ(p) ∈ L}

A match for a C2RPQ q in an interpretation I is a mapping π from the terms
in q to elements in ΔI such that

– π(c) = cI for each c ∈ NI,
– π(t) ∈ AI for each atom A(t) in q, and
– (π(t), π(t′)) ∈ LI for each L(t, t′) in q.

Finally, using this notion of match, we can define what it means for a tuple to
be an answer to a C2RPQ q(x) in interpretation I:

ans(q, I) = {e | e = π(x) for some match π for q in I}

We will again be interested in the certain answers, that is, the tuples of individu-
als a for which aI ∈ ans(q, I) for every model I of the KB. Importantly, C2RPQs
share with CQs the property of being preserved under homomorphisms, the cer-
tain answers to a C2RPQ q over an ELHI⊥ KB K coincide with the answers to
q in the canonical model IK of K.

Example 23. The following CRPQ is similar to the CQ q3 and the UCQ q4 in
Example 19: it retrieves dishes y that contain a spicy ingredient, together with
the location x where they are served. However, unlike q3 and q4, this query can
find the spicy component no matter how many hasIngredient steps away it is.

q6(y, x) = ∃z.serves(x, y) ∧ hasIngredient∗Spicy?(y, z)

Ontology-Mediated Query Answering 267

The following one-atom CRPQ can express the infinite FO query of Example 9:

q7(x) = ∃y.hasIngredient∗Spicy?(x, y)

In fact, it is also possible to compute the answers to this query using a (non-
conjunctive) 2RPQ. Since 2RPQs do not support existential variables, we cannot
use hasIngredient∗Spicy?(x, y) since it will only allow us to retrieve the values of
x whose spicy component y happens to be an ABox individual, which need not
be the case in general. To make sure that all x with an spicy component are
found, we can use the following slightly modified query q8:

q8(x, y) = hasIngredient∗Spicy?Σ∗(x, y)

where Σ = N±
R ∩ sig(K). Observe that the language Σ∗ allows us to reach some

ABox individual starting from any element in IK. It follows that whenever there
is a match π for q7, possibly mapping y to an anonymous object, there will be a
match π′ for q8 such that π(x) = π′(x) and π′(x) ∈ Ind(A). Thus, the query q7
is equivalent to the projection of q8 onto its first component, or more formally,
cert(q7,K) = {a | (a, b) ∈ cert(q8,K)for someb}, for every knowledge base K. �

We note that C(2)RPQs are strictly more expressive than CQs. Indeed, every
CQ is also a C2RPQ, but there exist RPQs (like Spicy∗(x, y)) that cannot be
expressed as a CQ (nor as an FO query). The language of Datalog queries is in
turn strictly more expressive than C2RPQs. It is not hard to show that every
C2RPQ can equivalently expressed as a Datalog query. In fact, C2RPQs fall
inside the linear fragment of Datalog that restricts the use of recursion by allow-
ing at most one recursive predicate in each rule body12.

C2RPQs are in general better behaved computationally than full Datalog.
Take for example the fundamental analysis task of query containment, which
consists in deciding whether the answer to one query is always contained in
the answer to another query over every possible database. Query containment
of Datalog queries is known to be undecidable [198], while this problem has
been shown decidable even for extensions of C2RPQs [44,55,84,180] and in the
presence of constraints [61,99]. Moreover, as we shall see in Sect. 7, Datalog
query answering over DL knowledge bases is undecidable even for very simple
DLs [144]. In contrast, C2RPQs are decidable even for very expressive DLs [57].

The increased expressiveness of C2RPQs, and in particular their ability to
express simple recursive queries like reachability, together with their good com-
putational properties, make them a very appealing query language for OMQA.
They are especially relevant when querying KBs formulated in lightweight DLs,
since the query language can compensate for limited expressivity of the DL (e.g.,
inability to propagate information over roles in DL-LiteR, lack of inverses in EL).

12 A predicate is called recursive if it occurs in a cycle in the dependency graph of
the Datalog program, whose nodes are the program’s predicates and which contains
an edge between two predicates whenever there is a rule that contains one of the
predicates in the body and the other in the head.

268 M. Bienvenu and M. Ortiz

Example 24. The query q7 = ∃y.Spicy∗(x, y) can be seen as a C2RPQ rewriting
of the query Spicy(x) w.r.t. the TBox T = {∃hasIngredient.Spicy�Spicy}. There is
no DL-LiteR TBox equivalent to this TBox, and the desired meaning of Spicy(x)
is not captured by any FO query over DL-Lite. �

6.2 Answering 2RPQs

In this section, we present an algorithm for answering 2RPQs in ELHI⊥. In
2RPQs, there are no existentially qualified variables, hence it is enough to con-
sider matches to the named individuals. A straightforward algorithm for eval-
uating a 2RPQ L(x, y) would first guess a pair of individuals (a, b), and then
check whether there is a path between a and b whose label complies with L.
However, checking the existence of such a path is still challenging: although this
chain starts and ends in the ‘core’ of the canonical model, it need not be fully
contained in it. Indeed, a path between two individuals in IK may still need to
go (possibly quite deep) into the anonymous part and come back out in order
to satisfy the regular expressions in the query, as we illustrate next.

Example 25. Reconsider KB K5 from Example 20. The mapping π(x) = π(y) =
p is a match for q8, hence (p, p) ∈ ans(q8, IK5). However, the fact that there is a
hasIngredient∗Spicy?Σ∗-labelled path from p to p is only witnessed by the path
of the form

p hasIngredient e1 Spicy? e1 hasIngredient− p

or by longer paths that have this one as a suffix. Similarly, all paths witnessing
that π(x) = π(y) = b is a match for q8 (and hence (b, b) ∈ ans(q8, IK5)) need
to go two steps into the anonymous part and pass by e4. That is, we need to
navigate the path

p hasIngredient e3 hasIngredient e4 Spicy? e4 hasIngredient−e3 hasIngredient− p

in order to satisfy the regular expression. �

To describe how to address this problem, let us first suppose that the regular
language in the 2RPQ is given by an NFA α (as mentioned earlier, this is without
loss of generality, since regular expressions are easily translated into NFAs). Our
strategy for deciding the existence of a suitable path is to define a relation Loopα

that stores all possible ‘loops’ through the anonymous part of IK that can be
used to partially satisfy α. That is, we store every path that starts and ends at
a given individual a and takes the query automaton α from state s to state s′.
Intuitively, if such a loop exists at the individual a, then we may ‘jump’ directly
from (a, s) to (a, s′) when looking for a path between two individuals, and in
this way we can avoid navigating the anonymous part in our algorithm.

An important observation that we can draw from the construction of the
canonical model is that the conjunction of concept names that an object satisfies
uniquely determines everything that occurs ‘below it’ in the anonymous part.

Ontology-Mediated Query Answering 269

s0 sf

hasIngredient

Spicy?

Σ∗

Fig. 4. NFA α8 for the regular expression hasIngredient∗Spicy?Σ∗ from query q8.

Hence, the relevant loops from a state s to a state s′ can be characterized in terms
of the conjunctions of concepts that enforce them. We thus define Loopα as a
relation that associates with each pair of states s, s′ from α a set of conjunctions
M of concept names, in such a way that the following holds:

(†) M ∈ Loopα[s, s′] iff for every individual a, we have that a ∈ MIK implies
that there exists a path p = e0u1e1u2 . . . unen in IK such that e0 = en = a,
ei is of the form a ·w for 0 < i < n, and λ(p) ∈ L(αs,s′), where αs,s′ obtained
from α by making s the starting state and s′ the unique final state.

Example 26. In Fig. 4, we display an NFA α8 representing the (regular language
corresponding to the) regular expression hasIngredient∗Spicy?Σ∗ from the query
q8. Apart from the trivial loops (that is, paths of length 0 from an individual
and state to itself), we have that:

– PizzaCalabrese ∈ Loopα8
(s0, sf), since from any object e that belongs to

PizzaCalabrese we can walk one hasIngredient step to an instance e′ of Nduja,
which is also Spicy (such an object e′ exists in the canonical model due to inclu-
sion PizzaCalabrese�∃hasIngredient.(Nduja	Spicy) in saturate(T5)). Since the
object e′ satisfies Spicy, we can move to sf while staying at e′, and then we
can take a hasIngredient− step back to the original e, while staying in the final
state sf .

– PenneArrabiata ∈ Loopα8
(s0, sf), since from any object e that is of type

PenneArrabiata, we can walk one hasIngredient step to an instance e′ of
ArrabiataSauce, and then take a second hasIngredient step to an instance e′′ of
Peperoncino, which is also Spicy (again, the existence of e′ and e′′ is ensured by
corresponding axioms in saturate(T5)). Since e′′ satisfies Spicy, we can move
to sf while staying at e′, and then we can take a hasIngredient− step back to
e′, and another one to e, while remaining in final state sf . �

A possible way to test whether M ∈ Loopα[s, s′] is to explicitly compute the full
table Loopα. This can be done inductively using the following rules13, obtained
by adapting existing constructions14 for ELH and DL-LiteR to ELHI⊥.

(L1) For every s ∈ S: Loopα[s, s] = NC.
(L2) If M1 ∈ Loopα[s1, s2] and M2 ∈ Loopα[s2, s3], then M1	M2 ∈ Loopα[s1, s3].

13 As earlier, we treat conjunctions of concepts as sets, ignoring order and repetitions.
14 We note that for ELH and DL-LiteR, the construction is simpler as we only need to

store concept names, rather than conjunctions of concept names.

270 M. Bienvenu and M. Ortiz

(L3) If {C1, . . . , Cn} ⊆ NC, T |= C1 	 · · · 	 Cn � A, and (s1, A?, s2) ∈ δ, then
C1 	 · · · 	 Cn ∈ Loopα[s1, s2].

(L4) If {C1, . . . , Cn} ⊆ NC, T |= C1 	 · · · 	 Cn � ∃R.D, T |= R � R′, T |=
R � R′′, (s1, R′, s2) ∈ δ, D ∈ Loopα[s2, s3], and (s3, R′′−, s4) ∈ δ, then
C1 	 · · · 	 Cn ∈ Loopα[s1, s4].

The resulting table is exactly the desired relation described by (†), see [32] for a
formal proof of the analogous results for ELH and DL-LiteR. Instead of building
the full table, another possibility is to add a set of axioms that reduce testing
M ∈ Loopα[s, s′] to an entailment test in ELHI⊥. The latter alternative has
been used for ELHI⊥ [27], but for a more involved notion of loop designed for
an extension of C2RPQs.

Now that we have a means of determining which loops through the anony-
mous part are available from a given ABox individual, we are ready to present
the evaluation algorithm EvalAtom in Fig. 5. It takes as input an NFA α =
(S,Σ, δ, s0, F), an ELHI⊥ KB K = (T ,A), and a pair of individuals (a, b)
from A, and it decides whether (a, b) ∈ cert(α(x, y),K). First, there is an initial
consistency check in Step 1 to determine whether the input KB is satisfiable
(this step can be skipped for ELHI KBs, which are always satisfiable). If the
KB is shown to be unsatisfiable, then the query trivially holds, so the algorithm
outputs yes. Otherwise, we initialize current with the pair (a, s0) and count to 0.
We also compute the maximum value max of the counter, which corresponds to
the longest length of path that needs to be considered. At every iteration of the
while loop (Step 3), we start with a single pair (c, s) stored in current and then
proceed to guess a new pair (d, s′) together with either a transition of the form
(s, σ, s′), or a conjunction of concept names M ∈ Loopα[s, s′]. The first option
corresponds to taking a step in the ABox, whereas the second corresponds to
a shortcut through the anonymous part. In the first case, the idea is that we
would like to append σd to the path guessed so far, but to do so, we must ensure
that the conditions of paths are satisfied. This is the purpose of the entailment
checks in Step 2(c). If we choose the second option, then we must check that
the concept names in the selected conjunction M are entailed at the current
individual. In both cases, if the applicable check succeeds, then we place (d, s′)
in current and increment count. We exit the while loop once we have reached
the maximum counter value or the pair in count takes the form (b, sf) with sf a
final state. In the latter case, we have managed to guess a path with the required
properties, and so the algorithm returns yes.

Example 27. We describe a successful run of the algorithm EvalAtom on input
α8 from q8, the KB K5 from Example 20, and the pair (p, p). We start with
current = (p, s0). In the first iteration, in Step 3(b) we guess (p, sf) and
PizzaCalabrese ∈ Loopα[s0, sf]. Then in Step 3(d) we verify that p = p and
K5 |= PizzaCalabrese(p). Since we now have a pair (p, sf) and sf is a final state
of α8, we exit the while loop and in Step 4, we return yes. This is correct, since
(p, p) ∈ cert(q8,K5). �

Ontology-Mediated Query Answering 271

Algorithm EvalAtom
Input: NFA α = (S, Σ, δ, s0, F) with Σ ⊆ N±

R ∪ {A? | A ∈ NC}, ELHI⊥ KB (T , A),
(a, b) ∈ Ind(A) × Ind(A)

1. Test whether (T , A) is satisfiable, output yes if not.
2. Initialize current = (a, s0) and count = 0. Set max = |A| · |S| + 1.
3. While count < max and current {∈� (b, sf) | sf ∈ F}

(a) Let current = (c, s).
(b) Guess a pair (d, s′) ∈ Ind(A)×S and either (s, σ, s′) ∈ δ or M ∈ Loopα[s, s′].
(c) If (s, σ, s′) was guessed

– If σ ∈ N±
R , then verify that T , A |= σ(c, d), and return no if not.

– If σ = A?, then verify that c = d and T , A |= A(c), and return no if not.
(d) If M was guessed, then verify that c = d and that T , A |= B(c) for every

concept name B ∈ M , and return no if not.
(e) Set current = (d, s′) and increment count.

4. If current = (b, sf) for some sf ∈ F , return yes. Else return no.

Fig. 5. Non-deterministic algorithm for 2RPQ answering in ELHI⊥.

The correctness of this algorithm was proved for DL-LiteR and ELH in [32], and
the result can also be extended to ELHI⊥:

Proposition 1. For every 2RPQ q = α(x, y), ELHI⊥ KB K = (T ,A), and
pair of individuals (a, b) from Ind(A): (a, b) ∈ cert(q,K) if and only if there is
some execution of EvalAtom(α,K, (a, b)) that returns yes.

The algorithm EvalAtom needs to make calls to procedures that decide satisfia-
bility, instance checking, and membership of a conjunction of concept names in
the Loopα table. We have discussed that for ELHI⊥, satisfiability and instance
checking are feasible in Exp in combined complexity. Computing the Loopα

table takes polynomially many iterations in the size of α and T , and each itera-
tion may need to do some subsumption tests (for (L3) and (L4)), which require
at most single exponential time. Hence, testing for loops can also be achieved
using no more than single exponential time. Thus, we can view EvalAtom as a
non-deterministic polynomial-time procedure that makes external calls to Exp
procedures. Since NPExp = Exp, we obtain an Exp upper bound for 2RPQ
answering in ELHI⊥. To obtain a matching hardness result, we recall that
instance checking is Exp-hard for ELHI⊥, and observe that instance check-
ing can be reduced to answering a simple 2RPQ given by a regular expression
of the form R or A?. Thus, 2RPQ answering is Exp-complete in combined com-
plexity. For data complexity, we observe that computing the Loopα table can be
done independently of the ABox A, hence it takes only constant time in |A| to
test whether B ∈ Loopα[s, s′]. Since in data complexity, satisfiability and entail-
ment in ELHI⊥ are P-complete, we obtain a tight P upper bound for answering
2RPQs.

272 M. Bienvenu and M. Ortiz

Since the complexity of EvalAtom is dominated by the complexity of entail-
ment and instance checking, we can obtain better upper bounds for 2RPQ
answering in sublogics of ELHI⊥ that are not hard for Exp. Indeed, both com-
bined and data complexity drop to P-complete for ELH [19], and thus 2RPQ
answering has the same complexity as subsumption and instance checking in
ELH. For DL-LiteR, satisfiability, subsumption and instance checking are known
to feasible in NLogSpace in combined complexity and in AC0 � LogSpace
in data complexity [52]. We do not obtain the same upper bounds for 2RPQ
answering, but we can use these facts to argue that EvalAtom gives us P and
NLogSpace upper bounds in combined in data complexity, respectively; both
bounds are known to be tight [32].

Theorem 17 ([32]). For ELHI⊥, 2RPQ answering is Exp-complete in com-
bined complexity and P-complete in data complexity. For DL-LiteR and ELH,
the combined complexity drops to P-complete. In data complexity, the problem
is NLogSpace-complete for DL-LiteR, and P complete for ELH.

6.3 Extending the Approach to C2RPQs

Recall that 2RPQs are single-atom queries that do not contain quantified vari-
ables. The latter restriction turns out to be inessential, as the complexity results
for 2RPQs hold also for single-atom queries with quantified variables. This can
be easily shown for queries of the form ∃x. α(x, t) (with t a term), ∃x. α(t, x)
(with t a term), and ∃x, y. α(x, y) (with x �= y). Indeed, q(x) = ∃y.α(t, y) can
be replaced by the 2RPQ q′(t, y) = α′(t, y), where L(α′) = L(α) · Γ ∗, where
Γ = N±

R ∩ sig(K), and then the answers to q are obtained by projecting the
answers of q′ to the first position. Likewise, ∃x.α(x, t) can be answered by taking
a 2RPQ with regular language Γ ∗ ·L(α) and ∃x, y.α(x, y) by using Γ ∗ ·L(α) ·Γ ∗.
Single-atom queries of the form ∃x.α(x, x) also have the same complexity, but
showing this requires a more intricate proof [32].

Using a similar approach, one can show that the upper bounds in Theorem 17
hold even for the more general class of C2RPQs where every existentially quanti-
fied variable occurs in at most one role atom, that is, C2RPQs with no existential
join variables, since they can be answered by combining the answers to a linear
number of one-atom C2RPQs.

For arbitrary C2RPQs, which may have existential join variables, we require
a more complex algorithm that combines the ideas discussed in Sect. 5.2 with the
loop computation from the present section. Such an algorithm has been proposed
in [32] for DL-LiteR and ELH, and in [27] for handling an extension of C2RPQs
over ELHI⊥ KBs. The basic idea is to rewrite the input C2RPQ into a set of
C2RPQs for which we only need to consider matches that map all variables to
ABox individuals. This may be accomplished using rewriting procedure that is
quite similar in spirit to the one we described for CQs, but considerably more
involved since we need to take into account possible ‘loops’ that go deeper into
the anonymous part than the image of the query variables. By combining this
extended rewriting procedure with the 2RPQ answering algorithm described in
this section, the following complexity results can be shown:

Ontology-Mediated Query Answering 273

Theorem 18 ([27,32]). C2RPQ answering is

1. NLogSpace-complete in data complexity for DL-LiteR,
2. P-complete in data complexity for ELH and ELHI⊥,
3. PSpace-complete in combined complexity for DL-LiteR and ELH, and
4. Exp-complete in combined complexity for ELHI⊥.

6.4 Results for Other DLs

The Exp upper bound in combined complexity for C2RPQs has been shown
even for the significantly more expressive Horn-SHOIQ [166], which is in close
correspondence with the Horn fragment of the expressive profiles of OWL. How-
ever, the technique employed there is quite different. In a nutshell, it considers
all the (exponentially many) different ways of breaking the query into parts that
are matched at the core, and parts that are matched in the trees. Answering the
latter reduces to C2RPQ answering in the simpler Horn-SHIQ. The authors use
automata on infinite trees for this purpose, but the technique we have described
could also be used: although presented for lightweight DLs [32], it is based on
the earlier algorithm for Horn-SHIQ and extends easily to the latter. For the
parts that are matched at the core, the authors use an explicit, step-by-step
computation of all the possible relevant paths between ABox individuals, possi-
bly passing by the anonymous part. This is somehow similar in spirit to the loop
computation we have discussed, but necessarily more involved, since the rele-
vant paths in Horn-SHOIQ are significantly more complex than simple loops
(mainly due to the almost complete loss of the forest-like structure of the canon-
ical models) and uses a Horn-SHIQ C2RPQ answering algorithm as an oracle.
The results of [166] can be lifted to P2RPQs (defined analogously to PEQs) and
cover also Horn-SROIQ, which is even more expressive than Horn-SHOIQ and
underlies OWL 2, the newest version of OWL [170]. However, for the latter DL,
C2RPQ and P2RPQ answering are 2Exp-complete in combined complexity. If
we consider data complexity, P2RPQ answering in all Horn logics between EL
and Horn-SROIQ is complete for P, and all the algorithms we have mentioned
run in polynomial time in the size of the ABox.

In non-Horn DLs, the complexity picture is very similar to CQs: the lack of
universal models raises the data complexity to coNP-hard [193], and the com-
bined complexity to 2Exp-complete, for every DL between ALC and the highly
expressive ZIQ, ZOQ and ZOI [57,58]. The main difference with the (U)CQ
setting is that even restricted classes of C2RPQs are 2Exp-hard for ALC [169]
(by contrast, CQ answering in ALCHQ is in Exp), and that C2RPQs are unde-
cidable already for ALCOIF .

