
Andrzej Pelc
Alexander A. Schwarzmann (Eds.)

 123

LN
CS

 9
21

2

17th International Symposium, SSS 2015
Edmonton, AB, Canada, August 18–21, 2015
Proceedings

Stabilization, Safety,
and Security
of Distributed Systems

Lecture Notes in Computer Science 9212

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andrzej Pelc • Alexander A. Schwarzmann (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
17th International Symposium, SSS 2015
Edmonton, AB, Canada, August 18–21, 2015
Proceedings

123

Editors
Andrzej Pelc
Université du Québec en Outaouais
Gatineau, QC
Canada

Alexander A. Schwarzmann
University of Connecticut
Storrs, CT
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21740-6 ISBN 978-3-319-21741-3 (eBook)
DOI 10.1007/978-3-319-21741-3

Library of Congress Control Number: 2015943848

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The International Symposium on Stabilization, Safety, and Security in Distributed
Systems (SSS) is an international forum for researchers and practitioners working on
the design and development of distributed systems that guarantee specific desired
properties despite adversity, or that are able to restore the desired properties following
adversarial perturbations in the computing medium building on the principles of
self-stabilization. Research in distributed computing and distributed systems continues
its vibrant development, marked by the importance of dynamic systems, such as
peer-to-peer networks, large-scale wireless sensor networks, mobile ad hoc networks,
mobile agent computing, opportunistic networks etc. Moreover, new applications such
as grid and web services, banking and e-commerce, e-voting, e-health and robotics,
aerospace and avionics, automotive, industrial process control, have joined the
expanded landscape of distributed systems. It is becoming increasingly important to
endow all such systems with built-in means for self-management, self-protection, and
self-repair.

This volume contains the papers presented at the 17th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, held August 18–21, 2015 in
Edmonton, Alberta, Canada.

This year the Program Committee was organized into several tracks reflecting most
topics related to the conference interests. The tracks are: Self-Stabilization,
Fault-tolerance and Dependability, Ad-hoc and Sensor Networks, Mobile Agents,
System Security in Distributed Computing, and Formal Methods and Distributed
Algorithms. We received 38 regular paper submissions. Each submission was reviewed
by at least three Program Committee members with the help of external reviewers. Out
of these 38 submissions, 16 papers were accepted for presentation at the symposium
and publication in the proceedings as regular papers. The proceedings also include
eight brief announcements.

Two regular papers received awards. The Best Paper Award was given to Colin
Cooper, Anissa Lamani, Giovanni Viglietta, Masafumi Yamashita, and Yukiko
Yamauchi for their paper “Constructing Self-Stabilizing Oscillators in Population
Protocols,” and the Best Student Paper Award was given to Lili Su (student) and Nitin
Vaidya for their paper “Reaching Approximate Byzantine Consensus with Multi-hop
Communication.”

The program also included three distinguished keynote lectures by Sergio Rajsbaum
(UNAM, Mexico), Roger Wattenhofer (ETH Zurich, Switzerland), and Philipp Woelfel
(University of Calgary, Canada).

On behalf of the Program Committee, we thank all authors who submitted their
work to SSS 2015. We gratefully acknowledge the substantial effort of the track chairs
and the Program Committee members invested in paper selection. Thanks are also due
to the external reviewers for their valuable and insightful comments. We also thank to
the Steering Committee members for their valuable advice and guidance and to the

Organizing Committee members for their work in ensuring a successful and pleasant
meeting.

Colocated with the symposium was the Summer School on Distributed Computing
and Cryptography organized by Shlomi Dolev.

SSS 2015 acknowledges with gratitude the support of the Faculty of Science,
University of Alberta, and EasyChair.org for the use of their system in handling
submissions, managing the review process, and helping compile these proceedings.

August 2015 Andrzej Pelc
Alexander A. Schwarzmann

VI Preface

Organization

General Co-Chairs

Ted Herman University of Iowa, USA
Jared Saia University of New Mexico, USA

Program Committee Co-Chairs

Andrzej Pelc Université du Québec en Outaouais, Canada
Alexander A. Schwarzmann University of Connecticut, USA

Program Committee

Self-Stabilization Track

Joffroy Beauquier,
Track Chair

Université Paris-Sud, France

Janna Burman Université Paris-Sud, France
Ajoy Datta University of Nevada Las Vegas, USA
Swan Dubois Université Paris 6, France
Sukumar Ghosh University of Iowa, USA
Shay Kutten Technion, Israel
Christian Scheideler University of Paderborn, Germany
Masafumi Yamashita Kyushu University, Japan

Fault-tolerance and Dependability Track

Nitin Vaidya, Track Chair University of Illinois at Urbana-Champaign, USA
Mostefaoui Achour Université de Nantes, France
James Aspnes Yale University, USA
Bernadette Charron-Bost Ecole Polytechnique, France
Xavier Defago Japan Advanced Institute of Science and Technology
Borzoo Bonakdarpour McMaster University, Canada
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Maurice Herlihy Brown University, USA
Vijay Garg University of Texas at Austin, USA
Rachid Guerraoui EPFL, Switzerland
Luis Rodrigues Universidade de Lisboa, Portugal
Srikanth Sastry Google, USA
Sebastien Tixeuil Université Pierre et Marie Curie, France
Jennifer L. Welch Texas A&M University, USA

Ad-hoc and Sensor Networks, Mobile Agents Track

Paola Flocchini,
Track Chair

University of Ottawa, Canada

Jeremie Chalopin CNRS/Aix-Marseille Université, France
Sandor Fekete Technische Universität, Braunschweig, Germany
Magns M. Halldorsson Reykjavik University, Iceland
Taisuke Izumi Nagoya Institute of Technology, Japan
Adrian Kosowski INRIA Bordeaux, France
Flaminia Luccio University of Venice, Italy
Russ Martin University of Liverpool, UK
Lata Narayanan Concordia University, Canada
Calvin Newport Georgetown University, USA
Koichi Wada Hosei University, Japan

System Security in Distributed Computing Track

Alexander Russell,
Track Chair

University of Connecticut, USA

Mohamed Gouda University of Texas, Austin, USA
Aggelos Kiayias University of Athens, Greece
Nicolas Nicolaou IMDEA Networks Institute, Spain
Ravi Sundaram Northeastern University, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Formal Methods and Distributed Algorithms Track

Helmut Veith, Track Chair Vienna University of Technology, Austria
Parosh Abdullah Uppsala University, Sweden
Borzoo Bonakdarpour McMaster University, Canada
Sagar Chaki Carnegie Mellon University, USA
Giorgio Delzanno University of Genoa, Italy
Cezara Dragoi INRIA, France
Pierre Ganty IMDEA Software Institute, Spain
Swen Jacobs Universitat des Saarlandes, Germany
Zachary Kincaid University of Toronto, Canada
Igor Konnov Vienna University of Technology, Austria
Ken McMillan Microsoft Research, USA
Stefan Merz INRIA Nancy/LORIA, France
Andreas Podelski Universität Freiburg, Germany
Lenore D. Zuck University of Illinois at Chicago, USA

Symposium Organization

Local Arrangements Chair

Ioanis Nikolaidis University of Alberta, Canada

VIII Organization

Finance Co-Chairs

Borzoo Bonakdarpour McMaster University, Canada
H. James Hoover University of Alberta, Canada

Publicity Chair

Maxwell Young Drexel University, USA

Steering Committee

Anish Arora Ohio State University, USA
Ajoy K. Datta University of Nevada, USA
Shlomi Dolev, Chair Ben-Gurion University of the Negev, Israel
Sukumar Ghosh University of Iowa, USA
Mohamed Gouda University of Texas at Austin, USA
Ted Herman University of Iowa, USA
Toshimitsu Masuzawa Osaka University, Japan
Vincent Villain Université de Picardie Jules Verne (UPJV), France

External Reviewers

Andrew Berns
Stéphane Devismes
Anaïs Durand
Martina Eikel
Chryssis Georgiou
Yoshiaki Katayama
Shuji Kijima
Andreas Koutsopoulos
Anissa Lamani
Hammurabi Mendes

Fukuhito Ooshita
Franck Petit
Maria Potop-Butucaru
Othmane Rezine
Alexander Setzer
Devan Sohier
Thim Strothmann
Giovanni Viglietta
Bingsheng Zhang

Organization IX

Keynote Lectures

Distributed Runtime Verification

where combinatorics, fault-tolerance and formal methods meet

Sergio Rajsbaum

Instituto de Matemáticas, Universidad Nacional Autónoma de México,
D.F. 04510, Mexico

Abstract of Keynote Lecture

Runtime verification. RV techniques are concerned with monitoring software
and hardware system executions. They are complementary, and sometimes more
versatile than conventional testing, and more practical than exhaustive formal
verification, such as model checking and theorem proving, as well as incomplete
solutions such as testing and debugging. There is an international conference,
RV dedicated to these techniques.

Distributed runtime verification. This talk gives an overview of distributed
runtime verification (DRV). Building a decentralized runtime monitor for a
distributed system is an especially difficult task since it involves designing a
distributed algorithm that coordinates the monitors in order for them to reason
consistently about the temporal behavior of the system. DRV techniques are less
developed; they involve designing a distributed algorithm that monitors another
distributed algorithm.

In an asynchronous system where processes may crash, it is impossible for the
monitors to agree on the order of events in the system, due to the impossibility of
solving consensus. Thus, it is unavoidable that monitors emit different opinions
about the validity of the computation, that nevertheless, should be consistent
with each other. Lower and upper bounds on the number of opinions that may
have to be emitted, can be derived, as a function of the specification ϕ that is
being monitored.

At the crossroads where distributed algorithms and formal methods meet. An
overview of the different types of techniques used in DRV is presented, which
range from formal methods techniques related to LTL and multi-valued logics,
on the one hand, to algorithmic techniques related to computing snapshots in an
efficient manner to reason about temporal properties of a distributed system, on
the other hand, and passing through combinatorial and topological techniques.
RV is an exemplary area for interdisciplinary research opportunities, given that
logic and algorithmic techniques converge, and few papers explore the difficulties
introduced when failures and asynchrony can occur in the system.

Supported by a UNAM-PAPIIT Grant.

XIV S. Rajsbaum

Acknowledgements. The results presented involve joint work with Borzoo
Bonakdarpour, Pierre Fraigniaud, Matthieu Roy, David Rosenblueth and
Corentin Travers. Some of them have been published in DISC’11, OPODIS’14,
RV’14, and Distributed Computing (2013).

A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels

Christian Decker and Roger Wattenhofer

Distributed Computing Group, ETH Zurich
{cdecker,wattenhofer}@ethz.ch

Abstract. Bitcoin does not scale, because its synchronization mecha-
nism, the blockchain, limits the maximum rate of transactions the net-
work can process. However, using off-blockchain transactions it is possible
to create long-lived channels over which an arbitrary number of transfers
can be processed locally between two users, without any burden to the
Bitcoin network. These channels may form a network of payment service
providers (PSP) and payments can be routed between any two users in
real time, without any confirmation delay. In this work we present a
protocol for duplex micropayment channels, which guarantee end-to-end
security and allow instant transfers, laying the foundation of the PSP
network.

Correctness Conditions for Randomized Shared
Memory Algorithms

Philipp Woelfel

Department of Computer Science, University of Calgary, Canada

Abstract of Keynote Lecture
In an asynchronous shared memory system, processes communicate by applying
operations on shared base objects. From an algorithm designer’s perspective
it is ideal if the operations on these objects are atomic, meaning that each
such operation happens instantaneously. However, objects provided by systems
are typically not truly atomic, and neither are objects implemented from base
objects. As a result, if multiple processes concurrently execute methods on such
objects, the set of all possible outcomes is difficult to predict.

For almost two decades, linearizability, defined by Herlihy and Wing [4], has
been the gold standard among correctness conditions for non-atomic objects.
It guarantees that any possible result that can arise from an interleaving of
processes using linearizable operations could arise if the operations were atomic.
Hence, the worst-case behaviour of algorithms can be analyzed under the assump-
tion that all operations are atomic, even when they are only linearizable. For
that reason, the terms linearizability and atomicity have often been used inter-
changeably (see for example [5]).

Golab, Higham, and Woelfel [2] observed that linearizable implementations
do not preserve the probability distribution of the possible results if we replace
atomic objects used in a randomized algorithm with implemented ones. An
adversary, which schedules process steps, can “stretch out” a method call that
was originally an atomic operation, and inspect the outcome of other processes
coin flips before allowing the method call to be completed. As a result, replacing
an atomic object with a linearizable one in a randomized algorithm amounts to
increasing the power of the adversary. In order to be able to employ the power of
randomization in shared memory algorithms, we need to devise new correctness
conditions that eliminate the deficiencies of linearizability. In this talk the state
of the art [1–3] of finding such correctness conditions will be presented.

References

1. Denysyuk, O., Woelfel, P.: Wait-freedom is harder than lock-freedom under strong
linearizability (2015, submitted)

2. Golab, W., Higham, L., Woelfel, P.: Linearizable implementations do not suffice
for randomized distributed computation. In: Proceedings of 43rd ACM STOC,
pp. 373–382 (2011)

3. Helmi, M., Higham, L., Woelfel, P.: Strongly linearizable implementations: possi-
bilities and impossibilities. In: Proceedings of 31st PODC, pp. 385–394 (2012)

Correctness Conditions for Randomized Shared Memory Algorithms XVII

4. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12, 463–492 (1990)

5. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)

Contents

Keynote Lecture

A Fast and Scalable Payment Network with Bitcoin Duplex
Micropayment Channels . 3

Christian Decker and Roger Wattenhofer

Regular Papers

Reaching Approximate Byzantine Consensus
with Multi-hop Communication . 21

Lili Su and Nitin Vaidya

The Complexity of Data Aggregation in Static and Dynamic Wireless
Sensor Networks. 36

Quentin Bramas and Sébastien Tixeuil

Enabling Minimal Dominating Set in Highly Dynamic
Distributed Systems . 51

Swan Dubois, Mohamed-Hamza Kaaouachi, and Franck Petit

The Match-Maker: Constant-Space Distributed Majority
via Random Walks . 67

Leszek Gąsieniec, David D. Hamilton, Russell Martin,
and Paul G. Spirakis

The k-Observer Problem on d-regular Graphs. 81
Benjamin Ries, Bernhard Schamberg, and Walter Unger

Functional Encryption for Cascade Automata (Extended Abstract) 94
Dan Brownstein, Shlomi Dolev, and Niv Gilboa

The Implication Problem of Computing Policies. 109
Rezwana Reaz, Muqeet Ali, Mohamed G. Gouda, Marijn J.H. Heule,
and Ehab S. Elmallah

Verifying Recurrence Properties in Self-stabilization by Checking
the Absence of Finite Counterexamples . 124

Oday Jubran, Eike Möhlmann, and Oliver Theel

Untangling Partial Agreement: Iterated x-consensus Simulations 139
Damien Imbs, Sergio Rajsbaum, and Adrián Valle

Automated Analysis of Impact of Scheduling on Performance
of Self-stabilizing Protocols . 156

Saba Aflaki, Borzoo Bonakdarpour, and Sébastien Tixeuil

Efficient and Decentralized Polling Protocol for General Social Networks. . . 171
Bao-Thien Hoang and Abdessamad Imine

Constructing Self-stabilizing Oscillators in Population Protocols 187
Colin Cooper, Anissa Lamani, Giovanni Viglietta, Masafumi Yamashita,
and Yukiko Yamauchi

Towards a Universal Approach for the Finite Departure Problem
in Overlay Networks . 201

Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann

Refinement of Probabilistic Stabilizing Programs
Using Genetic Algorithms . 217

Ling Zhu, Jingshu Chen, and Sandeep Kulkarni

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network. 233
Andrew Berns

Self-stabilizing Virtual Synchrony. 248
Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis,
and Elad M. Schiller

Brief Announcements

Two-Phase Non-repudiation Protocols . 267
Muqeet Ali, Rezwana Reaz, and Mohamed G. Gouda

Secure and Private Bidding Protocol for Incentive-Based Demand-Response
System of Smart Grid . 269

Mohammad Shahriar Rahman, Anirban Basu, and Shinsaku Kiyomoto

Brief Announcement: Meta-MapReduce A Technique for Reducing
Communication in MapReduce Computations . 272

Foto Afrati, Shlomi Dolev, Shantanu Sharma, and Jeffrey D. Ullman

Brief Announcement: Vehicle to Vehicle Authentication 275
Shlomi Dolev, Łukasz Krzywiecki, Nisha Panwar, and Michael Segal

Brief Announcement: Data Stabilization Enforcement via ACTIVE MONITORING

the Cloud Infrastructure Consistency Case . 278
Alexander Binun, Thierry Coupaye, Shlomi Dolev, Mohammed Kassi-Lahlou,
Marc Lacoste, Alex Palesandro, Aurélien Wailly, Reuven Yagel,
and Leonid Yankulin

XX Contents

Self-adjusting Skip Graphs. 280
Sukumar Ghosh and Sikder Rezwanul Huq

A Framework for Containing the Degree Growth in Topological
Self-stabilization . 282

Thamer Alsulaiman, Andrew Berns, and Sukumar Ghosh

Stabilizing Breach-Free Sensor Barriers. 284
Jorge A. Cobb and Chin-Tser Huang

Author Index . 287

Contents XXI

Keynote Lecture

A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels

Christian Decker(B) and Roger Wattenhofer

Distributed Computing Group, ETH Zürich, Zürich, Switzerland
{cdecker,wattenhofer}@ethz.ch

Abstract. Bitcoin does not scale, because its synchronization mecha-
nism, the blockchain, limits the maximum rate of transactions the net-
work can process. However, using off-blockchain transactions it is possible
to create long-lived channels over which an arbitrary number of transfers
can be processed locally between two users, without any burden to the
Bitcoin network. These channels may form a network of payment service
providers (PSPs). Payments can be routed between any two users in real
time, without any confirmation delay. In this work we present a protocol
for duplex micropayment channels, which guarantees end-to-end security
and allow instant transfers, laying the foundation of the PSP network.

1 Introduction

Credit card companies process a growing number of transactions, currently more
than 10,000 per second. In contrast, Bitcoin currently handles about one trans-
action per second. Bitcoin’s turnover is growing, and ultimately Bitcoin may
become a viable payment alternative. However, can Bitcoin scale to match the
throughput of credit cards, or even an envisioned world of millions of micropay-
ments per second?

The answer to this question is astonishingly negative. In order to verify
whether a new transaction is valid, and in order to bootstrap new peers, every
peer in the Bitcoin network stores every transaction ever. The size of an average
transaction is 500 bytes, so with 1 transaction per second, every Bitcoin peer
now needs almost 20 GB of additional storage each year. A turnover of 500
transactions per second would require 10 TB of additional disk space per year,
which is at the limit for a consumer.

A bigger problem is processing power. Checking the signatures of each trans-
action (mostly because of disk seek time) takes about 5 ms, so with current
machines we cannot hope to scale beyond 200 transactions per second.

Every node in the bitcoin network is informed about every transaction, mul-
tiple times because of the fault-tolerant gossip process. Assuming a common
end-user bandwidth of 10 Mbit/s, then the rate peers can receive transactions is
limited to approximately 1,000 transactions per second. Finally, while peers may
individually be able to receive and process up to 200 transactions per second,
the synchronization mechanism underlying Bitcoin is susceptible to latency, and
does not work with transaction rates above 100 transactions per second [6].
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-21741-3 1

4 C. Decker and R. Wattenhofer

In summary, Bitcoin in its current form will have a hard time scaling beyond
100 transactions per second, because of storage, processing, latency, and band-
width. The problem of Bitcoin is its reliance on a synchronized global state, the
replicated blockchain.

In this paper, we propose to reduce the reliance on the blockchain to further
decentralize the architecture of Bitcoin. We believe that the blockchain should
only be used to establish long lived point-to-point channels between parties over
which an arbitrary number of transfers can be performed. These transfers are
no longer Bitcoin transactions that are committed to the blockchain, instead
they rely on off-blockchain transactions that summarize any number of transfers
between two parties. The blockchain is only involved during the setup and the
closure of such a channel, while the vast majority of updates is never committed
to the blockchain.

Towards this goal we present a duplex micropayment channel proto-
col. Duplex micropayment channels are established between payment service
providers (PSPs). PSPs are the equivalent autonomous systems in the Internet,
routing transfers between end users, possibly over multiple hops, guaranteeing
end-to-end security and enabling real-time transfers. Unlike Bitcoin transactions,
which take minutes to be confirmed, transfers over our duplex micropayment
channels are final and can be accepted without further confirmations, enabling
real-time payments, and a truly scalable future Bitcoin.

2 Bitcoin

In this section we give a short overview on the basic Bitcoin protocol. Specifics
necessary for the duplex micropayment channel are discussed in detail later on.
Bitcoin is a distributed system running on a homogeneous peer-to-peer network.
Peers in the network collectively maintain a global state, known as the ledger,
which tracks bitcoins and their associations. The fundamental data unit tracked
by the network is the output, a tuple consisting of a value denominated in bitcoins
and an output script. The output script sets up a claiming condition that has
to be satisfied in order to claim the bitcoins associated with the output. The
most common case is that a signature matching an address is required. Hence,
the balance of an address is the sum of all outputs whose output scripts require
that address’ signature.

The only operation that may modify the global state is a transaction. A
transaction claims one or more previously unclaimed outputs and creates new
outputs. By providing inputs matching the output script, the creator of the
transaction proves that she is allowed to claim the output. A transaction may
redistribute the sum of values to new outputs and may set up arbitrary claiming
conditions for the outputs.

In order to apply a transaction to the replicas of the ledger, the transaction
is flooded in the network. When a node in the network receives a transaction the
node first verifies the signatures of the transaction and, if valid, the transaction
is applied to the local replica. For each input the script is executed with the

A Fast and Scalable Payment Network 5

input from the claiming transaction. If all scripts return true, the outputs were
not claimed by a previous transaction, and the sum of new output values is
smaller than the sum of claimed output values the transaction is valid. Due to
the distributed nature of the system, the order in which transactions are applied
is not identical across peers, and peers may disagree about the validity of a
transaction, e.g., if two or more transactions attempt to claim the same output,
the validity depends on the order they are seen by the peers.

Bitcoin eventually resolves inconsistencies by electing one peer as leader,
which may then impose its changes to other peers, by sending a block containing
all transactions it accepted since the last block. Each block contains a reference
to its predecessor, incrementally building the blockchain, a shared history of all
transactions that were applied. Transactions that are included in a block of the
blockchain are said to be committed or confirmed. Leader election happens only
rarely at random intervals; on expectation conflicts are resolved every 10 minutes.
This is on purpose in order to minimize collisions in which multiple contradicting
blocks are broadcast. However, it also introduces a long delay until a transaction
is confirmed.

3 Building Blocks

In the following the concepts and sub-protocols used in this work are described
in more detail.

3.1 Bitcoin Contracts

Off-blockchain transaction protocols are an example of cryptocurrency contracts.
Contracts allow business logic to be encoded in Bitcoin transactions which mutu-
ally guarantee that an agreed upon action is performed. The blockchain acts as
conflict mediator should a party fail to honor an agreement.

In this work we concentrate on off-blockchain transaction protocols. Further-
more we limit the description to two parties, A and B, i.e., the two ends of the
duplex micropayment channel. We denote the effective balances in the protocols
or sub-protocols as σA and σB. Since the balances may change we denote the
balances after update i as σA,i and σB,i.

The main concern with off-blockchain transactions is to ensure that no party
may renege on the agreement, possibly stealing funds from the other party.
While on-blockchain transactions ascertain that a transaction has been commit-
ted before starting the next trade, a contract may last a long time and all parties
have to ensure that they cannot be defrauded. A protocol is required in order
to achieve mutual assurance that the latest update to the agreement is the one
that will eventually be committed, and thus to invalidate any previous agree-
ments. That is, each update creates a new set of transactions that supersede the
previous update. At any time only one set of transactions may be released to
Bitcoin and will be confirmed.

6 C. Decker and R. Wattenhofer

The protocol has to be carefully designed to avoid any possibility for fraud.
Fraudulent behavior of a party may result in funds being stolen and funds being
inaccessible either temporarily or permanently. Our protocol guarantees that
funds are eventually refunded.

We assume that a suitable solution for transaction malleability [7] has been
implemented [1,15]. Since transactions refer to the outputs they spend by the
hash of the transaction which created the output, any change causing the hash
to change will unlink the transactions. The protocols in this work use chains of
transactions with multiple signatures. Since ECDSA signatures are inherently
malleable, anyone with the ability to re-sign a transaction may invalidate sub-
sequent transactions. If deterministic and non-malleable signature schemes are
used instead, all of our presented schemes can still be implemented securely,
although they will become more complex. Most of the solutions aim to nor-
malize transaction hashes by removing the signatures before hashing. This also
enables the creation of transactions that spend outputs created by a transaction
that is partially signed.

3.2 Timelocks and Invalidation

Bitcoin provides a mechanism to makes transactions invalid until some time in
the future: timelocks. In addition to the validity conditions mentioned in the
Section 2, a transaction may specify a locktime: the earliest time, expressed in
either a Unix timestamp or a blockchain height, at which it may be included in
a block and therefore be confirmed.

Peers in the network discard transactions with future timelocks. Any block
including the transaction, that appears at a lower height or before the specified
time, is deemed invalid. Timelocks can be used to replace or supersede transac-
tions: a transaction with timelock T can be superseded by another transaction,
spending some of the same outputs, with timelock T ′ < T and ensuring that
the superseding transaction is broadcast to the network before the superseded
transaction becomes valid.

Timelocks are transitive, i.e., a transaction spending an output created by
a timelocked transaction will only be valid once the timelocked transaction is
committed. Hence a transaction spending timelocked outputs has an effective
timelock matching the maximum timelock of any transaction it depends on.

In order to update the contract, e.g., to increase the value one party will
receive in the end, it is necessary to invalidate or replace transactions during the
execution, ensuring that only the latest update is valid. Throughout the protocol
two invalidation techniques are used:

– Replace by timelock : both parties hold fully signed transactions, with differ-
ent bitcoin allocations, of which only one may be committed. All transac-
tions have a timelock in the future. Only the transaction with the smallest
timelock will eventually be committed, i.e., it is released before any other
transaction becomes valid.

A Fast and Scalable Payment Network 7

σA

σA + σB

SetupσB

σA

σBRefund

T = 100

(a) Final setup structure

A B

o

S��, RA�

S�B , RAB

SAB

SAB

(b) Protocol sequence diagram

Fig. 1. Setup creating a multisig output of value σA + σB from two outputs of value
σA and σB . The refund transaction is timelocked and only valid after T=100. The
sequence of transaction exchanges detailed on the right ensures the security of the
setup. Subscripts represent the signatures by A and B or a � if a signature is missing.

– Replace by incentive: one party has multiple fully signed transactions, with
different values transferred to it, of which only one may be committed. The
party will commit the transaction transferring the highest amount to it.

In order to guarantee that replace by timelock is secure the difference between
timelocks that supersede each other has to be at least ΔT . Due to the confir-
mation rate of Bitcoin we chose ΔT to be 1 hour. To simplify the notation we
express timelocks as multiples of ΔT and use offsets such that the protocol starts
at T = 0.

3.3 Shared Accounts

When an output can be claimed by providing a single signature it is called a
singlesig output. In contrast the script of multisig outputs specifies a set of n
public keys and requires m-of-n (with m ≤ n) valid signatures from distinct
matching public keys from that set in order to be valid.

In the 2-of-2 case two parties, A and B, have to sign transactions spending
the output. This is akin to a shared account where any transaction spending
the common funds must be signed off by both parties. If both A and B have
supplied σA respectively σB bitcoins to a multisig output, the output’s value is
σA +σB . Of this total value we say that A effectively owns σA and B effectively
owns σB, despite both signatures being required to spend the output.

Once a multisig output has been created and committed to the blockchain,
A and B are guaranteed that the funds of the output may not be spent by either
of the parties without both agreeing. As such the creation of a multisignature
output is often used in order to setup a contract.

In order to securely create a shared account (multisig output) two trans-
actions are needed: a setup transaction and a refund transaction. The setup
transaction claims some funds from singlesig outputs owned by A and B, and
creates the multisig output. The refund transaction ensures that the funds are

8 C. Decker and R. Wattenhofer

eventually refunded should one party disappear and not provide the necessary
signatures to spend the multisig output.

Figure 1 shows the setup of a shared account coordinated by A. First B sends
a list o of outputs it desires to add to the shared account, for a total value of
σB bitcoins. A creates an unsigned setup transaction that claims both o and its
own outputs, with a value of σA bitcoins, and creates a 2-of-2 multisig output
requiring signatures from both A and B to be spent. In addition it creates a
refund transaction that spends the newly created multisig output and transfers
σA to a singlesig output requiring A’s signature and σB to a singlesig output
requiring B’s signature. The refund transaction has a timelock some time in the
future, making it invalid until that time.

The protocol sequence diagram in Figure 1 shows the order in which messages
are exchanged. A adds its signature to the refund transaction and sends both the
refund transaction and the unsigned setup transaction to B. Upon receiving the
transactions, B verifies that the refund transaction eventually returns its funds
and adds its signature to both transactions. B now has a valid refund transaction
and a partially signed setup transaction. Both transactions are returned to A
which adds the missing signature to the setup transaction, making all transac-
tions fully signed. The setup transaction is then released to the Bitcoin network
and committed to the blockchain. This locks the funds until the refund returns
them to the respective owners or until both parties agree on a different division
of the funds, signing another transaction that supersedes the refund.

3.4 Simple Micropayment Channels

Simple micropayment channels, first introduced by Hearn and Spilman [9], are
contracts that can be established between two parties, a sender and a receiver.
Once a micropayment channel is established, the sender can send incremental
micropayments to the receiver. The channel has a limit determined by the sender
upon the channel’s creation. Once the limit is consumed, i.e., transferred entirely
to the receiver, the channel is closed.

The micropayment channel can be created by setting up a shared account,
as described in the previous section, between the sender and the receiver. The
sender A funds the channel with σA, whereas the receiver does not contribute,
i.e., σB is 0. We denote σA,i and σB,i to be the owned amounts after the ith

update by A and B respectively.
In order to perform an incremental micropayment of value δ at time i + 1,

A creates a micropayment update transaction spending the multisig output and
transferring σA,i+1 = σA,i − δ and σB,i+1 = σB,i + δ to A and B respectively.

The update transaction is signed by A and sent to the receiver B. At this
point the receiver could add its own signature and broadcast it to the Bitcoin
network, committing it to the blockchain. However, normally the transaction
is not broadcast. Instead the receiver accepts new update transactions, which
transfer a larger amount to it. Only one of the update transactions may be
committed to the blockchain since they all spend the same output. The receiver

A Fast and Scalable Payment Network 9

σA

σA,i−1 − δ

σB,i−1 + δUpdate i

(a) Micropayment channel structure.

A B

TA�{δ = 0}

TA�{δ = 1}

TA�{δ = 2}

TA�{δ = 3}
TAB{δ = 3}

(b) Payment channel sequence.

Fig. 2. The structure of the payment channel consists of a single transaction splitting
the value of a multisig output among the participants. In this case A funded the channel
and may send to B and δ is the sum of increments.

is incentivized to only use the latest update as it is the one paying out the
maximum amount.

Eventually (i) all the initial funds σA,0 are transferred to B, (ii) both parties
agree on closing the channel, or (iii) the refund time from the setup is approach-
ing, triggering B to close the channel. To close the channel, B broadcasts the
last update transaction which supersedes the refund transaction.

Note that such a micropayment channel is intrinsically unidirectional, i.e.,
the amount that the receiver is assigned in update transactions must be strictly
increasing, otherwise the receiver might release an earlier update, which pays
out a higher amount.

3.5 Atomic Multiparty Opt-In

In the shared account setup protocol, great care had to be taken about the
order in which signatures were added, to avoid situations where funds could
be locked in indefinitely. Atomic multiparty opt-in is an off-blockchain protocol
that enables multiple parties to negotiate the creation of a complex structure
of transactions, built on top of existing multisig outputs, without having to
worry about the order in which the signatures are added. The structure can be
negotiated openly since parties activate, or opt in, only after it is secure.

The atomic multiparty opt-in protocol uses an opt-in transaction O which
claims a multisig output and creates a new multisig output, called the root
output. Subsequent transactions spend the root output and thus are valid only if
the opt-in transaction is valid, i.e., when all parties sign the opt-in transaction.
This also obviates any refund addresses attached to intermediate outputs, which
would be needed if each subsequent transaction were negotiated independently.

One party creates an unsigned opt-in transaction which spends a multisig
output, requiring signatures from all participants, and creates one or more root
outputs. The participants then collaborate to create the updated version of the
contract, openly sharing any necessary transactions and signatures. As soon

10 C. Decker and R. Wattenhofer

T=100

T=99

O

T=100

A B

O��

Negotiate

O�B

OAB

Fig. 3. Opt-in structure to update an existing contract. The version on top is super-
seded by the lower version. Transactions attached to the root outputs on the right are
negotiated openly, with the opt-in transaction determining validity.

as all parties are content with the contract they sign the opt-in transaction,
making it valid. The fully signed opt-in transaction is then exchanged among all
participants to ensure that all parties can enforce the decision.

The atomic multiparty opt-in can be used in two ways: (i) to initially set up
a contract starting from a multisig output owned by the participants, or (ii) to
update an existing contract by building a structure that spends the root output
of an outdated contract. In the latter case, depicted in Figure 3, it is necessary
to enforce that only the new version is valid by using a smaller timelock.

The protocol is off-blockchain as its transactions are only committed to the
blockchain if one party defects. Notice that the party signing last may unilater-
ally decide whether to sign and commit or not. It is therefore advisable to use
the multiparty opt-in exclusively in idempotent updates, i.e., when the value
that is paid out to the parties does not change depending on whether or not the
opt-in is committed.

3.6 Hashed Timelock Contracts (HTLC)

Hashed Timelock Contracts, or HTLCs, are contracts that require the recipient
of a payment to reveal a secret in order to claim an output before it is refunded
to the sender. The ability of the recipient to claim the output is therefore con-
ditioned on its ability to reveal the secret.

This can be used to enable end-to-end security in a multi-hop scenario, in
which a single payment is forwarded through multiple parties. In this scenario,
B requests a payment from A and specifies the hash h(S) of a secret S, which
will be used to unlock the payment. A creates an HTLC output from a shared
account with the next hop on the path to B. The HTLC output sets up the
claiming condition as shown in Figure 4: either the next hop provides S′ s.t.
h(S) = h(S′) and a valid signature from both parties, or both parties must sign
the transaction spending the HTLC output. This procedure is repeated by each
node on the path until B is reached. B then releases S to its previous node,
claiming the HTLC output, and giving the previous node the ability to claim
the previous HTLC output. This is repeated until the secret is revealed to A,
thus completing the transfer.

A Fast and Scalable Payment Network 11

Fig. 4. HTLC output script and structure. The first branch is a normal multisig script
while the second branch requires a secret and both signatures.

For each hop there is a sender HA and a receiver HB and they share a mul-
tisig output that is used for the transfer. The HTLC output is created by an
HTLC setup transaction, claiming the multisig output. During the execution of
the protocol up to three transactions are created that may claim the HTLC
output: a refund transaction, a settlement transaction, and a forfeiture trans-
action. The refund transaction is identical to the one from the shared account
setup and ensures that HA is refunded should HB not cooperate. The settlement
transaction performs the transfer from HA to HB if the latter reveals the secret.
Finally, the forfeiture transaction is used to guarantee that HA is refunded even
if the secret is eventually revealed. The last scenario is used to remove the HTLC
output before the refund becomes valid, i.e., when both parties agree to free the
funds locked in the HTLC output without performing the transfer.

The sender creates the HTLC setup transaction and all three transactions
spending the HTLC output and signs refund transaction, forfeiture transaction
and settlement transaction. The settlement transaction uses the else-branch of
the script, which uses a separate HTLC signing key for the sender. This is nec-
essary since otherwise HB could simply use the same signature in the if -branch,
since signatures are valid for both branches. The partially signed refund, forfeiture
and settlement transactions are then sent to the receiver which adds its signature
to the refund and sends it back. The sender signs the HTLC setup transaction and
sends it to the receiver, which may attempt to claim the HTLC output unilaterally
by providing its signature and the secret to the settlement transaction.

The lifetime of the HTLC output is limited by the refund transaction’s time-
lock, and should HB want to claim it, it must release the settlement transaction
before the refund is valid. While this protocol works when committing transac-
tions directly to the blockchain, its main use is in off-blockchain transactions.

In order to be usable in off-blockchain transactions, the timelock of the refund
must be later than those in refund transactions attached to the root outputs, i.e.,
it must be guaranteed that HB indeed has time to claim the HTLC output on
the blockchain before the refund transaction becomes valid. Should the receiver
disclose the secret S to the sender, then both parties can agree on removing the
HTLC output and instead add its value to another output that directly transfers

12 C. Decker and R. Wattenhofer

to the receiver. On the other hand, should HB not be able to disclose S then
it may decide to forfeit the HTLC output. In this case both parties sign the
forfeiture transaction with no timelock, spending the HTLC output back to the
sender. Once the sender has a fully signed forfeiture transaction, the receiver
may not claim the HTLC output anymore since the forfeiture transaction is
valid before the settlement transaction.

The HTLC output can be attached to an existing micropayment channel, the
sender would simply send a micropayment update transaction which includes the
HTLC output of value δ.

4 Duplex Micropayment Channel

The secure setup, the micropayment channel and the hashed timelock contract
alone enable the use multi-hop micropayments with end-to-end security. However
setting up two independent micropayment channels between two peers, one for
each direction between, is fairly limited. Each channel is unidirectional and is
limited by the amount of bitcoins locked in during the setup by the sender. Once
the limit has been consumed, the channel has to be torn down and a new one
created, incurring time delay and cost of committing several transactions to the
blockchain.

While this cannot be avoided on connections at the edge of the network in
which a majority of payments flows in one direction, connections in which pay-
ments flow in both directions may take advantage from resetting their channels
once the limit is consumed. For example, consider the channels CAB from A
to B and CBA in the opposite direction, each initially funded with 1 coin. The
limit of CAB may have been consumed, and CBA has a residual of 0.5 bitcoins.
No further transfer from A to B can be performed despite A having a non-zero
balance on the CBA channel, i.e., when considering both channels the balances
are σA = 0.5 and σB = 1.5. In order to enable future transfers from A to B both
parties could agree to reset the channel, i.e., new channels C ′

AB and C ′
BA are

created and funded with 0.5 and 1.5 bitcoins respectively. Notice that in both
the depleted case and the reset case A and B own the same amount of bitcoins,
but the channel their share is bound to has changed.

In the following we describe the duplex micropayment channel protocol that
enables atomically resetting a set of channels. By doing so we enable the initial
funds to be transferred over the duplex channel an arbitrary number of times,
and hence reduce the necessity to commit to the blockchain.

A duplex micropayment channel (DMC) is established between two parties
A and B. The protocol establishes pairs of simple micropayment channels, one
for each direction between the two parties. In order to reset the channels the
protocol generates a sequence of pairs of unidirectional micropayment channels.
We use CAB,j and CBA,j to indicate the simple micropayment channels in the
jth pair of channels. Furthermore we define σX,j,i to be the amount that the
pair of micropayment channels would transfer to party X ∈ {A,B} if they were
committed to the blockchain after update i in the pair j.

A Fast and Scalable Payment Network 13

T=100

T=99

T=100 T=100

T=100 T=100

T=99 T=100

T=99

Invalidation TreeSetup Micropayment
Channels

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸

Fig. 5. A full example of the duplex micropayment channel with n = 1 and d = 3,
allowing up to 4 resets

4.1 Structure

The fundamental structure of the DMC is the invalidation tree. The invalidation
tree is a tree in which multisig outputs are the nodes of the tree, connected
by transactions as edges. Each transaction in the tree is given a timelock, such
that there is a unique minimal timelock among all sibling transactions, i.e.,
transactions sharing the same parent output. By the replace by timelock rule,
only one path from the root of the tree is therefore first valid, i.e., the path with
the minimal timelocks for each level in the tree. Hence as long as all timelocks are
in the future, we can invalidate an entire subtree, by adding a new transaction
spending that subtree’s root output, with a smaller timelock than all existing
transactions. We define two times Tmax and Tmin in terms of locktime. All
refund transactions are set to have locktime Tmax, forcing parties to commit the
protocol’s state to the blockchain before that time in order to avoid triggering the
refunds. Tmin is the minimum timelock that is going to be used in the invalidation
tree to replace other transactions. The time from the channel creation to Tmin

is referred to as the channel’s lifetime.
The number of replacement by timelock is limited by n = (Tmax−Tmin)/ΔT .

Therefore each multisig output in the invalidation tree may have at most n out-
going transactions which replace each other. Furthermore, due to the transitivity
of timelocks, the full range may not be available as adding a timelock that is
lower than one of its parent transactions has no effect: all transactions with a
lower timelock become valid simultaneously, resulting in a race condition. For
simplicity we limit the depth of the tree to d. This limits the number of trans-
actions that have to be committed to the blockchain should one party defect.

The depth d, the number of replacements in the tree n and time until funds
are refunded Tmax are parameters to the duplex micropayment channel and are

14 C. Decker and R. Wattenhofer

negotiated before the channel is created. Tmin can be derived from Tmax, n and
ΔT , which is a system parameter.

Furthermore, knowing n and d allows the enumeration of all branches in
the tree. A branch can be represented as a string of length n, the alphabet
{Tmin, ..., Tmax} and the elements are increasing. Thus every branch has a unique
successor that directly invalidates it. This facilitates the negotiation of which
branch to select next.

The internal nodes of the invalidation tree are individual multisig outputs,
while the leafs of the tree are pairs of multisig outputs. On the leaf outputs a
pair of simple micropayment channels is built, one transferring from A to B and
the other one in the opposite direction.

Multi-hop payment flows result in HTLC outputs being attached to the sim-
ple micropayment channel matching the direction of the flow. The timelock of
the transactions spending the HTLC outputs are larger than Tmax. This ensures
that the micropayment channel creating the HTLC have been committed to the
blockchain and replace by timelock can be performed. The period between Tmax

and the last HTLC output being claimed is referred to as conflict resolution phase.

4.2 Setup

The setup initiates the micropayment channel between two parties by locking in
the initial funds into a shared account. The shared account creation subprotocol
from Section 3.3 is used to create the multisig output. Both parties exchange a
set of singlesig outputs they would like to contribute to the channel and create
the setup transaction. The initial funds from A and B are denoted as σA,0,0 and
σB,0,0 since there were no resets and no updates yet. The refund transaction
has a timelock of Tmax. It transfers the funds back to their owners if no other
agreement is committed first. Since the setup transaction is committed in the
blockchain it is safe to build upon the multisig output. Committing the trans-
action may take several minutes and the channel is not operational until it is
committed.

4.3 Reset

The reset process takes care of building a new branch of the invalidation tree and
setting up the micropayment channels. This includes the first branch starting
from the shared account the setup created. A reset is triggered after the initial
setup, as well as when the limit of one of the simple micropayment channels
is depleted. Assuming that the limit of A’s channel CAB,j is consumed and
therefore requires a reset. A is said to coordinate the reset: it will no longer
perform updates to its channel CAB,j and send a reset request to the B. Upon
receiving the reset request, B stops performing updates to its channel CBA,j

and sends a reset response. The reset response signals to A that B is willing to
perform the reset and that no further updates to CBA,j will be performed and
that the value transferred by the two simple micropayment channels σA,j,i and
σB,j,i will not change.

A Fast and Scalable Payment Network 15

Upon receiving the reset response, A can proceed to build the next branch
ending in two multisig outputs. The values of the two multisig outputs are
σA,j+1,0 = σA,j,i and σB,j+1,0 = σB,j,i, i.e., each multisig output is virtually
owned by one party and its value represents the share the owner would get if
the current branch were to be committed. On top of the leaf multisig outputs
two new simple micropayment channels CAB,j+1 and CBA,j+1 are built with
respective refund transactions. The branch is negotiated as an instance of the
atomic multiparty opt-in protocol, with the transaction spending the existing
output from the previous branch as opt-in transaction and the remainder of the
branch as subsequent structure. A may sign the entire branch where necessary,
except the opt-in transaction, which may only be signed once B has signed the
refund transactions for the simple micropayment channels, therefore assuring
that funds will not be locked in indefinitely.

The atomic multiparty opt-in ensures that either both agree on switching
to the new branch or the old branch remains active. In both cases the same
amounts are transferred to the two parties and updates to the micropayment
channels CAB,j+1 and CBA,j+1 resume only once both parties have a fully signed
opt-in transaction.

4.4 Teardown and Commit

Eventually the duplex micropayment channel needs to be closed and the sum-
mary of the channel committed to the blockchain. The closure of the duplex
micropayment channel can be triggered by agreement or by the end to the chan-
nel’s lifetime. Either both parties agree on the summary, or they disagree and
do not collaborate. In the first case they may simply create a teardown transac-
tion, which transfers σA,j,i to A and σB,j,i to B, assuming update i is the latest
update in the current round j. The teardown transaction is not timelocked and
directly spends the multisig output created in the setup process, hence it can
be committed to the blockchain immediately. The process simply involves one
party creating the teardown transaction, both parties signing it and committing
it to the blockchain. HTLC outputs which have not been removed by agreement
can be copied over to the summary transaction such that the same timelocks
and resolution rules apply.

In the case parties do not agree on the summary of the channel, they still
have the latest branch of the invalidation tree that guarantees eventual conflict
resolution. Before the refunds become valid the branch is submitted to the Bit-
coin network and will be committed to the blockchain. Unlike the commit using
a summary transaction, which requires just a single transaction to be commit-
ted, the resolution by tree branch requires up to d + 2 transactions, hence we
limit on the depth of the tree.

4.5 Refresh

In the case two parties have an existing duplex micropayment channel its lifetime
may be extended using the refresh process. Analogously to the reset sub-protocol,

16 C. Decker and R. Wattenhofer

both parties stop updating the existing duplex micropayment channel by
exchanging refresh request and refresh response messages, thus flushing pending
changes. The parties agree on new parameters Tmax and Tmin determining the
new channel’s lifetime. One party creates an opt-in transaction creating a new
root output and a refund transaction with a timelock of Tmax transferring σA,j,i

and σB,j,i to their respective owners. Both parties then perform the atomic mul-
tiparty opt-in protocol using the opt-in transaction and the refund as subsequent
structure. The opt-in transaction is then published on the Bitcoin network and
committed to the blockchain, invalidating the entire invalidation tree built on
the old root output.

Special care has to be taken with HTLC outputs as these may time out
during the new channel’s lifetime. The HTLC outputs are copied over to the
opt-in transaction, and their resolution is handled on the blockchain.

The refreshed duplex micropayment channel is operational immediately, since
the opt-in transaction is guaranteed to be eventually confirmed, i.e., no party
may double-spend the old root output.

In addition funds can be removed and added during the refresh process.
Funds can be removed adding singlesig outputs to the opt-in transaction that
pay out part of a party’s balance to one of its addresses, that party’s share of
the channel is then reduced accordingly. In order to add funds to the channel,
a multisig output owned by both parties has to be created ahead of time using
the protocol in Section 3.3 so that during the refresh the outputs are committed
to the blockchain. This multisig output is then also claimed by the opt-in.

5 Routing Payments

A channel between two payment service providers (PSPs) can be established
once; it has a lifetime of hundreds of days before it is either torn down or
refreshed. The setup requires a single transaction that is committed to the
blockchain locking in the initial funds, while the teardown requires a single
transaction committed to the blockchain. In the case the two parties do not
collaborate to close the channel, at most d transactions from the invalidation
tree and two micropayment updates have to be committed to the blockchain.
The amount of bitcoins transferred is only limited by the number of resets and
the initial funds parties contribute to the channel. A channel with n = 46 and
d = 11 results in 1.48 · 1011 resets. If such a channel is initially funded with 1
bitcoin, the channel can be used to transfer a total of 148 billion bitcoins, an
equivalent of 35.3 trillion USD at today’s exchange rate, twice the US national
debt. Notice that both n and d can be chosen arbitrarily, further extending the
amount transferable by a channel.

By adding HTLC outputs to the micropayment channels, instead of sending
the increment directly, the payment can be end-to-end secured so that the recip-
ient of a payment has to confirm reception. The final recipient communicates
the secret out of band to the sender of the payment. Each hop along the route
from the sender to the recipient will create HTLC outputs transferring the funds

A Fast and Scalable Payment Network 17

only upon receiving the secret, which is only released once the final recipient is
assured that the total is transferred.

6 Related Work

Bitcoin was introduced by Nakamoto in 2008 [11] and has since enjoyed a rapid
growth both in value as in transaction volume. However, the design of Bit-
coin intrinsically limits the rate it can process transactions. Barber et al. [4]
identified problems with data retention, which later were adopted to create the
simplified payment verification, using filtering nodes for mobile clients. An anal-
ysis of the information propagation [6] showed that the probability of blockchain
forks rapidly increases with increasing transaction rates and the eventually the
network is no longer able to resolve conflicts. Eyal et al. [8] further show how
miners may use the propagation delay in the network as a force multiplier.

The GHOST protocol [14] allows an increase of the block generation rate by
reusing blocks that are not in the main blockchain. Although mainly aimed at
enabling innovation, Back et al. [2] propose dividing the single Bitcoin network
into smaller networks that can operate independently. Discoin and PeerCensus [5]
decouple the confirmation of transactions from the block generation and guaran-
tee strong consistency. The slow confirmation also prevents a number of real-life
uses of Bitcoin, as fast payment can be double-spent and not be detected for
some time [3,10,13]. Our proposal enables secure end-to-end payments that do
not require being confirmation in the blockchain, hence enabling true micropay-
ment that clear in real-time.

Simple micropayment channels were introduced by Hearn and Spilman [9].
Finally the Lightning Network by Poon and Dryja [12], also creates a duplex
micropayment channel. However it requires exchanging keying material for each
update in the channels, which results in either massive storage or computational
requirements in order to invalidate previous transactions. In our proposal the two
channels operate independently allowing fully asynchronous operation between
resets. Lightning renews the whole transaction structure on every update, requir-
ing synchronous updates and high bandwidth consumption. Furthermore the
Lightning protocol cannot be decomposed into smaller units that can be ana-
lyzed in isolation, making the security analysis difficult and resulting in complex
implementations.

7 Conclusion

Duplex micropayment channels solve a multitude of problems. For one they
enable near-infinite scalability for digital payments based on Bitcoin. Bitcoin
transactions are no longer used directly to transfer bitcoins from a sender to
a recipient, instead they are used to setup micropayment channels and handle
conflict resolution. The actual transfers are now handled at a higher level through
a network of payment service providers. The payments are end-to-end secure
thanks to the use of hashed timelock contracts, ensuring transfers between hops

18 C. Decker and R. Wattenhofer

are only performed if the intended recipient receives its payment. Unlike Bitcoin,
which requires a long confirmation process, transfers on a network of duplex
micropayment channels are secure from being reverted. Thus a payment network
using duplex micropayment channels is a far better fit for real-time scenarios,
e.g., buying a coffee, since transfers can be performed at the same speed messages
are passed in the Internet. With a network of payment service providers, Bitcoin
can support true micropayments with minimal fees at unprecedented scale, and
where the transfers clear in real-time.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: How to deal
with malleability of bitcoin transactions. arXiv preprint arXiv:1312.3230 (2013)

2. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A.,
Poelstra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged
sidechains (2014)

3. Bamert, T., Decker, C., Elsen, L., Welten, S., Wattenhofer, R.: Have a snack, pay
with bitcoin. In: IEEE International Conference on Peer-to-Peer Computing (P2P),
Trento, Italy (2013)

4. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

5. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. arXiv
preprint arXiv:1412.7935 (2014)

6. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network.
In: IEEE International Conference on Peer-to-Peer Computing (P2P), Trento,
Italy, September 2013

7. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713,
pp. 313–326. Springer, Heidelberg (2014)

8. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. arXiv
preprint arXiv:1311.0243 (2013)

9. Hearn, M., Spilman, J.: Bitcoin contracts. https://en.bitcoin.it/wiki/Contracts
(accessed: May 2015)

10. Karame, G.O., Androulaki, E., Capkun, S.: Two bitcoins at the price of one?
double-spending attacks on fast payments in bitcoin. In: Proc. of Conference on
Computer and Communication Security (2012)

11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (accessed: March 26, 2014)

12. Poon, J., Dryja, T.: The bitcoin lightning network
13. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009 (2014)
14. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing
15. Wuille, P.: BIP 0062: Dealing with Malleability (2014). https://github.com/

bitcoin/bips (accessed: March 10th, 2014)

http://arxiv.org/abs/1312.3230
http://arxiv.org/abs/1412.7935
http://arxiv.org/abs/1311.0243
https://en.bitcoin.it/wiki/Contracts
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1402.2009
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips

Regular Papers

Reaching Approximate Byzantine Consensus
with Multi-hop Communication

Lili Su(B) and Nitin Vaidya

Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, USA

{lilisu3,nhv}@illinois.edu

Abstract. We address the problem of reaching approximate consensus
in the presence of Byzantine faults in a synchronous system. We analyze
iterative algorithms that maintain minimal state, and impose the con-
straint that in each iteration the nodes may only communicate with other
nodes that are up to l hops away. For a given l, we prove a necessary
and sufficient condition on the network structure for the existence of cor-
rect iterative algorithms that achieve approximate Byzantine consensus.
We prove sufficiency of the condition by designing a correct algorithm,
which uses a trim function based on a minimal messages cover property
introduced in this paper. Our necessary and sufficient condition gener-
alizes the tight condition identified in prior work for l = 1. For l ≥ l∗,
where l∗ is the length of a longest cycle-free path in the given network,
our condition is equivalent to the necessary and sufficient conditions for
exact consensus in undirected and directed networks both.

Keywords: Approximate byzantine consensus · Iterative algorithm ·
Synchronous system · Incomplete network · Bounded length communi-
cation paths

1 Introduction

The Byzantine fault-tolerance problem was first introduced in [9] by Pease,
Shostak and Lamport in 1980, and is one of the most fundamental problems
in distributed computing. Fisher, Lynch and Paterson [7] showed that the fault-
tolerant consensus problem cannot be solved in asynchronous system even in the
presence of only one crash failure. As one way to circumvent this impossibility
result, the notion of approximate Byzantine consensus was introduced by Dolev
et al. in [4] by requiring that the agents agree with each other only approximately.
The notion of approximate consensus is of interest in synchronous system as well
[4,8,14]. The discussion in this paper applies to synchronous system.

