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Abstract. We address the problem of reaching approximate consensus
in the presence of Byzantine faults in a synchronous system. We analyze
iterative algorithms that maintain minimal state, and impose the con-
straint that in each iteration the nodes may only communicate with other
nodes that are up to l hops away. For a given l, we prove a necessary
and sufficient condition on the network structure for the existence of cor-
rect iterative algorithms that achieve approximate Byzantine consensus.
We prove sufficiency of the condition by designing a correct algorithm,
which uses a trim function based on a minimal messages cover property
introduced in this paper. Our necessary and sufficient condition gener-
alizes the tight condition identified in prior work for l = 1. For l ≥ l∗,
where l∗ is the length of a longest cycle-free path in the given network,
our condition is equivalent to the necessary and sufficient conditions for
exact consensus in undirected and directed networks both.

Keywords: Approximate byzantine consensus · Iterative algorithm ·
Synchronous system · Incomplete network · Bounded length communi-
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1 Introduction

The Byzantine fault-tolerance problem was first introduced in [9] by Pease,
Shostak and Lamport in 1980, and is one of the most fundamental problems
in distributed computing. Fisher, Lynch and Paterson [7] showed that the fault-
tolerant consensus problem cannot be solved in asynchronous system even in the
presence of only one crash failure. As one way to circumvent this impossibility
result, the notion of approximate Byzantine consensus was introduced by Dolev
et al. in [4] by requiring that the agents agree with each other only approximately.
The notion of approximate consensus is of interest in synchronous system as well
[4,8,14]. The discussion in this paper applies to synchronous system.
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Let n be the total number of nodes and f be the upper bound on the number
of faulty nodes in the system. In networks with bidirectional links, approximate
consensus is achievable if and only if the network node-connectivity is at least
2f + 1 and less than one third of nodes can be faulty, i.e., n ≥ 3f + 1 [6]. Relax-
ing the bidirectional communication assumption, a tight condition for directed
graphs was presented in [11]. There has been increasing interest in designing iter-
ative variants of approximate Byzantine consensus where only local knowledge
of the network topology (and local communication) is needed, and agents carry
minimal state across iterations [2,5,8,13,14]. Fekete [5] studied the convergence
rate of approximate consensus algorithms over complete networks. [8,14] con-
sidered arbitrary directed networks and derived tight (necessary and sufficient)
topological conditions on the communication network. While [14] investigated
the Byzantine fault model, [8] considered a restricted fault model in which the
faulty nodes are restricted to sending identical messages to their neighbors.

To the best of our knowledge, no attempts have been made on investigating
the impact of each node’s communication range on the network condition for
a correct iterative approximate consensus algorithm to exist. In this paper, we
model the network as a directed graph, and assume that in each iteration, any
node may only communicate with nodes that are up to l hops away, by forwarding
messages through intermediate nodes. The directed graph model is motivated
by the presence of directed links in wireless networks. Our goal is to prove a
necessary and sufficient condition on the network structure for the existence of
correct iterative algorithms that achieve approximate Byzantine consensus for
a given l with minimal memory (i.e., minimal amount of state carried across
iterations).

Contributions: Our main contribution is to prove a necessary and sufficient
condition on the network structure for a given l. Our sufficiency proof is shown
by constructing a simple iterative algorithm, whose trim function is defined based
on a minimal messages cover property that we introduce in this paper. The tight
condition we found is consistent with the tight condition identified in [14] when
only local communication is allowed, i.e., l = 1. For l ≥ l∗, where l∗ is the length
of a longest cycle-free path in the given network, our condition is equivalent to
the necessary and sufficient condition for consensus in undirected networks [6]
as well as exact consensus in directed networks [12].

Organization: The rest of the paper is organized as follows. Section 2 presents
our models and the structure of the iterative algorithms considered in our work.
Our necessary condition is presented in Section 3, and its sufficiency is proved
constructively in Section 4. The correspondence between our condition and the
results in [4,6,12] is discussed in Section 5. Section 6 discusses possible relax-
ations of our fault model and concludes the paper.
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2 System Model and Structure of Iterative Algorithms