6.5 Navigational Queries Beyond (C)(2)RPQs

There has been considerable interest in recent years in extending (C)(2)RPQs
with additional features that are considered important for applications. In par-
ticular, a useful XPath construct that is missing in C2RPQs is the possibility of

274 M. Bienvenu and M. Ortiz

using test operators, also known as nesting, to express sophisticated conditions
along navigation paths. One simple way to introduce nesting into (C)(2)RPQs is
to replace regular expression by so-called nested regular expressions (NREs), in
which one can use 〈ρ〉 to enforce the existence of an outgoing path that satisfies ρ,
where ρ may itself be an NRE. For example, one could use 〈awarded MichelinStar?〉
to test whether a restaurant has been awarded a Michelin star and the NRE
(hasWorkedAt Restaurant? 〈awarded MichelinStar?〉 hasWorkedAt−)∗ to find chefs
that are connected via a sequence of chefs such that every pair of adjacent chefs
has worked at the same Michelin-starred restaurant. NREs were initially intro-
duced for the purpose of defining nSPARQL, a navigational extension of SPARQL
[174]. Subsequent investigations into the use of NREs for querying graph data-
bases revealed them to have desirable computational properties [22,23].

The query answering problem for (C)N2RPQs (defined using NREs) in the
presence of DL ontologies was recently investigated in [27]. In that work, the
authors show that, for a wide range of DLs, adding nesting to (C)2RPQs does
not increase the worst-case data complexity of query answering. For expressive
DLs, this can be shown by reducing CN2RPQs to plain C2RPQs, by introducing
new concepts in the TBox that capture the nested expressions. For ELHI⊥ and
its sublogics, one can use a more sophisticated version of the rewriting and
loop procedures mentioned in Sect. 6.3. However, the news is not all positive as
it was further shown that adding nesting leads to Exp-hardness in combined
complexity, even for (non-conjunctive) 2NRPQs and the lightweight DLs DL-
Lite and EL. This negative result contrasts sharply with the tractable data
complexity for the same setting but without nesting (cf. Theorem 17).

The preceding results have been complemented by three other recent works
[43,132,203]. In [203], the authors consider the problem of answering (a slight
extension15 of) CNRPQs over OWL 2 EL knowledge bases. With regards to
combined complexity, they establish a PSpace upper bound for CNRPQs and
a P upper bound for NRPQs, thereby demonstrating that it is the combina-
tion of nesting and inverses that leads to Exp-hardness. In [132], the authors
investigate a variety of different XPath-inspired query languages, whose most
expressive member essentially corresponds to N2RPQs extended with negation
over unary and binary expressions. It is shown that negation over binary expres-
sions immediately leads to undecidability, and the query answering problem for
the path-positive fragment (allowing only unary negation) is coNP-complete
in data complexity and Exp-complete in combined complexity for both DL-
LiteR and EL (the Exp upper bound is shown for ELHI⊥). Finally, in [43], the
authors compare three different approaches to extending C2RPQs with nesting,
with PFO+TC1 (positive FO queries with transitive closure on binary predi-
cates) being the most expressive language. They establish a general decidability
result for PFO+TC1 queries that holds for all DLs satisfying a quasi-forest model
property, and for the DL S, they show (k + 2)-EXPTIME-hardness for queries
with k levels of nesting of the transitive closure operator.

15 The query languages considered in [132,203] also allow unary tests to be combined
using conjunctive and disjunction. A similar construct was considered in [31].

Ontology-Mediated Query Answering 275

The issue of defining interesting path query languages that support nesting
remains an active area of research in the database community, and there have
been several recent proposals, including: regular queries [180], guarded regular
queries [33], nested monadically defined queries [192], and the more general fam-
ily of nested flag-and-check queries [44]. Beyond nesting and negation, (C)2RPQs
have also been extended with path variables and regular relations [21].

7 Undecidability of Answering FO and Datalog Queries

We have seen in the preceding sections how various restricted forms of first-order
and Datalog queries can be answered over Horn DL knowledge bases. Moreover,
the procedures that we have devised run in polynomial time in the size of the
ABox, making them suitable for applications involving large amounts of data.
It is natural to wonder whether these nice computational properties extend to
more expressive query languages, and in particular, to the classes of (full) first-
order and Datalog queries defined in Sect. 3.2. Unfortunately, we will shall see
that the answer is negative: not only do we lose tractability, but we even lose
decidability. It is for this reason that full first-order and Datalog queries are not
considered suitable query languages for OMQA.

7.1 First-Order Queries

Because of the open-world semantics of DL knowledge bases, it is possible to
reduce the validity problem for first-order sentences to the problem of answer-
ing Boolean FO queries over empty DL KBs. As the FO validity problem is
undecidable, we obtain the following result.

Theorem 19. First-order query answering is undecidable in every DL.

The preceding theorem is quite discouraging, but it still leaves open the pos-
sibility that there may exist other natural classes of FO queries that are more
expressive than (U)CQs, yet remain decidable in the presence of DL ontologies.
Of particular interest are the extensions of (U)CQs with negation or inequali-
ties, which have been extensively studied in the database setting. These query
languages are formally defined as follows.

Definition 10 (Conjunctive Queries with Safe Negation). A conjunctive
query with safe negation (CQ¬s) is an FO query of the form q(x) = ∃y ϕ where
ϕ is a conjunction of (positive) atoms and negated atoms using variables in x∪y
and such that every variable occurs in at least one positive atom.

Remark 14. The requirement that every variable occurs in some positive atom
is made to ensure domain independence. Dropping this condition would mean
allowing queries like ¬Spicy(x) that are not domain independent.

276 M. Bienvenu and M. Ortiz

Example 28. The following CQ¬s finds menus whose main course is not spicy.

∃y Menu(x) ∧ hasMain(x, y) ∧ ¬Spicy(y)

This query will return all individuals m such that in every model of the KB, m
belongs to Menu and has an hasMain-successor that does not belong to Spicy. �

Definition 11 (Conjunctive Queries with Inequalities). A conjunctive
query with inequalities (CQ�=) is an FO query q(x) = ∃y ϕ where ϕ is a con-
junction of atoms and inequalities t1 �= t2 whose variables are contained in x∪y.

Example 29. The following CQ�= could be used to to find menus that contain at
least three courses:

∃y1y2y3 Menu(x) ∧ hasCourse(x, y1) ∧ hasCourse(x, y2) ∧ hasCourse(x, y3)
∧ y1 �= y2 ∧ y1 �= y3 ∧ y2 �= y3

Observe that this query could be captured using the concept Menu	 ≥
3hasCourse in DLs that allow for conjunction and unqualified number restric-
tions. In effect, by allowing inequalities in the language, we are able to express
some limited form of number restrictions.

We could also use inequalities to find two menus offered by the same estab-
lishment that contain different dessert courses:

∃y1y2z1z2 offers(x, y1) ∧ Menu(y1) ∧ hasDessert(y1, z1)∧
offers(x, y2) ∧ Menu(y2) ∧ hasDessert(y2, z2) ∧ z1 �= z2

This query is not expressible as a DL concept. �

Analogously to how we defined UCQs, we can define UCQ¬ss (resp. UCQ �=s) as
disjunctions of CQ¬ss (resp. CQ �=s) that have the same answer variables.

The complexity and decidability of (unions of) CQ¬s and CQ�= was first
investigated in [185], but it is only more recently that some key questions, such as
the decidability of answering CQ¬ss and CQ�=s in DL-LiteR, have been resolved
[101]. While some open questions remain, the results obtained so far paint a
decidedly negative picture:

Theorem 20. The following problems are undecidable:

– CQ¬s answering in DL-LiteR[101]
– UCQ�= answering in EL⊥ [185]
– CQ�= answering in DL-LiteR[101]
– CQ�= answering in EL⊥ [122]

We will not explain how the preceding decidability resuls are obtained, but
merely note that in contrast to the query languages from the preceding sections,
the answers to CQ �=s and CQ¬ss are not preserved under homomorphisms, and
thus we are not able to use the universal model for query answering.

Ontology-Mediated Query Answering 277

One solution that has been proposed in response to the undecidability of FO
query answering is to adopt an alternative epistemic semantics [51]. The idea is
to start with a standard DL query language Q (like IQs or CQs) and to introduce
epistemic atoms of the form Kq (q ∈ Q), which are interpreted as the certain
answers to q. These epistemic atoms can then be combined using the Boolean
connectives and first-order logic quantifiers. To answer such a query, one may
proceed by first computing the certain answers to the queries appearing in the
epistemic atoms, storing the results in a database, and then evaluating a first-
order query over this database. It follows that the query answering problem for
the epistemic query language with embedded Q-queries is decidable (resp. P in
data complexity) in a DL L whenever Q answering in L is decidable (resp. P in
data complexity).

Example 30. The epistemic query ∃yKMenu(x) ∧KhasMain(x, y) ∧ ¬KSpicy(y)
returns all menus m that have a main dish d that is not known to be spicy,
or more formally, d is not a certain answer to Spicy(x). Note that this is quite
different from knowing that the main dish d is not spicy (and such a distinction
may be relevant when choosing a menu!).

7.2 Datalog Queries

From the early days of description logic research, there has been significant
interest in combining DLs with Datalog rules. Unfortunately, the combination
of DLs and rules often leads to undecidability:

Theorem 21 ([144]). Datalog query answering is undecidable in every DL that
can express (directly or indirectly) an inclusion of the form A � ∃r.A.

Since A � ∃r.A is directly expressible in EL and can be simulated using the pair
of DL-Lite inclusions A � ∃r, ∃r− � A, we have the following:

Corollary 1. Datalog query answering is undecidable in DL-Lite and EL.

It is worth noting that Datalog queries are preserved under homomorphisms, and
thus, one can in principle evaluate a Datalog query over the (potentially infinite)
universal model of a Horn DL knowledge base. However, running a Datalog
program over the universal model leads to a new interpretation in which the
domain elements may be arbitrarily connected, thus lacking the forest structure
upon which many query answering techniques rely. For some restricted forms of
Datalog queries, like the navigational queries from Sect. 6, it is still possible to
develop techniques that exploit the forest structure of the universal model, but
for general Datalog queries, the ability to arbitrarily connect unnamed objects
leads to undecidability.

One simple way of regaining decidability is to enforce that Datalog rules be
only applied to ABox individuals, rather than unnamed objects. This can be
formalized using the notion of (weak) DL-safety [160,184], which requires that
every variable in a rule (head) occurs in a body atom whose relation does not
appear in the TBox. DL-safe and weak DL-safe Datalog are considerably less

278 M. Bienvenu and M. Ortiz

expressive as query languages over DL KBs than unrestricted Datalog, but can
nevertheless express some queries that are not captured by other decidable query
languages we have considered. Using similar techniques to those presented in
Sect. 5 for CQ answering in ELHI⊥, it was shown in [81] that the complexity of
answering weak DL-safe Datalog queries over Horn-SHIQ KBs is Exp-complete
in combined complexity and P-complete in data complexity.

8 Recent and Ongoing Research in OMQA

In this section we provide an overview of recent work on OMQA and areas of
ongoing research. Although we try to include many directions in which there are
interesting developments going on, it is not a complete survey, and the discussion
should not be considered exhaustive.

8.1 OMQA in DL-Lite

In the mid-2000’s, Calvanese et al. [50,52] introduced PerfectRef (for ‘perfect
reformulation’), the first query rewriting algorithm for DL-Lite, which was imple-
mented in the Quonto system [2]. The PerfectRef algorithm produces a UCQ-
rewriting of the input CQ and TBox by interleaving rewriting steps, in which a
query atom is rewritten by ‘applying’ a TBox inclusion in the backwards direc-
tion (e.g., rewriting Menu(x) into ∃y.hasCourse(x, y) using ∃hasCourse � Menu),
and reduction steps, in which unifiable atoms are merged (such unifications are
essential to the completeness of the rewriting mechanism). The PerfectRef algo-
rithm paved the way by showing how OMQA could be reduced to database
query evaluation, but experiments showed that the UCQ-rewritings generated
by PerfectRef were often extremely large (containing on the order of tens of
thousands of CQs), making it very costly, and sometimes impossible, to compute
and evaluate them. This spurred a whole line of research devoted to the design,
implementation, and optimization of query rewriting algorithms. The RQR algo-
rithm, proposed by Perez-Urbina, Motik and Horrocks and implemented in the
Requiem system [175], achieved significantly better performance by transform-
ing the input DL-LiteR TBox and query into a set of first-order clauses and
then applying a resolution procedure to compute a rewriting. The use of func-
tion symbols to handle existential axioms and the native support for axioms of
the form A � ∃R.B (instead of having to simulate them via role inclusions, cf.
Example 2) makes RQR more goal-oriented and allows it to avoid some unnec-
essary or redundant intermediate results. Further improvements were obtained
by the Rapid system of Chortaras, Trivela and Stamou [67] which by virtue of
its more sophisticated resolution strategy and additional optimizations is able
to substantially reduce the number of ‘useless’ inferences.

It should be noted that both Requiem and (the initial version of) Rapid
generate UCQ-rewritings and thus are limited by the potentially huge size
of the minimal UCQ-rewriting (the same holds for other UCQ-based rewrit-
ing approaches [95,124,211]). Indeed, it is not hard to see that the smallest

Ontology-Mediated Query Answering 279

UCQ-rewriting of a query may be exponentially large: take for instance the CQ
A1(x) ∧ A2(x) ∧ . . . ∧ An(x) and the TBox {Bj

i � Ai | 1 ≤ i ≤ n, 1 ≤ i ≤ m},
whose minimal UCQ-rewriting is a disjunction of (m + 1)n CQs, correspond-
ing to the (m + 1)n different ways of choosing, for each 1 ≤ i ≤ n, one of
the concepts Ai, B

1
i , . . . , Bm

i . This exponential blowup is commonly observed
in practice due to the fact that real-world ontologies typically contain complex
hierarchies of concepts, and thus there are often several choices of how to rewrite
a given atom. Observe however that such choices can be compactly representing
by adopting an alternative representation, e.g., the preceding CQ admits a short
rewriting as a positive existential query (

∨n
i=1(Ai(x)∨B1

i (x)∨ . . .∨Bm
i (x))) or a

non-recursive Datalog (NDL) program ({Q(x) ← Q1(x), . . . , Qn(x)}∪{Qi(x) ←
Ai(x), Qi(x) ← Bj

i (x) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}). This suggests that much more
substantial gains in performance can be obtained by dropping the UCQ repre-
sentation of rewritings in favour of more succinct query languages. This idea
was first explored by Rosati and Almatelli whose Presto system [188] produces
NDL-rewritings. An experimental evaluation showed it to significantly outper-
form the UCQ-based rewriting approaches; similar performances were obtained
by Rapidd, a variant of Rapid that outputs NDL-rewritings [68]. The tree wit-
ness rewriting of Kikot et al. [119], which is utilized by the Ontop system [181],
provides another example of an NDL-rewriting approach. An experimental com-
parison showed it to be the most efficient among the considered NDL approaches
and also confirmed the superiority of NDL-based rewriting algorithms over UCQ-
based ones. We note in passing that in addition to NDL-rewritings, there have
been some recent works producing different types of PE-rewritings, such as
semi-conjunctive queries (SCQs) [206] and joins of unions of conjunctive queries
(JUCQs) [45,46]. In the latter work, different decompositions of the original
query into subqueries give rise to a space of different JUCQ-rewritings, and a
cost function is used to estimate the cost of executing a particular rewriting and
to select the most efficient one.

Some further optimizations have been developed that are not applicable in
every setting, but can lead to dramatic improvements in performance when they
can be used. First, if one has control over the way that data is stored, then
one may store concepts as integer values and assign these values in such a way
that identifying the set of individuals satisfying a given concept can be achieved
by posing simple range queries over the database. This technique, known as
semantic indexing, has been shown to be very effective, and it is exploited by
the UCQ-based Quest rewriting engine of Rodriguez-Muro and Calvanese [182]
and has been more recently used in combination with the aforementioned tree
witness rewriting within the Ontop system [181]. Another important type of
optimization involves the use of so-called ABox dependencies (also known as
extensional constraints), which are TBox inclusions that hold in the interpreta-
tion (database) associated with the ABox. Intuitively, if we know that the ABox
satisfies the TBox inclusion A � B, then it is useless to rewrite the atom B(x)
into A(x), since whenever the ABox contains A(a), it must also contain B(a). In
the Quest system, the TBox is simplified by removing inclusions that are made
redundant by the constraints, and this simplified TBox is used during query

280 M. Bienvenu and M. Ortiz

rewriting. Further optimizations based upon exploiting extensional constraints,
as well as disjointness and functionality axioms, were developed by Rosati and
implemented in the Prexto system [183]. We should mention that both Quest
and Prexto produce UCQs, but the rewritings they generate can be signifi-
cantly smaller than those of other UCQ-based systems, since they only need to
work for ABoxes satisfying the constraints, rather than for arbitrary ABoxes.

The combined approach of Kontchakov et al. [126] represents an entirely dif-
ferent approach to achieving efficient answering in DL-Lite. The basic idea is to
saturate the ABox using the TBox axioms, and then to evaluate the query over
the saturated ABox. More precisely, one computes, in an offline phase, a finite
first-order interpretation (i.e., a relational database) that corresponds to a com-
pact representation of the canonical model of the KB (recall that we cannot in
general compute the full canonical model, as it may be infinite). During the con-
struction of this interpretation, new ABox individuals are introduced to serve as
witnesses for the existential restrictions in the TBox axioms. However, to ensure
finiteness, instead of generating several (possibly infinitely many) witnesses for
the same inclusion (as in the canonical model construction), we will ‘reuse’ the
same witnessing individual. If we now evaluate the input CQ over this new sat-
urated interpretation, then we will be sure to obtain all of the certain answers,
but we may also obtain some false answers due to the reuse of witnesses. There
are two ways of addressing this issue. The first possibility (adopted in [126])
is to rewrite the CQ in order to block spurious answers and to evaluate the
rewritten query over the saturated interpretation. If the TBox is formulated in
the basic dialect DL-Litecore , then the rewriting step results in a polynomial-
size FO-query. However, for DL-LiteR, the rewritten query may be exponentially
large. Thus, an alternative approach, proposed in a subsequent work [149] and
implemented in the Combo system, consists in evaluating the original query
over the saturated interpretation to get a superset of the certain answers, and
then applying an external polynomial-time filtering procedure to weed out the
spurious answers. An experimental evaluation comparing Combo with Rapid
and Presto showed it to be comparable to these systems in simpler settings,
but much more robust to increases in the size of the data or the complexity of
the concept hierarchy induced by the TBox.

We note that none of the preceding rewriting algorithms for DL-LiteR is
guaranteed to terminate in polynomial time. While UCQ-based rewritings are
necessarily exponential in the worst case, it is natural to wonder whether poly-
nomial rewritings can be achieved by adopting the more succinct PE, NDL,
and FO representations. A first negative result was obtained by Kikot et al.
[118] who proved the impossibility of generating an FO-rewriting in polyno-
mial time (unless P = NP) but left open the existence of polysize rewritings.
In a series of subsequent works [29,120,121], the preceding authors, joined by
Bienvenu and Podolskii, established tight connections between the size of rewrit-
ings of CQs w.r.t. DL-LiteR TBoxes and the circuit complexity of certain Boolean
functions, which allowed them to pinpoint the worst-case size of PE-, NDL-, and
FO-rewritings under various restrictions on the TBox and the input query. In
general, the news is bad: even if we assume that the ABox has been saturated

Ontology-Mediated Query Answering 281

(i.e., we perform query answering over the core of the canonical model), PE-
and NDL-rewritings can be exponentially large, and a superpolynomial lower
bound on the size of FO-rewritings holds under the widely-held complexity-
theoretic assumption that NP �⊆ P/poly [120]. For PE-rewritings, this negative
result cannot be easily escaped: the exponential lower bound applies even if the
query is tree-shaped [120] or if the TBox has depth 2 (i.e., it can only produce
canonical models whose elements are at most two ‘steps’ away from the ABox)
[121], and a superpolynomial lower bound has recently been shown for the very
restricted setting in which the input query is a linear CQ and the TBox has
depth 2 [29]. In the case of NDL-rewritings, the picture is brighter: polysize
NDL-rewritings always exist for tree-shaped queries with a bounded number
of leaves (and arbitrary DL-LiteR TBoxes), and for bounded treewidth queries
paired with bounded depth ontologies [29]. Moreover, an analysis of the combined
complexity shows that CQ answering is tractable for these classes of queries and
TBoxes, suggesting that it may be possible to define NDL-rewritings that can
be both generated and evaluated in polynomial time (as was done in [34] for
tree-shaped CQs in DL-Litecore). We should point out that the aforementioned
negative results on the size of rewritings concern so-called pure rewritings, which
do not use any constants other than those given in the query. Indeed, Gottlob
and Schwentick [98] showed that if one admits existential quantification over two
special constants (assumed to be present in every ABox), then polynomial-size
NDL-rewritings exist for all CQs and DL-LiteR TBoxes, although it is unclear
whether the obtained rewritings (which encode non-deterministic guesses using
the special constants) can be successfully used in practice (see [93] for further
discussion).