This research is supported in part by National Science Foundation awards NSF
1329681 and 1421918. Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily reflect the views of
the funding agencies or the U.S. government.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 21–35, 2015.
DOI: 10.1007/978-3-319-21741-3 2

22 L. Su and N. Vaidya

Let n be the total number of nodes and f be the upper bound on the number
of faulty nodes in the system. In networks with bidirectional links, approximate
consensus is achievable if and only if the network node-connectivity is at least
2f + 1 and less than one third of nodes can be faulty, i.e., n ≥ 3f + 1 [6]. Relax-
ing the bidirectional communication assumption, a tight condition for directed
graphs was presented in [11]. There has been increasing interest in designing iter-
ative variants of approximate Byzantine consensus where only local knowledge
of the network topology (and local communication) is needed, and agents carry
minimal state across iterations [2,5,8,13,14]. Fekete [5] studied the convergence
rate of approximate consensus algorithms over complete networks. [8,14] con-
sidered arbitrary directed networks and derived tight (necessary and sufficient)
topological conditions on the communication network. While [14] investigated
the Byzantine fault model, [8] considered a restricted fault model in which the
faulty nodes are restricted to sending identical messages to their neighbors.

To the best of our knowledge, no attempts have been made on investigating
the impact of each node’s communication range on the network condition for
a correct iterative approximate consensus algorithm to exist. In this paper, we
model the network as a directed graph, and assume that in each iteration, any
node may only communicate with nodes that are up to l hops away, by forwarding
messages through intermediate nodes. The directed graph model is motivated
by the presence of directed links in wireless networks. Our goal is to prove a
necessary and sufficient condition on the network structure for the existence of
correct iterative algorithms that achieve approximate Byzantine consensus for
a given l with minimal memory (i.e., minimal amount of state carried across
iterations).

Contributions: Our main contribution is to prove a necessary and sufficient
condition on the network structure for a given l. Our sufficiency proof is shown
by constructing a simple iterative algorithm, whose trim function is defined based
on a minimal messages cover property that we introduce in this paper. The tight
condition we found is consistent with the tight condition identified in [14] when
only local communication is allowed, i.e., l = 1. For l ≥ l∗, where l∗ is the length
of a longest cycle-free path in the given network, our condition is equivalent to
the necessary and sufficient condition for consensus in undirected networks [6]
as well as exact consensus in directed networks [12].

Organization: The rest of the paper is organized as follows. Section 2 presents
our models and the structure of the iterative algorithms considered in our work.
Our necessary condition is presented in Section 3, and its sufficiency is proved
constructively in Section 4. The correspondence between our condition and the
results in [4,6,12] is discussed in Section 5. Section 6 discusses possible relax-
ations of our fault model and concludes the paper.

Reaching Approximate Byzantine Consensus with Multi-hop Communication 23

2 System Model and Structure of Iterative Algorithms

Communication model: The system is assumed to be synchronous. The com-
munication network is modeled as a simple directed graph G. Define V(G) =
{1, . . . , n} as the set of n nodes, where n ≥ 2, and E(G) as the set of directed
edges between nodes in V(G). Node i can send messages to node j if and only
if there exists an i, j–path of length at most l in G, where l is a positive inte-
ger. In addition, we assume each node can send messages to itself as well, i.e.,
(i, i) ∈ E(G) for all i ∈ V(G). For each node i, let N l−

i be the set of nodes that
can reach node i via at most l hops. Similarly, denote the set of nodes that are
reachable from node i via at most l hops by N l+

i . Due to the existence of self-
loops, i ∈ N l−

i and i ∈ N l+
i . When l = 1, we write N1−

i and N1+
i as N−

i and N+
i ,

respectively, for simplicity. Each node i is assumed to be aware of the network
topology within its l-hop neighborhood (i.e., node i knows all the paths of length
at most l from the nodes in N l−

i , and all the paths of length at most l to the
nodes in N l+

i). Node i may send a message to node j via different i, j–paths. To
capture this distinction in transmission routes, we represent a message as a tuple
m = (w,P), where w ∈ R and P indicates the path via which message m should
be transmitted. It is assumed that the network layer in the system delivers the
messages along the specified paths. The intermediate nodes on the paths do not
view the message values (i.e., the message values are not used by intermediate
nodes in performing consensus). Four functions are defined over message m. For
m = (w,P), let function value be value(m) = w and let path be path(m) = P ,
whose images are the first entry and the second entry, respectively, of message
m. In addition, functions source and destination are defined by source(m) = i and
destination(m) = j if P is an i, j–path, i.e., i and j are source and destination on
path P . For a given path P , Let V(P) denote the set of nodes along the path,
including the source and the destination.

Fault model: Let F ⊆ V(G) be the collection of faulty nodes in the system. We
consider the Byzantine fault model with up to f nodes becoming faulty, i.e.,
|F| ≤ f . A faulty node may tamper the message value arbitrarily. Possible mis-
behavior includes sending incorrect and mismatching (or inconsistent) messages
to different neighbors. In addition, a faulty node k ∈ F may tamper message
m if it is in the transmission path, i.e., k ∈ V(path(m)). However, faulty nodes
may only tamper value(m), leaving path(m) unchanged. This constraint is placed
for ease of exposition; later in Section 6 we relax this constraint. Faulty nodes
are also assumed to have complete knowledge of the execution of the algorithm,
including the states of all nodes, contents of messages that the other nodes send
to each other, and the algorithm specification, so that they may potentially
collaborate with each other adaptively.

Iterative approximate Byzantine consensus (IABC) algorithms: The iterative
algorithms considered in this paper have the following structure: Each node i
maintains state vi, with vi[t] denoting the state of node i at the end of the t-th
iteration of the algorithm. Initial state of node i, vi[0], is equal to the initial

24 L. Su and N. Vaidya

input provided to node i. At the start of the t-th iteration (t > 0), the state
of node i is vi[t − 1]. The IABC algorithms of interest will require each node i
to perform the following three steps in iteration t, where t > 0. Note that the
faulty nodes may deviate from this specification.

1. Transmit step: Transmit messages of the form (vi[t−1], P) on each l–hop path
P (including self-loops) to nodes in N l+

i . As noted previously, the network
layer of the system forwards each message to its destination along the path
specified for the message.

2. Receive step: Receive messages from N l−
i for which destination is i. When

node i expects to receive a message from a path but does not receive the
message, the message value is assumed to be equal to some default value.
Let Mi[t] be the set of messages that node i received in this step.

3. Update step: Node i updates its state using a transition function Zi, where
Zi is a part of the specification of the algorithm, and takes as input the set
Mi[t].

vi[t] = Zi(Mi[t]). (1)

Algorithms with similar structure are considered in prior work as well [8,11,14].
The evolution of state vi[t] is governed by the update function defined in (1). Note
that vi[t] only depends on Mi[t]–the messages collected by node i at iteration
t (which includes vi[t − 1]). No information collected/obtained during previous
iterations will affect the update step in iteration t. Intuitively speaking, fault-
free node i is assumed to have no memory across iterations other than its most
recent state vi[t − 1].

Let U [t] be the largest state among the fault-free nodes at the end of the
t-th iteration, i.e., U [t] = maxi∈V−F vi[t]. Since the initial state of each node
is equal to its input, U [0] is equal to the maximum value of the initial input
of the fault-free nodes. Similarly, we define μ[t] to be the smallest state at the
end of the t–th iteration and μ[0] to be the smallest initial input. For an IABC
algorithm to be correct, the following two conditions must be satisfied:

– Validity: ∀t > 0, μ[t] ≥ μ[0] and U [t] ≤ U [0]
– Convergence: lim t→∞ U [t] − μ[t] = 0

Our goal is to identify a necessary and sufficient condition on graph G for the
existence of a correct IABC algorithm (i.e., an algorithm satisfying the above
validity and convergence conditions) for a given l.

3 Necessary Condition

For a correct IABC algorithm to exist, the underlying network G must satisfy
the condition presented in this section. First, we introduce some definitions.

Definition 1. Suppose W ⊆ V(G) and x ∈ V(G) such that x /∈ W. A W,x–path
is a path from some vertex w ∈ W to vertex x. A set Sl ⊆ V(G) with x /∈ Sl is an

Reaching Approximate Byzantine Consensus with Multi-hop Communication 25

l–restricted vertex cut if the deletion of Sl disconnects all W,x–paths of length
at most l. The l–restricted W,x–connectivity, denoted by κl(W,x), is defined by

κl(W,x) = min
Sl:Sl is an l–restricted W, x–cut

|Sl|.

A set of vertices S is a W,x–vertex cut if the removal of set S disconnects all
W,x–paths. The W,x–connectivity, denoted by κ(W,x), is defined by

κ(W,x) = min
S:S is a W, x–cut

|S|.

The second part of the above definition is the classic definition of node connectiv-
ity in graph theory [15], which is a global notion. In our communication model,
we assume that each fault-free node only knows the local network topology up
to its l–th hop neighborhood. Thus, we adapt node connectivity to our model
by restricting the path length of interest. Note that κl(W,x) = κ(W,x) for all
l ≥ l∗, and that κ1(W,x) = |W ∩ N−

x |.
In general, κl(W,x) �= κ(W,x) and κl(W,x) ≤ κl+1(W,x) for all l. For

instance for the system depicted in Figure 1, via enumeration it can be seen
that

κ ({p2, p3}, p1) = 2 ≥ 1 = κ1 ({p2, p3}, p1) .

Intuitively speaking, the stronger the communication capability of each node is
(the larger l is), the harder it is to prevent one node from being influenced by
other nodes.

p1

p4

p2

p3

p5

Fig. 1. In this system, there are five nodes p1, p2, p3, p4 and p5; all communication links
are bi-directional; and at most one node can be adversarial, i.e., f = 1

Definition 2. For non-empty disjoint sets of nodes A and B in G, we say
A ⇒l B if and only if there exists a node i ∈ B such that κl(A, i) ≥ f + 1;
A �l B otherwise.

Informally speaking, the relation A ⇒l B captures the existence of a node i ∈ B
that can be influenced by fault-free nodes in A despite the presence of Byzantine
nodes.

Let F ⊆ V(G) be a set of vertices in G. Denote the subgraph of G induced
by vertex set V(G)−F by GF .1 We describe a necessary and sufficient condition
1 Subgraph of G induced by vertex set S ⊆ V(G) is the subgraph H with vertex set
S such that E(H) = {(u, v) ∈ E(G) : u, v ∈ S}. Recall that V(·) and E(·) are the
vertex set and edge set, respectively, of a given graph.

26 L. Su and N. Vaidya

below, whose necessity is proved in Theorem 1 and sufficiency is shown con-
structively in Section 4. For ease of future reference, we termed the condition as
Condition NC.

Condition NC: For any node partition L,C,R, F of G such that L �= Ø, R �= Ø
and |F | ≤ f , in GF , at least one of the two conditions below must be true: (i)
R ∪ C ⇒l L; (ii) L ∪ C ⇒l R.

Intuitively, Condition NC requires that, for any node partition L,C,R, F ,
either the nodes in R ∪ C are able to collectively influence a node in L in GF or
vice versa. Note that when l = 1, Condition NC is equivalent to the following
condition, which is shown to be both necessary and sufficient without message
relay, i.e., l = 1, in [14].
“ For any node partition L,C,R, F of G such that L �= Ø, R �= Ø and |F | ≤ f ,
in the induced subgraph GF , at least one of the two conditions below must be
true: (i) there exists a node i ∈ L such that

∣
∣(R ∪ C) ∩ N−

i

∣
∣ ≥ f + 1; (ii) there

exists a node j ∈ R such that
∣
∣(L ∪ C) ∩ N−

j

∣
∣ ≥ f + 1.”

Theorem 1. Suppose that a correct IABC algorithm exists over G. Then G
satisfies Condition NC.

Our proof shares the structure of the proof of Theorem 1 in [14]. The basic idea
is as follows: Suppose that the given graph G does not satisfy Condition NC
and that there exists a correct IABC algorithm, say A. Since G does not sat-
isfy Condition NC, there exists a node partition L,R,C, F , where L,R are both
non-empty and |F | ≤ f such that L ∪ C �l R and R ∪ C �l L in GF . Consider
the execution in which all the nodes in F are faulty and all the remaining nodes
are fault-free. In addition, the input of each node in L is 0, the input of each
node in R is 2ε, and the input of each node in C is an arbitrary value within the
interval [0, 2ε]. The faulty nodes in F can behave in such a way that each node
i ∈ L cannot determine whether nodes in F are faulty or nodes in the minimum
l–restricted (R ∪ C, i)–cut are faulty. This is possible, since κl(R ∪ C, i) ≤ f .
Thus, to guarantee validity, node i will update its state vi[t] = 0 for all t. Since
i is an arbitrary node in L, we have vi[t] = 0 for all i ∈ L and all t. Similarly,
we can show that vj [t] = 2ε for all j ∈ R and all t. Thus |vi[t] − vj [t]| = 2ε for
all t, where i ∈ L and j ∈ R, contradicting the assumption that A is a correct
IABC algorithm. A formal proof of Theorem 1 can be found in the full version
of the paper [10].

The above necessary condition is in general weaker than the necessary con-
dition derived under single-hop message transmission model in [14], i.e., when
l = 1. Consider the system depicted in Figure 1. The topology of this system does
not satisfy the necessary condition derived in [14] for l = 1. Since in the node
partition L = {p1, p4}, R = {p2, p3}, C = Ø and F = {p5}, neither L∪C ⇒l R in
GF nor R ∪ C ⇒l L in GF holds for l = 1 and f = 1. However, via enumeration

Reaching Approximate Byzantine Consensus with Multi-hop Communication 27

it can be seen that the graph, depicted in Figure 1, satisfies Condition NC for
l ≥ 2 and f = 1.

It follows from the definition of Condition NC that if a graph G satisfies
Condition NC for l ∈ {1, . . . , n − 1}, then G also satisfies Condition NC for
all l′ ≥ l. Let l0 be the smallest integer for which G satisfies Condition NC.
In particular, if G does not satisfy Condition NC for any l ∈ {1, . . . , n − 1},
define l0 � n by convention. We observe that in general given a graph G, the
diameter of G can be arbitrarily smaller than l0. For instance, the diameter of the
graph depicted in Figure 2 is 2. However, for the depicted graph, l0 ≥ n+1

4 when
n = 4k+3, where k is a positive integer. So l0 is much larger than 2 for large n. To
see l0 ≥ n+1

4 , consider the node partition F = {p1}, C = Ø, L = {p2, . . . , pn+1
2

}
and R = {pn+3

2
, . . . , pn}. For f = 1, in order to have L ∪ C ⇒l R or R ∪ C ⇒l L

hold in GF for this particular node partition, it must be hold that l ≥ n+1
4 . Thus

l0 ≥ n+1
4 .

p2

pn

p6 p5

p4

p3

p1

Fig. 2. In this system, there are n nodes p1, . . . , pn; all communication links are bi-
directional; and at most one node can be adversarial, i.e., f = 1. Nodes p2, . . . , pn form
a cycle of length n − 1 and these nodes are all connected to node p1.

Similar to [14], as stated in our next corollary, our Condition NC for general
l also implies a lower bound on n and a lower bound on each node’s incoming
degree. Moreover, these lower bounds are independent of l.

Corollary 1. For f > 0, if G satisfies Condition NC, then n must be at least
3f + 1, and each node must have at least 2f + 1 incoming neighbors other than
itself, i.e., |N−

i − {i}| ≥ 2f + 1.

The proof of Corollary 1 is similar to the proof in [14], and can be found in
[10]. Note that Corollary 1 also characterizes a lower bound on the density of
G, that is |E(G)| ≥ n(2f + 2), including self-loops, which is independent of the
communication range l as well.

3.1 Equivalent Characterization of Condition NC

Informally speaking, Condition NC describes the information propagation prop-
erty in terms of four set partitions. In this subsection, an equivalent condition
of Condition NC is proposed, which is based on characterizing the structure

28 L. Su and N. Vaidya

of a family of special subgraphs, termed as reduced graphs, of the power graph
Gl. The new condition suggests that all fault-free nodes will be influenced by a
collection of common fault-free nodes.

Definition 3. Meta-graph of SCCs: Let K1,K2, . . . , Kk be the strongly con-
nected components (i.e., SCCs) of G. The graph of SCCs of G, denoted by GSCC ,
is defined as follows:
(i) Nodes in GSCC are K1,K2, . . . , Kk; and
(ii) there is an edge (Ki,Kj) in GSCC if there is some u ∈ Ki and v ∈ Kj such
that (u, v) is an edge in G.
Strongly connected component Kh is said to be a source component if the corre-
sponding node in GSCC is not reachable from any other node in GSCC .

It is known that the GSCC is a directed acyclic graph, i.e., DAG [3]. It can be
easily checked that due to the absence of directed cycles and finiteness, there
exists at least one node in GSCC that is not reachable from any other node. In
particular, if GSCC contains just one node, then that node is trivially the source.
Thus, a graph G has at least one source component.

Definition 4. The l–th power of a graph G, denoted by Gl, is a multigraph2

with the same set of vertices as G and a directed edge between vertices u, v is
defined by a path of length3 l from u to v in G.

The power graph Gl is a multigraph. There is a one-to-one correspondence
between an edge e in Gl and a path of length l in G (including self-loops).
A path of length 1 between vertices u and v in G exists if (u, v) is an edge in G.
A path of length 2 between vertices u and v in G exists for every vertex w such
that (u,w) and (w, v) are edges in G. Then for a given graph G with self-loop at
each node, the (u, v)th element in the square of the adjacency matrix of G counts
the number of paths of length at most 2 in G. Similarly, the (u, v)th element in
the l–th power of the adjacency matrix of G gives the number of paths of length
l between vertices u and v in G.

Let e be an edge in Gl, and let P (e) be the corresponding path in G, we say
an edge e in Gl is covered by node set S, if V(P (e)) ∩ S �= Ø, i.e., path P (e)
passes through a node in S–recalling that V(P (e)) is the vertex set of path P (e).

Definition 5. For a given graph G and F ⊆ V(G), let

E = {e ∈ E(Gl) : V(P (e)) ∩ F �= Ø}
be the set of edges in Gl that are covered by node set F . For each node i ∈
V(G) − F , choose Ci ⊆ N l−

i − {i} such that |Ci| ≤ f . Let

Ei = {e ∈ E(Gl) : e is an incoming edge of node i in Gl and V(P (e))∩Ci �= Ø}
2 A multigraph (or pseudograph) is a graph which is permitted to have multiple edges

between each vertex pair, that is, edges that have the same end nodes. Thus two
vertices may be connected by more than one edge.

3 Recall that we assume that each node in G has a self-loop.

Reaching Approximate Byzantine Consensus with Multi-hop Communication 29

be the set of incoming edges of node i in Gl that are covered by node set Ci. A
reduced graph of Gl, denoted by ˜Gl

F , is a subgraph of Gl whose node set and
edge set are defined by (i) V(˜Gl

F) = V(G) − F ; and (ii) E(˜Gl
F) = E(Gl) − E −

∪i∈V(G)−F Ei, respectively.

Note that for a given G and a given F , multiple reduced graphs may exist. Let
us define set RF to be the collection of all reduced graph of Gl for a given F ,
i.e.,

RF = {˜Gl
F : ˜Gl

F is a reduced graph of Gl}. (2)

Gl
F , the l–th power of the induced subgraph GF , itself is a reduced graph of

Gl, where we choose Ci = Ø for each i ∈ V(G) − F . Thus RF is non-empty. In
addition, |RF | is finite since the graph G is finite,

Theorem 2. Graph G satisfies Condition NC if and only if every reduced graph
˜Gl

F obtained as per Definition 5 contains exactly one source component.

The proof of Theorem 2 is based on analogous proofs in [13,14], which can
be found in [10].

4 Sufficiency: Algorithm 1

In this section we propose an algorithm, termed Algorithm 1 and show its cor-
rectness. First we introduce the definition of message cover that will be used
frequently in this section.

Definition 6. For a communication graph G, let M be a set of messages, and let
P(M) be the set of paths corresponding to all the messages in M, i.e., P(M) =
{path(m)|m ∈ M}. A message cover of M is a set of nodes T (M) ⊆ V(G),
such that for each path P ∈ P, we have V(P) ∩ T (M) �= Ø, i.e., each path
P is covered by a node in T (M). In particular, a minimum message cover is
defined by

T ∗(M) ∈ arg min
T (M)⊆V(G):T (M) is a cover of M

|T (M)|.

Conversely, given a set of messages M0 and a set of nodes T ⊆ V(G), a maximal
set of messages M ⊆ M0 that are covered by T is defined by,

M∗ ∈ arg max
M⊆M0:T is a cover of M

|M|.

Recall that Mi[t] is the collection of messages received by node i at iteration t.
Let M′

i[t] = Mi[t] − {(vi[t − 1], (i, i))}. Sort messages in M′
i[t] in an increasing

order, according to their message values, i.e., value(m) for m ∈ M′
i[t]. Let Mis[t]

be the largest sized subset of M′
i[t] such that (i) for all m ∈ M′

i[t] − Mis[t] and
m′ ∈ Mis[t] we have value(m) ≥ value(m′), and (ii) the cardinality of a minimum

30 L. Su and N. Vaidya

cover of Mis[t] is exactly f , i.e., |T ∗(Mis[t])| = f . Similarly, we define Mil[t]
to be the largest sized subset of M′

i[t] as follows: (i) for all m ∈ M′
i[t] − Mil[t]

and m′′ ∈ Mil[t] we have value(m) ≤ value(m′′), and (ii) the cardinality of a
minimum cover of Mil[t] is exactly f , i.e., |T ∗(Mil[t])| = f . In addition, define
M∗

i [t] = M′
i[t] − Mis[t] − Mil[t].

Theorem 3. Suppose that graph G satisfies Condition NC, then the sets of
messages Mis[t], Mil[t] are well-defined and M∗

i [t] is non-empty for f > 0.

This theorem is proved by construction, i.e., an algorithm is constructed to
find the sets Mis[t], Mil[t] for a given M′

i[t]. Details of the algorithm and
its correctness proof can be found in [10]. We will prove that there exists an
IABC algorithm – particularly Algorithm 1 below – that satisfies the validity
and convergence conditions provided that the graph G satisfies Condition NC.
This implies that Condition NC is also sufficient. Algorithm 1 has the three-
step structure described in Section 2. With the exception of the update step (3)
below, the algorithm is similar to the consensus algorithms in [8,14].

Algorithm 1

1. Transmit step: Transmit messages of the form (vi[t − 1], P) on each l–hop
path P (including self-loops) to nodes in N l+

i . If node i is an intermediate
node on path P for some message of the form (·, P), then node i forwards
that to the next node on path P .

2. Receive step: Receive messages from N l−
i for which destination is i. When

node i expects to receive a message from a path but does not receive the
message, the message value is assumed to be equal to some default value.4

3. Update step:
Define

vi[t] = Zi(Mi[t]) = aivi[t − 1] +
∑

m∈M∗
i [t]

ai wm. (3)

where wm = value(m) and ai = 1
|M∗

i [t]|+1 .

Note that in Step 3, only messages in M∗
i [t] and the value vi[t − 1] are used

in updating vi in (3). Messages in both Mis[t] and Mil[t] are trimmed away.
This trimming strategy is motivated by the observation that the messages in
Mis[t] (or Mil[t]) may be tampered by nodes in T ∗(Mis[t]) (or T ∗(Mil[t])).
These faulty behaviors are possible because of the fact that |T ∗(Mis[t])| = f
and |T ∗(Mil[t])| = f . Recall M∗

i [t] = M′
i[t] − Mis[t] − Mil[t]. The “weight”

4 Note that node i does not read the message value if the message destination is not
i.

Reaching Approximate Byzantine Consensus with Multi-hop Communication 31

of each term on the right-hand side of (3) is ai, where 0 < ai ≤ 1, and
these weights add to 1. For future reference, let us define α, which is used in
Theorem 4, as:

α = min
i∈V−F

ai. (4)

In Algorithm 1, each fault-free node i’s state, vi[t], is updated as a convex com-
bination of all the messages values collected by node i at round t. In particular,
for each message m ∈ M′[t], its coefficient is ai if the message is in M∗

i [t] or
the message is sent via self-loop of node i; otherwise, the coefficient of m is zero.
The update step in Algorithm 1 is a generalization of the update steps proposed
in [8,13,14,16], where the update summation is over all the incoming neighbors
of node i instead of over message routes. In [8,13,14,16], only single-hop com-
munication is allowed, i.e., l = 1, and the fault-free node i can receive only one
message from its incoming neighbor. With multi-hop communication, fault-free
node can possibly receive messages from a node via multiple routes. Our trim
function in Algorithm 1 takes the possible multi-route messages into account.

4.1 Matrix Representation of Algorithm 1

With our trim function, the iterative update of the state of a fault-free node i
admits a matrix representation of states evolution of fault-free nodes. We use
boldface upper case letters to denote matrices, rows of matrices, and their entries.
For instance, A denotes a matrix, Ai denotes the i-th row of matrix A, and Aij

denotes the element at the intersection of the i-th row and the j-th column of
matrix A. Some useful concepts and theorems are reviewed briefly in [10].

Definition 7. A vector is said to be stochastic if all the entries of the vector are
non-negative, and the entries add up to 1. A matrix is said to be row stochastic
if each row of the matrix is a stochastic vector.

Recall that F is the set of faulty nodes. Let |F| = φ. Without loss of gener-
ality, suppose that nodes 1 through (n − φ) are fault-free, and if φ > 0, nodes
(n − φ + 1) through n are faulty. Denote by v[0] ∈ R

n−φ the column vector
consisting of the initial states of all the fault-free nodes. Denote by v[t], where
t ≥ 1, the column vector consisting of the states of all the fault-free nodes at
the end of the t-th iteration, t ≥ 1, where the i-th element of vector v[t] is state
vi[t].

Theorem 4. We can express the iterative update of the state of a fault-free node
i (1 ≤ i ≤ n − φ) performed in (3) using the matrix form in (5) below, where
Mi[t] satisfies the four conditions listed below. In addition to t, the row vector
Mi[t] may depend on the state vector v[t−1] as well as the behavior of the faulty
nodes in F . For simplicity, the notation Mi[t] does not explicitly represent this
dependence.

vi[t] = Mi[t] v[t − 1] (5)

32 L. Su and N. Vaidya

1. Mi[t] is a stochastic row vector of size (n − φ). Thus, Mij [t] ≥ 0, where
1 ≤ j ≤ n − φ, and

∑

1≤j≤n−φ

Mij [t] = 1

2. Mii[t] ≥ ai ≥ α.
3. Mij [t] is non-zero only if there exists a message m ∈ Mi[t] such that

source(m) = j and destination(m) = i.
4. For any t ≥ 1, there exists a reduced graph ˜GlF ∈ RF with adjacent matrix

H[t] such that β H[t] ≤ M[t], where β = 1
16n2l .

In the full version of the paper [10], we prove the correctness of Theorem 4
by constructing Mi[t] for 1 ≤ i ≤ n − φ. Our proof follows the same line of
analysis as in the proof of Claim 2 in [13]. Due to the complexity (in particular,
the dependency of message covers) brought up by messages relay, we divide the
universe into six cases to consider.

Theorem 5. Algorithm 1 satisfies the validity and the convergence conditions.

From the code of Algorithm 1, we know that

vi[t] = aivi[t − 1] +
∑

m∈M∗
i [t]

ai wm, (6)

where ai = 1
|M∗

i [t]|+1 . Theorem 4 states that we can rewrite (6) as

∑

j∈V−F
Mij [t]vj [t − 1],

where Mij [t]s together satisfy the preceding four conditions. By “stacking” (5)
for different i, 1 ≤ i ≤ n − φ, we can represent the state update for all the
fault-free nodes together using (7) below, where M[t] is a (n − φ) × (n − φ) row
stochastic matrix, with its i-th row being equal to Mi[t] in (5).

v[t] = M[t] v[t − 1]. (7)

By repeated application of (7), we obtain:

v[t] =
(

Πt
τ=1M[τ]

)

v[0].

As the backward product Πt
τ=1M[τ] is a row-stochastic matrix, it holds that

μ[0] ≤ vi[t] ≤ U [0] for all i = 1, . . . , n − φ and all t. Thus Algorithm 1 satisfies
validity condition.

The convergence of vi[t] depends on the convergence of the backward product
Πt

τ=1M[τ]. As a result of this, our convergence proof uses toolkit of weak-ergodic
theory that is also adopted in prior work (e.g., [1,2,8,14]). The last condition in
Theorem 4 plays an important role in the proof of Theorem 5. A formal proof
of Theorem 5 is presented in [10].

Reaching Approximate Byzantine Consensus with Multi-hop Communication 33

5 Unbounded Path Length

In this section, we show that Condition NC is equivalent to some existing results
for undirected graphs and directed graphs when path lengths are not constrained.

5.1 Undirected Graph with Unbounded Path Length

If G is undirected, it has been shown in [6], that n ≥ 3f+1 and node-connectivity
2f + 1 are both necessary and sufficient for achieving Byzantine approximate
consensus. Recall that l∗ is the length of a longest cycle-free path in G. We will
show that when l ≥ l∗, our Condition NC is equivalent to the above conditions.

Theorem 6. When l ≥ l∗, if G is undirected, then n ≥ 3f + 1 and node-
connectivity of G is at least 2f + 1 if and only if G satisfies Condition NC.

Informally, if the node-connectivity of G, denoted by κ(G), is at most 2f , then
we are able to show that there exists a node partition L,R,C, F , where L,R
are both non-empty and |F | ≤ f , such that, in GF , neither L ∪ C ⇒l R nor
R∪C ⇒l L holds. Conversely, if n ≥ 3f +1 and κ(G) ≥ 2f +1, using Expansion
Lemma [15] we are able to show Condition NC holds. Formal proof is given
in [10].

5.2 Directed Graph with Unbounded Path Length

Synchronous exact Byzantine consensus is considered in [12].

Definition 8. [12] Given disjoint subsets A,B, where B is non-empty:
(i) We say A → B if and only if set A contains at least f + 1 distinct incoming
neighbors of B. That is, |{i| (i, j) ∈ E , i ∈ A, j ∈ B}| > f .
(ii) We say A �→ B iff A → B is not true.

The following necessary and sufficient condition is obtained in [12].

Theorem 7. [12] Given a graph G, exact Byzantine consensus is solvable if and
only if for any partition L,C,R, F of G, such that both L and R are non-empty,
and |F | ≤ f , either L ∪ C → R in GF , or R ∪ C → L in GF .

We term this condition as Condition 1. Note that in order for A → B to
hold, we only require that there are at least f + 1 incoming neighbors of set
B in set A. As a result of this observation, our Condition NC with l = 1 is,
in general, strictly stronger than Condition 1. However, we prove the following
result in [10].

Theorem 8. Condition NC is equivalent to Condition 1 when l ≥ l∗.

34 L. Su and N. Vaidya

6 Summary and Discussion

In this paper, we assume that each node knows the topology within its l–hop
neighborhood, and in each iteration it can send messages to nodes that are up to
l hops away, where l ≥ 1. We prove a necessary and sufficient condition for the
existence of iterative algorithms that achieve approximate Byzantine consensus
in directed graphs, while maintaining minimal memory across iterations. The
class of iterative algorithms considered in this paper ensures that, after each
iteration of the algorithm, the state of each fault-free node remains within the
range (or convex hull) of the initial inputs at the fault-free nodes.

Throughout the paper so far, we assumed that faulty nodes are only able to
tamper message values, leaving message paths unchanged. However, this restric-
tion of faulty behaviors of Byzantine nodes is not necessary. In fact, the above
results still hold when both message value tampering and message path tamper-
ing are allowed, provided that (i) the number of faked messages is finite and there
exists a constant C such that Mi[t] ≤ C for all t (i.e., each faulty node k ∈ F
cannot create too many non-existing messages), and that (ii) for each message
m tampered/faked by a faulty node k, path(m) must satisfy k ∈ V(path(m))
(i.e., the faulty node k cannot conceal itself from the message path). The con-
straints (i) and (ii) can be implemented as follows. Recall that each fault-free
node knows the network topology in its l–hop neighborhood. In each iteration,
a fault-free node should accept any one message of the form (w,P) for any par-
ticular l–hop path P that is known to exist – if more than one such message
is received, discard all but one such message (or discard all, and replace by a
default value). Also, if node i receives the message (w,P) where path P is not
known to exist, then node i should discard the message. These rules implement
constraint (i) above. Suppose node i receives or relays a message m = (w,P)
from node j containing a path that does not have the form . . . ji . . . then i will
discard the message. This way, on any given l–hop path P , at least the very last
faulty node will have to remain on the path (it may delete the earlier nodes on
the path, but not itself). Thus the constraint (ii) is imposed. The necessity of
Condition NC can be easily verified for the above behavior as well. It can also be
seen that Algorithm 1 works under this relaxed model, proving the sufficiency
of Condition NC.

Acknowledgements. The authors thank the referees and Lewis Tseng for providing
constructive comments on the paper.

References

1. Ali, J., Jie, L., Morse, A.S.: Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6),
988–1001 (2003)

Reaching Approximate Byzantine Consensus with Multi-hop Communication 35

2. Bnzit, F., Blondel, V., Thiran, P., Tsitsiklis, J., Vetterli, M.: Weighted
gossip:Distributed averaging using non-doubly stochastic matrices. In: 2010
IEEE International Symposium on Information Theory Proceedings (ISIT),
pp. 1753–1757, June 2010

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction
toalgorithms, vol. 2. MIT Press Cambridge (2001)

4. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

5. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement.
Distributed Computing 4(1), 9–29 (1990)

6. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. In: Proceedings of the Fourth Annual ACM Symposium on
Principles of Distributed Computing, PODC 1985, pp. 59–70. ACM, New York
(1985)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32, 374–382 (1985)

8. LeBlanc, H.J., Zhang, H., Sundaram, S., Koutsoukos, X.: Consensus of multi-agent
networks in the presence of adversaries using only local information. In: Proceed-
ings of the 1st International Conference on High Confidence Networked Systems,
HiCoNS 2012, pp. 1–10. ACM, New York (2012)

9. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

10. Su, L., Vaidya, N.: Reaching approximate byzantine consensus with multi-hop
communication (2014). arXiv preprint arXiv:1411.5282

11. Tseng, L., Vaidya, N.: Iterative approximate consensus in the presence of byzantine
link failures. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593,
pp. 84–98. Springer, Heidelberg (2014)

12. Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: Proceed-
ings of the 2015 ACM Symposium on Principles of Distributed Computing. ACM
(to appear, 2015)

13. Vaidya, N.H.: Matrix representation of iterative approximate byzantine consensus
in directed graphs. CoRR, arXiv:1203.1888 (2012)

14. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate byzantine consensus
in arbitrary directed graphs. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, pp. 365–374. ACM (2012)

15. West, D.B., et al.: Introduction to graph theory, vol. 2. Prentice Hall, Upper Saddle
River (2001)

16. Zhang, H., Sundaram, S.: Robustness of information diffusion algorithms to locally
bounded adversaries. In: American Control Conference (ACC 2012), pp. 5855–5861
(2012)

http://arxiv.org/abs/1411.5282
http://arxiv.org/abs/1203.1888

The Complexity of Data Aggregation in Static
and Dynamic Wireless Sensor Networks

Quentin Bramas1(B) and Sébastien Tixeuil1,2

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, F-75005 Paris, France
2 Institut Universitaire de France, Paris, France

quentin.bramas@lip6.fr

Abstract. The key feature of wireless sensor networks is to aggregate
data collected by individual sensors in an energy efficient manner. We
consider two techniques to save energy. The first one is to avoid colli-
sions due to simultaneous transmissions among neighboring nodes. Sec-
ond, when a node receives data from multiple neighbors, it aggregates
these with its own data. Then, one transmission is sufficient to trans-
mit all consolidated data to another neighbor. If the overall delay has to
be kept as low as possible, scheduling sensors to avoid collisions while
aggregating data becomes challenging.

The contribution of this paper is threefold. First, we give tight bounds
for the complexity of data aggregation in static networks. In more details,
we show that the problem remains NP-complete when the graph is of
degree at most three. As it is trivial to solve the problem in static graphs
of degree at most two, our result implies that the problem is intrinsically
difficult for any practical setting. Second, we investigate the complexity
of the same problem in a dynamic network, that is, a network whose
topology can evolve through time. In the case of dynamic networks, we
show that the problem is NP-complete even in the case where the graph
is of degree at most two (and it is trivial to solve the problem when the
graph is of degree at most one). Third, we give the first lower and upper
bounds for the minimum data aggregation time in a dynamic graph.

We observe that even in a well-connected evolving graphs, the opti-
mal solution cannot be found by a distributed algorithm or by a central-
ized algorithm that does not know the future. Thus we finally give the
first approximation algorithm (centralized that knows the future) whose
approximation factor is T (n−1) if there exists a bound T such that there
is a journey (a path in a dynamic graph) for all pairs of nodes in every
time interval [t, t + T].

Keywords: Data aggregation · Dynamic graphs · Complexity

This work was performed within the Labex SMART supported by French state
funds managed by the ANR within the Investissements d’Avenir programme under
reference ANR-11-IDEX-0004-02.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 36–50, 2015.
DOI: 10.1007/978-3-319-21741-3 3

The Complexity of Data Aggregation 37

1 Introduction

The growing number of sensor nodes with sensing, computing and communi-
cation capabilities, was made possible by recent technological advances. This
growth was encouraged by a variety of applications and contributes to the
widespread interest in practical and theoretical aspects of wireless sensor net-
works. Sensor nodes should be inexpensive, small and sustainable in order to be
easily deployed in a dangerous area, inside a human body or in vehicles, generally
for monitoring applications. They generate data that have to be retrieved by an
end-user or a base station. However, the environment and the lack of network-
ing infrastructure does not permit direct transmission to the end user, but only
transmissions between sensors that are close to one another. This raises various
challenges, such as energy (sensors are battery powered) and delay efficiency
(information is relevant for a short period of time only).

In a wireless sensor network (WSN), sensor nodes can communicate through
a wireless ad hoc network. Then, there exists a communication link between two
nodes if the Euclidean distance between them is smaller than their communi-
cation range. Since we assume all sensors to be identical, they have the same
communication range and the communication graph can be modeled as a unit-
disk graph1 [8]. Sensor nodes typically generate data from their environment,
such as temperature, number of vehicles on a road, or number of passenger in
a bus. The end-user, called sink node, wants to extract this information. To do
so, a node can send its data directly to the sink node if it is located within its
communication range, or, if it is far from the sink, can use intermediate nodes
to relay the data to the sink node.

In this paper we investigate the problem of retrieving data from a WSN whose
data transmissions are constrained by two rules: avoiding collisions, and allowing
data aggregation. In more details, the time is discretized and, at each time slot,
a node is able to send its data to all of its neighbors (i.e., all nodes within its
communication range). Now, if two or more nodes send their data in the same
time slot, their common neighbors do not receive any data, due to interference.
Whenever a node successfully receives data, it aggregates the data with its own
and stores the result as its new data. This process ensures energy-efficiency of
the protocol. Indeed, n transmissions are sufficient to retrieve the data from n
sensors to the sink node (compared to possibly Ω(n2) without the capability to
aggregate data). The problem of aggregating data from all nodes in the network
in a minimum amount of time slots (delay-efficiency), assuming that a node
sends its data at most once (energy-efficiency) is known as the minimum data
aggregation time (MDAT) problem [7]. A solution to this problem consists of a
transmission schedule, meeting the communication constraints, with minimum
duration.

In this paper we also introduce the dynamic version of the MDAT prob-
lem, where individual sensors are now mobile entities. This could model cars

1 We suppose here that the area is a two dimensional plane, but our results naturally
extend to greater dimensions.

38 Q. Bramas and S. Tixeuil

evolving in a smart city, medical devices in a body area network, or mobile devices
monitoring an area. A WSN whose topology evolves with time is modeled as a
dynamic unit-disk graph, i.e., a sequence of static unit-disk graphs. In this set-
ting, the communication constraints hold at each time slot, and a solution of the
MDAT problem consists of a transmission schedule with minimum duration.

When sensor nodes have fixed positions, the maximum distance (in hops)
from the sink node to any other node is a lower bound for the minimum data
aggregation time [7]. Indeed, if no collision occurs, the data from the farthest
node can be sent through a shortest path. Each avoided collision increases the
duration of the schedule by one time slot. However, if we suppose the nodes are
moving, avoiding collisions can intuitively have a much greater impact. Indeed,
if a collision occurs and we delay the transmission of a node by one time slot,
the node may not be able to transmit again (maybe the node remains isolated
thereafter). In other terms, the existence of a journey (a path in a dynamic graph)
from every node to the sink node is not sufficient to guarantee the existence of
a collision-free schedule.

Related Work. The data aggregation problem we consider here was first studied
by Anamalai et. al. [2]. The authors assume that a fixed number of channels is
available for a transmission, and a collision occurs at a receiver whenever two of
its neighbors transmit on the same channel at the same time. The authors pro-
pose an algorithm that constructs a collision free convergecast tree that can also
be used for broadcasting. Also, in-network aggregation [10] proposes an orthog-
onal approach and assumes that collisions are handled by the MAC layer and
aims to find routes that minimize the delay, which differ significantely from the
MDAT problem. Then, Chen et. al. [7] present a well-defined model for the study
of the MDAT problem in wireless sensor networks. They prove that the prob-
lem is NP-complete, even in graphs of degree at most four (more precisely they
restricted the problem to networks whose topology is a sub-graph of the grid).
They also gave a (Δ − 1)-approximation algorithm (where Δ is the maximum
node degree of the graph).

After the work of Chen et. al. [7], a variety of papers proposed centralized
and distributed approximation algorithms using geometric aspect of the MDAT
problem to improve the data aggregation delay. Yu et. al. [16] give a distributed
algorithm with an upper bound at 24D + 6Δ + 16 (where D is the diameter,
and Δ the maximum degree of the graph). Xu et. al., in [15] and Ren et. al.
in [14] propose centralized algorithms with upper bounds at 16R + Δ − 14 and
16R +Δ− 11 respectively (where R is the radius of the graph). The best known
bound is due to Nguyen et. al. in [13], where they give a centralized algorithm
that takes at most 12R + Δ − 11 time slots to aggregate all data.

On the other hand, dynamic graphs have received a lot of interest recently
and efforts have been done in order to standardize the underlying model [3,6,11].
Various problems have been studied in a distributed setting, such as computing
foremost, fastest and shortest broadcast [4,5]. For each problem, sufficient and
necessary conditions on the (dynamic) graph are given. Most related to our
concern are two previous attempts that consider data aggregation in dynamic

The Complexity of Data Aggregation 39

networks [1,9], however they use a much more powerful communication model
where no collision occurs (in more details, continuous aggregation [1] assumes
that data have to be aggregated and disseminated such that there is a consensus
among the nodes, and aggregation in dynamic networks [9] aims to minimize the
number of nodes that owns data assuming unicast communication). In short, no
previous works considers the data aggregation problem in dynamic networks
taking into account the possibility of collisions.

Our Contribution. The contribution of this paper is threefold. First, in order to
compare the complexity of the data aggregation in static and dynamic WSN, we
give a tight bound for the complexity of the MDAT problem in static WSN. In
more details, we show that, in a static WSN, the problem remains NP-complete
when the graph is of degree at most three. As it is trivial to solve the problem
in static graph of degree at most two, our result implies that the problem is
intrinsically difficult for any practical setting. This result closes the complexity
gap in the static case.

Second, we introduce an extension of MDAT problem in dynamic WSNs, and
we prove that the dynamic MDAT is NP-complete in a dynamic WSN of degree
at most two (and it is trivial to solve the problem if the graph is of degree at
most one).

Third, we give the first lower and upper bounds for the dynamic MDAT prob-
lem. More precisely, we define the notion of the foremost journey tree to the sink
node as a rooted tree whose branches are foremost journeys (journeys with the
earliest arrival time) to the sink node. Then, the minimum time to aggregate all
data in a dynamic network is greater than the duration of a foremost journey tree
(this is valid in any graph, and for any degree Δ there exists a dynamic graph such
that the bound is attained) and is smaller than the duration of (n − 1) indepen-
dent foremost journey trees (this later bound is valid for any graph, but actually
obtained for dynamic graphs of degree n − 1). If we restrain the class of dynamic
graphs to those of degree smaller than n − 1, we prove that the upper bound is
greater or equal to the duration of l independent foremost journey trees (with
l = (Δ − 1) logΔ (n (Δ − 1) + 1) − Δ + 2), which prevents previous approxima-
tion in the static case to be extended in the dynamic case. Finally, we observe that,
even in periodic graphs, optimal solutions cannot be computed by an algorithm
that is unaware of the future of the graph or by a distributed algorithm (even if
each node knows its own future). This motivates our simple approximate algo-
rithm presented in section 6 to be centralized with full knowledge. The approxi-
mation factor is T (n − 1) if there exists a bound T such that there is a journey
between every two nodes in every time interval [t, t + T].

2 Model and Preliminaries

Wireless sensor networks (WSNs) containing n nodes with transmission range
normalized to 1, are modeled by unit disk graphs [8] i.e., intersection graphs
of n equal-sized circles. Each vertex corresponds to a circle of radius 1/2, and

40 Q. Bramas and S. Tixeuil

an edge exists between two vertices when the corresponding circles intersect
(tangent circles are assumed to intersect).

We model a dynamic WSN as a discrete-time-varying graph [6]. According
to this model, we consider a discrete lifetime T = N with a constant latency
function ρ that equals one for every edge at any time (messages can travel at
most one hop at a given time). Under those assumptions, a dynamic graph is
seen as an evolving graph i.e., a sequence of footprints, where each footprint is
a static graph that represents the evolving graph at a given time t ∈ N. The
maximum node degree of a dynamic graph, denoted Δ, is the maximum node
degree among all its footprints. We recall that in dynamic graph, an edge is a
couple ((u, v), t) where u and v are two nodes connected at time t.

Definition 1. A dynamic wireless sensor network G is a dynamic graph
(V, (Et)t∈N) where V is the set of vertices and (Et)t∈N a sequence that repre-
sents the edges of the graph over the time, such that for each t, (V,Et) is a
unit-disk graph.

Data Aggregation Schedule. The time is discrete and at each time round, called
time slot, communications are constrained by the following rule. Sensor nodes
can send or receive data, but cannot do both at the same time. Moreover, if two
nodes send their data simultaneously, all their common neighbors do not receive
anything, due to interference (see figure 1). A node can aggregate a received data
with its own data, according to a given aggregation function (simple examples
of aggregation functions include maximum and addition). The aggregation is
supposed atomic, and the resulting data can be sent like the original data i.e.,
in one time slot.

u

(a) node u does not receive
data

v v′
u u′

(b) node u receives data
from v and u′ from v′

Fig. 1. Communication constraints

Let G = (V, (Et)t∈N), A ⊆ V , and B ⊆ A. We say that data is aggregated
from A to B at time t, denoted by (G,A, t) → (G,B, t + 1), if nodes in A\B
transmit their data simultaneously and all the data is received by at least one
node in B. Formally if:

∀u ∈ A\B, ∃v ∈ B, ∀u′ ∈ A\B − {u} :
(u, v) ∈ Et ∧ (u′, v) /∈ Et

The Complexity of Data Aggregation 41

A dynamic data aggregation schedule to s of duration l is a decreasing sequence
of sets V = R0 ⊇ R1 ⊇ . . . ⊇ Rl = {s} satisfying the following condition:

∀0 ≤ i < l, (G,Ri, i) → (G,Ri+1, i + 1)

Dynamic Minimum Data Aggregation Time Problem. An instance of the
dynamic MDAT problem is a couple (G, s) in which G = (V, (Et)t∈N) models a
dynamic WSN and s ∈ V the sink node. A solution of an instance (G, s) is a
dynamic data aggregation schedule to s with minimum duration. The minimum
duration is denoted by MDATOpt(G, s).

Remark 1. This problem may have no solution, even in a dynamic WSN G
connected over time (i.e., if for all u, v ∈ V , there exists a journey from u to v).
Indeed if the set of edges is defined as follow: E0 = V × V and ∀i
= 0, Ei = ∅,
the graph is connected, but only one node can send its data to the sink node at
time 0, and the other nodes are never able to send their data. A simple sufficient
assumption (but not necessary) in order to ensure the existence of a solution, is
that the graph is recurrent connected (see our algorithm GDAS in the sequel).

3 NP-Hardness

3.1 Static Grid Graphs of Degree at Most Three

A grid graph is a unit disk graph where all disks have centers with integer
coordinates and radius 1/2 i.e., an induced sub-graph of the grid. However, a sub-
graph of the grid (not necessarily induced, called partial grid) is not necessarily
a grid graph.

Chen et. al. prove in [7] that finding the minimum data aggregation time is
NP−hard, even when the network is restricted to partial grid (with maximum
degree Δ = 4). On the other side, if the maximum degree of a static graph is
Δ = 2, the graph is either a line or a cycle and the minimum data aggregation
time is easy to compute. Let ε be the eccentricity of the sink node and n the
number of nodes. If n is odd and ε = (n − 1)/2 (the graph is either a cycle or a
line with the sink node in the middle) then the MDAT is ε + 1. Otherwise the
MDAT is ε.

In this section we close the complexity gap of the MDAT problem in static
networks by proving that the MDAT is NP−hard, even when restricted to grid
graphs with maximum degree Δ = 3.

We use a construction that is similar to that of Chen et al. [7] with some
improvements about the topology (grid graph instead of partial grid) and about
the maximum node degree (3 instead of 4). We first state a lemma slightly
different from their lemma 2 [7], and follow with our first theorem.

Lemma 1. Let H be a planar graph with n > 6 nodes and maximum degree
Δ ≤ 4, there exist an orthogonal planar embedding of H such that each edge has
the same length. This embedding can be computed in time polynomial in n.

42 Q. Bramas and S. Tixeuil

Theorem 1. The MDAT problem restricted to grid graphs of degree at most
three is NP-complete.

The proof of the theorem is by reduction from restricted planar 3−SAT
[12]. Let ϕ be a 3−SAT formula composed by a set C of m clauses c1, . . . , cm

over a set V of n variables v1, . . . , vn. We define the corresponding formula
graph Gϕ = (V ∪ C,E1 ∪ E2), where E1 = {(xi, cj) : xi ∈ cj or x̄i ∈ cj} and
E2 = {(xi, xi+1) : 1 ≤ i ≤ n − 1} ∪ {(xn, x1)}. ϕ is said to be planar if the
formula graph Gϕ is planar. ϕ is said to be restricted if (i) each variable appears
in at most three clauses, (ii) both negated and unnegated forms of each variable
appears at least once, and (iii) clauses drawn on the same side of the cycle E2

must share the same literal if they share the same variable (i.e., at a variable
vertex in Gϕ, incident edges from one side correspond to the same literal). It is
known that restricted planar 3-SAT is NP-complete [12].

Proof. Let ϕ be an instance of the restricted planar 3 − SAT on n variables
and m clauses. From the planar formula graph Gϕ, we construct a planar graph
G with maximum degree Δ = 3. The idea behind the construction is that, in
order to have a fast data aggregation, the schedule must “choose” between two
sides (i.e., the data are aggregated along one of two possible paths) representing
the true or false instantiation of a variable. The aggregation is fast if all clauses
are connected to the correct side of at least one variable. First we construct the
sub-graph Xi that represents the variable xi (see figure 2).

Xi is composed of a cycle of nodes ei, li, ri, si, oi, s̄i, r̄i, l̄i. Then, we connect
to li (resp. l̄i) a path Li (resp. L̄i) of length 5i−3. Thus li cannot sends its data
before aggregating data from Li i.e., before 5i − 3 timeslots. For 1 ≤ i < n we
connect oi to ei+1 and we connect to e1 a new node e0.

ei

li ri si

oi

s̄ir̄il̄i

oi−1

Xi

ei+1

Li

L̄i

Fig. 2. sub-graphs Xi, Li and L̄i

X1 X2 X3

X4
X5

e

c1

c2

c3 c4

Ψ1,3

Ψ2,3

Ψ3,3

Fig. 3. example for ϕ = (x1 ∨ x2 ∨ x̄5) ∧
(x3 ∨ x̄4 ∨ x̄5) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧
(x̄3 ∨ x4 ∨ x5)

Each clause cj is represented by a single node and for each variable xi (resp.
negation x̄i) in clause cj , we connect cj to ri or si (resp. r̄i or s̄i) by a path

The Complexity of Data Aggregation 43

Ψi,j of length (5i − 2) to ri (resp. r̄i) or (5i − 1) to si (resp. s̄i). Let G =
⋃1≤j≤m

1≤i≤n

(

Xi ∪ Li ∪ L̄i ∪ Ψi,j

)

(see figure 2 and 3).
In order to use the previous lemma we need to be able to change the distance

between nodes. So we define GT obtained from G by replacing every edge by a
path of length T , i.e., by adding T −1 nodes between two connected nodes, and
by adding a pending node e connected to e0.

Lemma 2. For all T ≥ 1, the minimum time to aggregate data from GT to on

is 5nT + 1 if and only if ϕ is satisfiable.

End of the proof of theorem 1: We now have to show that there exists a T
such that GT is a grid graph. From lemma 1 we deduce that G has an orthogonal
embedding such that every edge has the same length l ≥ 1 in a grid of size s.
We divide the unit by 4 so that the embedding is in a grid of size 4s and every
edge has length 4l (every vertex has their coordinates multiplied by 4). Then, we
replace, in its embedding, each node by a disk of radius 1/2, and every edge by a
chain of 4l−1 disk of radius 1/2, centered at integer coordinates along the edge.
Finally, we add a disk of radius 1/2, centered at integer coordinates, at distance
1 from e0 and at distance greater than 1 from other disks. The corresponding
unit disk graph (that is also a grid graph) is exactly G4l.

So we have obtained a reduction from the restricted planar 3−SAT to the
MDAT problem in a grid graph, with maximum degree Δ = 3. The theorem
follows from the NP-completeness of restricted planar 3−SAT [12]. ��

3.2 Dynamic Graphs of Degree at Most Two

In a dynamic network we prove that, even when the maximum degree is two, the
dynamic MDAT problems is NP-hard. This result is optimal since the problem
is easy to solve in a graph of degree at most one (where no collision occurs).

Theorem 2. The dynamic MDAT problem is NP-complete even in a dynamic
wireless sensor network of degree at most two.

Proof. The proof is by reduction from 3-SAT. Given any 3-SAT instance ϕ of
n variables v1, . . . , vn and m clauses c1, . . . , cm, we construct the dynamic grid
graph Gϕ(V,E) as follow:

Nodes are composed of one sink node, literals, clauses, and copy of clauses:

V = {s}
⋃

1≤i≤n

{vi} ∪ {v̄i}
⋃

1≤i≤m

{ci} ∪ {c′
i}

Let tf = 3n + 2m. We decompose the time interval [1, tf] in three periods T1,
T2 and T3 (see figure 4):

• During T1 = [1, 2n], we have for all i ∈ [1, n]:

E2i−1 = {(vi, s)}, E2i = {(v̄i, s)}

44 Q. Bramas and S. Tixeuil

• During T2 = [2n + 1, 2n + 2m] we have for all j ∈ [1,m]:

with {a, b, c} = cj , E2n+2j−1 = {(ci, c
′
i)}, E2n+2j = {(c′

j , a), (cj , b), (cj , c)}

• During T3 = [2n + 2m + 1, 2n + 2m + n] we have for all i ∈ [1, n − 1]:

E2n+2m+i = {(vi, vi+1), (v̄i, vi+1), (vi, v̄i+1), (v̄i, v̄i+1)}

and
E2n+2m+n = {(vi, s), (v̄i, s)}

vi s

ci c′
i

(a) configuration
during T1

ci

c′
i a

b

c

(b) configuration
during T2

vi

v̄i

vi+1

v̄i+1

(c) configuration
during T3

vn

v̄n

s

(d) last configu-
ration of T3

Fig. 4. Node Configurations (clauses are blue and literals are red)

During T3, either a variable or its negation can send its data to the sink
node s, but not both, so that the set of literals that send data can be seen as an
interpretation of a truth-functional propositional calculus.