Communication model: The system is assumed to be synchronous. The com-
munication network is modeled as a simple directed graph G. Define V(G) =
{1, . . . , n} as the set of n nodes, where n ≥ 2, and E(G) as the set of directed
edges between nodes in V(G). Node i can send messages to node j if and only
if there exists an i, j–path of length at most l in G, where l is a positive inte-
ger. In addition, we assume each node can send messages to itself as well, i.e.,
(i, i) ∈ E(G) for all i ∈ V(G). For each node i, let N l−

i be the set of nodes that
can reach node i via at most l hops. Similarly, denote the set of nodes that are
reachable from node i via at most l hops by N l+

i . Due to the existence of self-
loops, i ∈ N l−

i and i ∈ N l+
i . When l = 1, we write N1−

i and N1+
i as N−

i and N+
i ,

respectively, for simplicity. Each node i is assumed to be aware of the network
topology within its l-hop neighborhood (i.e., node i knows all the paths of length
at most l from the nodes in N l−

i , and all the paths of length at most l to the
nodes in N l+

i ). Node i may send a message to node j via different i, j–paths. To
capture this distinction in transmission routes, we represent a message as a tuple
m = (w,P ), where w ∈ R and P indicates the path via which message m should
be transmitted. It is assumed that the network layer in the system delivers the
messages along the specified paths. The intermediate nodes on the paths do not
view the message values (i.e., the message values are not used by intermediate
nodes in performing consensus). Four functions are defined over message m. For
m = (w,P ), let function value be value(m) = w and let path be path(m) = P ,
whose images are the first entry and the second entry, respectively, of message
m. In addition, functions source and destination are defined by source(m) = i and
destination(m) = j if P is an i, j–path, i.e., i and j are source and destination on
path P . For a given path P , Let V(P ) denote the set of nodes along the path,
including the source and the destination.

Fault model: Let F ⊆ V(G) be the collection of faulty nodes in the system. We
consider the Byzantine fault model with up to f nodes becoming faulty, i.e.,
|F| ≤ f . A faulty node may tamper the message value arbitrarily. Possible mis-
behavior includes sending incorrect and mismatching (or inconsistent) messages
to different neighbors. In addition, a faulty node k ∈ F may tamper message
m if it is in the transmission path, i.e., k ∈ V(path(m)). However, faulty nodes
may only tamper value(m), leaving path(m) unchanged. This constraint is placed
for ease of exposition; later in Section 6 we relax this constraint. Faulty nodes
are also assumed to have complete knowledge of the execution of the algorithm,
including the states of all nodes, contents of messages that the other nodes send
to each other, and the algorithm specification, so that they may potentially
collaborate with each other adaptively.

Iterative approximate Byzantine consensus (IABC) algorithms: The iterative
algorithms considered in this paper have the following structure: Each node i
maintains state vi, with vi[t] denoting the state of node i at the end of the t-th
iteration of the algorithm. Initial state of node i, vi[0], is equal to the initial
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input provided to node i. At the start of the t-th iteration (t > 0), the state
of node i is vi[t − 1]. The IABC algorithms of interest will require each node i
to perform the following three steps in iteration t, where t > 0. Note that the
faulty nodes may deviate from this specification.

1. Transmit step: Transmit messages of the form (vi[t−1], P ) on each l–hop path
P (including self-loops) to nodes in N l+

i . As noted previously, the network
layer of the system forwards each message to its destination along the path
specified for the message.

2. Receive step: Receive messages from N l−
i for which destination is i. When

node i expects to receive a message from a path but does not receive the
message, the message value is assumed to be equal to some default value.
Let Mi[t] be the set of messages that node i received in this step.

3. Update step: Node i updates its state using a transition function Zi, where
Zi is a part of the specification of the algorithm, and takes as input the set
Mi[t].

vi[t] = Zi(Mi[t]). (1)

Algorithms with similar structure are considered in prior work as well [8,11,14].
The evolution of state vi[t] is governed by the update function defined in (1). Note
that vi[t] only depends on Mi[t]–the messages collected by node i at iteration
t (which includes vi[t − 1]). No information collected/obtained during previous
iterations will affect the update step in iteration t. Intuitively speaking, fault-
free node i is assumed to have no memory across iterations other than its most
recent state vi[t − 1].

Let U [t] be the largest state among the fault-free nodes at the end of the
t-th iteration, i.e., U [t] = maxi∈V−F vi[t]. Since the initial state of each node
is equal to its input, U [0] is equal to the maximum value of the initial input
of the fault-free nodes. Similarly, we define μ[t] to be the smallest state at the
end of the t–th iteration and μ[0] to be the smallest initial input. For an IABC
algorithm to be correct, the following two conditions must be satisfied:

– Validity: ∀t > 0, μ[t] ≥ μ[0] and U [t] ≤ U [0]
– Convergence: lim t→∞ U [t] − μ[t] = 0

Our goal is to identify a necessary and sufficient condition on graph G for the
existence of a correct IABC algorithm (i.e., an algorithm satisfying the above
validity and convergence conditions) for a given l.

3 Necessary Condition

For a correct IABC algorithm to exist, the underlying network G must satisfy
the condition presented in this section. First, we introduce some definitions.