8.2 OMQA Beyond DL-Lite

We next review the OMQA algorithms and systems that have been proposed
for EL and its Horn extensions. A Datalog rewriting for ELH was defined by
Rosati [186] and used to establish P data complexity of CQ answering in that
logic. Pérez-Urbina et al. [176] subsequently proposed a resolution-based Data-
log rewriting algorithm for the much more expressive ELHIO⊥. The algorithm
has been implemented in the previously mentioned Requiem system; it returns
a UCQ-rewriting when the input ontology is in DL-LiteR and otherwise out-
puts a Datalog rewriting. The kyrie system [156] of Mora and Corcho is based
upon the same resolution procedure as Requiem, but it includes several addi-
tional optimizations that significantly improve the running time. A new version,
kyrie2, integrates optimizations based upon extensional constraints from the
Prexto system (see earlier). The first practical algorithm for CQ answering in
Horn-SHIQ, based upon Datalog rewriting, was proposed by Eiter et al. [81]
and implemented in the Clipper system. We presented the main ideas under-
lying this algorithm in Sect. 5. The resolution-based Rapid system, first devel-
oped for DL-LiteR, has been extended first to ELHI [207], and very recently to
Horn-SHIQ [208]. It is highly optimized and outperforms Clipper, making it
currently the most efficient approach available to handle all of Horn-SHIQ. As

282 M. Bienvenu and M. Ortiz

noted in Sect. 5, CQ answering algorithms have been proposed for the even more
expressive Horn-SHOIQ and Horn-SROIQ [166], but at the time of writing,
there are no implemented systems targeting these DLs.

A highly influential line of work was initiated by Lutz et al. [146] who
introduced the combined approach, which we have already discussed for DL-
Lite but was in fact first developed to handle EL and its extensions. In that
work, they introduce the notion of combined FO-rewritability, which generalizes
FO-rewritability by allowing a query-independent polynomial-time preprocess-
ing step in which one builds an FO-interpretation from the ABox and TBox,
followed by an ABox-independent query rewriting step that generates an FO-
query whose evaluation of the interpretation yields the certain answers. As we
have seen, the first step corresponds to compiling the TBox into the ABox and
yields a finite representation of the canonical model, whereas the second step
serves to block unsound answers that can result from approximating the possi-
bly infinite canonical model with a finite interpretation (alternatively, one may
replace the query rewriting step by a filtering step that identifies and discards
the spurious answers). The interest of the combined approach is that it provides
a means of exploiting relational database technology, while being applicable to a
much wider range of DLs than (plain) FO-rewritability. In particular, the original
paper by Lutz et al. showed that the approach could be applied to ELHdr

⊥ (which
extends ELH⊥ with domain and range restrictions), for which CQ answering is
P-hard in data complexity, thus preventing the use of plain FO-rewriting. For
this logic, the query rewriting step involves only very simple modifications of
the query and is guaranteed to terminate in polynomial time. Stefanoni et al.
[201,202] subsequently showed how the technique could be adapted to handle
first nominals, then transitive roles. In both works, the saturation step is han-
dled by means of a Datalog program, and following [149], filtering is used in
place of rewriting to eliminate unsound answers. Very recently, Feier et al. [83]
have further extended the combined approach to RSA, which is a fragment of
Horn-SHOIQ that was introduced in [64] as a way of capturing the three OWL
2 profiles while retaining PTIME combined complexity for basic reasoning tasks
(satisfiability and instance checking). Both the saturation and filtering steps
are specified declaratively by means of a logic program with function symbols
and stratified negation, and the answers are obtained by computing the minimal
model of this program using a logic programming system (note however that one
could equally well store the saturated interpretation as a database and leverage
relational technology to perform the querying phase). Experiments conducted
on prototype implementations of the preceding algorithms show the combined
approach to be highly effective. The principal drawback is that the saturated
interpretation can be costly to compute, and it needs to be kept up to date,
which may be problematic in applications in which the data changes frequently.

Another approach to using relational database systems to support OMQA
with non-FO-rewritable ontology languages relies upon the observation is that
while FO-rewritings need not exist for all CQs and all Horn DL ontologies, it is
still possible that for particular query-ontology pairs, an FO-rewriting does exist
(and hence relational technology can be used to answer such queries). Thus, an

Ontology-Mediated Query Answering 283

interesting and potentially quite useful research direction is to develop methods
for identify the cases where FO-rewriting is possible and to produce such rewrit-
ings when they exist. A first step in this direction was made by Bienvenu et al.
[30], who established decidability and complexity results for FO-rewritability of
IQs in Horn DLs, showing the problem to be PSpace-complete for EL TBoxes
and the full ABox signature and Exp-complete for ELHI and for EL if one may
restrict the ABox signature (note that even if FO-rewritings do not exist for
arbitrary ABoxes, they might exist for ABoxes formulated in a restricted signa-
ture). While these results were quite positive (similar problems in databases are
known to be undecidable), the automata-based decision procedures used to show
the upper bounds were ill-suited for implementation. Combining these theoreti-
cal results with an existing backward-chaining rewriting procedure [124], Hansen
et al. recently proposed a practical algorithm for testing FO-rewritability of IQs
w.r.t. ontologies formulated in ELHdr. The algorithm has been implemented in
the Grind system, and experimental results on real-world ontologies are very
encouraging: the vast majority of IQs do possess FO-rewritings, and the com-
puted rewritings (represented as NDL programs) are typically quite small. The
challenge in future work will be to see whether it is possible to extend this app-
roach to more expressive Horn DLs and more expressive queries (in particular,
CQs).

8.3 Querying Existing Relational Data Using Mappings

Throughout this chapter, we have assumed that the data is given as a set of
ABox assertions, which may be stored as relational tables, Datalog facts, or
RDF triples, but which only involve unary and binary relations (concepts and
roles). However, in many applications, one is interested in using ontologies to
query existing relational data, which typically involves relations of arity greater
than two. In order to be able to apply the preceding techniques to arbitrary rela-
tional databases, it is necessary to provide a mapping that specifies the semantic
relationship between the database relations and the concepts and roles in the con-
sidered DL vocabulary. Formally, a mapping is a finite set of mapping assertions,
each taking the form ϕ → ψ where ϕ is an query formulated using the database
relations and ψ is a query in the DL vocabulary. Global-as-view (GLAV) map-
pings, in which ϕ is a CQ and ψ is a single atom (without quantifiers), are the
most commonly considered. Given a relational database and a GLAV mapping,
we obtain the corresponding ABox by applying the mapping assertions (viewed
as rules) to the database, and the objective is to compute the certain answers
over the KB consisting of this ABox and the TBox. The term ontology-based
data access (OBDA for short) was originally coined to refer to this problem, but
in recent years the term has taken on a more general meaning and is often used
when speaking of the simpler OMQA setting without mappings.

Observe that by computing the ABox induced by the database and mappings,
we end up with an OMQA problem, to which we can apply all of the techniques
discussed in this chapter. However, it is often preferable to work with so-called
virtual ABoxes, meaning that we use the mappings to define the ABox, but do

284 M. Bienvenu and M. Ortiz

not actually produce it. Indeed, if we work with DL-Lite ontologies and utilize
an FO-rewriting approach, then we can proceed in three steps: (i) perform query
rewriting as usual to obtain an FO-query that is guaranteed to give the right
answers if it were evaluated over the (virtual) ABox, (ii) unfold the rewriting
using the mapping assertions to obtain an FO-query over the database signature,
and (iii) evaluate the resulting FO-query over the original relational database.
This approach was first elaborated by Poggi et al. and implemented in the Mas-
tro system [178]. Experience using this system in a real-world application with
the Italian Ministry of Economy and Finance showed that the mapping unfolding
phase yielded extremely large queries, which in many cases could not be handled
by the database system. An analysis of the obtained queries revealed that they
contained a lot of redundancies and could be significantly simplified by exploit-
ing the containment relationships between the database queries appearing in the
mapping assertions. This idea has been formalized in the PerfectMap algorithm
[177], which has been incorporated into the Mastro system and experimen-
tally validated on the aforementioned application. Mappings are also supported
by the Ontop system [181]. In this approach, the TBox is integrated into the
mapping in such a way that applying the mapping assertions directly generates
all inferable assertions (i.e., the new mapping produces the core of the canon-
ical model), and the tree witness rewriting is used to handle query matches
that involve anonymous individuals. The FO-query obtained by unfolding the
rewritten query using the modified mapping is simplified using semantic query
optimization, which exploits the integrity constraints satisfied by the underly-
ing database. Experiments with Ontop have shown that the resulting queries
are typically of reasonable size and can be efficiently evaluated by relational
database systems.

8.4 Inconsistency-Tolerant Query Answering

While it may be reasonable to assume that the TBox has been properly
debugged, the ABox is typically much larger and subject to more frequent mod-
ifications, making errors in the data almost inevitable. Such errors may render
the KB inconsistent, making standard query algorithms next to useless (since
when the KB is inconsistent, every tuple is trivially returned as an answer).
Appropriate mechanisms for dealing with inconsistent data are thus crucial
to the successful use of OMQA in practice. Ideally, one would restore consis-
tency by identifying and correcting the errors, but when this is not possible, a
sensible strategy is to adopt an inconsistency-tolerant semantics which allows
reasonable answers to be obtained despite the inconsistencies. The most well-
known, and arguably the most natural, such semantics is the AR semantics [138],
which was inspired by earlier work on consistent query answering in relational
databases (see [24] for a survey). The semantics is based upon the notion of a
repair, defined as an inclusion-maximal subset of the data that is consistent with
the ontology. Repairs correspond to the different ways of achieving consistency
while retaining as much of the original data as possible. Query answering under
AR semantics amounts to computing those answers that hold in every repair.

Ontology-Mediated Query Answering 285

Two other natural repair-based semantics are the brave semantics [35], which
only requires that an answer holds in some repair, and the more cautious IAR
semantics [138], which corresponds to evaluating the query over the intersection
of the repairs.

The complexity of answering queries under the AR semantics has been thor-
oughly investigated for a range of DLs [25,35,138,187]. The results are rather
discouraging: the problem is coNP-hard in data complexity already for instance
queries in DL-Lite [138] and for conjunctive queries in any DL that can express
disjointness of atomic concepts [25]. The IAR and brave semantics, which can
be seen respectively as providing under- and over-approximations of the set
of answers w.r.t. AR semantics, are more computationally well-behaved: for
DL-LiteR, both semantics can be computed using first-order query rewriting
[35,139], and thus has the same low complexity as CQ answering under classi-
cal semantics. Generalizing the IAR and brave semantics, Bienvenu and Rosati
[35] introduced two parameterized families of inconsistency-tolerant semantics,
called k-defeater and k-support semantics, that approximate the AR semantics
from above and from below, respectively, and converge to the AR semantics in
the limit. They established a general tractability result that applies to all known
first-order rewritable languages, in particular many dialects of DL-Lite.

When information on the reliability of different facts is available, it is natural
to use this information to identify preferred repairs, and to use the latter as the
basis of inconsistency-tolerant query answering. A weight-based version of the
AR semantics was first considered in the work of Du et al. [73]. More recently,
Bienvenu et al. [26] studied the complexity of CQ answering in DL-LiteR under
variants of the AR and IAR semantics based upon several different notions of
preferred repairs, in which preferences are captured by cardinality, weights, or
priority levels.

In terms of implementations, there are currently two systems for CQ answer-
ing over inconsistent DL-Lite KBs: the Quid system [189] implements the IAR
semantics, using either query rewriting or ABox cleaning, and the CQAPri sys-
tem [26] implements the AR, IAR and brave semantics, using tractable methods
to obtain the answers under IAR and brave semantics and calls to a SAT solver
to identify the answers holding under AR semantics (the system can also exploit
preferences in the form of priority levels). For expressive DLs, Du et al. [73] have
implemented a SAT-based algorithm for answering ground CQs (i.e., conjunc-
tions of IQs) in SHIQ under weight-based AR semantics.

8.5 Temporal Query Answering

Time plays a central role in many application domains, and data is usually
time-dependent: new contracts are signed, projects conclude, students gradu-
ate, menus change, etc. It is thus not surprising that the study of extensions
of classical DLs that can model and reason about time is almost as old as
DLs themselves, dating back to the early 1990s [194]. There are many differ-
ent approaches to incorporating time into DLs, allowing for different design
choices, which lead to a variety of temporal DLs with different computational

286 M. Bienvenu and M. Ortiz

properties. A prominent approach to construct temporal DLs is to combine DLs
with dynamic formalisms, such as classical temporal logics like LTL and CTL;
logics of time intervals [105], or action logics [11], and provide a two-dimensional
semantics. For specific such combinations, there are other design choices to be
made, like deciding to choose to which components of the DL syntax (concepts,
roles, ABoxes) temporal operators are applied to. There is a vast amount of
literature on temporal DLs; we refer to [12,13,87,154] for surveys. Most work
so far, however, focuses on the so-called ‘standard’ reasoning tasks, like satisfi-
ability testing and concept subsumption. Following the steps of the research on
classical DLs, the study of temporal DLs based on the lightweight DLs of the EL
and DL-Lite families has become a very active area of research and with much
progress in the last few years [15,16,102,103].

Recently, the study of temporal OMQA is also receiving increasing inter-
est. A general framework for answering temporal queries over temporal data in
the presence of classical ontologies was proposed in [104], considering queries
with temporal operators over time-stamped databases, but with a global TBox
(axioms hold at all moments of time) formulated in classical (non-temporal) DLs.
For variations of this basic setting, decidability and tight complexity bounds for
query answering have been obtained for expressive DLs between ALC and SHQ
[18], and most recently for the EL family [40]. Borgwardt et al. have shown that
in this setting query rewritability is preserved: the rewritability of the underlying
(non-temporal) query language can be lifted to the temporal one [39], implying
positive decidability results for OMQA in some Horn DLs.

A major limitation of these approaches is that they only consider global,
atemporal TBoxes, and hence they do not allow for the highly desirable con-
ceptual modeling of temporal properties; needed, e.g, in applications related to
data streams from sensor networks [14]. This can be supported by allowing for
temporal operators to occur as regular concept constructors, which may also
appear in TBoxes. Unfortunately, this extension makes query answering harder;
in particular, the unrestricted use of temporal operators results in the loss of
FO-rewritability for CQs over the DL-Lite family [16]. Positive results for FO-
rewritability were obtained in [16] by restricting the set of available temporal
operators and the occurrences of temporal concepts in the ontologies. Under
these restrictions, rewriting into two-sorted FO with an order relation is indeed
possible. The most recent work of these authors [14] carries out a detailed inves-
tigation of the limits of rewritability in the presence of more general forms of
temporal TBoxes (e.g., more temporal operators are allowed) using as target
rewriting languages two-sorted FO with an order relation and addition, as well
as monadic second order logic with an order relation.

8.6 Reasoning Support for Building and Maintaining OMQA
Systems

In order to use OMQA in a given application, one first requires an ontology
that defines the terminology and the semantic relationships between the terms.
As developing an ontology is difficult and time-consuming, it is important to

Ontology-Mediated Query Answering 287

provide tools to aid ontology engineers in this task. For ontology debugging, the
key reasoning service is axiom pinpointing [114,195], in which the problem is to
generate minimal subsets of the KB that explain a given (surprising or undesir-
able) consequence; such subsets are often called justifications. For ELH TBoxes,
justifications correspond to minimal models of propositional Horn formulas and
can computed using SAT solvers [196]. In DL-Lite, the problem is simpler: all
justifications of a TBox axiom can be enumerated in polynomial delay [173].

If suitable reference ontologies are available for the application area, then
rather than starting from scratch, one may begin by extracting the relevant
portions of existing ontologies. This is known as module extraction and has been
the subject of a number of works in recent years, see e.g. [100,127,129,204]. In
the OMQA setting, one is typically interesting in modules that preserve answers
to CQs. This can be formalized using the notion of query inseparability [123], in
which two TBoxes T1, T2 are said to be Σ-query inseparable just in the case that
they return the same answers to all queries formulated in the signature Σ for all
Σ-ABoxes (a notion of query inseparability for KBs can be defined similarly [41]).
Deciding query inseparability is a difficult task: the problem is Exp-complete
for both EL [153] and DL-LiteR TBoxes [41]. Despite these discouraging results,
Konev et al. [123] have shown that, by employing polynomial-time incomplete
algorithms, it is possible to use query inseparability as the basis for practical
module extraction in DL-LiteR. Beyond module extraction, query inseparability
can be used to analyze the effects of importing an ontology into another or of
refining an ontology by adding additional axioms [153].

Another relevant reasoning service is emptiness testing [17], which comes in
two flavours: query emptiness and predicate emptiness. The former is relevant
when developing OMQA systems that propose a fixed set of predefined queries,
as it allows one to detect whether a given query provides an empty answer over
all ABoxes formulated in a given vocabulary, a serious modeling error. Predicate
emptiness tests whether every query using a given predicate (concept or role)
returns an empty answer (again for ABoxes over the specified signature). It can
be used to identify the set of concept and role names that can be meaningfully
used in queries (and thus should be included in the query formulation interface),
and it can also serve as the basis for module extraction. The complexity of
emptiness testing has been investigated for a range of DLs. In EL, both forms
of emptiness testing are tractable and amenable to efficient implementation.

If we are building a full-fledged OBDA system with mappings to link the
ontology to a relational database (see Sect. 8.3), then it is also important to
provide support for constructing, debugging, and maintaining mappings. The
problem of mapping debugging was first investigated by Lembo et al. [140,141]
who provided algorithms and complexity results for detecting inconsistencies
and redundancies in mapping assertions. More recently, Bienvenu and Rosati
[36] have initiated an investigation into query-based comparison of OBDA spec-
ifications (i.e., mapping-TBox pairs), in which two specifications are deemed
equivalent if they give the same answers to the considered query or class of

288 M. Bienvenu and M. Ortiz

queries for all possible data sources. Such comparisons could be used, e.g., to
simplify the specification or to determine whether changes to the ontology and/or
mappings may impact query results.

8.7 Improving the Usability of OMQA Systems

In order for OMQA to be widely adopted in practice, it is essential that OMQA
systems be easily usable by end users. In particular, it should be possible for
users without any prior experience with ontologies to formulate queries that
capture their information needs. This has motivated research into user-friendly
interfaces that aid users in formulating their queries.

A pioneering project in this direction is Quelo [85], which provides a con-
trolled natural language interface for users to interactively construct a query,
starting from a very simple query (which is simply phrased as ‘I am looking for
something’), and adding additional constraints or modifying previously added
ones. To support the edits of the user, the interface uses reasoning to retrieve,
for example, which are the relevant constraints (concept and role names) that
can be added or removed from the query at a given stage. The resulting query
corresponds to a tree-shaped CQ, that can be then written as a complex DL
concept and answered using existing reasoning engines.

Later projects providing similar functionalities are the Faceted Search inter-
face of Arenas et al. [8], and the Optique virtual query formulation system (VQS)
[200]. Unlike Quelo, they do not aim at supporting natural language query for-
mulation. Instead, the former one provides faceted search facilities in which the
user can interactively click and unclick several options to retrieve the desired
information. Optique VQS was developed within the Optique project,16 and it
aims at providing an easy-to-use graphical interface that allows end users to
easily build complex queries.

In addition to aiding users in formulating their queries, it is also important
to help them understand the query results. As mentioned earlier, the problem
of explanation has already been extensively studied in the DL community for
the purposes of ontology debugging [38,107,108,114,155,173,195,196]. These
works have focused on explaining entailed TBox axioms (or possibly ABox
assertions), but not answers to conjunctive queries. To the best of our knowl-
edge, the first work to explicitly consider explanation in the OMQA setting
was that of Borgida et al. [37], who proposed a proof-theoretic approach to
explaining positive answers to CQs over DL-LiteA KBs. The approach outputs
a single proof, involving both TBox axioms and ABox assertions, generated by
‘tracing back’ the relevant part of the rewritten query, with minimality crite-
ria being used to select a ‘simplest’ proof. The problem of explaining negative
query answers over DL-LiteA KBs (that is, why is a given tuple not a cer-
tain answer?) has been investigated by Calvanese et al. ([62]). Formally, the
explanations for ans �∈ cert(q, (T ,A)) correspond to (minimal) sets A′ of ABox

16 http://optique-project.eu/.

http://optique-project.eu/

Ontology-Mediated Query Answering 289

assertions such that ans ∈ cert(q, (T ,A ∪ A′)). Practical algorithms for comput-
ing such explanations were proposed by Du et al., first for consistent KBs [74]
and then for inconsistent KBs [75]. Explanations of positive and negative query
answers under the brave, AR, and IAR semantics (discussed in Sect. 8.4) have
been explored by Bienvenu et al. [42].

8.8 OMQA with Closed Predicates

As discussed in Sect. 6, ABoxes are interpreted under the open world semantics,
while databases are given a closed world semantics. However, there are many
applications where the open world semantics of DLs is too weak and it does not
allow us to do all the desired inferences. For example, suppose the data to be
queried by an application contains the students enrolled in an specific course,
which are extracted from a database that is known to be complete. Then this
information should be considered complete (even if other parts of the data are
not), and query answering algorithms should exploit this to exclude irrelevant
models and infer more query answers.

Combining open and closed world reasoning in DLs is not a new topic [47], but
it has received renewed attention in recent years [86,150,197]. A way of achieving
partial closed world reasoning is to consider DBoxes [197], which syntactically
look just like ABox, but semantically, they are interpreted like a database: the
instances of the concepts and roles in a DBox are given exactly by the assertions
it contains, and the unique name assumption is made for the active domain of
the individuals occurring in it. More recent approaches enrich the knowledge
base by specifying a set of concepts and roles that are to be interpreted as closed
predicates [150]. In this way, some ABox assertions are interpreted under closed
semantics, as in DBoxes, while others are considered open, as in ABoxes.