During T1, variables that does not send their data during T3 can send their
data directly to the sink node.

During T2, there is a link between a clause ci and its copy c′
i so that either

ci or c′
i can send both data. Since all clauses can send their data only once to

all the literals it contains, the data is successfully sent to the sink node if and
only if at least one literals it contains sends its data in T3 i.e., is true.

Thus, if the interpretation chosen in T3 satisfies the formula ϕ, then each
clause contains a literal that sends during T3, and the minimum data aggregation
time is exactly tf . Otherwise, some clauses must send their data before t = 1,
and the minimum data aggregation time is greater than tf .

So that the 3-SAT instance ϕ is satisfiable if and only if the minimum data
aggregation time ending before tf is tf . ��

4 Upper and Lower Bounds

In this section, we introduce the notion of foremost journey trees. Then we
propose the first upper and lower bounds for the dynamic MDAT problem, given
in terms of foremost journey tree duration.

The Complexity of Data Aggregation 45

A journey from a node u to node a v is a sequence of edges
((e1, t1), (e2, t2), . . . , (er, tr)) such that (e1, e2, . . . , er) is a path from u to v in
the static graph (V,∪i∈NEi) and

∀i ∈ [1..r − 1], ti < ti+1 ∀i ∈ [1..r], ei ∈ Eti

For a journey J , we denote by departure(J) the starting time t1 and by
arrival(J) the arrival time tr +1 of the journey. The arrival time corresponds to
the time of the existence of the last edge plus the latency to travel along the last
edge. Then, duration(J) = arrival(J) − departure(J) denotes the duration of
the journey. We denote by J(u,v) the set of journeys from u to v and by J [ts,te]

(u,v)

the subset of journeys that start and end between ts and te. We denote by J ts→
(u,v)

the set of foremost journeys starting after time ts:

J ts→
(u,v) = J [ts,tmin]

(u,v) with tmin = min
t

{

t | J [ts,t]
(u,v)
= ∅

}

As a shortest path in a static WSN, a foremost journey is used in a dynamic
WSN to transmit data from a node to another with a minimum delay. To define
foremost journey trees, which is the equivalent of a shortest path tree in a
dynamic WSN, we first need to define a journey tree.

Definition 2. Let G(V,E) be a dynamic graph. A journey tree to node s is
a couple (T, c) where T (V, Tedges) is a tree rooted at s and c is a function c :
Tedges �→ N that verifies:

i) if e ∈ Tedges, then e ∈ Ec(e).
ii) if u is the parent of v and v the parent of w in T , then c(w, v) < c(v, u) i.e.,

if (e1, e2, . . . , er) is a path from a node u to the node s in T , then

((e1, c(e1)), (e2, c(e2)) . . . , (er, c(er)))

is a journey in G called the journey from u to s induced by T .

The departure, respectively the arrival of the journey tree is the departure of the
first journey in T , respectively the arrival of the last journey in T :

departure(T, c) = min
e∈Tedges

c(e) and arrival(T, c) = max
e∈Tedges

c(e) + 1

Definition 3. Let G(V,E) be a dynamic graph. A foremost journey tree (abbre-
viated as FJT) to node s starting at time ts is journey tree (T, c) to s such that
for each leaf node u in T , the journey from u to s induced by T is a foremost
journey starting after time ts. Its duration is duration(T, c) = arrival(T, c)−ts.

FJT (G, s, ts) denotes the set of foremost journey trees of G to node s starting
after time ts. The common duration of foremost journey trees starting after ts
is denoted FJTD(G, s, ts).

In dynamic WSNs, a foremost journey tree plays the same role as a shortest
path tree in static WSNs. Indeed it gives the same lower bound as in the static
version of the problem. Figure 5 shows an example of the unique foremost journey
tree to the sink node s starting at time 0 of a simple dynamic graph (for the
sake of simplicity, the position of the nodes do not change with time).

46 Q. Bramas and S. Tixeuil

t = 0 t = 1 t = 2 Foremost Journey Tree

s

1

2

3

4

s

1

2

3

4

s

1

2

3

4
s1 2

3

4

1

2

10

Fig. 5. An example of foremost journey tree

Lemma 3. Let G be a dynamic graph, we have:

MDATOpt(G, s) ≥ FJTD(G, s, 0)

In a static WSN, the same shortest path tree can be used to avoid collisions.
But in a dynamic WSN, a FJT T1 that exits at a given time may not exists
thereafter. If we delay the transmission of a node, to avoid a collision, another
FJT T2 will be used to retry a transmission. In order to be sure that T2 can be
used by all delayed nodes, it has to start after the end of T1. In this case we say
that (T1, T2) is a 2-time-independent FJT.

Definition 4. A l-time-independent FJT of G to s starting at time ts is a
sequence of l foremost journey trees of G to s ((T1, c1), . . . , (Tl, cl)) such that:

• (T1, c1) is a FJT starting at ts.
• for all 1 < i ≤ l, (Ti, ci) is a FJT starting at arrival(Ti−1, ci−1).

Its duration is the sum duration of all FJT in the sequence and also equals to
tarrival(T1, c1)− ts. The set of l-time-independent FJT of G to s starting at ts
is denoted FJT l(G, s, ts). The common duration of all l-time-independent LTJs
in FJT l(G, s, ts) is denoted LTJDl(G, s, ts).

t ≡ 0 mod 2 t ≡ 1 mod 2 Foremost Journey Tree

s

1

2

3

4

5

6

s

1

2

3

4

5

6

s

1

2

3

4

5

6 0
0

0
0

1

1

Fig. 6. Creation of a perfect binary FJT

Theorem 3. Let G be a dynamic graph with n nodes. We have:

FJTDn−1(G, s, 0) ≥ MDATOpt(G, s) ≥ FJTD(G, s, 0)

The Complexity of Data Aggregation 47

s

1

2

3

4

5

6

s

1

2

3

4

5

6

s

1

2

3

4

5

6

Fig. 7. Optimal data aggregation schedule when FJTs are complete binary trees

The lower bound and the upper bound are tight in the sense that there exists
a graph that reaches the lower bound (any graph of degree at most one) and a
graph that reaches the upper bound (for instance a graph whose sink node is of
degree n − 1 at each time).

If we consider only graphs with a given maximum node degree Δ, the lower
bound is still tight, but the upper bound is no longer tight. The following lemma
gives a graph with a minimum data aggregation time that lowers the upper
bound, for an arbitrary maximum node degree Δ. We conjecture that it also
gives the worst data aggregation duration i.e., that it also give an upper bound
that remains tight for an arbitrary maximum node degree.

Lemma 4. Let n ∈ N
∗ and Δ ≤ n, there exist a dynamic graph G with n nodes

of degree at most Δ such that:

FJTDm(G, s, 0) = MDATOpt(G, s) < +∞

with m = (Δ − 1) logΔ (n (Δ − 1) + 1) − Δ + 2

Proof. Let Δ ≥ 2. We consider the dynamic graph G(V,E). For the sake of
simplicity, we suppose that there exists h ∈ N such that |V | = n = Δh+1−1

Δ−1 . One
can construct G such that, there is a perfect Δ−ary tree T (of height h) such
that, for all t ≡ 0 mod h, FJT (G, s, t) = {(T, ct)} and (T, ct) is of duration h
(and thus with collision appearing between every nodes having the same parent).
See for instance figure 6 with Δ = 2 and h = 3.

After time d1 = departure(T, c0), we can only aggregate data along an unique
path, from a leaf of T to s. Since all the path have the same length, we can choose
an arbitrary path without loss of generality. This path contains one direct child
of s. We need Δ − 1 time-independent FJTs ending before d1 to aggregate data
from the other direct children. Let s′ be the first direct child of s that transmits,
and T (s′) the sub-tree of T rooted at s′. T (s′) is a perfect Δ−ary tree of height
h−1. When s′ transmits, its data have to contain the data of its direct children.
Again, we need another Δ − 1 time-independent FJTs to aggregate data from
all direct children of s′.

Recursively, we need at least (Δ−1)h+1 time-independent FJT to aggregate
all the data from G. One can show that this is also sufficient (see figure 7). Since
h = logΔ(n(Δ − 1) + 1) − 1, the theorem is proved. ��

48 Q. Bramas and S. Tixeuil

Conjecture 1. Let G be a dynamic graph with n nodes of degree at most Δ. Let
m = (Δ − 1) logΔ (n (Δ − 1) + 1) − Δ + 2, we have:

FJTDm(G, s, 0) ≥ MDATOpt(G, s)

We observe that the conjecture is proved for Δ = n−1 and is trivial if Δ = 1.

5 Impossibility Results

In this section we present several classes of dynamic graphs wherein only a
centralized algorithm that knows the future can compute optimal and ”good”
approximate solutions. These impossibility results justify that our first approx-
imation algorithm given in the next section is centralized and knows the future
of the graph.

A hierarchy of classes of dynamic graphs has been identify in previous
work [6]. Here we present only the few we are interested in.

– RC (Recurrent connectivity): ∀u, v ∈ V, ∀t ∈ N:

J [t,+∞)
(u,v)
= ∅

– BRC (Time-bounded recurrent connectivity): There exists a bound T such
that, ∀u, v ∈ V, ∀t ∈ N:

J [t,t+T]
(u,v)
= ∅

– P (Periodic): the graph is connected and there exists T ∈ N such that:
(∃t, (u, v) ∈ Et

) ⇒ (∀k ∈ N, (u, v) ∈ Et+kT)

Observation 1. In P, the dynamic MDAT problem does not have a distributed
optimal algorithm, even if each node knows its own future.

Moreover, one can show that every approximate solution can take as much time
as the duration of n − 1 foremost journey trees.

Observation 2. In P, the dynamic MDAT problem does not have a centralized
optimal algorithm, without the knowledge of future.

One can remark that a sufficient assumption for the problem to be solvable by
a centralized algorithm that does not know the future is to suppose the periodic
graph is either complete, or if T is known.

6 Approximation Algorithm

In this section we give a simple and intuitive approximation algorithm. The
maximum duration of a solution given by this algorithm reach the theoretical
upper bound given in section 4. This solution is found in a backward manner as
follow. The currentTime is set to a time tf i.e., the time when we try to finish

The Complexity of Data Aggregation 49

the data aggregation. The set remainingNodes contains the nodes that have to
transmit before the current time. Then, while remainingNodes is not empty, we
decrement the current time and we remove from remainingNodes a node that
can transmit without collision. If the current time reaches zero and there remain
nodes the algorithm try again with a greater tf .

One can define the procedure canTransmit(n, S, t) that returns true if and
only if the node n can transmit its data to a node in St+1 at time t without
interfering with other nodes in St\St+1.

Algorithm GDAS. Greedy Data Aggregation Schedule
Input: MDAT Instance (G, s)
for tf = 1, 2 . . . do

Stf ← {s}, currentTime ← tf , remainingNodes ← G − {s}
while remainingNodes �= ∅ do

currentTime ← currentTime −1
ScurrentTime ← ScurrentTime +1

forall the node ∈ remainingNodes do
if canTransmit(node, S, currentTime) then

remainingNodes ← remainingNodes −{node}
ScurrentTime ← ScurrentTime ∪ {node}

if remainingNodes = ∅ then
return S;

Theorem 4. If a graph G is in RC, algorithm GDAS finds a valid dynamic
data aggregation schedule such that

duration(GDAS(G, s)) ≤ LTJDn−1(G, s, 0)

If the graph is T -time-bounded recurrent connected, then a FJT duration is
smaller than T . Thus, we can derive the following approximation factor for the
foremost data aggregation problem.

Corollary 1. Algorithm GDAS is an approximation of factor T (n − 1), for the
dynamic MDAT problem, in BRC with bound T .

7 Conclusion

We studied the complexity of minimum data aggregation time problem in wire-
less sensor networks. We proved that the problem is NP-complete in a static
WSN of degree at most three, and NP-complete in a dynamic WSN of degree at
most two. The degree constraint is crucial, as a smaller one induces a trivial solu-
tion in both cases. Then we gave tight lower and upper bounds for the minimum
data aggregation time problem in dynamic networks and the first approximation
scheme for the problem. Also, in a dynamic graph with n nodes of degree at most

50 Q. Bramas and S. Tixeuil

Δ, we conjecture a more accurate upper bound of l time-independent foremost
journey trees (with l = (Δ − 1) logΔ (n (Δ − 1) + 1) − Δ + 2).

Finally we observed that only a centralized algorithm that has full knowledge
can compute the optimal solution of the problem. Thus, we gave a simple approxi-
mate algorithm giving a solution whose time match the theoretical upper bound.

References

1. Abshoff, S., Meyer auf der Heide, F.: Continuous aggregation in dynamic ad-
hoc networks. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576,
pp. 194–209. Springer, Heidelberg (2014)

2. Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On tree-based convergecasting in
wireless sensor networks. In: 2003 IEEE Wireless Communications and Networking,
2003. WCNC 2003 , vol. 3, pp. 1942–1947. IEEE (2003)

3. Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assumptions
of distributed algorithms in dynamic networks. In: Kutten, S., Žerovnik, J. (eds.)
SIROCCO 2009. LNCS, vol. 5869, pp. 126–140. Springer, Heidelberg (2010)

4. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Building fastest broadcast trees
in periodically-varying graphs (2012). arXiv preprint arXiv:1204.3058

5. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks (2012). arXiv preprint arXiv:1210.3277

6. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW
2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011)

7. Chen, X., Hu, X., Zhu, J.: Minimum data aggregation time problem in wireless
sensor networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp.
133–142. Springer, Heidelberg (2005)

8. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86(13), 165–177 (1990)

9. Cornejo, A., Gilbert, S., Newport, C.: Aggregation in dynamic networks. In: Pro-
ceedings of the 2012 ACM Symposium on Principles of Distributed Computing,
pp. 195–204. ACM (2012)

10. Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques for
wireless sensor networks: a survey. IEEE, Wireless Communications 14(2), 70–87
(2007)

11. Kuhn, F., Oshman, R.: Dynamic networks: Models and algorithms. SIGACT News
42(1), 82–96 (2011)

12. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing
11(2), 329–343 (1982)

13. Nguyen, T.D., Zalyubovskiy, V., Choo, H.: Efficient time latency of data aggrega-
tion based on neighboring dominators in wsns. In: 2011 IEEE Global Telecommu-
nications Conference (GLOBECOM 2011), pp. 1–6. IEEE (2011)

14. Ren, M., Guo, L., Li, J.: A new scheduling algorithm for reducing data aggrega-
tion latency in wireless sensor networks. International Journal of Communications,
Network & System Sciences 3(8) (2010)

15. XiaoHua, X., Li, M., Mao, X.F., Tang, S., Wang, S.G.: A delay-efficient algorithm
for data aggregation in multihop wireless sensor networks. IEEE Transactions on
Parallel and Distributed Systems 22(1), 163–175 (2011)

16. Yu, B., Li, J., Li, Y.: Distributed data aggregation scheduling in wireless sensor
networks. In: IEEE INFOCOM 2009, pp. 2159–2167. IEEE (2009)

http://arxiv.org/abs/1204.3058
http://arxiv.org/abs/1210.3277

Enabling Minimal Dominating Set in Highly
Dynamic Distributed Systems

Swan Dubois(B), Mohamed-Hamza Kaaouachi, and Franck Petit

Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606,
Paris Cedex 5, France
swan.dubois@lip6.fr

Abstract. We address the problem of computing a Minimal Dominat-
ing Set in highly dynamic distributed systems. We assume weak connec-
tivity, i.e., the network may be disconnected at each time instant and
topological changes are unpredictable. We make only weak assumptions
on the communication: every process is infinitely often able to commu-
nicate with other processes (not necessarily directly).

Our contribution is threefold. First, we propose a new definition of
minimal dominating set suitable for the context of time-varying graphs
that seems more relevant than existing ones. Next, we provide a neces-
sary and sufficient topological condition for the existence of a determin-
istic algorithm for minimal dominating set construction in our settings.
Finally, we propose a new measure of time complexity in time-varying
graph in order to allow fair comparison between algorithms. Indeed, this
measure takes account of communication delays attributable to dynam-
icity of the graph and not to the algorithms.

1 Introduction

In modern networks, items (users, links, equipments, etc.) may join, leave, or
move inside the network at unforeseeable times. A common feature of these net-
works is their high dynamic, meaning that their topology keeps continuously
changing over time. Classically, distributed systems are modeled by a static
undirected connected graph where vertices are processes (nodes, servers, proces-
sors, etc.) and edges represent bidirectional communication links. Clearly, such
modeling is not suitable for high dynamic networks. Numerous models taking
into account topological changes over time have been proposed since several
decades, e.g., [1–4]. Some works aim at unifying most of the above approaches.
For instance, in [5], the authors introduced the evolving graphs. They proposed
modeling the time as a sequence of discrete time instants and the system dynamic
by a sequence of static graphs, one for each time instant. More recently, another
graph formalism, called Time-Varying Graphs (TVG), has been provided in [6].

This work was performed within the Labex SMART, supported by French state
funds managed by the ANR within the “Investissements d’Avenir” programme under
reference ANR-11-LABX-65.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-21741-3 4

52 S. Dubois et al.

In contrast with evolving graphs, TVGs allow systems evolving within contin-
uous time. Also in [6], TVGs are gathered and ordered into classes depending
mainly on two main features: the quality of connectivity among the participating
nodes and the possibility/impossibility to perform tasks.

In this paper, we focus on the Minimal Dominating Set (MDS) problem. A
dominating set is a subset of vertices of a graph such as each vertex of this
graph is either in the dominating set or neighbor of a vertex in the dominating
set. A minimal dominating set is such that none of its proper subsets is also
a dominating set of the graph. Like many distributed covering structure (such
as trees, coloring, matching, etc.), Minimal Dominating Set is a key building
block for numerous network protocols, e.g., hierarchical routing and clustering,
multicast, topology control, media access coordination, to name only a few.

Minimal Dominating Set and some of related problems (such as Maximal
Independent Set and Connected Dominating Set) receive some attention in the
context of dynamic networks, e.g., [7–9]. The difficulty to define covering struc-
tures in dynamic networks (including MDS) is pointed out in [10]. Indeed, the
authors show that the definition of such structures may become ambiguous,
incorrect, or even irrelevant when applied in dynamic systems. As an example,
if the dynamicity of the graph is modeled as a sequence of static graphs and a
new MDS is computed at each topological change as in [7], the stability of the
MDS fully depends on the dynamic rate of the network (i.e., the relative speed
of appearance/disappearance of edges). This natural definition may hence lead
to a high instability (or even impossibility of use) of the MDS. We discuss more
precisely this issue in Section 4.

This paper aims at proposing a new approach suitable for Minimal Domi-
nating Set construction in time-varying graph with weak connectivity, i.e., the
graph may be disconnected at each time instant and topological changes are
unpredictable. The only assumption on communications is that every process
is infinitely often able to communicate with other processes (not necessarily
directly). In this context, our contribution is threefold. First, we propose a new
definition of MDS for time-varying graphs that increases stability of this struc-
ture. More precisely, we require each dominated node to be infinitely often neigh-
bor of at least one dominating node. Next, we provide a necessary and sufficient
topological condition for the existence of a deterministic algorithm for MDS con-
struction in our settings. Finally, we propose a new measure of time complexity
in time-varying graphs. This measure takes account of communication delays
attributable to the dynamicity of the graph and not to the algorithm in order
to allow fair comparison between algorithms.

The paper is organized as follows. Section 2 presents formally the time-
varying graph model and our new measure of time complexity. We devote the
Section 3 to some preliminaries necessary to our main results on MDS presented
in Section 4. Finally, Section 5 concludes the paper.

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 53

2 Time-Varying Graph: Model and Complexity

2.1 Model

Let us first borrow the formalism introduced in [6] in order to describe the dis-
tributed systems prone to high dynamic. We consider distributed systems made
of n processes. A process has a local memory, a local sequential and determinis-
tic algorithm, and message exchange capabilities. We assume that each proccess
has a unique identifier. Moreover, given two distinct processes p and q identified
respectively by idp and idq, either idp < idq or idq < idp. All these processes
are gathered in a set V . Let E be a set of edges (or relations) between pairwise
processes, that describes interactions between processes, namely communication
exchange. The presence of an edge between two processes p and q at a given
time t means that each process among {p, q} is able to send a message to the
other at t. For any given (static) graph g, we denote by diam(g) the diameter
of g (that is, the longest distance between two processes of g).

The interactions between processes are assumed to take place over a time
span T ⊆ T called the lifetime of the system. The temporal domain T is generally
assumed to be either N (discrete-time systems) or R+ (continuous-time systems).

Definition 1 (Time-varying graph [6]). A time-varying graph (TVG for
short) g is a tuple (V,E, T , ρ, ζ, φ) where V is a (static) set of processes
{v1, . . . , vn}, E a (static) set of edges between these processes E ⊆ V × V ,
ρ : E ×T → {0, 1} (called presence function) that indicates whether a given edge
is available (i.e. present) at a given time, ζ : E × T → T (called edge latency
function) indicates the time it takes to cross a given edge if starting at a given
date, and φ : V × T → T (called process latency function) indicates the time an
internal action of a process takes at a given date.

Given a TVG g, let Tg be the subset of T for which a topological event
(appearance/disappearance of an edge) occurs in g. The evolution of g during
its lifetime T can be described as the sequence of graphs Sg = g1, g2, . . ., where
gi = (V,Ei) corresponds to the static snapshot of g at time ti ∈ Tg, i.e. e ∈ Ei

if and only if ∀t ∈ [ti, ti+1[, ρ(e, t) = 1. Note that gi �= gi+1 for any i.
We consider asynchronous distributed systems, i.e. no pair of processes has

access to any kind of shared device that could allow to synchronize their exe-
cution rate. Furthermore, at any time, no process has access to the output of
ζ, i.e. none of them can (a priori) predict a bound on the message delay. Note
that the ability to send a message to another process at a given time does not
mean that this message will be delivered. Indeed, the dynamicity of the commu-
nication graph implies that the edge between the two processes may disappear
before the delivery of this message leading to the lost of messages in transit.

The presences and absences of an edge are instantly detected by its two
adjacent processes. We assume that our system provides to each process a non-
blocking communication primitive named Send retry that ensures the following
property. When a process p invokes Send retry(m, q) (where m is an arbitrary
message and q another process of V) at time t, this primitive delivers m to

54 S. Dubois et al.

q in a finite time provided that there exists a time t′ ≥ t such that the edge
{p, q} is present at time t′ during at least ζ({p, q}, t′) units of time. In other
words, the delivery of the message is ensured if there is, after the invocation
of the primitive, an availability of the edge that is sufficient to overcome the
communication delay of the edge at this time. Note that this primitive may never
deliver a message (e.g. if the considered edge never appears after invocation).
Details of the implementation of this primitive are not considered here but it
typically consists in resending m at each apparition of the edge {p, q} until its
reception by q. This primitive allows us to abstract from topology changes and
asynchronous communication and to write high-level algorithms.

Configurations and Executions. The state of a process is defined by the
values of its variables. Given a TVG g, a configuration of g is a vector of n + 2
components (gi,Mi, p1, p2, . . . , pn) such that gi is a static snapshot of g (i.e.
gi ∈ Sg), Mi is the set of messages carried by each edge of Ei (one multi-set
of messages per edge), and p1 to pn represent the state of the n processes in
V . We say that a process p outputs a value v in a configuration γ if one of its
variable (called an output variable) has the value v in γ. An execution of the
distributed system modeled by g is a sequence of configurations e = γ0, . . . , γk,
γk+1, . . ., such that for each k ≥ 0, during an execution step (γk, γk+1), one of
the following event occurs: (i) gk �= gk+1, or (ii) at least one process receives a
message, sends a message, or executes some internal actions changing its state.
The algorithm executed by g describes the set of all allowed internal actions
of processes (in function of their current state or external events as message
receptions or time-out expirations) during an execution of g. We assume that
during any configuration step (γk, γk+1) of an execution, if gk �= gk+1, then for
each edge e such that e ∈ Ek and e /∈ Ek+1 (i.e. e disappears during the step
(γk, γk+1), none of the messages carried by e belongs to Mk+1. Also, for each
edge e such that e ∈ Ek+1 and e /∈ Ek (i.e. e appears during the step (γk, γk+1)),
e contains no message in configuration γk+1.

Connected over Time TVGs. A key concept of time-varying graphs has been
identified in [6]. The authors shows that the classical notion of path in static
graphs in meaningless in TVGs. Indeed, some processes may communicate even
if there is no (static) path between them at each time. To perform communi-
cation between two processes, the existence of a temporal path (a.k.a. journey)
between them is sufficient. They define such a temporal path of a TVG g as
a sequence of ordered pairs {(p1, t1), (p2, t2), ..., (pk−1, tk−1), (pk, tk)} such that
p1, p2, . . . , pk−1, pk is a (static) path of (V,E) and, for every i ∈ {1, . . . , k − 1},
ρ({pi, pi+1}, ti) = 1 and ti+1 ≥ ti+ζ({pi, pi+1}, ti)+φ(pt+1, ti+ζ({pi, pi+1}, ti)).
In other words, a temporal path from process p to process q is a sequence of adja-
cent edges from p to q such that availability and latency of edges and processes
allow the sending of a message from p to q using the Send retry primitive at
each intermediate process (refer to [6] for a formal definition). Note that the
existence of a temporal path is a non symmetric relation between two processes,
even though the graph may be undirected. Based on various assumptions made

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 55

about journeys (e.g. recurrence, periodicity, symmetry, and so on), [6] proposes
a relevant hierarchy of TVG classes. In this paper, we choose to make minimal
assumptions on the dynamicity of our system since we restrict ourselves on
connected-over-time TVGs defined as follows:
Definition 2 (Connected-over-time TVG [6]). A TVG (V,E, T , ρ, ζ, φ) is
connected-over-time if, for any time t ∈ T and for any pair of processes p and
q of V , there exists a journey from p to q after time t. The class of connected-
over-time TVGs is denoted by COT 1.

Note that the lifetime of a connected-over-time TVG is necessarily infinite
by definition. The class COT allows us to capture highly dynamic systems since
we only require that any process will be always able to communicate with any
other one without any extra assumption on this communication (such as delay,
periodicity, or used route). In particular, note that a connected-over-time TVG
may be disconnected at each time and that the presence of an edge at a given
time does not preclude that this edge will appear again after this time. Define
an eventual missing edge as en edge that appears only a finite number of time
during the lifetime of the TVG. The main difficulty encountered in the design
of distributed algorithms in COT is to deal with such eventual missing edges
because no process is able to predict if a given adjacent edge is an eventual
missing edge or not. Note that the time of the last presence of such an eventual
missing edge cannot even be bounded.
Definition 3 ((Eventual) Underlying Graph). Given a TVG g = (V,E, T ,
ρ, ζ, φ), the underlying graph of a g is the (static) graph Ug = (V,E). The
eventual underlying graph of g is the (static) subgraph Uω

g = (V,Eω
g) with

Eω
g = E \ Mg, where Mg is the set of eventual missing edges of g.

Intuitively, the underlying graph (sometimes referred to as footprint) of a
TVG g gathers all edges that appear at least once during the lifetime of g,
whereas the eventual underlying graph of g gathers all edges that are infinitely
often present during the lifetime of g. Note that, for any TVG of COT , both
underlying graph and eventual underlying graph are connected by definition. Let
us define the neighborhood Np of a process p is the set of processes with which
p shares an edge in the underlying graph.
Induced Subclasses. In the following, we focus on specific subclasses of the
class COT to establish our impossibility result. Informally, we focus on sub-
classes that gather all TVGs whose underlying graph belongs to a given set.
The intuition behind this restriction is the following. In practice, some techni-
cal reasons may restrict or prevent the communication between some processes,
that induces a given underlying graph for the TVG that models our system. In
contrast, we cannot predict in general the availabilities of communication edges,
that leads us to consider all TVGs sharing this underlying graph.
Definition 4 (Induced subclass). Given a set of (static) graphs F and a
class of TVGs C, the subclass of C induced by F (denoted by C|F) is the set of
all TVGs of C whose underlying graph belongs to F .

1 Authors of [6] refer to this class as C5 in their hierarchy of TVG classes.

56 S. Dubois et al.

2.2 Complexity Measures

To our knowledge, there exists no time complexity measure that is suitable for
any class of TVGs. Some previous works deal with complexity measure in the
TVG model but restrict themselves to synchronous systems (see e.g. [11,12]),
to message complexity (see e.g. [13]), or to specific class of TVGs in which an
existing notion of complexity naturally makes sense (e.g. [13,14]).

The first contribution of this paper is to propose a definition of a time com-
plexity measure suitable for our model. To ease the reading of the formal defini-
tion (Definition 5), we first informally describe our approach. Let us first provide
a definition that captures the “quality” of an algorithm independent of delays
introduced by asynchronous communications but also by topological changes. A
typical example of such a delay is the waiting after the next apparition of an
incident edge to a disconnected process that may introduce a long delay that is
not imputable to the algorithm but only to the dynamicity of the system. To
perform our goal, we propose to extend the classical notion of time complexity
commonly adopted in asynchronous message passing (static) systems.

The classical way to deal with communication delays in time complexity mea-
sure in asynchronous message passing models is to consider as the unit of time of
an execution the worst delay between the sending and the reception of a message
during this execution (see [15] for example). Using this time measure, we can
bound the termination time of any execution of an algorithm independently of
communication delays in this execution. This leads to a time complexity measure
(the worst termination time over all possible executions of the algorithm) that
induces a fair comparison between algorithms. Our proposal is to extend this
idea to dynamic environments by including delays introduced by the dynamic-
ity in this definition. In other words, we will consider as the unit of time of an
execution the worst delay between the invocation of the Send retry primitive
and the delivery of the message by this primitive during this execution.

This natural extension of the definition of time complexity measure of asyn-
chronous message passing systems is not sufficient. Indeed, the dynamicity of the
system may introduce another possibly arbitrarily long delay that we call initial
delay. As an example, consider a problem that requires each process to propagate
an initial value (think about consensus-like problems). An easy way to delay the
termination of any algorithm for this problem is to disconnect one process for
an arbitrary long (but bounded) time that leads all other processes to wait after
its first apparition. Such delay is not due to the algorithm but to the dynamicity
of the system and our complexity measure have to ignore such initial delay. To
deal with this issue, we propose to define for each problem a starting time as
follows. Informally, it is the smallest time of an execution where the dynamicity
of the system “shows” to processes the minimal topological information to solve
the problem. Note that this starting time depends only of the problem (e.g. first
connexion of the last process for consensus-like problems) and that, in a static
system, the starting time and the initial time are identical (since the system
cannot delay apparition of any topological information).

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 57

Then, we propose to measure the complexity of an algorithm by the worst
time (expressed in the time unit described above) between the starting time and
the termination of the algorithm over all its possible executions. We believe that
this time complexity measure allows us to fairly compare algorithms designed in
our model based on TVGs since it exhibits their intrinsic communication costs
and does not take into account delays introducing by asynchronous communica-
tions and topological changes.

We now formally state the complexity measure. In the following, we first
restrict to fixed point computation problems on a TVG class C, i.e. problems
that admit a specification of the following form: it is required that the execution
e = γ0, γ1, . . . on every TVG of C reaches in a finite time a suffix ei = γi, γi+1, . . .
where each process outputs constantly a given value. The required value depends
on the considered problem and is not necessarily the same at each process. Using
this definition, leader election or spanning structure construction are fixed point
computation problems whereas mutual exclusion or broadcast are not.

We consider now a (deterministic) distributed algorithm A that satisfies the
specification of a fixed point computation problem P on a TVG class C. Let e
be the execution of A on a given TVG of class C. For any message m sent during
e, we call delay (of m) the time between the invocation of the Send retry
primitive by the sender of m and the delivery of m to its destination. Now,
we call communication step (or simply step) of e the worst delay over the set
of messages that are actually delivered during e (note that we do not consider
messages that are never delivered in e).

We associate to P a function NPSP , called the necessary presence sets func-
tion of P, that returns, for any TVG (V,E, T , ρ, ζ, φ) of C, a set of subsets of
E. Note that the actual definition of this function depends on the problem itself
and not of a TVG nor an execution. Each element of NPSP(g) describes one of
the set of edges whose apparition is necessary and sufficient to start the effec-
tive solving the problem (independently of the used algorithm). We give some
examples in the following. For the underlying graph computation problem UG,
we have NPSUG(g) = {E} since each edge of E must appear in the output of
any process. For a broadcast problem B, we have NPSB(g) = {{(p, q)}|q ∈ Np}
(where process p is the initiator) since the apparition of any edge adjacent to
p (that is, the first connexion of p to the system) is necessary and sufficient to
begin the broadcast of a message by p.

We define the starting time of the execution e of A over a TVG g as the
smallest time t ∈ T such that each edges of at least one element of NPSP(g) are
present at least once before t in this execution. Note that, in a static distributed
system, the initial time and the starting time are always identical since all edges
of all elements of NPSP(g) are present in the initial configuration whatever
the definition of NPSP is. Finally, the convergence time of A on g is the time
(expressed in communication steps of e) between the starting time of e and the
smallest time in e where the specification of P is satisfied.

Definition 5 (Time complexity on a TVG class). The time complex-
ity of a distributed algorithm A that satisfies the specification of a fixed point

58 S. Dubois et al.

computation problem P on a TVG class C is the worst convergence time of A
on all TVGs of C.

Note that this definition may be naturally extended to so-called service prob-
lems in the following way. First, we consider as starting time the maximum
between the starting time defined above and the time of request of a service
(e.g. the sending of a message for a broadcast algorithm, the request of critical
section for a mutual exclusion algorithm). Second, we substitute the convergence
time of the algorithm by the time of achievement of the required service by the
algorithm (e.g. the delivery of a message to its destinations for a broadcast
algorithm, the starting of critical section for a mutual exclusion algorithm).

3 Underlying Graph Computation

In this section, we present an underlying graph computation algorithm (see
Section 3.1) and proves its time optimality with respect to our new measure
(see Section 3.2). This algorithm is used as a building block in the next section
for our minimal dominating set construction algorithm. Before presenting our
algorithm, we need to specify the underlying graph computation problem.

Specification 1 (Underlying graph). An algorithm A satisfies the underly-
ing graph specification for a class of TVGs C if the execution e = γ0, γ1, . . . of A
on every TVG g of C has a suffix ei = γi, γi+1, . . . for a given i ∈ N such that
each process outputs the underlying graph of g in any configuration of ei.

3.1 Algorithm

Our underlying graph computation algorithm is presented in Algorithm 1. The
intuition behind this algorithm is simple. Each process stores locally a graph,
initially empty, that eventually gathers all edges of the underlying graph. At the
first appearance of an edge, the two adjacent processes add this edge to their
graph. Then, they try to propagate the last version of their graph to all processes
that they have as neighbor at least once since the beginning of the execution.
When a process receives such a message (that contains the current underlying
graph of another process), it add to its own underlying graph every edge it does
not already know. If its underlying graph grows during this operation, then the
process propagates again its underlying graph to all processes that it has as
neighbor at least once since the beginning of the execution.

This algorithm ensures that, upon the first apparition of the last edge of the
underlying graph, this edge is added to the output of adjacent processes and then
propagated (at least) to their neighbors in the eventual underlying graph in one
step, and so on (note that we have no guarantees for neighbors in the underlying
graph in general since some eventual missing edges may exist). Hence, in any
execution, after at most diam(Uω

g) steps, this edge (and all others) appears in
the output graph of any process. In other words, we have the following result:
Theorem 1. Algorithm 1 satisfies the underlying graph specification for COT .
Moreover, its convergence time on any TVG g of COT is diam(Uω

g) steps.

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 59

Algorithm 1. Underlying graph computation for process p

Variables:
gp = (Vp, Ep) initially ({p}, ∅)
Np initially ∅

Upon appearance of an edge {p, q}:
if {p, q} /∈ Ep then

Np := Np ∪ {q}
gp := (Vp ∪ {q}, Ep ∪ {{p, q}})

foreach r ∈ Np do
Send retry(add(gp), r)

On reception of add(gq) from q:
if Eq \ Ep �= ∅ then

gp := (Vp ∪ Vq, Ep ∪ Eq)
foreach r ∈ Np \ {q} do

Send retry(add(gp), r)

3.2 Time Optimality

In this section, we interest in a lower bound result on the time complexity of
underlying graph computation. We restrict ourselves to greedy algorithms that
are the most natural ones for this problem. We define a greedy algorithm for
the underlying graph computation as an algorithm that satisfies the following
property. The initial output of any process is an empty graph and the graph
outputted by a process can only grow (in the sense of inclusion) over time. In
other words, such an algorithm ensures that, once a process start to output a
given edge or process, this latter always appears in the output of this process
afterwards. Note that Algorithm 1 falls in this category.

In the following, we prove that no greedy algorithm for underlying graph
computation on COT can exhibit a better time complexity than our algorithm.
Indeed, we prove that there exists, for any greedy algorithm, a TVG g in COT
such that this algorithm needs diam(Uω

g) steps to compute the underlying graph
of g. Note that the complexity of the underlying graph computation depends
surprisingly of a parameter of the eventual underlying graph. Before proving
this result, we need a technical lemma for the proof of this optimality result.
Lemma 1. For any greedy algorithm A that satisfies the underlying computation
graph, for any TVG g = (V,E, T , ρ, ζ, φ) in COT , for any edge e ∈ E that is
not a cut-edge of Uω

g , for any process p ∈ V , for any t ∈ T , e cannot belong to
the graph outputted by p in the execution of A on g at time t if there exists no
temporal path from one extremity of e to p that starts after the first appearance
of e in g and ends before t.

Theorem 2. For any greedy algorithm A that satisfies the underlying graph
specification on COT , there exists a TVG g of COT such that the convergence
time of A is at least diam(Uω

g) steps.
Proof. Let A be a greedy algorithm that satisfies the underlying graph specifi-
cation on COT . let us define the family of TVGs (gk)k∈N∗ described by Figure
1. Note that, for any k ∈ N

∗, we have diam(Uω
gk

) = 2k (and diam(Ugk
) <

diam(Uω
gk

) since diam(Ugk
) = k + 1). As this graph is connected, gk belongs to

COT . By construction of gk, the starting time of the execution of A on gk is 1
for any k ∈ N

∗ (recall that NPSUG(g) = {E}). Note that, due to the choice of
the latency function, any communication step of the execution of A on gk takes
exactly one time unit.

60 S. Dubois et al.

[1,+∞]

[1,+∞]

[1,+∞]

[1,+∞]

[1,+∞]

[1,+∞]

[1,+∞]

[0, 1[

p1pk−2

pk−1

pk

pk+1

p2k

p2k−1

p2k−2

p2k+1 p2k+2 p3k−2 p3k−1 p3k

[1,+∞] [1,+∞] [1,+∞] [1,+∞] [1,+∞]

[1,+∞]
p0

[0, 1[

Fig. 1. An illustration of the TVGs family in the proof of Theorem 2

Consider ek the execution of A on gk for any k ∈ N
∗. From Lemma 1, we

know that the edge {pk−1, pk} cannot appear in the graph outputted by p3k in ek

before there exists at least one temporal path from pk−1 or pk to p3k. Note that
the construction of gk implies that such a temporal path (after time 1) needs at
least 2k steps (the length of the path from pk−1 or pk to p3k since gk is static
after time 1). As the edge {pk−1, pk} must eventually appear in the output of
any process in ek by assumption on A, we obtain that the convergence time of
A is at least diam(Uω

gk
) steps, that ends the proof. �	

4 Minimal Dominating Set Construction

Minimal dominating set construction is a classical problem in distributed
computing since this spanning structure have interesting properties for a lot
of practical problems as clustering. Recall that, in a static distributed system, a
dominating set D is a subset of processes of the system such that each process
that does not belong to D have at least one neighbor in D. Such a dominating
set is minimal when it has is no strict subset that is also a dominating set.

Regarding dynamic distributed systems, two different approaches have been
proposed to handle minimal dominating set problem. We survey them quickly
here and show that these definitions seem not relevant in our context, that
motivates the need of our new definition presented in this section.

The most natural way to extend minimal dominating set definition in the
context of dynamic systems is presented in [7]. In this work, the dynamic graph
is seen as a sequence of static graphs and a new minimal dominating set is
computed at each topological change. This approach is not suitable in the case
of highly dynamic systems since the system may be always in computation phase
(the computation of the new dominating set at each topological change is not
instantaneous). In this case, the dominating set may be never stable and is then
useless for the application that required it.

The second approach, proposed by [10], consists in computing a stable dom-
inating set on the underlying graph of the TVG. This approach is interesting
since the outputted dominating set is stable in spite of the dynamicity of the

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 61

system but is still not suitable for our purpose. Indeed, as the dominating set
is computed on the underlying graph that may contain eventual missing edges,
it is possible for a process to be dominated only through such edges. In other
words, a dominated process may have eventually only dominated neighbors, that
is counter-intuitive for a minimal dominating set and makes sense only in TVGs
where there is no eventual missing edges.

To overcome flaws of precedent definitions in our context of highly dynamic
distributed systems (captured by the class of TVGs COT), we propose a third
definition in which we require the outputted minimal dominating set to be sta-
ble and each dominated process to be infinitely often neighbor of at least one
dominating process. In other words, we want to compute a minimal dominating
set on the eventual underlying graph. Note that this definition is exactly the
same as the one of [10] in TVGs where there is no eventual missing edges. We
specify the minimal dominating set construction problem over TVGs as follows.

Definition 6 (Minimal dominating set over time). A set of processes M
is a minimal dominating set over time (MDST for short) of a TVG g if M is a
minimal dominating set of Uω

g .

Specification 2 (Minimal dominating set). An algorithm A satisfies the
minimal dominating set specification for a class of TVGs C if the execution
e = γ0, γ1, . . . of A on every TVG g of C has a suffix ei = γi, γi+1, . . . for a
given i ∈ N such that each process outputs constantly a boolean value in any
configuration of ei and that the set of processes outputting true is a minimal
dominating set over time of g.

4.1 Preliminaries

In this section, we present some preliminary results that are needed in the fol-
lowing. First, we introduce the definition of a strong minimal dominating set of
a graph as a dominated set of any connected spanning subgraph of this graph.
In Section 4.2, we prove that the existence of such a set in the underlying graph
of a TVG is necessary to the existence of an algorithm to construct a minimal
dominating set over time of this TVG. We claim in Section 4.3 that this condi-
tion is also sufficient. To prove this result, we use the following characterization
of graphs that admit a strong minimal dominating set.

Definition 7 (Strong minimal dominating set). A strong minimal domi-
nating set (SMDS for short) of a (static) graph g is a subset of processes of g
that is a minimal dominating set of every connected spanning subgraph of g.

The following lemma follows directly from definitions and legitimates our
interest for strong minimal dominating sets.
Lemma 2. If the underlying graph of a TVG g ∈ COT admits a strong minimal
dominating set M then M is a minimal dominating set over time of g.

The next result provides us a characterization of (static) graphs that admits a
SMDS. We use this characterization in our minimal dominating set construction
algorithm. The quite simple proof of this lemma is delegated to the appendix.

62 S. Dubois et al.

Lemma 3. For any (static) graph g and any minimal dominating set M of
g, M is a strong minimal dominating set of g if and only if the set of edges
{{p, q}|q ∈ M ∩ Np} is a cut-set in g for every process p ∈ V \ M .

4.2 Impossibility Result

The proof of our impossibility result presented in Theorem 4 makes use of a
generic framework we proposed in another work. We recall here the minimal
definitions and results to understand our proof. Due to the lack of space, the
interested reader is referred to [16] for more details.

Summary of [16]. For a given time domain T, a given static graph (V,E) and
a given latency function ζ, let us consider the set G(V,E),T,ζ of all TVGs over T

that admit (V,E) as underlying graph and ζ as latency function. For the sake of
clarity, we will omit the subscript (V,E),T, ζ and simply denote this set by G.
Remark that two distinct TVGs of G can be distinguished only by their presence
function. For any TVG g in G, let us denote its presence function by ρg. We define
now the following metric dG over G. If g = g′, then dG(g, g′) = 0. Otherwise,
dG(g, g′) = 2−λ with λ = Sup {t ∈ T|∀t′ ≤ t,∀e ∈ E, ρg(e, t′) = ρg′(e, t′)}.

For a given algorithm A and a given TVG g, let us define the (A, g)-output
as the function that associate to any time t ∈ T the state of g at time t when it
executes A. We say that g is the supporting TVG of this output. Let us consider
the set OA,G of all (A, g)-outputs over all TVGs g of G. For the sake of clarity,
we will omit the subscript A,G and simply denote this set by O. Remark that
two distinct output of O can be distinguished only by their supporting TVG.
For any output o in O, let us denote its supporting TVG by go. We define
now the following metric dO over O. If o = o′, then dO(o, o′) = 0. Otherwise,
dO(o, o′) = 2−λ with λ = Sup {t ∈ T|∀t′ ≤ t, o(t′) = o′(t′)}.

Once we have observed that the metric spaces (G, dG) and (O, dO) are com-
plete, we are now able to recall the main result of [16]. Intuitively, this theorem
ensures that, if we take a sequence of TVGs with ever-growing common pre-
fixes, then the sequence of corresponding outputs also converges. Moreover, we
are able to describe the output to which it converges as the output that cor-
responds to the TVG that shares all commons prefixes of our TVGs sequence.
This result is useful since it allows us to construct counter-example in the con-
text of impossibility results. Indeed, it is sufficient to construct a TVG sequence
(with ever-growing common prefixes) and to prove that their corresponding out-
puts violates the specification of the problem for ever-growing time to exhibit
an execution that violates infinitely often the specification of the problem.

Theorem 3. For any deterministic algorithm A, if a sequence (gn)n∈N of G
converges to a given gω ∈ G, then the sequence (on)n∈N of the (A, gn)-outputs
converges to oω ∈ O. Moreover, oω is the (A, gω)-output.

Application to Minimal Dominating Set. We are now in measure to prove
our impossibility result. This result states that there exists no deterministic
algorithm that satisfies the minimal dominating set specification on a TVG of

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 63

gi

g3

g2

g1

g0
η0

α0
η1

α1
η2

α2 α3
η3

αi

gi+1

gω

M0

M0

M0

M0

M0

M0

0

0

0

0

0

0

M1

M1

M1

M1

M1

1

1

1

1

1

M2

M2

M2

M2

M3

M3

M3

2

2

2

2

3

3

3

Mi

Mi

i

i Mi+1

ηi ηi+1

Fig. 2. An illustration of the sequence (gn)n∈N used in the proof of Theorem 4

COT as soon as the underlying graph of the considered TVG does not admit
a strong minimal dominating set. Intuitively, this impossibility comes from the
following fact. As no process is able to detect eventual missing edges, the minimal
dominated set computed by any algorithm must be a minimal dominated set of
any possible eventual underlying graph, that is of any connected subgraph of
the underlying graph. In other words, the computed minimal dominated set is a
strong minimal dominating set. The existence of such a set is then a necessary
condition to the existence of an algorithm to compute a minimal dominating
set over time. The main difficulty of the formal proof of this result lies in the
construction of the TVGs sequence that allows us to apply Theorem 3.

Theorem 4. For any set of (static) graphs F containing at least one graph that
does not admit a strong minimal dominating set, there exists no deterministic
algorithm that satisfies the minimal dominating set specification for COT |F .

Proof. Let us introduce some notation first. We define, for any TVG g =
(V,E, T , ρ, ζ, φ), the TVG g � {(Ei, Ti)|i ∈ I} (with I ⊆ N and for any i ∈ I,
Ei ⊆ E and Ti ⊆ T) as the TVG (V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =

⎧

⎪
⎨

⎪
⎩

0 if ∃i ∈ I, e ∈ Ei and t ∈ Ti

1 if ∃i ∈ I, e ∈ E \ Ei and t ∈ Ti

ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F contain-
ing at least one graph that does not admit a strong minimal dominating set and
that there exists a deterministic algorithm A that satisfies the minimal domi-
nating set specification for COT |F . In consequence, any process that executes A
outputs a boolean value at any time.

Let g = (V,E, T , ρ, ζ, φ) be a TVG of COT |F such that Ug does not admit a
strong minimal dominating set and that all edges of Ug are present during the
first communication step of the execution of A on g (g exists by construction
of F and by definition of COT |F). Let t0 be the time of completion of the first

64 S. Dubois et al.

communication step of the execution of A on g. We construct then a sequence
(gn)n∈N of TVGs as follows. We set g0 = g. Assume that we have already gi =
(V,E, T , ρ′, ζ, φ) for a given i ∈ N such that gi ∈ COT |F , Ugi

= Ug, and ∃αi >
t0,∀e ∈ E,∀t ≤ αi, ρ

′(e, t) = ρ(e, t). Then, we define inductively gi+1 as follows
(refer to Figure 2 for an illustration, gray boxes represent portions of executions
where A outputs a stable minimal dominating set):
1. Consider the execution of A over gi and let ηi ∈ T be the smallest time strictly
greater than αi from which the set of processes that output true is constant (ηi

exists by assumption on A since gi ∈ COT |F);
2. Let Mi be the minimal dominating set computed by A on gi (i.e. the set of
processes of gi outputting true after ηi). As Ugi

= Ug, we know by assumption
on Ug that Ugi

does not admit a SMDS. In particular, Mi is not a SMDS of
Ugi

. Hence, there exists a process pi of V \ Mi such that the set of edges Ei =
{{pi, q}|q ∈ Mi ∩ Npi

} is not a cut-set of Ugi
;

3. Let g′
i = gi � {(Ei, T ∩]ηi,+∞[)}.

4. Remark that Ug′
i

= Ugi
= Ug (by construction of g′

i since ηi > t0) and that
Uω

g′
i

is connected (since E(Uω
g′

i
) = E(Ug) \ Ei by construction2 and Ei is not a

cut-set of Ug). Hence, g′
i ∈ COT |F and we can consider the execution of A over

g′
i. Let αi ∈ T be the smallest time strictly greater than ηi from which the set

of processes that output true is constant. Let M ′
i be the minimal dominating set

computed by A on g′
i (i.e. the set of processes of g′

i outputting true after αi).
Note that M ′

i �= Mi since Mi is not a minimal dominating set of Uω
g′

i
(recall that,

in Uω
g′

i
, pi has no neighbor in Mi);

5. Let gi+1 = gi � {(Ei, T ∩]ηi, αi])}.
It is straightforward to check that this construction ensures that, if there

exists gi = (V,E, T , ρ′, ζ, φ) for a given i ∈ N such that gi ∈ COT |F , Ugi
= Ug,

and ∃αi > t0,∀e ∈ E,∀t ≤ αi, ρ
′(e, t) = ρ(e, t), then gi+1 satisfies the same

property. Moreover, as g0 = g, this property is naturally satisfied for i = 0 with
any α0 > t0. Hence, the sequence (gn)n∈N is well-defined. Note that, for any
i ∈ N, ηi < αi and αi < ηi+1 (by construction).

That allows us to define the following TVG: gω = g�{(Ei, T ∩]ηi, αi])|i ∈ N}.
Note that Ugω

= Ug and then that gω belongs to COT |F . Observe that, for any
k ∈ N

∗, we have dG(gk, gω) = 2−ηk by construction of (gn)n∈N and gω. Thus,
(gn)n∈N converges in COT |F to gω.

We are now in measure to apply the Theorem 3 that states that the (A, gω)-
output is the limit of the sequence of the (A, gn)-outputs. In other words, the
(A, gω)-output shares a prefix of length ηi with the (A, gi)-output for any i ∈ N

(recall that the sequence of the (A, gn)-outputs is Cauchy since it converges).
That means that, for any i ∈ N

∗, the set of processes that output true in gω at
ηi is Mi and the set of processes that output true in gω at αi is M ′

i . As we know
that Mi �= M ′

i for any i ∈ N, we obtain that the set of processes that output
true in gω never converges, that contradicts the fact that A satisfies the minimal
dominating set specification for COT |F and ends the proof. �	

2 where E(g) denotes the set of edges of g.

Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems 65

4.3 Algorithm

We are now able to prove the sufficiency of the existence of a strong minimal
dominating set on the underlying graph for the construction of a minimal dom-
inating set over time of any TVG of COT . This result is proved by presenting
an algorithm based on our underlying graph computation algorithm presented
in Section 3. This algorithm works as follows. Once a process has computed the
underlying graph, it is easy to decide if this process belongs to the outputted
minimal dominating set: the process enumerates (locally and in a deterministic
order based e.g. on process identities) all minimal dominating sets of the under-
lying graph (it is sufficient to enumerate all subsets of processes and to keep
only minimal dominating sets) and chooses the first one that satisfies Lemma 3.
This latter is then a strong minimal dominating set of the underlying graph and
hence a minimal dominating set over time of the TVG by Lemma 2. In order to
avoid the use of an algorithm of termination detection (for the underlying graph
computation), each process repeats the local computation of its output at each
update of its local copy of the underlying graph by the algorithm of Section 3.

Theorem 5. For any set of (static) graphs F containing only graphs that admit
a strong minimal dominating set, there exists a deterministic algorithm that
satisfies the minimal dominating set specification for COT |F .

5 Conclusion

This paper addressed the construction of a minimal dominating set over time
(MDST) in highly dynamic distributed systems. We considered the weakest con-
nectivity assumption in the hierarchy of time-varying graphs: the graph may be
disconnected at each time, topological changes are unpredictable but we know
that any process is able to communicate with any other infinitely often using so-
called temporal paths. We proposed a new definition of minimal dominating set
increasing the stability of the computed MDST. Next, we provided a necessary
and sufficient topological condition for the existence of a deterministic MDST
algorithm. We then proposed a new measure of time complexity that takes into
account the communication delays due to network dynamic.

The above results used the construction of an underlying graph. We showed
the time optimality of our algorithm with respect to our measure. Note that our
result (Theorem 2) is valid for greedy algorithms only. We conjecture that all
distributed underlying graph algorithms are greedy. This would lead to generalize
our result of optimality. Also, we would like to extend our approach to other
related overlay constructions.