Definition 1. Suppose W ⊆ V(G) and x ∈ V(G) such that x /∈ W. A W,x–path
is a path from some vertex w ∈ W to vertex x. A set Sl ⊆ V(G) with x /∈ Sl is an
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l–restricted vertex cut if the deletion of Sl disconnects all W,x–paths of length
at most l. The l–restricted W,x–connectivity, denoted by κl(W,x), is defined by

κl(W,x) = min
Sl:Sl is an l–restricted W, x–cut

|Sl|.

A set of vertices S is a W,x–vertex cut if the removal of set S disconnects all
W,x–paths. The W,x–connectivity, denoted by κ(W,x), is defined by

κ(W,x) = min
S:S is a W, x–cut

|S|.

The second part of the above definition is the classic definition of node connectiv-
ity in graph theory [15], which is a global notion. In our communication model,
we assume that each fault-free node only knows the local network topology up
to its l–th hop neighborhood. Thus, we adapt node connectivity to our model
by restricting the path length of interest. Note that κl(W,x) = κ(W,x) for all
l ≥ l∗, and that κ1(W,x) = |W ∩ N−

x |.
In general, κl(W,x) �= κ(W,x) and κl(W,x) ≤ κl+1(W,x) for all l. For

instance for the system depicted in Figure 1, via enumeration it can be seen
that

κ ({p2, p3}, p1) = 2 ≥ 1 = κ1 ({p2, p3}, p1) .

Intuitively speaking, the stronger the communication capability of each node is
(the larger l is), the harder it is to prevent one node from being influenced by
other nodes.

p1

p4

p2

p3

p5

Fig. 1. In this system, there are five nodes p1, p2, p3, p4 and p5; all communication links
are bi-directional; and at most one node can be adversarial, i.e., f = 1

Definition 2. For non-empty disjoint sets of nodes A and B in G, we say
A ⇒l B if and only if there exists a node i ∈ B such that κl(A, i) ≥ f + 1;
A �l B otherwise.

Informally speaking, the relation A ⇒l B captures the existence of a node i ∈ B
that can be influenced by fault-free nodes in A despite the presence of Byzantine
nodes.

Let F ⊆ V(G) be a set of vertices in G. Denote the subgraph of G induced
by vertex set V(G)−F by GF .1 We describe a necessary and sufficient condition
1 Subgraph of G induced by vertex set S ⊆ V(G) is the subgraph H with vertex set
S such that E(H) = {(u, v) ∈ E(G) : u, v ∈ S}. Recall that V(·) and E(·) are the
vertex set and edge set, respectively, of a given graph.
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below, whose necessity is proved in Theorem 1 and sufficiency is shown con-
structively in Section 4. For ease of future reference, we termed the condition as
Condition NC.

Condition NC: For any node partition L,C,R, F of G such that L �= Ø, R �= Ø
and |F | ≤ f , in GF , at least one of the two conditions below must be true: (i)
R ∪ C ⇒l L; (ii) L ∪ C ⇒l R.

Intuitively, Condition NC requires that, for any node partition L,C,R, F ,
either the nodes in R ∪ C are able to collectively influence a node in L in GF or
vice versa. Note that when l = 1, Condition NC is equivalent to the following
condition, which is shown to be both necessary and sufficient without message
relay, i.e., l = 1, in [14].
“ For any node partition L,C,R, F of G such that L �= Ø, R �= Ø and |F | ≤ f ,
in the induced subgraph GF , at least one of the two conditions below must be
true: (i) there exists a node i ∈ L such that

∣
∣(R ∪ C) ∩ N−

i

∣
∣ ≥ f + 1; (ii) there

exists a node j ∈ R such that
∣
∣(L ∪ C) ∩ N−

j

∣
∣ ≥ f + 1.”

Theorem 1. Suppose that a correct IABC algorithm exists over G. Then G
satisfies Condition NC.

Our proof shares the structure of the proof of Theorem 1 in [14]. The basic idea
is as follows: Suppose that the given graph G does not satisfy Condition NC
and that there exists a correct IABC algorithm, say A. Since G does not sat-
isfy Condition NC, there exists a node partition L,R,C, F , where L,R are both
non-empty and |F | ≤ f such that L ∪ C �l R and R ∪ C �l L in GF . Consider
the execution in which all the nodes in F are faulty and all the remaining nodes
are fault-free. In addition, the input of each node in L is 0, the input of each
node in R is 2ε, and the input of each node in C is an arbitrary value within the
interval [0, 2ε]. The faulty nodes in F can behave in such a way that each node
i ∈ L cannot determine whether nodes in F are faulty or nodes in the minimum
l–restricted (R ∪ C, i)–cut are faulty. This is possible, since κl(R ∪ C, i) ≤ f .
Thus, to guarantee validity, node i will update its state vi[t] = 0 for all t. Since
i is an arbitrary node in L, we have vi[t] = 0 for all i ∈ L and all t. Similarly,
we can show that vj [t] = 2ε for all j ∈ R and all t. Thus |vi[t] − vj [t]| = 2ε for
all t, where i ∈ L and j ∈ R, contradicting the assumption that A is a correct
IABC algorithm. A formal proof of Theorem 1 can be found in the full version
of the paper [10].