Most works on reasoning with closed predicates focus on studying the data
complexity of query answering. Unfortunately, the problem is NP-hard even for
the core fragments of DL-Lite [86]. The authors of this work established a match-
ing upper bound for DL-Lite with functionality (the interaction of the latter with
the closed predicates and inverse roles makes the problem particularly challeng-
ing. An in-depth analysis of the reasons for NP-hardness, as well as criteria that
tractability for specific TBoxes have been studied by Lutz et al. [150]). In more
recent work [151], the same authors study further the problem of classifying spe-
cific pairs of a TBox and a query by their data complexity and, among other
contributions, identify some FO-rewritable cases. The combined complexity had
not been studied until very recently [162], but it has now been shown that query
answering is at least coNExp hard for any extension of EL, and in most cases
2Exp complete. Some of these complexity bounds are not hard to infer from
the standard open world setting, using ideas that had already been exploited by
Franconi et al. [86] to show that query answering in ALCIF with closed predi-
cates is equivalent to standard query answering in ALCOIF , whose complexity
is a long standing open problem.

290 M. Bienvenu and M. Ortiz

8.9 Aggregates

Aggregate functions like max, min, count, sum and avgr are among the most
common and most frequently used features of popular query languages, including
SQL. In the context of OMQA, they have received surprisingly little attention.
This is mostly due to the fact that the certain answer semantics is not very
suitable for aggregates, and it is not always clear what their expected meaning
should be under the open-world semantics. For example, if a knowledge base
only states that Mary teaches a course, then we can build models where she
teaches n courses for every n, and there are no certain answers to the query
‘How many courses does Mary teach?’. This is in fact the semantics given to
these kind of queries in the first work OMQA with aggregates [60], where the
authors adopt an epistemic semantics where aggregation is only done over the
data that coincides in all models. A more recent work revisiting this topic gives a
stronger semantics for count and count distinct that in the example above would
allow us to infer a lower bound of one course as an answer [131]. It does not
consider other aggregate functions. Moreover, the proposed semantics is rather
costly: already for DL-Lite deciding if a number is in the answer is hard for
coNP in data complexity and for the second level of the polynomial hierarchy
in combined complexity. In DL-LiteR, the combined complexity is even coNExp
hard.

8.10 Bridging the Gap with SPARQL

SPARQL is the standard language for querying RDF datasets [179]. The core
of the SPARQL language are the so-called basic graph patterns (BGPs), which
essentially correspond to CQs. SPARQL also provides additional constructs to
build complex queries from BGPs. Some of these constructors, like union, have
a natural counterpart in FO queries and the languages we have discussed in
this chapter. Others do not directly correspond to FO connectives but are still
expressible in FO. In fact, it has been shown that SPARQL, as a query lan-
guage, is equivalent to relational algebra, and hence to domain-independent FO
queries [4]. This implies, unfortunately, that full SPARQL is undecidable if we
use it as query language in our OMQA setting. In practice, SPARQL is often
used as a query language for query answering in the presence of ontologies, but
with a somewhat different semantics defined in the so-called entailment regimes,
see [88] and its references. We note that SPARQL supports aggregate functions in
queries, which we have discussed above. There is a newer version of the SPARQL
standard, SPARQL 1.1, [106], and one of its core features is to add the co-called
property paths, that basically correspond to regular expressions as in C2RPQs.

Optional Operator. A useful feature of SPARQL is the OPTIONAL oper-
ator. In the query languages we have discussed, query answers always take
the form of a relation (that is, a set of tuples of individuals) of a fixed arity.
Using OPTIONAL, one can define queries where binding some of the variables
is optional, and obtain as answers tuples of different arities, where the optional
variables are matched if possible, but left unassigned otherwise. For example, we

Ontology-Mediated Query Answering 291

can retrieve pairs of dishes and restaurants where they are served, and option-
ally retrieve also their price if it is available. This can be very useful in the
presence of incomplete information, hence it would be a good feature to add to
CQs, C2RPQs, or the other query languages for OMQA that we have discussed.
Unfortunately, the presence of OPTIONAL makes queries non-monotonic. This
means that, unlike CQs and other positive fragments of FO queries, they are not
preserved under homomorphisms. Hence there is no analogous to Theorem 13
and we cannot rely on the existence of a universal model for answering these
queries. The query answering algorithm that we discussed in Sect. 5 has been
extended to a family of well-behaved CQs with OPTIONAL [3]. Other recent
works also aim at giving a suitable semantics to fragments of SPARQL in the
presence of ontologies, and devising query answering algorithms [7,130].

Meta-Modeling and Meta-Querying. Standard DLs and the query languages
usually used for OMQA do not have meta-modeling and meta-querying function-
alities. Intuitively, in meta-querying, queries can ask for properties of concepts
and roles using variables that are bound to such objects (instead of binding
variables to individuals only). Meta-modeling can be seen as a generalization
of this, where one can use concept and roles as predicate arguments already in
the knowledge base. This allows to assert properties of concept and roles, and
to ask for such properties in queries. Meta-modeling was considered in the early
days of DLs, but nowadays it is not supported in standard DLs. Meta-modeling
and meta-querying are both popular in the in the semantic web, and they are
supported by RDF and SPARQL.

There have been a few extensions of DLs with meta-modeling functionali-
ties [70,72,92,157,171], which are obtained by introducing features from higher-
order logics. It has been shown that, under certain conditions, these higher-order
extensions of DLs do not increase the worst-case complexity of reasoning [72].
However, it has also been observed that even when the straightforward adapta-
tion of reasoning algorithms to the setting of higher-order DLs does not increase
their worst-case complexity, it can make them less practicable, and improved
algorithms for CQ answering in the higher-order version of DL-LiteR have been
proposed [143].

8.11 Extending the Applicability of Horn DL Techniques

As we have discussed, non-Horn DLs require significantly more involved query
answering algorithms that the ones presented in this chapter, and they usually
have a higher computational complexity. Even for traditional reasoning tasks
that have the same worst case complexity in the Horn and the non-Horn case
(e.g., satisfiability in SHIQ vs. Horn-SHIQ, which are both Exp-complete),
the techniques for Horn logics are in general more amenable to implementation
and more efficient in practice. For this reason, some researchers have recently
aimed at understanding when reasoning in a non Horn DL can be efficiently
reduced to reasoning in a Horn one [63,65]. In [115,116] the authors follow a
similar idea, but instead of rewriting into a Horn ontology, they rewrite into
Datalog, for which efficient off-the-shelf reasoners are available. Unfortunately,

292 M. Bienvenu and M. Ortiz

most of these results apply only to satisfiability and instance queries, and only
[116] presents some results for CQs.

Datalog has also been exploited to achieve scalable query answering in non-
Horn logics. For example, the authors of [212] first use a Datalog reasoner to
approximate the answers both from below and from above. That is, they obtain
a sound, possibly incomplete set of answers (lower bound), and a complete,
possible unsound set of answers (upper bound). Importantly, both computations
can be done efficiently by reducing them to the evaluation of suitable Datalog
programs. If the upper and lower bounds coincide, then running an expensive
exact algorithm becomes unnecessary. If they are different, then the difference
gives the set of potential answers for which an exact algorithm is necessary.
Moreover, even where expensive exact algorithms are needed, it is possible to
exploit the candidate answers to optimize the algorithm and reduce the search
space.

We also note that there have been a few works aiming at applying FO- and
Datalog-rewriting to non-Horn DLs. The problem of deciding existence of an FO-
or Datalog-rewriting of IQs for DLs between ALC and SHI was shown in [28]
to be NExptime-complete by establishing a tight connection between OMQA
with expressive DLs and non-uniform constraint satisfaction problems.

8.12 Rule-Based Ontology Languages

In this chapter, we have only discussed ontologies expressed in DLs. Another
important and closely related alternative is to express domain knowledge using
rules. Indeed, in the absence of existential quantification, most of the Horn DLs
we have discussed in this chapter could be expressed as Datalog rules. Expres-
sive rule languages that extend Datalog with existentially quantified variables in
rule heads have been devised with the explicit purpose of expressing DLs, and
ontological knowledge in general. Since Datalog with existential quantification
is well known to be undecidable, these extensions must be done in a cautious
and controlled way, and restrictions must be imposed, such as certain acyclic-
ity conditions or allowing only guarded quantification. The resulting families of
languages are known under the names of existential rules or Datalog±, and they
can be seen as generalizations of DLs to predicates of arbitrary arity, rather than
only unary and binary. For an overview of those fields and their main results,
we refer the reader to recent tutorials in this series of Summer Schools [96,161],
and to the Datalog± tutorial in this volume. Here we only point out that there
is a large and very active research community studying the OMQA problem
in the presence of existential rules and Datalog±, and that they share much of
the research agenda of OMQA with DLs we have discussed here. In fact, sev-
eral of the results and techniques we have discussed here have been extended
to that setting, including a vast amount of work on query rewriting, see e.g.,
[95,124,125,206] and references therein. Also the combined approach has been
extended to existential rules [94]. The saturation approach discussed in Sect. 4
has been adapted, and combined with a technique similar in spirit to the rewrit-
ing in Sect. 5 to reduce the OMQA problem for existential rules to plain Datalog
reasoning [97].

Ontology-Mediated Query Answering 293

T
a
b
le

5
.

T
h
e

co
m

p
le

x
it
y

o
f

O
M

Q
A

.
A

ll
re

su
lt

s
a
re

co
m

p
le

te
n
es

s
re

su
lt

s,
u
n
le

ss
st

a
te

d
o
th

er
w

is
e.

F
o
r

re
fe

re
n
ce

s,
p
le

a
se

re
fe

r
to

th
e

se
ct

io
n
s

o
f
th

e
tu

to
ri

a
l
o
n

th
e

co
rr

es
p
o
n
d
in

g
q
u
er

y
la

n
g
u
a
g
es

.

IQ
s

C
Q
s

2
R
P
Q
s

C
2
R
P
Q
s

D
a
ta

co
m
p
le
x
it
y

C
o
m
b
in
ed

co
m
p
le
x
it
y

D
a
ta

co
m
p
le
x
it
y

C
o
m
b
in
ed

co
m
p
le
x
it
y

D
a
ta

co
m
p
le
x
it
y

C
o
m
b
in
ed

co
m
p
le
x
it
y

D
a
ta

co
m
p
le
x
it
y

C
o
m
b
in
ed

co
m
p
le
x
it
y

D
L
-L

it
e
D
L
-L

it
e R

in
A
C
0

N
L
o
g
S
pa

c
e

in
A
C
0

N
P

N
L
o
g
S
pa

c
e

P
N
L
o
g
S
pa

c
e

P
S
pa

c
e

EL
,E

LH
P

P
P

N
P

P
P

P
P
S
pa

c
e

EL
I,

EL
H
I ⊥

,
H
o
rn

-S
H
O
IQ

P
E
x
p

P
E
x
p

P
E
x
p

P
E
x
p

AL
C,

AL
CH

Q
co

N
P

E
x
p

co
N
P

E
x
p

co
N
P

E
x
p

co
N
P
-h
a
rd

2
E
x
p

AL
CI

,
SH

,
SH

IQ
co

N
P

E
x
p

co
N
P

2
E
x
p

co
N
P

E
x
p

co
N
P
-h
a
rd

2
E
x
p

SH
O
IQ

co
N
P
-h
a
rd

co
N
E
x
p

co
N
P
-h
a
rd

co
N
2

E
x
p
-h
a
rd

a
co

N
P
-h
a
rd

co
N
E
x
p

co
N
P
-h
a
rd

co
N
2

E
x
p
-h
a
rd

b

a
D
ec
id
a
b
il
it
y
if
o
n
ly

si
m
p
le

ro
le
s
o
cc
u
r
in

fo
ll
o
w
s
fr
o
m

[1
9
1
],
b
u
t
n
o
co

m
p
le
x
it
y
u
p
p
er

b
o
u
n
d
s
a
re

k
n
o
w
n
.

b
D
ec
id
a
b
il
it
y
re
m
a
in
s
o
p
en

.

294 M. Bienvenu and M. Ortiz

9 Concluding Remarks

In this chapter we have given an introduction to the OMQA problem, an active
area of ongoing research. By allowing to exploit semantic knowledge when query-
ing data, OMQA opens many new perspectives for modern information systems.
However, taking into account this additional knowledge raises significant com-
putational challenges. We have discussed some algorithmic techniques, based on
the key ideas of query rewriting and saturation, which allow us to overcome these
challenges and effectively answer different kinds of queries. We have focused on
the so-called Horn DLs that allow for query answering in time that is polynomi-
ally bounded in the input data, and briefly discussed the main results for more
expressive DLs. Table 5 summarizes some of the main complexity results for the
OMQA problem, for different DLs and query languages.

We have also surveyed many recent results and current research directions.
The current OMQA/OBDA technologies are mature enough to be deployed in
all kinds of application areas. They have been successfully applied in many chal-
lenging real life applications, including investment risk analysis, configuration
and data management of mobile telecommunication data [49], and management
of public debt data [5]. The large ongoing project Optique is applying these tech-
nologies in the energy sector, supporting diagnosis engineers at power plants ser-
vice centers, and experts in oil exploration. Another large ongoing project called
EPNet17 uses OBDA to help access and manage data about food transportation
in the Roman empire. These projects witness the versatility and potential of
exploiting ontological knowledge when querying data.

While there has been much progress in the last years, many open questions
remain, and there are many more challenges to be overcome. Readers interested
in keeping up with the latest results and research trends in OMQA can refer to
the Informal Proceedings of the International Workshop on Description Logics,
the annual meeting point of the DL research community. The proceedings are
published in the free, open-access CEUR Workshop Proceedings series (http://
ceur-ws.org/), and a historic archive of the workshop editions with links to the
proceedings can be found on the Description Logics website (http://dl.kr.org/
workshops/).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publ. Co., Reading (1995)

2. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: querying ontologies. In: Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI 2005), pp. 1670–1671 (2005)

3. Ahmetaj, S., Fischl, W., Pichler, R., Šimkus, M., Skritek, S.: Towards reconciling
SPARQL and certain answers. In: Proceedings of the 24th International Confer-
ence on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp.
23–33 (2015)

17 http://www.roman-ep.net.

http://ceur-ws.org/
http://ceur-ws.org/
http://dl.kr.org/workshops/
http://dl.kr.org/workshops/
http://www.roman-ep.net

Ontology-Mediated Query Answering 295

4. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)

5. Antonioli, N., Castanò, F., Coletta, S., Grossi, S., Lembo, D., Lenzerini, M., Poggi,
A., Virardi, E., Castracane, P.: Ontology-based data management for the Italian
Public Debt. In: Proceedings of 8th International Conference Formal Ontology in
Information Systems (FOIS 2014). Frontiers in Artificial Intelligence and Appli-
cations, vol. 267, pp. 372–385. IOS Press (2014)

6. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange.
Cambridge University Press, Cambridge (2014)

7. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the seman-
tic web. In: Proceedings of the 33rd ACM SIGACT SIGMOD SIGART Sympo-
sium on Principles of Database Systems (PODS 2014), pp. 14–26. ACM, New York
(2014)

8. Arenas, M., Grau, B.C., Kharlamov, E., Marciuška, S., Zheleznyakov, D.: Faceted
search over ontology-enhanced RDF data. In: Proceedings of the 23rd ACM Inter-
national Conference on Information and Knowledge Management (CIKM), pp.
939–948 (2014)

9. Arora, S., Barak, B.: Computational Complexity - A Modern Approach.
Cambridge University Press, Cambridge (2009)

10. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite fam-
ily and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

11. Artale, A., Franconi, E.: A temporal description logic for reasoning about actions
and plans. J. Artif. Intel. Res. 9, 463–506 (1998)

12. Artale, A., Franconi, E.: Temporal description logics. In: Fisher, M., Gabbay, D.,
Vila, L. (eds.) Handbook of Time and Temporal Reasoning in Artificial Intelli-
gence. MIT Press, Cambridge (2001)

13. Artale, A., Franconi, E.: Temporal description logics. In: Fisher, M., Gabbay,
D., Vila, L. (eds.) Handbook of Temporal Reasoning in Artificial Intelligence.
Foundations of Artificial Intelligence, pp. 375–388. Elsevier, Amsterdam (2005)

14. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F.,
Zakharyaschev, M.: First-order rewritability of ontology-mediated temporal
queries. In: Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015) (2015)

15. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Trans. Comput.
Logic 15(3), 25:1–25:50 (2014)

16. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description
logic for ontology-based data access. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)

17. Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness
in description logics. In: Proceedings of the 12th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2010) (2010)

18. Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in the
description logic SHQ. Sci. Serv. Agents World Wide Web, Web Seman. (2014,
in press). doi:10.1016/j.websem.2014.11.008

19. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI 2005) (2005)

20. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proceedings
of the 5th International Workshop on OWL: Experiences and Directions (OWLED
2008) (2008)

http://dx.doi.org/10.1016/j.websem.2014.11.008

296 M. Bienvenu and M. Ortiz

21. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst. 37(4), 31 (2012)

22. Barceló, P., Pérez, J., Reutter, J.L.: Relative expressiveness of nested regular
expressions. In: Proceedings of AMW 2012. CEUR Workshop Proceedings, vol.
866, pp. 180–195 (2012)

23. Barceló Baeza, P.: Querying graph databases. In: Proceedings of the 32nd ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database Systems
(PODS 2013), pp. 175–188 (2013)

24. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan and Claypool Publishers, San Rafael
(2011)

25. Bienvenu, M.: On the complexity of consistent query answering in the presence
of simple ontologies. In: Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI 2012) (2012)

26. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description
logic knowledge bases under preferred repair semantics. In: Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI 2014) (2014)

27. Bienvenu, M., Calvanese, D., Ortiz, M., Šimkus, M.: Nested regular path queries
in description logics. In: Proceedings of the 14th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2014) (2014)

28. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access:
a study through disjunctive datalog, CSP, and MMSNP. ACM Trans. Database
Syst. 39(4), 33:1–33:44 (2014)

29. Bienvenu, M., Kikot, S., Podolskii, V.V.: Tree-like queries in OWL 2 QL: suc-
cinctness and complexity results. In: Proceedings of the 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2015). IEEE (2015)

30. Bienvenu, M., Lutz, C., Wolter, F.: First-order rewritability of atomic queries in
horn description logics. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013). IJCAI/AAAI (2013)

31. Bienvenu, M., Ortiz, M., Šimkus, M.: Answering expressive path queries over
lightweight DL knowledge bases. In: Proceedings of the 25th International Work-
shop on Description Logic (DL 2012) (2012)

32. Bienvenu, M., Ortiz, M., Šimkus, M.: Conjunctive regular path queries in light-
weight description logics. In: Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence (IJCAI 2013) (2013)

33. Bienvenu, M., Ortiz, M., Šimkus, M.: Navigational queries based on frontier-
guarded datalog: preliminary results. In: Proceedings of the Ninth Alberto
Mendelzon International Workshop on Foundations of Data Management (AMW
2015) (2015)

34. Bienvenu, M., Ortiz, M., Šimkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI 2013). AAAI Press (2013)

35. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)

36. Bienvenu, M., Rosati, R.: Query-based comparison of OBDA specifications. In:
Proceedings of the 29th International Workshop on Description Logic (DL 2015)
(2015)

37. Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in the DL-Lite
family of description logics. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II.
LNCS, vol. 5332, pp. 1440–1457. Springer, Heidelberg (2008)

Ontology-Mediated Query Answering 297

38. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Pro-
ceedings of ECAI (2000)

39. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query lan-
guages over knowledge bases. Sci. Serv. Agents World Wide Web, Web Seman.
(2014, in press). doi:10.1016/j.websem.2014.11.007

40. Borgwardt, S., Thost, V.: Temporal query answering in the description logic EL.
In: Proceedings of the 24th International Joint Conference on Artificial Intelli-
gence (IJCAI 2015) (2015)

41. Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Query
inseparability for description logic knowledge bases. In: Proceedings of the 14th
International Conference on the Principles of Knowledge Representation and Rea-
soning (KR 2014) (2014)

42. Bourgaux, C., Bienvenu, M., Goasdoué, F.: Explaining query answers under
inconsistency-tolerant semantics over description logic knowledge bases (extended
abstract). In: Proceedings of the 29th International Workshop on Description
Logic (DL 2015) (2015)

43. Bourhis, P., Krötzsch, M., Rudolph, S.: How to best nest regular path queries. In:
Proceedings of the 27th International Workshop on Description Logic (DL 2014),
vol. 1193, pp. 404–415. CEUR-WS.org (2014)

44. Bourhis, P., Krötzsch, M., Rudolph, S.: Query containment for highly expressive
datalog fragments. CoRR abs/1406.7801 (2014). http://arxiv.org/abs/1406.7801

45. Bursztyn, D., Goasdoué, F., Manolescu, I.: Efficient query answering in DL-Lite
through FOL reformulation. In: Proceedings of the 29th International Workshop
on Description Logic (DL 2015) (2015)

46. Bursztyn, D., Goasdoué, F., Manolescu, I.: Optimizing reformulation-based query
answering in RDF. In: Proceedings of the 18th International Conference on
Extending Database Technology (EDBT), pp. 265–276 (2015)

47. Cadoli, M., Donini, F.M., Schaerf, M.: Closed world reasoning in hybrid systems.
In: Proceedings of the 5th International Symposium on Methodologies for Intel-
ligent Systems (ISMIS 1990), pp. 474–481. North-Holland Publ. Co. (1990)

48. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In:
Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C.,
Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer,
Heidelberg (2009)

49. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Seman. Web 2(1), 43–53 (2011)

50. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
tractable description logics for ontologies. In: Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)

51. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite:
effective first-order query processing in description logics. In: Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp.
274–279 (2007)

52. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

http://dx.doi.org/10.1016/j.websem.2014.11.007
http://arxiv.org/abs/1406.7801

298 M. Bienvenu and M. Ortiz

53. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proceedings of the 17th ACM SIGACT SIGMOD
SIGART Symposium on Principles of Database Systems (PODS 1998), pp. 149–
158 (1998)

54. Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive query containment
and answering under description logics constraints. ACM Trans. Comput. Logic
9(3), 22.1–22.31 (2008)

55. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: Proceedings of the 7th International
Conference on the Principles of Knowledge Representation and Reasoning (KR
2000), pp. 176–185 (2000)

56. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics: an automata-theoretic approach. In: Proceedings of the 22nd
AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 391–396 (2007)

57. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description
logics with nominals. In: Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pp. 714–720 (2009)

58. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. 237, 12–55 (2014)

59. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proceedings of the 10th Inter-
national Conference on the Principles of Knowledge Representation and Reason-
ing (KR 2006), pp. 260–270. AAAI Press (2006)

60. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over
ontologies. In: Proceedings of the 2nd International Workshop on Ontologies and
Information Systems for the Semantic Web, ONISW 2008, Napa Valley, Califor-
nia, USA, 30 October 2008, pp. 97–104 (2008)

61. Calvanese, D., Ortiz, M., Šimkus, M.: Containment of regular path queries under
description logic constraints. In: Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI 2011) (2011)

62. Calvanese, D., Ortiz, M., Šimkus, M., Stefanoni, G.: Reasoning about explana-
tions for negative query answers in DL-Lite. J. Artif. Intell. Res. (JAIR) 48,
635–669 (2013)

63. Carral, D., Feier, C., Cuenca Grau, B., Hitzler, P., Horrocks, I.: EL-ifying ontolo-
gies. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 464–479. Springer, Heidelberg (2014)

64. Carral, D., Feier, C., Grau, B.C., Hitzler, P., Horrocks, I.: Pushing the boundaries
of tractable ontology reasoning. In: Mika, P., Tudorache, T., Bernstein, A., Welty,
C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014, Part II. LNCS, vol. 8797, pp. 148–163. Springer, Heidelberg (2014)

65. Carral, D., Feier, C., Romero, A.A., Grau, B.C., Hitzler, P., Horrocks, I.: Is your
ontology as hard as you think? Rewriting ontologies into simpler DLs. In: Informal
Proceedings of the 27th International Workshop on Description Logics, Vienna,
Austria, 17–20 July 2014. CEUR Workshop Proceedings, vol. 1193, pp. 128–140.
CEUR-WS.org (2014)

66. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Berlin (Germany) (1990)

67. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2
QL. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol.
6803, pp. 192–206. Springer, Heidelberg (2011)

Ontology-Mediated Query Answering 299

68. Chortaras, A., Trivela, D., Stamou, G.B.: Goal-oriented query rewriting for OWL
2 QL. In: Proceedings of the 24th International Workshop on Description Logics
(DL) (2011)

69. Clark, J., DeRose, S.: XML path language (XPath) version 1.0. W3C recommen-
dation, World Wide Web consortium (1999)

70. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Ragone, A.: Second-order
description logics: semantics, motivation, and a calculus. In: Proceedings of the
23rd International Workshop on Description Logic (DL 2010). CEUR Workshop
Proceedings, vol. 573. CEUR-WS.org (2010)

71. De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description
logics and propositional dynamic logics. In: Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI 1994), pp. 205–212 (1994)

72. De Giacomo, G., Lenzerini, M., Rosati, R.: Higher-order description logics for
domain metamodeling. In: Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI 2011) (2011)

73. Du, J., Qi, G., Shen, Y.D.: Weight-based consistent query answering over incon-
sistent SHIQ knowledge bases. Knowl. Inf. Syst. 34(2), 335–371 (2013)

74. Du, J., Wang, K., Shen, Y.: A tractable approach to ABox abduction over descrip-
tion logic ontologies. In: Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI 2014) (2014)

75. Du, J., Wang, K., Shen, Y.: Towards tractable and practical ABox abduction
over inconsistent description logic ontologies. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI 2015) (2015)

76. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

77. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. In: Pro-
ceedings of the Sixth Annual ACM Symposium on Theory of Computing (STOC
1974) (1974)

78. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query Answering in the Description
Logic Horn-SHIQ. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008.
LNCS (LNAI), vol. 5293, pp. 166–179. Springer, Heidelberg (2008)

79. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics:
the knots approach. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC
2009. LNCS, vol. 5514, pp. 26–36. Springer, Heidelberg (2009)

80. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics
with transitive roles. In: Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pp. 759–764 (2009)

81. Eiter, T., Ortiz, M., Simkus, M., Tran, T., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI 2012). AAAI Press (2012)

82. Eiter, T., Ortiz, M., Šimkus, M.: Conjunctive query answering in the description
logic SH using knots. J. Comput. Syst. Sci. 78(1), 47–85 (2012)

83. Feier, C., Carral, D., Stefanoni, G., Grau, B.C., Horrocks, I.: The combined app-
roach to query answering beyond the OWL 2 profiles. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015) (2015)

84. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with
regular expressions. In: Proceedings of the 17th ACM SIGACT SIGMOD SIGART
Symposium on Principles of Database Systems (PODS 1998), pp. 139–148 (1998)

85. Franconi, E., Guagliardo, P., Trevisan, M., Tessaris, S.: Quelo: an ontology-driven
query interface. In: Proceedings of the 24th International Workshop on Descrip-
tion Logics (DL) (2011)

300 M. Bienvenu and M. Ortiz

86. Franconi, E., Ibáñez-Garćıa, Y.A., Seylan, I.: Query answering with DBoxes is
hard. Electr. Notes Theor. Comput. Sci. 278, 71–84 (2011)

87. Gabbay, D., Kurusz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional Modal
Logics: Theory and Applications. Elsevier Science Publishers, Amsterdam (2003)

88. Glimm, B.: Using SPARQL with RDFS and OWL entailment. In: Polleres,
A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-
Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 137–201. Springer,
Heidelberg (2011)

89. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for
the description logic SHIQ. J. Artif. Intell. Res. 31, 151–198 (2008)

90. Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive queries in SHOQ. In:
Proceedings of the 11th International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2008), pp. 252–262. AAAI Press/MIT Press
(2008)

91. Glimm, B., Kazakov, Y., Lutz, C.: Status QIO: an update. In: Proceedings of the
22nd International Workshop on Description Logic (DL 2009). CEUR Workshop
Proceedings, vol. 745 (2011)

92. Glimm, B., Rudolph, S., Völker, J.: Integrated metamodeling and diagnosis in
OWL 2. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp.
257–272. Springer, Heidelberg (2010)

93. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V., Schwentick, T.,
Zakharyaschev, M.: The price of query rewriting in ontology-based data access.
Artif. Intell. 213, 42–59 (2014)

94. Gottlob, G., Manna, M., Pieris, A.: Polynomial combined rewritings for existential
rules. In: Proceedings of the 14th International Conference on the Principles of
Knowledge Representation and Reasoning (KR 2014) (2014)

95. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: rewriting and optimization.
In: IEEE 27th International Conference on Data Engineering 2011 (ICDE), April
2011, pp. 2–13 (2011)

96. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for seman-
tic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012.
LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012)

97. Gottlob, G., Rudolph, S., Šimkus, M.: Expressiveness of guarded existential rule
languages. In: Proceedings of the 33rd ACM SIGACT SIGMOD SIGART Sym-
posium on Principles of Database Systems (PODS 2014), pp. 27–38. ACM, New
York (2014)

98. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Descrip-
tion Logics. CEUR Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

99. Grahne, G., Thomo, A.: Query containment and rewriting using views for regular
path queries under constraints. In: Proceedings of the 22nd ACM SIGACT SIG-
MOD SIGART Symposium on Principles of Database Systems (PODS 2003), pp.
111–122 (2003)

100. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Intell. Res. (JAIR) 31, 273–318 (2008)

101. Gutiérrez-Basulto, V., Ibañez-Garćıa, Y., Kontchakov, R., Kostylev, E.V.: Con-
junctive queries with negation over DL-Lite: a closer look. In: Faber, W., Lembo,
D. (eds.) RR 2013. LNCS, vol. 7994, pp. 109–122. Springer, Heidelberg (2013)

Ontology-Mediated Query Answering 301

102. Gutiérrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight description logics
and branching time: a troublesome marriage. In: Proceedings of the 14th Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning
(KR 2014) (2014)

103. Gutierrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight temporal descrip-
tion logics with rigid roles and restricted TBoxes. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015) (2015)

104. Gutiérrez-Basulto, V., Klarman, S.: Towards a unifying approach to representing
and querying temporal data in description logics. In: Krötzsch, M., Straccia, U.
(eds.) RR 2012. LNCS, vol. 7497, pp. 90–105. Springer, Heidelberg (2012)

105. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38, 935–962 (1991)

106. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation
(2013). Available at http://www.w3.org/TR/sparql11-query/

107. Horridge, M., Bail, S., Parsia, B., Sattler, U.: The cognitive complexity of OWL
justifications. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal,
L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 241–256.
Springer, Heidelberg (2011)

108. Horridge, M., Parsia, B., Sattler, U.: Extracting justifications from BioPortal
ontologies. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat,
J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A.,
Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 287–299. Springer,
Heidelberg (2012)

109. Horrocks, I., Kutz, O., Sattler, U.: The irresistible SRIQ. In: Proceedings of the
1st International Workshop on OWL: Experiences and Directions (OWLED 2005)
(2005)

110. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic
ABoxes. In: Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI 2000), pp. 399–404 (2000)

111. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expres-
sive description logics. In: Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI 2005), pp. 466–471 (2005)

112. Imielinski, T., Lipski Jr, W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

113. Immerman, N.: Relational queries computable in polynomial time. Inf. Control
68, 86–104 (1986)

114. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Seman. 3(4), 268–293 (2005)

115. Kaminski, M., Grau, B.C.: Computing Horn rewritings of description logics
ontologies. In: Proceedings of the 24th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2015) (2015). http://arxiv.org/abs/1504.05150

116. Kaminski, M., Nenov, Y., Cuenca Grau, B.: Computing datalog rewritings for
disjunctive datalog programs and description logic ontologies. In: Kontchakov, R.,
Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 76–91. Springer, Heidelberg
(2014)

117. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), pp. 2040–2045 (2009)

118. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (In)Tractability of OBDA with
OWL 2 QL. In: Proceedings of the 24th International Workshop on Description
Logic (DL 2011). CEUR Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

http://www.w3.org/TR/sparql11-query/
http://arxiv.org/abs/1504.05150

302 M. Bienvenu and M. Ortiz

119. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proceedings of the 13th International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2012), pp. 275–285. AAAI Press
(2012)

120. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 263–274.
Springer, Heidelberg (2012)

121. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: On the succinct-
ness of query rewriting over OWL 2 QL ontologies with shallow chases. In:
Proceedings of the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2014). ACM Press (2014)

122. Klenke, T.: Über die Entscheidbarkeit von Konjunktiv Anfragen mit Ungleichheit
in der Beschreibungslogik EL. Master’s thesis, Universität Bremen (2010)

123. Konev, B., Kontchakov, R., Ludwig, M., Schneider, T., Wolter, F., Zakharyaschev,
M.: Conjunctive query inseparability of OWL 2 QL TBoxes. In: Proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI 2015) (2011)

124. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: A sound and complete
backward chaining algorithm for existential rules. In: Krötzsch, M., Straccia, U.
(eds.) RR 2012. LNCS, vol. 7497, pp. 122–138. Springer, Heidelberg (2012)

125. König, M., Leclère, M., Mugnier, M.L.: Query rewriting for existential rules with
compiled preorder. In: Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015) (2015)

126. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 2656–2661.
IJCAI/AAAI (2011)

127. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F.,
Zakharyaschev, M.: Minimal module extraction from DL-Lite ontologies using
QBF solvers. In: Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI 2009), pp. 836–841 (2009)

128. Kontchakov, R., Rodŕıguez-Muro, M., Zakharyaschev, M.: Ontology-based data
access with databases: a short course. In: Rudolph, S., Gottlob, G., Horrocks,
I., van Harmelen, F. (eds.) Reasoning Weg 2013. LNCS, vol. 8067, pp. 194–229.
Springer, Heidelberg (2013)

129. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artif. Intell. 174(15),
1093–1141 (2010)

130. Kostylev, E.V., Cuenca Grau, B.: On the semantics of SPARQL queries with
optional matching under entailment regimes. In: Mika, P., Tudorache, T.,
Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N.,
Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 374–389.
Springer, Heidelberg (2014)

131. Kostylev, E.V., Reutter, J.L.: Answering counting aggregate queries over ontolo-
gies of the DL-Lite family. In: Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI 2013) (2013)

132. Kostylev, E.V., Reutter, J.L., Vrgoc, D.: XPath for DL ontologies. In: Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)

133. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics.
In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
333–347. Springer, Heidelberg (2007)

Ontology-Mediated Query Answering 303

134. Krötzsch, M., Rudolph, S.: Conjunctive queries for EL with composition of roles.
In: Proceedings of the 20th International Workshop on Description Logic (DL
2007) (2007)

135. Krötzsch, M., Rudolph, S., Hitzler, P.: Conjunctive queries for a tractable frag-
ment of OWL 1.1. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
310–323. Springer, Heidelberg (2007)

136. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of Horn description logics.
ACM Trans. Comput. Logic 14(1), 2:1–2:36 (2013)

137. Krotzsch, M., Simancik, F., Horrocks, I.: Description logics. IEEE Intell. Syst.
29(1), 12–19 (2014)

138. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010)

139. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for
inconsistent DL-Lite ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011.
LNCS, vol. 6902, pp. 155–169. Springer, Heidelberg (2011)

140. Lembo, D., Mora, J., Rosati, R., Savo, D.F., Thorstensen, E.: Towards mapping
analysis in ontology-based data access. In: Kontchakov, R., Mugnier, M.-L. (eds.)
RR 2014. LNCS, vol. 8741, pp. 108–123. Springer, Heidelberg (2014)

141. Lembo, D., Mora, J., Rosati, R., Savo, D.F., Thorstensen, E.: Mapping analysis
in ontology-based data access: algorithms and complexity. In: Proceedings of the
29th International Workshop on Description Logic (DL 2015) (2015)

142. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the
21st ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems (PODS 2002), pp. 233–246 (2002)

143. Lenzerini, M., Lepore, L., Poggi, A.: Making metaquerying practical for Hi(DL-
LiteR) knowledge bases. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M.,
Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841,
pp. 580–596. Springer, Heidelberg (2014)

144. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in
CARIN. Artif. Intell. 104(1–2), 165–209 (1998)

145. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
146. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description

logic EL using a relational database system. In: Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 2070–2075.
AAAI Press (2009)

147. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

148. Lutz, C.: Two upper bounds for conjunctive query answering in SHIQ. In: Pro-
ceedings of the 22nd International Workshop on Description Logic (DL 2008).
CEUR Workshop Proceedings, vol. 353. CEUR-WS.org (2008)

149. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013)

150. Lutz, C., Seylan, I., Wolter, F.: Ontology-based data access with closed predicates
is inherently intractable (sometimes). In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013). IJCAI/AAAI (2013)

304 M. Bienvenu and M. Ortiz

151. Lutz, C., Seylan, I., Wolter, F.: Ontology-mediated queries with closed predi-
cates. In: Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015) (2015)

152. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 2070–2075
(2009)

153. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. 45(2), 194–228 (2010)

154. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey.
In: Proceedings 15th International Symposium on Temporal Representation and
Reasoning (TIME 2008), pp. 3–14. IEEE Computer Society (2008)

155. McGuinness, D.L., Borgida, A.: Explaining subsumption in description logics. In:
Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995) (1995)

156. Mora, J., Corcho, Ó.: Engineering optimisations in query rewriting for OBDA.
In: Proceedings of the 9th International Conference on Semantic Systems (I-
SEMANTICS), pp. 41–48 (2013)

157. Motik, B.: On the properties of metamodeling in OWL. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 548–562.
Springer, Heidelberg (2005)

158. Motik, B.: Reasoning in description logics using resolution and deductive data-
bases. Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January
2006

159. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 web ontology language profiles. W3C recommendation (2012). Available at
http://www.w3.org/TR/owl2-profiles/

160. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol.
3298, pp. 549–563. Springer, Heidelberg (2004)

161. Mugnier, M.-L., Thomazo, M.: An introduction to ontology-based query answer-
ing with existential rules. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks,
I., Kolaitis, P., Lausen, G., Weikum, G. (eds.) Reasoning Web. LNCS, vol. 8714,
pp. 245–278. Springer, Heidelberg (2014)

162. Ngo, N., Ortiz, M., Šimkus, M.: The combined complexity of reasoning with
closed predicates in description logics. In: Proceedings of the 29th International
Workshop on Description Logic (DL 2015) (2015)

163. Ortiz, M.: Ontology based query answering: the story so far. In: Proceedings of
the Seventh Alberto Mendelzon International Workshop on Foundations of Data
Management (AMW 2013) (2013)

164. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via Tableaux. J. Autom. Reason. 41(1), 61–98 (2008)

165. Ortiz, M., Rudolph, S., Šimkus, M.: Query answering is undecidable in DLs with
regular expressions, inverses, nominals, and counting. Technical report, INFSYS
RR-1843-10-03, Institut für Informationssysteme, Technische Universität Wien,
A-1040 Vienna, Austria, April 2010

166. Ortiz, M., Rudolph, S., Šimkus, M.: Query answering in the Horn fragments of
the description logics SHOIQ and SROIQ. In: Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1039–1044.
IJCAI/AAAI (2011)

http://www.w3.org/TR/owl2-profiles/

Ontology-Mediated Query Answering 305

167. Ortiz, M., Šimkus, M., Eiter, T.: Worst-case optimal conjunctive query answering
for an expressive description logic without inverses. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 504–510. AAAI
Press (2008)

168. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In:
Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp.
1–53. Springer, Heidelberg (2012)

169. Ortiz, M., Šimkus, M.: Revisiting the hardness of query answering in expressive
description logics. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS,
vol. 8741, pp. 216–223. Springer, Heidelberg (2014)

170. OWL working group, W.: OWL 2 web ontology language: document overview.
W3C recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/

171. Pan, J.Z., Horrocks, I.: OWL FA: a metamodeling extension of OWL DL. In:
Proceedings of the 15th International Conference on World Wide Web, WWW
2006, pp. 1065–1066. ACM, New York (2006)

172. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publ. Co.,
Boston (1994)

173. Peñaloza, R., Sertkaya, B.: Complexity of axiom pinpointing in the DL-Lite family
of description logics. In: Proceedings of ECAI (2010)

174. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: a navigational language for RDF.
J. Web Seman. 8(4), 255–270 (2010)

175. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer,
Heidelberg (2009)

176. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewrit-
ing under description logic constraints. J. Appl. Logic 8(2), 186–209 (2010)

177. Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: Pro-
ceedings of the 16th International Conference on Extending Database Technology
(EDBT), pp. 561–572 (2013)

178. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Seman. 10, 133–173 (2008)

179. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C rec-
ommendation (2008). http://www.w3.org/TR/rdf-sparql-query/

180. Reutter, J., Romero, M., Vardi, M.Y.: Regular queries on graph databases. In:
Proceedings of ICDT 2015 (2015)

181. Rodŕıguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data
access: Ontop of databases. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Bie-
mann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC
2013, Part I. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013)

182. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of
the 13th International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2012). AAAI Press, Menlo Park, CA (2012)

183. Rosati, R.: Prexto: query rewriting under extensional constraints in DL-Lite. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012)

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-sparql-query/

306 M. Bienvenu and M. Ortiz

184. Rosati, R.: DL+log: tight integration of description logics and disjunctive dat-
alog. In: Proceedings of the 10th International Conference on the Principles of
Knowledge Representation and Reasoning (KR 2006), pp. 68–98 (2006)

185. Rosati, R.: The limits of querying ontologies. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 164–178. Springer, Heidelberg (2006)

186. Rosati, R.: On conjunctive query answering in EL. In: Proceedings of the 20th
International Workshop on Description Logic (DL 2007) (2007)

187. Rosati, R.: On the complexity of dealing with inconsistency in description logic
ontologies. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011) (2011)

188. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proceedings of the 12th International Conference on the Principles of Knowledge
Representation and Reasoning (KR 2010) (2010)

189. Rosati, R., Ruzzi, M., Graziosi, M., Masotti, G.: Evaluation of techniques for
inconsistency handling in OWL 2 QL ontologies. In: Cudré-Mauroux, P., Heflin,
J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS,
vol. 7650, pp. 337–349. Springer, Heidelberg (2012)

190. Rudolph, S.: Foundations of description logics. In: Polleres, A., d’Amato, C.,
Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011)

191. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or:
why infinity is your friend!. J. Artif. Intell. Res. 39, 429–481 (2010)

192. Rudolph, S., Krötzsch, M.: Flag & check: data access with monadically defined
queries. In: Proceedings of the 32nd ACM SIGACT SIGMOD SIGART Sympo-
sium on Principles of Database Systems (PODS 2013), pp. 151–162. ACM (2013)

