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Abstract. Overlay networks present an interesting challenge for fault-
tolerant computing. Many overlay networks operate in dynamic envi-
ronments (e.g. the Internet), where faults are frequent and widespread,
and the number of processes in a system may be quite large. Recently,
self-stabilizing overlay networks have been presented as a method for
managing this complexity. Self-stabilizing overlay networks promise that,
starting from any weakly-connected configuration, a correct overlay net-
work will eventually be built. To date, this guarantee has come at a cost:
nodes may either have high degree during the algorithm’s execution,
or the algorithm may take a long time to reach a legal configuration.
In this paper, we present the first self-stabilizing overlay network algo-
rithm that does not incur this penalty. Specifically, we (i) present a new
locally-checkable overlay network based upon a binary search tree, and
(ii) provide a randomized algorithm for self-stabilization that terminates
in an expected polylogarithmic number of rounds and increases a node’s
degree by only a polylogarithmic factor in expectation.

1 Introduction

Today’s distributed systems are quite different from those only a decade ago.
Pervasive network connectivity and an increase in the number of computational
devices has ushered in an era of large-scale distributed systems operating in
highly-dynamic environments. One type of distributed system that has gained
popularity recently is the overlay network. An overlay network is a network
where communication occurs over logical links, where each logical link consists
of zero or more physical links. The use of logical links allows the design of
efficient logical topologies (e.g. topologies with low diameter and/or low degree)
irrespective of the physical topology, enabling efficient data structures to be
constructed from large systems with arbitrary physical networks.

The dynamic nature of many overlay networks makes fault tolerance
extremely important. Self-stabilization, first presented by Dijkstra in 1974 [6], is
an elegant fault-tolerant paradigm promising that, after any memory-corrupting
transient fault, the system will eventually recover to a correct configuration.
Self-stabilizing overlay networks are logical networks that guarantee a correct
topology will be restored after any such transient fault.
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1.1 Related Work

Many overlay networks include a mechanism to tolerate a subset of possible
faults. For instance, Chord [15] defines a procedure for nodes to join the network
efficiently. The Forgiving Graph [9] presents a self-healing overlay network
which maintains connectivity while limiting degree increases and stretch despite
periodic adversarial node insertions and deletions.

Self-stabilizing overlay networks, however, are a relatively new area of
research. In 2007, Onus et al. presented the first silent self-stabilizing overlay net-
work, building a linear topology in linear (in the number of nodes) rounds [14].
The Skip+ graph, presented in 2009 by Jacob et al. [10], was the first self-
stabilizing overlay network with polylogarithmic convergence time. Berns et al.
presented a generic framework capable of building any locally-checkable overlay
network, and proved that their result was near-optimal in running time [4].

Current self-stabilizing overlay networks have suffered from one of two limi-
tations. First, some self-stabilizing overlay networks require a long time to reach
a correct configuration. For instance, ReChord [11], a self-stabilizing variant of
Chord, requires O(n log n) rounds to reach a correct configuration. Other self-
stabilizing overlay networks that converge quickly have required a large amount
of space. For example, Skip+ [10] has a polylogarithmic convergence time, but
may increase a node’s degree to O(n) during convergence. The Transitive Clo-
sure Framework [4] requires Θ(n) space. To date, no work has achieved efficient
convergence in both time and space.

1.2 Contributions

In Section 3, we present Avatar, a generic locally checkable overlay network,
and describe a specific “instance” of the network called AvatarCbt which is
based upon a binary search tree. Section 4 presents a randomized self-stabilizing
algorithm for creating the AvatarCbt network, as well as an analysis sketch of
the algorithm’s performance in both convergence time and space (using a new
metric we call the degree expansion).

2 Model of Computation

We model the distributed system as an undirected graph G = (V,E), with
nodes V representing the processes of the system, and edges E representing the
communication links. Each node u is assigned an identifier from the function
id : V → Z

+. We assume each node stores id(u) as immutable data. Where
clear from context, we refer to a node u by its identifier id(u).