The above necessary condition is in general weaker than the necessary con-
dition derived under single-hop message transmission model in [14], i.e., when
l = 1. Consider the system depicted in Figure 1. The topology of this system does
not satisfy the necessary condition derived in [14] for l = 1. Since in the node
partition L = {p1, p4}, R = {p2, p3}, C = Ø and F = {p5}, neither L∪C ⇒l R in
GF nor R ∪ C ⇒l L in GF holds for l = 1 and f = 1. However, via enumeration
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it can be seen that the graph, depicted in Figure 1, satisfies Condition NC for
l ≥ 2 and f = 1.

It follows from the definition of Condition NC that if a graph G satisfies
Condition NC for l ∈ {1, . . . , n − 1}, then G also satisfies Condition NC for
all l′ ≥ l. Let l0 be the smallest integer for which G satisfies Condition NC.
In particular, if G does not satisfy Condition NC for any l ∈ {1, . . . , n − 1},
define l0 � n by convention. We observe that in general given a graph G, the
diameter of G can be arbitrarily smaller than l0. For instance, the diameter of the
graph depicted in Figure 2 is 2. However, for the depicted graph, l0 ≥ n+1

4 when
n = 4k+3, where k is a positive integer. So l0 is much larger than 2 for large n. To
see l0 ≥ n+1

4 , consider the node partition F = {p1}, C = Ø, L = {p2, . . . , pn+1
2

}
and R = {pn+3

2
, . . . , pn}. For f = 1, in order to have L ∪ C ⇒l R or R ∪ C ⇒l L

hold in GF for this particular node partition, it must be hold that l ≥ n+1
4 . Thus

l0 ≥ n+1
4 .

p2

pn

p6 p5

p4

p3

p1

Fig. 2. In this system, there are n nodes p1, . . . , pn; all communication links are bi-
directional; and at most one node can be adversarial, i.e., f = 1. Nodes p2, . . . , pn form
a cycle of length n − 1 and these nodes are all connected to node p1.

Similar to [14], as stated in our next corollary, our Condition NC for general
l also implies a lower bound on n and a lower bound on each node’s incoming
degree. Moreover, these lower bounds are independent of l.

Corollary 1. For f > 0, if G satisfies Condition NC, then n must be at least
3f + 1, and each node must have at least 2f + 1 incoming neighbors other than
itself, i.e., |N−

i − {i}| ≥ 2f + 1.

The proof of Corollary 1 is similar to the proof in [14], and can be found in
[10]. Note that Corollary 1 also characterizes a lower bound on the density of
G, that is |E(G)| ≥ n(2f + 2), including self-loops, which is independent of the
communication range l as well.

3.1 Equivalent Characterization of Condition NC

Informally speaking, Condition NC describes the information propagation prop-
erty in terms of four set partitions. In this subsection, an equivalent condition
of Condition NC is proposed, which is based on characterizing the structure
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of a family of special subgraphs, termed as reduced graphs, of the power graph
Gl. The new condition suggests that all fault-free nodes will be influenced by a
collection of common fault-free nodes.

Definition 3. Meta-graph of SCCs: Let K1,K2, . . . ,Kk be the strongly con-
nected components (i.e., SCCs) of G. The graph of SCCs of G, denoted by GSCC ,
is defined as follows:
(i) Nodes in GSCC are K1,K2, . . . ,Kk; and
(ii) there is an edge (Ki,Kj) in GSCC if there is some u ∈ Ki and v ∈ Kj such
that (u, v) is an edge in G.
Strongly connected component Kh is said to be a source component if the corre-
sponding node in GSCC is not reachable from any other node in GSCC .

It is known that the GSCC is a directed acyclic graph, i.e., DAG [3]. It can be
easily checked that due to the absence of directed cycles and finiteness, there
exists at least one node in GSCC that is not reachable from any other node. In
particular, if GSCC contains just one node, then that node is trivially the source.
Thus, a graph G has at least one source component.

Definition 4. The l–th power of a graph G, denoted by Gl, is a multigraph2

with the same set of vertices as G and a directed edge between vertices u, v is
defined by a path of length3 l from u to v in G.