193. Schaerf, A.: Reasoning with individuals in concept languages. In: Torasso, P. (ed.)
AI*IA 1993. LNCS, vol. 728, pp. 108–119. Springer, Heidelberg (1993)

194. Schild, K.: Combining terminological logics with tense logic. In: Damas, L.M.M.,
Filgueiras, M. (eds.) EPIA 1993. LNCS, vol. 727, pp. 105–120. Springer,
Heidelberg (1993)

195. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003) (2003)

196. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via Horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE-22.
LNCS, vol. 5663, pp. 84–99. Springer, Heidelberg (2009)

197. Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies
over DBoxes. In: Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI 2009), pp. 923–925 (2009)

198. Shmueli, O.: Decidability and expressiveness aspects of logic queries. In: Proceed-
ings of the 6th ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems (PODS 1987), pp. 237–249 (1987)

199. Sioutos, N., de Coronado, S., Haber, M., Hartel, F., Shaiu, W., Wright, L.: NCI
thesaurus: a semantic model integrating cancer-related clinical and molecular
information. J. Biomed. Inf. 40(1), 30–43 (2006)

200. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jiménez-Ruiz, E., Giese, M.,
Horrocks, I.: OptiqueVQS: visual query formulation for OBDA. In: Informal Pro-
ceedings of the 27th International Workshop on Description Logics (DL), pp.
725–728 (2014)

Ontology-Mediated Query Answering 307

201. Stefanoni, G., Motik, B.: Answering conjunctive queries over EL knowledge bases
with transitive and reflexive roles. In: Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI 2015), pp. 1611–1617. AAAI Press (2015)

202. Stefanoni, G., Motik, B., Horrocks, I.: Introducing nominals to the combined
query answering approaches for EL. In: Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI 2007). AAAI Press (2013)

203. Stefanoni, G., Motik, B., Krötzsch, M., Rudolph, S.: The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif.
Intell. Res. (JAIR) 51, 645–705 (2014)

204. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Con-
cepts, Theories and Techniques for Knowledge Modularization. Lecture Notes in
Computer Science, vol. 5445. Springer, Heidelberg (2009)

205. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P.,
Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ring-
wald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of
biology. Nat. Genet. 25, 25–29 (2000)

206. Thomazo, M.: Compact rewritings for existential rules. In: Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013) (2013)

207. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.: Optimising resolution-based
rewriting algorithms for OWL ontologies. J. Web Seman. (2015, to appear)

208. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.: Query rewriting in Horn-
SHIQ (extended abstract). In: Proceedings of the 29th International Workshop
on Description Logic (DL 2015) (2015)

209. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of
the 14th ACM SIGACT Symposium on Theory of Computing (STOC 1982), pp.
137–146 (1982)

210. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proceedings of
the 14th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems (PODS 1995), pp. 266–276 (1995)

211. Venetis, T., Stoilos, G., Stamou, G.B.: Query extensions and incremental query
rewriting for OWL 2 QL ontologies. J. Data Seman. 3(1), 1–23 (2014)

212. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Pay-as-you-go OWL query
answering using a triple store. In: Proceedings of the 28th Conference on Artificial
Intelligence (AAAI 2014), pp. 1142–1148 (2014)

Answer Set Programming: A Tour
from the Basics to Advanced Development Tools

and Industrial Applications

Nicola Leone and Francesco Ricca(B)

Department of Mathematics and Computer Science, University of Calabria,
Rende, Italy

{leone,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a powerful rule-based
language for knowledge representation and reasoning that has been devel-
oped in the field of logic programming and nonmonotonic reasoning.
After more than twenty years from the introduction of ASP, the theoret-
ical properties of the language are well understood and the solving tech-
nology has become mature for practical applications. In this paper, we
first present the basics of the ASP language, and we then concentrate on
its usage for knowledge representation and reasoning in real-world con-
texts. In particular, we report on the development of some industry-level
applications with the ASP system DLV, and we illustrate two advanced
development tools for ASP, namely ASPIDE and JDLV, which speed-up
and simplify the implementation of applications.

1 Introduction

Answer Set Programming (ASP) [11,19,30] is a powerful rule-based language
for knowledge representation and reasoning that has been developed in the field
of logic programming and nonmonotonic reasoning. ASP features disjunction in
rule heads, non monotonic negation in rule bodies [30], aggregate atoms [16] for
concise modeling of complex combinatorial problems, and weak constraints [12]
for the declarative encoding of optimization problems.

Computational problems, even of high complexity [19], can be solved in ASP
by specifying a logic program, i.e., a set of logic rules, such that its answer
sets correspond to solutions, and then, using an answer set solver to find such
solutions [34,38].

After more than twenty years from the introduction of ASP, the theoreti-
cal properties of the language are well understood and the solving technology
has become mature [13] for practical applications. The high knowledge-modeling
power of ASP made it suitable for solving a variety of complex problems aris-
ing in scientific applications [13] from several areas ranging from Artificial Intel-
ligence [2,4,5,10,25,27,39], to Knowledge Management [3,6] and Databases [7,9,
32,35].

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 308–326, 2015.
DOI: 10.1007/978-3-319-21768-0 10

Answer Set Programming 309

Recently, an ASP system, namely the DLV system [33], has undergone an
industrial exploitation by a spin-off company called DLVSYSTEM l.t.d., favour-
ing the interest of some industries in ASP and DLV, which has led to its suc-
cessful usage in a number of industry-level applications [31]. A key advantage of
DLV for applications development is its endowment with powerful development
tools [22,24], supporting the activities of researchers and implementors.

In this paper, after a brief introduction to the ASP standard language, we
illustrate its usage for advanced Knowledge Representation and Reasoning by
presenting a number of industry-level real-world applications of ASP, that we
have implemented by using the DLV system and its accompanying tools. Namely:

– A platform employed by the call-centers of Italia Telecom, which automatically
classifies the incoming calls for optimal routing. The platform works in real-
time and deals with a very large number of parallel calls.

– A tool for the automatic generation of the teams of employees [42] that has
been employed in the sea port of Gioia Tauro for intelligent resource allocation.

– A mediator system for e-tourism [41], where ASP is used to single out, in a
short time, the travel solution that best matches the user profile.

– A tool for travel agents for the intelligent allotment of touristic packages.
Basically, the system selects from service-suppliers blocks of touristic packages
to be pre-booked for the next season in such a way that the expected earnings
are maximized, and a number of preference criteria are satisfied.

– An ASP-based platform for data cleaning [44] that is part of a business intel-
ligence suite developed for analyzing and cleaning-up the distributed archives
of the Italian Healthcare System storing data on tumor diseases.

Moreover, we illustrate two advanced development tools for ASP, namely
ASPIDE [24] and JDLV [22], that have played a crucial role for the success-
ful usage of DLV in the above mentioned applications. ASPIDE is an extensible
integrated development environment for ASP, which integrates powerful editing
tools with a collection of development tools for program testing and rewriting,
database access, solver execution configuration and output-handling. JDLV is a
plug-in for Eclipse, supporting a hybrid language that transparently enables a
bilateral interaction between ASP and Java. The development tools support
researchers and software developers and simplify the integration of ASP in
mature widely-adopted development platforms based on imperative and object-
oriented programming languages.

2 Answer Set Programming

In this section we overview the language of ASP, and we recall a methodology
for solving complex problems with ASP. More detailed descriptions and a more
formal account of ASP, including the features of the language employed in this
paper, can be found in [12,21,28,30], whereas a nice introduction to ASP can be
found in [3]. Hereafter, we assume the reader is familiar with logic programming
conventions.

310 N. Leone and F. Ricca

2.1 Syntax

Following a convention dating back to Prolog, strings starting with uppercase
letters denote logical variables, while strings starting with lower case letters
denote constants. Also terms, atoms and literals are defined as usual.

A disjunctiverule (rule, for short) r is a construct

a1 | · · · | an :− b1, · · · , bk, not bk+1, · · · , not bm. (1)

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The
disjunction a1 | · · · | an is called the head of r, while the conjunction
b1, ..., bk, not bk+1, ..., not bm is referred to as the body of r. Here not denotes
default negation. A rule without head (i.e. n = 0) is usually referred to as an
integrity constraint. A rule having precisely one head atom (i.e. n = 1) is called
a normal rule. If the body is empty (i.e. k = m = 0), it is called a fact, and in
this case the “:–” sign is usually omitted. An ASP program P is a finite set of
rules.

In ASP, rules in programs are usually required to be safe. A rule is safe if each
variable in that rule also appears in at least one positive literal in the body of
that rule. An ASP program is safe, if each of its rules is safe, and in the following
we will only consider safe programs. A term (an atom, a rule, a program, etc.)
is called ground, if no variable appears in it.

Optimization problems are modeled in ASP using weak constraints [12]. A
weak constraint ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm.[w@l]

where w and l are the weight and level of ω. (Intuitively, [w@l] is read “as weight
w at level l”, where weight is the “cost” of violating the condition in the body
of w, whereas levels can be specified for defining a priority among preference
criteria). An ASP program with weak constraints is Π = 〈P,W 〉, where P is a
program and W is a set of weak constraints.

2.2 Semantics

Let P be an ASP program. The Herbrand universe UP and the Herbrand base
BP of P are defined as usual (see e.g., [3]). The ground instantiation GP of
P is the set of all the ground instances of rules of P that can be obtained by
substituting variables with constants from UP .

An interpretation I for P is a subset I of BP . A ground literal � (resp.,
not �) is true w.r.t. I if � ∈ I (resp., � �∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all the rules of a program. Given a
ground program GP and an interpretation I, the reduct [20] of GP w.r.t. I is the

Answer Set Programming 311

subset GI
P of GP obtained by deleting from GP the rules in which a body literal

is false w.r.t. I. An interpretation I for P is an answer set (or stable model [30])
for P if I is a minimal model (under subset inclusion) of GI

P (i.e., I is a minimal
model for GI

P) [20].
Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π

extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the
instantiation of Π; a constraint ω ∈ GW is violated by an interpretation I if all
the literals in ω are true w.r.t. I. An optimum answer set O for Π is an answer
set of GP that minimizes the sum of the weights of the violated weak constraints
in GW as a prioritized way.

2.3 Programming Methodology

ASP has been exploited in several domains, ranging from classical deductive
databases to artificial intelligence. ASP can be used to encode problems in a
declarative fashion; indeed, the power of disjunctive rules allows for expressing
problems which are more complex than NP, and the (optional) separation of a
fixed, non-ground program from an input database allows one to obtain uniform
solutions over varying instances. More in detail, many problems of comparatively
high computational complexity can be solved in a natural manner by following
a “Guess&Check” programming methodology, originally introduced in [18] and
refined in [33]. The idea behind this method can be summarized as follows: a
database of facts is used to specify an instance of the problem, while a set of
(usually disjunctive) rules, called “guessing part”, is used to define the search
space; solutions are then identified in the search space by another (optional)
set of rules, called “checking part”, which impose some admissibility constraint.
To grasp the intuition behind the role of both the guessing and checking parts,
consider the well-known NP-complete problem 3-coloring: given an undirected
graph G = (V,E), assign each vertex one of three colors -say, red, green, or
blue- such that adjacent vertices always have distinct colors. 3-coloring can
be encoded in ASP as follows:

%Fact database specifying an instance
vertex(v). ∀v ∈ V ; edge(i,j). ∀(i, j) ∈ E

%Uniform non-ground program solving the problem
col(X,red) | col(X,green) | col(X,blue) :− vertex(X). % guessing part

:− edge(X,Y), col(X,C), col(Y,C). % checking part

The first two lines introduce suitable facts, representing the input graph G, the
third line contains a rule stating that each vertex needs to have exactly one color.
The last line contains a rule that acts as an integrity constraint since it disallows
situations in which two connected vertices are associated with the same color.

3 Applications

In this section we briefly describe a number of real-world applications based on
ASP. These applications were implemented by using the DLV system. DLV is the

312 N. Leone and F. Ricca

first ASP system which is undergoing an industrial exploitation by a spin-off com-
pany called DLVSYSTEM l.t.d. The usage of ASP in real context outlined sev-
eral advantages from a Software Engineering viewpoint of using such a powerful
and expressive framework. In particular the main qualities of ASP are flexibil-
ity, readability, extensibility, ease of maintenance. A lesson learned by developing
real world applications is that ASP allows one to develop complex features at a
lower (implementation) price than in traditional imperative languages. Indeed,
the possibility of modifying complex reasoning task by editing text files, and test-
ing it “on-site” together with the customer has been often a great advantage of
the ASP-based development.

3.1 Routing and Classification of Call-Center Customers

Contact centers are used by many organizations to provide remote assistance to
a variety of services. Their front-ends are flooded by a huge number of telephone
calls every day. In this scenario the ability of routing automatically customers
to the most appropriate service brings a two-fold advantage: improved quality
of service and reduction of costs.

Exeura s.r.l, a spin-off company of the University of Calabria, developed a
platform for customer profiling for phone calls routing based on ASP that is
called zLog (http://www.exeura.eu/en/archives/solution/customer-profiling).

The key idea is to classify customer profiles and try to anticipate their actual
needs for creating a personalized experience of customer care service. Contact
center operators can define customer categories, but it is very likely that these
employees may not have the competence for defining categories with a traditional
programming language. Thus, the definition of customer categories is done by
using an user-friendly user interface (see Fig. 1) that allows to create and mod-
ify categories to be added to the call routing system in real time. Categories
definition criteria include customer behavioral aspects, such as recent history
of contacts (e.g., telephone calls to the contact center, messages sent to cus-
tomer assistance, etc.) or basic customer demographics (e.g., age, residence, etc.
the latter useful, for instance, in case of natural disasters), or type of contract.
When a customer calls the contact center, he/she is automatically assigned to
a category (based on his/her profile) and then routed to an appropriate human
operator or automatic responder. The customer categories specified trough the
user interface are then automatically translated into ASP rules and fed as input
to DLV together with the factual data extracted from the databases storing
defined customer classes.

The zLog platform has been deployed in a production system handling Tele-
com Italia contact centers. Every day, over one million telephone calls asking for
diagnostic services reach the contact centers of Telecom Italia. The needs are
optimizing the operators assignment process, in order to reduce the average call
response times, and improve customer support quality. The zLog platform can
detect customer category in less than 100 ms (starting from his/her telephone
number) and manage over 400 calls/sec. As a result, zLog enables huge time
savings for over one million daily calls.

http://www.exeura.eu/en/archives/solution/customer-profiling

Answer Set Programming 313

Fig. 1. Example of call center customer’s class defined via the zLog user interface
(Color figure online).

We now report an example of ASP program defining a customer class
extracted from a real-world scenario that is also depicted in Fig. 1. The (simpli-
fied) set of rules generated by zLog corresponding to the specification of Fig. 1
is the following:

varTipoAbbonato(CLI) :− OR1(CLI).

OR1(CLI) :− AND1(CLI). OR1(CLI) :− AND2(CLI).
OR1(CLI) :− Abbonati on line1(CLI).

AND1(CLI) :− Clienti Linee(CLI, ...), not Abbonati on line2(CLI).
AND2(CLI) :− Clienti Linee1(CLI), not Abbonati on line2(CLI).

Abbonati on line1(CLI) :− Abbonati on line(CLI, ..., ESITO OPSC, ESITO TGDS, ...),
ESITO OPSC = “2”, ESITO TGDS = “0”.

Abbonati on line2(CLI) :− Abbonati on line(CLI, ..., ESITO OPSC, ESITO TGDS, ...),
DatiOPSC(ESITO OPSC).

DatiOPSC(codifica: “11”). DatiOPSC(codifica: “12”). DatiOPSC(codifica: “13”).

Clienti Linee1(CLI) :− Clienti Linee(CLI, ..., TIPO CLIENTE, STATO, ...),

TIPO CLIENTE = “ABB”, STATO = “A”.

Here it is easy to recognize that the above rules mimic the structure of the expres-
sion composed by using AND, OR, NOT operands in the graphical user interface.
In particular it is defined the customer class labeled “varTipoAbbonato” (trans-
lated in English “kind of customer”) outlined in blue in Fig. 1. In this specifica-
tion data is extracted from other customer classes, namely “Clienti Linee”, and
“Abbonati Online” representing customers that own a traditional telephone line
and subscribed a contract via the Internet portal of the company, respectively.
These are filtered according to some criteria on class attributes (only the rele-
vant ones are reported shown in the program snippet) that are specified trough
a specific panel of the user interface. In this case it corresponds to those that
have a permanent contract (they are called “clienti in abbonamento” in Italian),
but the device they are using is not known. The new class “varTipoAbbonato”

314 N. Leone and F. Ricca

is then computed applying the rules generated according to the graphical repre-
sentation. zLog then exploits DLV in order to quickly compute the new class of
customers.

3.2 Workforce-Management in the International Seaport
of Gioia Tauro

The problem we dealt with in this application is a form of workforce manage-
ment problem [37]. It amounts to computing a suitable allocation of the available
personnel of the seaport such that cargo ships mooring in the port are properly
handled. To accomplish this task several constraints have to be satisfied. An
appropriate number of employees, providing several different skills, is required
depending on the size and the load of cargo ships. Moreover, the way an employee
is selected and the specific role she will play in the team (each employee is able to
cover several roles according to her skills) are subject to many conditions (e.g.,
fair distribution of the working load, turnover of the heavy/dangerous roles,
employees’ contract rules, etc.). To cope with this crucial problem DLV has been
exploited for developing a team builder. First of all we modeled the input as fol-
lows: The employees and their skills by predicate hasSkill(employee, skillName).
The specification of a shift for which a team needs to be allocated, by predicate
shift(id, date, duration). The number of employees necessary for a certain skill on
the shift, by neededEmployee (shift, skill, num). Weekly statistics specifying, for
each employee, both the number of worked hours per skill and the last allocation
date by predicate wstat(employee, skill, hours, lastTime). Employees excluded
due to a management decision by excluded(shift, employee). Absent employees
by predicate absent(day, employee), and total amount of working hours in the
week per employees by predicate workedHours(employee,weekHours). A simpli-
fied version of the program computing teams is the following:

(r) assign(E,Sh,Sk) | nAssign(E,Sh,Sk) :− hasSkill(E,Sk),
employee(E,),shift(Sh,Day,Dur), not absent(Day,E),

not excluded(Sh,E), neededEmployee(Sh,Sk,),
workedHours(E,Wh), Wh + Dur ≤ 36.

(c1) :− shift(Sh, ,), neededEmployee(Sh,Sk,EmpNum),
#count{E : assign(E,Sh,Sk)} �= EmpNum.

(c2) :− assign(E,Sh,Sk1), assign(E,Sh,Sk2), Sk1 �= Sk2.

(c3) :− wstats(E1,Sk, ,LastTime1), wstats(E2,Sk, ,LastTime2),
LastTime1 > LastTime2, assign(E1,Sh,Sk),
not assign(E2,Sh,Sk).

(c4) :− workedHours(E1,Wh1), workedHours(E2,Wh2), threshold(Tr),
Wh1 + Tr < Wh2, assign(E1,Sh,Sk),
not assign(E2,Sh,Sk).

(r′) workedHours(E,Wh) :− hasSkill(E,),

#count{H,E : wstats(E, ,H,)} = Wh.

Answer Set Programming 315

The disjunctive rule r generates the search space by guessing the assign-
ment of a number of available employees to the shift in the appropriate roles.
Absent or excluded employees, together with employees exceeding the maximum
number of weekly working hours are automatically discarded. Then, admissible
solutions are selected by means of constraints: c1 discards assignments with a
wrong number of employees for some skill; c2 avoids that an employee covers two
roles in the same shift; c3 implements the turnover of roles; and c4 guarantees
a fair distribution of the workload. Finally, rule r′ computes the total number
of worked hours per employee. Note that, only the kernel part of the employed
logic program is reported here (in a simplified form), and many other constraints
were developed, tuned and tested.

The final user interface allows to modify manually computed teams, and the
system is able to verify whether the manually-modified team still satisfies the
constraints. In case of errors, causes are outlined and suggestions for fixing a
problem are proposed. E.g., if no plan can be generated, then the system sug-
gests the user to relax some constraints. In this application, the pure declarative
nature of the language allowed for refining and tuning both problem specifica-
tions and ASP programs while interacting with the stakeholders of the seaport.
The system, developed by Exeura s.r.l, has been adopted by the company ICO
BLG operating automobile logistics in the seaport of Gioia Tauro.

3.3 Advanced Tools for the Tourism Industry

We now overview two applications of ASP to problems arising in the tourism
industry. The first application is an intelligent advisor that select the most
promising offers for customers of a travel agency. The second is a tool for the
travel agent that helps in selecting blocks of touristic packages to pre-book dur-
ing the allotment phase.

Intelligent Touristic Advisor. In [41] it is described a service based on ASP
that has been integrated into an e-tourism portal. The idea is to devise a tool
that helps both employees and customers of a travel agency in finding the best
possible travel solution in a short time. It can be seen as a “mediator” system
finding the best match between the offers of the tour operators and the requests
of the tourists. A knowledge base has been specified by analyzing the touristic
domain in cooperation with the staff of a real touristic agency, which models
the key entities that describe the process of organizing and selling a complete
holiday package. In particular, all the required information, such as geographic
information, kind of holiday, transportation means, etc. is stored in the knowl-
edge base. Moreover, the mere geographic information is, then, enriched by other
information that is usually exploited by travel agency employees for selecting a
travel destination. For instance, one might suggest avoiding sea holidays in win-
ter; whereas, one should be recommended a visit to Sicily in summer. Also user
preferences are stored, so to exploit the knowledge about users to personalize hol-
iday package search. Then DLV has been used to develop several search modules

316 N. Leone and F. Ricca

that simplify the task of selecting the holiday packages that best fit the cus-
tomer needs. As an example we report a (simplified) logic program that creates
a selection of holiday packages:

%detect possible and suggested places
possiblePlace(Place) :− askFor(TripKind,), PlaceOffer(Place, TripKind).
suggestPlace(Place) :− possiblePlace(Place), askFor(,Period),

suggestedPeriod(Place, Period),
not BadPeriod(Place, Period).