Each node u ∈ V has a local state S(u) consisting of a set of variables and
their values. We assume all nodes have access to a shared immutable random
sequence Ψ . A node u can modify the values of its variables using actions defined
in the program of u. All nodes execute the same program. We use a synchronous
model of computation, where in one round each node executes its program and
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communicates with its neighbors. We use the message passing model of com-
munication, where a node u can communicate with a node v in its neighborhood
N(u) = {v ∈ V : (u, v) ∈ E} by sending node v (called a neighbor) a mes-
sage. A node can send unique messages to every neighbor in every round. We
assume reliable and bounded capacity communication channels where a message
is received by a node u at the beginning of round i if and only if it was sent to
u by some v ∈ N(u) in round (i − 1).

In the overlay network model, a node’s neighborhood is part of its state,
allowing a node to change its neighborhood with program actions. In a round i,
a node u can delete any subset of edges incident upon it, and add edges to any
nodes currently at distance 2 from u. Specifically, let Gi be the configuration in
round i. A node u can (i) delete any edge (u, v) ∈ E(Gi), resulting in (u, v) /∈
E(Gi+1), and (ii) create the edge (u,w) if (u, v), (v, w) ∈ E(Gi), resulting in
(u,w) ∈ E(Gi+1). We restrict edge additions to only those nodes at distance 2
to reflect the fact that only nodes at distance 2 share a common neighbor through
which they can be “connected”. We assume that v ∈ N(u) ⇔ (u, v) ∈ E – that
is, every neighbor of u is known, and u has no “false neighbors” in N(u) (this
can be achieved with the use of a “heartbeat” message).

Our problem is to take a set of nodes V and create a legal configuration,
where a legal configuration is defined by some predicate taken over the state of
all nodes in V . Since edges are state in an overlay network, the legal configuration
predicate often includes the requirement that the topology matches a particular
desired topology ON(V ) = (V,E). The self-stabilizing overlay network problem
is to design an algorithm A such that, when executed on nodes V with arbitrary
initial state in an arbitrary weakly-connected initial topology, the system even-
tually reaches a legal configuration. Furthermore, once the network is in a legal
configuration, it remains in a legal configuration until an external fault perturbs
the system.

Performance of an overlay network algorithm can be measured in terms of
both time and space. To analyze the worst-case performance, it is assumed that
an adversary creates the initial configuration using full knowledge of the nodes
and the algorithm they will execute. The adversary does not, however, know
the value of the shared random sequence Ψ . The maximum number of rounds
required for a legal configuration to be reached, taken over all possible con-
figurations, is the convergence time of A. One measure of space complexity is
the number of incident edges on a node, as each incident edge requires mem-
ory and maintenance (heartbeat messages). We introduce the degree expansion
as a space complexity measurement. The degree expansion, informally, is the
amount a node’s degree may grow “unnecessarily” during convergence. For a
graph G with node set V , let ΔG be the maximum degree of nodes in G. For a
self-stabilizing algorithm A executing on G, let ΔA,G be the maximum degree
of any node from V during execution of A beginning from configuration G. We
define degree expansion as follows.
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Definition 1. The degree expansion of A on G, denoted DegExpA,G, is equal
to (ΔA,G/max(ΔG,ΔON (λ))). Let the degree expansion of A be DegExpA =
maxG∈G(DegExpA,G)

The degree expansion is meant to capture the degree growth of the algorithm
while excluding clever initial configurations from the adversary resulting in a high
degree increase.

A self-stabilizing overlay network algorithm is silent if and only if the algo-
rithm brings the system to a configuration where the messages exchanged
between nodes remains fixed until a fault perturbs the system [7]. Tradition-
ally, these messages consist of a node’s state. In order for a silent self-stabilizing
overlay network algorithm to exist using only this information, the network must
be locally checkable. An overlay network is locally checkable if and only if each
illegal configuration has at least one node (called a detector) which detects that
the configuration is not legal using only its state and the state of its neighbors,
and all legal configurations have no detectors.

3 The AVATAR Network

3.1 AVATAR Specification

One of the challenges with creating silent self-stabilizing overlay network algo-
rithms is designing a locally checkable topology as many previous overlay net-
works are not locally checkable. For instance, Skip+ [10] was created to have
a locally-checkable variant of the Skip graph [1]. Similarly, the self-stabilizing
ReChord network [11] is a locally-checkable Chord [15] derivative built using
real and virtual nodes. Simplifying this network design task is the motivation
for Avatar. Avatar easily allows many different topologies to be “simulated”
while ensuring local checkability.