The power graph Gl is a multigraph. There is a one-to-one correspondence
between an edge e in Gl and a path of length l in G (including self-loops).
A path of length 1 between vertices u and v in G exists if (u, v) is an edge in G.
A path of length 2 between vertices u and v in G exists for every vertex w such
that (u,w) and (w, v) are edges in G. Then for a given graph G with self-loop at
each node, the (u, v)th element in the square of the adjacency matrix of G counts
the number of paths of length at most 2 in G. Similarly, the (u, v)th element in
the l–th power of the adjacency matrix of G gives the number of paths of length
l between vertices u and v in G.

Let e be an edge in Gl, and let P (e) be the corresponding path in G, we say
an edge e in Gl is covered by node set S, if V(P (e)) ∩ S �= Ø, i.e., path P (e)
passes through a node in S–recalling that V(P (e)) is the vertex set of path P (e).

Definition 5. For a given graph G and F ⊆ V(G), let

E = {e ∈ E(Gl) : V(P (e)) ∩ F �= Ø}

be the set of edges in Gl that are covered by node set F . For each node i ∈
V(G) − F , choose Ci ⊆ N l−

i − {i} such that |Ci| ≤ f . Let

Ei = {e ∈ E(Gl) : e is an incoming edge of node i in Gl and V(P (e))∩Ci �= Ø}
2 A multigraph (or pseudograph) is a graph which is permitted to have multiple edges

between each vertex pair, that is, edges that have the same end nodes. Thus two
vertices may be connected by more than one edge.

3 Recall that we assume that each node in G has a self-loop.
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be the set of incoming edges of node i in Gl that are covered by node set Ci. A
reduced graph of Gl, denoted by ˜Gl

F , is a subgraph of Gl whose node set and
edge set are defined by (i) V(˜Gl

F ) = V(G) − F ; and (ii) E(˜Gl
F ) = E(Gl) − E −

∪i∈V(G)−F Ei, respectively.

Note that for a given G and a given F , multiple reduced graphs may exist. Let
us define set RF to be the collection of all reduced graph of Gl for a given F ,
i.e.,

RF = {˜Gl
F : ˜Gl

F is a reduced graph of Gl}. (2)

Gl
F , the l–th power of the induced subgraph GF , itself is a reduced graph of

Gl, where we choose Ci = Ø for each i ∈ V(G) − F . Thus RF is non-empty. In
addition, |RF | is finite since the graph G is finite,

Theorem 2. Graph G satisfies Condition NC if and only if every reduced graph
˜Gl

F obtained as per Definition 5 contains exactly one source component.

The proof of Theorem 2 is based on analogous proofs in [13,14], which can
be found in [10].

4 Sufficiency: Algorithm 1

In this section we propose an algorithm, termed Algorithm 1 and show its cor-
rectness. First we introduce the definition of message cover that will be used
frequently in this section.

Definition 6. For a communication graph G, let M be a set of messages, and let
P(M) be the set of paths corresponding to all the messages in M, i.e., P(M) =
{path(m)|m ∈ M}. A message cover of M is a set of nodes T (M) ⊆ V(G),
such that for each path P ∈ P, we have V(P ) ∩ T (M) �= Ø, i.e., each path
P is covered by a node in T (M). In particular, a minimum message cover is
defined by

T ∗(M) ∈ arg min
T (M)⊆V(G):T (M) is a cover of M

|T (M)|.

Conversely, given a set of messages M0 and a set of nodes T ⊆ V(G), a maximal
set of messages M ⊆ M0 that are covered by T is defined by,

M∗ ∈ arg max
M⊆M0:T is a cover of M

|M|.

Recall that Mi[t] is the collection of messages received by node i at iteration t.
Let M′

i[t] = Mi[t] − {(vi[t − 1], (i, i))}. Sort messages in M′
i[t] in an increasing

order, according to their message values, i.e., value(m) for m ∈ M′
i[t]. Let Mis[t]

be the largest sized subset of M′
i[t] such that (i) for all m ∈ M′

i[t] − Mis[t] and
m′ ∈ Mis[t] we have value(m) ≥ value(m′), and (ii) the cardinality of a minimum
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cover of Mis[t] is exactly f , i.e., |T ∗(Mis[t])| = f . Similarly, we define Mil[t]
to be the largest sized subset of M′

i[t] as follows: (i) for all m ∈ M′
i[t] − Mil[t]

and m′′ ∈ Mil[t] we have value(m) ≤ value(m′′), and (ii) the cardinality of a
minimum cover of Mil[t] is exactly f , i.e., |T ∗(Mil[t])| = f . In addition, define
M∗

i [t] = M′
i[t] − Mis[t] − Mil[t].

Theorem 3. Suppose that graph G satisfies Condition NC, then the sets of
messages Mis[t], Mil[t] are well-defined and M∗

i [t] is non-empty for f > 0.