References

1. Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E., Vandin, F.: Algorithms
on evolving graphs. In: ITCS, pp. 149–160 (2012)

2. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an even-
tually connected network. In: PODC, pp. 278–281 (1984)

66 S. Dubois et al.

3. Ferreira, A.: Building a reference combinatorial model for manets. Network 18(5),
24–29 (2004)

4. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: PODC, pp. 210–219 (2009)

5. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. IJFCS 14(02), 267–285 (2003)

6. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

7. Whitbeck, J., Dias de Amorim, M., Conan, V., Guillaume, J.L.: Temporal
reachability graphs. In: MobiCom, pp. 377–388 (2012)

8. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for
bounded-independence graphs. Distributed Computing 22(5–6), 349–361 (2010)

9. Casteigts, A., Mans, B., Mathieson, L.: On the feasibility of maintenance
algorithms in dynamic graphs. Technical report, arXiv - abs/1107.2722 (2011)

10. Casteigts, A., Flocchini, P.: Deterministic algorithms in dynamic networks:
Problems, analysis, and algorithmic tools. Technical report, DRDC 2013-020 (2013)

11. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: PODC, pp. 1–10 (2011)

12. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic
networks. In: STOC, pp. 513–522 (2010)

13. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations
in time-varying graphs: Broadcasting under unstructured mobility. In: ICTCS,
pp. 111–124 (2010)

14. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic
graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 250–262. Springer, Heidelberg (2014)

15. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. John Wiley Interscience (2004)

16. Braud-Santoni, N., Dubois, S., Kaaouachi, M.H., Petit, F.: A generic framework
for impossibility results in time-varying graphs. In: APDCM (to appear, 2015)

The Match-Maker: Constant-Space Distributed
Majority via Random Walks

Leszek G ↪asieniec1, David D. Hamilton1(B),
Russell Martin1, and Paul G. Spirakis1,2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{l.a.gasieniec,d.d.hamilton,russell.martin,p.spirakis}@liverpool.ac.uk
2 Computer Technology Institute and Press “Diophantus”, Rion, Patras, Greece

Abstract. We propose and analyze here a simple protocol for consensus
on the majority color in networks whose nodes are initially one of two
colors. Our protocol guarantees that, if a majority exists, then eventually
each node learns of the majority color. Our protocol requires only 2 bits
of memory per node and uses a simple token message, of also 2 bits
size, that performs random walks. We show correctness of our protocol
for any connected graph (even unknown to the nodes) and even for a
natural class of dynamic graphs. We show upper and lower bounds on
the convergence time of our protocol. We discuss termination and we also
provide a variant of our protocol which the token uses a counter that can
count only up to

√
n logn, where n is the number of network nodes. Our

basic (memoryless) protocol takes only O(n logn) expected time on the
clique which surprisingly does not deviate from the cover time of the
random walk, and O(n2m) time on any connected undirected network of
m edges and this bound is met from below by an argument on the line.
Finally, we also consider random walks that can count the difference of
colors and we show upper bounds on the counter value by using coupling
arguments.

1 Introduction

1.1 The Problem, Model and Motivation

Consider an undirected and connected graph G = (V,E) of |V | = n vertices
(nodes) and |E| = m edges. Initially, each node is colored either blue (BLUE)
or red (RED). In the sequel we use X for X = BLUE (resp. RED) to denote
RED (resp. BLUE), i.e. if X is a color then X is its “complement”. No node
can store more than a fixed number of bits, in fact, not more than 2 bits. The
main problem is to devise a correct and efficient distributed procedure executed
by the network nodes which can communicate with neighbors via constant-size
messages. Eventually, all nodes must agree on the initial majority color (if such a
majority exists). We call this the Majority Color Problem (MCP). The purpose
of this paper is to propose and analyze a specific algorithmic procedure which
solves the Majority Color Problem, with only O(1) bits per node and O(1) bits
per message.

This work is partially supported by the Liverpool EEE/CS School NeST Initiative.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 67–80, 2015.
DOI: 10.1007/978-3-319-21741-3 5

68 L. G ↪asieniec et al.

We assume that the network is synchronous. We consider here networks that
are unknown to the nodes, where each node knows only the links (edges) to its
neighbors. We also consider dynamic networks in which neighbors may change
from round to round. Because of the above, we allow any node to select a random
link incident to it and send a message via that link. In other words, we allow
nodes to initiate and maintain a random walk in the unknown graph.

Random walks have been extensively studied in distributed computing in the
context of problems like exploration and information dissemination. In this paper
we show that random walks are suitable, in particular they are very efficient in
time and space, to solve the MCP. The random walk acts here like the match-
maker person (in olden times) in several countries, going from village to village
and trying to match boys (blue) with girls (red). Upon encountering a boy, the
match-maker gets his “color” and places him in a “matched” condition and then
proceeds to find a corresponding girl via the random walk in the network. Hence,
we call our proposed protocol The Match-Making Algorithm.

Correct majority protocols with messages only a few bits in size, that only
perform random walks, are very useful from a security point of view since:
(a) The origin of a random walk cannot be traced back.
(b) An eavesdropper that intercepts a token (of a few bits), doing a random

walk, cannot infer anything about the vote of a particular person (neither
about the result of the voting).

As we shall see, our proposed solution satisfies (a) and (b), and can be used
in unknown (and even dynamic) networks, without the need of votes moving
around or stored in any central place.

One of the important measures of performance of a random walk is the cover
time:
Definition 1. (Cover Time) Consider a random walk on an undirected, con-
nected graph, starting at vertex v. Let tv be the minimum time for the walk to
visit all of G’s vertices at least once. Let E(tv) be the expected value of tv. The
maximum (over all vertices v) of E(tv) is called the (expected) Cover Time of
the graph.
In this work we also consider dynamic networks i.e. graphs where the neighbors
of every node change in an adversarial way in each round of the global clock. We
however assume that our dynamic networks change due to a benign adversary
that satisfies two properties:
Definition 2. (Benign adversaries) An adversary that changes the graph struc-
ture per round is benign if and only if
1. The adversary is oblivious to any random choices made by our protocol.
2. For any two nodes u,v and any time t0, the edge {u, v} shall (re)appear in

time (round) t0 + t1 with t1 bounded above by some finite bound β (which
may depend on the number of nodes, n in the graph).

3. The adversary maintains the nodes of the graph (no node deletions or inser-
tions).

We call β the tolerance time of the dynamic graph.

The Match-Maker: Constant-Space Distributed Majority via Random Walks 69

1.2 Our Results

We provide here a simple distributed algorithm called BASIC that uses only (1)
2 bits of memory per node, (2) a single token of 2 bits long, and (3) always
converts the color of all nodes in the graph to the initial majority color, if such a
color exists. Our algorithm, in its basic form, does not terminate but converts all
colors to the majority color in finite time, even in unknown or dynamic graphs.
One can equip the system with a global clock readable by all nodes allowing
termination of our process with high probability (w.h.p)1 if the value of n is
known by the vertices. We provide a lower bound of the convergence time of
BASIC, for any given initial placement of node colors. If there is no majority,
the problem has no solution and there will remain an arbitrary division between
two colors in the network.

We show that BASIC converts all nodes to the majority color in expected
O(n log n) time for the clique graph and in at worst O(n2m) time for any con-
nected graph. Our bound for the clique matches the cover time of the random
walk. Our bound for arbitrary graphs is tight on the line. Finally, we consider
random walks that can count the difference in the number of colors visited, and
show non-trivial upper bounds on the counter value in order for such procedures
to work correctly.

1.3 Previous Work

Our proposed method is inspired by the work in [10] where a similar proto-
col was used in the context of population protocols. Here we convert the ideas
of [10] into a message passing protocol that employs random walks and we prove
its correctness for unknown static networks and for a certain natural class of
dynamic networks. For the clique and for general graphs we show expected con-
vergence time of O(n log n) and O(n2m) respectively, while the corresponding
times in [10] were O

(
n2 log n

|majority|−|minority|
)

and O(n6).
Avin et al [4] have proved that random walks can cover all the vertices of

dynamic graphs (in finite, possibly exponential, time) when the dynamic graphs
either evolve in a Markovian way or they are always connected. Our model of
dynamic graphs is not covered by those models because our dynamic graph
can evolve in an adversarial way and may also not be connected at any (or
all) rounds during the execution of the BASIC algorithm. Because of the finite
expected cover time of the model of Avin et al, it can be easily shown that our
protocol is also correct for those dynamic graphs.

Other works on distributed majority include [3,6,11] which show how to
reduce multivalued consensus to binary consensus. However, such protocols
assume either a stronger network with broadcast [11] or randomization [6].

The notion of using a charge was first proposed by Birk et al [5] to solve a sim-
ilar problem, in which they combine an efficient spanning forest algorithm with a

1 “With high probability” means with probability at least 1 − c
n

for some constant c,
where n is the number of nodes in the graph.

70 L. G ↪asieniec et al.

“charge fusion” algorithm. The paper proposes a stronger model to solve a more
general problem, which has more requirements and enables direct access to neigh-
bors. Also, their solution relies on larger memory and additional computation.

In contrast, our method requires only a single token of 2 bits able to perform
a random walk in the network, and is always correct in the sense that if an initial
color majority exists, then eventually all nodes agree on the majority color. Our
method performs no artihmetic calculations and instead represents a finite state
machine. The topology of the graph is unknown to the vertices and vertices are
anonymous. For basic notations on probability, martingales and random walks,
see [2,8,12].

2 Our Proposed Method: The Match-Making Algorithm

Our proposed method presumes the existence of a single token message, initially
in some arbitrary node. The token is only keeping one of three values {RED,
BLUE, UNCOLORED}. Each node maintains a pair of states {color, impor-
tance}. The color of a node is always RED or BLUE. The importance of a node
is either HIGH or LOW. Initially all nodes have HIGH importance and the token
is UNCOLORED.

Here is the description of the BASIC protocol, i.e., The Match-Making Algo-
rithm to solve the MCP.

Protocol BASIC
Initially the token t is placed at an arbitrary vertex. Each vertex v executes the
following protocol, in each round on receipt of t. Note that in the following cases,
X ∈ {RED,BLUE}.
case 1: If value(t) = UNCOLORED and importance(v) = LOW , then

(a) v forwards t to a random neighbor (including, possibly, itself).
case 2: If value(t) = UNCOLORED and importance(v) = HIGH, then

(a) value(t) ← color(v)
(b) importance(v) ← LOW
(c) v forwards t to a random neighbor (including, possibly, itself).

case 3: If value(t) = X and importance(v) = LOW , then
(a) color(v) ← X
(b) t is forwarded to a random neighbor (including, possibly, v).

case 4: If value(t) = X and color(v) = X and importance(v) = HIGH, then
(a) v forwards t to a random neighbor (including, possibly, itself).

case 5: If value(t) = X and color(v) = X and importance(v) = HIGH, then
(a) value(t) ← UNCOLORED
(b) importance(v) ← LOW
(c) v forwards t to a random neighbor (including, possibly, itself).

“end of BASIC”

Note that the random walks defined here for the token are “extended” in the
sense that the token may choose to stay at the same node (of degree dt at round t)

The Match-Maker: Constant-Space Distributed Majority via Random Walks 71

with probability 1
dt+1 . Also note that, in each round only one node executes the

protocol because there is a single token in the network.

Theorem 3. (Correctness) In any static undirected, connected, finite graph G =
(V,E), protocol BASIC eventually turns the color of every node to the initial
majority color, even if the graph and its size are unknown to the nodes.

Proof. The token matches each node of color X and high importance (i.e. as all
nodes are initially) to a node of color X of high importance, and both X, X
turn to low importance. Thus, the initial (high importance) nodes are paired in
red-blue pairs. If a majority color X initially exists, then eventually the token
will find it (by visiting all nodes), and then it will walk in the graph converting
all nodes (of low importance) to the color X. For every color matching that
needs to be made, the token’s random walk needs time at most equal to the
cover time of G. Finally it needs only the cover time of G in order to convert
the color of all nodes to the first majority color having no match. So, the token
needs, at worst, n cover times to convert all colors to the initial majority color
(if there was an initial majority). We also know that the expected cover time of
any finite G is finite with probability 1. By linearity of expectation, and since
the walks are one after the other, the total time to convergence to the initial
majority is finite with probability 1. ��
Corollary 4. The BASIC protocol needs an expected number of rounds at most
equal to (n+1) ·E(CoverT ime(G)) until convergence. For any connected graph,
BASIC converges in expected time O(n2m).

Proof. BASIC needs at most n
2 cover times to match appropriate colors of high

significance and at most n
2 cover times to find a new color of high significance

every time. Then it needs a final cover time to convert all node colors to the
majority color. Finally, we use the fact that E(CoverT ime(G)) ∈ O(nm) for any
connected graph G [1]. ��

3 The BASIC Protocol in Dynamic Graphs

We consider now the execution of the BASIC protocol in dynamic graphs with
benign adversaries with tolerance β.

Lemma 5. For any two nodes u,v, for any time t1, with the token being at node
u at time t1, the probability that the token will visit node v at time at most t1+β

is at least
(
1
n

)β.

Proof. Suppose the token is at node u at round t1. Consider that the edge uv
appears again in round t1 + β′, where β′ ≤ β. The event Au,v = “the token
stays at u for β′ − 1 times and then chooses edge {u, v} which then exists” has
probability

ϕ =
β′
∏

i=1

(
1

di+1
)

72 L. G ↪asieniec et al.

where di is the degree of node u at round t1 + i. But then ϕ ≥ (1
n)β , since

(β′ ≤ β) and n − 1 ≥ di ≥ 0 ∀i (so n ≥ di + 1 ≥ 1). ��
Lemma 5 allows us to conclude that BASIC works correctly on dynamic

graphs.

Corollary 6. The BASIC protocol converts all node colors to the initial major-
ity color (if any) in any dynamic graph, with a benign adversary, in finite time
with probability 1.

Proof. The events Auv are each a geometric stochastic process of a bounded
variance. They are also independent of each other. Thus the (total) variance of
the cover time of each walk is bounded. ��

Then we also have the following result:

Theorem 7. The BASIC protocol converts all node colors to the initial majority
color (if any) in expected time at most nβ+2 in any dynamic graph with a benign
adversary with tolerance β.

Proof. The token needs at most n cover times to match all possible color-pairs.
The cover times (each time) is at least the cover time due to the repetition of
the event Au,v n times. The expected time to visit all nodes is then at most
n2 · Aui,ui+1 where u0, . . . , un−1 is any permutation of the vertices, i.e. at most
n2 · 1

ϕ = nβ+2. ��

4 A Lower Bound for the Time Needed by BASIC for
Static Graphs

4.1 The Match-Making Process Defines a Weighted Bipartite
Graph

Let G be a static graph with some initial (arbitrary) distribution of node colors
and with an initial majority color. Consider B = u1, . . . , uκ, the set of all nodes
ui ∈ V with blue color, and R = v1, . . . , vλ (λ + κ = n), the set of all nodes
vi ∈ V with red color. Let wij = the length of a shortest path between ui and
vj in G.

Consider now the bipartite graph U = (B,R) with node sets B,R and edges
eij of weights w(eij) = wij . Consider any particular sequence of random walks of
the token in protocol BASIC that matches all the red-blue pairs. Let the token
start (say) in u1 and match it with v1. Then the token departs uncolored from
v1 till it meets a blue node, say u2, again. Note that (1) each ui is matched to a
“new” vi (not in {v1, . . . , vi−1}), and (2) from each vi the token seeks for a “new”
ui (not matched yet). Thus, the total time until convergence is at least the sum
of the weights of two matchings in G, (a) the matching {ui, vi}, call it M1, and
(b) the matching {ui, vi+1}, call it M2 (until all minority color nodes (say B)
are matched). Let T be the time until convergence. In time T , the random walk
process must hit the edges of the two matchings defined.

The Match-Maker: Constant-Space Distributed Majority via Random Walks 73

Fig. 1. Bipartite Matching

Thus,
T ≥ (weight(M1) + weight(M2)) · h

where h is the minimum time to hit a subsequent node on the other side, which
implies

E(T) ≥ (weight(M) + weight(M ′)) · hmin (1)

where M = the minimum weight matching in U(B,R), M ′ = the second min-

imum weight matching in U(B,R), and where hmin
def
= the minimum hitting

time of G = the minimum (over all u, v) of the expected time for a random walk
starting at u to reach v for the first time. The proof of Eq. (1) is done using
linearity of expectation. Thus,

E(T) ≥ 2 · weight(M) · hmin. (2)

If we know the initial placement of colors, then we can compute weight(M)
(and weight(M ′)) via a variation of the well-known Hungarian method [9] via
the relaxed integer program Π.

Π : minimize
∑

i,j

wi,jxi,j

subject to
∑

j

xi,j = 1 ∀i ∈ B

∑

i

xi,j = 1 ∀j ∈ R

∑

i,j

xi,j = the number of vertices of the minority color

xi,j ≥ 0, ∀i ∈ R, j ∈ B.

The Hungarian method (see [9]) shows that this is an integral relaxation
in the sense that any extreme point of the polytope of Π’s constraints is the

74 L. G ↪asieniec et al.

incidence vector of a (perfect) matching with respect to the minority’s color (see
also [13], exercise E). A primal-dual method can compute the weight of M in
time O(n3) [9]. Thus,

Lemma 8. Given G and the placement of the original color, we can compute a
lower bound on the time of BASIC until convergence in O(n3).

Note that the bound of Eq. (2) is a very crude one. In fact, even if we know
the matchings M1 (of min weight) and M2 (of second min weight), the walk
requires, for each subsequent pair (ui, vi) or (vi, ui+1) a hitting time on the
remaining colors of high importance at that time. This increases by at least the
smallest distance between two nodes of the same color and of high importance
every time.

Definition 9. A k RED-BLUE line (on n nodes) is a path which consists of a
red path of k nodes, joined to a blue path of n − k nodes.

Lemma 10. The lower bound on the time of BASIC on a
⌊

n
2

⌋

RED-BLUE line
(with n odd) is Θ(n3).

Proof. The weight of each edge on the bipartite graph U is the square of the
shortest distance between the particular red/blue pair because of the random
walk, and more than n/4 such edges have weight which is Θ(n). ��

5 The Expected Convergence Time of BASIC on the
Clique

Let G = Kn = the clique of n nodes. Assume that one of the colors is a majority
at the start of the BASIC protocol. Let bt, rt be the number of blue and red
nodes, respectively, at round t (initially b1 + r1 = n) and assume, w.l.o.g., the
time, T , of BASIC until convergence is the sum of times T1, T2, T3, where T1 =
the sum of all the times for the token to match two high-importance nodes of
the same color, T2 =the sum of all times for the token to discover the next color
of high importance to match, and T3 = the final cover time to convert all colors
to the majority.

At round r, the initial probability that the random walk finds a matching
node of the opposite color is bt

n (if it starts from a red node) or rt

n (if it starts
from a blue node). Thus, the expected time till success is bounded above by n

bt
(n

rt
) depending on the case, by the geometric process argument. Since the high

importance colors are matched in pairs, we have (in each matching) rt+2 = rt−1

and bt+2 = bt−1. Let a be the time at which the minority color has only one
node with that color. Thus both expectations of T1, T2 are bounded above by
∑a+2

t=1
n
bt

+
∑a+2

t=1
n
rt

(to the convergence time) and each bound is n(1
b1

+ 1
b1−1

+
· · · + 1) and n(1

r1
+ 1

r1−1
+ · · · + 1), i.e., at worse n · Hn (Hn = the nth harmonic

number). Also, the expected cover time is n log n for the clique. Thus,

Lemma 11. The expected convergence time of BASIC on the clique is 2nHn +
n log n, independently of the placement of the original colors. This matches the
expected cover time of the clique, and thus is optimal.

The Match-Maker: Constant-Space Distributed Majority via Random Walks 75

6 On Termination of the BASIC Process in Static Graphs

The BASIC process converges to the initial majority color (if any) in at most
n + 1 cover times of the graph. This is because it needs at most n

2 walks of the
token to match color pairs of high importance, at most n

2 walks to find the next
candidate to match, and a final walk to convert all colors to the majority color.
We can then supply BASIC with a termination criterion assuming:

1. The existence of a global clock, and
2. that each node v knows an upper bound n′ ≥ n on the size of the graph.

Let T be the time (number of rounds) required for BASIC to converge. Then

E(T) ≤ (n + 1)E(CoverT ime(G)) ≤ (n + 1)2mn ≤ 2n4. (3)

By Markov’s inequality (see, e.g., [12]) we have

Prob(T ≥ n E(T)) ≤ 1
n

(4)

implying that

Prob(T ≥ 2n5) ≤ 1
n

. (5)

Therefore, BASIC can terminate (with probability of correctness at least 1− 1
n)

as follows:
Termination Criterion: Each node v reads the global clock. When the global
clock shows 2n′5 elapsed rounds, then node v reports its current color as the
majority color and stops executing BASIC.

7 Walks with Limited Counters in Graphs of Small Cover
Time

One benefit of BASIC is the circulation of a single token in the net, having only 2
bits of memory. Suppose that we allow the token to be equipped with a counter.
Then a single cover time of the graph clearly suffices for a randomly walking
token to count the number of both colors in the graph and thus determine
majority. Every time the token first encounters a color, it must mark the node
as “visited” to avoid double-counting. This simple procedure requires a counter
that can count up to n (the size of the graph). We describe here a modification
of this procedure, with the benefit that the counter of the token can only count
up to ω(

√
n log n).

Basically, we equip the token with a counter (initially zero) and we start its
random walk at an arbitrary node. The counter keeps the difference δt = bt − rt

(bt, rt are the number of blue and red nodes that have been visited by time t)
by setting δt ← δt + 1 when the token encounters an unvisited blue node, and
δt ← δt − 1 when the token encounters an unvisited red node. Each time the
token visits a node, if the status of the node is “unvisited” the token changes it

76 L. G ↪asieniec et al.

to “visited” to avoid double-counting. After a time at least equal to a cover time,
the token checks if the δt is positive or negative and then it performs another
final walk to convert all nodes to the majority color (blue if δt > 0, red if δt < 0).

Clearly, if |δt| ≤ g for all t until convergence (for some number g), then the
counter will report correctly provided it can count up to some number g′ strictly
greater than g.

We show here that g is enough to be set to some value ω(
√

n log n) for
this procedure to correctly report majority with high probability. Our argument
works under the following assumption.
Assumption A: Let pt be the probability that the counter visits an unvisited
majority color in the round t, and qt be the probability that the counter visits
an unvisited minority color in round t. We assume that pt ≥ qt.

Assumption A is easily shown to hold when the colors are initially placed
randomly in the vertices, and when the minimum degree of G is at least α log n
for some α ≥ 2.

Without loss of generality, assume that the initial majority color is blue. We
consider a quite standard coupling process (δt, δ

′
t) where δt = bt − rt and δ′

t is
the current location of a simple random walk on (a subset of) the integers with
a holding probability, i.e., a random walk on (a subset of) Z that can either
increase or decrease by 1 with equal probablity, or remain stationary with (the
remaining) positive probability. We give the details of this coupling below.

Let Δ(δt) = δt+1 − δt, and Δ(δ′
t) = δ′

t+1 − δ′
t the corresponding increase

or decrease in the random walk. There are nine cases to consider in the cou-
pling, depending upon the values of Δ(δt) and Δ(δ′

t). The nine cases, together
with the coupling probabilities are listed below. We need to define the coupling
probabilities xi for each of the cases.

(Δ(δt),Δ(δ′
t)) Coupling probability

(0, 0) x1

(0, 1) x2

(0,−1) x3

(1, 0) x4

(1, 1) x5

(1,−1) x6

(−1, 0) x7

(−1, 1) x8

(−1,−1) x9

First of all, we note that we want to couple the processes so that δt ≥ δ′
t for

all t, so that if, for example, δ′
t = bt then we guarantee that δt = bt too. This

immediately implies that we have x2 = x7 = x8 = 0.
Secondly, to keep the coupling as tight as possible, we set x3 = x4 = 0.
We also have other conditions on the values xi as follows:

x1 + x5 + x6 + x9 = 1 and xi ≥ 0 ∀i (6)

The Match-Maker: Constant-Space Distributed Majority via Random Walks 77

x9 = qt (7)

x5 + x6 = pt (8)

x5 = x6 + x9 (9)

x5 + x6 + x9 = pt + qt (10)

Condition (6) come from the fact that the xi form a probability distribution.
(7) comes from the definition of the probability qt, i.e., the chance of the token
finding an unvisited minority color, and similarly (8) is from the defintion of
pt. Equation (9) is from the fact the the process Δ(δ′

t) is describing a simple
random walk, i.e., Pr(Δ(δ′

t) = 1) = Pr(Δ(δ′
t) = −1). We note that pt + qt is the

probability that the value of Δ(δt) is non-zero.
Thus, solving for the values of xi, we get the following coupling probabilities

below (we show only the non-zero values):

(Δ(δt),Δ(δ′
t)) Coupling probability

(0, 0) 1 − pt − qt

(1, 1) 1
2 (pt + qt)

(1,−1) 1
2 (pt − qt)

(−1,−1) qt

With these probabilities, we have E(Δ(δ′
t)) = 0 and |Δ(δ′

t)| ≤ 1. We can
apply the inequality of Azuma to the martingale Δ(δ′

t) with bounded difference.
By Azuma’s inequality then we have |δ′

t| = O(
√

n log n) through a period of a
cover time Θ(n log n).

Thus, the difference of colors counted will never exceed c
√

n log n in the
minority direction (w.h.p.) and will end up with a correct value in the majority
direction. Therefore:

Lemma 12. For any static unknown graph G where (a) Assumption A holds
and (b) E(CoverT ime(G)) = O(n log n) the counter of the token needs to count
only up to ω(

√
n log n) in order to report the majority color w.h.p.

8 Future Work

It would be interesting to study the Majority Color Problem on non-trivial spe-
cial classes of graphs as complete graphs can be solved in O(n log n) expected
time and O(n2m) time on any connected undirected graph. Using Corollary 4,
any upper bound on the expected cover time for a class of graphs immediately
translates into an upper bound on the convergence time of BASIC. For example,
it is known that the cover time for any regular graph on n vertices is at most 2n2,
giving an upper bound of O(n3) for convergence of BASIC on such graphs [7].

78 L. G ↪asieniec et al.

Appendix

This section demonstrates an example execution of the BASIC protocol on a
graph where n = 5 and there exists a majority where |RED| > |BLUE|.

Table 1 traces the execution from the initialization step (step 0), when the
token t is placed at an arbitrary vertex, to the state when all vertices have
been converted to the majority color. Each row consists of the step number, the
state of t (where t = {color, location}), the state of all the vertices (uppercase
representing high influence and lowercase representing low influence of a color)
and finally the case which should be executed given the current state of the
graph.

Step t a b c d e case

0 {U, a} B B R R R 2

1 {B, b} b B R R R 4

2 {B, a} b B R R R 3

3 {B, c} b B r R R 5

4 {U, e} b B r R R 2

5 {R, b} b B r R r 5

6 {U, e} b b r R r 1

7 {U, d} b b r R r 2

8 {R, b} b b r r r 3

9 {R, a} b r r r r 3

10 {R, b} r r r r r 3

Table 1. Trace table for an exe-
cution of BASIC.

Initialization: t is randomly placed at ver-
tex a.

Step 1 Step 2

The Match-Maker: Constant-Space Distributed Majority via Random Walks 79

Step 3 Step 4

Step 5 Step 6

Step 7 Step 8

80 L. G ↪asieniec et al.

Step 9 Step 10

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: Proc. 20th
Annual Symposium on Foundations of Computer Science, pp. 218–223 (1979)

2. Alon, N., Spencer, J.H., Erdös, P.: The Probabilistic Method. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley (1992)

3. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distributed Computing 21(2), 87–102 (2008)

4. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

5. Birk, Y., Liss, L., Schuster, A., Wolff, R.: A local algorithm for ad hoc majority
voting via charge fusion. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 275–289. Springer, Heidelberg (2004)

6. Ezhilchelvan, P., Mostefaoui, A., Raynal, M.: Randomized multivalued consensus.
In: Proc. of Fourth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, ISORC - 2001, pp. 195–200 (2001)

7. Feige, U.: Collecting coupons on trees, and the analysis of random walks. Technical
report CS93-20 of the Weizmann Institute (1993)

8. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1, 3rd
edn. Wiley, New York (1968)

9. Goemans, M.X.: Lecture notes on bipartite matchings (2009). http://www-math.
mit.edu/∼goemans/18433S09/matching-notes.pdf

10. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determin-
ing majority in networks with local interactions and very small local memory.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 871–882. Springer, Heidelberg (2014)

11. Mostefaoui, A., Raynal, M., Tronel, F.: From binary consensus to multivalued con-
sensus in asynchronous message-passing systems. Information Processing Letters
73(5–6), 207–212 (2000)

12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

13. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Ch 11, exercise 5(c). Prentice-Hall, Inc., NJ (1982)

http://www-math.mit.edu/~goemans/18433S09/matching-notes.pdf
http://www-math.mit.edu/~goemans/18433S09/matching-notes.pdf

The k-Observer Problem on d-regular Graphs

Benjamin Ries(B), Bernhard Schamberg, and Walter Unger

Department of Computer Science I, RWTH Aachen University, Aachen, Germany
ries@cs.rwth-aachen.de

Abstract. We consider the problem of observing every path of fixed
length k in a given graph with a minimum number of nodes. This problem
is known as the k-Observe problem, or as the k-path vertex cover problem
respectively. It is a generalization of the well known vertex cover prob-
lem. The nodes of a solution to the k-Observer problem i.e. can be used
to monitor the traffic of a given network or can provide data integrity
in a (distributed) sensor network. In this work we focus on undirected
d-regular graphs, where every node has a maximal constant degree of d.
First we show for the case k = 2 a (1+ 1

2d−2
)-approximation for bipartite

d-regular graphs. Then we present a (2 − o(1))-approximation, again for
k = 2. This slightly improves the results of [TZ11], which provides a
2-approximation. Moreover our approach can be generalized for k ≥ 2
and leads to a 3-approximation for k ≤ d+2

2
. Furthermore this is the first

algorithm with an better approximation factor than k + 1 for k ≥ 2.
Note also that this result can be extended to an α-approximation for
k ≤ α−2

α−1
d + 1 for α ≥ 3.

1 Introduction and Motivation

We consider the problem of observing all paths of fixed length k in a undirected
and unweighted graph G = (V,E) with a minimum number of nodes. We focus
on undirected and unweighted d-regular graphs without loops, where every node
has a maximal degree of d. The length of a path P is denoted by the number
of edges in P . Finding the minimum number of nodes that observe all paths
of length k is known as the k-Observer problem and was first introduced in
[ACBG12].

The authors in [ACBG12] present several applications for the k-Observer
problem. For example a solution can be used in constructing optimal connectivity
paths in wireless sensor networks. The nodes in the solution may be equipped
with additional caches, and can serve nearby nodes in a content distribution
network, so with a small number of nodes we can guarantee that every node
has access to an nearby cache. Another application could be to use selected
nodes to perform additional tasks in the network, i.e.: observing or collecting
statistics in the network. Furthermore the nodes in a solution for the k-Observer
problem may help to detect and prevent malicious attack to the network. The
nodes in a solution for the k-Observer problem may help to decide where to
place additional firewalls or filters.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 81–93, 2015.
DOI: 10.1007/978-3-319-21741-3 6

82 B. Ries et al.

Beside the applications named in [ACBG12], our work is motivated by the so
called k-generalized Canvas scheme [Nov10], which should provide data integrity
in a sensor network. It combines the properties of cryptographic primitives and
the network topology. This scheme aims to guarantees data integrity under the
assumption that at least one node exists which is not captured on each path
of length k in a communication network. In [Nov10] these nodes where called
protected, and the authors point out, that on each path of length k there has to
be a protected node.

1.1 Related Work

The problem of observing, or covering, all paths of a given length k was inde-
pendently and at the same time examined by the author in [ACBG12] and in
[BKKS11]. While the problem in [ACBG12] was named the k-Observer prob-
lem, the authors in [BKKS11] call it the k-path vertex cover, to point out that
the problem is an natural generalization of the vertex cover problem. The 1-
Observer problem, or the 1-path vertex cover problem, is equivalent to the well
known vertex cover problem, where all edges have to be covered by a minimum
number of nodes.

The NP-hardness of the k-Observer problem was shown in [ACBG12], as well
as in [BKKS11]. Both proofs used a reduction from vertex cover, and implies that
any c-approximation algorithm for the k-Observer problem, with polynomial
running time, yields directly a c-approximation for the vertex cover problem, for
c ≥ 1. Together with the results of [KR08], this indicates that 2 can be seen as a
lower bound for the approximation factor, not only for the vertex cover problem
but also for the k-Observer problem. In both papers a centralized algorithm for
tress is presented, that computes an optimal solution, however, the authors of
[ACBG12] also presented a distributed version of their approach. Furthermore,
algorithms for ring and grid graphs are also presented in [ACBG12].

In contrast to that, the authors in [BKKS11] focus on approximation algo-
rithms. A simple approximation algorithm is the generalization of the well known
2-approximation of the vertex cover problem. Taking an arbitrary path P of
length k and the k+1 nodes of P into the solution. Since the optimal solution has
to take at least one of these k + 1 nodes, this leads to an (k + 1)-approximation
only. In an additional work [BJK+13] the authors present a lower and upper
bound for the optimal solution in terms of the degree of the graph. Important
for our work is the lower bound for an optimal solution of d−k+1

2d−k+1 |V |.
To the best of our knowledge the only approximation factor better than

k + 1 was shown in [TZ11], where an 2-approximation for the case k = 2 is
presented. However, in contrast to our work, the algorithm can not be imple-
mented in an distributed environment or extended to path lengths larger then k.
Recently an optimal algorithm for the weighted version for tress was presented
in [BKBSŠ14].

The k-Observer Problem on d-regular Graphs 83

1.2 Outline

First, in Section 2, we concentrate on bipartite d-regular graphs. For the case
k = 2 we present an algorithm with an approximation factor of 1 + 1

2d−2 . In
Section 3 we describe our algorithm on general for d-regular graphs. We start by
presenting our analysis for the case k = 2, where we achieve an approximation
factor of 2 − o(1) for d-regular graphs. For large graphs, if |V | � d, this factor
becomes roughly 2 − 1

d . This is equal to the best known approximation factor
for vertex cover [Hoc83]. We improve the results of [TZ11], where the authors
show an 2-approximation for general graphs and k = 2. Additionally, in contrast
to other results, our algorithm also works if k > 2. If k ≤ d+2

2 we achieve an
3-approximation and, for k ≤ α−2

α−1d + 1, we still obtain an α-approximation, for
any α ≥ 3.

While the algorithm in Section 3 is still centralized, we present a distributed
version in Section 4. Finally, in Section 5, we conclude this paper with some
future work and open problems.

2 Bipartite d-regular Graphs

In this section we present our approximation algorithm for the 2-Observer prob-
lem on bipartite d-regular graphs. The algorithm simply takes one partition of
the nodes. We show that this yields an approximation factor of 1 + 1

2d−2 . The
2-Observer problem is equivalent to computing the dissociation number of a
graph. A dissociation set D is a subset of the vertices of G, such that the sub-
graph induced by D has a maximum degree of 1. The dissociation number is the
cardinality of the maximum dissociation set of a graph. Computing the dissoci-
ation number of a graph is the dual problem to the 2-Observer problem. Since
computing the dissociation number of a bipartite graph with maximum degree 3
is NP-hard [BL01], the 2-Observer problem is also NP-hard. In contrast, an opti-
mal vertex cover can be computed in polynomial time if the graph is bipartite.

Theorem 1. There is a (1 + 1
2d−2)-approximation for the 2-Observer problem

on bipartite d-regular graphs.

Proof. Let G = (V1�V2, E) be a bipartite d-regular graph, note that |V1| = |V2|.
It is easy to see that a d-regular bipartite graph consists of d different perfect
matchings. This can be shown, for example, by induction over d and make use
of Halls theorem on matching. By choosing one partition of the bipartite graph,
say V1, as a solution for the 2-Observer problem, every matching edge is con-
nected to one node of the cover. So there are no uncovered paths of length 2 are
left in the graph, and we have a valid solution.

Now assume there is an optimal solution that uses less than half of the nodes.
Hence there must be at least one pair of matched nodes where both of the nodes
are not in this solution.

Let opt be the optimal solution. We consider a matched pair of nodes that
is not in opt. Since opt needs to cover all paths of length 2, every neighbour of

84 B. Ries et al.

such a matched pair of nodes has to be chosen. Thus, there are at least d − 1
nodes on each half that have to be in the optimal solution.

In total, for each pair of matched nodes, which are not in opt, opt must choose
2(d − 1) nodes. Those 2(d − 1) nodes can be used by at most d many matching
edges, which have d different perfect matchings. Combining these, we get that
on each side for d nodes which are not in a solution, there have to be d−1 other
nodes in the solution. It follows that for every 2(d + d − 1) nodes in the graph
we need at least 2(d − 1) nodes in an optimal solution. Hence opt is of size at
least 2d−1

2(d+d−1) |V |. Comparing the size of our solution with the size of the optimal
solution we get:

V1

opt
≤

|V |
2

2d−1
2(d+d−1) |V | =

(d + d − 1)
2(d − 1)

=
2d − 1
2d − 2

= 1 +
1

2d − 2

Note that, if there are less than d matching edges with two nodes, which are
not in a solution, still 2(d−1) nodes in the solution are required. So the optimum
can not be smaller than 2d − 2. �

In the next section we consider general d-regular graphs.

3 Approximation Algorithm for d-regular Graphs

In this section we present our approximation algorithm for d-regular graphs. We
start with a short description of the algorithm, followed by it’s analysis. The
algorithm proceeds as follows: Starting a breadth-first search from an arbitrary
node v, and stopping as soon as a cycle in the layered graph is detected. Let
h be the level on which the cycle occurs and let G′ = (V ′, E′) be the obtained
subgraph. Let Ck(G′) be the solution for the subgraph G′. It consists of two
parts:

(1) A set S ⊆ V ′ with nodes of the lower level h, such that G′ becomes a tree,
i.e. G′ has no cycle. Let T be this tree.

(2) The optimal solution for T .

An example is shown in Figure 1, where the first cycle occurs on level 4, and the
black marked nodes are in the set S and have to be removed to delete all cycles.

After computing the set Ck(G′), delete the nodes from Ck(G′) in G and
proceed with the remaining graph until no path of length k remain. Note that
we only delete nodes in the solution Ck(G′), and not the complete subgraph G′.
If we would delete all nodes in G′ it could happen that the final solution does
not cover all paths of length k. When we finished with the graph, we collect the
nodes in the trees T , and recompute the optimal solution for the graph induced
by this nodes. On the other hand, if we only take the union of these solutions, it
could be that we take to many nodes. Recompute the optimal solution simplify
the later analysis. Note that this graph is still a tree, and we can find the optimal

The k-Observer Problem on d-regular Graphs 85

Fig. 1. Restricted to the lower level, we have to delete the marked nodes, to remove
all cycles

solution in polynomial time [ACBG12]. The final solution for the complete graph
G consists of the union of the computed sets S for all the subgraphs G′ and the
recomputed optimal solution for the trees.

To compute the optimal solution in (2) we can use either the algorithm
proposed in [ACBG12] or the algorithm of [BKKS11]. Both algorithms runs in
polynomial time and compute the optimal solution for a tree. The minimal set S
in (1) may unfortunately not be found in polynomial time, since this would mean
we have to solve a restricted version of the feedback vertex set problem, and this
problem is NP-hard [ENZ96]. In Lemma 1 we give an upper bound on how many
nodes we must remove in G′ to cancel all cycles. We bound these number by
the total number of nodes in G′. But before we make some adjustments to the
graph, that will help in the later calculation. If a node v on level h during the
breadth-first search causes an cycle, we distinguish between the following two
cases:

(a) v is adjacent to an node u on the same level h
(b) v has two parent nodes on level h − 1.

Examples for both cases can be seen in Figure 1. Note that it is not possible that
both cases occur on the same level during the breadth-first search, in contrast
to the example in Figure 1. If we see both cases in the same iteration, case (a)
happens on a level before case (b). Say we see case (a) on level h − 1, and case
(b) on level h. Here we only consider the graph till level h − 1, the remaining
graph is considered in a later iteration.

To simplify the subsequent analysis, we make the following adjustments. Our
intention is, that we only have nodes of case (a) in G′. Hence we explain how
to change a circle of case (b) to an circle of case (a), without increasing the
degree of the nodes in the subgraph G′. As explained above, both cases can not
occur on the same level, during the breath-first search, since we stop as soon as a

86 B. Ries et al.

circle is detected. For this purpose consider a node v on level h with two or more
neighbour nodes on level h − 1, like the most right marked node in Figure 1.
We call this nodes on level h − 1 the parents of v. Let pv the number of parents
of v. Delete the node v and create pv new nodes v1, . . . , vpv

. Connect the node
vi with the i-th former parent of v, for 1 ≤ i ≤ pv ≤ d. Finally connect all
the pv new nodes with each other. Note that this construction does not increase
the degree of the nodes in the subgraph G′. Any vi of the nodes v1, . . . , vpv

have one edge to a former parent of v, and at most d − 1 edges to other nodes
vj , 1 ≤ j �= i ≤ pv ≤ d. We are now ready to proof the following lemma:

Lemma 1. Given a d-regular graph G = (V,E). Starting at a node v with a
breadth-first search to obtain a layered graph with height h. Assume that on level
h the first cycle occurs and that two nodes on level h − 1 have no common child
node on level h. Let G′ = (V ′, E′) be this graph. On level h at most

⌈|V ′| · d−2
d

⌉

nodes have to be removed, to eliminate all cycles in G′.

Proof. Since we restricting our attention to the lower level h, it is enough to
compute a vertex cover for the subgraph induced by the nodes on this level.
We know that each node on this level has a degree of at most d − 1, hence a
vertex cover includes at most d−1

d of the nodes. This comes from the fact that
an independent set for these graphs contain at least 1

d of the nodes, since the
graph is d − 1-regular.

Next we estimate how many nodes are on level h in G′. For that purpose we
assume that in G′ each node have at most m = d − 1 child nodes, except from
the root node. Counting the numbers of nodes in V ′ we get |V ′| ≤ 1 + (m + 1) ·
∑h

i=2 mi, since the root node may have m + 1 child nodes, and each of these
have m child nodes themselves. The term can be simplified to 2 · mh+1+1

m−1 and we

get |V ′| ≤ 2 · mh+1+1
m−1 . The number of nodes mh on level h can now be estimated

with mh ≤ |V ′|(m−1)+2
m . It follows that we have to remove at most

⌊
d−1

d mh
⌋

nodes on the last level. This yields for the set S that we remove:

|S| ≤
⌊

d − 1
d

mh

⌋

≤
⌊

d − 1
d

· |V ′| · (m − 1) + 2
m

⌋

≤
⌊

|V ′| · d − 2
d

+
2
d

⌋

≤
⌈

|V ′| · d − 2
d

⌉

The last estimation can be done because rounding up the term |V ′|d−2
d

increases the value more than adding 2
d and rounding down to the lower

integer. �

Once a subgraph is completed, we remove the computed solution and proceed
with the remaining graph, until no paths of length k are left. Note that all steps
described above can be done in polynomial time, especially the set S can be
determined by a simple greedy algorithm.

The k-Observer Problem on d-regular Graphs 87

Dependent on k and d our algorithm yields different approximation factors.
Nevertheless, the analysis of the approximation factor in each case is quite sim-
ilar. First we present in Theorem 1.1 the analysis for the case k = 2. Here we
achieve an 2 − o(1)-approximation.

Theorem 1.1. On d-regular graphs, with d ≥ 3, the 2-Observer problem can be
approximated with a factor of 2 − o(1).

Proof. Let G = (V,E) be a d-regular graph. We compare the size of the solution
derived by our algorithm with the size of a optimal solution for G. Let G′ =
(V ′, E′) be a subgraph of G, obtained by the breadth-first search, as described
above, and let G be the collection of all solutions for all of these subgraphs G′.
Each of the single solution consists of two parts: First the set of vertices of the
lower level S such that G′ has no cycles, and second the vertices of the optimal
solution for the remaining trees T . This is a valid solution for the subgraph G′,
since we solve the tree optimal all paths are covered there. The paths that are
induced by the additional nodes in S are obviously covered. Since we only remove
the nodes of the solution, and not all nodes of G′, and the algorithm does not
terminate until all paths of length 2 are covered, this is a valid solution.

Let T be the set of vertices of all optimal solutions of the trees T (that we have
recomputed at the end), and S be the set of all nodes in the sets S. The number of
nodes in T can be upper bounded by |V |−|S|

3 [BKKS11]. Since the trees consists
of |V |− |S| many nodes, and we have to take every third node to observe all paths
of length 2. For the size of the optimal solution ψ2(G) we use the lower bound of
d−k+1
2d−k+1 · |V | provided in [BJK+13] for d-regular graphs. If we now compare the
size of our solution with the size of the optimal solution we get:

|T | + |S|
ψ2(G)

≤
|V |−|S|

3 + |S|
ψ2(G)

≤
|V |−|S|

3 + |S|
d−1
2d−1 · |V | ≤ |V | + 2|S|

3d−3
2d−1 · |V | .

To upper bound the size of the set S we use Lemma 1. In Lemma 1 we sup-
pose that every node on the lower level has only one parent node in the level
before. In general this does not hold. Nevertheless this is not a problem. If two
or more vertices on level h − 1 have a common child node v in level h, we have
to take v into our set S, to cancel the circle. Since we do a worst case estimation
in Lemma 1, our estimation for the size of S still holds. So we can |S| substitute
by

⌈|V | · d−2
d

⌉

:

|V | + 2|S|
3d−3
2d−1 · |V | ≤ |V | + 2

⌈|V | · d−2
d

⌉

3d−3
2d−1 · |V | .

The Gaussian brackets can be removed by adding d−1
d , since this is the maximal

value added by rounding up to the next integer.

|V | + 2
⌈|V | · d−2

d

⌉

3d−3
2d−1 · |V | ≤ |V | + 2|V | · d−2

d + 2d−2
d

3d−3
2d−1 · |V |

88 B. Ries et al.

Finally we do some rearrangements and get:

|V | + 2|V | · d−2
d + 2d−2

d
3d−3
2d−1 · |V | ≤ 2 − 1

d
+

4d − 2
3d|V | = 2 − 3|V | − 4d + 2

3d|V |

To show that the approximation factor is always smaller than 2, it remains to
show that the second part is non-negative. If the subgraph has |V | ≥ 4

3d − 2
3

nodes, this is obviously true.
On the other hand, if 3

4 |V |+ 1
2 ≤ d, the whole graph has a high regularity. In

this case we can show that also the optimal solution needs more then |V |
2 nodes.

In this case the input graph is at least
⌈
3
4 |V |⌉-regular. Taking the whole set V

into the solution leads automatically to an good approximation factor for dense
graphs. For each node v that is not in the optimal solution, the optimal solution
has to take at least

⌈
3
4 |V |⌉ − 1 of the neighbours of v. If the optimal solution

omits more than one of the neighbours of v, there will be a path of length 2 that
is not covered. Thus this will not happen. Hence taking the whole set V leads
to an 4

3 -approximation.
Summing up we can conclude that:

2 − 3|V | − 4d + 2
3d|V | < 2

So we get an approximation factor of 2 − o(1) for every d-regular graph. �

Note that for lager graphs, if |V | � d, the approximation factor is roughly 2− 1
d .

Our algorithm does even work for the vertex cover problem, i.e. k = 1, and
achieves the same approximation factor as for k = 2, which is equal to the best
known results for d-regular graphs [Hoc83].

The running time of our algorithm is dominated by the breadth-first search,
hence the set S and the solution for the tree T can be found in linear time.
A breath-first search can be done in time O(|V 2|). Summing up we get a running
time of O(|V |2), which is better as in [TZ11]. Though the approach in [TZ11]
cannot be extended to an distributed algorithms, while, as we will see later, it
is possible to extend our algorithm to an distributed algorithm.

The approximation factor can be improved even more, if we fix the degree of
the input graph to d = 3. Doing the same calculation as above we get

Proposition 1. The 2-Observer problem can be approximate with a factor of
1.389 + o(1) on 3-regular graphs.

This factor is very close to the best achievable of 1.3606 [DS05] unless P �= NP .
In contrast to previous approaches, our algorithm is also helpful when asking

for coverings for longer path lengths than 2. We can use our algorithm any
k ≤ d+2

2 . In this case, the analysis above does yield a 3-approximation instead
of a 2-approximation.

Theorem 1.2. The k-Observer problem can be approximated with a factor of 3
on d-regular graphs if k ≤ d+2

2 .

The k-Observer Problem on d-regular Graphs 89

Proof. Similar to the proof for Theorem 1.1 we compare the size of the optimal
solution for the trees T and the size of the set S with the value of the optimal
solution ψk(G) for G. Again we can use the algorithm of [BKKS11] to compute
the optimal solution for the trees in T ,

|T | + |S|
ψk(G)

≤
|V |−|S|

k+1 + |S|
ψk(G)

≤ |V | + k|S|
(k + 1)ψk(G)

.

The size of S can coarsely be estimated with |V |. This gives:

|V | + k|S|
(k + 1)ψk(G)

≤ (k + 1)|V |
(k + 1)ψk(G)

.

For ψk(G) we can use again the lower bound of [BJK+13], which holds for all
k ≤ d. We get:

|V |
ψk(G)

≤ 2d − k + 1
d − k + 1

Using this bound for our approximation ratio, we can figure out under which
restrictions we can get a 3-approximation:

2d − k + 1
d − k + 1

≤ 3

⇔ d

d − k + 1
+

d − k + 1
d − k + 1

≤ 3

⇔ 1 +
d

d − k + 1
≤ 3

⇔ d

d − k + 1
≤ 2

Multiplying with d − k + 1, which is possible since k ≤ d, yields:

d ≤ 2d − 2k + 2
⇔ 2k ≤ d + 2

⇔ k ≤ d + 2
2

So for k ≤ d+2
2 our algorithm gives a valid 3-approximation for the k-Observer

problem on d-regular graphs. �

Unfortunately with our approach it is not possible to achieve an 2-approximation
in this case. Some of the transformations from the proof of Theorem 1.1 only
hold for the case k ≤ 2.

The limitation that k is bounded by d+2
2 can be partially lifted up. If we

replace the 3 in the approximation factor by an natural number α ≥ 3 in the
calculation in Theorem 1.2 we achieve an α-approximation if k ≤ α−2

α−1d + 1.

90 B. Ries et al.

Proposition 2. On d-regular graphs the k-Observer problem can be approxi-
mated with a factor of α, with α ≥ 3, if k ≤ α−2

α−1d + 1.

4 Distributed Algorithm

In the previous section we presented the idea and analysis of our (centralized)
algorithm. In this section we show that this algorithm can also be executed in a
distributed environment. Our algorithm for the k-Observer problem consists of
three main parts:

1. A breath-first search,
2. determing the nodes in the set S on level h,
3. checking if there exists a path of length k in the remaining graph.

For each part we describe a distributed variant, and the interaction between the
parts. We assume that the nodes in the network are equipped with an unique
identifiers (UID), chosen from an totally ordered space of identifiers. Moreover,
each node knows its neighbours and has the possibility to communicate with
these. Also the number of nodes n in the network should be known to all nodes.
In the beginning, the graph is strongly connected. After the first iteration it could
be that by our virtual computation the graph decomposes in several connected
components. In this case, the algorithm can proceed in parallel on each of these
components.

At first, in each iteration a node must be chosen that begins with the
breath-first search. This can be done, for example, by an simple leader election
algorithm, like the one described in [Lyn96]. Once the starting node is fixed, a
distributed breath-first search algorithm can be executed. An implementation is
described, for example, in [Lyn96]. In this implementation the designated root
node sends out a search message to all its neighbours. Once a node receives a
search message, the node marked itself as marked. Then the nodes itself send a
search message to all its neighbours and so on.

We use this algorithm to compute the subgraph G′. With the help of the
search messages we can detect the circles. After a node receives a search mes-
sage, the node can check whether there is an circle or not. If there is no circle
detected, the node can report an no circle message back in the tree to the root
node, otherwise it sends a circle message. There are two kind of circle messages,
one for each case, we discussed above.

If the root node r receives no circle message, it sends a message that the node
can continue with the breath-first search, otherwise its sends a stop message
through the network. By this procedure we obtain a tree and discover it level by
level.

If a node v receives two or more search messages at the same time, and have
receive no one before, this node induced an circle of case (b). In this case v can
mark itself as part of the solution for the k-Observer problem and report a circle

The k-Observer Problem on d-regular Graphs 91

message of case (b). The transformation before in Lemma 1 was only made to
simplify the analysis of the algorithm.

On the other hand, if a node v receive at least one search message, and has
already received one in a previous iteration, v reports a circle message of case
(a) and its UID. The root node r collects all the circle messages and count the
number of nodes that reports a circle of case (a).

This number is then reported to these nodes. These nodes can now use the
algorithm proposed in [SJX13] to compute a maximal independent set among
themselves (for this we need the number of nodes n in the network). Since
the maximum degree of the subgraph induced by these nodes is bounded by
d − 1, the computed maximal independent set is also an approximation to of
the maximum independent set. This set is, because the subgraph has a bounded
degree, an approximation of the vertex cover, with the desired size described in
Lemma 1.

Once the set S is computed, the remaining nodes can proceed and compute
the optimal solution for the tree T . Therefore the distributed algorithm presented
in [ACBG12] can be used.

After this solution is computed, every node in G′ knows if it is in the solution
for G′ or not. To start a new round, a message that a solution for a subgraph is
computed, is broadcasted through the network. Again a leader for the breath-
first search must be elected, but now only by the nodes that are not part of the
solution at this point, or which are in a subgraph that have at least one path
with length at least k. If a subgraph have a path of length k can be determining
during the breath-first search.

At the end, every node is either part of the solution, or in a subgraph that
only contains path of length smaller than k.

The running time of this procedure is again dominated by the running time of
the breath-first search. The running time of the breath-first search increases from
O(|E|) up to O(|E|2), since we need to report after each step if a circle is detected
or not. The distributed algorithm for computing the maximum independent set
runs in O(log n), where n denotes the number of nodes.

To wait for the root node that the other nodes reports the circle message
seems a little bit wasteful. The following approach can improve the running
time: Once a node receives a search message, it wait one time step and then
proceed with the breath-first search, if no circle is detected. Thus the breath-
first search is delayed. Once a node detect a circle, say on level h, this message
is reported without delay to the root node. To find the circle on level h it takes
2h time steps, and additional h steps are needed to report the circle to the root
node. When the root node receive the circle message, its send a stop message
without any delay, through the network. Note that during this, the remaining
nodes proceed with the breath-first search. Since the nodes proceeds with the
breath-first search only in every second time step, after at most 5h steps every
node receives a stop message, and the breath-first search stops. This results in
a total running time of O(|E|) for the breath-first search.

92 B. Ries et al.

5 Conclusion and Future Work

In this paper we presented approximation algorithms for the k-Observer problem
on d-regular graphs. First we presented in Section 2 an approximation algorithm
for bipartite d-regular graphs. In the case of k = 2 we achieved an 1 + 1

2d−2 -
approximation.

In Section 3 we considered d-regular graphs in general. We started by pre-
senting our (centralized) idea of our algorithm. Our analysis shows that, in the
case of k = 2, our algorithm achieves an 2 − o(1)-approximation, that converges
to 2 − 1

d , for large graphs when |V | � d. This improves the results of [TZ11],
where the authors presented a 2-approximation. But our algorithm can also be
executed in an distributed way, like described in Section 4. This approximation
factor of 2 − 1

d matches the best known approximation factor for vertex cover in
d-regular graphs [Hoc83].