Avatar is based around the idea of network embeddings. A network embed-
ding Φ maps the node set of a guest network Gg = (Vg, Eg) onto the node set of
a host network Gh = (Vh, Eh) [13]. The dilation of Φ is defined as the maximum
distance between any two nodes Φ(u), Φ(v) ∈ Vh such that (u, v) ∈ Eg. The
Avatar network is an overlay network realizing a dilation-1 embedding for a
guest network using logical overlay links. To do this and ensure local checkabil-
ity, the (host) overlay edges of Avatar consist of the successor and predecessor
edges from a linearized graph (ensuring host nodes can check which guest nodes
map to them) as well as the overlay edges necessary for host nodes of two neigh-
boring guest nodes to be at most distance 1 apart.

Formally, for any N ∈ N, let [N ] be the set of nodes {0, 1, . . . , N − 1}. Let
F be a family of graphs such that, for each N ∈ N, there is exactly one graph
FN ∈ F with node set [N ]. We use F(N) to denote FN . We call F a full graph
family, capturing the notion that the family contains exactly one topology for
each “full” set of nodes [N ] (relative to the identifiers). For any N ∈ N and
V ⊆ [N ], AvatarF (N,V ) is a network with node set V that realizes a dilation-1
embedding of FN ∈ F . The specific embedding is given below. We also show
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that, when N is known, Avatar is locally checkable (N can be viewed as an
upper bound on the number of nodes in the system).

Definition 2. Let V ⊆ [N ] be a node set {u0, u1, . . . , un−1}, where ui < ui+1

for 0 ≤ i < n−1. Let the range of a node ui be range(ui) = [ui, ui+1) for 0 < i <
n − 1. Let range(u0) = [0, u1) and range(un−1) = [un−1, N). AvatarF (N,V ) is
a graph with node set V and edge set consisting of two edge types:

Type 1: {(ui, ui+1)|i = 0, . . . , n − 1}
Type 2: {(ui, uj)|ui �= uj ∧ ∃(a, b) ∈ E(FN ), a ∈ range(ui) ∧ b ∈ range(uj)}

Theorem 1. Let F be an arbitrary full graph family, and let AvatarF (N,V )
be an overlay network for an arbitrary N and V , and let each u ∈ V know N .
AvatarF (N,V ) is locally checkable.

Proof sketch: Note each node can calculate its range using only its neighborhood.
Using the state of its neighbors, u can also calculate the range of each neighbor.
This information is sufficient for each node u to verify every neighbor v ∈ N(u) is
either from a type 1 or type 2 edge. As all nodes know N and there is exactly one
FN ∈ F , all nodes can verify their type 1 and type 2 edges correctly map to the
given network. Interestingly, AvatarF is locally checkable using only O(log n)
bits from each neighbor: each node need share only (i) its identifier, and (ii) the
identifier of its predecessor and successor.

3.2 The Full Graph Family CBT

Our goal is to create a self-stabilizing Avatar network which stabilizes quickly
and maintains low degree during convergence. To this end, we simulate a simple
data structure with constant degree and logarithmic diameter: a binary search
tree. As we show, an embedding in Avatar of a binary search tree maintains a
low degree and diameter.

Formally, consider the graph family based upon complete binary search trees.
Below we define the full graph family Cbt by defining Cbt(N) recursively.

Definition 3. For a ≤ b, let Cbt[a, b] be a binary tree rooted at r = 
(b+a)/2�.
Node r’s left cluster is Cbt[a, r − 1], and r’s right cluster is Cbt[r + 1, b]. If
a > b, then Cbt[a, b] = ⊥. We define Cbt(N) = Cbt[0, N − 1]. Let the level of
a node d in Cbt[0, N − 1] be the distance from d to root 
N − 1/2�.

Diameter and Maximum Degree of AVATARCBT . All dilation-1 embed-
dings preserve the diameter of the guest network, meaning AvatarCbt has
O(log N) diameter. Note a node v in our embedding may have a large Φ−1(v)
– that is, many nodes from the guest network may map to a single host node.
Surprisingly, the host nodes for AvatarCbt have a small degree regardless of
Φ−1, as we show below.
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Theorem 2. For any node set V ⊆ [N ], the maximum degree of any node u ∈ V
in AvatarCbt(N,V ) is at most 2 · log N + 2.