%select packages that the user is possibly interested in

possibleOffer(O) :− TouristicOffer(O, Place), possiblePlace(Place).

The first two rules select: possible places (i.e., the ones that offer the kind of
holiday as input); and places to be suggested (because they offer the required
kind of holiday in the specified period). Finally, the remaining rule searches in
the available holiday packages the ones which offer an holiday that matches the
original input (possible offer). This is one of the several reasoning modules that
have been devised for implementing the intelligent search, for more details we
refer the reader to [41].

Automatic Allotment. In the travel industry it is common for tour operators
to pre-book from service suppliers blocks of touristic packages, which are called
allotments in jargon. Basically, given a set of requirements on the properties
of packages to be bought, budget limits, and an offer of packages from several
suppliers, the problem from the perspective of the travel agent is to select a set
of offers to be brought (or pre-booked) for the next season so that the expected
earnings are maximized [15]. Despite allotment is one of the most commonly-
used supplying practices in the tourism industry, the final selection of packages
offered by travel suppliers is often done in small travel agencies more or less
manually. Thus we developed an ASP-based tool for assisting tour operators in
the allotment process. We now illustrates a simplified version of the ASP program
which solves the allotment problem. In particular, the following disjunctive rule
guesses a quantity to buy for each required package limiting the search space
to available package tours which are requested and their selling price is in the
requested range as follows:

buy(P, Q) | nBuy(P, Q) :− availablePackages(P, , D, T, SP, PP, , AvQ),
requiredPackages(D, T, MinP, MaxP, ReqQ),

0 ≤ Q ≤ ReqQ, Q ≤ AvQ, MinP ≤ SP ≤ MaxP.

The following constraint ensures only one quantity the same package is selected:

:− #count{Q, P : buy(P, Q) } > 1, availablePackages(P, , , , , , ,).

Here a special aggregate atom count is used see [16]. An other constraint enforces
a critical requirement on the budget, i.e. the sum of prices of selected package
tours must not exceed a limited budget:

:− #sum{ PP*Q, P : buy(P, Q),
availablePackages(P, S, , , SP, PP, ,) } > B, budget(B).

Answer Set Programming 317

then earnings are maximized by using a weak constraint [12]:

:∼ discountPrices(P, SP, PP), buy(P, Q), E = (SP-PP)*Q. [-E]

Intuitively, when a stock of package tours is bought the violation of this con-
straint is associated with a cost depending on the earnings obtained by buying
those packages. The weight of weak constraint is negative since weak constraints
expresses the minimization of the cost associated to a solution. Travel agen-
cies might specify a number of additional optional preference criteria that were
encoded also by means of weak constraints. The ASP program is included as
an advanced reasoning service of the e-tourism platform developed under the
iTravelPlus project by the Tour Operator Top Class s.r.l. and the University of
Calabria.

3.4 Business Intelligence Platform for Cleaning Medical Archives

The approach described in the following addresses multi-source data cleaning for
syntactic and semantic anomaly detection with ASP [44]. The idea is to define of
an automatic procedure for generating logic programs able to identify and, when-
ever possible, correct errors within the data. Then, an automatically-generated
logic program is embedded in a business intelligence work-flow (including data
extraction, integration, manipulation and transformation) developed with Pen-
taho Kettle. The ASP-based solution has been implemented in a Penthao plugin
called DLVCleaner. The proposed approach should be considered complementary
to the existing ones, and capable to provide simplified and flexible specification of
the logic of the data cleaning task. In the following we report a brief description
of a real use case employing ASP for data cleaning. We refer the reader to [44]
for more details on the DLV Cleaner. ASP was used to clean data from several
tumor registries of the Calabria region. We first provide some background infor-
mation about this scenario (from [44]). Currently no law obliges hospitals and
clinics in Italy to collect and archive data on diagnosis and treatment of tumors.
Then, various organizations autonomously collect such information in tumor reg-
istries. Currently, 34 tumor registries are active in Italy, covering overall almost
25 % of the population. The registry used in our use case considers informa-
tion related to several local healthcare centers from the Calabria Region. Data
are collected from many different sources, including public hospitals, healthcare
centers, family doctors, etc. Collected information include the kind of diagnosed
cancer, personal data of the patient, current clinical conditions, past and current
treatments, disease evolution, etc. All such information are extremely important
to analyze causes and evolutions of cancer diseases, in order to study proper
treatments, prevention policies, and to schedule sanitary budgets. Overall, we
considered more than 200 tables as sources of data. Almost all of this information
should be inter-linked by the identity of the patient. However, different registries
used different schemas and standards to represent data; and such an information
is often imprecise in local sources, since in many cases data are loaded manually.
Thus these often contain errors or incomplete information. As a consequence, the
proper identification of each mentioned patient through a subset of its attributes

318 N. Leone and F. Ricca

Fig. 2. Example of a Kettle workflow using the DLVCleaner plugin (from [44]).

is a difficult and fundamental task. The entire dataset has been cleaned apply-
ing several cleaning workflows embedding several instances of DLVCleaner (in
Fig. 2) is reported a picture of a workflow configured for cleaning patient infor-
mation). Each data flow is sent to a specifically configured DLVCleaner instance
which, based on stream classifications rules specified in ASP outputs results onto
one of four tables, namely valid tuples, corrected tuples, suggested tuples, and
anomalies. As an example, the DLVCleaner 3digit birthplace instance in Fig. 2
embedds a transformation in which the birthplace is mapped onto the nationality
attribute of the reference dictionary, whereas in DLVCleaner number birthplace
the birthplace is mapped onto the ISTAT code dictionary attribute. Analogously,
in DLVCleaner birthplace the pair (city - nation) is handled by a matching func-
tion that first tokenizes the string, singling out the city name, and then matches
it to the city name dictionary attribute. In order to detect potential corrections,
the most proper comparison function is applied, depending on data format; as an
example, for the three-digit birthplaces, we used the Hamming distance whereas
for city names we used the Levenshtein distance. Setting up the workflow shown
in Fig. 2 takes only few minutes and it is possible to follow a try-and-error app-
roach. Clearly, the cleaning step for birthplaces shown above is only one small
step in a more complete workflow dealing with the overall database.

To give an idea of the size of the data involved in the described use case,
the input table was composed of 1.000.000 tuples collecting records from 155
municipalities, whereas the dictionary stored about 15.000 tuples. From the
application of the transformation shown in Fig. 2 it was obtained that almost
50 % of input tuples were wrong. 72 % of wrong tuples have been automatically
corrected, whereas 24 % had multiple corrections. Only 2 % of input tuples have
been detected as wrong and not repairable.

3.5 Other Applications

The exploitation of DLV for developing applications is not limited to the exam-
ples reported in this section. Actually, DLV is at the basis of several other

Answer Set Programming 319

advanced applications of which it is worth mentioning data integration sys-
tems [32,35], web data extraction [26], and computation of minimum cardinality
diagnoses [25]. Moreover, the Polish company Rodan Systems S.A. has exploited
DLV in a tool for the detection of price manipulations and unauthorized use of
confidential information, which is used by the Polish Securities and Exchange
Commission. The company Exeura s.r.l. developed systems exploiting DLV for
implementing specific modules in e-Government, e-Medicine and tele-assistance
systems.

4 Development Tools

The real-world applications of DLV that we described in previous sections have
demonstrated that ASP can be used to implement real-world applications.
Nonetheless developers need specialized tools that make easier the develop-
ment of applications, and that support the integration of different tools in
the same environment. DLV is well-suited for applications development also
thanks to the endowment of powerful development tools [22,24], supporting
the activities of researchers and implementors. Indeed, we endowed DLV with
effective programming-tools, which are conceived to ease the usage and the
integration of ASP-based technologies in the existing environments tailored for
imperative/object-oriented programming languages. In the following we intro-
duce two advanced development tools for developing ASP-based applications,
namely ASPIDE and JDLV .

4.1 IDE for ASP

ASPIDE [24] is a complete IDE for ASP programs, which integrates an advanced
editing tool with a collection of user-friendly graphical tools for program com-
position and execution. The user interface of ASPIDE is depicted in Fig. 3. In
the upper part of the interface a toolbar allows the user to quickly access some
common operations. In the center of the interface there is the main editing area
where it is possible to open several files organized in a tabbed panel. The left
part of the interface is dedicated to the workspace explorer, which list projects,
and to the error console, which organizes errors and warnings according to the
project and files where they are localized. On the right, there are the outline
panel and the template panel. The layout of the IDE is customizable, indeed the
user can rearrange components the way he/she likes best.

In the following we overview the main features that are available in ASPIDE.

Advanced Editor. The system allows for organizing logic programs in projects
à la Eclipse, which are collected in a workspace. Projects collect either different
parts of an encoding or several equivalent encodings solving the same problem.
ASPIDE supports a number of file editors and can be extended to support virtu-
ally any kind of input files by user-defined plugins (which are described below).
The main editor for ASP programs offers, besides the basic functionalities, such
as code line numbering, find/replace, undo/redo, copy/paste, also:

320 N. Leone and F. Ricca

– Text coloring. The editor performs keyword outlining (such as “:–” and “not ”)
and dynamic highlighting of predicate names, variables, strings, and com-
ments.

– Automatic completion. The system is able to complete (on request) predicate
names, as well as variable names. Predicate names are both learned while
writing, and extracted from the files belonging to the same project; variables
are suggested by taking into account the rule we are currently writing.

– Refactoring. The refactoring tool allows to modify programs in a guided way.
For instance, variable renaming in a rule is done by considering bindings of
variables; custom refactorings can applied by selecting rules and applying
some functionality offered by a user-defined plugin.

– Dynamic code checking and errors highlighting. Programs are parsed while
writing, and both errors or possible warnings are immediately outlined.

– Quick fixes. The editor suggests quick fixes to reported errors or warnings,
and applies them (on request) by automatically changing the affected part of
code.

– Code templates. ASPIDE provides support for assisted writing of rules (guess-
ing patterns, etc.), as well as automated writing of entire subprograms (e.g.,
transitive closure rules) by means of code templates, which can be instantiated
while writing.

– Program Outline. ASPIDE creates an outline view which graphically repre-
sents program elements. Each item in the outline can be used to quickly access
the corresponding line of code (a very useful feature when dealing with long
files).

– Visual editor. The users can draw logic programs by exploiting a full graphical
environment that offers a QBE-like tool for building logic rules. The user can
switch from the text editor to the visual one (and vice versa) thanks to a
reverse-rengineering mechanism from text to graphical format.

Fig. 3. The user interface of ASPIDE.

Answer Set Programming 321

Dependency Graph. ASPIDE creates automatically a graphical representa-
tion of several variants of the (non-ground) dependency graphs associated with
a project, and can be used for analyzing rule dependencies and browsing the
program.

Debugger and Profiler. ASPIDE embeds the debugging tool spock [8], and
provides a graphical user interface that wraps the above mentioned tool. Regard-
ing the profiler, ASPIDE fully embeds the graphical interface presented in [14].

Unit Testing. In software engineering, the task of testing and validating pro-
grams is a crucial part of the life-cycle of software development process and a
test conceived for verifying the behavior of a specific part of a program is called
unit testing. The testing feature consists on a unit testing framework for logic
programs in the style of JUnit. The developer can specify rules by composing one
or several units, specify one or more inputs and assert a number of conditions
on both expected outputs and the expected behavior of sub-programs. For an
exhaustive description the testing language and the graphical tool we refer the
reader to [23].

Interaction with Databases. ASPIDE simplifies access to external databases
by a graphical tool connecting to DBMSs via JDBC. The database management
feature of ASPIDE supports the creation of both #import/#export directives
of DLV, and fully-graphical composition of TYP files [43]. Imported sources are
emphasized also in the program editor by exploiting a specific color indicating the
corresponding predicates. Database oriented applications can be run by setting
DLVDB as engine in a run configuration. A data integration scenario [32] can be
implemented by exploiting these features.

Configuration of the Execution. The execution of ASP programs is fully
customizable by using the RunConfiguration Dialog that allows one to set the
system executable, setup invocation options and input files. A number of short-
cuts and drop down menus allows one for a quick execution of single files or
selection of files within a project.

Results Window. The results are presented to the user in a comfortable view
combining tabular representation of predicates and a tree-like representation of
answer sets. Further output extensions can be added by means of output plugins.
Two examples are the ARVis comparator of answer sets [1] and the answer set
visualizer IDPDraw [45].

User-Defined Plugins. An important feature of ASPIDE is the possibility to
extend it with user defined plugins. Developers can create libraries for extend-
ing ASPIDE with: (i) new input formats, (ii) program rewritings, and even
(iii) customizing the visualization/format of results. An input plugin can take
care of input files that appear in ASPIDE as a logic program, and an output

322 N. Leone and F. Ricca

Fig. 4. The JDLVEclipse plugin.

plugin can handle the external conversion of the computed results. A rewriting
plugin may encode a procedure that can be applied to rules in the editor (e.g.,
disjunctive rule shifting can be applied on the fly by selecting rules in the editor
and applying the mentioned rewriting). An SDK available from the ASPIDE
web site allows one to develop new plugins.

System Availability. ASPIDE is written in Java and is available for all the
major operating systems, including Linux, Mac OS and Windows. It can be
downloaded from the system website http://www.mat.unical.it/ricca/aspide.

4.2 Combining Java and ASP

JDLV is a plug-in for the Eclipse platform [17], offering a seamless integration of
ASP-based technologies within the most popular development environment for
Java. JDLVis based on JASP [22], a hybrid language that transparently supports
a bilateral interaction between (disjunctive) ASP and Java. A key ingredient of
JASP is the mapping between (collections of) Java objects and ASP facts. In
JASP, Java Objects are mapped to logic facts (and vice versa) by adopting a
structural mapping strategy. JASP exploits the same ideas of modern Object-
Relational Mapping (ORM) frameworks, such as Hibernate and TopLink, where
objects are saved/loaded from/to relational databases. JASP supports both a

http://www.mat.unical.it/ricca/aspide

Answer Set Programming 323

default mapping strategy, which fits the most common programmers’ require-
ments, and custom ORM specifications that comply with the Java Persistence
API (JPA) [40] to suit enterprise application development standards. The JASP
code is very natural and intuitive for a programmer skilled in both ASP and Java.

In Fig. 4 is depicted the a simple JASP program open in the JDLVplugin that
will serve as a running example. A monolithic block of plain ASP code (called
module) is embedded in the Java method, which is executed “in-place”, i.e., the
solving process is triggered at the end of the module specification. In particular
the program in Fig. 4 defines the method compute3Coloring(), that contains a
module to computes a 3-coloring of the given graph. Intuitively, the ASP program
is enclosed within special tags (< # . . . # >), and when compute3Coloring() is
invoked, Java objects are transformed into logic facts, by applying an ORM strat-
egy as specified in the module parameters. In the example Java variables arcs
and nodes are mapped to corresponding predicates arc and node, respectively,
whereas the local variable res is mapped as output variable to the predicate col.
In this example, each string x in nodes is transformed in unary facts node(x);
similarly, each instance of Arc in the variable arcs produces a binary fact, e.g.,
arc(from,to). These facts are input of the logic program, which is evaluated “in-
place”. If no 3-coloring exists, the variable res is set to null; otherwise, when
the first answer set is computed, for each fact col contained in the solution a
new object of the class Colored is created and added to res, which, in turn, is
returned by the method. Here the JASP’s default ORM strategy is applied to
map one object per logic fact, which compound keys, i.e., keys made of all basic
attributes, and embedded values for one to one associations, which naturally fits
the usual way of representing information in ASP, e.g., in the example, one fact
models one node. Such a mapping is inverted to obtain Java objects from logic
facts, and ensures the safe creation of new Java objects without requiring value
invention in logic programs. Although this strategy poses (very few) restrictions
such as non-recursive type definition (e.g., tree-like structures are not admitted
in JASP-core), based on our experience, it is sufficient to handle common use
cases. On the other hand, as we show in the following, full JASP language
allows for custom ORM strategies specified by JPA [40] annotations. It is now
clear that, JASP directly extends the syntax of Java such that JASP module
statements are allowed in Java block statements. Concerning the syntax allowed
within modules, JASP is compliant with the language of DLV, and also supports
a number of advanced features that are mentioned in the following.

The language also features a number of additional features that further ease
the development of programs, such as incremental modules, non positional nota-
tion, and database access. We refer the reader to [22] for a full account of the
JASP language.

SystemAvailability. JDLV is available in form of an Eclipse platform [17] plugin
from http://www.dlvsystem.com/dlvsystem/index.php/JDLV. JDLV includes
Jdlvc, a compiler to generate plain Java classes from JASP files. The Jdlvc com-
piler produces plain Java classes which manage the generation of logic programs
and control statements for the underlying solver DLV.

http://www.dlvsystem.com/dlvsystem/index.php/JDLV

324 N. Leone and F. Ricca

5 Conclusion

In this paper we have introduced ASP, and we have described some industry-level
applications of the ASP system DLV. These applications confirmed the applica-
bility of ASP-based technologies for solving complex real-world applications.
Moreover, it is worth observing that the DLV system is well-suited for applica-
tions development also thanks to the endowment of powerful development tools.
In particular, we described two of them conceived for developing ASP-based
applications, namely ASPIDE and JDLV . ASPIDE is an integrated develop-
ment environment, supporting the entire life-cycle of logic programs develop-
ment; JDLV is an implementation of JASP, a new programming framework
integrating ASP with Java.

References

1. Ambroz, T., Charwat, G., Jusits, A., Wallner, J.P., Woltran, S.: ARVis: visualizing
relations between answer sets. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS, vol. 8148, pp. 73–78. Springer, Heidelberg (2013)

2. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: a case
study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

3. Baral, C.: Knowledge Representation Reasoning and Declarative Problem Solving.
CUP, New York (2003)

4. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.)
Logic-Based Artificial Intelligence, pp. 257–279. Kluwer, USA (2000)

5. Baral, C., Uyan, C.: Declarative specification and solution of combinatorial auc-
tions using logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 186–199. Springer, Heidelberg (2001)

6. Bardadym, V.A.: Computer-aided school and university timetabling: the new wave.
In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 22–45. Springer,
Heidelberg (1996)

7. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol.
3300. Springer, Heidelberg (2005)

8. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: That is
illogical captain. the debugging support tool spock for answer-set programs: system
description. In: Vos, M.D., Schaub, T., (eds.) SEA 2007 (2007)

9. Bravo, L., Bertossi, L.: Logic programming for consistently querying data integra-
tion systems. In: IJCAI-2003, pp. 10–15 (2003)

10. Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.): ECAI 2006, 29 -
September 1, 2006, Riva del Garda, Italy, Including PAIS 2006, FAIS, vol. 141.
IOS Press (2006)

11. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

12. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE TKDE 12(5), 845–860 (2000)

13. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming compe-
tition. TPLP 14(1), 117–135 (2014)

14. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Proceed-
ings of SEA 2009, Potsdam, Germany, September 2009

Answer Set Programming 325

15. Castellani, M., Mussoni, M.: An economic analysis of tourism contracts: allotment
and free sale*. In: Matia, Á., Nijkamp, P., Neto, P. (eds.) Advances in Modern
Tourism Research, pp. 51–85. Physica-Verlag, Heidelberg (2007)

16. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions
in disjunctive logic programming: semantics, complexity, and implementation in
DLV. In: IJCAI 2003, Acapulco, Mexico, pp. 847–852, August 2003

17. Eclipse: Eclipse (2001). http://www.eclipse.org/
18. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the

DLV system. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103.
Kluwer, USA (2000)

19. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM TODS 22(3), 364–
418 (1997)

20. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

21. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggre-
gates in answer set programming. AI 175(1), 278–298 (2011). Special Issue: John
McCarthy’s Legacy

22. Febbraro, O., Grasso, G., Leone, N., Ricca, F.: JASP: a framework for integrating
answer set programming with Java. In: Proceedings of KR2012. AAAI Press (2012)

23. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in aspide. CoRR
abs/1108.5434

24. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS (LNAI), vol. 6645, pp. 317–330. Springer, Heidelberg (2011)

25. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow
executions. Technical report, Alpen Adria University, Applied Informatics,
Klagenfurt, Austria (2008). http://proserver3-iwas.uni-klu.ac.at/download area/
Technical-Reports/technical report 2008 02.pdf

26. Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C.: Opal: auto-
mated form understanding for the deep web. In: WWW (2012)

27. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills man-
agement context. AI Commun. 19(2), 137–154 (2006)

28. Gelfond, M., Leone, N.: Logic programming and knowledge representation - the
A-Prolog perspective. AI 138(1–2), 3–38 (2002)

29. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) ICLP/SLP 1988, pp. 1070–1080. MIT Press,
Cambridge (1988)

30. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. NGC 9, 365–385 (1991)

31. Grasso, G., Leone, N., Manna, M., Ricca, F.: Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning: Essays in Honor of M. Gelfond.
LNAI, vol. 6565. Springer, Heidelberg (2011)

32. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., Ka�lka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX system for advanced integration of incomplete
and inconsistent data. In: SIGMOD 2005, pp. 915–917. ACM Press, June 2005

33. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

http://www.eclipse.org/
http://www.abs/1108.5434
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf

326 N. Leone and F. Ricca

34. Lifschitz, V.: Answer set planning. In: Schreye, D.D. (ed.) ICLP 1999, pp. 23–37.
The MIT Press, Las Cruces (1999)

35. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from
different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)

36. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. CoRR cs.LO/9809032 (1998)

37. Naveh, Y., Richter, Y., Altshuler, Y., Gresh, D.L., Connors, D.P.: Workforce opti-
mization: identification and assignment of professional workers using constraint
programming. IBM J. Res. Dev. 51(3.4), 263–279 (2007)

38. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. In: Proceedings of the Workshop on Computational Aspects of
Nonmonotonic Reasoning, Trento, Italy, pp. 72–79 (1998)

39. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog
decision support system for the space shuttle. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

40. Oracle: JSR 317: JavaTM Persistence 2.0 (2009). http://jcp.org/en/jsr/detail?
id=317

41. Ricca, F., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone, N.:
A logic-based system for e-Tourism. FI 105(1–2), 35–55 (2010)

42. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.:
Team-building with answer set programming in the gioia-tauro seaport. TPLP.
CUP 12(3), 361–381 (2012). CUP

43. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8, 129–165 (2008)

44. Terracina, G., Martello, A., Leone, N.: Logic-based techniques for data cleaning:
an application to the italian national healthcare system. In: Cabalar, P., Son, T.C.
(eds.) LPNMR 2013. LNCS, vol. 8148, pp. 524–529. Springer, Heidelberg (2013)

45. Wittocx, J.: IDPDraw, a tool used for visualizing answer sets (since 2009). http://
dtai.cs.kuleuven.be/krr/software/visualisation

http://cs.LO/9809032
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317
http://dtai.cs.kuleuven.be/krr/software/visualisation
http://dtai.cs.kuleuven.be/krr/software/visualisation

The TPTP World – Infrastructure for
Automated Reasoning

Geoff Sutcliffe(B)

University of Miami, Coral Gables, USA
geoff@cs.miami.edu

The TPTP World is a well established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems
for classical logics. The TPTP World includes the TPTP problem library, the
TSTP solution library, standards for writing ATP problems and reporting ATP
solutions, tools and services for processing ATP problems and solutions, and
it supports the CADE ATP System Competition (CASC). The TPTP World
infrastructure has been deployed in a range of applications, in both academia and
industry. The web page http://www.tptp.org provides access to all components.