For longer path length, i.e. k ≥ 3, our algorithm unfortunately only gives
an 3-approximation, for the case k ≤ d+2

2 . The limitations in the path length
can be partially lifted up, if it is not asked for an 3-approximation, but for an
α-approximation instead, for α ≥ 3. For k ≤ α−2

α−1d + 1 our algorithm achieves
an α-approximation.

One open question is, weather there is some connection of the approximation
factor between the k-Observer problem in regular graphs and in general graphs,
like in [Fei03]. In [Fei03] the authors show that if the vertex cover problem on
d-regular graphs can be approximated with ratio c, it can be approximated with
the same ratio on every graph. A similar connection for the k-Observer problem
would be exciting.

Up to now, the best known approximation factor for the problem in general
graphs is k+1. There seems to be a lot room for improvement. Also a lower bound
for the approximation factor in general graphs, like in [KR08] or [BFPS15], would
be interesting.

In [ACBG12] the authors especially ask for solutions for Internet-like net-
works, like described in [CDZ97] and [FFF99]. Although the graphs are not
regular in general, and our analysis only holds for regular or bounded degree
graphs, it would be nice to see how our algorithm perform on these kind of net-
works. In [FFF99] those kind of networks where considered, and they discover
that roughly 50% of the nodes are in trees. Since our algorithm solves trees opti-
mal, it would be interesting how far away is our solution from the optimal in
these networks.

References

[ACBG12] Acharya, H.B., Choi, T., Bazzi, R.A., Gouda, M.G.: The k-observer
problem in computer networks Networking. Science 1(1–5), 15–22 (2012)

[BFPS15] Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No Small Linear Program
Approximates Vertex Cover within a Factor 2 - ε. ArXiv e-prints, March
2015

The k-Observer Problem on d-regular Graphs 93

[BJK+13] Brešar, B., Jakovac, M., Katrenič, J., Semanǐsin, G., Taranenko, A.: On the
vertex k-path cover. Discrete Applied Mathematics 161(13), 1943–1949
(2013)

[BKBSŠ14] Brešar, B., Krivoš-Belluš, R., Semanǐsin, G., Šparl, P.: On the weighted
k-path vertex cover problem. Discrete Applied Mathematics 177, 14–18
(2014)

[BKKS11] Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex
cover. Discrete Applied Mathematics 159(12), 1189–1195 (2011)

[BL01] Boliac, R., Lozin, V.V.: On computing the dissociation number of bipartite
graphs (2001)

[CDZ97] Calvert, K.L., Doar, M.B., Zegura, E.W.: Modeling internet topology.
IEEE Communications Magazine 35(6), 160–163 (1997)

[DS05] Dinur, I., Safra, S.: On the hardness of approximating minimum vertex
cover. Annals of Mathematics, pp. 439–485 (2005)

[ENZ96] Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset
feedback vertex set problem. In: Proceedings of the 37th Annual Sympo-
sium on Foundations of Computer Science, 1996, pp. 310–319. IEEE (1996)

[Fei03] Uriel, F.: Vertex cover is hardest to approximate on regular graphs. Tech-
nical report, Citeseer (2003)

[FFF99] Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships
of the internet topology. In: ACM SIGCOMM Computer Communication
Review, vol. 29, pp. 251–262. ACM (1999)

[Hoc83] Dorit, S.: Hochbaum. Efficient bounds for the stable set, vertex cover and
set packing problems. Discrete Applied Mathematics 6(3), 243–254 (1983)

[KR08] Khot, S., Regev, O.: Vertex cover might be hard to approximate to within
2- ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)

[Lyn96] Lynch, N.A.: Distributed algorithms. Morgan Kaufmann (1996)
[Nov10] Novotný, M.: Design and analysis of a generalized canvas protocol.

In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K.,
Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 106–121. Springer,
Heidelberg (2010)

[SJX13] Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal dis-
tributed algorithm for maximal independent set selection. In: Proceedings
of the 2013 ACM Symposium on Principles of Distributed Computing,
pp. 147–156. ACM (2013)

[TZ11] Jianhua, T., Zhou, W.: A factor 2 approximation algorithm for the vertex
cover p3 problem. Information Processing Letters 111(14), 683–686 (2011)

Functional Encryption for Cascade Automata
(Extended Abstract)

Dan Brownstein1(B), Shlomi Dolev1, and Niv Gilboa2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

{danbr,dolev}@cs.bgu.ac.il
2 Department of Communication Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

gilboan@bgu.ac.il

Abstract. We introduce a functional encryption scheme based on the
security of bilinear maps for the class of languages accepted by extended
automata. In such an automaton, n DFAs, each with at most q states,
are linked in a cascade such that the first DFA receives the input to the
system and a feedback symbol from the last DFA, and in each transition
the i-th DFA, i = 1, . . . , n, both performs its own transition and outputs
a symbol that acts as the input for DFA number i+1 mod n. The state
of the whole system is an n-tuple consisting of the state of each compo-
nent DFA.

Our work extends the work of Waters (Crypto’12) by replacing a
single DFA with a cascade. Although both models accept all regular
languages, a cascade automata reduces the number of states and there-
fore the key size for certain regular languages by an exponential factor.
In both systems, a message m is encrypted with a word w and can
be decrypted only by a key that is associated with an automaton that
accepts w.

Our scheme has key size O(nq2) and all its other efficiency measures
including the ciphertext length, encryption and decryption times are lin-
ear in the length of w. As an example of the additional power that a
cascade provides, we show a construction of a cascade that accepts a
word in a regular language only if it is accompanied by a standard pub-
lic key signature on that word.

Our work improves on alternative approaches using functional encryp-
tion for general circuits or programs, by either being based on weaker
assumptions, i.e. bilinear maps, or by being more efficient.

Keyword: Functional Encryption

Partially supported by the Rita Altura Trust Chair in Computer Sciences, Lynne
and William Frankel Center for Computer Sciences, Israel Science Foundation (grant
428/11), the Israeli Internet Association, and the Ministry of Science and Technology,
Infrastructure Research in the Field of Advanced Computing and Cyber Security.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 94–108, 2015.
DOI: 10.1007/978-3-319-21741-3 7

Functional Encryption for Cascade Automata 95

1 Introduction

Functional Encryption (FE) has emerged as a major generalization of traditional
public key encryption. FE schemes enable a holder of a secret key to obtain a
function of the plaintext and key as opposed to to either fully decrypting the
plaintext or not learning any information on it.

One of the main directions of research on functional encryption has focused
on extending the class of functions that can be used. The first notion that could
be associated with functional encryption is that of Identity Based Encryption
[2,7,19], in which the function is a comparison between the user’s identity and its
key. Progressing through functions expressed as formulas [13,18] and functions
expressed as regular languages [20], recent breakthroughs [9–12] have enabled
constructing FE schemes for general functions.

The latest constructions in this progression do not necessarily subsume some
of the earlier schemes. While they enable a richer class of functions, they some-
times rely on less established cryptographic primitives and sometimes on less
efficient constructions. As a result some of the earlier schemes are attractive for
applications in which only a limited class of functions is required.

In this work we revisit and extend the scheme of Waters [20] which achieves
FE for regular languages. More accurately, it is a functional encryption system in
which a message m is encrypted with a word w and decryption is possible if and
only only if the secret key is associated with a Deterministic Finite Automaton
(DFA) that accepts w.

We extend the work in [20] by replacing acceptance by a DFA with acceptance
by cascade automata. In this model, n DFAs are linked in a cascade such that
the first DFA receives the input to the system and a feedback input from the
last DFA, and in each transition the i-th DFA, i = 1, . . . , n both performs its
own transition and outputs a symbol that acts as the input for DFA number
i+1 mod n. The state of the whole system is an n-tuple consisting of the state
of each component DFA.

We are motivated in studying this question due to applications that cascade
automata enable compared to standard DFA. Specifically, as we show in [5],
there exists an efficiently sized cascade automaton that verifies standard public
key signatures. We can therefore use this model to encrypt messages given words
that are signed by different users. A user adding its signature to a word w, in
a sense accepting that word, can allow any other user that has the appropriate
key to decrypt, even long after the original encryption.

Alternatives to our approach are possible using constructions that achieve
general functional encryption. However, these works either rely on stronger
assumptions than the bilinear maps we use such as variations of multi linear
maps [8–10] or use additional primitives such as fully homomorphic encryption
[9,11], which implies much larger keys and longer encryption time compared to
our solution.

Gorbunov et al. [12] present a novel scheme for attribute based encryption for
circuits under the learning with errors assumption [17]. In their scheme, the noise
grows exponentially with the depth of the circuit and the key size is linear in the

96 D. Brownstein et al.

size of the circuit. It is well known that every regular language is computable
by NC1 circuits of linear size. Thus, even though the noise grows exponentially
with the depth of the circuit, their scheme can be used for our purposes. However
the size of a secret key in Gorbunov et al. [12] construction is linear in the size
of the circuit, i.e. in our terms the length of a word w, while our scheme has key
size which is proportional to the representation size of the cascade automaton
accepting the language.

In [3], Boneh et al. construct a scheme for arithmetic circuit ABE with secret
keys of size O(d) where d is the depth of the circuit. Even though this result is
better than previous constructions, the depth of circuit for inputs of length |w|
is O(log |w|) since the fan-in of each gate in the circuit is fixed. In our case the
length of w is arbitrary which leads to secret keys of arbitrary sizes. Moreover,
the size of the public-key in their construction is proportional to |w|, which leads
to a restriction of the public index space (the word w in our setting). In contrast,
in our construction it has constant size.

Contributions. Our contribution is twofold. First, we show the first FE scheme
for cascade automata that is (selectively) secure based on a q-type assumption
on bilinear maps. The public parameters in our scheme are of size O(1). A secret
key associated with a cascade automata that is comprised of n DFAs, each with
at most q states, has size O(nq2). Encrypting a message to a word w of length
� requires O(�) group operations and produces a ciphertext of length O(�) and
decrypting such a message requires O(n�) group operations.

Our second contribution shows the utility of cascade automata by describ-
ing an efficient construction of cascade automata that embeds a public key for
standard public key signature algorithms such as Rabin or RSA and reaches an
accepting state given a string w, s(w) if and only if s(w) is a signature on w.

Organization. In Section 2 we provide definitions and notation. Section 3
describes the main construction of a functional encryption scheme for cascade
automata and states its security (security proof can be found in [5]) and section 4
includes the construction of a cascade automaton that verifies signatures.

2 Definitions and Notations

2.1 Finite Automata

A standard Deterministic Finite Automata (DFA) has a set of states, Q, an input
alphabet, Σ and a transition function and a transition function We use Mealy’s
formalism [14] for an extension of a DFA in which each transition outputs a
symbol. We then define a Cascaded Mealy Machine based Automata, which is a
sequence of Mealy machines in which the output of every MMA is the input to
the next MMA in the sequence.

Notation 1. Let [1, n] denote the set {1, . . . , n} for n ∈ N. In state diagrams
for finite automata we use Mealy machine state diagram conventions; each edge
is labeled with j|k where j is the input and k is the output.

Functional Encryption for Cascade Automata 97

q q′j|k

Fig. 1. Each edge is labeled with j|k where j is the input and k is the output

Definition 1. A Mealy Machine based Automata (MMA) A = (Q,Σ, δ, q0, F)
is a 5-tuple in which Q is a finite set of states, Σ is a finite set of symbols called
the input and output alphabet and δ : Q×Σ → Q×Σ is a transition and output
function. The distinguished state q0 ∈ Q is called the start state and F ⊆ Q is a
set of accepting states. We say that a A accepts a string w = (w1, . . . , w�) ∈ Σ∗

if there exists a sequence of states r0, . . . , r� ∈ Q s.t.

1. r0 = q0.
2. δ(ri, wi) = (ri+1, ϕi), for i ∈ [0, � − 1].
3. r� ∈ F .

Notation 2. Given an MMA A = (Q,Σ, δ, q0, F) we say that TA is the set

of transitions of A and define it by TA
�
= {t = (x, y, σ, ϕ)|x, y ∈ Q,σ, ϕ ∈

Σ, δ(x, σ) = (y, ϕ)}.
In the following definition of CMMA, the set of states, the subset of accepting

states and the initial states are all Cartesian products of the appropriate states
in the component MMAs. The transition function links the input and output of
the MMAs.

Definition 2. A Cascade Mealy Machine based Automata (CMMA), CA, over
a sequence of n MMAs A1, . . . , An s.t. (Aj = (Qj , Σ, δj , q0j , Fj)) is a 5-tuple
(Q,Σ, δ, q0, F) in which Q = Q1 × . . . × Qn, Σ is the input and output alphabet
of all component MMAs and the transition (and output) function δ : Q × Σ →
Q × Σ is defined by δ(x, σ) = (y, ϕn) where x = (x1, . . . , xn) ∈ Q, σ ∈ Σ,
y = (y1, . . . , yn) ∈ Q and ϕn ∈ Σ, such that

σ1 = σ and δi(xi, σi) = (yi, ϕi) where ϕi = σi+1,

for every i ∈ [1, n − 1]. The distinguished start state is q0 = q01, . . . , q0n and the
set of accepting states is F = F1×, . . . ,×Fn. We say that a ECMMA CA accepts
a string w = (w1, . . . , w�) ∈ Σ∗ if there exists a sequence of states r0, . . . , r� ∈ Q
s.t.

1. r0 = q0.
2. δ(ri, wi) = (ri+1, ϕi), for i ∈ [0, � − 1].
3. r� ∈ F .

Fig. 2 illustrates the i’th transition of a CMMA.
Let CA be a CMMA over the sequence (A1, . . . , An) of MMAs. A natural

implementation using the representation of CA as n MMAs leads to storage that
is the sum of the storage requirements for every Aj , j ∈ [1, n]. However, each

98 D. Brownstein et al.

qi1A1 automaton: qi+11

ECMMA input σ=σi1|ϕi1

qijAj automaton: qi+1j

σij |ϕij

qij+1Aj+1 automaton: qi+1j+1

σij+1 = ϕij |ϕij+1

qinAn automaton: qi+1n

σin|ϕin

...

...

Fig. 2. Outputs of Aj are inputs of Aj+1

transition in CA requires n MMA transitions, one in each component. A different
approach is to explicitly represent Q as Πn

j=1|Qj |. In such an implementation,
each transition requires O(1) time but the required storage is exponential in n.

The following definition of ECMMA expands the CMMA definition so it
supports loops and feedback input. The transition function links the input and
output of the MMAs. In addition, he transition function of the first MMA takes
into consideration the output of the last MMA (feedback).

Definition 3. An Expanded Cascade Mealy Machine based Automata
(ECMMA), ECA, over a sequence of n MMAs A1, . . . , An s.t. A1 = (Q1, Σ ×
Σ, δ1, q01, F1), ∀j > 1 Aj = (Qj , Σ, δj , q0j , Fj)) is a 5-tuple (Q,Σ, δ, q0, F) in
which Q = Q1 × . . . × Qn, Σ × Σ is the input alphabet for the first component
MMA, Σ is the output alphabet for the first component MMA and the input and
output alphabet of all other component MMAs and the transition (and output)
function δ : Q × Σ × Σ → Q × Σ is defined by δ(x, σ, σ′) = (y, ϕn) where
x = (x1, . . . , xn) ∈ Q, σ, σ′ ∈ Σ, y = (y1, . . . , yn) ∈ Q and ϕn ∈ Σ, such that

σ1 = σ σ′
1 = σ1

δ1(x1, σ1, σ
′
1) = (y1, ϕ1)

∀i ∈ [2, n] δi(xi, σi) = (yi, ϕi) where σi = ϕi−1

The distinguished start state is q0 = q01, . . . , q0n and the set of accepting states
is F = F1×, . . . ,×Fn. We say that a ECMMA ECA accepts the input w =
(w1, . . . , w�), w′ = (w′

1, . . . , w
′
�) ∈ Σ∗ × Σ∗ if there exists a sequence of states

r0, . . . , r� ∈ Q s.t.

Functional Encryption for Cascade Automata 99

1. r0 = q0.
2. for i ∈ [0, � − 1] δ(ri, wi, w

′
i) = (ri+1, ϕi), s.t for i ∈ [0, � − 2] w′

i+1 = ϕi.
3. r� ∈ F .

In our ECMMAs w′
1 and ϕ�−1 are insignificant in the sense that at the first

transition the feedback w′
1 is ignored and at the last transition the output ϕ�−1

is not used in further steps. Since ∀i > 1 w′
i is defined by the transition function

we will use only w as the input for our ECMMAs.

2.2 Functional Encryption for ECMMA

In this section we define a functional Encryption scheme for languages that
areaccepted by a ECMMA. In our system, a ciphertext CT encrypts a message m
and is associated with string w of arbitrary length. A secret key SK is associated
with a ECMMA, ECA. A user is able to decrypt the ciphertext CT iff the
ECMMA, ECA, associated with the user’s private key, SK, accepts the string w.
We use the terminology of [4] to define the system. By this terminology we devise
a predicate encryption scheme with public index, since the string w is not hidden.
The system consists of four algorithms: Setup, Encrypt, KeyGen and Decrypt
described as follows:

Setup(1κ, Σ). The setup algorithm takes as input a security parameter κ and
a description of a finite alphabet Σ. The alphabet is shared across the entire
system. The algorithm outputs the public parameters PP and a master key
MSK.

Encrypt(PP,w,m). The encryption algorithm takes as input the public param-
eters PP , an arbitrary length string w ∈ Σ∗ and a message m. It outputs a
ciphertext CT .

Key Generation(MSK,ECA). The key generation algorithm takes as input the
master key MSK and a ECMMA description ECA = (A1, . . . , An). The descrip-
tion does not include the alphabet Σ since it is already determined by the setup
algorithm.

Decrypt(SK,CT). The decryption algorithm takes as input a secret key SK and
ciphertext CT . The algorithm attempts to decrypt and outputs a message m if
successful. Otherwise, it outputs a special symbol ⊥.

The scheme must satisfy the following correctness and security requirements.
Correctness. For any message m, string w and ECMMA ECA s.t.
Accept(ECA,w), If Setup → (PP,MSK), Encrypt(PP,w,m) → CT
and KeyGen(MSK,ECA) → SK, then Decrypt(SK,CT) = m.

Security. We describe a game based security definition for ECMMA-Based
Functional Encryption.

setup: The challenger runs the setup algorithm, gives the public parameters,
PP to the adversary and keeps the master secret key, MSK.

100 D. Brownstein et al.

Phase 1: The adversary makes a polynomial number of private key queries
for ECMMA of its choice. For any request ECA, the challenger returns SK =
KeyGen(MSK,ECA).

Challenge: The adversary submits two equal length messages m0 and m1.
In addition, the adversary gives a challenge string w∗ such that for all ECA
requested in Phase 1, Reject(ECA,w∗). Then, the challenger flips a coin
b ∈ {0, 1} and computes Encrypt(PP,w∗,mb) → CT ∗. The challenge cipher-
text CT ∗ is given to the adversary.

Phase 2: Phase 1 is repeated with the restriction that for all ECA requested
Reject(ECA,w∗).

Guess: The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in this game is defined as |Pr[b′ = b] − 1
2 |. A

ECMMA-based Functional Encryption system is secure if all PPT adversaries
have advantage less than κ−c in the above game, for any constant c > 0.

In our security proof we use a weaker security model known as selective
security. In this model we add an Init stage at the beginning of the game where
the attacker must declare upfront what the challenge string w∗ and the alphabet
Σ will be, before seeing the public parameters.

2.3 Threshold-� − BDHE Assumption

We extend Waters’ [20] decision �-Expanded Bilinear Diffie-Hellman Exponent
problem. Our extended problem is defined as follows. Let G,GT be two groups
of prime order p > 2κ for a security parameter κ such that e : G × G → GT

is a bilinear mapping. Choose random s, a, b1, b
′, c0, . . . , c�+1, d ∈ Z

∗
p, a random

g ∈ G and set b = b1 + b′. Suppose an adversary is given X =

gb

g, ga, gab1/d, gab′/d, gb1/d, gb′/d

∀i∈[0,2�+1],i �=�+1,e∈[0,�+1] gais, gaib1s/ce

∀i∈[0,2�+1],e∈[0,�+1] gaib′s/ce , gaib1d/ce , gaib′d/ce

∀i∈[0,�+1] gaib1/ci , gaib′/ci , gci , gaid, gab1ci/d, gab′ci/d, gb1ci/d, gb′ci/d

∀i,e∈[0,�+1],i �=e gaib1ce/ci , gaib′ce/ci

then it must be hard to distinguish e(g, g)a�+1bs ∈ GT from a random element
R ∈ GT .

We say that an algorithm B that outputs z ∈ {0, 1} has advantage ε in
solving the threshold- � − BDHE problem in G if

∣
∣
∣Pr

[

B(X,T = e(g, g)a�+1bs) = 1
] − Pr

[

B(X,T = R) = 1
]
∣
∣
∣ ≥ ε

Definition 4. We say that the Threshold �-BDHE assumption holds if no poly-
time algorithm has advantage κ−c in solving the problem for some c > 0.

Functional Encryption for Cascade Automata 101

3 ECMMA-Based Functional Encryption Scheme
Construction

3.1 Intuition

Our scheme extends the work of Waters [20], which presented a system of func-
tional encryption for regular languages. In this system a secret key is associated
with a deterministic finite automaton (DFA) A. A ciphertext CT encrypts a
message m and is associated with an arbitrary length string w. A user is able to
decrypt the ciphertext CT if and only if the DFA A associated with his private
key accepts the string w.

As we showed in section 2, an ECMMA ECA over a sequence (A1, . . . , An)
of MMAs can be implemented as an MMA A′ by defining the set of states of A′

as the product of the states of Aj ∀j ∈ [1, n] and explicitly storing each such
state. Theoretically this makes it possible to apply functional encryption using
Waters’ scheme on every ECMMA by converting it to an MMA and ignoring the
output (which leaves us with a DFA). However, the algorithms in [20] depend on
the size of the DFA which in this case grows exponentially with each n resulting
in an infeasible scheme.

A different approach would be to use Waters’ system for each of the MMAs
Aj independently. In this scheme, the encryption algorithm divides m into n
shares. Each share is associated with an MMA. By applying Waters’ system on
each MMA separately, the decryption algorithm retrieve the shares and recon-
structs m. However, with this approach, during the decryption algorithm, it is
impossible to assert that the outputs of Aj are indeed the inputs for Aj+1. There-
fore, an attacker who has two keys associated with ECA1 and ECA2 such that
ECA1 includes A1, . . . , Aj and ECA2 includes Aj+1, . . . , An is able to decrypt
a message, even though the word w is not accepted by either of its ECMMAs.

In Waters’ system, when encrypting a ciphertext for a string w of � symbols,
the encrypting algorithm chooses � + 1 random exponents s0, s1, . . . , s� ∈ Zp

where p is the order of the group. A private key associated with an automaton
A = (Q,Σ, δ, q0, F) has |Q| random group elements, D0, . . . , D|Q|−1, from a
bilinear group G, where Dx is associated with state qx. Suppose a decryption
algorithm is applied to decrypt a ciphertext associated with string w with a secret
key SK for automaton A. Throughout the process of decryption the algorithm
can only compute e(g,Dx)si if A is in state qx after reading i symbols of w. We
can think of this as chaining between the state qx that A lands on after reading
i symbols of w and the computed value e(g,Dx)si .

In our solution we add another level of chaining: the assertion that the out-
puts of Aj are used as the inputs of Aj+1 for each MMA. In each transition of
the MMA Aj+1 with input of ϕ we use a random value R′ to blind the value
e(g,Dx)si by computing R′ · e(g,Dx)si . In each transition of the MMA Aj with
output of ϕ we blind the e(g,Dx)si value by computing (R′)−1 · e(g,Dx)si . Val-
ues corresponding to inputs are reciprocals of values corresponding to outputs.
Hence, multiplying decrypted values from consecutive MMAs will get rid of these
blinding values iff the output-input property is satisfied.

102 D. Brownstein et al.

Efficiency. We now give an overview of the time/space complexity of our scheme.
Given a message m, string w, and ECMMA ECA such that Accept(ECA,w). If
Encrypt(PP,w,m) → CT and KeyGen(MSK,CA) → SK where PP,MSK
were generated from a call to Setup algorithm, where |w| is the length of
the string associated with the cypher-text, |Fj | is the number of accept states
of the j′th MMA, Aj , |Tj | is the number of transitions (x, y, σ, ϕ) in Aj and
|T ′

j | is the number of transitions in Aj+1 (x′, y′, σ′, ϕ′) s.t ϕ = σ′. The public
parameters contain 6 + |Σ| group elements . The cypher-text contains 5 + 3|w|
group elements. The encryption operation requires takes 5 + 4|w| exponentia-

tions. A private key contains
n∑

j=1

[2 + 2|Fj | + |Tj | ∗ (2 + |T ′
j |)] group elements.

A successful decryption itself requires n ∗ (4 + 3|w|) bilinear pairing operations.

3.2 Algorithms

Setup(1κ, n,Σ). The setup algorithm takes as input the security parameter κ,
the number of automata, n and alphabet Σ. It first chooses a prime p > 2κ

and creates a bilinear group G of prime order p. It then chooses random group
elements g ∈ G and for every j ∈ [1, n] it chooses randomly and independently
hstartj , hendj , zj ,Hj ∈ G. In addition, for every σ ∈ Σ it chooses random hσ ∈ G.
Finally, an exponent α ∈ Zp is randomly chosen. The public parameters PP are
the description of the group G and the alphabet Σ along with : e(g, g)α, g,∀j ∈
[1, n] hstartj , hendj , zj ,Hj ,∀σ∈Σ hσ. The Master Secret Key MSK is α along with
the public parameters.

Encrypt(PP,w = (w1, . . . , w�),m). The encryption algorithm takes as input the
public parameters PP, an arbitrary length string w ∈ Σ∗, and a message m ∈ G.
The encryption algorithm chooses � + 1 random numbers s0, . . . , s� ∈ Zp.
First, it sets:

Cm = m · e(g, g)α·s�

Cstart1 = C0,1 = gs0 , ∀j ∈ [1, n] Cstart2j = (hstartj)
s0

Then, for i = 1 to � it sets:

Ci,1 = gsi , Ci,2 = (hwi
)si(z1)si−1 , ∀j ∈ [2, n] Ci,3j = (Hj)si(zj)si−1

Finally, it sets:

Cend1 = C�,1 = gs� , ∀j ∈ [1, n] Cend2j = (hendj)
s�

The output ciphertext is:

CT =
(

w,Cm, Cstart1,∀j ∈ [1, n] Cstart2j ,

∀i ∈ [1, �] (Ci,1, Ci,2,∀j ∈ [2, n] Ci,3j), Cend1,∀j ∈ [2, n] Cend2j

)

Functional Encryption for Cascade Automata 103

KeyGen(MSK,ECA = (A1, . . . , An)). The key generation algorithm takes as
input the master secret key and the description of a ECMMA, ECA. For each
MMA Aj ∈ ECA the description of Aj includes a set Qj of states q0j , . . . ,
q|Qj |−1j

and a set of transitions Tj where each transition tj ∈ Tj is a 4-tuple
(xj , yj , σ, ϕ) ∈ Qj × Qj × Σ × Σ. In addition, q0j is designated as a unique start
state and Fj ⊆ Qj is the set of accept states. For each MMA Aj the algorithm:

1. Chooses a random element rstartj ∈ Zp, |Qj | random group elements
D0j , . . . , D|Qj |−1j

∈ G where Dij is associated with the state qij and random
elements rtj ∈ Zp and Rtj ∈ G for every tj = (xj , yj , σ, ϕ) ∈ Tj . Then, it
sets:

j = 1 Kstart11 = {D01(hstart1)
rstart1Rt1|∀t1 = (x1, y1, σ, ϕ) where x1 = q01}

∀j ∈ [2, n] Kstart1j = D0j(hstartj)
rstartj

∀j Kstart2j = grstartj

2. For every tj = (xj , yj , σ, ϕ) ∈ Tj the algorithm sets Ktj ,1,Ktj ,2,Ktjt′ . Let
T ′

j+1 denote the set of all transitions in Aj+1 that can be initiated by the
transition tj in Aj in a cyclic manner. Formally, ∀j ∈ [1, n−1] T ′

j+1 = {tj+1 =
(xj+1, yj+1, σ

′, ϕ′) ∈ Tj+1|ϕ = σ′}, for j = n T ′
j+1 = {t1 = (x1, y1, σ

′, ϕ′) ∈
T1|ϕ = σ′}. The second element, Ktj ,2, is set in the same way for all MMAs,
A1, . . . , An:

Ktj ,2 = grtj

The first element, Ktj ,1, has two different versions, one for A1 and a second
one for A2, . . . , An:

j = 1 Kt1,1 = (Dx1)
−1

z1
rt1Rt1

−1

∀j ∈ [2, n] Ktj ,1 = (Dxj)
−1

zj
rtj

The third element, Ktjt′ , also has two different versions, one for A1 and a
second one for A2, . . . , An. KeyGen computes Ktjt′ as follows:

j = 1 Kt1t′ = {Dy1(hσ)rt1Rt2|∀t2 ∈ T ′
2}

∀j ∈ [2, n] Ktjt′ = {Dyj(Hj)rtj Rtj
−1Rtj+1|∀tj+1 ∈ T ′

j+1}
3. The algorithm chooses n − 1 random exponents αj ∈ Zp for j = 1, . . . , n − 1

and sets αn = α −
n−1∑

u=1
αu. Then the algorithm chooses random rendx j ∈ Zp,

for all j = 1, . . . , n and all qxj ∈ Fj .

Finally, ∀qxj ∈ Fj the algorithm sets:

∀j ∈ [1, n − 1] Kendx,1j = g−αj · Dxj(hendj)
rendx j

j = n Kendx,1n = {g−αn · Dxn(hendn)rendx nRt
−1
1 |∀t1 ∈ T ′

n+1

for each tn = (xn, yn, σ, ϕ) where yn = qxn}
∀j Kendx,2j = grendx j

104 D. Brownstein et al.

The output secret key is:

SK =
(

ECA,∀j ∈ [1, n]
[

Kstart1j ,Kstart2j ,∀tj ∈ Tj (Ktj ,1,Ktj ,2,Ktjt′),

∀qxj ∈ Fj (Kendx,1j ,Kendx,2j)
]
)

Decrypt(SK,CT). Let SK = KeyGen(MSK,ECA) for some ECMMA, ECA,
such that Accept(ECA,w) and let CT = Encrypt(PP,w,m). Then, for every
Aj and for all i = 1, . . . , � there exists a sequence of �+1 states r0j , . . . , r�j ∈ Qj ,
r0j = q0j , and � transitions t1j , . . . , t�j ∈ Tj such that tij = (rij , ri+1j , wij ,
wij+1) ∈ Tj where wi1 = wi, the outputs of the last MMA used as feedback for
the first MMA and r�j ∈ Fj .

1. Let K ′
start11 be the single element from Kstart11 which corresponds to the

transition t11. The algorithm first computes:

B01 = e(Cstart1,K
′
start11) · e(Cstart21,Kstart21)

−1 = e(g,D01)
s0e(g,Rt11)

s0

∀j ∈ [2, n] B0j = e(Cstart1,Kstart1j) · e(Cstart2j ,Kstart2j)
−1 = e(g,D0j)

s0

2. Then, for i = 1 to � the algorithm iteratively computes:
(a) Let Kti j be the single element from Ktjt′ where t = tij and t′ = tij+1.
(b) For the first MMA A1:

Bi1 = Bi−11 · e(C(i−1),1,Kti,11) · e(Ci,2,Kti,21)
−1 · e(Ci,1,Kti1)

(c) For all other MMAs A2, . . . , An:

Bij = Bi−1j · e(C(i−1),1,Kti,1j) · e(Ci,3j ,Kti,2j)
−1 · e(Ci,1,Kti j)

3. Then, the algorithm computes:

B� =
n

∏

j=1

B�j = e(g,Rt�1)
s�

n
∏

j=1

e(g,Dr� j)
s�

4. Let K ′
endx,1n

be the single element from Kendx,1n which corresponds to the
transition t�n. Finally, the algorithm computes:

Bend = B� · e(Cend1,K
′
endx,1n

)−1 · e(Cend2n,Kendx,2n) ·
n∏

j=2

[

e(Cend1,Kendx,1j)
−1 · e(Cend2j ,Kendx,2j)

]

= e(g, g)αs�

Which can be used to retrieve the message m from Cm.

Functional Encryption for Cascade Automata 105

3.3 Main Theorem

We prove the following lemmas in [5].

Lemma 1. Let m ∈ Zp, w ∈ {0, 1}∗, ECA be a ECMMA with n MMAs such that
Accept(ECA,w) and let κ ∈ N be a security parameter. If Encrypt(PP,w,m) →
CT and KeyGen(MSK,ECA) → SK where Setup(1κ, n,Σ) → PP,MSK then
Decrypt(SK,CT) = m.

Lemma 2. The threshold � − BDHE Assumption is generically secure using
the result of Boneh et. al [1] on generic bilinear groups.

We prove security of our construction in the selective mode. We show a
reduction algorithm B, that given a successful attacker A against our system,
will use it to break the threshold �∗-BDHE assumption where �∗ is the length
of w∗, the challenge ciphertext. The reduction simulates the Setup, Encryption
and Key Generation algorithms.

Lemma 3. If the threshold �∗-BDHE assumption holds then no poly-time adver-
sary can selectively break our ECMMA-based encryption system for n MMAs,
each with at most q states, where the challenge string w∗ is of length �∗ and n
and q are polynomial in the security parameter κ.

Theorem 1. Our construction is a functional encryption system for ECMMA
which is selectively secure under the threshold �-BDHE assumption. For a
ECMMA with n levels and at most q states in each level, the size of a pub-
lic key in the construction is a constant number of group elements and the size
of a secret key is O(nq2) group elements.

The proof of theorem 1 is immediate from lemmas 1, 2, 3 and the construction.

4 Compact Signature Verification ECMMA

In the standard method of hash then sign, the inputs for a signature verification
algorithm are an arbitrary length word w and a signature sign(H(w)), where H
is a collision-resistant hash function and sign is a digital signature algorithm.
The output is 1 if sign(H(w)) is a valid signature of H(w) and 0 otherwise.
We can use Waters’ scheme to construct an FE scheme for that functionality by
constructing a DFA for the language of pairs (w, sign(w)) of an arbitrary length
word w and a valid signature sign(H(w)). Intuitively, the size of a DFA for this
language cannot be small, otherwise an adversary would be able to find a path
between the start and accepting states and retrieve a valid pair (w, sign(H(w))
in time proportional to the DFA size.

We show an efficient ECMMA that accepts the language w, sign(H(w)),
where H is the discrete-log based hash function proposed by Chaum et al [6] and
sign is the Rabin signature scheme [16]. Our methods readily extend to other
signature schemes that require modular exponentiation such as RSA. In our

106 D. Brownstein et al.

construction each MMA computes a modular arithmetic operation. It takes as
input the arguments for the operation and outputs the result of the operation
on the inputs to the next MMA. We use the Montgomery reduction [15] for
modular multiplication and exponentiation. We now show high level construction
of an expanded cascade automaton that verifies signatures. In [5] we prove the
following theorem:

Theorem 2. Let M be a product of two prime numbers, let H denote the hash
function of [6] over modulus p, p < M and let sign denote the Rabin digital
signature scheme with modulus M . Then, there exists a signature verification
ECMMA of size O(M2) that takes as input an arbitrary length word w and a
signature sign(H(w)) and accepts iff sign(H(w)) is a valid signature of H(w).

In order to prove theorem 2 we state several lemmas and give proof sketches
for each of them. Detailed construction and proofs appear in [5]. In the following
we regard an ECMMA as computing a function f , e.g. exponentiation or hash,
in the sense that given an input x the output of the last MMA is f(x).

Lemma 4. Given a modular exponentiation ECMMA of size O(M2) and a mod-
ular multiplication ECMMA of size O(M2) there exists a hash ECMMA of size
O(M2).

Proof (sketch). Recall that the hash function of Chaum et al. [6] is defined
as follows. Let p, q be two large primes such that q|p − 1. Let α and β be
two random generators of a sub-group of Z

∗
p of order q. The value logαβ is

not public. The hash function H : {0, . . . , q − 1} × {0, . . . , q − 1} → Zp\{0} is
defined as: H(X1,X2) = αX1βX2 mod p. In order to calculate a hash function
of arbitrary length inputs, we use Chaum’s scheme as the internal block of the
Merkle-Damg̊ard construction.

The input to the ECMMA is w = X1, . . . , Xn and the output is the hash
value h(w). Let i be the loop’s iteration’s index. At the first iteration, i = 1, the
input (X1) is echoed to the feedback input and the feedback input is ignored.
At the second iteration, i = 2, the ECMMA uses the exponentiation ECMMA
to compute αX1 mod p, feeds this output together with X2 to a second expo-
nentiation ECMMA to compute βX2 mod p and feeds both results to the mul-
tiplication ECMMA to compute their product. At each iteration i > 2, the
input is Xi, the feedback input is h(h(. . . (h(X1,X2), . . .),Xi−1) and the output
is h(h(. . . (h(X1,X2), . . .),Xi). The final output of the last MMA is the hash
value.

Lemma 5. There exists a modular multiplication ECMMA of size O(M2) where
M is the modulus.

Montgomery Multiplication [15]. Let M be a positive integer and let R and
T be integers such that R > m, gcd(M,R) = 1 and 0 ≤ T < MR. A Montgomery
reduction of T modulo M with respect to R is a method to compute TR−1 mod
M . If M is presented as a base b integer of length len, then a typical choice

Functional Encryption for Cascade Automata 107

for R is blen. In this case, the condition that gcd(M,R) = 1 will hold only if
gcd(M, b) = 1. In our case, M is odd and b = 2 so R = blen suffices.

Algorithm 1 uses the Montgomery reduction to compute the Montgomery
product of two integers.

Algorithm 1. Montgomery Multiplication. MMUL(X,Y)
INPUT: n-bits integer M , integers X, Y s.t (M > X, Y, M is odd)
OUTPUT: XY 2−n mod M

1: Z = 0
2: for i = 0 to n − 1 do
3: Z = Z + XiY
4: if Z is odd then
5: Z = Z + M
6: end if
7: Z = Z/2
8: end for
9: if Z ≥ M then

10: Z = Z − M
11: end if
12: return Z

We prove this lemma by constructing an ECMMA for Montgomery Multi-
plication. Our ECMMA is made up of several CMMAs, which compute “basic”
operations in the Montgomery multiplication algorithm such as addition mod-
ulo M or multiplication of a bit and an integer. Using similar techniques we
construct an ECMMA for Montgomery modular exponentiation.

We can now prove (sketch) theorem 2:

Proof (Sketch Theorem 2). The ECMMA takes as input an arbitrary length
word w and a signature of its hash value sign(H(w)). In Rabin’s algorithm,
verifying a signature sign(w′) of word w′ is done simply by computing sign(w′)2

mod M and comparing this value with w′. First, the ECMMA calculates H(w)
using the construction from lemma 4. It then calculates sign(H(w))2 using the
construction from lemma 5 and then compares these values.

References

1. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) Advances in Cryptology – EUROCRYPT
2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) Advances in Cryptology – CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001)

108 D. Brownstein et al.

3. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev,
G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q.,
Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014. LNCS, vol. 8441,
pp. 533–556. Springer, Heidelberg (2014)

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) Theory of Cryptography. LNCS, vol. 6597, pp. 253–273. Springer,
Heidelberg (2011)

5. Brownstein, D., Dolev, S., gilboa, N.: Functional encryption for cascade automata.
Technical report, Department of Computer science Ben-Gurion University of the
Negev

6. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)

7. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

8. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT
2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

9. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A.,Waters, B.: Candidate
indistinguishability obfuscation and functional encryption forall circuits. In: FOCS
2013, pp. 40–49

10. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology – CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg
(2013)

11. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC 2013,
pp. 555–564

12. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for
circuits. In: STOC 2013, pp. 545–554

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98

14. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Systems Technical
Journal

15. Montgomery, P.L.: Modular multiplication without trial division. In: Mathematics
of Computation, vol. 44, pp. 519–521. American Mathematical Society (1985)

16. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report, MIT

17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93

18. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
Advances in Cryptology – EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473.
Springer, Heidelberg (2005)

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

20. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. LNCS, vol. 7417,
pp. 218–235. Springer, Heidelberg (2012)

The Implication Problem of Computing Policies

Rezwana Reaz1(B), Muqeet Ali1, Mohamed G. Gouda1,
Marijn J.H. Heule1, and Ehab S. Elmallah2

1 University of Texas at Austin, Austin, TX 78712, USA
{rezwana,muqeet,gouda,marijn}@cs.utexas.edu

2 University of Alberta, Edmonton, AB T6G 2R3, Canada
elmallah@ualberta.ca

Abstract. A computing policy is a sequence of rules, where each rule
consists of a predicate and an action, and where each action is either
“accept” or “reject”. A policy P is said to accept (or reject, respectively)
a request iff the action of the first rule in P , that is matched by the
request is “accept” (or “reject”, respectively). A pair of policies (P , Q)
is called an accept-implication pair iff every request that is accepted by
policy P is also accepted by policy Q. The implication problem of policies
is to design an efficient algorithm that can take as input any policy pair
(P , Q) and determine whether (P , Q) is an accept-implication pair. Such
an algorithm can support step-wise refinement methods for designing
policies. In this paper, we present a polynomial algorithm that can take
any policy pair (P , Q) and determine whether (P , Q) is an accept-
implication pair. The time complexity of this algorithm is O((m+n)t+2),
where m is the number of rules in policy P , n is the number of rules in
policy Q, and t is the number of attributes in P or in Q. This time
complexity is polynomial when t is fixed, as is usually the case.

Keywords: Policy · Implication problem · Step-wise refinement ·
Firewalls · Access control · Routing

1 Introduction

A computing policy is a filter that is placed at the entry point of some resource.
Each request to access the resource needs to be first examined against the policy
to determine whether to accept or reject the request. The action of a policy to
accept or reject a request depends on two factors:

1. The values of some attributes that are specified in the request
2. The sequence of rules in the policy that are specified by the policy designer

Examples of computing policies are firewalls in the Internet, routing policies
and software-defined networks in the Internet, and access control policies [10].
Early methods for the logical analysis of computing policies have been reported
in [6,7,11].

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 109–123, 2015.
DOI: 10.1007/978-3-319-21741-3 8

110 R. Reaz et al.

A rule in a policy consists of a predicate and an action, which is either
“accept” or “reject”. To examine a request against a policy, the rules in the
policy are considered one by one until the first rule, whose predicate satisfies
the values of the attributes in the request, is identified. Then the action of the
identified rule, whether “accept” or “reject”, is applied to the request.

Note that there are three sets of requests that are associated with each policy
P : (1) the set of requests that are accepted by P , (2) the set of requests that are
rejected by P , and (3) the set of requests that are neither accepted nor rejected
by P . (This third set is usually, but not always, empty.)

A pair of policies (P , Q) is called an accept-implication pair iff the set of
requests accepted by policy P is a subset of the set of requests accepted by
policy Q.

In this paper, we present an algorithm that can take as input any pair of
policies (P , Q) and determine whether or not (P , Q) is an accept-implication
pair. It turns out, as discussed in [5], that the problem of determining whether
any given policy pair is an accept-implication pair is NP-hard in general. This
means that the time complexity of any algorithm that solves this problem is
very likely to be exponential in general. We show that the time complexity of
our presented algorithm in this paper is polynomial in those cases where the
number of attributes in policy P or Q is fixed, as is usually the case.

For convenience, we present next two examples of policy pairs, and show that
one of these pairs is an accept-implication pair and the other is not.

Let u and v be two attributes whose integer values are taken from the interval
[1,9]. A policy P1 over these two attributes can be defined as follows:

((u in [1, 4]) ∧ (v in [8, 9])) → reject
((u in [2, 4]) ∧ (v in [7, 9])) → accept

Policy P1 consists of two rules. The first rule states that each request (u, v),
where the value of u is an integer in the interval [1, 4] and where the value of v
is an integer in the interval [8, 9], is to be rejected. The second rule states that
each request (u, v), that does not match the first rule and where the value of u
is an integer in the interval [2, 4] and where the value of v is an integer in the
interval [7, 9], is to be accepted. The set of requests that are accepted by policy
P1 is {(2, 7), (3, 7), (4, 7)}.

A second policy P2 over attributes u and v can be defined as follows:
((u in [1, 4]) ∧ (v in [8,9])) → reject
((u in [2, 3]) ∧ (v in [6,8])) → accept

The set of requests that are accepted by policy P2 is {(2, 6), (3, 6), (2, 7), (3, 7)}.
A third policy Q over attributes u and v can be defined as follows:

((u in [2, 3]) ∧ (v in [7, 7])) → accept
((u in [2, 4]) ∧ (v in [7, 8])) → accept

The set of requests that are accepted by Q is {(2, 7), (3, 7), (4, 7), (2, 8), (3, 8),
(4, 8)}.

It follows that every request that is accepted by policy P1 is also accepted
by policy Q and so (P1, Q) is an accept-implication pair. However, not every
request that is accepted by policy P2 is accepted by policy Q and so (P2, Q) is
not an accept-implication pair.

The Implication Problem of Computing Policies 111

Our interest in designing an efficient algorithm that can take any policy pair
(P , Q) and determine whether (P , Q) is an accept-implication pair is motivated
by two observations.

First, this algorithm can be also used to determine whether any policy P or
any policy pair (P , Q) satisfies other properties.

For example, to determine whether an accept rule ar in a given policy P is
redundant, one can define a policy P ′ to be the same as policy P after removing
rule ar from it, then use our algorithm to check whether the policy pair (P , P ′) is
an accept-implication pair. If (P , P ′) is determined to be an accept-implication
pair, then rule ar is redundant in policy P . Otherwise, rule ar is non-redundant
in P .

As another example, to determine whether two policies P and Q accept the
same set of requests [8], one can use our algorithm to check whether the two
policy pairs (P , Q) and (Q, P) are accept-implication pairs. If both (P , Q) and
(Q, P) are determined to be accept-implication pairs, then policies P and Q
accept the same set of requests. Otherwise, P and Q do not accept the same set
of requests.

Second, as discussed below, an efficient algorithm that can take any given
policy pair (P , Q) and determine whether (P , Q) is an accept-implication pair
can also support step-wise refinement methods for designing policies.

Note that determining whether (P , Q) is an accept-implication pair is trivial
when the action of every rule in P is “reject”. In this case, P accepts no request,
and (P , Q) is an accept-implication pair for any policy Q. On the otherhand,
determining whether (P , Q) is an accept-implication pair is not trivial when
the “action” of at least one rule in P is “accept”. Therefore, in this paper, we
focus on determining whether (P , Q) is an accept-implication pair in those cases
where P has at least one rule whose action is “accept”.

2 Preliminaries about Policies

In this section, we formally introduce the main concepts related to computing
policies, or policies for short. These concepts are: Intervals, Attributes, Requests,
Predicates, Actions, Rules, and Policies. In the next section, we use these seven
concepts to formally specify the policy implication problem. This is the problem
which we solve in this paper.

2.1 Intervals

An interval is a finite and nonempty set of consecutive integers. An interval
X can be denoted by a pair of integers [y, z], where y is the smallest integer
in X, and z is the largest integer in X. Note that an interval [y, y] has only one
integer y. Note also that any pair [y, z], where y > z, is not an interval.

Two intervals X = [y, z] and X ′ = [y′, z′] are said to be overlapping iff one
of the following two conditions holds: (1) y ≤ y′ and y′ ≤ z, and (2) y′ ≤ y and
y ≤ z′.

112 R. Reaz et al.

The intersection of two overlapping intervals X = [y, z] and X ′ = [y′, z′] is
defined to be the interval [max(y, y′), min(z, z′)].

2.2 Attributes

An attribute is a “variable” that has a “name” and a “value”. Throughout this
paper, we assume that there are t attributes whose names are a.1, a.2, ..., and
a.t. The value of each attribute a.i is taken from an interval that is called the
domain of attribute a.i and is denoted D.(a.i).

2.3 Requests

A request is a tuple (v.1, ..., v.t) of t integers, where t is the number of attributes
and each integer v.i is taken from the domain D.(a.i) of attribute a.i.

2.4 Predicates

A predicate is of the form ((a.1 in X.1) ∧ ... ∧ (a.t in X.t)), where each a.i
is an attribute, each X.i is an interval that is contained in the domain D.(a.i)
of attribute a.i, and ∧ is the logical AND or conjunction operator.

The value of each conjunct (a.i in X.i) in a predicate is true iff the value of
attribute a.i is an integer in interval X.i.

The value of a predicate is true iff the value of every conjunct (a.i in X.i) in
the predicate is true.

A predicate ((a.1 in X.1) ∧ ... ∧ (a.t in X.t)), where each interval X.i is the
whole domain of the corresponding attribute a.i, is called the ALL predicate.

Let pr and ps denote the following two predicates:
pr = ((a.1 in X.1) ∧ ... ∧ (a.t in X.t))
ps = ((a.1 in Y.1) ∧ ... ∧ (a.t in Y.t))

Next, we use these two predicates to define two concepts: “two overlapping pred-
icates” and “intersection of two predicates”.

Predicates pr and ps are said to be overlapping iff every interval X.i in pr
and every corresponding interval Y.i in ps are overlapping.

If predicates pr and ps are overlapping, then the intersection of predicates
pr and ps is defined to be the predicate

((a.1 in Z.1) ∧ ... ∧ (a.t in Z.t))
where each interval Z.i is the intersection of the two corresponding intervals X.i
and Y.i.

A request (v.1, ..., v.t) is said to match a predicate
((a.1 in X.1) ∧ ... ∧ (a.t in X.t))

iff each integer v.i in the request is an element in the corresponding interval X.i
in the predicate.

The Implication Problem of Computing Policies 113

2.5 Actions

We assume that there are two distinct actions: “accept” and “reject”. Henceforth,
we write “accept” and “reject” with quotation marks to indicate the “accept”
and “reject” actions, respectively. We also write accept and reject without quo-
tation marks to indicate the English words accept and reject, respectively.

2.6 Rules

A rule (in a policy) is defined as a pair, one predicate and one action, written
as follows: 〈predicate〉 → 〈action〉

A rule whose action is “accept” is called an accept rule, and a rule whose
action is “reject” is called a reject rule. An accept rule whose predicate is the
ALL predicate is called an accept-ALL rule, and a reject rule whose predicate is
the ALL predicate is called the reject-ALL rule.

A request is said to match a rule iff the request matches the predicate of the
rule. (Note that each request matches every ALL rule.)

2.7 Policies

A policy is a nonempty sequence of rules. A policy P is said to accept (or reject,
respectively) a request rq iff P has an accept (or reject, respectively) rule r such
that request rq matches rule r and does not match any rule that precedes rule
r in policy P .

3 The Policy Implication Problem

Let P and Q be two policies. The pair (P , Q) is called an accept-implication
pair iff the set of requests accepted by policy P is a subset of the set of requests
accepted by policy Q. If a pair (P , Q) is shown to be an accept-implication pair,
then policy P is called an accept-implementation of policy Q.

The policy implication problem is to develop an algorithm that takes as input
any pair of policies (P , Q) and determines whether or not the pair (P , Q) is an
accept-implication pair.

Let ALG be any algorithm that can solve the policy implication problem. Also
let (P , Q) and (P ′, Q′) be any two policy pairs, where P ′ is the same policy as P
except that each “accept” action in P is replaced by a “reject” action in P ′ and
vice versa, and Q′ is the same policy as Q except that each “accept” action in Q
is replaced by a “reject” action in Q′ and vice versa. Algorithm ALG determines
that (P , Q) is an accept-implication pair iff (P ′, Q′) is a “reject-implication
pair”. (Note that (P ′, Q′) is a reject-implication pair iff every request that is
rejected by P ′ is also rejected by Q′.)

The previous paragraph indicates that any algorithm, that can determine
whether any given policy pair is an accept-implication pair, can also determine
whether any given policy pair is a reject-implication pair.

114 R. Reaz et al.

Consider any algorithm ALG that can solve the policy implication prob-
lem. Algorithm ALG can support the following step-wise refinement method for
designing policies:

1. The policy designer starts with a simple policy P.1 that accepts more
requests than the designer wishes. The designer should be discouraged from
jumping directly to a policy that accepts precisely those requests that the
designer wishes, because such a policy is likely to be too complicated for the
designer to design it correctly.

2. Then the designer designs a second policy P.2 that is supposed to implement
policy P.1 and then uses algorithm ALG to check that indeed the pair (P.2,
P.1) is an accept-implication pair. If the pair (P.2, P.1) does not turn out to
be an accept-implication pair, then the designer needs to design a different
policy P.2.

3. Then the designer designs a third policy P.3 that is supposed to implement
policy P.2 and then uses algorithm ALG to check that indeed the pair (P.3,
P.2) is an accept-implication pair. (If the pair (P.3, P.2) does not turn out to
be an accept-implication pair, then the designer needs to design a different
policy P.3.)

4. Step 4 is repeated several times where the designer designs the policies P.4,
..., P.k until the designer reaches a policy P.k that precisely accepts only
those requests that the designer wishes to be accepted.

In this paper, our design of an algorithm to solve the policy implication
problem proceeds in three steps:

1. In the first step, we develop an algorithm ALG1 that can solve the policy
implication problem for any policy pair (P , Q), where P is any policy that
consists of exactly one accept rule.

2. In the second step, we develop an algorithm ALG2 that can use ALG1 to
solve the policy implication problem for any policy pair (P , Q), where P is
any policy that consists of zero or more discard rules followed by one accept
rule.

3. In the third step, we develop an algorithm ALG3 that can use ALG2 to solve
the policy implication problem for any policy pair (P , Q), where P is any
policy that has at least one accept rule. (Note that the policy implication
problem for any policy pair (P , Q) is trivial to solve when policy P has no
accept rules.) Our algorithm for solving the policy implication problem is
ALG3.

4 Implication of Accept Rules

In this section, we present an algorithm ALG1 that can take as input any policy
pair (P , Q), where P is a policy that consists of exactly one accept rule and
determine whether (P , Q) is an accept-implication pair. But before we present
ALG1, we need to introduce the three concepts: “a property”, “a request match-
ing a property”, and “a policy satisfying a property”.

The Implication Problem of Computing Policies 115

A property (of a policy) is defined as a pair, one predicate and one action,
written as follows:

〈predicate〉 → 〈action〉
A property whose action is “accept” is called an accept property, and a

property whose action is “reject” is called a reject property. Note that a rule
and a property have the same syntax. Thus, an accept (or reject, respectively)
rule can be viewed as an accept (or reject, respectively) property, and vice versa.

A request rq is said to match a property pp iff rq matches the predicate of pp.
A policy P is said to satisfy a property pp iff either pp is an accept property

and P accepts every request that matches pp or pp is a reject property and P
rejects every request that matches pp.