Proof sketch: Consider Φ−1(u), the subset of nodes from [N ] mapped to node
u. Let [N ]j be the set of all nodes at level j of Cbt(N). There are at most 2
nodes in Φ−1(u) ∩ [N ]j with a neighbor not in Φ−1(u) – that is, there are at
most 2 edges from the range of a node u to any other node outside this range
for a particular level j of the tree. As there are only log N + 1 levels, the total
degree of any node in AvatarCbt is at most 2 · log N + 2.

4 A Self-Stabilizing Algorithm

4.1 Algorithm Overview

At a high level, our self-stabilizing algorithm works on the same principle as
Gallager, Humblet, and Spira’s algorithm for constructing a minimum-weight
spanning tree [8]. The network is organized into disjoint clusters, each with
a leader. The cluster leaders coordinate cluster merges until a single cluster
remains, at which point the network is in a legal configuration.

Self-stabilizing overlay networks introduce a complication to this pattern.
Converging from an arbitrary weakly-connected configuration while limiting a
node’s degree increase requires coordinated merges, which requires either time
(additional rounds) or bandwidth (additional edges). In the overlay network
model, we can increase both: we can add edges to the network and add steps
to our algorithm. Our algorithm balances these additions using four compo-
nents, discussed below, to achieve expected polylogarithmic convergence time
and degree growth.

1. Clustering: As any weakly-connected initial configuration is possible, we
must ensure all nodes join a cluster and have a way to efficiently commu-
nicate within their cluster. We define a cluster for AvatarCbt and present
mechanisms for cluster creation and intra-cluster communication.

2. Matching: Progress comes from clusters merging, moving towards a single-
cluster configuration. However, we will show merging clusters results in an
O(log2 N) degree increase for each involved cluster. To control degree growth,
we limit a cluster to merge with at most one other cluster at a time. We create
a matching to determine which clusters should merge. Using the overlay
network model’s ability to add edges, we introduce a mechanism to create
“sufficiently-many” matchings on any topology.

3. Merging: Once two clusters are matched they merge together into a sin-
gle cluster. Merging quickly requires sufficient “bandwidth” (in the form of
edges) between two clusters. To limit degree increases, these edges must be
created carefully. We present an algorithm for merging two clusters quickly
while still limiting the number of additional edges that are created.

4. Termination Detection: Finally, to ensure our algorithm is silent, we
define a simple mechanism for detecting when the legal configuration has
been reached, allowing our algorithm to terminate.
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We discuss these components below, providing sketches of the algorithms and
analysis. Complete algorithms and analysis can be found in the full version of
this work [3].

4.2 Clustering

Defining a Cluster. In the overlay network model, we can create clusters by
defining the nodes of the cluster as well as the topology of the cluster.

Definition 4. Let G be a graph with node set V . A Cbt cluster is a set of
nodes V ′ ⊆ V in graph G such that G[V ′], the subgraph of G induced by V ′, is
AvatarCbt(N,V ′).

Notice our cluster can be thought of on two levels: on one level, it consists of
an N -node guest Cbt network, while on the other level, it consists of host nodes
V ′. We call the root of the guest Cbt network the root of the cluster. Figure
1 contains the (host) network G with two clusters: T and T ′. The two (guest)
Cbt networks corresponding to these clusters are given in Figure 2.

Fig. 1. Host nodes of clusters T (top) and T ′ (bottom)

Fig. 2. Guest Nodes for T (right) and T ′ (left)
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To ensure nodes quickly perform the necessary actions to join a cluster, we
make our Cbt clusters (from here on, simply clusters) locally checkable. To do
this, we add three variables to each node: a cluster identifier clusteru containing
the identifier of the host of the root node in the cluster, and a cluster predecessor
clusterPredu and successor clusterSuccu, set to the closest identifiers in the
subgraph induced by nodes with the same cluster identifier. Let the cluster range
of u be the range of u defined by the cluster predecessor and successor. We say
a set of nodes V ′ is a valid cluster if and only if (i) the subgraph induced by
V ′ matches AvatarCbt(N,V ′), and (ii) the legal range in AvatarCbt(N,V ′)
matches the cluster range of u in the configuration G.