This theorem is proved by construction, i.e., an algorithm is constructed to
find the sets Mis[t], Mil[t] for a given M′

i[t]. Details of the algorithm and
its correctness proof can be found in [10]. We will prove that there exists an
IABC algorithm – particularly Algorithm 1 below – that satisfies the validity
and convergence conditions provided that the graph G satisfies Condition NC.
This implies that Condition NC is also sufficient. Algorithm 1 has the three-
step structure described in Section 2. With the exception of the update step (3)
below, the algorithm is similar to the consensus algorithms in [8,14].

Algorithm 1

1. Transmit step: Transmit messages of the form (vi[t − 1], P ) on each l–hop
path P (including self-loops) to nodes in N l+

i . If node i is an intermediate
node on path P for some message of the form (·, P ), then node i forwards
that to the next node on path P .

2. Receive step: Receive messages from N l−
i for which destination is i. When

node i expects to receive a message from a path but does not receive the
message, the message value is assumed to be equal to some default value.4

3. Update step:
Define

vi[t] = Zi(Mi[t]) = aivi[t − 1] +
∑

m∈M∗
i [t]

ai wm. (3)

where wm = value(m) and ai = 1
|M∗

i [t]|+1 .

Note that in Step 3, only messages in M∗
i [t] and the value vi[t − 1] are used

in updating vi in (3). Messages in both Mis[t] and Mil[t] are trimmed away.
This trimming strategy is motivated by the observation that the messages in
Mis[t] (or Mil[t]) may be tampered by nodes in T ∗(Mis[t]) (or T ∗(Mil[t])).
These faulty behaviors are possible because of the fact that |T ∗(Mis[t])| = f
and |T ∗(Mil[t])| = f . Recall M∗

i [t] = M′
i[t] − Mis[t] − Mil[t]. The “weight”

4 Note that node i does not read the message value if the message destination is not
i.
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of each term on the right-hand side of (3) is ai, where 0 < ai ≤ 1, and
these weights add to 1. For future reference, let us define α, which is used in
Theorem 4, as:

α = min
i∈V−F

ai. (4)

In Algorithm 1, each fault-free node i’s state, vi[t], is updated as a convex com-
bination of all the messages values collected by node i at round t. In particular,
for each message m ∈ M′[t], its coefficient is ai if the message is in M∗

i [t] or
the message is sent via self-loop of node i; otherwise, the coefficient of m is zero.
The update step in Algorithm 1 is a generalization of the update steps proposed
in [8,13,14,16], where the update summation is over all the incoming neighbors
of node i instead of over message routes. In [8,13,14,16], only single-hop com-
munication is allowed, i.e., l = 1, and the fault-free node i can receive only one
message from its incoming neighbor. With multi-hop communication, fault-free
node can possibly receive messages from a node via multiple routes. Our trim
function in Algorithm 1 takes the possible multi-route messages into account.

4.1 Matrix Representation of Algorithm 1

With our trim function, the iterative update of the state of a fault-free node i
admits a matrix representation of states evolution of fault-free nodes. We use
boldface upper case letters to denote matrices, rows of matrices, and their entries.
For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij

denotes the element at the intersection of the i-th row and the j-th column of
matrix A. Some useful concepts and theorems are reviewed briefly in [10].

Definition 7. A vector is said to be stochastic if all the entries of the vector are
non-negative, and the entries add up to 1. A matrix is said to be row stochastic
if each row of the matrix is a stochastic vector.

Recall that F is the set of faulty nodes. Let |F| = φ. Without loss of gener-
ality, suppose that nodes 1 through (n − φ) are fault-free, and if φ > 0, nodes
(n − φ + 1) through n are faulty. Denote by v[0] ∈ R

n−φ the column vector
consisting of the initial states of all the fault-free nodes. Denote by v[t], where
t ≥ 1, the column vector consisting of the states of all the fault-free nodes at
the end of the t-th iteration, t ≥ 1, where the i-th element of vector v[t] is state
vi[t].

Theorem 4. We can express the iterative update of the state of a fault-free node
i (1 ≤ i ≤ n − φ) performed in (3) using the matrix form in (5) below, where
Mi[t] satisfies the four conditions listed below. In addition to t, the row vector
Mi[t] may depend on the state vector v[t−1] as well as the behavior of the faulty
nodes in F . For simplicity, the notation Mi[t] does not explicitly represent this
dependence.

vi[t] = Mi[t] v[t − 1] (5)
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1. Mi[t] is a stochastic row vector of size (n − φ). Thus, Mij [t] ≥ 0, where
1 ≤ j ≤ n − φ, and

∑

1≤j≤n−φ

Mij [t] = 1

2. Mii[t] ≥ ai ≥ α.
3. Mij [t] is non-zero only if there exists a message m ∈ Mi[t] such that

source(m) = j and destination(m) = i.
4. For any t ≥ 1, there exists a reduced graph ˜GlF ∈ RF with adjacent matrix

H[t] such that β H[t] ≤ M[t], where β = 1
16n2l .