From these three concepts, the next theorem follows.

Theorem 1. Let ar denote an accept rule, and (ar) denote a policy that consists
only of the accept rule ar. The policy pair ((ar), Q) is an accept-implication pair
iff policy Q satisfies the accept property ar.

Proof : To prove this theorem, we need to consider two cases. In the first case, we
assume that ((ar), Q) is an accept-implication pair and prove that Q satisfies the
accept property ar. Then in the second case, we assume that policy Q satisfies
the accept property ar and prove that ((ar), Q) is an accept-implication pair.

Case 1 : ((ar), Q) is assumed to be an accept-implication pair:
From the assumption that ((ar), Q) is an accept-implication pair, every request
that is accepted by (ar) is accepted by Q. Therefore, every request that matches
property ar is accepted by Q. Hence, from the definition of a policy satisfying a
property, we conclude that policy Q satisfies property ar.

Case 2 : Policy Q is assumed to satisfy the property ar:
From the assumption that policy Q satisfies property ar, Q accepts every request
that matches property ar. Therefore, every request that accepted by policy (ar)
is also accepted by policy Q. Hence, from the definition of an accept-implication
pair, we conclude that ((ar), Q) is an accept-implication pair. ��

From Theorem 1, to determine whether a policy pair ((ar), Q) is an accept-
implication pair, one needs to determine whether policy Q satisfies the accept
property ar. In the Appendix of this paper, we outline a recent method [2]
and [4], called the PSP method, that can take as input a policy Q and an accept
property ar and determine whether Q satisfies ar. (It is worth noting that the
PSP method can also be used in detecting all redundant rules in a policy [3]
and [9].)

Algorithm ALG1, which is presented next, uses the PSP method to deter-
mine whether any policy pair ((ar), Q) is an accept-implication pair.

116 R. Reaz et al.

Algorithm ALG1
Input: A policy pair ((ar), Q) where (ar) is a policy that consists of one accept
rule ar
Output: A determination of whether ((ar), Q) is an accept-implication pair

Step 1:
Use the PSP method outlined in the Appendix, to determine whether policy Q
satisfies the accept property ar

Step 2:
If Q satisfies ar
Then ((ar), Q) is an accept-implication pair
Else ((ar), Q) is not an accept-implication pair
End Algorithm ALG1

The time complexity of ALG1 is dominated by the time complexity of the
PSP method which is of order O(nt+1), where n is the number of rules in policy
Q and t is the number of attributes.

5 Implication of Accept Slices

In this section, we present an algorithm ALG2 that can take as input any policy
pair (P , Q), where P is a policy that consists of zero or more reject rules followed
by one accept rule and determine whether (P , Q) is an accept-implication pair.
But before we present ALG2, we need to introduce two concepts: “an accept
slice” and “simplification of a policy pair”.

An accept slice is a policy that consists of zero or more reject rules followed
by one accept rule.

Let (P , Q) be a policy pair, where P is an accept slice. The simplification of
(P , Q) is the policy pair ((ar), Q′) that satisfies the following two conditions:

1. Policy (ar) consists only of the accept rule ar in P
2. Policy Q′ consists of all the reject rules of P , after changing their actions

from “reject” to “accept”, followed by all the rules in Q

From these concepts, the next theorem follows.

Theorem 2. Let (P , Q) be a policy pair, where P is an accept slice and let
((ar), Q′) be the simplification of (P , Q). Then, (P , Q) is an accept-implication
pair iff ((ar), Q′) is an accept-implication pair.

Proof : Let P be an accept slice that consists of m reject rules p.1, ..., p.m followed
by the accept rule ar. Also let Q be a policy that consists of n rules, denoted
q.1, ..., q.n. Thus, policy Q′ consists of m rules r.1, ..., r.m followed by the n
rules q.1, ..., q.n, where each rule r.i in Q is the same as the reject rule p.i in P
except that the action of r.i is “accept” rather than “reject”.

The Implication Problem of Computing Policies 117

To prove this theorem, we need to consider two cases. In the first case, we
assume that (P , Q) is an accept-implication pair and prove that ((ar), Q′) is an
accept-implication pair. Then in the second case, we assume that ((ar), Q′) is
an accept-implication pair and prove that (P , Q) is an accept-implication pair.

Case 1: (P , Q) is assumed to be an accept-implication pair:
Let rq be any request that is accepted by the policy (ar). We need to show that
rq is accepted by Q′. First, we need to consider two sub-cases 1.1 and 1.2:
Case 1.1 : request rq does not match any of the rules p.1, ..., p.m in P :
In this case, request rq is accepted by policy P and also by policy Q since (P,Q)
is an accept-implication pair. Thus, rq matches some accept rule q.i in Q and
does not match any of the preceding rules q.1, ..., q.(i − 1) in Q. Therefore, rq
does not match any of the rules r.1, ..., r.m, q.1, ..., q.(i− 1) in Q′ and matches
the accept rule q.i in Q′. Hence, rq is accepted by Q′.
Case 1.2 : request rq matches a rule p.i and does not match any of the preceding
rules p.1, ..., p.(i − 1) in P :
In this case, rq matches the accept rule r.i and does not match any of the pre-
ceding accept rules r.1, ..., r.(i − 1) in Q. Hence, rq is accepted by Q′.

Case 2: ((ar), Q′) is assumed to be an accept-implication pair:
Let rq be any request that is accepted by policy P . We need to show that rq
is also accepted by policy Q. Because rq is accepted by P , rq does not match
any of the reject rules p.1, ..., p.m and matches the accept rule ar in P . Thus,
rq is accepted by the policy (ar) and also by the policy Q′ since ((ar), Q′) is an
accept-implication pair. But because rq does not match any of the accept rules
r.1, ..., r.m in Q′, rq matches some accept rule q.i and does not match any of
the preceding rules r.1, ..., r.m, q.1, ..., q.(i−1) in Q′. Therefore, rq matches the
accept rule q.i and does not match any of the preceding rules q.1, ..., q.(i − 1)
in Q. Hence, rq is accepted by Q. ��

From Theorem 2, to determine whether a policy pair (P , Q), where P is an
accept slice, is an accept-implication pair, one needs to determine whether the
simplification ((ar), Q′) of (P , Q) is an accept-implication pair. Because algo-
rithm ALG1 can be used to determine whether ((ar), Q′) is an accept-implication
pair, algorithm ALG2, which is presented next, uses ALG1 to determine whether
any policy (P , Q), where P is an accept slice, is an accept-implication pair.

Algorithm ALG2
Input: A policy pair (P , Q) where P is an accept slice
Output: A determination of whether (P , Q) is an accept-implication pair

Step 1:
Construct the simplification ((ar), Q′) of (P , Q)

118 R. Reaz et al.

Step 2:
Use ALG1 to determine whether the simplification ((ar), Q′) of (P , Q) is an
accept-implication pair

Step 3:
If ((ar), Q′) is an accept-implication pair
Then (P , Q) is an accept-implication pair
Else (P , Q) is not an accept-implication pair
End Algorithm ALG2

The time complexity of ALG2 is dominated by the time complexity of ALG1
which is of order O(n′t+1), where n′ is the number of rules in policy Q′. But (n′)
is at most (m+ n), where m is the number of rules in the accept slice P , and n
is the number of rules in policy Q. Therefore, the time complexity of ALG2 is
of order O((m + n)t+1), where m is the number of rules in the accept slice P , n
is the number of rules in policy Q, and t is the number of attributes.

6 Implication of Accept Policies

A policy that has at least one accept rule is called an accept policy. In this
section, we present an algorithm ALG3 that can take as input any policy pair
(P , Q), where P is an accept policy and determine whether (P , Q) is an accept-
implication pair. (Note that we focus only on policy pairs (P , Q) where P is an
accept policy because every policy pair (P , Q), where P is not an accept policy,
is in fact an accept-implication pair.) But before we present ALG3, we need to
introduce the concept of “primitive accept slices of a policy”.

Let P be an accept policy that has k accept rules denoted ar.1, ..., ar.k.
A primitive accept slice of policy P is an accept slice whose accept rule is one
of the accept rules ar.i in P and whose reject rules are all the reject rules that
precede rule ar.i in P . Note that policy P has k primitive accept slices.

From this concept, the next theorem follows.

Theorem 3. Let (P , Q) be a policy pair, where P is an accept policy that has k
primitive accept slices denoted P.1, ..., P.k. Then, (P , Q) is an accept-implication
pair iff for every i ∈ {1, ..., k}, the pair (P.i, Q) is an accept-implication pair.

Proof : To prove this theorem, we need to consider two cases. In the first case,
we assume that (P , Q) is an accept-implication pair and prove that for every
i ∈ {1, ..., k}, the pair (P.i, Q) is an accept-implication. Then in the second case,
we assume that for every i ∈ {1, ..., k}, the pair (P.i, Q) is an accept-implication
pair and prove that (P , Q) is an accept-implication pair.

Case 1: (P , Q) is assumed to be an accept-implication pair:
Let rq be any request that is accepted by a primitive accept slice P.i of policy P .
We need to show that rq is accepted by Q. Because rq is accepted by P.i, rq is

The Implication Problem of Computing Policies 119

accepted by P and rq is also accepted by Q since (P , Q) is an accept-implication
pair.

Case 2: for every i ∈ {1, ..., k}, the pair (P.i, Q) is assumed to be an accept-
implication pair:
Let rq be any request that is accepted by P . We need to show that rq is accepted
by Q. Because rq is accepted by policy P , rq is accepted by at least one primitive
accept slice P.i of P and rq is also accepted by Q since (P.i, Q) is an accept-
implication pair. ��

From Theorem 3, to determine whether a policy pair (P , Q), where P is
an accept policy, is an accept-implication pair, one needs to determine whether
every primitive accept slice (P.i, Q) of (P , Q) is an accept-implication pair.
Because algorithm ALG2 can be used to determine whether each (P.i, Q) is an
accept-implication pair, algorithm ALG3, which is presented next, uses ALG2 to
determine whether any policy (P , Q), where P is an accept policy, is an accept-
implication pair.

Algorithm ALG3
Input: A policy pair (P , Q) where P is an accept policy
Output: A determination of whether (P , Q) is an accept-implication pair

Step 1:
Construct the primitive accept slices P.1, ..., P.k of P

Step 2:
Use ALG2 to determine whether each policy pair (P.i, Q), where P.i is a prim-
itive accept slice of P , is an accept-implication pair

Step 3:
If every policy pair (P.i, Q) is an accept-implication pair
Then (P , Q) is an accept-implication pair
Else (P , Q) is not an accept-implication pair
End Algorithm ALG3

Because the time complexity of ALG2 is of order O((m + n)t+1), where m
is the number of rules in policy P , n is the number of rules in policy Q, and t
is the number of attributes, and because ALG3 invokes ALG2 at most m times,
we conclude that the time complexity of ALG3 is of order O((m + n)t+2). Note
that when the number of attributes t is fixed, the time complexity of ALG3 is
polynomial.

7 Concluding Remarks

In this paper, we present an algorithm ALG3 that can take any policy pair
(P , Q), where P is an accept policy, and determine whether or not (P , Q) is

120 R. Reaz et al.

an accept-implication pair. Algorithm ALG3 invokes another algorithm ALG2
that can take any policy pair (P , Q), where P is an accept slice, and determine
whether or not (P , Q) is an accept-implication pair. Likewise, Algorithm ALG2
invokes a third algorithm ALG1 that can take any accept property ar and a
policy Q, and verify whether or not policy Q satisfies property ar.

Let the time complexity of Algorithm ALG1, denoted C1, to be in the order
of some function F over n and t, where n is the number of rules in policy Q and
t is the number of attributes of Q. Thus,

C1 = O(F(n, t))
The time complexity of Algorithm ALG2, denoted C2, can be computed from
the time complexity of Algorithm ALG1 as follows:

C2 = O(F(m + n, t))
where m is the number of rules in policy P , n is the number of rules in policy Q,
and t is the number of attributes of P or Q. The time complexity of Algorithm
ALG3, denoted C3, can be computed from the time complexity of Algorithm
ALG2 as follows:

C3 = O((m + n) × C2)
where m is the number of rules in policy P , n is the number of rules in policy Q,
and t is the number of attributes of P or Q.

Because Algorithm ALG1 is based on the PSP verification method whose
time complexity F(n, t) is of the order O(nt+1), the time complexity C1 of
ALG1 is

C1 = O(nt+1)
In this case, the time complexities of ALG2 and ALG3 are as follows:

C2 = O((m + n)t+1)
C3 = O((m + n)t+2)

Therefore, the time complexities of all three algorithms are polynomial in those
cases where the number of attributes is fixed, as usually the case.

It is also possible to base Algorithm ALG1 on the probabilistic verification
method in [1] whose time complexity F(n, t) is of the order O(n × t). In this
case, the time complexities of the three Algorithms ALG1, ALG2, and ALG3
can be computed as follows:

C1 = O(n × t)
C2 = O((m + n) × t)
C3 = O((m + n)2 × t)

Note that if we base Algorithm ALG1 on the probabilistic verification method [1],
then the three Algorithms ALG1, ALG2, and ALG3 can yield wrong determi-
nations but the probability of this happening is relatively small.

Acknowledgments. Research of M.G. Gouda is supported by NSF Award 1440035.
Research of M.J.H. Heule is supported by DARPA Contract N66001-10-2-4087.
Research of E.S. Elmallah is supported by NSERC Grant RGPIN 36899.

The Implication Problem of Computing Policies 121

Appendix: The PSP Method

In this appendix, we briefly discuss a recent method [2] and [4] for verifying
whether a policy P satisfies a property pp. For convenience, we refer to this
method as the Projection-Slicing-Probing method, or the PSP method for short.
Without any loss of generality, we focus our discussion of the PSP method on
the case where pp is an accept property.

The PSP method for verifying whether a policy P satisfies an accept property
pp consists of three steps: (More explanations about these steps are presented
below.)

1. From policy P and the accept property pp, construct a new policy called the
projection of policy P over property pp. This new policy is denoted P/pp

2. Divide the projection policy P/pp into a set of special policies {RS.1, ...,
RS.k} called the reject slices of the projection P/pp.

3. Check whether each reject slice RS.i rejects no request. If every reject slice
RS.i is shown to reject no request, then policy P satisfies the accept property
pp. Otherwise P does not satisfy pp.

Next we describe these three steps in more detail.

Algorithm A1 (Projection)
Input: A policy P and an accept property pp
Output: A new policy called the projection of policy P over property pp. This
new policy is denoted P/pp

Step 1:
Add a reject-ALL rule at the end of policy P

Step 2:
Initially, P/pp is the empty policy

Step 3:
For every rule r in policy P do

If rule r overlaps property pp
Then add the intersection of rule r and property pp as a rule at

the tail of policy P/pp
End Algorithm A1

The next theorem follows from Algorithm A1.

Theorem T1. A policy P satisfies an accept property pp iff the projection policy
P/pp rejects no request.

Algorithm A2: (Slicing)
Input: A projection policy P/pp of a policy P over an accept property pp

122 R. Reaz et al.

Output: A set of policies {RS.1, ..., RS.k}, where each policy RS.i is called a
reject slice of the projection policy P/pp and k is the number of reject rules in
the projection policy P/pp

Step 1:
For each i in the range 1 to k do

compute policy RS.i as the sequence of all accept rules that precede the i-th
reject rule in policy P/pp followed by the i-th reject rule in policy P/pp

End Algorithm A2
The next theorem follows from Algorithm A2.

Theorem T2. The projection P/pp of a policy P over an accept property pp
rejects no request iff every reject slice of the projection P/pp rejects no request.

Algorithm A3: (Probing)
Input: A reject slice RS.i of the projection P/pp of policy P over an accept
property pp
Output: A determination of whether RS.i rejects no request

Step 1:
For each attribute a.j where j ranges from 1 to t do

Compute a set S.j of values of a.j as follows:
S.j := empty set
For each accept rule ar in RS.i do

If the predicate of ar has the conjunct (a.j in [u, v]) and
(v + 1) is an element of D.(a.j)

Then add element (v + 1) to set S.j
End for
If the predicate of the reject rule rr in RS.i has the conjunct

(a.j in [u, v])
Then add element u to set S.j

Step 2:
Compute set S of all “probe requests” as the Cartesian product (S.1 × ...× S.t)

Step 3:
If no probe request in S is rejected by the reject slice RS.i
Then declare that slice RS.i rejects no request
Else declare that slice RS.i rejects at least one request
End Algorithm A3

The next theorem follows from Theorems T1 and T2 above.

Theorem T3. A policy P satisfies an accept property pp iff every reject slice
of the projection P/pp rejects no request.

The Implication Problem of Computing Policies 123

To verify whether a policy P satisfies an accept property pp, one needs to
execute Algorithm A1 once, execute Algorithm A2 once, and execute Algorithm
A3 an O(n) times, where n is the number of rules in policy P . Because the
time complexity of Algorithms A1 and of Algorithm A2 is O(n ∗ t), where t is
the number of attributes, and because the time complexity of Algorithm A3 is
O(nt), the time complexity of verifying whether P satisfies pp is O(nt+1).

This large time complexity is to be expected since it has been shown recently
that the problem of verifying whether a policy satisfies a property is NP-hard [5].
(Beside resorting to the PSP method, it has been suggested [5] that the large
time complexity of policy verification can be faced by using SAT solvers [12] or
probabilistic verification techniques [1].)

References

1. Acharya, H.B., Gouda, M.G.: Linear-time verification of firewalls. In: Proceed-
ings of the 17th IEEE International Conference on Network Protocols (ICNP),
pp. 133–140. IEEE (2009)

2. Acharya, H.B., Gouda, M.G.: Projection and division: linear-space verification of
firewalls. In: Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems (ICDCS), pp. 736–743. IEEE (2010)

3. Acharya, H.B., Gouda, M.G.: Firewall verification and redundancy checking
are equivalent. In: Proceedings of the 30th IEEE International Conference on
Computer Communication (INFOCOM), pp. 2123–2128. IEEE (2011)

4. Elmallah, E.S., Acharya, H.B., Gouda, M.G.: Incremental verification of computing
policies. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 226–236.
Springer, Heidelberg (2014)

5. Elmallah, E.S., Gouda, M.G.: Hardness of firewall analysis. In: Noubir, G., Raynal,
M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 153–168. Springer, Heidelberg (2014)

6. Hoffman, D., Yoo, K.: Blowtorch: a framework for firewall test automation. In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 96–103. ACM (2005)

7. Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.: Analysis of
vulnerabilities in internet firewalls. Computers & Security 22(3), 214–232 (2003)

8. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Transactions on Parallel
and Distributed Systems 19(9), 1237–1251 (2008)

9. Liu, A.X., Gouda, M.G.: Complete redundancy removal for packet classifiers in
TCAMs. IEEE Transactions on Parallel and Distributed Systems 21(4), 424–437
(2010)

10. Mayer, A., Wool, A., Ziskind, E.: Fang: A firewall analysis engine. In: IEEE
Symposium on Security and Privacy, pp. 177–187. IEEE (2000)

11. Wool, A.: A quantitative study of firewall configuration errors. Computer 37(6),
62–67 (2004)

12. Zhang, S., Mahmoud, A., Malik, S., Narain, S.: Verification and synthesis of
firewalls using SAT and QBF. In: Proceedings of the 20th IEEE International
Conference on Network Protocols (ICNP), pp. 1–6. IEEE (2012)

Verifying Recurrence Properties in
Self-stabilization by Checking the Absence

of Finite Counterexamples

Oday Jubran(B), Eike Möhlmann, and Oliver Theel

Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
{jubran,eike.moehlmann,theel}@informatik.uni-oldenburg.de

Abstract. A performance-related property of a system can be defined
as the ratio of states satisfying some condition in each execution of the
system, which we signify as the recurrence of the condition in the exe-
cution. In this work, we concern self-stabilization with respect to this
property: the convergence to an execution that guarantees a minimum
recurrence of a condition. For a system exhibiting infinite executions, it
may not be straightforward to verify that the system satisfies the prop-
erty, while considering the convergence as well. Towards simplifying such
a verification, we show that for each system violating the property, there
exists a finite execution prefix that is a counterexample with a reason-
ably short length. Furthermore, we exploit model checking to verify the
absence of such counterexamples, to conclude that a system satisfies its
property. We apply this approach by using the nuXmv model checker to
analyze the service time of a self-stabilizing mutual exclusion algorithm
having a finite state space, and running over many topologies.

Keywords: Self-stabilization · Recurrence · Automatic verification ·
Finite counterexample

1 Introduction

The essence of self-stabilization [1] is the recovery from failures without
voluntarily running into such. Self-stabilization is useful when the system’s envi-
ronment is vulnerable to transient faults, e.g., memory allocation problems. Self-
stabilization is of a significant impact in distributed systems, since a system’s
component generally does not have full knowledge about the global configuration
of the system, and thus, the components’ reaction – with their local knowledge –
has to direct the behavior towards preserving the whole system’s properties [2].

In the design of self-stabilizing systems, there are two major goals to be
achieved: (1) the convergence to a desired behavior, and (2) non-deviating from

This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 124–138, 2015.
DOI: 10.1007/978-3-319-21741-3 9

http://www.avacs.org/

Verifying Recurrence Properties in Self-stabilization 125

the desired behavior. Usually, the desired behavior is that all states satisfy some
condition, and the convergence time is measured based on the maximum time
required to achieve the desired behavior among all executions of the system.

Generally, a system’s desired behavior is aimed to satisfy two kinds of prop-
erties: (1) safety properties defined by conditions that should hold in each state,
and (2) performance-related properties defined by conditions that need to hold
periodically to enable running useful actions; they may not hold in each state.
The latter properties may reflect the notions of throughput or availability of a
system. As an example, consider a TDMA-based wireless sensor network using a
limited bandwidth, where message collision may cause message loss. The safety
property in such network is collision-free communication, implicated by a correct
slot assignment. Furthermore, it may be required that any message should be
delivered to a target in bounded time. This property may be impacted by the
slot assignment, but may not reflect a condition defined on a single state.

In a recent work [3,4], we considered conditions that do not need to be sat-
isfied in all states, in self-stabilization. We defined the recurrence of a condition
in an execution as the ratio of states satisfying the condition in the execution.
With respect to self-stabilization, the point to be considered is the convergence
time to reach an execution suffix that achieves a minimum recurrence. This prop-
erty is defined over possibly infinite executions. This, in turn, makes it hard to
verify whether a system satisfies the property. In this work, our concern is to
simplify such verification using formal methods.

Related Work

The competence of self-stabilizing systems is their ability to recover from failures
due to transient faults. Basically, the related work concerns variant aspects of
such systems’ efficiency or performance: shortening the convergence time to a
safe behavior, e.g. [5,6], reducing the space requirements, e.g. [7,8], and covering
larger underlying topologies and schedulers, e.g. [9]. In contrast to this work,
we focus on another aspect of efficiency, namely, the convergence to reach the
desired performance, defined by the recurrence of a condition in an execution.

The design and verification of self-stabilizing systems is known to be tough.
Some related work considers using formal methods and automatic verification to
design self-stabilizing systems. Examples are [10,11]. In [10], the authors present
a formal method for algorithmic design of self-stabilizing systems based on vari-
able superposition and backtracking search. In [11], the authors make use of
SMT solvers [12] for synthesizing self-stabilizing algorithms. Other approaches
consider analyzing notions of performance of self-stabilizing systems. Examples
are [13–15]. In [13], the authors use a metric for measuring the expected mean
value of the system’s convergence time. This value denotes the average case of
the convergence time, and is computed by probabilistic model checking. The
work [14] considers the occurrence of transient faults during the convergence,
and their effect on the convergence time. The approach [15] defines and applies
fault tolerance measurements, such as availability, to evaluate self-stabilizing sys-
tems, also under the assumption of ongoing transient faults. These approaches

126 O. Jubran et al.

and others are basically aimed to evaluate the performance of self-stabilizing
systems using formal methods and automatic verification, which is found to be
useful.

In our approach, we exploit model checking for proving the absence of coun-
terexamples wrt. the performance property we consider, to conclude that the
analyzed system satisfies the property.

Contribution

First, we show that for each system that does not converge to a behavior guaran-
teeing a minimum recurrence of a condition in c steps, there exists an execution
prefix having a length of c + 1 states that is a counterexample. Second, we
consider the recurrence of a condition also during the convergence time, i.e.,
starting from the initial state of the execution. We show that if the recurrence
is not reached in w steps, then there exists a counterexample of length between
w + 1 and 2w + 1. Next, for systems having finite state space, model checking
can be used to verify the absence of counterexamples, to conclude that a system
converges to achieve a minimum recurrence of some condition. As a case study,
we use the model checker nuXmv to analyze the service time of a self-stabilizing
mutual exclusion algorithm run over many topologies, based on our approach.

Outline. Section 2 presents preliminary notation and formalism. Section 3
presents the formal definition of recurrence properties in self-stabilization.
Section 4 presents the counterexample-based approach. Section 5 extends the
definitions of Section 3, for considering recurrence also during the convergence.
Section 6 presents the case study. Section 7 gives a conclusion and a discussion.

2 Notation and Formalism

In this section, we provide a formalism of the system and the environment we
are considering, to be used in the following sections.

We define system variables as a vector of variables [r0, ..., rg−1]. A system
state γ is a vector of values [v0, ..., vg−1] valuating the system variables. A
condition con is a boolean expression over the system variables. We say that
a state γ satisfies a condition con, denoted by γ |= con, iff the condition con
evaluates to true under γ. A state space is the set of all states of the system.

An execution Ξ is a sequence of states of the state space, which can be
finite γ0, ..., γk−1 or infinite. Let Ξ : γ0, γ1, ... be an execution, and let i, j ∈ N0.

– A step of Ξ is a tuple (γi, γi+1).
– A subexecution of Ξ is a finite subsequence γi, ..., γj of Ξ, where j ≥ i.
– An execution prefix of Ξ is a finite subexecution γ0, ..., γj .
– An execution suffix of Ξ is an execution γi, γi+1,

Let Ξ : γ0, ..., γk−1 be a finite execution.
– A strict subexecution of Ξ is a finite subsequence γi, ..., γj of Ξ, such that

i > 0 or j < k − 1.
– The length of Ξ, denoted by len(Ξ), is k; i.e., the number of states in Ξ.

Verifying Recurrence Properties in Self-stabilization 127

We define a system, while taking self-stabilization into consideration: each
state γ in the state space is an initial state. A system Ω is a – possibly infinite –
set of executions, such that for each subexecution Ξ ′ of an execution Ξ ∈ Ω, Ξ ′

is an execution prefix of an execution Ξ ′′ ∈ Ω.
A system Ω is said to be self-stabilizing wrt. a property con iff for each

execution γ0, γ1, ..., there exists finally a state γj , for j ≥ 0, such that each state
of the execution suffix γj , γj+1, ... satisfies con.

3 Recurrence in Self-stabilization

Considering the definition of self-stabilization wrt. some condition, it is required
that each execution finally reaches a state, from which any following state sat-
isfies the condition. In this section, we present an extension of this definition,
which is given in [4]. The extension involves the conditions that do not neces-
sarily need to be satisfied by all states after convergence, but are required to be
satisfied by a minimum ratio of states.

First, we present the notion of recurrence which denotes the ratio of states
satisfying a condition in a finite execution.

Definition 1 (Recurrence). Let Ξ : γ0, ..., γk−1 be a finite execution, and
let con be a condition. The recurrence of con in Ξ, denoted by Reccon(Ξ), is
the ratio Δ ∈ [0, 1] ⊂ Q of the states satisfying con in Ξ. ♦

From now on, we use satcon(Ξ) to denote the number of states satisfying con
in Ξ. This entails that Reccon(Ξ) = satcon (Ξ)

len(Ξ) . For example, let γ denote that a
state γ satisfies con, and let Ξ be the following finite execution:

Ξ : γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ9, γ9, γ10, γ11,

the recurrence of con in Ξ can be computed by a simple division operation:

Reccon(Ξ) =
satcon(Ξ)
len(Ξ)

=
6
12

= 0.5.

Our aim is to use the notion of recurrence in self-stabilization. In general, many
self-stabilizing systems have infinite executions. The main issue to be concerned
with is the worst-case convergence time to a state γt, from which any execution
Ξ : γt, γt+1, ... satisfies the following property: each execution prefix of Ξ satisfies
a minimum recurrence Δ of some condition con. We denote this property by
conΔ. We denote the worst-case convergence time to achieve conΔ by conΔ-
convergence time.

Definition 2 (conΔ). An execution Ξ : γ0, γ1, ... is said to satisfy conΔ iff for
each i ≥ 0, the recurrence of con in γ0, ..., γi (Reccon(γ0, ..., γi)) is greater or
equal to Δ. ♦
Definition 3 (conΔ-Convergence Time). Given a system Ω, a condition
con, and Δ ∈ [0, 1] ⊂ Q.

128 O. Jubran et al.

– An execution Ξ : γ0, γ1, ... of Ω is said to have a conΔ-convergence time of c
steps iff c is the minimum number, such that the execution suffix γc, γc+1, ...
of Ξ satisfies conΔ.
It is also said that for each j ≥ c, the execution Ξ guarantees conΔ-
convergence in j steps.

– The system Ω is said to have a conΔ-convergence time of c steps iff c is the
maximum conΔ-convergence time among all executions of Ω. ♦
For example, the following execution has a con0.5-convergence time of 5.

Ξ : γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, γ13, ...

Note that the conΔ-convergence notion applies to finite and infinite execu-
tions. In addition, for Δ = 0, the property holds always for all systems. Therefore,
in the following sections, we assume that Δ > 0.

4 Finite Counterexamples

In general, the property conΔ is defined over infinite executions, which makes
it hard to analyze conΔ in some systems, especially when the recurrence differs
among subexecutions of an execution. In particular, using automatic verification
tools to analyze such properties might not be straightforward, due to infinite
executions and a large number of initial states.

In this section, we provide an approach for simplifying the procedure of ana-
lyzing recurrence. The idea is as follows: we show that for each system that
does not satisfy conΔ-convergence time of c steps, there exists a finite execution
(prefix) Ξ that does not satisfy conΔ-convergence in c steps, and has a length
of c + 1. We call Ξ a minimal counterexample wrt. (con,Δ, c).

Definition 4. Let con be a condition, Δ ∈ [0, 1] ⊂ Q, and c ∈ N0.
– A counterexample wrt. (con,Δ, c) is a finite execution Ξ that does not satisfy

conΔ-convergence in c steps.1

– A counterexample Ξ wrt. (con,Δ, c) is said to be minimal iff there exists no
strict subexecution Ξ ′ of Ξ such that Ξ ′ is a counterexample. ♦

The interesting point that makes our approach possible, is that each state
in a self-stabilizing system is an initial state of some execution, and having a
minimal counterexample Ξ ′ as a subsequence of any execution implies that Ξ ′ is
indeed a separate execution (prefix) in the system. Note that for systems having
a finite state space, there exists a finite number of minimal counterexamples.

In the remainder of this section, we prove that for each system that does not
satisfy conΔ-convergence in c steps, there exists a minimal counterexample Ξ ′,
whose length is c+1. The following is a basic Lemma, that regards concatenating
two subsequent executions, satisfying particular recurrence properties.

1 We write “counterexample” without “wrt. (con, Δ, c),” if it is clear from the context.

Verifying Recurrence Properties in Self-stabilization 129

Lemma 1. Let Ξ : γi, ..., γj−1, γj , ..., γk−1 be a finite execution, such that
Reccon(γi, ..., γj−1) ≥ Δ, and ∀ j ≤ s ≤ k − 1 • Reccon(γj , ..., γs) ≥ Δ. The
following statement holds:

∀ j ≤ s ≤ k − 1 • Reccon(γi, ..., γs) ≥ Δ.

Proof: The cases where len(γi, ..., γj−1) = 0 or len(γj , ..., γk−1) = 0 hold triv-
ially. In the following, we assume that len(γi, ..., γj−1) ≥ 1 and len(γj , ..., γk−1) ≥
1. By the premises, it follows that

Reccon(γi, ..., γj−1) ≥ Δ. (1)

⇐⇒satcon(γi, ..., γj−1)
(j − 1) − i + 1

≥ Δ.

⇐⇒satcon(γi, ..., γj−1) ≥ Δ(j − i) (2)

Analogous to the derivation of (2):

∀ j ≤ s ≤ k − 1 • satcon(γj , ..., γs) ≥ Δ(s − j). (3)

By Def. 1 and by (2) and (3), the following derivation applies:

∀ j ≤ s ≤ k − 1 • Reccon(γi, ..., γs) =
satcon(γi, ..., γs)

s − i + 1

=
satcon(γi, ..., γj−1) + satcon(γj , ..., γs)

s − i + 1

≥ Δ(j − i) + Δ(s − j + 1)
s − i + 1

≥ Δ.
�

The following Observation and Lemma show that the length of any minimal
counterexample wrt. (con,Δ, c) is c + 1.

Observation 1. For each counterexample Ξ wrt. (con,Δ, c), len(Ξ) ≥ c + 1.

Proof: It follows by Definitions 3 and 4.
�
Lemma 2. For each minimal counterexample Ξ wrt. (con,Δ, c): len(Ξ) = c+1.

Proof: Observation 1 implies that the length of any counterexample is greater or
equal to c+1. It remains to show that the length of each minimal counterexample
is not greater than c + 1.

We prove this by contradiction: assume that there exists a minimal coun-
terexample Ξ : γ0, ..., γk−1 wrt. (con,Δ, c), where k = len(Ξ) > c + 1. By
Definitions 3 and 4, it follows that:

∀ i ≤ c • ∃ j ≥ c • Reccon(γi, ..., γj) < Δ. (4)

130 O. Jubran et al.

Since Ξ is minimal, by Def. 4, each strict subexecution of Ξ is not a counterex-
ample. Let Ξ ′ be the strict subexecution γ1, ..., γk−1 of Ξ. Since len(Ξ) > c + 1,
it follows that len(Ξ ′) ≥ c + 1. By Def. 3, this implies that:

∃ i ≤ c + 1 • ∀ j ≥ c + 1 • Reccon(γi, ..., γj) ≥ Δ. (5)

By considering (4), the formula holds for any i among {1, ..., c}. This implies
that the formula (5) does not hold for any i among {1, ..., c}. This implies that
i may only be (c + 1) in (5); i.e.:

∀ j ≥ c + 1 • Reccon(γc+1, ..., γj) ≥ Δ. (6)

By (6) and Def. 1:
γc+1 |= con (7)

By (4), it follows that ∃ j ≥ c • Reccon(γc, ..., γj) < Δ. This, by (6), (7), and
Lemma 1, implies that:

γc
|= con (8)

We make a case distinction based on the value of c:
1. c = 0. By Def. 4 and (8), γc is a counterexample of length 1 = c + 1.

This contradicts the assumption that Ξ, with len(Ξ) > 1, is a minimal
counterexample.

2. c > 0. By assumption, it holds that len(γ0, ..., γc) ≥ c + 1. By minimality
of Ξ, the strict subexecution γ0, ..., γc is not a counterexample; i.e. ∃ i ≤
c • Reccon(γi, ..., γc) ≥ Δ. However, since γc
|= con, it follows that i
= c,
which implies that:

∃ i < c • Reccon(γi, ..., γc) ≥ Δ. (9)

By Lemma 1, (6), and (9):

∃ i < c • ∀ j ≥ c • Reccon(γi, ..., γj) ≥ Δ. (10)

There is a contradiction between (4) and (10) �.
�
Theorem 1. If a system Ω does not satisfy conΔ-convergence in c steps, then
there exists a minimal counterexample wrt. (con,Δ, c) of length c + 1, that is a
prefix of an execution in Ω.

Proof: Since Ω does not satisfy conΔ-convergence in c steps, then by Def. 4,
there exists a counterexample Ξ wrt. (con,Δ, c) in Ω. If Ξ is minimal, then
the Theorem holds. Otherwise, by Lemma 2, there exists a strict subexecution
Ξ ′ of Ξ, such that len(Ξ ′) = c + 1, and Ξ ′ is a minimal counterexample. By
definition of a system, any subexecution of any execution in Ω is indeed an
execution prefix of an execution in Ω. The Theorem holds.
�

Verifying Recurrence Properties in Self-stabilization 131

5 An Alternative View to conΔ-convergence

In self-stabilization, it is usually assumed that faults do not happen very fre-
quently. This, in turn, directs the focus to the aspect where the system has
to quickly converge to a stable behavior, without voluntarily deviating from it,
while not focusing on the delivered quality of service during convergence. How-
ever, there are environments where systems are vulnerable to high frequency of
faults. Naturally, for such environments, it is important that the system provides
a reasonable quality of service, even during system convergence.

Our approach here is to consider such environments in our framework.
Towards this end, we use the notion of conΔ-warmup time to denote the time
required by a system to accumulatively reach Δ recurrence of a condition con,
starting from any initial state. In contrast to the conΔ-convergence time defined
in Section 3, the conΔ-warmup time considers the recurrence of con starting
from the beginning, and not starting from a state that occurs during the conΔ-
convergence time.

Definition 5 (conΔ-WarmUp Time). Given a system Ω, a condition con, and
Δ ∈ [0, 1] ⊂ Q.

– An execution Ξ : γ0, γ1, ... is said to have a conΔ-warmup time of w steps
iff w is the minimum number, such that for each i ≥ w, the execution prefix
γ0, ..., γi of Ξ satisfies conΔ.
It is also said that the execution Ξ guarantees conΔ-warmup in i steps.

– The system Ω is said to have a conΔ-warmup time of w steps iff w is the
maximum conΔ-warmup time among all executions of Ω. ♦
To analyze recurrence properties, together with the warmup notion, we follow

a similar approach to the one in Section 4: for each system that does not satisfy
some conΔ-warmup time, there exists a minimal counterexample of finite length,
even though the system has infinite executions. To avoid confusion, we call any
counterexample of the warmup time property a wu-counterexample.

Definition 6. Let con be a condition, Δ ∈ [0, 1] ⊂ Q, and w ∈ N0.
– A wu-counterexample wrt. (con,Δ,w) is a finite execution Ξ that does not

satisfy conΔ-warmup in w steps.
– A wu-counterexample Ξ wrt. (con,Δ,w) is said to be minimal iff there exists

no strict subexecution Ξ ′ of Ξ such that Ξ ′ is a wu-counterexample. ♦

Considering the warmup time, the length of any minimal wu-counterexample
lies between w + 1 and 2w + 1. In this case, to find a counterexample via
model checking, it is sufficient to check all execution prefixes having any of
those lengths.

Theorem 2. If a system Ω does not satisfy conΔ-warmup time of w steps,
then there exists a minimal wu-counterexample Ξ = γ0, ..., γk−1 wrt. (con,Δ,w)
such that w+1 ≤ k ≤ 2w+1, and Ξ is an execution prefix of an execution in Ω.

132 O. Jubran et al.

Proof: By Def. 6, and analogous to Observation 1, it follows that any wu-
counterexample has a length greater or equal to w +1. Thus, it remains to show
that the length of each minimal wu-counterexample is not greater than 2w + 1.
We prove this by contradiction:

Let Ξ = γ0, ..., γk−1 be a minimal wu-counterexample, such that len(Ξ) =
k > 2w +1. By Definitions 5, 6, and by assumption, it follows that Reccon(Ξ) <
Δ, or equivalently

satcon(Ξ) < k · Δ. (11)

We split Ξ into two parts: Ξ = αβ where

Ξ = γ0 · · · γw
︸ ︷︷ ︸

α

γw+1 · · · γ2w · · · γk−1
︸ ︷︷ ︸

β

.

Since len(α) = w + 1, by minimality of Ξ, it follows that Reccon(α) ≥ Δ, or
equivalently:

satcon(α) ≥ (w + 1) · Δ. (12)

Likewise, since len(β) = k − w − 1 > (w + 1) − w − 1 = w, by minimality of the
length of Ξ, it follows that: Reccon(β) ≥ Δ, or equivalently

satcon(β) ≥ (k − w − 1) · Δ. (13)

Considering that satcon(α) + satcon(β) = satcon(Ξ), by (12) and (13), we have

satcon(Ξ) ≥ (w + 1) · Δ + (k − w − 1) · Δ, (14)

which gives

satcon(Ξ) ≥ k · Δ. (15)

There is a contradiction between (11) and (15) �.
�
We provide an example showing that 2w + 1 is indeed the least upper

bound. The following execution Ξ has length 2w + 1, and is a minimal wu-
counterexample wrt. (con,Δ = 1

2 , w = 3). Again, γ indicates that γ satisfies
con:

Ξ : γ0, γ1, γ2, γ3, γ4, γ5, γ6.

6 Model Checking the Absence of Finite Counterexamples

In this section, we show how model checking can be applied to check if a dis-
tributed algorithm guarantees the following two properties:
(P1) a conΔ-convergence time of c steps
(P2) a conΔ-warmup time of w steps.

Verifying Recurrence Properties in Self-stabilization 133

Model checking is a verification technique that checks whether a particu-
lar system’s model satisfies a particular specification. It checks whether each
reachable state from an initial state satisfies a condition. Concerning systems’
environment of this work, there are two difficulties of applying model checking:
(1) having possibly infinite executions, and (2) having possibly infinite state
space. In this work, our concern is to simplify the former difficulty (see Sec-
tions 4 and 5.) The latter property might be tackled by additional abstraction
techniques, which is out of the scope of this work. Therefore, from now on, we
consider systems with a finite state space, but not necessarily finite executions.

Since we check a property over executions, and model checking verifies con-
ditions over states, our idea is to add a so-called observer process, that (1) runs
in parallel to the system, and (2) stores the truth values of con for all states in
the execution. Next, the model checker verifies if the observer’s state satisfies
some property, to know whether the recurrence property holds or not.

We used the model checker nuXmv [16]. nuXmv provides a flexible input
language for modelling distributed algorithms, defined by guarded commands.

Checking conΔ-convergence Time of c Steps

To check the property (P1), we add an observer with c + 1 registers b0, . . . , bc

and a step counter “step,” which is initialized with 0 and ranging from 0 to
c+ 1. step is incremented in each step. The observer stores the first c+ 1 states
of an execution Ξ, as follows: In the i-th step, the observer assigns the register
bi−1 the truth value of con in state γi−1. Thus, in the state γi+1 the value of
bi is assigned correctly and reflects whether γi |= con is true. Next, the model
checker verifies the following formula:

step = c + 1 → ∃ i ≤ c • count(bi, . . . , bc) ≥ Δ · (c − i + 1).

If the model checker finds an execution leading to a state that violates the former
formula, then this execution corresponds to an execution Ξ of the system which
is a counterexample. Hint: since the register bi−1 is updated during the i-th step
and thus keeps the correct value earliest in state γi, the formula has to be checked
one step later than expected, i.e., when step = c + 1 and not when step = c.2

Checking conΔ-warmUp Time of w Steps

To check (P2), we add an observer, with a slight different functionality: the
observer has an additional counter “good.” Both counters step and good are
initialized with 0 and range from 0 to w + 1. The counter good is incremented
only in each step where con holds. This allows us to check whether formula

w + 2 ≤ step ∧ step ≤ 2w + 2 → good ≥ Δ ∗ step

holds. Hint: again, we check the formula one step later than expected, i.e., when
w + 2 ≤ step ∧ step ≤ 2w + 2 instead of w + 1 ≤ step ∧ step ≤ 2w + 1.
2 Although it is possible to do check the formula in the state where step = c, this
would result in a fair readability.

134 O. Jubran et al.

Algorithm 1. Mutual Exclusion Algorithm of Process p [4, Algorithm 2]
Constants
ε = �D/2� −1
stabX = {0, ..., (n + ε − 1)}
tail∗X = {−D, ..., −1}
Predicates
allCorrectp ≡ ∀ q ∈ Np • rp = rq

privilegedp ≡ allCorrectp ∧ rp = id + ε
normalp ≡ rp ∈ stabX ∧ allCorrectp

convergep ≡ ∃ q ∈ N ∗
p • rq ∈ tail∗X

resetp ≡ ∀ q ∈ N ∗
p • rq ∈ stabX ∧ ¬allCorrectp

Guarded Commands
NA :: normalp −→ rp := rp + 1 mod (n + ε);
CA :: convergep −→ rp := min{rs + 1|s ∈ N ∗

p };
RA :: resetp −→ rp := −D;

Benchmarks

As a benchmark, we have chosen a distributed mutual exclusion algorithm –
Algorithm 1 – to be analyzed. The algorithm is taken from [4, Algorithm 2]. The
algorithm is based on the finite synchronous incrementing system, presented by
Boulinier et al. [17], and it follows a similar approach to Dubois et al. [6] in
achieving a fast convergence wrt. mutual exclusion. We provide an appropriate
clarification of the algorithm, without going into many details, due to the limited
space. The full details and correctness proofs can be found in [4].

The general environment is as follows: the system’s topology is modelled as
a connected graph G = (P,E), with a finite number of processes P and edges E,
and uses the shared memory model under synchronous environments [18]. The
number of processes is denoted by n, and the diameter of the graph is denoted
by D. We assume that n ≥ 2, which implies that D ≥ 1. The set of neighbors of
a process p is denoted by Np. We also define N ∗

p = Np ∪ {p}.
Each process p has a variable rp. Let ε = �D/2� −1. The domain of rp is the

following set of integer values: {−D, ..., (n + ε − 1)}. This domain is divided into
two major subsets: stabX = {0, ..., (n + ε − 1)} and tail∗X = {−D, ...,−1}.

There are three types of actions performed by each process p:
1. NA (Normal Action): a process p increments its value within

0, ..., (n + ε − 1), if rp = rq for all q ∈ Np.
2. CA (Converge Action): a process p sets rp to the minimum-plus-one value

of rq among all q ∈ N ∗
p , if rq ∈ tail∗X .

3. RA (Reset Action): a process p sets rp to −D if there exists a neighbor q,
such that rq
= rp, and for all neighbors g ∈ N ∗

p , rg ∈ stabX .

The aim of this design is to achieve a synchronous unison: an execution
Ξ : γ0, γ1, ... satisfies a synchronous unison – SU – iff
1. In each state γ0, γ1, ..., for all p, q ∈ P , rp = rq.
2. Each process p ∈ P increments rp in each execution step of Ξ.

Verifying Recurrence Properties in Self-stabilization 135

p0 p1

p2 p3

p4 p5

(a) Topology T1

n = 6, D = 3

p0 p1

p2 p3

p4 p5

(b) Topology T2

n = 6, D = 4

p0 p1 p2

p3 p4 p5

p6 p7 p8

(c) Topology T3

n = 9, D = 2

p0 p1 p2

p3 p4 p5

p6

(d) Topology T4

n = 7, D = 4

p0 p1 p2

p3 p4 p5

p6

(e) Topology T5

n = 7, D = 2

Fig. 1. The topologies, over which Algorithm 1 is tested

Note that with the given parameters, the convergence time complexity wrt. SU
of this system is 2D [17].

This system can be used as a mutual exclusion algorithm [6]. In the speci-
fication of mutual exclusion – ME –, there exists a condition privileged , which
is defined over the local state of each process (including the read values of the
process’s neighbors) – see Algorithm 1. The specification of ME is as follows:

1. If privilegedp holds for one process p in a given system state γ, it should not
hold for any other process in γ.

2. For each process p ∈ P , privilegedp holds infinitely often.

Algorithm 1 converges wrt. ME in �D/2� −1 steps. This time complexity is
optimal, and a complete argument about this time complexity is given in [4].

Model Checking

In the design of Algorithm 1, the main purpose is to achieve a high recurrence
of privileged for any process, besides the optimal time complexity, based on the
basic design of the finite incrementing system [17]. Note that the recurrence of
privileged refers to the notion of service time in mutual exclusion [19]. In the
following, we analyze the recurrence of con. con is defined as follows:

con def= ∃ p ∈ P • privilegedp,

136 O. Jubran et al.

We designed five topologies, given in Fig. 1. The topologies have different com-
binations of the values of n and D, since n and D are the key parameters of the
algorithm. We applied Algorithm 1 on these topologies, and we used the nuXmv
model checker to analyze the conΔ-convergence time, and conΔ-warmup time for
many values of Δ. The results are given in Table 1. Note that by [4], Algorithm 1
achieves conΔ, where Δ = n

n+ε , with a conΔ-convergence time complexity of
max{(�2.5D� − 1), (n + �D/2� − 2)}.

Table 1. Model checking recurrence properties for Algorithm 1

Topology Δ Property #steps Holds Testing Time3

T1
6/7 conΔ-convergence c = 7 � 10s

T1
2/11 conΔ-warmup w = 9 � 14s

T1
4/7 conΔ-warmup w = 17 � 15s

T1
5/7 conΔ-warmup w = 37 � 29s

T2
6/7 conΔ-convergence c = 9 � 4s

T2
2/11 conΔ-warmup w = 9 � 6s

T2
4/7 conΔ-warmup w = 24 � 13s

T2
5/7 conΔ-warmup w = 51 � 19s

T3
1/1 conΔ-convergence c = 8 � 86h

T3
2/11 conΔ-warmup w = 9 � 73h

T3
4/7 conΔ-warmup w = 17 � 86h

T3
5/7 conΔ-warmup w = 37 � 88h

T4
7/8 conΔ-convergence c = 8 X 5m51s

T4
7/8 conΔ-convergence c = 9 � 7m15s

T4
2/11 conΔ-warmup w = 8 X 6m10s

T4
2/11 conΔ-warmup w = 9 � 7m55s

T4
4/7 conΔ-warmup w = 23 X 9m42s

T4
4/7 conΔ-warmup w = 24 � 9m27s

T4
5/7 conΔ-warmup w = 43 X 10m35s

T4
5/7 conΔ-warmup w = 44 � 10m44s

T5
1/1 conΔ-convergence c = 3 X 3m03s

T5
1/1 conΔ-convergence c = 4 � 2m42s

T5
2/11 conΔ-warmup w = 2 X 4m26s

T5
2/11 conΔ-warmup w = 3 � 3m24s

T5
4/7 conΔ-warmup w = 7 X 4m05s

T5
4/7 conΔ-warmup w = 8 � 3m29s

T5
5/7 conΔ-warmup w = 11 X 3m31s

T5
5/7 conΔ-warmup w = 12 � 4m

7 Conclusion and Discussion

We presented a formal approach that simplifies verifying recurrence properties in
self-stabilizing systems using automatic verification tools. First, we have shown
3 On 64-core AMD Opteron with 2.6GHz, 504GiB of RAM (single-core mode).

Verifying Recurrence Properties in Self-stabilization 137

that for each system that does not converge to an execution suffix guaranteeing a
minimum recurrence in c steps, there exists an execution, whose prefix of length
c + 1 is a counterexample. Second, we presented the notion of warmup time,
which denotes the time required by an execution to reach some recurrence of
a condition, starting from any state. We have shown that if a system does not
satisfy a warmup time wrt. some recurrence in w steps, then the system has an
execution prefix that is a counterexample having a length between w + 1 and
2w + 1. Next, given that there exists at least one finite counterexample for each
system violating its property, model checking can be used to check the absence of
counterexamples, to conclude that a system satisfies its property. As a case study,
we analyzed the service time of a self-stabilizing mutual exclusion algorithm.
We have modelled the service time as the recurrence of granting privilege to
a process. We have used the model checker nuXmv to obtain analysis of the
algorithm over many topologies.

For the model checking section we considered systems having finite state
space since we were able to apply model checking directly. However, this might
not be the case for systems having infinite state space. An infinite state space is
the result of having variables with infinite domains. In many cases, such variables
have number values. This raises the question whether bounded model checking
(BMC) together with abstraction techniques may be used to verify recurrence
properties for these systems. To use BMC, it is required that there exists an
upper bound on the length of the execution, which is achieved in this work.

Our approach considered analyzing performance properties in self-
stabilization. Following this approach, instead of focusing on performance related
conditions, one may focus on the consequences of faults during the convergence.
In particular, the notion of warmup time can be used to analyze the recurrence
of conditions that are followed by non-desired actions during convergence. For
example, one may analyze the recurrence of failing to satisfy mutual exclusion;
i.e., two or more processes having granted privileges in the same state. This
provides more information about the algorithm’s behavior during convergence,
which might help to improve the quality of service.

References

1. Dolev, S.: Self-Stabilization. The MIT Press (2000)
2. Dijkstra, E.W.: Self-Stabilizing Systems in Spite of Distributed Control. Commu-

nications of the ACM 17(11) (1974)
3. Jubran, O., Theel, O.: Brief announcement: introducing recurrence in self-

stabilization. In: [20]
4. Jubran, O., Theel, O.: Introducing Recurrence in Self-Stabilization (Revised Ver-

sion). Report No. 101 of SFB/TR 14 AVACS, April 2015. http://www.avacs.org/
5. Kravchik, A., Kutten, S.: Time optimal synchronous self stabilizing spanning tree.

In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 91–105. Springer, Heidelberg
(2013)

6. Dubois, S., Guerraoui, R.: Introducing Speculation in Self-Stabilization - An Appli-
cation to Mutual Exclusion. CoRR, abs/1302.2217 (2013)

http://www.avacs.org/

138 O. Jubran et al.

7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing -
PODC. ACM (2004)

8. Datta, A.K., Larmore, L., Vemula, P.: Self-Stabilizing Leader Election in Opti-
mal Space under an Arbitrary Scheduler. Theoretical Computer Science 412(40),
5541–5561 (2011)

9. Dhama, A., Theel, O.: A tranformational approach for designing scheduler-
oblivious self-stabilizing algorithms. In: Dolev, S., Cobb, J., Fischer, M., Yung, M.
(eds.) SSS 2010. LNCS, vol. 6366, pp. 80–95. Springer, Heidelberg (2010)

10. Klinkhamer, A., Ebnenasir, A.: Synthesizing self-stabilization through superposi-
tion and backtracking. In: [20]

11. Faghih, F., Bonakdarpour, B.: SMT-based synthesis of distributed self-stabilizing
systems. In: [20]

12. de Moura, L.M., Bjørner, N.: Satisfiability Modulo Theories: Introduction and
Applications. Communic. of the ACM 54(9), 69–77 (2011)

13. Fallahi, N., Bonakdarpour, B., Tixeuil, S.: Rigorous performance evaluation of
self-stabilization using probabilistic model checking. In: Proceedings of the 32nd
Symposium on Reliable Distributed Systems - SRDS. IEEE (2013)

14. Nakaminami, Y., Kakugawa, H., Masuzawa, T.: An advanced performance analysis
of self-stabilizing protocols: stabilization time with transient faults during conver-
gence. In: Proceedings of the 20th International Parallel and Distributed Processing
Symposium - IPDPS. IEEE (2006)

15. Dhama, A., Theel, O., Warns, T.: Reliability and availability analysis of self-
stabilizing systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS,
vol. 4280, pp. 244–261. Springer, Heidelberg (2006)

16. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014)

17. Boulinier, C., Petit, F., Villain, V.: Synchronous vs. Asynchronous Unison.
Algorithmica 51(1) (2008)

18. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press
(2000)

19. Johnen, C.: Service time optimal self-stabilizing token circulation protocol
on anonymous unidirectional rings. In: Proceedings of the 21st International
Symposium on Reliable Distributed Systems - SRDS. IEEE (2002)

20. Proceedings of the 16th International Symposium on Stabilization, Safety, and
Security of Distributed Systems - SSS. Springer (2014)

Untangling Partial Agreement:
Iterated x-consensus Simulations

Damien Imbs1(B), Sergio Rajsbaum2, and Adrián Valle3

1 Department of Mathematics, University of Bremen, 28334 Bremen, Germany
imbs@math.uni-bremen.de

2 Instituto de Matemáticas, UNAM, D.F. 04510 Ciudad de Mexico, Mexico
3 Oracle, Zapopan, Jalisco, Mexico

Abstract. The basic read/write shared memory model where asyn-
chronous and crash prone processes communicate to solve a task is difficult
to analyze. A more structured model is the iterated immediate snapshot
model (IIS), where processes execute communication closed rounds. In
each round, they communicate using read/write registers that cannot be
reused in later rounds. It is known that a task is solvable in the IIS model
if and only if it is solvable in the basic read/write model. Both models are
also equivalent when, in addition to read/write registers, processes also
have access to stronger communication objects called 01-tasks.