Like AvatarCbt(N,V ′), our cluster is locally checkable. The proof follows
closely the proof that AvatarCbt itself is locally checkable: nodes in a cluster
V ′ can calculate their cluster range and the cluster range of their cluster neigh-
bors, allowing them to check that their intra-cluster edges are from AvatarCbt

(N,V ′). Furthermore, if the cluster identifier is invalid, at least one node will
detect this. During convergence, there are some cases where a node is not a
member of a cluster due to program actions (i.e. merge). Later we show this is
also locally checkable.

In the self-stabilizing setting, there is no guarantee that each node begins
execution belonging to a valid cluster. Therefore, we define a “reset” operation
which a node executes when a subset of faulty configurations are detected. We
say that a node u has detected a reset fault if u detects (i) it is not a member
of a cluster, (ii) it is not in a state reachable from a “legal” merge (as we shall
see, merges occur in a way allowing nodes to differentiate fault-induced invalid
clusters from merging clusters), and (iii) it did not reset in the previous round.
When u detects a reset fault, it “resets” to a cluster of size 1.

Intra-Cluster Communication. Our algorithms require a systematic and
reliable means of intra-cluster communication. For this, we use a non-snap-
stabilizing variant of the propagation of information with feedback and clean-
ing (PFC ) algorithm [5], which we “simulate” on the guest Cbt network for a
cluster T (denoted CbtT (N)). The root node initiates a PFC wave, which (i)
propagates information down the tree level-by-level until reaching the leaves, (ii)
sends a feedback wave from the leaves to the root, passing along any requested
feedback, and (iii) prepares all nodes for another PFC wave. To allow the host
network to simulate the PFC algorithm, it is sufficient to append the “level”
of the sender in the guest network to each message in the host network. For
instance, a guest root initiating a PFC wave with message m corresponds to
the host of the root sending the message (m, 0) to the (at most two) hosts of the
root’s children.

Analysis of Cluster Creation and Communication

Lemma 1. Every node u will be a member of a cluster in O(log N) rounds.
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Proof sketch: The lemma holds easily for nodes that are members of a cluster
initially. Consider a node u that is not a member of a cluster. If a reset fault
is detected by u, then u becomes a size-1 cluster in one round. If no reset fault
is detected, either (i) u believes it is participating in a merge, or (ii) u believes
it is a member of a cluster. For case (i), we will show later that the merge
process is locally checkable (that is, if a configuration is reached that is not a
valid merge, at least one node detects this), and that every node that detects an
invalid cluster from a merge will either complete the merge in O(log N) rounds,
or reset in O(log N) rounds, satisfying our claim. For case (ii), as clusters are
locally checkable, there must be a shortest path of nodes u, v0, v1, . . . , vk, with
k = O(log N), such that all nodes in the path have a cluster identifer matching
the identifier of u, and vk detects a reset fault. When vk executes a reset, it will
cause node vk−1 to detect a reset fault in the next round, causing it to reset and
vk−2 to detect a reset fault, and so on. In this way, the reset will “spread” to u
in O(log N) rounds, resulting in u executing a reset, satisfying our claim.

Lemma 2. After O(log N) rounds, if a set of nodes T ⊆ V forms a cluster, no
node in T will execute a reset action until an external fault perturbs the system.

Proof sketch: Note that once u is part of a cluster T , no action u executes will
cause it to leave cluster T unless it is merging with another cluster T ′. If T
and T ′ are merging, they will successfully create a new valid cluster T ′′, with
V (T ) ⊆ V (T ′′). Our lemma’s initial “delay” of O(log N) rounds handles the case
where the initial configuration contains a node which is part of a cluster with
a corrupted PFC mechanism. This can only happen in an initial configuration,
and it is corrected (either through the PFC mechanism or through resets) in
O(log N) rounds, confirming our claim.

From this point forward, our analysis shall assume the system is in a “reset-
free” configuration consisting of valid clusters and merging clusters.

4.3 Matching

We can add edges during a merge to increase “bandwidth” and thus decrease the
time required for the merge. However, we must be careful to limit the resulting
degree increase. Therefore, a cluster T can only merge one other cluster at a
time. For this, we calculate a matching between clusters. We say that a cluster
T has been assigned a merge partner T ′ if and only if the roots of T and T ′ have
been connected by the matching process described below. We say that a cluster
T is matched if it has been assigned a merge partner, and unmatched otherwise.