In the full version of the paper [10], we prove the correctness of Theorem 4
by constructing Mi[t] for 1 ≤ i ≤ n − φ. Our proof follows the same line of
analysis as in the proof of Claim 2 in [13]. Due to the complexity (in particular,
the dependency of message covers) brought up by messages relay, we divide the
universe into six cases to consider.

Theorem 5. Algorithm 1 satisfies the validity and the convergence conditions.

From the code of Algorithm 1, we know that

vi[t] = aivi[t − 1] +
∑

m∈M∗
i [t]

ai wm, (6)

where ai = 1
|M∗

i [t]|+1 . Theorem 4 states that we can rewrite (6) as

∑

j∈V−F
Mij [t]vj [t − 1],

where Mij [t]s together satisfy the preceding four conditions. By “stacking” (5)
for different i, 1 ≤ i ≤ n − φ, we can represent the state update for all the
fault-free nodes together using (7) below, where M[t] is a (n − φ) × (n − φ) row
stochastic matrix, with its i-th row being equal to Mi[t] in (5).

v[t] = M[t] v[t − 1]. (7)

By repeated application of (7), we obtain:

v[t] =
(

Πt
τ=1M[τ ]

)

v[0].

As the backward product Πt
τ=1M[τ ] is a row-stochastic matrix, it holds that

μ[0] ≤ vi[t] ≤ U [0] for all i = 1, . . . , n − φ and all t. Thus Algorithm 1 satisfies
validity condition.

The convergence of vi[t] depends on the convergence of the backward product
Πt

τ=1M[τ ]. As a result of this, our convergence proof uses toolkit of weak-ergodic
theory that is also adopted in prior work (e.g., [1,2,8,14]). The last condition in
Theorem 4 plays an important role in the proof of Theorem 5. A formal proof
of Theorem 5 is presented in [10].
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5 Unbounded Path Length

In this section, we show that Condition NC is equivalent to some existing results
for undirected graphs and directed graphs when path lengths are not constrained.

5.1 Undirected Graph with Unbounded Path Length

If G is undirected, it has been shown in [6], that n ≥ 3f+1 and node-connectivity
2f + 1 are both necessary and sufficient for achieving Byzantine approximate
consensus. Recall that l∗ is the length of a longest cycle-free path in G. We will
show that when l ≥ l∗, our Condition NC is equivalent to the above conditions.

Theorem 6. When l ≥ l∗, if G is undirected, then n ≥ 3f + 1 and node-
connectivity of G is at least 2f + 1 if and only if G satisfies Condition NC.

Informally, if the node-connectivity of G, denoted by κ(G), is at most 2f , then
we are able to show that there exists a node partition L,R,C, F , where L,R
are both non-empty and |F | ≤ f , such that, in GF , neither L ∪ C ⇒l R nor
R∪C ⇒l L holds. Conversely, if n ≥ 3f +1 and κ(G) ≥ 2f +1, using Expansion
Lemma [15] we are able to show Condition NC holds. Formal proof is given
in [10].

5.2 Directed Graph with Unbounded Path Length

Synchronous exact Byzantine consensus is considered in [12].

Definition 8. [12] Given disjoint subsets A,B, where B is non-empty:
(i) We say A → B if and only if set A contains at least f + 1 distinct incoming
neighbors of B. That is, |{i| (i, j) ∈ E , i ∈ A, j ∈ B}| > f .
(ii) We say A �→ B iff A → B is not true.

The following necessary and sufficient condition is obtained in [12].

Theorem 7. [12] Given a graph G, exact Byzantine consensus is solvable if and
only if for any partition L,C,R, F of G, such that both L and R are non-empty,
and |F | ≤ f , either L ∪ C → R in GF , or R ∪ C → L in GF .

We term this condition as Condition 1. Note that in order for A → B to
hold, we only require that there are at least f + 1 incoming neighbors of set
B in set A. As a result of this observation, our Condition NC with l = 1 is,
in general, strictly stronger than Condition 1. However, we prove the following
result in [10].

Theorem 8. Condition NC is equivalent to Condition 1 when l ≥ l∗.
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6 Summary and Discussion

In this paper, we assume that each node knows the topology within its l–hop
neighborhood, and in each iteration it can send messages to nodes that are up to
l hops away, where l ≥ 1. We prove a necessary and sufficient condition for the
existence of iterative algorithms that achieve approximate Byzantine consensus
in directed graphs, while maintaining minimal memory across iterations. The
class of iterative algorithms considered in this paper ensures that, after each
iteration of the algorithm, the state of each fault-free node remains within the
range (or convex hull) of the initial inputs at the fault-free nodes.