The TPTP Problem Library: The Thousands of Problems for Theorem Provers
(TPTP) problem library [5] is the original core component of the TPTP World,
and is commonly referred to as “the TPTP”. The TPTP problem library supplies
the ATP community with a comprehensive library of the test problems that are
available today, in order to provide an overview and a simple, unambiguous
reference mechanism, to support the testing and evaluation of ATP systems,
and to help ensure that performance results accurately reflect capabilities of the
ATP systems being considered. The TPTP contains test problems in a broad
range of domains, including logic, mathematics, computer science, science and
engineering, social sciences, and arts & humanities. Since its first release in
1993, many researchers have used the TPTP as an appropriate and convenient
basis for ATP system evaluation. Over the years the TPTP has also increasingly
been used as a conduit for ATP users to provide samples of their problems to
ATP system developers — users have found that contributing samples of their
problems to the TPTP exposes the problems to the developers, who then improve
their systems’ performances on the problems, which completes a cycle to provide
the users with more effective tools.

The TSTP Solution Library: The Thousands of Solutions from Theorem Provers
(TSTP) solution library is the “flip side” of the TPTP – a corpus of ATP systems’
solutions to TPTP problems. A major use of the TSTP is for ATP system
developers to examine solutions to problems, and thus understand how they can
be solved, leading to improvements to their own systems. The TSTP is also the
basis for the TPTP problem ratings [9], which provide a well-defined measure
of how difficult the problems are for ATP systems, and how effective the ATP
systems are for different types of problems. Over time, decreasing ratings for
individual problems have provided an indication of progress in the field [7]. The
analysis done for problem ratings also provides ratings for ATP systems.
c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 327–329, 2015.
DOI: 10.1007/978-3-319-21768-0

http://www.tptp.org

328 G. Sutcliffe

The TPTP Language: One of the keys to the success of the TPTP World is
the consistent use of the TPTP language for writing both problems and solu-
tions [8], which enables convenient communication between different systems and
researchers. The language shares many features with Prolog, so that with a few
operator definitions, units of TPTP data can be read and written using single
read/1 and writeq/1 calls. The TPTP language is defined using an extended
BNF that is easy to translate into lex/yacc/flex/bison input, so that con-
struction of parsers (in languages other than Prolog) is a reasonably easy task
[12]. The TPTP Process Instruction (TPI) language [6] provides commands that
can be used in conjunction with the TPTP logical language, allowing users to
easily input, output, and organize logical formulae, and to control the execution
of ATP systems. In conjunction with the TPTP language, the TPTP World uses
the SZS1 ontologies [4] to record what is known or has been established about a
TPTP problem. The ontologies are used to precisely specify the semantic rela-
tionship between the axioms and conjecture of a problem, and to specify the
nature of formulae output by ATP systems and tools. The SZS standard also
recommends the precise way in which the ontology values should be presented,
in order to facilitate easy processing.

The TPTP Tools and Services: The TPTP World includes tools, programming
libraries, and online services that are used to support the application and deploy-
ment of ATP systems. SystemOnTPTP [2] is a utility that allows an ATP problem
or solution to be easily and quickly submitted in various ways to a range of ATP
systems and tools. The utility uses a suite of currently available ATP systems
and tools, whose properties (input format, reporting of result status, etc.) are
stored in a simple text database. It is available online, and as a standalone utility.
GDV [3] is a tool that verifies TPTP format derivations. Structural checks verify
that inferences have been done correctly in the context of the derivation, and
semantic checks verify the expected semantic relationship between the parents
and inferred formula of each inference step. AGInTRater [1] is a tool that that
measures the “interestingness” of formulae in TPTP format derivations, e.g.,
obviousness estimates the difficulty of proving a formula, complexity estimates
the effort required to understand a formula, and surprisingness measures new
relationships between symbols in a formula. IDV [11] is a tool that provides an
interactive interface for viewing TPTP format derivations. The rendering of a
derivation DAG uses shapes, colors, and tags to provide information about the
derivation, and the user can interact with the rendering in various ways. A par-
ticularly novel feature of IDV is its ability to provide a synopsis of a derivation
by using the AGInTRater to identify interesting lemmas.

This TPTP World Tutorial: This tutorial provides a practical introduction to
the TPTP World. Attendees will be led through the various online components,
shown how to use the online tools to process ATP problems, encouraged to
download and use the libraries and tools on their own computers, and instructed
on robust techniques for automated reasoning in the TPTP World.
1 SZS is an acronym from the initials of the original authors’ family names [10].

The TPTP World – Infrastructure for Automated Reasoning 329

References

1. Puzis, Y., Gao, Y., Sutcliffe, G.: Automated generation of interesting theorems.
In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the 19th International FLAIRS
Conference, pp. 49–54. AAAI Press (2006)

2. Sutcliffe, G.: System description: SystemOnTPTP. In: McAllester, D. (ed.) CADE-
17. LNCS (LNAI), vol. 1831, pp. 406–410. Springer, Heidelberg (2000)

3. Sutcliffe, G.: Semantic derivation verification. Int. J. Artif. Intell. Tools 15(6),
1053–1070 (2006)

4. Sutcliffe, G.: The SZS ontologies for automated reasoning software. In: Sutcliffe,
G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the
LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants,
and The 7th International Workshop on the Implementation of Logics. CEUR
Workshop Proceedings, vol. 418, pp. 38–49 (2008)

5. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF Parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

6. Sutcliffe, G.: The TPTP process instruction language, with applications. In:
Benzmüller, C., Woltzenlogel Paleo, B. (eds.) Proceedings of the 11th Workshop
on User Interfaces for Theorem Provers. Electronic Proceedings in Theoretical
Computer Science, vol. 167, p. 1 (2014)

7. Sutcliffe, G., Fuchs, M., Suttner, C.: Progress in automated theorem proving, 1997–
1999. In: Hoos, H., Stützle, T. (eds.) Proceedings of the IJCAI 2001 Workshop on
Empirical Methods in Artificial Intelligence, pp. 53–60 (2001)

8. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for
writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg (2006)

9. Sutcliffe, G., Suttner, C.B.: Evaluating general purpose automated theorem prov-
ing systems. Artif. Intell. 131(1-2), 39–54 (2001)

10. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated
theorem proving tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial
Intelligence and Applications, vol. 112, pp. 201–215. IOS Press (2004)

11. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. In: Autexier,
S., Benzmüller, C. (eds.) Proceedings of the 7th Workshop on User Interfaces for
Theorem Provers, 3rd International Joint Conference on Automated Reasoning.
Electronic Notes in Theoretical Computer Science, vol. 174, pp. 109–123 (2006)

12. Van Gelder, A., Sutcliffe, G.: Extending the TPTP language to higher-order logic
with automated parser generation. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS (LNAI), vol. 4130, pp. 156–161. Springer, Heidelberg (2006)

Towards Embedded Answer Set Solving

Torsten Schaub

University of Potsdam, Potsdam, Germany

This tutorial introduces advanced problem solving techniques addressing the
growing range of applications of Answer Set Programming (ASP; [1]) in prac-
tice [2]; its particular focus lies on recent techniques needed for embedding ASP
in complex software environments.

The tutorial starts with an introduction to the essential formal concepts
of ASP [3], needed for understanding its semantics and solving technology. In
fact, ASP solving rests on two major components: A grounder turning specifi-
cations in ASP’s modeling language into propositional logic programs [4] and
a solver computing a requested number of answer sets of the program [5]. We
illustrate ASP’s grounding techniques and describe the major algorithms used
in the ASP grounder gringo 4. This is accompanied with an introduction to
the new ASP language standard [6]. The remainder of the tutorial is dedicated
to using ASP in conjunction with Python for modeling complex reasoning sce-
narios. This involves an introduction to the API of clingo 4, an ASP system
extending clasp and gringo with control capacities expressible in Python (and
Lua). See [7] for details. We illustrate this by developing a sample board game [8]
and sketch more sophisticated usages in robotics [9] and preference handling [10].

All involved ASP systems, documentation, lecture slides, videos, and further
resources are freely available from http://potassco.sourceforge.net.

References

1. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

2. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

3. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.,
Szeredi, P. (eds.) Proceedings of the Seventh International Conference on Logic
Programming (ICLP 1990), pp. 579–597. MIT Press (1990)

4. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo.
http://www.cs.utexas.edu/users/vl/papers/AG.pdf

5. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187-188, 52–89 (2012)

6. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2: Input language format (2012).
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf

7. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,
Schaub, T., Thiele, S.: Potassco User Guide. Institute for Informatics, University
of Potsdam. 2nd edn. (2015)

c© Springer International Publishing Switzerland 2015
W. Faber and A. Paschke (Eds.): Reasoning Web 2015, LNCS 9203, pp. 330–331, 2015.
DOI: 10.1007/978-3-319-21768-0

http://potassco.sourceforge.net
http://www.cs.utexas.edu/users/vl/papers/AG.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf

Towards Embedded Answer Set Solving 331

8. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet robots reloaded:
a case-study in multi-shot asp solving. In: Eiter, T., Strass, H., Truszczyński, M.,
Woltran, S. (eds.) Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation. LNCS (LNAI), vol. 9060, pp. 17–32. Springer, Hei-
delberg (2015)

9. Andres, B., Obermeier, P., Sabuncu, O., Schaub, T., Rajaratnam, D.: ROSoClingo:
A ROS package for ASP-based robot control. In: Proceedings of Combined Robot
Motion Planning and AI Planning for Practical Applications (RSS-CP13) (2013).
http://arxiv.org/abs/1307.7398

10. Brewka, G., Delgrande, J., Romero, J., Schaub, T.: asprin: customizing answer set
preferences without a headache. In: Bonet, B., Koenig, S. (eds.) Proceedings of the
Twenty-Ninth National Conference on Artificial Intelligence (AAAI 2015). AAAI
Press (2015)

http://arxiv.org/abs/1307.7398

Author Index

Athan, Tara 151

Benzmüller, Christoph 32
Bienvenu, Meghyn 218
Boley, Harold 114

Di Noia, Tommaso 88

Fodor, Paul 189

Gottlob, Georg 193
Governatori, Guido 151
Grosof, Benjamin N. 189

Kifer, Michael 189

Leone, Nicola 308

Mileo, Alessandra 75
Morak, Michael 193

Ortiz, Magdalena 218
Ostuni, Vito Claudio 88

Palmirani, Monica 151
Paschke, Adrian 151
Pieris, Andreas 193

Ricca, Francesco 308

Schaub, Torsten 330
Straccia, Umberto 1
Sutcliffe, Geoff 327

Woltzenlogel Paleo, Bruno 32
Wyner, Adam 151

	Preface
	Organization
	Contents
	All About Fuzzy Description Logics and Applications
	1 Introduction
	2 Basics: From Fuzzy Sets to Mathematical Fuzzy Logic
	2.1 Fuzzy Sets Basics
	2.2 Mathematical Fuzzy Logic Basics

	3 Fuzzy Description Logics and OWL 2
	3.1 Fuzzy DLs
	3.2 Salient Language Extensions
	3.3 Representing Fuzzy OWL Ontologies in OWL
	3.4 Reasoning Problems and Algorithms

	4 Conclusions
	References

	Higher-Order Modal Logics: Automation and Applications
	1 Introduction and Overview
	2 Higher-Order Modal Logic: Syntax and Semantic
	3 Semantic Embedding in Classical Higher-Order Logic
	3.1 Classical Higher-Order Logic: Syntax and Semantic
	3.2 Semantic Embedding
	3.3 Soundness and Completeness
	3.4 Logic Variations

	4 Reasoning Tools for Higher-Order Modal Logic
	4.1 TPTP thf0-compliant Reasoning Tools
	4.2 Interactive Proof Assistants -- Isabelle
	4.3 Interactive Proof Assistants -- Coq

	5 Applications
	5.1 Description Logics
	5.2 Expressive Ontologies and Context
	5.3 Metaphysics
	5.4 Paraconsistent Reasoning Through Higher-Order Hybrid Logics

	6 Conclusion
	References

	Web Stream Reasoning: From Data Streams to Actionable Knowledge
	1 Introduction
	2 IoT Intelligence Layers
	3 RDF Stream Processing
	3.1 Linked Streams Data Processing
	3.2 Semantic Complex Event Processing (SCEP)
	3.3 Quality-Aware SCEP

	4 Web Stream Reasoning
	4.1 Large-Scale Defeasible Reasoning with MapReduce
	4.2 Web Stream Reasoning with Answer Set Programming
	4.3 Cross-Layer Web Stream Reasoning with ASP

	5 Conclusive Remarks
	References

	Recommender Systems and Linked Open Data
	1 Introduction
	2 Recommender Systems
	2.1 The Recommendation Problem
	2.2 Users, Items and Ratings
	2.3 Recommendation Techniques

	3 Recommender Systems Evaluation
	3.1 Metrics and Protocols

	4 Linked Open Data for Recommender Systems
	4.1 Feeding Recommender Systems with LOD
	4.2 Which Classes of RSs?
	4.3 Evaluating LOD-based RSs

	5 Related Work
	References

	PSOA RuleML: Integrated Object-Relational Data and Rules
	1 Introduction
	2 Grailog-Visualized Data Model of PSOA RuleML
	2.1 Predicate-Centered, Positional Atoms (Relationships)
	2.2 Object-Centered, Positional Atoms (Shelves)
	2.3 Predicate-Centered, Slotted Atoms (Pairships)
	2.4 Object-Centered, Slotted Atoms (Frames)
	2.5 Predicate-Centered, Positional+Slotted Atoms (Relpairships)
	2.6 Object-Centered, Positional+Slotted Atoms (Shelframes)

	3 PSOA Facts for Look-in Querying
	4 PSOA Rules for Inferential Querying
	5 SQL-PSOA-SPARQL Interoperation Use Case
	6 PSOA RuleML Syntax
	7 PSOA RuleML Semantics
	8 PSOA RuleML Implementation
	8.1 With PSOA2TPTP to VampirePrime
	8.2 With PSOA2Prolog to XSB Prolog

	9 Conclusions
	References

	LegalRuleML: Design Principles and Foundations
	1 Introduction
	2 Functionalities
	3 Criteria of Good Language Design
	4 Modelling Norms
	4.1 Defeasibility
	4.2 Constitutive and Prescriptive Norms
	4.3 Deontic
	4.4 Alternatives

	5 Meta Data of the Norms
	5.1 Sources and Isomorphism
	5.2 Jurisdiction and Authority
	5.3 Agent, Figure, Role
	5.4 Time and Events

	6 Association and Context
	6.1 Association
	6.2 Context

	7 Concrete XML-based Syntax Design
	7.1 XML Elements vs. Attributes
	7.2 Node and Edge Elements
	7.3 Specialization of Language Constructs with Attributes and Header Elements
	7.4 Generic Elements
	7.5 Normalized and Compact Serialization
	7.6 Design Patterns
	7.7 IRI References, CURIES, and the Xsd:ID Datatype

	8 Examples
	9 Conclusion
	References

	The Power of Semantic Rules in Rulelog: Fundamentals and Recent Progress (Extended Abstract of Tutorial Presentation)
	1 Introduction
	2 Rulelog Logical Language and Capabilities
	3 Rulelog Implementation Techniques
	4 Textual Rulelog
	5 Applications
	6 Additional Tutorial Material
	References

	Recent Advances in Datalog
	1 Introduction
	1.1 A Bit of History
	1.2 Research Challenges
	1.3 Roadmap

	2 Preliminaries
	2.1 Relational Databases
	2.2 Homomorphisms
	2.3 Conjunctive Queries

	3 Datalog: Syntax and Semantics
	3.1 Syntax
	3.2 Semantics
	3.3 Query Answering Under Datalog

	4 Datalog: Syntax and Semantics
	4.1 Syntax
	4.2 Semantics
	4.3 Query Answering Under Datalog
	4.4 The Challenge of Infinity

	5 Guarded Datalog,
	5.1 Arbitrary Conjunctive Queries
	5.2 Atomic Queries

	6 Linear Datalog
	6.1 Arbitrary Conjunctive Queries
	6.2 Atomic Queries

	7 Further Reading
	7.1 Disjunction
	7.2 Default Negation

	References

	Ontology-Mediated Query Answering with Data-Tractable Description Logics
	1 Introduction
	2 Horn Description Logics
	2.1 Description Logic Basics
	2.2 Semantics
	2.3 Some Popular Horn Description Logics

	3 Ontology-Mediated Query Answering
	3.1 Databases and ABoxes
	3.2 Querying Databases
	3.3 Querying Description Logic Knowledge Bases
	3.4 Complexity of Query Answering
	3.5 Techniques for Ontology-Mediated Query Answering

	4 Instance Queries
	4.1 Instance Checking in DL-LiteR via Query Rewriting
	4.2 Saturation-Based Procedure for Instance Checking in
	4.3 Instance Checking in

	5 (Unions of) Conjunctive Queries
	5.1 Canonical Model Construction
	5.2 Conjunctive Query Answering in
	5.3 Related Results and Discussion

	6 Navigational Queries
	6.1 Regular Path Queries and Their Extensions
	6.2 Answering 2RPQs
	6.3 Extending the Approach to C2RPQs
	6.4 Results for Other DLs
	6.5 Navigational Queries Beyond (C)(2)RPQs

	7 Undecidability of Answering FO and Datalog Queries
	7.1 First-Order Queries
	7.2 Datalog Queries

	8 Recent and Ongoing Research in OMQA
	8.1 OMQA in DL-Lite
	8.2 OMQA Beyond DL-Lite
	8.3 Querying Existing Relational Data Using Mappings
	8.4 Inconsistency-Tolerant Query Answering
	8.5 Temporal Query Answering
	8.6 Reasoning Support for Building and Maintaining OMQA Systems
	8.7 Improving the Usability of OMQA Systems
	8.8 OMQA with Closed Predicates
	8.9 Aggregates
	8.10 Bridging the Gap with SPARQL
	8.11 Extending the Applicability of Horn DL Techniques
	8.12 Rule-Based Ontology Languages

	9 Concluding Remarks
	References

	Answer Set Programming: A Tour from the Basics to Advanced Development Tools and Industrial Applications
	1 Introduction
	2 Answer Set Programming
	2.1 Syntax
	2.2 Semantics
	2.3 Programming Methodology

	3 Applications
	3.1 Routing and Classification of Call-Center Customers
	3.2 Workforce-Management in the International Seaport of Gioia Tauro
	3.3 Advanced Tools for the Tourism Industry
	3.4 Business Intelligence Platform for Cleaning Medical Archives
	3.5 Other Applications

	4 Development Tools
	4.1 IDE for ASP
	4.2 Combining Java and ASP

	5 Conclusion
	References

	The TPTP World – Infrastructure for Automated Reasoning
	Towards Embedded Answer Set Solving
	Author Index