We say that the cluster graph Gc of G is the graph induced by the clusters
in configuration G, where a node vT in Gc corresponds to a cluster T in G, and
an edge (vT , vT ′) corresponds to an edge between at least one node u ∈ T and
node u′ ∈ T ′. Our goal is to find a large matching on the cluster graph. To
find this matching, we use a randomized symmetry-breaking technique. “Tra-
ditional” matching algorithms, however, are insufficient, as there are topologies
where even a maximum matching consists of only a small number of nodes
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(e.g. a star topology has a maximum matching of a single pair). In these cases,
only a small number of merges would occur at a time, resulting in slow conver-
gence. Note, however, that one can identify large matchings on the square of
the cluster graph, G2

c (the graph resulting from connecting all nodes of distance
at-most 2 in G). Since we are in the overlay network model, a matching on G2

c

can become a (distance-one) matching by adding a single edge between matched
clusters. Our matching algorithm creates a matching on G2

c . We provide a sketch
of the matching algorithm in Algorithm 1, and a discussion below.

Our matching algorithm uses two different roles selected by the cluster root:
leaders and followers. Leaders connect followers together to form a matching
on G2

c . A cluster root chooses the cluster’s role uniformly at random, with the
exception of one special case (as discussed below, clusters which are merging
become leaders if they were “followed” during their merge). When the root has
selected the role of follower (leader), we say that the entire cluster is a follower
(leader).

Consider first a follower cluster T . Each node u ∈ T will check N(u) for a
node v such that v is in another cluster T ′ and v is a potential leader. A potential
leader is a node which either (i) has the role of leader and is “open” (see below),
or (ii) is merging, and thus “available” for followers. A node u ∈ T will (i) mark
one potential leader as “followed” (if one such neighbor exists), (ii) receive at
most two edges to potential leaders from its children, and (iii) forward at most
one edge incident on a potential leader to u’s parent. Eventually, at most two
such edges reach the root of the cluster. At this point, the root waits for the
selected leader to assign it a merge partner. We define two types of followers:
long followers and short followers. Short followers will only search for a leader
for a “short” amount of time (4 log N rounds), while long followers will search
for a (slightly) “longer” time (24 log N). Long and short followers are used to
make the scenario where a cluster and all of its neighbors are “stuck” searching
for a leader sufficiently rare.

If the root of T has selected the leader role, the root begins by communicating
the leader role to all nodes in the cluster. At this point, nodes are considered
open leaders, and neighboring follower nodes can “follow” these leaders. After
this PFC wave completes, the root sends another PFC wave asking nodes in T
to (i) become closed leaders (no node can select them as a potential leader), and
(ii) connect any current followers as merge partners. Nodes in T will connect all
followers incident upon them as merge partners, thus creating a matching on G2

c .
If a node u ∈ T has an odd number of followers, it simply matches as many pairs
as possible and forwards the one “extra” follower to u’s parent. This guarantees
all followers of T will find a merge partner, as the root of T either receives no
followers, matches two received followers, or sets the single received follower as
the merge partner for T itself. Once this PFC wave completes, the root either
(i) begins the merge process with a follower T ′ (if a merge partner was found),
or (ii) randomly selects a new role.
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Algorithm Sketch 1. The Matching Algorithm for Cluster T

1. If no role, root rT selects a role uniformly at random: leader or follower.
2. If rT is a leader :
3. rT uses PFC to set all nodes as open leaders
4. Upon completion of the wave, rT uses PFC set all nodes as closed leader
5. Upon completion of the wave, nodes connect all incident followers, and

forward to their parent the (at-most-one) unmatched follower
6. rT matches any received followers
7. rT either repeats the matching algorithm (if unmatched), or

begins merging (if matched)
8. Else
9. rT selects uniformly at random the role of long or short follower
10. Nodes in T search for a leader. Short followers search for 2 PFC waves,

while long followers search for 12 PFC waves
11. If a leader was found rT waits to be matched with a merge partner
12. Else T repeats the matching algorithm
13. Endif

Analysis of Matching

Lemma 3. Consider a cluster T in a configuration Gi. With probability at least
1/4, all nodes in T will be a potential leader for at least one round in the next
O(log N) rounds.