Throughout the paper so far, we assumed that faulty nodes are only able to
tamper message values, leaving message paths unchanged. However, this restric-
tion of faulty behaviors of Byzantine nodes is not necessary. In fact, the above
results still hold when both message value tampering and message path tamper-
ing are allowed, provided that (i) the number of faked messages is finite and there
exists a constant C such that Mi[t] ≤ C for all t (i.e., each faulty node k ∈ F
cannot create too many non-existing messages), and that (ii) for each message
m tampered/faked by a faulty node k, path(m) must satisfy k ∈ V(path(m))
(i.e., the faulty node k cannot conceal itself from the message path). The con-
straints (i) and (ii) can be implemented as follows. Recall that each fault-free
node knows the network topology in its l–hop neighborhood. In each iteration,
a fault-free node should accept any one message of the form (w,P ) for any par-
ticular l–hop path P that is known to exist – if more than one such message
is received, discard all but one such message (or discard all, and replace by a
default value). Also, if node i receives the message (w,P ) where path P is not
known to exist, then node i should discard the message. These rules implement
constraint (i) above. Suppose node i receives or relays a message m = (w,P )
from node j containing a path that does not have the form . . . ji . . . then i will
discard the message. This way, on any given l–hop path P , at least the very last
faulty node will have to remain on the path (it may delete the earlier nodes on
the path, but not itself). Thus the constraint (ii) is imposed. The necessity of
Condition NC can be easily verified for the above behavior as well. It can also be
seen that Algorithm 1 works under this relaxed model, proving the sufficiency
of Condition NC.

Acknowledgements. The authors thank the referees and Lewis Tseng for providing
constructive comments on the paper.

References

1. Ali, J., Jie, L., Morse, A.S.: Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6),
988–1001 (2003)



Reaching Approximate Byzantine Consensus with Multi-hop Communication 35

2. Bnzit, F., Blondel, V., Thiran, P., Tsitsiklis, J., Vetterli, M.: Weighted
gossip:Distributed averaging using non-doubly stochastic matrices. In: 2010
IEEE International Symposium on Information Theory Proceedings (ISIT),
pp. 1753–1757, June 2010

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction
toalgorithms, vol. 2. MIT Press Cambridge (2001)

4. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

5. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement.
Distributed Computing 4(1), 9–29 (1990)

6. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. In: Proceedings of the Fourth Annual ACM Symposium on
Principles of Distributed Computing, PODC 1985, pp. 59–70. ACM, New York
(1985)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32, 374–382 (1985)

8. LeBlanc, H.J., Zhang, H., Sundaram, S., Koutsoukos, X.: Consensus of multi-agent
networks in the presence of adversaries using only local information. In: Proceed-
ings of the 1st International Conference on High Confidence Networked Systems,
HiCoNS 2012, pp. 1–10. ACM, New York (2012)

9. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

10. Su, L., Vaidya, N.: Reaching approximate byzantine consensus with multi-hop
communication (2014). arXiv preprint arXiv:1411.5282

11. Tseng, L., Vaidya, N.: Iterative approximate consensus in the presence of byzantine
link failures. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593,
pp. 84–98. Springer, Heidelberg (2014)

12. Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: Proceed-
ings of the 2015 ACM Symposium on Principles of Distributed Computing. ACM
(to appear, 2015)

13. Vaidya, N.H.: Matrix representation of iterative approximate byzantine consensus
in directed graphs. CoRR, arXiv:1203.1888 (2012)

14. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate byzantine consensus
in arbitrary directed graphs. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, pp. 365–374. ACM (2012)

15. West, D.B., et al.: Introduction to graph theory, vol. 2. Prentice Hall, Upper Saddle
River (2001)

16. Zhang, H., Sundaram, S.: Robustness of information diffusion algorithms to locally
bounded adversaries. In: American Control Conference (ACC 2012), pp. 5855–5861
(2012)

http://arxiv.org/abs/1411.5282
http://arxiv.org/abs/1203.1888

	Reaching Approximate Byzantine Consensus with Multi-hop Communication
	1 Introduction
	2 System Model and Structure of Iterative Algorithms
	3 Necessary Condition
	3.1 Equivalent Characterization of Condition NC

	4 Sufficiency: Algorithm 1
	4.1 Matrix Representation of Algorithm 1

	5 Unbounded Path Length
	5.1 Undirected Graph with Unbounded Path Length
	5.2 Directed Graph with Unbounded Path Length

	6 Summary and Discussion
	References