This paper extends further the task computability equivalence pre-
senting a simulation that includes x-consensus objects, which solve con-
sensus among up to x processes. The simulation implies that an iterated
model where processes communicate through a sequence consisting only
of x-consensus objects is equivalent to the basic shared memory model
augmented with x-consensus objects.

Keywords: Asynchronous systems · Consensus · Distributed comput-
ing · Iterated Immediate Snapshot · Read/write shared memory · Task
solvability · Wait-freedom

1 Introduction

A central issue in distributed computing is determining which tasks are solvable
in a given computation model. When solving a task, each process starts the
computation with an input value, known only to itself, and after communicating
with the other processes, decides an output value. The task specifies the outputs
that are compatible with each other, for the given local inputs of the processes.
An example is the k-set agreement task [14], where at most k different outputs
are produced, and all have to be equal to one of the inputs. When k = 1, we
have the classic consensus task [21], where all outputs must be equal to one of
the inputs.

S. Rajsbaum—Partially supported by a UNAM-PAPIIT grant.
D. Imbs and A. Valle—Part of this work was done while the authors were at the
Instituto de Matemáticas, UNAM.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 139–155, 2015.
DOI: 10.1007/978-3-319-21741-3 10

140 D. Imbs et al.

A basic model is the wait-free read/write shared memory model, where n
asynchronous processes that may crash, communicate using shared read/write
registers. This model is strong enough to implement snapshots [1], where pro-
cesses can read the whole memory in a single atomic step. However in this model
k-set agreement is not solvable [6,37,47], even when k = n − 1.

Designing algorithms as well as proving impossibility results in the read/write
memory model is difficult. It is easier to analyze algorithms in more structured,
iterated models of computation [8,10,11,13,18,22,26,28,43–46]. In an iterated
model [41], processes proceed in communication closed rounds [20]. In each
round, they communicate using shared objects specific to the given round. These
objects cannot be reused in later rounds. Iterated models have also been used to
facilitate impossibility proofs using topology [30], and for some results the only
known proofs are in an iterated model e.g. [11,19,28,34].

Given the usefulness of iterated models both to design algorithms and to
prove impossibility results, the main research question in this area is when a
model of computation is equivalent to its iterated counterpart (where commu-
nication proceeds in rounds, and objects can be used only once, in their cor-
responding round), with respect to task solvability. Also, this issue is closely
related to the question of when a distributed algorithm has a recursive counter-
part [7,27,42].

The basic iterated model is the iterated immediate snapshot (IIS) model [8],
where processes communicate in each round using an immediate snapshot object
associated to the round. In such an object, a process can invoke a write operation,
and receives a snapshot that occurred immediately after the write. The first
result in this area was that the IIS model can simulate the read/write shared
memory model where any number of process can crash [8], and hence both models
can solve the same set of tasks.

Later on, the IIS model was extended and a simulation was provided [26],
showing that the same tasks can be solved when 01-objects are available [23,24].
These objects are stronger than read/write registers, but are not strong enough
to solve consensus even among 3 processes; they are strong enough only to solve
(n − 1)-set agreement.

Contributions. We introduce the iterated x-consensus model. In this model, in
each round, processes communicate through a single x-consensus object. They
do not have access to read/write registers.

– We present a simulation that can execute any wait-free read/write shared
memory algorithm that solves a task in the iterated x-consensus model. Thus,
x-consensus objects have a “memory effect”: they can be used to solve any
task that can be solved using read/write registers.

– We present an extension of the previous simulation to shared memory models
where processes have, in addition to read/write registers, access to x-con-
sensus objects. This extended simulation proves that the shared memory
model where processes have access to x-consensus objects is equivalent to the
iterated x-consensus model. This simulation has the following implications.

Untangling Partial Agreement: Iterated x-consensus Simulations 141

In the shared memory model, processes can access the x-consensus objects
in any order (not necessarily the same for each process). On the other hand, in
the iterated x-consensus model, processes access the objects in exactly the same
order, just as they access the different rounds in the same order. The simulation
shows that there does not exist any algorithm that (in addition to a shared
memory) only uses x-consensus objects for which the correctness depends on
the fact that processes access the objects in a different order. Object invocations
can always be reorganized to happen in the same order for every process (e.g.,
the simulation shows that in our context, there is no added computational power
by a code where one process accesses first O1 and then O2 while another process
accesses first O2 and then O1).

The simulation shows that, when considering colorless tasks [9,33,34] (such
as set agreement), the wait-free iterated x-consensus model with n processes
is equivalent to the wait-free shared memory model with �n/x� processes. This
equivalence implies that the problem of determining whether a colorless task can
be solved in the iterated x-consensus model consisting of n processes is decidable
if and only if �n/x� ≤ 2. The proof is by reduction to the problem of determining
if a given task is wait-free solvable, which is known to be decidable only for 2
processes [25,31,32].

Related Work. The characterisation of the tasks which are solvable in the basic
read/write model [37] has an origin going back to [5] and has been extended to
various other models using topology [30]. Extensions include randomized char-
acterizations [16,17].

A powerful technique to determine if a task is solvable in a given model is
the use of simulations, e.g. [3,8,12,22,26,35,36,44]. One of the results based on
a simulation is the equivalence between the shared memory and the message-
passing model of computation (under the condition that a majority of processes
are correct) [3]. Such simulations allowed to design algorithms in shared memory
and export them to message-passing (which is harder to analyze), or to prove
impossibilities in the shared memory model, and extend them to the message
passing using simulations. Other classes of simulations are between models that
have different numbers of processes [9] or tolerate different types of failures [40].

In [26], the read/write model and the iterated snapshot model are strength-
ened with 01-tasks [23], and it is shown that the equivalence between the two
models still holds. In these tasks processes decide either 0 or 1, but they cannot
all decide the same value. In executions in which not all processes participate,
the valid outputs depend on the specific 01-task. The strongest 01-task can
solve (n, n−1)-set agreement, but not (n, n−2)-set agreement. The x-consensus
objects that we consider here are thus more powerful. A study of when simula-
tions exist between certain models and not others has been done in [33], based
on topological arguments.

In [44], the possible executions of the IIS model are restricted in such a way
that they are equivalent to executions of a read/write system with a failure
detector. The resulting model is called the Iterated Restricted Immediate Snap-
shot model. In [45], the IIS model is enriched directly with failure detectors. It is

142 D. Imbs et al.

shown that various failure detectors in the read/write model have an equivalent
in the IIS model.

In [39], the equivalence between the read/write shared memory model and
the shared memory model extended with x-consensus objects is considered. For
colorless tasks, the t-resilient model with x-consensus objects is equivalent to
the �t/x�-resilient read/write model.

The objects that allow solving consensus between two processes are computa-
tionally equivalent to objects of the Common2 class [2], which includes Test&Set,
Swap, stack, and others. A generalization of 2-consensus objects are x-consensus
objects, which can solve consensus among x processes. Also, x-consensus objects
can solve k-set agreement among n processes, if and only if k ≥ �n/x� e.g. [15,30].

2 Model of Computation

We consider a set Π of n processes p1, . . . , pn. Processes are asynchronous: there
is no assumption on their relative speeds. Processes can crash: they can stop their
execution at any time. We briefly recall notions that can be found in textbooks
such as [4].

A decision task specifies a one-shot decision problem (the failure model is
not part of this definition). Each process can invoke a single operation and can
invoke it only once. Formally, a task is defined by a set I of possible input
vectors, a set O of possible output vectors, and a relation Δ : I → 2O that
associates each input vector I ∈ I to a non-empty set of output vectors O ∈ O.
Informally, an algorithm solves a task if the following holds. Each process pi
starts with an input value inputi and each non-faulty process pj decides an
output value outputj . The input vector I is formed by the different inputs such
that I[i] = inputi. Similarly, the output vector O is formed by the outputs such
that O[i] = outputi. The output vector O must belong to the set Δ(I) for the
algorithm to satisfy the safety of the task.

2.1 The Shared Memory Communication Model

Processes communicate by shared objects. Informally, an object specifies a set of
states, a set of processes that may access it, the set of operations that those pro-
cesses may apply to the object, and the behavior of the object, described by the
effect of each operation on the object’s state and the value the operation returns,
assuming no other operation is accessing the object at that time. When opera-
tions are invoked concurrently linearizability [38] says that the object behaves
as if each operation had occurred instantaneously, at some point between the
time it was invoked and the time it returned its response. The shared mem-
ory includes an array of single-writer/multi-reader atomic registers. We may
assume [1] that the shared memory is abstracted as a snapshot object, denoted
MEM [1..n]. The entry MEM [i] is associated to process pi. The snapshot object
offers two operations. Process pi can write the value v to MEM [i] using the oper-
ation MEM.writei(v) (for the sake of conciseness, this will be abbreviated by

Untangling Partial Agreement: Iterated x-consensus Simulations 143

MEM [i] ← v). Process pi can also read the whole content of MEM atomically
using the operation MEM.snapshoti().

algoi(ini):
(01) viewi ← ini;
(02) while (δi(viewi) = ⊥) do
(03) MEM [i] ← viewi;
(04) viewi ← MEM.snapshot()
(05) end while;
(06) decide(δi(viewi)).

Fig. 1. Canonical form of a shared memory algorithm

Every distributed algorithm in which processes only communicate using the
shared memory described above can be represented in the form presented in
Figure 1.

Processes communicate through a single snapshot object MEM . Each pro-
cess pi gets an input value ini, and stores the value in its local variable viewi

(line 01). The aim of variable viewi is to store the local state of pi. The algo-
rithm is full-information because a process stores everything it has seen in viewi,
and repeatedly communicate viewi to the other processes. For computability
purposes, we are not interested in saving on communication. Each process pi
repeatedly writes its local state to the shared memory, viewi (line 03, and then
takes a snapshot. Each repetition of the loop, pi applies a decision function δi to
its local state (line 02). If δ returns a value different from ⊥, the process decides
this value (line 06).

In the following, we will only consider algorithms in their canonical form.
Because each process writes its whole local state (the variable viewi) when it
writes (line 03), any other value it could have written can be deduced from this
information. If an algorithm writes twice without taking a snapshot, or takes
two snapshots without writing, the missing operations can be inserted.

2.2 Model with x-consensus

In addition to a shared memory, processes may also have access to x-consensus
objects. Recall that we assume that an object specifies which processes may
access it. An x-consensus object is similar to the well-known consensus object
e.g. [4,12], except that it can it be accessed only by a statically predefined
subset of x processes, 1 ≤ x ≤ n. Thus, it offers a single operation propose to
the subset of processes that can access it, and it satisfies the usual consensus
requirements.

– Agreement. No two distinct values are returned by different processes.
– Validity. A decided value is a proposed value.
– Wait-freedom. Any invocation by a correct process terminates.

144 D. Imbs et al.

An x-consensus object cannot be implemented using a read/write shared
memory in a wait-free manner [29], except in the trivial case, x = 1, where only
one process can invoke the object. When x = n we have the usual consensus
object.

Shared Memory Extended with x-consensus Objects. In the shared memory
model extended with x-consensus objects, an infinite supply of these object
is available to the processes. Processes can invoke any object at any time. The
canonical form presented in Figure 2 is an extension of the one in Figure 1. Here,
a process may invoke an x-consensus object after each time it writes to the shared
memory (and before it takes the snapshot of the corresponding iteration).

algoi(ini):
(01) viewi ← ini; last call ← �;
(02) while (δi(viewi) = ⊥) do
(03) MEM [i] ← 〈viewi, last call〉;
(04) if (φi(viewi) �= ⊥)
(05) then last call ← φi(viewi).propose(viewi)
(06) else last call ← � end if;
(07) viewi ← MEM.snapshot()
(08) end while;
(09) decide(δi(viewi)).

Fig. 2. Canonical form of a shared memory algorithm accessing x-consensus objects

The algorithm presented in Figure 1 is generic; the only task-specific ele-
ment being the decision function δ. Here, an algorithm must also specify the
x-consensus object to be invoked in each iteration of the loop. The object to be
invoked by pi is specified using a function φi. Given the local state of the process,
φi returns either the identity of the object to be invoked, or ⊥ if no x-consensus
object will be invoked in the iteration (line 04). The object φi(viewi) is invoked
(in line 05) with the operation φi(viewi).propose(viewi), and the value returned
by the object is stored in the local variable last call. The returned value will be
communicated to the other process in the next iteration. The value returned by
the object is stored in the local variable last call. If an object has been invoked,
it contains the result of this invocation (line 05). If no object has been invoked,
it contains the special value � (line 06).

2.3 The Iterated x-consensus Model

In the Iterated x-consensus model, processes proceed by rounds. An x-consensus
object is associated to each round r. Processes communicate in each round
only through the corresponding x-consensus object. Processes must access the
x-consensus objects in the order imposed by the rounds: if a process does not
access the x-consensus object of a given round, it cannot access it in later rounds.

Untangling Partial Agreement: Iterated x-consensus Simulations 145

The set of x processes that are allowed to access the object that corresponds
to a round r is defined by a function μ. The sets returned by μ(r) evolve in
a round-robin fashion: each subset of x processes is returned every

(
n
x

)

rounds.
Any other function that allows all subsets of x processes to run infinitely often
would work.

3 The Base Simulation

Consider an algorithm solving some task in the shared memory model, given in
the form of Figure 1. We show how to simulate the algorithm in the iterated
x-consensus model with x > 1. Informally, in the simulation algorithm there
are variables that represent the SWMR registers of the original algorithm, one
variable per simulator. Each run of the simulation will correspond to a valid
execution of the simulated algorithm, represented in these variables, until the
decision function δi can be applied by each (simulator) process pi. The simulation
implies that if a task is solvable in the wait-free read/write shared memory model,
then it is solvable in the x-consensus model. Thus, although x-consensus objects
have no persistent value beyond the round in which they are accessed, they can
be used to simulate a single array of shared registers, in order to solve a task.

Mechanism of the Simulation Algorithm. Each process stores in its local memory
an array of values that represents its view of the simulated Single-Writer/Multi-
Reader (SWMR) registers (one register per process). Initially, its view contains
its input value for its own register and a special value ⊥ for the registers of other
processes.

In a given round, the x processes that can access an x-consensus object
communicate their views using the object. The communication is one-way; only
the winner (the process whose value is chosen by the x-consensus object) can
communicate its view to the others. When a process observes a stable view of
the memory with respect to all the other processes (in x-consensus invocations
that include all other processes, it has either won or the winner had the same
input), it simulates a snapshot and a write: in its local view, it updates its own
register with the content of its previous view.

3.1 The Simulation Algorithm

The simulation algorithm is presented in Figure 3. It produces an execution of
the given shared memory algorithm in the iterated x-consensus model.

Local Variables. The shared memory consists only of the x-consensus objects
that processes access in each round. The local variables of a process pi are the
following.

– The round number r. This indicates to pi the current round number. As
required by the iterated x-consensus model, r is increased by 1 in each round
(line 03).

146 D. Imbs et al.

Procedure BaseSimulationi(inputi):
(01) for all j ∈ [1..n], j �= i do c[j].val ← ⊥; c[j].clock ← 0 end for;

c[i].val ← inputi; c[i].clock ← 1; readyi ← ∅; viewi ← inputi; r ← 0;
(02) loop forever
(03) r ← r + 1;
(04) if (i ∈ μ(r)) then
(05) xcons memi ← x consr.propose(c);
(06) if (xcons memi �= c) then readyi ← ∅; update c(xcons memi)
(07) else readyi ← readyi ∪ μ(r) end if;

(08) if (readyi = Π) then
(09) viewi ← c.val;
(10) if (δi(viewi) �= ⊥) then return(δi(viewi))
(11) else c[i].val ← viewi; c[i].clock ← c[i].clock + 1;
(12) readyi ← ∅ end if
(13) end if end if end loop.

Fig. 3. The base simulation algorithm (code for process pi)

– The array c[1..n]. This array contains the values of the most recent sim-
ulated writes that process pi has observed by other processes. Each entry
contains two fields: clock and val. The field c[j].val contains the value of the
c[j].clockth simulated write by process pj . Note that at line 09, viewi gets
c.val = [c[1].val, . . . , c[n].val].

– The array xcons memi[1..n]. This array contains the result of the last x-
consensus invocation. Because processes propose their array c in each round
in which they participate, each entry xcons memi[j] contains the state of
the simulation of the register of pj as observed (directly or indirectly) by the
winner of the last x-consensus invocation in which pi participated.

– The set readyi. This set contains the identities of all the processes that
have participated in an x-consensus invocation with pi since the last time pi
received a view different from its own in such an invocation.

– The variable viewi. This variable is used to simulate the local state of process
pi in the shared memory algorithm. It corresponds to the variable viewi used
in the full-information algorithm presented in Fig. 1. It is initialized with the
input of pi.

For the sake of simplifying the presentation of the algorithm, the code
includes the local operation update c (line 06). It updates the local array c using
the most recent values obtained during the x-consensus invocation. The code is
the following:
update c(xcons memi):
for all x ∈ [1..n] do
if (xcons memi[x].clock > c[x].clock) then c[x] ← xcons memi[x] end if

end for.

Code Description. Process pi initializes the array c with {⊥, 0} for all clock
entries except its own, indicating that it has not yet observed any write by any
other process. It initializes its own entry c[i] with {inputi, 1}, indicating its own

Untangling Partial Agreement: Iterated x-consensus Simulations 147

clock value is 1, and its first write announces its own input. It then sets readyi
to ∅ and enters the loop.

Process pi increases its round number (line 03) until it can invoke the cor-
responding x-consensus object (test at line 04 using the function μ). It then
invokes the object of the corresponding round, using its array c as its input line
05). This is the only way in which it communicates with other processes. There
are two cases.

1. The result of the invocation is not equal to the value of its array c (line 06)
because another process with a different input won it. In this case, pi resets
its set readyi to prevent simulating an inconsistent snapshot. It then updates
c with the new values it learned from the invocation.

2. The result of the invocation is equal to the array c (line 07) because pi won
the x-consensus or because another process with the same input c won it.
Process pi then adds the set μ(r) of processes that are allowed to participate
in this round to its set readyi: all the processes pj in μ(r) that do not
propose the same array c will then have to reset their sets readyj (line 06 of
pj ’s code).

If the set readyi contains the identities of all the processes (test at line 08), pi is
ready to simulate a consistent snapshot using the values contained in c (line 09).
If pi can obtain a decision value for the simulated algorithm using the simulated
snapshot (test at line 10 using the function δ), it returns this value and stops its
execution. Otherwise, it simulates a write (line 11): it updates its own entry of
c and resets its set readyi.

3.2 Proof of the Simulation

Lemma 1. All the processes that satisfy the condition readyi = Π at line
08 during round r do so with the same array c.

Proof. Process pi may execute line 08 during round r only if its identifier belongs
to μ(r) (line 04) and thus only if it invoked the x-consensus operation at line
05. Because of the agreement property of the x-consensus objects, every pro-
cess that invokes the x-consensus operation at round r receives the same array
xcons mem.

If the array xcons memi that pi receives from this invocation is different
from its array c (test at line 06), it resets its set readyi and does not satisfy the
condition at line 08. All the processes that satisfy the condition at line 08 during
round r thus do so with the same array c.

Define a partial order on the arrays c as follows. If ∀x ∈ [1..n] : c[x].clock ≤
c′[x].clock, then c ≤ c′. If c ≤ c′ ∧ c′ �≤ c, then c < c′.

Lemma 2. If pi satisfies the condition at line 08 during round r with the array
c and pj satisfies it during round r′ with the array c′, with r < r′, then c ≤ c′.

148 D. Imbs et al.

Proof. Let r′′ be the last round before r at which pi adds pj to its set readyi
(line 07). Because pi needs to have all the processes in its set readyi to satisfy
the condition at line 08, r′′ is well-defined. Because pi must reset its set readyi
every time that it receives an array xcons memi different from its array c (test at
line 06), the array c of pi is the same during round r′′ and round r, and is equal
to the array xcons memi that pi received during its x-consensus invocation at
round r′′.

During round r′′, pi can only add processes that belong to μ(r′′) (line 07).
Process pj thus belongs to μ(r′′) and receives the same value as pi during the
x-consensus invocation during round r′′. Process pj thus either updates its array
c′ during round r′′ with values at least as recent at the values in c (line 06), or
has an array c′ equal to c (line 07). We can then conclude that c ≤ c′.

Lemma 3. If there are correct undecided processes at round r, at least one of
them satisfies the condition readyi = Π at line 08 at round r′ ≥ r.

Proof. Let P be the set of correct processes that have not decided at round r. By
way of contradiction, suppose that there is an execution in which the processes
in P never satisfy the condition at line 08 after round r.

There are two cases when a process pi fills its set readyi, and hence must
satisfy the condition at line 08. If either (1) pi ∈ P does not participate in a round
(because it does not belong to the set of x processes that can participate in this
round), or (2) pi does not satisfy the condition at line 06 (because xcons memi =
c) during

(
n
x

)

consecutive rounds, pi fills its set readyi and it must satisfy the
condition at line 08, a contradiction. Process pi thus satisfies the condition at
line 06 at least once every

(
n
x

)

rounds. This can happen because (1) pi observes
values more recent than its own in xcons memi or (2) it observes older values
(less than in the vector clock).

Every time process pi ∈ P satisfies the condition at line 06 because it observes
values more recent than its own, it updates its vector c with at least one entry
of xcons mem strictly more recent than its own (function update c, line 06).
Because the processes in P never satisfy the condition at line 08 after round r,
they can never update their entry of c at line 11. Let cmax be the vector con-
stituted by the highest entries (when considering the clock value) of the vectors
c of the processes of P at round r. Process pi cannot update the entries of its
vector c to entries more recent than the entries of cmax. Every process in P thus
eventually satisfies the condition at line 06 only because it observes older values.

Let r′ be the first round after which processes in P only observe older values.
Let pi and pj be two processes such that, at a round r′′ > r′, pi satisfies the
condition at line 06 because it observes an older value from pj (pj wins the
consensus at line 06 during round r′). Because processes never observe values
more recent than their own after r′, pi never wins an x-consensus in which pj
participates after r′. By repeating the same reasoning, we obtain that either (1)
no process in P ever wins an x-consensus or (2) a process in P never observes
older values. Both cases lead to contradictions, which concludes the proof of the
lemma.

Untangling Partial Agreement: Iterated x-consensus Simulations 149

Lemma 4. The simulated execution is a correct execution of the shared memory
model.

Proof. Process pi simulates a snapshot by writing the content of its array c into
its variable viewi (line 09) and a write by updating its entry of its array c (line
11). It does so every time it satisfies the condition at line 08.

By Lemmas 1 and 2, the simulated snapshots (the contents of c written into
the variable view) can be totally ordered. Moreover, process pi simulates a write
(by updating c[i]) every time it simulates a snapshot. The simulated execution
thus corresponds to a correct execution of the shared memory model.

Lemma 5. If the simulated algorithm is a wait-free algorithm, then every correct
process decides.

Proof. By Lemma 3, after any given round r, if there are undecided processes,
at least one of them satisfies the condition at line 08 and thus completes its
simulation of a snapshot and a write. If the simulated algorithm is wait-free, at
least one correct process will then make enough progress to decide. Because a
process that decides stops participating (it returns its decision value at line 10),
every correct process eventually decides.

Theorem 1. The algorithm presented in Figure 3 is a correct simulation of a
wait-free shared memory algorithm.

Proof. The proof follows from Lemmas 4 (safety), and 5 (progress).

4 The Extended Simulation

The simulation presented in this section takes as input a wait-free algorithm
designed for the shared memory model extended with x-consensus objects, and
simulates it in the iterated x-consensus model. It shows that, with respect to
wait-free task solvability, the iterated x-consensus model is equivalent to the
shared memory model augmented with x-consensus objects, because simulating
an algorithm for the iterated x-consensus model in the shared memory model
extended with x-consensus objects is trivial.

Extending the Previous Simulation. The simulation algorithm is presented in
Figure 4. It is based on the simulation presented in the previous section. The
algorithm to be simulated is designed for the shared memory model extended
with x-consensus objects, as in Figure 2. Thus, it is defined by a decision function
δ, and by a function φi that specifies the x-consensus object to be invoked in
each iteration of the loop.

150 D. Imbs et al.

Procedure ExtendedSimulationi(inputi):
(01) for all j ∈ [1..n], j �= i do c[j].val ← ⊥; c[j].clock ← 0 end for;

c[i].val ← inputi; c[i].clock ← 1;
readyi ← ∅; solved ← ∅; to solve ← ∅; viewi ← inputi; r ← 0;

(02) loop forever
(03) r ← r + 1;
(04) if (i ∈ μ(r)) then
(05) if (∃〈xcons id, xcons in〉 ∈ to solvei : procs(xcons id) = μ(r)) then
(06) (xcons memi, xcons invi) ← x consr.propose(c, 〈xcons id, xcons in〉);
(07) else if (∃〈xcons id, xcons in〉 ∈ to solvei) then
(08) (xcons memi, xcons invi) ← x consr.propose(c, 〈xcons id, xcons in〉);
(09) else
(10) (xcons memi, xcons invi) ← x consr.propose(c, ⊥);
(11) end if;
(12) if (xcons invi �= ⊥) then
(13) if (procs(xcons invi.id) = μ(r)) then
(14) for all 〈xcons invi.id, x〉 ∈ to solvei do
(15) to solvei ← to solvei \ {〈xcons invi.id, x〉} end for;
(16) solvedi ← solvedi ∪ {xcons invi}
(17) else if (

(
i ∈ procs(xcons invi.id)

) ∧ (�〈xcons invi.id, −〉 ∈ to solvei))
(18) then to solvei ← to solvei ∪ {xcons invi}
(19) end if
(20) end if;
(21) if (xcons memi �= c) then readyi ← ∅; update c(xcons memi)
(22) else readyi ← ready ∪ μ(r) end if;
(23) if ((readyi = Π) ∧ ((φi(viewi) = ⊥) ∨ (∃〈φi(viewi), xcons res〉 ∈ solvedi)

)
)

(24) then last viewi ← viewi; viewi ← c.val;
(25) if (δ(viewi) �= ⊥) then return(δ(viewi))
(26) else if (φi(last viewi) �= ⊥)
(27) then c[i].val ← 〈viewi, xcons res〉
(28) else c[i].val ← 〈viewi, �〉 end if;
(29) c[i].clock ← c[i].clock + 1; readyi ← ∅;
(30) if (φi(viewi) �= ⊥) then
(31) to solvei ← to solvei ∪ {〈φi(viewi), viewi〉}
(32) end if end if end if end if end loop.

Fig. 4. The simulation algorithm extended to x-consensus objects (code for process pi)

Additional Local Variables. In addition to the local variables used in the base
simulation, the algorithm uses the following variables:

– A set to solvei. This set contains pairs consisting of the identifier of an
x-consensus object and an input for this object. These pairs represent the x-
consensus invocations that have not been simulated yet. The pairs contained
in to solvei can represent invocations by pi or invocations by other processes
that pi has learned in an earlier round.

– A set solvedi. This set contains pairs consisting of the identifier of an x-
consensus object and an output for this object. These pairs represent the
x-consensus invocations that have already been simulated.

– A variable xcons invi. This variable contains a pair representing the simu-
lation of an x-consensus invocation. If the set of processes that can invoke

Untangling Partial Agreement: Iterated x-consensus Simulations 151

the corresponding object corresponds to the set of processes that are allowed
to participate in this round, then the simulation of the invocation succeeds.
Otherwise, this variable is used as a helping mechanism: when pi receives a
pair that does not correspond to the current round, it can propose it during
a later x-consensus invocation.

Additionally, the simulation uses a function procs(X) to determine the set of
processes that can access a simulated x-consensus object X.

Modifications to the Behavior of the Algorithm. Process pi checks if it is aware
of an x-consensus simulation that corresponds to the set of processes that can
participate in the current round by checking its set to solvei (test at line 05).
If it does, it proposes it with its current simulation of the memory (line 06).
Otherwise, it checks if it is aware of another pending x-consensus simulation
(line 07). If it does, it proposes it (line 08). This is used as a helping mechanism
to avoid processes blocking each other when they need to simulate x-consensus
objects that correspond to different sets of processes. If pi is not aware of any
pending x-consensus simulation, it proposes the special value ⊥ along with its
current simulation of the memory (line 10).

Process pi then checks the part of the result of the x-consensus invocation
that corresponds to the simulation of x-consensus objects. If it receives a pair
that corresponds to the set of processes that can participate in the current round
(test at line 13), it considers the invocation as simulated by placing the pair in its
set solvedi and by removing any pair that corresponds to the same object from
its set to solvei. Otherwise, if the pair corresponds to an object it can access, it
places it in its set to solvei (line 18).

An additional test is performed before the simulation of a snapshot is allowed.
Process pi checks if it has a pending x-consensus invocation, and if it has already
been simulated (line 23). When simulating a write, pi writes the result of its
simulated x-consensus invocation if it has one (line 27) or � if it doesn’t (line 28).
Note that at line 29, xcons res is only defined when φi(viewi) �= ⊥, which is fine
because of the previous if condition. Finally, if it has to simulate an x-consensus
invocation before its next simulation of a snapshot, pi adds the corresponding
pair to its set to solvei (line 31).

Due to page limitations, the proof of the extended simulation is omitted.

5 Implications of the Simulation

Simulation of a Memory. The simulation from Section 3 shows that x-consensus
objects can be used without an additional memory to solve any task that can
be solved in a wait-free manner in a shared memory system.

Order of the x-consensus Invocations. One could think that the basis of some
algorithms is that different processes must invoke x-consensus objects in differ-
ent orders. The simulation from Section 4 shows that this is actually never true.

152 D. Imbs et al.

The invocations of x-consensus objects can always be reordered so that all pro-
cesses invoke the objects in the same order (i.e. in the resulting algorithm, there
is no pair of objects A and B, and processes pi and pj , such that pi first invokes
A then B, while pj invokes B before A).

Equivalence with Pure Read/Write Models for Colorless Tasks. When consider-
ing colorless tasks, a shared memory model consisting of n processes, of which
at most t can crash, and which can access x-consensus objects, is equivalent to
a model of �t/x�+1 processes, of which at most �t/x� can crash, and which can
only access shared registers (the result is from [39], and the equivalence is partly
based on the BG simulation [9]).

By combining the previous equivalence with the simulation from Section 4, we
obtain that, when considering colorless tasks, the wait-free iterated x-consensus
model consisting of n processes is equivalent to a wait-free shared memory model
of �n/x� processes. The previous equivalences are presented in Figure 5.

Fig. 5. Model equivalence for colorless tasks

Decidability. Consider the following problem, which is undecidable [25,31,32]:
is a task solvable in a wait-free shared memory system of n ≥ 3 processes (and
thus with t ≥ 2 crashes)? The same problem is decidable if there are only 2 pro-
cesses (see [30] for decidability results in this and other models). The simulation,
combined with the previous equivalence, gives the following result: the problem
of knowing if a colorless task is solvable in a wait-free iterated x-consensus model
consisting of n processes is undecidable if and only if �n/x� ≥ 3. For instance,
when x = 2, it is undecidable for 5 processes and decidable for 4 processes.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of syn-
chronization objects. In: Proceedings of the 12th ACM Symposium on Principles
of Distributed Computing, PODC 1993, pp. 159–170. ACM (1993)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

Untangling Partial Agreement: Iterated x-consensus Simulations 153

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Synthesis Lectures on Distributed Computing Theory. Wiley
(2004)

5. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed
1-solvable tasks. J. Algorithms 11(3), 420–440 (1990)

6. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: Proceedings of the 25th ACM Symposium on Theory
of Computing, STOC 1993, pp. 91–100. ACM (1993)

7. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proc.
of the 12th ACM Symp. on Principles of Dist. Computing, PODC 1993, pp. 41–51.
ACM (1993)

8. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In: Proceedings of the 16th ACM
Symposium on Principles of Distributed Computing, PODC 1997, pp. 189–198.
ACM (1997)

9. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3), 127–146 (2001)

10. Bouzid, Z., Gafni, E., Kuznetsov, P.: Strong equivalence relations for iterated
models. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS,
vol. 8878, pp. 139–154. Springer, Heidelberg (2014)

11. Castañeda, A., Imbs, D., Rajsbaum, S., Raynal, M.: Renaming is weaker than set
agreement but for perfect renaming: a map of sub-consensus tasks. In: Fernández-
Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 145–156. Springer, Heidelberg
(2012)

12. Chandra, T., Hadzilacos, V., Jayanti, P., Toueg, S.: Generalized irreducibility
of consensus and the equivalence of t-resilient and wait-free implementations of
consensus. SIAM Journal on Computing 34(2), 333–357 (2005)

13. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed
systems with benign faults. Distributed Computing 22(1), 49–71 (2009)

14. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

15. Chaudhuri, S., Reiners, P.: Understanding the set consensus partial order using
the borowsky-gafni simulation. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG 1996.
LNCS, vol. 1151, pp. 362–379. Springer, Heidelberg (1996)

16. Chor, B., Moscovici, L.: Solvability in asynchronous environments. In: Proc. of
the 30th Annual Symposium on Foundations of Computer Science, FOCS 1989,
pp. 422–427 (1989)

17. Chor, B., Nelson, L.-B.: Solvability in asynchronous environments II: Finite inter-
active tasks. SIAM J. Comput. 29(2), 351–377 (1999)

18. Chou, C.T., Gafni, E.: Understanding and verifying distributed algorithms using
stratified decomposition. In: Proceedings of the 7th ACM Symposium on Principles
of Distributed Computing, PODC 1988, pp. 44–65. ACM (1988)

19. Conde, R., Rajsbaum, S.: The complexity gap between consensus and safe-
consensus. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576,
pp. 68–82. Springer, Heidelberg (2014)

20. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

21. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

154 D. Imbs et al.

22. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony
and asynchrony. In: Proceedings of the 17th ACM Symposium on Principles of
Distributed Computing, PODC 1998, pp. 143–152. ACM (1998)

23. Gafni, E.: The 0–1-exclusion families of tasks. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 246–258. Springer, Heidelberg (2008)

24. Gafni, E., Herlihy, M.: Sporadic solutions to zero-one exclusion tasks. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS,
vol. 8572, pp. 1–10. Springer, Heidelberg (2014)

25. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J.
Comput. 28(3), 970–983 (1999)

26. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C.,
Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218.
Springer, Heidelberg (2010)

27. Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb,
J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer,
Heidelberg (2010)

28. Gafni, E., Rajsbaum, S., Herlihy, M.P.: Subconsensus tasks: renaming is weaker
than set agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

29. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

30. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann, Elsevier (2013)

31. Herlihy, M., Rajsbaum, S.: The decidability of distributed decision tasks (extended
abstract). In: Proceedings of the 29th ACM Symposium on Theory of Computing,
STOC 1997, pp. 589–598. ACM (1997)

32. Herlihy, M., Rajsbaum, S.: A classification of wait-free loop agreement tasks.
Theoretical Computer Science 291(1), 55–77 (2003)

33. Herlihy, M., Rajsbaum, S.: Simulations and reductions for colorless tasks. In:
Proc. of the 31st ACM Symp. on Principles of Dist. Computing, PODC 2012,
pp. 253–260. ACM (2012)

34. Herlihy, M., Rajsbaum, S.: The topology of distributed adversaries. Distributed
Computing 26(3), 173–192 (2013)

35. Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing
shared memory models. Theoretical Computer Science 509, 3–24 (2013)

36. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous
message-passing models. In: Proceedings of the 17th ACM Symposium on Princi-
ples of Distributed Computing, PODC 1998, pp. 133–142. ACM (1998)

37. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

38. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

39. Imbs, D., Raynal, M.: The multiplicative power of consensus numbers. In: Proc. of
the 29th ACM Symp. on Principles of Dist. Computing, PODC 2010, pp. 26–35.
ACM (2010)

40. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed
algorithms. J. Algorithms 11(3), 374–419 (1990)

41. Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN
2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010)

42. Rajsbaum, S., Raynal, M.: An introductory tutorial to concurrency-related dis-
tributed recursion. Bulletin of the EATCS, p. 111 (2013)

Untangling Partial Agreement: Iterated x-consensus Simulations 155

43. Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in
the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008)

44. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot
model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497.
Springer, Heidelberg (2008)

45. Raynal, M., Stainer, J.: Increasing the power of the iterated immediate snapshot
model with failure detectors. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO
2012. LNCS, vol. 7355, pp. 231–242. Springer, Heidelberg (2012)

46. Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors. In: Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC 2013, pp. 166–175. ACM (2013)

47. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

Automated Analysis of Impact of Scheduling
on Performance of Self-stabilizing Protocols

Saba Aflaki1, Borzoo Bonakdarpour2(B), and Sébastien Tixeuil3

1 University of Waterloo, Waterloo, Canada
saflaki@uwaterloo.ca

2 McMaster University, Hamilton, Canada
borzoo@mcmaster.ca

3 Université Pierre and Marie Curie, Paris, France
sebastien.tixeuil@lip6.fr

Abstract. In a concurrent computing system, a scheduler determines at
each time which computing task should execute next. Thus, a scheduler
has tremendous impact on the performance of the tasks that it orches-
trates. Analyzing the impact of scheduling in a distributed setting is a
challenging task, as it is concerned with subtle dimensions such as geo-
graphical distance of processes and the achievable level of parallelism. In
this paper, we propose an automated method based on probabilistic ver-
ification for analyzing fault recovery time in distributed self-stabilizing
protocols. We exhibit the usefulness of our approach through a large set
of experiments that demonstrate the impact of different types of schedul-
ing policies on recovery time of different classes of stabilizing protocols,
and the practical efficiency of classical self-stabilizing scheduler trans-
formers.

1 Introduction

Self-stabilization [5] is a versatile technique for forward recovery to a good behav-
ior when transient faults occur in a distributed system or the system is initialized
arbitrarily. Moreover, once the good behavior is recovered, the system preserves
this behavior in the absence of faults. In [7,8], we demonstrated that expected
recovery time is a more descriptive metric than the traditional asymptotic com-
plexity measures (e.g., the big O notation for the number of recovery steps or
rounds) to characterize the performance of stabilizing programs. Average recov-
ery time can be measured by giving weights to states and transitions of a stabi-
lizing program and computing the expected value of the number of steps that it
takes the program to reach a legitimate state. These weights can be assigned by
a uniform distribution (in the simplest case), or by more sophisticated proba-
bility distributions. This technique has been shown to be effective in measuring
the performance of weak-stabilizing programs, where not all computations con-
verge [7], and cases where faults hit certain variables or locations more often, as
well as in synthesizing stabilizing protocols [1].

A vital factor in designing self-stabilizing protocols is the scheduling assump-
tions. For instance, certain protocols are stabilizing under a (1) fair scheduler [4],
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 156–170, 2015.
DOI: 10.1007/978-3-319-21741-3 11

Automated Analysis of Impact of Scheduling on Performance 157

(2) probabilistic scheduler [12,16], or (3) scheduler that disallows fully paral-
lel execution of processes [10]. In addition to the issue of correctness, different
scheduling policies may have a totally different impact on the performance of
a self-stabilizing protocol [3]. To the best of our knowledge, there is no work
on rigorous analysis of how a scheduling policy alters the performance of self-
stabilization.

With this motivation, in this paper, we extend our work in [7,8] to incorpo-
rate different scheduling policies in evaluating the performance of self-stabilizing
algorithms. In particular, we consider the following scheduling criteria:

– Distribution imposes spatial constraints on the selection of processes whose
transitions will be executed.

– Boundedness of a scheduler ensures that a process is not scheduled for exe-
cution more than certain number of times between any two schedulings of
any other process.

– Fairness of a scheduler guarantees that every process is given a fair share of
execution.

Our contributions in this paper are the following: We

– rigorously formalize the aforementioned scheduling criteria;
– propose an automated compositional method for (1) augmenting a

self-stabilizing protocol with different types of scheduling policies, and
(2) evaluating the performance (i.e., expected recovery time) of the aug-
mented protocol using probabilistic verification techniques, and

– conduct a large set of experiments to demonstrate the application of our
approach in analyzing the performance of self-stabilizing protocols under
different scheduling policies.

In particular, we studied the effect of distribution, boundedness and fair-
ness of a scheduler on the possibility of convergence as well as the expected
recovery time of three self-stabilizing algorithms [10], and a few variants.
We show that the first algorithm needs refinement to be able to stabilize
under weaker scheduling constraints. One approach is to compose the algo-
rithm with a stabilizing local mutual exclusion algorithm. In this regard,
we compose the algorithm with a snap-stabilizing dining philosophers algo-
rithm [13] and demonstrate that ensuring safety comes at a cost of higher
expected recovery time. Another approach suggested in [10,11] is to random-
ize the actions of processes for which we explore three different strategies for
choosing the randomization parameter (two static and one dynamic). Fur-
thermore, we consider the solution of [10] for an identified network. This
algorithm is deterministic.

We measure the expected recovery time of all these six strategies under
different scheduling constraints. Our experiments show that, in general, the
deterministic algorithms outperform the randomized ones. Moreover, an
adaptive randomized algorithm which dynamically chooses the randomiza-
tion parameter has a promising performance. It also has the benefit of no
pre-tuning requirements.

158 S. Aflaki et al.

Organization. Section 2 presents our computation model for distributed pro-
grams, the concept of self-stabilization and recovery time. We present the for-
mal semantics of different types of schedulers in Section 2.3. Our approach for
augmenting a distributed program with a scheduling scheme is presented in
Section 3. Experimental results and analysis are discussed in Section 4. Finally,
we make concluding remarks and discuss future work in Section 5.

2 Preliminaries

2.1 Distributed Programs

A distributed system consists of a finite set of processes Π operating on a finite
set of variables V . Each variable v ∈ V has a finite domain Dv. A valuation of
all variables determines a state of the system. We denote the value of a variable
v in state s by v(s). The state space of a distributed system is the set of all
possible states spanned by V denoted by SV .

Each process π ∈ Π can read (respectively, write) a subset of V called its
read (respectively, write)-set. We denote the read and write sets of a process by
Rπ and Wπ respectively. In our model, processes communicate through shared
memory, i.e. several processes can read the same variable. However, only one
process can write to a variable. We say that two processes π and π′ are neighbors
if Rπ ∩ Rπ′ �= ∅. Thus, the communication network of a distributed system can
be modelled by a graph G = (Π,E), where a vertex represents a process, and
there is an edge between any two processes that are neighbors. We denote the
shortest path between two vertices (processes) π and π′ in G by dist(π, π′) and
the diameter of the graph by diam(G).

Definition 1. A distributed program is a tuple dp = (Π,V, T), where

– Π is a finite set of processes,
– V is a finite set of variables,
– T ⊆ SV × SV is the transition relation. ��

In order to analyze the performance of distributed programs, we view them
as a discrete-time Markov chain (DTMC).

Definition 2. A DTMC is a tuple M = (S, S0, ιinit,PM, L,AP) where,

– S is a finite set of states,
– S0 is the set of initial states,
– ιinit : S → [0, 1] is the initial distribution such that

∑

s∈S ιinit(s) = 1,
– PM : S × S → [0, 1] is the transition probability matrix (TPM) such that

∀s ∈ S :
∑

s′∈S

PM(s, s′) = 1

– L : S → 2AP is the labelling function that identifies which atomic proposi-
tions from a finite set AP hold in each state. ��

Automated Analysis of Impact of Scheduling on Performance 159

Given Def. 1 and Def. 2, it is straightforward to model the transition system of a
distributed program with a DTMC. The state space of the distributed program
forms the set of states DTMC (i.e., S = SV). S0 and ιinit can be determined
based on the program. If the distributed program is probabilistic, then the value
of the elements of PM are known. Otherwise, without loss of generality, we can
consider uniform distribution over transitions. In that case:

PM(s, s′) =
1

|{(s, s′′) ∈ T (dp)}|
L assigns atomic propositions to states which facilitates computation and veri-
fication of certain quantitative and qualitative properties. Later, in Section 2.2,
we will see how a single atomic proposition ls can define an important class of
distributed programs namely, self-stabilizing programs. Throughout this paper,
We use dp and M interchangeably to refer to a distributed program.

Definition 3. A computation σ of a distributed program dp = (Π,V, T) (respec-
tively, DTMC M = (S, S0, ιinit,PM, L,AP)), over state space S, is a maximal
sequence of states: σ = s0s1s2 · · · , where

– s0 ∈ S0,
– ∀i ≥ 0, (s, s′) ∈ T (dp) (respectively, PM(si, si+1) > 0). ��

Notation 1. σs indicates a computation that starts in state s. We denote the
set of all possible distributed programs by DP , the set of all computations of a
distributed program by Σ(dp) and the set of finite computations by Σfin(dp).

2.2 Self-stabilization and Convergence Time

Definition 4 (self-stabilization). A distributed program M = (S, S0 =
S,PM, L, {ls}) is self-stabilizing iff the following conditions hold:

– Strong convergence: ∀s ∈ S, all computations σs eventually reach a state in
LS = {s | ls ∈ L(s)},

– Closure: ∀s ∈ LS : (PM(s, s′) > 0) ⇒ (s′ ∈ LS). ��
In weak-stabilization [9], for every state s ∈ S there exists a computation

σs that eventually reaches a state in LS. In probabilistic-stabilization [12], for
all s ∈ S, a computation σs reaches a state in LS with probability one. Closure
is the same in all types of stabilization. In the sequel, we use the term stabilizing
algorithm to refer to either of the three types of stabilization mentioned above.

Definition 5. For a stabilizing program M , the convergence or recovery time of
a computation σ with an initial fragment s0s1 · · · sn such that s0s1 · · · sn−1 /∈ LS
and sn ∈ LS equals n.

160 S. Aflaki et al.

2.3 Scheduler Types

Schedulers determine the degree of parallelism in a distributed program. They
are specifically important in stabilizing programs as they affect both the possi-
bility of convergence and convergence time. A detailed survey of schedulers in
self-stabilization can be found in [6]. We review the four classification factors of
schedulers k-centrality, fairness, boundedness and enabledness studied in [6].

A k-central scheduler allows processes in distance at least k to exe-
cute simultaneously. In particular, 0-central and diam(G)-central schedulers
are called distributed and central respectively. In the former, any subset of the
enabled processes can be scheduled at any time. In the latter, a single process
can execute at a time.

A weakly fair scheduler ensures that a continuously enabled process is
eventually scheduled. A strongly fair scheduler ensures that a process that
is enabled infinitely often is eventually scheduled.

A scheduler is k-bounded if it does not schedule a process more than k
times between any two schedulings of any other process.

3 Augmenting a Distributed Program with a Scheduler

To concisely specify the behavior of a process π, we utilize a finite set of guarded
commands (Gπ). A guarded command has the following syntax:

〈label〉 : 〈guard〉 → 〈statement〉;
The guard is a Boolean expression over the read-set of the process. The statement
is executed whenever the guard is satisfied. Execution of guarded commands
updates variables and causes transitioning from one state to another. In proba-
bilistic programs commands are executed with a probability. Hence, transitions
among states in the system are executed according to a probability distribution.

〈label〉 : 〈guard〉 → p1 : 〈statement1〉 + · · · + pn : 〈statementn〉;
where

n
∑

i=1

pi = 1

A guarded command is enabled if its guard evaluates to true. A process is enabled
if at least one of its guarded commands is enabled. The set of guarded commands
of a distributed program is formed by the union of the guarded commands of its
constituent processes. In a parallel (i.e., simultaneous) execution, all enabled pro-
cesses execute their enabled commands. In contrast, in a serial (i.e., interleaving)
execution, only one enabled process runs its enabled commands. We use labels to
synchronize (parallelized) guarded commands of different processes. More specif-
ically, if all guarded commands (possibly belonging to different processes) that
have identical labels are enabled, they will all be executed. If at least one of them
is not enabled, none of them will be executed. The synchronization of guarded

Automated Analysis of Impact of Scheduling on Performance 161

commands with guards g1, · · · , gn is equivalent to having one guarded command
with guard g1 ∧ · · · ∧ gn and the union of all statements. We omit the label from
a guarded command whenever it is not used.

3.1 Encoding Schedulers in a Distributed Program

In this section, we describe how we modify a distributed program dp to obtain
a program that behaves as if dp was executed under a certain type of scheduler,
when only serial executions are available.

k-Central Scheduler. Given a distributed system composed of processes Π.
Let each process π in Π consist of a set of guarded commands Gπ. We augment
Π with a k-central scheduler as follows. For every process π ∈ Π, let

KValidπ = {π′ | dist(π, π′) > k}
be the set of processes that are at least k + 1 hops away from π. To encode a
k-central scheduler, we synchronize every guarded command of a process π with
the guarded commands of every subset of KValidπ. Thus, each process of the
new program consists of the following guarded commands:

for all 〈gπ,i〉 → 〈sπ,i〉 ∈ Gπ : for all kvalπ ⊆ KValidπ : for all π′ ∈ kval :
for all 〈gπ′,j〉 → 〈sπ′,j〉 ∈ Gπ′ :

〈gπ,i ∧ (
∧

gπ′,j)〉 → 〈sπ,i〉;
Note that kvalπ = ∅ yields the original guarded command of the process. It

is necessary to include this case to model a central scheduler.

k-Bounded and k-Enabled Schedulers. To simulate the behavior of a k-
bounded (similarly, k-enabled) scheduler, we add a counter (variable) per every
ordered pair of processes in the system. A command of a process is allowed to
execute only if it has been executed less than k times between any two executions
of every other process. Once a process π executes a command, the variables which
count the number of executions of other processes between any two executions of
π are reset to zero. In a distributed system with n processes Π = {π1, · · · , πn},
we add variables {countπi,πj

| 1 ≤ i, j ≤ n}. Thus, we replace each guarded
command 〈gπi

〉 → 〈sπi
〉 in Gπi

with the following:

〈gπi
∧ (

∧

1≤j≤n
i�=j

countπi,πj
< k)〉 → 〈sπi

〉; {〈countπj ,πi
:= 0〉; }1≤j≤n

i�=j

Fairness. Schedulers that generate the worst and best cases are unfair. They can
be achieved by modelling the program with a Markov decision process (MDP)
instead of a DTMC (for more information see [15]). A probabilistic scheduler
which uniformly chooses transitions produces average case expected recovery
time, which is both fair and unfair.

162 S. Aflaki et al.

Algorithm 1. Deterministic Self-stabilizing Vertex Coloring Program
1: Shared Variable: cπ : int ∈ [0, B]
2: Guarded Command: actionπ : ¬(cπ = max({0, · · · , B}\⋃π′∈N(π) cπ′)) →

cπ := max({0, · · · , B}\⋃π′∈N(π) cπ′)

4 Experiments and Analysis

We use probabilistic model-checking (in particular, the tool PRISM [14]) to
investigate the significance of the choice of a scheduler on the expected recov-
ery time of a stabilizing distributed algorithm. We chose the vertex coloring
in arbitrary graphs problem as our case study. It is a classic problem in graph
theory that has many applications in scheduling, pattern matching, etc. Further-
more, we study several stabilizing programs that solve this problem. One non-
probabilistic algorithm that requires a network, where each process must have a
unique id. A probabilistic algorithm where a static probability is assigned to each
process, and one with adaptive probability. We compare the expected recovery
time of these strategies under all types of schedulers. In our experiments, the
choice of graph structure/size and some other parameters was influenced and
limited by the computational power of the machine used to do the experiments.

4.1 Self-stabilizing Vertex Coloring in Arbitrary Graphs

Definition 6 (Vertex Coloring). In a graph G = (V,E), the vertex coloring
problem asks for a mapping from V to a set C of colors, such that no two adjacent
vertices (connected directly by an edge) share the same color. ��

We say two vertices are in conflict iff they are neighbors and they have the
same color. The first deterministic self-stabilizing vertex coloring program of [10]
is designed for an anonymous network with an arbitrary underlying communi-
cation graph structure G = (Π,E) and a non-distributed scheduler. We call this
program deterministic. Each process has a variable cπ representing its color with
domain cπ ∈ [0, B], where B is the maximum degree (number of neighbors) of
a vertex (process) in G. In every state, if a process’s color is not equal to the
maximum available color (the maximum number not taken by any of its neigh-
bors) maxπ, it changes its color to maxπ. Otherwise, it does not do anything.
In this algorithm, a legitimate state is one that the color of each process is equal
to maxπ. We denote the neighbors of a process by N(π) (see Algorithm 1).

The Effect of Schedulers on Expected Recovery Time. We investigate
the effect of four attributes of schedulers: centrality, boundedness, enabledness,
and fairness, on the expected recovery time of Algorithm 1.

k-Centrality: We calculate the average case expected recovery time for a linear
graph, where the size varies from 5 − 7 and k varies from 0 − Diam(G). In a

Automated Analysis of Impact of Scheduling on Performance 163

Table 1. Effect of centrality, boundedness and enabledness

(a) Effect of centrality on expected recovery time (average case)

Size\k 0 1 2 3 4 5 6
5 5.6 9.1 13.1 14.4 15.7 - -
6 7.1 10.7 14.6 18.6 19.6 20.9 -
7 7.6 11.6 16.1 21.2 24.5 24.6 25.8

(b) Effect of boundedness/enabledness on expected recovery time

Complete Star Linear
Rmin Rmax Rexp Rmin Rmax Rexp Rmin Rmax Rexp

1 3.24 4.64 3.88 10.25 13.33 11.78 6.84 10.30 8.48
2 2.68 7.14 4.10 6.74 24.20 12.52 4.48 19.40 9.03
3 2.57 9.63 4.28 5.74 35.04 13.39 3.87 28.61 9.60

Table 2

(a) Rmax −Rmin

Complete Star Linear
1 1.40 3.08 3.46
2 4.46 17.46 14.92
3 7.06 29.30 24.74

(b) Cost of ensuring safety in executions

Fair Unfair
deterministic composed deterministic composed

Deg 1-central distributed 1-central distributed
2 1.72 2.54 2.44 2.91
3 2.29 3.73 3.52 4.75
4 2.72 4.69 4.61 6.56
5 3.05 5.49 5.69 8.34
6 3.33 6.16 6.77 10.08
7 3.56 6.72 7.82 11.77
8 3.76 7.21 8.87 13.43

linear graph, Diam(G) = size − 1. As expected, Table 1(a) validates that, in
average, parallelism helps improve the recovery time. However, there can be cases
in which it shows detrimental effect. The impact of centrality also depends on
the fairness of the scheduler. In the worst case this program does not stabilize
under a distributed (0 − central) scheduler.