Proof sketch: There are four cases to consider based on the state of T in Gi: T
is an open leader, T is a closed leader, T is a follower, and T is merging. If T
is an open leader, our claim holds. If T is a closed leader, in O(log N) rounds
T will either begin a merge (becoming a potential leader) or select the new
role of leader with probability 1/2. If T is a follower, T is a short follower with
probability 1/2, and after 4(log N + 1) + 4 rounds T will select a new role of
leader with probability 1/2, or begin a merge (becoming a potential leader). If
T is currently merging, then every node will be a potential leader for at least
one round during the merging process, which will complete in O(log n) rounds.

Lemma 4. Consider a cluster T in configuration Gi. With probability at least
1/16, T is assigned a merge partner at least once over O(log N) rounds.

Proof sketch: This proof combines the previous lemma with the fact that a
cluster has probability 1/4 of being a long follower, which will ensure the cluster
searches sufficiently long to detect at least one potential leader in a neighboring
cluster.

4.4 Merging

After being matched, two clusters can merge. Our merging algorithm adds edges
in a systematic fashion to ensure there is enough “bandwidth” for two clusters
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to merge quickly, yet still limits degree increases. Our merging algorithm can be
discussed from two points of view: one which considers two N -node clusters in the
guest network merging into a single N -node cluster, and another which considers
two clusters in the host network systematically updating their cluster successors
and predecessors. Below, we present a discussion from both viewpoints for clarity.
Note these are simply different ways of thinking about the same algorithm.

From the point of view of the guest network, merging can be thought of as (i)
connecting guest nodes with identical identifiers from the two clusters, beginning
with the roots, (ii) determining which of these guest nodes will remain in the new
network (using the ranges of their hosts), and (iii) transferring the links from the
“deleted” node to the “winning” node (the node remaining in the single merged
N -node cluster). The remaining node can then connect its children with the
received children from the former root, and these nodes then repeat the “merge”
process. This proceeds level-by-level until only a single N -node cluster remains.

From the point of view of the host network, the merge involves (i) connecting
the two hosts of two guest nodes with the same identifiers (beginning with the
hosts of the root), and then (ii) updating the cluster ranges of these hosts,
transferring any links from the “lost range” of one host node to another. Note
that initially the hosts of the roots are connected and the cluster ranges of
these two hosts overlap. Given the presence of the other host, each host will
update their cluster successor or predecessor (if needed), and the host whose
cluster range was reduced will transfer any outgoing intra-cluster links to its new
successor/predecessor, effectively allowing one host to “take over” the cluster
range of another. This change in the cluster range corresponds to the “deleting”
of a guest node discussed above. The hosts from the next level in the tree are
then connected and the process repeats recursively until all cluster successors,
predecessors, and (by implication) Type 2 edges are updated and a new cluster
is formed. The merge algorithm is sketched in Algorithm 2.

Algorithm Sketch 2. The Merging Algorithm for Cluster T

// Cluster T has been assigned merge partner T ′

1. Root rT notifies all nodes of merge partner T ′ and
its view of the random sequence Ψr

2. Edges between T and T ′ are removed if Ψr = Ψ
3. Beginning with the roots rT and rT ′ :
4. Node rT updates its range based upon the identifier of rT ′ (if needed)
5. Node rT sends any edges not in its new range to rT ′ ,

and receives edges from rT ′

6. Children of rT and r′
T are connected, and process repeats concurrently

7. Once process reaches leaves, pass feedback wave to new root
8. New root rT ′′ sends PFC wave to update nodes in T ′′ of new cluster identifier.

Note every merge begins with a pre-processing stage which removes all links
between merge partners T and T ′ other than the edge between the roots of
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T and T ′. To prevent the network from being partitioned, no edge is deleted
unless both incident nodes receive from their respective cluster roots a message
matching the shared random sequence Ψ . As this sequence is unknown to the
adversary, network partitions are prevented with high probability.

Analysis of Merge

Lemma 5. Consider two clusters T and T ′ such that T and T ′ are merge part-
ners. In O(log N) rounds, T and T ′ have formed a single cluster T ′′ consisting
of all nodes in T ∪ T ′.

Proof sketch: The proof follows from the fact that the merge process requires
O(log N) rounds of pre-processing, and then resolves at least one level of the
guest network in a constant number of rounds. Since there are log N + 1 levels,
our lemma holds.

Lemma 6. The degree of a node u ∈ T will increase by O(log2 N) during a
merge, and will return to within O(log N) of its initial degree when the merge is
complete.

Proof sketch: This proof follows from Theorem 2. For any set of nodes T forming
AvatarCbt (including a cluster), a node u ∈ T has at most O(log N) edges
amongst nodes in T . As merging involves transferring the O(log N) edges from
a contiguous portion of range(u) to some node v at most once per level in the
guest network, no node will “take over” more than O(log2 N) edges during a
merge. Once the merge is completed, any node in the new cluster T ′′ has at
most O(log N) edges in T ′′, again by Theorem 2.

4.5 Termination Detection

Note the root of a cluster repeatedly executes the matching algorithm. For silent
stabilization, the root must know when a legal configuration has been reached
so it can cease the matching algorithm. For this, we add a “faulty bit” to the
feedback wave sent after a merge has completed. If a node (i) detects the con-
figuration is faulty, or (ii) received a faulty bit of 1 from at least one child, the
node sets its faulty bit to 1 and appends this to the feedback message sent to
the node’s parent. If the root receives a feedback wave without the faulty bit set
(i.e. a value of 0), it stops executing the algorithm. If a node u completes this
wave with its faulty bit set to 0 and it either (i) detects a faulty configuration,
or (ii) detects a neighbor with a faulty bit not equal to 0, u will detect a reset
fault. This ensures our algorithm is silent and stabilizing.

Lemma 7. When our algorithm builds a legal AvatarCbt network, the faulty
bit will be set to 0, and remain 0 until a transient fault again perturbs the system.

Proof sketch: Since AvatarCbt is locally checkable, a faulty configuration has
at least one detector which will set its faulty bit to 1. By similar argument to
Lemma 1, in O(log N) rounds, all nodes will have their faulty bit set to 1 and
begin executing our algorithm. Once the last merge occurs, no node will detect
a fault, and all faulty bits will remain 0 until another fault occurs.
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4.6 Combined Analysis

Theorem 3. The algorithm in Section 4 is a self-stabilizing algorithm for the
AvatarCbt network with expected convergence time of O(log2 N).

Proof sketch: All nodes are members of a cluster in O(log N) rounds, at which
point the number of clusters will only decrease. Each time a merge occurs, the
number of clusters is reduced by 1, and the probability that a cluster merges over
a span of O(log N) rounds is constant (1/16). In expectation, then, every cluster
has merged in O(log N) rounds, halving the number of clusters. After O(log2 N)
rounds, we are left with a single cluster, which is the legal configuration.

Theorem 4. The degree expansion of the self-stabilizing AvatarCbt algorithm
from Section 4 is O(log2 N) in expectation.

Proof sketch: A node’s degree will increase under only a small number of cir-
cumstances. A node will only have O(log N) edges to nodes in its cluster (except
during merges). During a merge, the degree can increase to at most O(log2 N)
(Lemma 6). Each time a cluster selects the leader role, a node in the cluster
may have its degree increase by 1. As the algorithm will terminate in O(log2 N)
rounds in expectation, there are an expected O(log N) such increases. Finally,
consider an invalid initial configuration which causes a node u to receive many
edges while not in a cluster or merging with another cluster. The only way for
a node u to receive additional edges in a round and not execute a reset action
is for only a single node to add edges to u. Since no node will send more than
O(log N) edges in a single round, and u will be in a cluster in O(log N) rounds,
the degree expansion of our algorithm is O(log2 N).

5 Discussion and Future Work

As it is based on a binary tree, AvatarCbt has poor load balancing properties.
However, it can be useful as an intermediate step in creating other topologies
using a mechanism we call network scaffolding. In this approach, AvatarCbt is
used as an intermediate topology from which another network is built (much like
a scaffold is used for construction). Our technique has already been successful
in building a self-stabilizing Chord network with polylogarithmic convergence
time and degree expansion [2].

To build on this work, we would like to remove the requirement that all nodes
know N , perhaps using a self-stabilizing protocol. We also are examining how
much state nodes must continuously exchange to guarantee local checkability
with mutable state, unlike immutable proof labels [12]. Reducing this exchanged
state can reduce the maintenance for correct configurations. We are also investi-
gating bounds for the degree expansion to determine how efficient this algorithm
is in this self-stabilizing overlay network setting.
Acknowledgments: I would like to thank my advisors, Dr. Sriram V. Pemmaraju
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