Boundedness/Enabledness: We study the effect of boundedness/enabledness
on graphs of size 4 with complete, star, and linear structures for k = 1, 2, 3. For
each graph structure and each value of k, Table 1(b) contains three numbers:
Rmin (best case expected recovery time), Ravg (average case expected recovery
time), and Rmax (worst case expected recovery time). Table 2(a) demonstrates
that as k increases so does the gap between the best case and the worst case.
This is the result of allowing more computations as we increase k. That is, all
executions corresponding to a k-bounded (respectively, k-enabled) scheduler are
also included in the executions of a (k−1)-bounded (respectively, (k−1)-enabled)
scheduler.

Fairness: Fairness alongside centrality can determine possibility of conver-
gence. An unfair distributed scheduler can prevent Algorithm 1 from converg-
ing. Consider, for example, a state in which two neighbors have identical colors

164 S. Aflaki et al.

(〈1, 1〉) and the same maximum available color (2). A computation that infinitely
alternates between states 〈1, 1〉 and 〈2, 2〉 never converges to a correct state. Such
a computation can be produced by a distributed unfair scheduler. In the rest of
our experiments, by unfair scheduler we mean a scheduler that results in worst
case expected recovery time, unless otherwise specified.

4.2 Composition with Dining Philosophers and the Cost of
Ensuring Safety

Recall that Algorithm 1 needs to be refined to work under distributed unfair
schedulers. We compose Algorithm 1 with an optimal snap-stabilizing (i.e., zero
recovery time) dining philosophers distributed program for trees of [13] and refer
to it as the composed strategy. The solution to the dining philosophers problem
provides local mutual exclusion. Since this algorithm is designed specifically
for tree structures, in the rest of this section, we use balanced trees in our
experiments to ensure fair comparison. Figs. 1 and 2 depict the expected recovery
time of the composed algorithm under fair (central, 1-central, distributed) and
unfair (central, 1-central, distributed) schedulers, respectively.

2 3 4 5 6 7 8

3

4

5

6

7

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

central
1-central
distributed

Fig. 1. Composed program with a
fair scheduler

2 3 4 5 6 7 8
2

4

6

8

10

12

14

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

central
1-central
distributed

Fig. 2. Composed program with
an unfair scheduler

Observe that composing a distributed program with dining philosophers and
running the composition under a distributed scheduler is in principle equivalent
to running the original distributed program under a 1-central scheduler. How-
ever, the 1-central scheduler that is produced by the dining philosopher algorithm
may only be able to produce a subset of the possible schedules. Table 2(b) shows
the expected recovery time of the deterministic algorithm under 1-central sched-
uler and the composed algorithm under distributed scheduler (both fair and
unfair) for trees with height one and degrees 2 − 8. The difference is explained
by the fact that the dining philosophers layer itself forces processes that are nor-
mally not activatable (that is, they already have a non-conflicting color) to act;
that is, the enforcement of fairness between nodes induces unnecessary compu-
tation steps.

Automated Analysis of Impact of Scheduling on Performance 165

2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

central
1-central
distributed

Fig. 3. ID-based deterministic
program with a fair scheduler

2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

central
1-central
distributed

Fig. 4. ID-based deterministic
program with an unfair scheduler

4.3 ID-Based Prioritization

This strategy corresponds to the second deterministic self-stabilizing algorithm
of [10], and requires an identified network where each process has a unique id.
When several processes are in conflict with the same color, only the process with
the highest id will execute its command. As a result, no two similarly colored
enabled neighbors will ever execute their commands simultaneously. In some rare
cases, this algorithm may not produce 1-central schedules: consider a line of 4
processes c, a, b, d (where identifiers are ordered alphabetically), such that c and
a have the same color α, and b and d have the same color β (with α �= β). Then,
a distributed scheduler may schedule both a and b in a particular step from this
situation, resulting in neighboring nodes executing their actions simultaneously.
In trees of height 1, this situation cannot occur, and all produced schedules
are 1-central. This explains in our results (see Figs. 3 and 4) why running this
program under 1-central and distributed schedulers produces the same expected
recovery time.

4.4 Probabilisitic-Stabilizing Vertex Coloring Programs

The random conflict manager [11] is a lightweight composition scheme for self-
stabilizing programs that amounts to executing the original algorithm with some
probability p (rather than always executing it). The probabilistic conflict man-
ager does not ensure that two neighboring nodes are never scheduled simulta-
neously, but anytime the (possibly unfair) scheduler activates two neighboring
nodes u and v, there is a 1−p2 probability that u and v do not execute simulta-
neously. Composing the random conflict manager with the deterministic coloring
protocol yields a probabilistic coloring algorithm. Fine tuning the parameter p is
challenging: a higher p reduces the possibility that a conflict persists when two
neighboring conflicting nodes are activated simultaneously (reducing the stabi-
lization time), but also reduces the possibility to make progress by executing the
algorithm (increasing the stabilization time). Thus, we consider three strategies
for choosing p: (1) p is a constant, for all nodes, throughout the entire execu-
tion; (2) p depends on local topology (i.e. the current node degree); (3) p is

166 S. Aflaki et al.

2 3 4 5 6 7 8

2

4

6

8

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e p=0.5
p=0.9

p=1/degree
p=1/(1+#conflicts)

Fig. 5. Probabilistic programs
with a fair distributed scheduler

2 3 4 5 6 7 8

5

10

15

20

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e p=0.5
p=0.9

p=1/degree
p=1/(1+#conflicts)

Fig. 6. Probabilistic programs
with an unfair distributed sched-
uler

0.2 0.4 0.6 0.8

10

20

30

Rexp = 5.56

exp = 4.46

pA
ve
ra
ge

C
as
e
E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

p=fixed
p=1/degree

p=1/(1+#conflicts)

Fig. 7. Evaluating the effect of
the randomization parameter on
expected recovery time (on a tree
of height=2, degree=2) with a fair
distributed scheduler

0.2 0.4 0.6 0.8

20

40

60

xp = 14.91

xp = 11.94

p

W
or
st

C
as
e
E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

p=fixed
p=1/degree

p=1/(1+#conflicts)

Fig. 8. Evaluating the effect of
the randomization parameter on
expected recovery time (on a tree
of height=2, degree=2) with an
unfair distributed scheduler

dynamically computed (i.e. depending on the current number of conflicts at the
current node).

Constant Randomization Parameter. In this strategy, p is a fixed constant
for all processes during the program execution. In the original third probabilis-
tic algorithm [10], this probability is equal to 0.5. Figs. 5 and 6 show that with
fixed probability of execution, the stabilization time increases as the number of
potential initial conflicts rises. Figs 7 and 8 demonstrate that for a fixed topol-
ogy, fine tuning the probability used can result in significantly lower stabilization
time. We observe that the stabilization time is not necessarily monotonous with
respect to the probability used, as the unfair case demonstrates that increas-
ing the probability of execution too much may have detrimental effects (more
conflicts can be preserved in the worst case).

Vertex Degree. This strategy depends on the local structure of the network
to let a process execute its commands. It is based on the intuitive reasoning
that nodes with fewer neighbors have a lower chance of being in conflict with

Automated Analysis of Impact of Scheduling on Performance 167

2 3 4 5 6 7 8
0

2

4

6

8

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

Deterministic Composed
ID-Based p=0.5
p=0.9 p= 1

degree

p= 1
1+#conflicts

Fig. 9. Fair distributed scheduler

2 3 4 5 6 7 8

0

5

10

15

20

25

Rexp = ∞

Tree Degree

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

Deterministic Composed
ID-Based p=0.5
p=0.9 p= 1

degree

p= 1
1+#conflicts

Deterministic 1-central

Fig. 10. Unfair distributed sched-
uler

one of them. The protocol gives higher priority to processes with less number
of neighbors. Although processes can have distinct values of p, their values are
statically chosen and fixed during the execution. Fig. 5 shows that this strategy
works remarkably better than a fair coin under a fair scheduler. However, it
gradually falls behind a fair coin in the worst case under an unfair scheduler.
This is explained by the existence of a central node with an increasing number of
neighbors. If executed, this central node can resolve many conflicts at the same
time (expediting stabilization) in the initial case where it has many conflicts.
However, the vertex degree approach pushes towards that these many conflicts
are resolved by satellite nodes with a higher probability, causing stabilization to
require additional steps, in the worst case.

Number of Conflicts. This strategy refines the vertex degree approach to
dynamically take into account the number of potential conflicts. It prioritizes
processes with more conflicts over processes with fewer conflicts. Figures 5- 8
indicate that except for a few biased coins, this adaptive method defeats the
other two strategies. It also has the clear advantage of no pre-tuning of the
system.

4.5 Comparing Strategies and Schedulers

This section is devoted to analyzing the results of our technique to select a pro-
tocol variant for a particular environment (topology and scheduler). Figure 9
presents a comparison of protocol variants (deterministic, composed, id-based,
and the three probabilistic ones) when the scheduler is fair, varying the number of
nodes in the network. One interesting lesson learned is that the original protocol
(deterministic), which is not self-stabilizing for the distributed scheduler (only
weakly stabilizing) performs in practise better than actually self-stabilizing pro-
tocols (composed, and the three probabilistic variants), so there is a price to pay

168 S. Aflaki et al.

to ensure (actual or probabilistic) self-stabilization. Overall, the id-based deter-
ministic protocol performs the best (but requires the additional assumption that
nodes are endowed with unique identifiers). We also observe that smarter proba-
bilistic variants outperform the composed deterministic protocol, so probabilistic
stabilization can come cheaper than a deterministic one.

Figure 10 describes the performance of the same protocols in the worst case
(unfair scheduler). As deterministic is only weak-stabilizing, its stabilization time
with unfair scheduler is infinite. In that case, all probabilistic protocols perform
worse than composed, as there exists computations with longer incorrect paths of
execution. We also represent the performance of deterministic under the 1-central
scheduler as a reference (all other protocols are presented for the distributed
scheduler) for best case situation where only 1-central execution are present.
It turns out that both probabilistic variants and composed introduce overhead.
The overhead of composed has been discussed in Section 4.2, while the overhead
of probabilistic variants is that more executions (including executions that are
not 1-central) remain possible (with respect to 1-central ones). Again, id-based
outperforms all others, including those of deterministic under 1-central scheduler.

de
te
rm
in
ist
ic

co
m
po
se
d

id
-b
as
ed

p=
0.
5

p=
1/
de
gr
ee

p=
1/
(1
+
#
co
nfl
ict
s)

0

2

4

6

8

10

12

14

16

3.43

6.56

1.32

6.71
5.56

4.46

7.06

12.86

1.5

14.49 14.91

11.94

E
x
p
ec
te
d
R
ec
ov
er
y
T
im

e

fair unfair

Fig. 11. Expected recovery time of the six algo-
rithms under fair and unfair schedulers for a tree
of height 2 and degree 2. Deterministic is presented
for the 1-central scheduler. All others are presented
for the distributed scheduler.

The most complex topol-
ogy is presented in Fig. 11,
and the relative order of
strategies is preserved also for
this setting. If the schedul-
ing is fair and identifiers
are not available, leaving the
algorithm unchanged is the
best option. Otherwise, the
choice can be to use the
refined probabilistic option
(that is depending on the
current number of conflicts)
when there are no identifiers,
and the id-based determin-
istic protocol whenever they
are available.

5 Conclusion

In this paper, we studied the role of schedulers in the correctness and perfor-
mance of stabilizing programs. We adopted a rigorous method based on proba-
bilistic model checking proven to be more descriptive by previous work [7,8].
We investigated the impact of different scheduling criteria, namely distribu-
tion, boundedness, and fairness on the performance of the self-stabilizing vertex
coloring protocols of arbitrary graphs algorithm of [10]. We explored two meth-
ods to transform the first deterministic algorithm to a scheduler-oblivious self-
stabilizing program that works under distributed unfair schedulers as well. First,

Automated Analysis of Impact of Scheduling on Performance 169

we composed the algorithm with a stabilizing dining philosophers algorithm at
the cost of slower recovery due to the overhead induced by the additional layer
(even though this layer has zero stabilization time). Second, we used a proba-
bilistic conflict manager to ensure convergence with probability one. We studied
three strategies for picking the randomization parameter p: (i) a constant value,
(ii) a static value inversely proportional to the degree of the vertex (process),
and (iii) a dynamic value inversely proportional to the number of conflicts. Our
experiments establish the superiority of the final strategy, especially in the light
of no tuning requirements. We also evaluated the id-based deterministic algo-
rithm of [10] for a non-anonymous network.

In general, our results demonstrate that the deterministic algorithms out-
perform the probabilistic ones. The id-based algorithm is the best among all
deterministic ones as well as defeating all probabilistic algorithms. The price to
pay is that unique identifiers must preexist in the network. To run an id-based
self-stabilizing algorithm on an anonymous network, the algorithm should be
composed with a self-stabilizing unique naming algorithm. This approach, how-
ever, is likely to downgrade the performance significantly. Furthermore, precisely
evaluating this performance hit requires to formally include more advanced com-
position techniques [2] in our framework, an interesting open challenge.

For future work, we are planning to study the impact of scheduling policy
along with other factors that can affect the performance of a self-stabilizing
protocol, such as the likelihood and locality of occurrence of faults.

Acknowledgments. This work was partially sponsored by Canada NSERC Discovery
Grant 418396-2012 and NSERC Strategic Grant 430575-2012.

References

1. Aflaki, S., Faghih, F., Bonakdarpour, B.: Synthesizing self-stabilizing protocols
under average recovery time constraints. In: Proceedings of the 35th International
Conference on Distributed Computing Systems (ICDCS) (to appear, 2015)

2. Arora, A., Gouda, M.G., Herman, T.: Composite routing protocols. In: Proceedings
of the Second IEEE Symposium on Parallel and Distributed Processing (SPDP),
pp. 70–78 (1990)

3. Beauquier, J., Johnen, C.: Analyze of probabilistic algorithms under indetermin-
istic scheduler. In: IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pp. 553–558 (2008)

4. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabiliza-
tion. In: Proceedings of the 28th International Conference on Distributed Comput-
ing Systems (ICDCS), pp. 681–688 (2008)

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

6. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. CoRR,
abs/1110.0334 (2011)

7. Fallahi, N., Bonakdarpour, B.: How good is weak-stabilization? In: Higashino, T.,
Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013.
LNCS, vol. 8255, pp. 148–162. Springer, Heidelberg (2013)

170 S. Aflaki et al.

8. Fallahi, N., Bonakdarpour, B., Tixeuil, S.: Rigorous performance evaluation of self-
stabilization using probabilistic model checking. In: Proceedings of the 32nd IEEE
International Conference on Reliable Distributed Systems (SRDS), pp. 153–162
(2013)

9. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

10. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In:
Proceedings of 4th International Conference on Principles of Distributed Systems
(OPODIS), pp. 55–70 (2000)

11. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness
assumption. In: Proceedings of the 27th International Conference on Distributed
Computing Systems (ICDCS), pp. 46–46 (2007)

12. Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2),
63–67 (1990)

13. Johnen, C., Alima, L.O., Datta, A.K., Tixeuil, S.: Optimal snap-stabilizing
neighborhood synchronizer in tree networks. Parallel Processing Letters 12(3–4),
327–340 (2002)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

15. Simaitis, A.: Automatic Verification of Competitive Stochastic Systems. PhD the-
sis, Department of Computer Science, University of Oxford (2014)

16. Yamauchi, Y., Tixeuil, S., Kijima, S., Yamashita, M.: Brief announcement: proba-
bilistic stabilization under probabilistic schedulers. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 413–414. Springer, Heidelberg (2012)

Efficient and Decentralized Polling Protocol
for General Social Networks

Bao-Thien Hoang1(B) and Abdessamad Imine2

1 LCOMS EA7306, Université de Lorraine, Metz, France
bao-thien.hoang@univ-lorraine.fr

2 Université de Lorraine and LORIA/INRIA, Nancy, France
abdessamad.imine@loria.fr

Abstract. We address the polling problem in social networks where users
want to preserve the confidentiality of their votes, obtain the correct final
result, and hide, if any, their misbehaviors. Guerraoui et al. [15,16] recently
proposed polling protocols that neither rely on any central authority nor
cryptography system. However, these protocols can be deployed safely and
efficiently provided that the social graph structure should be transformed
into a ring structure-based overlay and the number of participating users
is a perfect square. Consequently, designing secure and efficient polling
protocols regardless these constraints remains a challenging issue.

In this paper, we present EPol, a simple decentralized polling protocol
that is deployed on more general social graphs. More explicitly, we define a
family of social graphs that satisfy what we call the m-broadcasting prop-
erty (where m is not greater than the minimum node degree) and show
their structures enable low communication cost and constitute necessary
and sufficient condition to ensure vote privacy and limit the impact of dis-
honest users on the accuracy of the polling output. In a social network of
N users with diameter ΔG and D ≤ (m − 1)ΔG/2 dishonest users (and
similarly to the work [15,16] where they considered D <

√
N), a privacy

parameter k enables us to obtain the following results: (i) the maximum
probability of vote disclosure with certainty is (D/N)k+1 and without cer-
tainty is

(
D
N

/(1 − 2 D
N

)
)[

1 −∑k
i=0 γi(2

D
N

)2i+1
]
, where γi is the propor-

tion of nodes voting for 2i + 1 shares and 0 ≤ i ≤ k; (ii) up to 2D
votes can be revealed with certainty; (iii) the maximum impact on the

final result is (6k +4)D, and the average impact is
[(∑k

i=0 γi(2i+1)
)(

1+

2
∑k

i=0 γi
i+α
2i+1

)
+1
]
D, where α is the proportion of users correctly voting;

(iv) unlike [15,16], EPol is effective to compute more precisely the final
result; and (v) the communication and spatial complexities of EPol are
close to be linear.

Keywords: Social networks · Polling protocol · Secret sharing · Privacy

1 Introduction

Polling is one of the current practical and useful topics in online social networks
(OSNs). In general, that is the problem of providing to all participants the

Funded by ANR Streams project.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-21741-3 12

172 B.-T. Hoang and A. Imine

outcome of a poll conducted among themselves, thus giving the most favorite
choice among some options. Each participant can express his/her preference by
submitting a vote, then all votes are aggregated and the majority option will be
chosen as the final result. Just to demonstrate one typical example, a university
has just launched a new administrative procedure and may ask students whether
or not this method is helpful, and each user will choose one option between “Yes”
and “No”. For the sake of simplicity, we here consider such a polling problem
with only two options “+1” and “−1” for the concerning question.

The goal of studying this problem is to devise a polling protocol that can
perform a secure and accurate process to sum up the initial votes with the pres-
ence of dishonest users, who try to bias the outcome and disclose the votes of
honest ones. Despite the simplicity characteristics of this problem, it takes an
important part in incorporating user’s opinion online. Thus, currently, several
studies and solutions for this problem using two settings, centralized and dis-
tributed networks, are proposed. In the centralized OSN, for instance Facebook
Poll1 and Doodle2, such a computation process may be easily achieved through
a central server which is used to collect the users’ votes before summing up them
to obtain the output. Nevertheless, this solution suffers from server failures and
particularly privacy problems: user might generally not want his/her vote to be
known by a central entity, and it is not guaranteed the server will neither bias
nor disclose the votes.

Problem Statement. We deal with the polling problem in the decentralized
OSN where information is not concentrated in a central point, and hence, user
privacy is improved. In addition, we do not want to rely on cryptography for
ensuring privacy or accuracy because cryptography uses complicated computa-
tion that impacts to the scalability and practicality of the protocols. Moreover,
some traditional distributed computing problems can be solved without cryp-
tography as motivated in [22,27].

Guerraoui et al. [15,16] proposed DPol, a simple decentralized polling pro-
tocol based on the secret sharing scheme (without using cryptography). DPol
ensures the privacy of votes and limits the impact of dishonest users on accu-
racy. However, DPol has some disadvantages. First, DPol relies on a structured
overlay (a cluster-ring-based structure) inspired from [12]. Although it is effi-
cient in terms of the communication cost, it is on top and independent of the
social graph. It does not take into account the social links among users in the
sense that it builds a uniform distribution of users into groups. It means that we
have to target a special case of graphs using the notion of group with potentially
different links. Yet, the original social links may increase the confidence/trust of
user interactions, as these links are chosen and agreed by users themselves. Sec-
ond, to get a minimum communication cost (i.e., O(

√
N)), the number of users

should be a perfect square in such a way that a graph with N users is divided
into

√
N groups of size

√
N . Third, transforming a graph into an overlay might

not be useful since some security properties like accuracy may be affected, and
1 http://apps.facebook.com/opinionpolls/
2 http://www.doodle.com/

http://apps.facebook.com/opinionpolls/
http://www.doodle.com/

Efficient and Decentralized Polling Protocol for General Social Networks 173

accordingly, this transformation may incur some additional communication costs.
For instance, if the social graph is a clique, then each user can obtain easily the
data sent by other ones because they are fully connected. However, when using
a ring overlay on the top of this social graph, a user’s data may be corrupted by
intermediate users. To preserve accuracy, users should do verification procedures
which may also increase the communication cost. In addition, as stated in DPol,
an honest user may decide on the arbitrary data sent by dishonest ones, and
thus, the impact of dishonest users on accuracy may be high.

Later, several protocols and extensions inspired from the idea of DPol have
been proposed such as MPOL [11], PDP [3] and DiPA [2]. However these proto-
cols rely on the same ring-based overlay structure, give the high impact of dis-
honest participants on the final result, and, generally, have minor contribution
compared to DPol. Unlike these work, authors of [18] introduced a distributed
polling protocol and a family of more general social graphs which ensures the
correctness of the protocol and vote privacy of nodes. Nonetheless, the commu-
nication model is synchronous and the communication cost is super-linear in N ,
and is O(N2) in the worst case, with the presence of dishonest nodes.

Accordingly, devising efficient and decentralized polling protocols without
cryptography and constraints (such as the use of overlay structure and perfect
square number of users) imposed in [15,16] remains a challenging problem.

Contributions. In this paper, we propose the design of a simple decentralized
polling protocol that neither requires a central authority nor cryptography sys-
tem. Unlike [15,16], our protocol is deployed on more social networks in such a
way that each individual can perform the voting process privately and securely
without resorting to the group division. Despite the use of richer social graph
structures (which also include a ring-based structure given in [15,16]), a node can
receive/send so many duplicated messages from/to other nodes. This can lead
to flooding the local storage and getting the high communication cost. Inspired
from [29], we introduce a method for efficiently broadcasting messages by using
the concept called m-broadcasting property. A graph satisfies the m-broadcasting
property for a parameter m ∈ N such that 1 ≤ m ≤ dmin, where dmin is the min-
imum node degree, if for each source node, there exists a topological ordering of
the nodes such that every node connects directly either to the source or to some
m nodes preceding it in the ordering w.r.t. the source. (A node knows only its
direct neighbors’ ordering.) Consequently, instead of accepting all messages orig-
inating from the source, a node stores only m ones passed by ordered paths. The
construction of this kind of graphs is not presented here due to limited space.
(See [19] for more details about this construction and some graph examples.)

To describe carefully the distributed implementation of a polling problem,
we consider the following fundamental criteria: accuracy, privacy, resilience to
dishonest nodes, and asymptotic complexity. Using the same notion of privacy
parameter k given in [15,16], we get the following results in a system of size
N with D dishonest users: (i) the probability of vote disclosure with certainty
is at most (D/N)k+1; (ii) up to 2D votes can be revealed with certainty (if all
honest nodes do not not vote for the same value); (iii) in practice, dishonest

174 B.-T. Hoang and A. Imine

Table 1. Comparison of distributed polling protocols where “Max. Impact”: the max-
imum difference between the output and the expected result, “Privacy”: the proba-
bility of vote disclosure, “Nb. of Dishonest Nodes”: the number of dishonest nodes
the system can tolerate, “Spatial complexity”: the total space a node must hold,
“Message complexity”: the number of messages sent by a node, k: privacy parame-
ter (0 ≤ k ≤ min{dmin, �(√N − 1)/2�}), r: number of groups (r ≤ √

N), |gi|: group
size (|gi| ≤ √

N), d0: maximum node degree, ΔG: network diameter. Entries marked
with an asterisk (*) show the results for binary polling.

Algorithm Graph Max. Impact Privacy Nb. of Dishonest Nodes Complexity Crash
Spatial Message

DPol [15] Overlay (6k + 2)D (D/N)k+1 D <
√

N O(rk + |gi|) O(rk + |gi|) Yes
DPol* [16] Overlay (6k + 4)D (D/N)k+1 D <

√
N O(rk + |gi|) O(rk + |gi|) Yes

Pol [18] General (6k + 4)D (D/N)k+1 D ≤ N/10 O(N2) O(k + N2) No
MPOL* [11] Overlay (6k + 2)D (D/N)k+1 D <

√
N O(rk2|gi|) O(rk + |gi|) No

PDP [3] Overlay 2(k +
√

N)D (D/N)k+1 D <
√

N O(rk + |gi|) O(rk + |gi|) No
DiPA [2] Overlay 2(k +

√
N)D (D/N)k+1 D <

√
N O(rk + |gi|) O(rk + |gi|) No

This work General (6k + 4)D (D/N)k+1 D ≤ (m − 1)ΔG/2 O(mN) O(N(d0 − m)) Yes

nodes may also try to reveal a node’s vote even if they hold only partial infor-
mation of the vote (e.g., some shares of that vote). We consider the cases
where dishonest nodes agree on some rules for disclosing a node’s vote with-
out certainty (section 4.2), then the maximum probability of greedy (i.e., ana-
lyzing some shares of the vote) and non-greedy (i.e., analyzing all shares of
the vote) vote detection are respectively

∑k
i=ρ γi

N+1
N−D+ρ+2 (D

N−D+ρ+1)ρ+1 and
(

D
N /(1 − 2D

N)
)[

1 − ∑k
i=0 γi(2D

N)2i+1
]

, where γi is the proportion of nodes vot-
ing with 2i + 1 shares and 0 ≤ ρ ≤ i ≤ k; (iv) the maximum impact of a
dishonest coalition on the final result is (6k + 4)D, and the average impact is
[
[∑k

i=0 γi(2i + 1)
][

1 + 2
∑k

i=0 γi
i+α
2i+1

]

+ 1
]

D, where α is the proportion of users
correctly voting; (v) the maximum number of dishonest nodes that the system
can tolerate is (m − 1)ΔG/2, where ΔG is the network diameter; and (vi) the
communication and spatial complexities of our protocol are close to be linear.

We are aware that due to the presence of dishonest nodes, an honest node may
receive distinct values of a source. As opposed to DPol [15,16], we ensure each
node can decide the most represented value to obtain correct data of other ones.
In addition, we analyze the effect of message loss and node crash on accuracy
and termination of the protocol.

We illustrate the comparison of contributions in Table 1. This table shows
that our protocol tolerates more dishonest nodes than other ones. For instance,
if the graph is a ring overlay, compared to DPol [15,16], our protocol has the
same message complexity, but tolerates more dishonest nodes and computes
more accurately the poll outcome. It is also noted that DPol investigates the
effect of crash only, rather the combination with message loss.

Outline. This paper is organized as follows. Section 2 describes our polling
model, and introduces a family of social graphs. Section 3 presents our polling
protocol and Section 4 analyzes its correctness with and without the presence
of dishonest nodes. Section 5 discusses the impact of crash and message loss
on accuracy and termination of the protocol. We give an overview of related

Efficient and Decentralized Polling Protocol for General Social Networks 175

work in Section 6, followed by a discussion of results in Section 7. Proofs for the
correctness of our solution and examples of graph structures are given in [19].

2 Social Network Model

This section describes user behaviors and social graph models. It should be noted
that we consider the same assumptions given in [15,16].

2.1 User Behaviors

The polling problem consists of a system modeled as the form of an undirected
social graph G = (V,E) with N = |V | uniquely identified nodes representing
users and a set E of social links. Each participant n expresses its opinion by
giving a vote vn ∈ {−1, 1}. After collecting the votes of all nodes, the expected
outcome is

∑

n vn. In this work, we consider the following assumptions:
We consider an asynchronous model where each node can communicate

(send/receive messages) with its neighbors (e.g., direct friends). Some mes-
sages may arrive to the destination with some delay. All nodes have to
send/receive/forward messages if they are requested.

Each node is either honest or dishonest. Honest nodes completely comply
with the protocol and take care about their privacy while dishonest ones might
not. All dishonest nodes can form a coalition to get the full network knowledge
and try to do everything to achieve these goals without being detected: (i) bias
the result of the election by promoting their votes or changing the values they
received from other honest nodes; (ii) infer the opinions of other nodes. However,
they also want to protect their reputation from being affected.

In order to unify the opinions and do not give compensating effects, all dis-
honest nodes make the single coalition D of size D. However, they are selfish in
the sense that each dishonest node prefers to take care about its own reputa-
tion to covering up each other [15,16]. As such the dishonest nodes are rather
restricted but more reflective of the real human behavior than Byzantine nodes
[21]. Byzantine nodes may do anything they wish. When messages reach to
Byzantine nodes, they can drop or do not forward these messages to their neigh-
bors even if requested.

To tolerate the existence of dishonest nodes with a limited vote corruption,
we assume each node has at least one honest friend but it does not know which
friend is honest or not. To dissuade the user misbehaviors, an activity affected to
the profile of the concerned node is given. More precisely, if node u is detected
as dishonest one by v then u’s profile is tagged with the statement “v accused
u of being a dishonest user” and v’s profile has the statement “u is a bad guy”.
Notice that in social networks, no one would like to be tagged as dishonest.
Furthermore, we do not take into account the Sybil attacks and spam since those
kinds of misbehaviors can be detected by some tools or several systems such as
SybilGuard[33], SybilLimit [32], and [24,31] (for mitigating spam). Moreover, as
in [15,16], we assume that dishonest nodes cannot wrongfully blame other ones.

176 B.-T. Hoang and A. Imine

2.2 Social Graph Model

In this section, we define the terms and notations of the social graph used
throughout this work, and describe the graphs with low communication cost.

n

xyza b c

RnSn

Fig. 1. Producers and consumers of n

Notations. A node n maintains a set
of direct neighbors Γ (n) of size dn,
and two subsets of Γ (n): a set Sn

of consumers containing nodes that n
sends messages to, and Rn of produc-
ers relating to nodes for which n acts
as a consumer. They might not be dis-
joint, i.e., Sn ∩ Rn �= ∅, as depicted
in Fig. 1 (where node z is both a pro-
ducer and a consumer). We denote
ΔG as the diameter of the network G.
The distributed algorithms for com-
puting exact diameter take time O(N) [20,25].
Graphs with Low Communication Cost. We define a social graph that sat-
isfies what we call the m-broadcasting property (described in the introduction).
For a certain source node s, let βn(s) be a number of neighbors of n preceding
it in the ordering w.r.t. s.3 (We sometimes omit the mentioned source where no
confusion arises.)

2.3 Secret Sharing Based Graphs

In this part, we present the family of graphs without and with the pres-
ence of dishonest nodes. We use a predefined parameter k ∈ N and k ≤
min{dmin, �(√N − 1)/2�} (like [15,16]) and a parameter m ∈ N to present the
features of our social graphs. Let G = (V,E) be a social graph with the following
properties:

Property 1 (Pg1). dn ≥ 2k +1, |Sn| = 2i+1 and |Rn| ≤ 2k +1 where 0 ≤ i ≤ k,
for every n ∈ V .

Property 2 (Pg2). G satisfies the m-broadcasting property.

Property 3 (Pg3). For a source node, each other node has less than m/2 dishonest
neighbors preceding it in the ordering (w.r.t. source node).

According to Property Pg1 , the set of consumers and the set of producers of
a node have the size of at most 2k + 1 and might not be disjoint. This condition
distinguishes our graph family from other structures in [11,15,16] and is more
flexible than a graph family in [18] since they all consider the restricted condition
where each node has exactly 2k + 1 consumers. In addition, it also differs from
[2,3] which do not impose any condition to the upper bound on the number of

3 The list of neighbors is determined by a preprocessing step (not detailed here due
to space limitation) before the polling process.

Efficient and Decentralized Polling Protocol for General Social Networks 177

producers (that one node should have), thus, a dishonest node can send arbitrary
summing data to others and the accuracy of the global outcome is easily affected.
Property Pg2 enables us to reduce the communication cost in the system. It is
also noted that this condition implicitly implies the condition that G is an honest
graph mentioned in [18], i.e., for every honest nodes u, v, there exists a path
between u and v containing only intermediate honest nodes. Property Pg3 ensures
each honest node always obtains one correct version of data from other honest
ones. Property Pg3 also enables us to limit the size of dishonest users, that is
D ≤ m−1

2 ΔG (presented in Theorem 8).
From these properties, we characterize two families of graphs:

(i) G1 = {G | D(G) = ∅ and G satisfies Pg1 , Pg2}.
(ii) G2 = {G | D(G) �= ∅ and G satisfies Pg1 , Pg2 and Pg3}.

Graphs in G1 contain only honest nodes and satisfy property Pg1 and Pg2 . Graphs
in G2 contain honest and dishonest nodes and satisfy properties Pg1 , Pg2 and Pg3 .

3 Polling Protocol

We present here our polling protocol, EPol, for the network without crash and
message loss. EPol is composed of the following phases:

Sharing. In this phase, node n contributes its opinion by sending a set of shares
expressing its vote vn ∈ {−1, 1} to its consumers. We inspired the sharing
scheme proposed in [9]. Namely, first n chooses randomly a value i such that
i ∈ {0, 1, ..., k} and i is not known by other nodes. Then it generates 2i + 1
shares Pn = {p1, p2, ..., p2i+1}, where pj ∈ {−1, 1} and 1 ≤ j ≤ 2i+1, including:
i+1 shares of value vn, and i shares of opposite vn’s value. The intuition of this
creation is to regenerate the vote vn when the shares are summed. Later it ran-
domly generates a permutation μn of Pn, and sends shares to 2i + 1 consumers.
Lines 4–8 in Algorithm 1 describe this activity. Node also receives |Rn| shares
from its producers. Note that Sn and Rn might not be disjoint.4

After each node collects shares from its producers, and sums into collected
data cn (lines 9–14 in Algorithm 1), this phase is over. It is also noted that
because the votes and their generating shares belong to the set {−1,+1}, nodes
cannot distinguish between a vote and a share. Hence, if a node opts a value
i = 0 and generates only 2i + 1 = 1 share, the dishonest consumer receiving a
message from that node could not distinguish if such share was generated as a
single one or it is one among many generated shares of that node.

Fig. 2 illustrates an example of the protocol for i = k = 1. Fig. 2a presents
the network and the ordering of nodes w.r.t. source A in the parentheses. Figure
2b depicts the sharing phase at node A. Node A would like to vote +1, thus, it
generates a set of 2i + 1 = 3 shares {+1,−1,+1}. Node A collects the shares
from its producers and computes the collected data cA = 3.

4 This distinguishes our protocol from approaches in [2,3,11,15,16]. The set of con-
sumers and producers in these approaches are separated for each of size 2k + 1.

178 B.-T. Hoang and A. Imine

Algorithm 1. Polling algorithm at node n ∈ {0, 1, ..., N − 1}
Input:
vn: A vote of node n, value in {−1, 1}
k : privacy parameter

m : positive integer where 1 ≤ m ≤ dmin

i: integer value in [0, k]
Sn: set of consumers to send shares
Rn: set of producers to receive shares

Variables:
cn: collected data, cn = 0
Cn: set of possible collected data

Cn[{0, 1, ..., N − 1} → ∅]
hn: set of final deciding collected data

hn[{0, 1, ..., N − 1} → ⊥]

Output: result

Polling Algorithm

1 Sharing(vn, Sn, i)
2 Broadcasting(cn)
3 Aggregating()

Procedure Sharing(vn, Sn, i)

4 Pn ← {vn}
5 for j ← 1 to i do Pn ← Pn ∪ {vn} ∪ {−vn}
6 μn ←rand Pn

7 for j ← 0 to 2i do
8 send (SHARE, μn[j]) to Sn[j]

9 count ← 0
10 while (count < |Rn|) do
11 upon event (receive (SHARE, p) from

neighbor r in the first time) do
12 if (r ∈ Rn and p ∈ {−1, 1}) then
13 cn ← cn + p
14 count ← count + 1

Procedure Broadcasting(cn)

15 foreach (r ∈ Γ (n)) do
16 send (DATA, n, cn) to r

17 count ← 0
18 while (count < N − 1) do
19 upon event (receive message (DATA, s,

cs) from direct neighbor r preceding n in
the ordering w.r.t. source s) do

20 if (r = s) then
21 hn[s] ← cs

22 count ← count + 1
23 Forward (DATA, s, cs) to other

friends succeeding n in the
ordering w.r.t. source s

24 else if (s /∈ Γ (n)) then
25 Cn[s] ← Cn[s] ∪ {cs}
26 if (|Cn[s]| = m) then
27 hn[s] ← Decide(Cn[s])
28 count ← count + 1
29 send (DATA, s, hn[s]) to

other dn − βn(s) friends
succeeding n in the ordering
w.r.t. source s

Function Decide(Z)

30 return the most represented value in Z

Procedure Aggregating()

31 result ← 0
32 for s ← 0 to N − 1 do
33 if (s 	= n) then
34 result ← result + hn[s]

35 else result ← result + cn

Broadcasting. In this phase, each node needs to broadcast its collected data in
such a way that each recipient node eventually obtains that correct data. In the
naive approach, upon receiving a message from the neighbor, a node stores the
data then forwards it on every other edge. Despite the use of richer social graph
structures, and with the presence of dishonest nodes which can corrupt data,
one node can receive/send so many duplicated messages (which may be passed
by many paths) from/to other nodes. This leads to flooding the local storage. As
motivated in the introduction, we propose a method for efficiently broadcasting
messages by using the concept m-broadcasting property. For a graph satisfying
the m-broadcasting property, each node n sends its collected data to all neighbors
(lines 15–16). Then, upon receipt of the message containing the collected data
of source s from neighbor r preceding it in the ordering (w.r.t. source s), node
n does one of the following activities:

– r = s: It decides on the data of source s by storing the value cs in hn[s]. When
the value hn[s] is assigned, it is further forwarded to all dn − βn(s) nodes

Efficient and Decentralized Polling Protocol for General Social Networks 179

A(0)

B(2) D(3) K(4)

M(6)

F (5)

E(1)

N(7)

(a) Ordering of nodes w.r.t. source A

E B D K

1 A

+1 −1 +1

E B D K

A

+1 +1 +1

+3

(b) Sharing phase

E(1) B(2) D(3) K(4)

F (5)

A

hB [A] = 3

(A
,3)

(A
,3
) (A

,3)

(A,3)

(
A

,
3
)

(c) Broadcasting phase

E(1) B(2) D(3) K(4)

F (5)

M(6)

A

hF [A] = 3, CF [A] = {3, 3, 3}

(A
,3)

(A
,3
) (A

,3)

(A,3)

(A
,3)

(A
,3
)

(A
,3)

(
A

,
3
)

(d) Broadcasting phase (cont.)

Fig. 2. Polling algorithm for i = k = 1 and m = 3

succeeding it in the ordering (lines 20–23). In Fig. 2c, node A broadcasts its
data, then B receives, stores that data in hB[A], and forwards it to F .

– r �= s: To avoid the case that value hn[s] might be calculated (and broadcast)
twice for the direct neighbor s, node n only considers the case r �= s ∧ s /∈
Γ (n). If this condition is satisfied, it adds the value cs to the multiset Cn[s]
of possible collected data for s (line 25). When node n has received the
expected number m of possible collected data for a given source s, it decides
on the collected data by choosing the most represented value in Cn[s] and
puts it in hn[s]. (Since the decision is based on the most represented value,
instead of waiting for receiving all m forwarded data, node n can decide the
source’s data upon receipt of more than m/2 identical data.) Node n then
forwards the data to all dn − βn(s) nodes succeeding it (lines 26–29).
In Fig. 2d, node F has four friends, but receives only m = 3 messages from
preceding neighbors E,B,D. As all values in CF [A] are 3, node F decides
that value as the collected data of A and stores it in hF [A]. It then forwards
that data to its succeeding node M .

When a node decides the collected data of s and has no succeeding friend, the
value hn[s] is no longer forwarded. This phase is complete if a node decides on
the collected data of all other ones in the network.

180 B.-T. Hoang and A. Imine

Aggregating. The final result is obtained at each node by simply doing this
computation: result = cn +

∑

j 	=n hn[j] (lines 31–35).

4 Correctness and Complexity Analysis

In this section, we present the correctness and complexity analysis of our protocol
when deployed on the graphs without and with the presence of dishonest nodes.
All proofs are given in full details in [19].

4.1 Absence of Dishonest Nodes

Theorem 1 (Correctness). Consider a polling system of size N with only
honest nodes where each node n expresses a vote vn. The polling algorithm is
guaranteed to eventually terminate and each node outputs

∑N−1
n=0 vn.

Proposition 1 (Spatial complexity). The total space each node must hold is
O(mN).

Proposition 2 (Message complexity). The number of messages sent by a node
n is O(N(dn − m)).

4.2 Presence of Dishonest Nodes

In this section, we study the impact of dishonest nodes on privacy and accuracy
when EPol is deployed on the graphs of G2 in the worst and average cases.

Privacy Analysis

Let γi be the proportion of nodes voting with 2i+1 shares in the sharing phase,
where 0 ≤ i ≤ k and

∑k
i=0 γi = 1. A node’s vote could be revealed with: (i)

certainty if dishonest nodes are sure about this disclosure, or (ii) uncertainty
otherwise. Assuming D ≤ (m − 1)ΔG/2 (presented later in Theorem 8), we
consider these cases of vote disclosure as follows.

Vote Disclosure with Certainty. We discuss the probability that the vote of
a given node may be disclosed with certainty in the following theorem.

Theorem 2 (Certain Privacy). Assume a coalition of D dishonest nodes
knows the number of shares sent by a node. The probability Pce this coalition
reveals correctly with certainty the vote of an honest node voting with 2i + 1
shares (0 ≤ i ≤ k) is at most γi

(
D
N

)i+1.

Corollary 1. If all nodes send 2k + 1 shares in the sharing phase, then the
probability that a coalition of D dishonest nodes reveals correctly with certainty
an honest node’s vote is at most

(
D
N

)k+1.

We see that Pce increases with the increase of γi and the decrease of i. Thus,
we get the maximum privacy when all nodes generate 2k + 1 shares, and the
minimum privacy when all nodes generate only one share.

Efficient and Decentralized Polling Protocol for General Social Networks 181

If the poll outcome is N (resp. −N), it infers all nodes vote for “+1” (resp.
“−1”) and they all are disclosed. Moreover, w.l.o.g., assume dishonest nodes
always vote for “−1”, thus, if the result is N − 2D (resp. −N) then it implies
all honest nodes vote for “+1” (resp. “−1”). Without considering these cases,
i.e., all honest nodes do not vote for the same option, Theorem 3 shows us the
maximum number of votes that a dishonest coalition could discover.

Theorem 3. If all honest nodes do not vote for the same option, a coalition of
D dishonest nodes can reveal at most 2D votes of honest nodes.

Vote Disclosure with Uncertainty. This part examines the case that dishon-
est nodes collude to reveal an honest node’s vote without sureness. The coalition
decides a node’s vote based on the received shares in the sense they can decide
the vote after getting some shares or after getting all shares from that node.
Thus, they choose one of the following strategies: (a) Upon receipt of ρ+1 iden-
tical shares (for some 0 ≤ ρ ≤ k) from a given node, they will be considered as
its vote; (b) After receiving all shares from a given node, the most represented
value of the received shares will be considered as its vote. The former strategy
is used by “greedy” dishonest users who want to reveal rapidly an honest user’s
vote (even if they have just received one share). The latter one is used by “non-
greedy” dishonest users who are patient and wait for receiving all shares of the
honest user before trying to disclose his/her vote. We present the probabilities
that a coalition of dishonest nodes discloses an honest node’s vote for these sit-
uations in Theorems 4 and 5. Recall that each node does not know the number
of shares generated by other ones.

Theorem 4 (Greedy vote disclosure). Assume a coalition of D dis-
honest nodes agrees on the following rule “upon receipt of ρ + 1 identi-
cal shares (0 ≤ ρ ≤ k) from a given node, they will be considered as
the node’s vote”. The probability this coalition reveals correctly a node’s
vote is Pgr(ρ) =

∑k
i=ρ γi · (

D
ρ+1

) ∑ρ
j=0

(
D−ρ−1

j

)

/
(

N
j+ρ+1

)

and is bounded by
∑k

i=ρ γi
N+1

N−D+ρ+2 (D
N−D+ρ+1)ρ+1.

In Theorem 4, the vote v of an honest node is discovered if that node has
sent 2i + 1 ≥ 2ρ + 1 shares in which ρ + 1 identical ones representing v and up
to ρ shares of value −v were received by the dishonest consumers. Moreover,
by Theorem 4, value Pgr increases when γi decreases (and i increases) and D
increases.

Theorem 5 (Non-greedy vote disclosure). Assume a coalition of D dis-
honest nodes agrees on the following rule “the most represented value of
the received shares from a given node will be considered as the node’s
vote”. The probability this coalition reveals correctly a node’s vote is
Pun =

∑k
i=0 γi · ∑i+1

j=1

∑j−1
t=0

(
D
j

)(
D−j

t

)

/
(

N
j+t

)

and is bounded by
(

D
N /(1 −

2D
N)

)[

1 − ∑k
i=0 γi(2D

N)2i+1
]

.

By Theorem 5, the quantity Pun increases when both values γi and D increase
(and i also increases).

182 B.-T. Hoang and A. Imine

Combining Vote Disclosure with and Without Certainty. The objective
of this part is to present the situation where dishonest nodes may try to reveal
an honest node’s vote either in certainty or uncertainty. Assume they respect
the rules of vote disclosure with and without certainty. From the viewpoint
of dishonest nodes, they always want their vote detection to be as certain as
possible, i.e., they prefer a node’s vote being revealed with certainty to other
cases. Hence their strategy is as follows: they first try to disclose a vote of node
with sureness. If they do not succeed, for instance, because of lacking of messages,
they will consider the way to detect that vote without certainty. It implies the
probability a vote is disclosed in this case is Pcom = max{Pce, Pgr, Pun}.

Accuracy Analysis

In this section, we evaluate the maximum and average impact on accuracy caused
by the dishonest coalition when we deploy EPol on the graphs of G2. From the
attacking model introduced in Section 2.1, a dishonest node may affect the poll
outcome with the following misbehaviors:

(i) Since a node can only generate and send shares to its consumers it is
assigned (otherwise the shares are dropped) and there are at most 2k + 1
consumers to be assigned, it must send at most 2k + 1 shares in which at
most k + 1 ones are identical. Hence a dishonest node may misbehave by
sending more than k + 1 (but not greater than 2k + 1) identical shares.

(ii) It inverts each receiving “+1”-share into a “−1”-share
(iii) It modifies the collected data of other honest node or sends a forged message

in the broadcasting phase.

Verification procedures: in the first attack, the worst case is when a dishonest
node sends all 2k + 1 shares of value “−1”. In the attack (ii), a node receives
at most 2k + 1 shares (since at most 2k + 1 producers are assigned) and thus,
the computing collected data must be inside the range [−(2k + 1), 2k + 1]. The
misbehaviors (i) and (ii) cannot be detected without inspecting the content of
the shares themselves, but the misbehavior (iii) is detected with certainty if
the dishonest nodes transmit or corrupt the collected data outside the range
[−(2k + 1), 2k + 1]. Noted that we do not consider the Sybil attacks, hence, in
case (iii) a dishonest node cannot create a forged message containing identity
of other node. Moreover, this activity does not affect the final result since a
node receives directly a message from source s (if it is a neighbor of s) or gets
a majority of receiving messages (�(m + 1)/2�) containing the correct data of s.
We show the impact of these misbehaviors on accuracy in Theorems 6 and 7.

Theorem 6 (Maximum impact). Each dishonest node may affect the final
result up to 6k + 4.

Note that, since 0 ≤ k ≤ min{dmin, �(√N − 1)/2�} and, theoretically, the
maximum impact is 2N , the relative error is (6k + 4)/(2N) = O(1/

√
N).

Theorem 7 (Average impact). Let α be the proportion of nodes voting
for “+1”. The average impact of a dishonest node on accuracy is Iavg =
[∑k

i=0 γi(2i + 1)
][

1 + 2
∑k

i=0 γi
i+α
2i+1

]

+ 1.

Efficient and Decentralized Polling Protocol for General Social Networks 183

The quantity Iavg is minimized when all nodes generate the same number of
shares, e.g., 2i + 1, and thus Iavg = 2(2i + α + 1). In the worst case, a dishonest
node sends 2k + 1 shares, the minimized average impact is Iavg = 2(2k + α + 1).

From Theorems 6 and 7 we demonstrate the range of the biased result in
Corollary 2.

Corollary 2. The expected biased result is in the range [(2α−1)N − (6k +4)D;
(2α − 1)N]. More particularly, if all nodes send 2k + 1 shares, then the expected
biased result is (2α − 1)N − (4k + 2α + 2)D.

By Theorems 2–7 and Corollaries 1 and 2, for a fixed parameter k, the number
of users voting with a high number of shares (e.g., 2k + 1 shares) affects the
privacy and accuracy. More concretely, if we care about vote privacy, we should
augment the number of nodes generating 2k + 1 shares since the probability to
disclose a node’s vote with certainty (Pce) and with greedy uncertainty (Pgr)
will decrease. But this rises up the probability Pun of non-greedy vote disclosure
and the impact on the final outcome. In contrast, if we take care of the accuracy
of the final result, we should decrease the number of nodes voting with 2k + 1
shares since that reduces the impact on the final outcome. It also decreases Pun.
However this increases the values Pce and Pgr.

Security Analysis

In this part, first we justify the maximum number of dishonest nodes that EPol
can tolerate in Theorem 8. We then prove that the probability for a node decides
wrongly the data of a certain source converges fast in N in Corollary 3. Recall
that ΔG is a network diameter.

Theorem 8 (Tolerance to dishonest nodes). The maximum number of dis-
honest nodes that EPol can tolerate is m−1

2 ΔG.

Corollary 3. If D ≤ m−1
2 ΔG then a node decides wrongly the collected data

of some other node with the probability converging to 0 exponentially fast in N
(and ΔG).

5 Crash and Message Loss Analysis

This part analyzes the effect of node crashes and message losses on accuracy and
termination of the protocol. We assume the system contains no dishonest nodes.
Proofs are presented in [19].

Impact on Termination. Suppose nodes crash with probability r (and never
recover from a crash), a message is lost (throughout transmitting) with probabil-
ity l, a node fails to send shares to its consumers with probability q = r+(1−r)l.
A node n fails to decide a collected data of source s since:

1. n = s: s fails to compute its collected data cs.
2. n ∈ Γ (s): n does not receive a broadcast message from s.

184 B.-T. Hoang and A. Imine

3. n /∈ Γ (s): more than βn(s) − m (preceding) neighbors fail to forward the
collected data as they either: (i) crashed, or (ii) have themselves not decided
on the collected data, or (iii) have forwarded messages but they are lost.
We define by eni

and zni
respectively the probability for a node n at distance

i from source s to fail to forward and fail to decide a collected data of s. We have
eni

= r+(1−r)[zni
+(1−zni

)l], where zn0 = zs =
∑|Rs|−1

j=0

(|Rs|
j

)

(1−q)jq|Rs|−j ,

zn1 = en0 , and zni
=

∑m−1
j=0

[
(
βn(s)

j

) ∏j
t=1(1 − entlt

)
∏βn(s)

p=j+1 enplp

]

where i ≥ 2,
{n1, n2, . . . , nβn(s)} and {l1, l2, . . . , lβn(s)} are respectively the sets of preceding
friends of n (w.r.t. s) and their corresponding distances to s. Notice that lj could
be greater than i for j = 1, 2, ...βn(s). A node does not decide on the outcome if
it has not decided on at least one collected data of some source, that is znΔG

.

Impact on Accuracy. We show the impact on accuracy in Theorem 9

Theorem 9. The maximum impact on accuracy of a node crash is 3k + 2.

6 Related Work

Several recent work related to secret sharing and distributed polling have been
proposed. We introduce some work not based on any overlay structure and heavy
computation. Secret sharing schemes [1,30] may be used for polling with respect
to addition. However, as they do not give the protection for the initial shares,
the outcome is likely impacted with the presence of dishonest nodes. Verifiable
Secret Sharing Scheme (VSS) and Multi-party Computation protocol (MPC) in
[4,26] privately compute the node’s shares and give output with small error if
a majority of nodes is honest. Nonetheless, without the condition of the initial
input, a dishonest node can share arbitrary data, and bias the output. These
protocols also use cryptography. This drawback is also applied for other stud-
ies based on MPC such as [5–8] even the time and communication complexity
are improved. Authors of [23] proposed AMPC which provides users anonymity
without using cryptography, but this work used the notion of group. Based on
AMPC and enhanced check vectors, E-voting protocol [22] is the information-
theoretically secure protocol. But it defines different roles for users and thus, is
different from our direction. The distributed ranking schemes are also related
to our concern. However, they try to design accurate grading mechanism rather
than providing efficient polling schemes [17,28] and not address to privacy [10].
In [29], the m-propagating condition enables the use of minimal shares for the
secret. But, in our work, it is used to create a majority for deciding the correct
value during the broadcasting phase of our protocol. The protocol in [13] and
AG-S3 [14] can be used for polling in a scalable and secure way, but they either
use (i) a ring-based overlay, or (ii) cryptography.

7 Conclusion

This paper presented EPol, a distributed polling protocol for a general family
of social graphs, while preserving vote privacy and limit the impact on accuracy

Efficient and Decentralized Polling Protocol for General Social Networks 185

of the polling outcome. Unlike other work, our protocol is deployed in a more
general family of graphs, and we obtained some similar and better results. In
addition, we introduced some uncertain vote disclosure rules for dishonest nodes,
and presented the probabilities of vote detection in these cases. We also analyzed
the effect of message losses and nodes crashes on accuracy and termination.
Despite the use of richer social graph structures, the communication and spatial
complexities of EPol are close to be linear. In future work, we plan to implement
our protocol in decentralized social networks like Diaspora and Tent.

References

1. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret sharing.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer,
Heidelberg (1987)

2. Benkaouz, Y., Erradi, M.: A distributed protocol for privacy preserving aggregation
with non-permanent participants. Computing (2014)

3. Benkaouz, Y., Guerraoui, R., Erradi, M., Huc, F.: A distributed polling with prob-
abilistic privacy. In: SRDS, pp. 41–50 (2013)

4. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: FOCS, pp. 383–395 (1985)

5. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

6. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European Trans. on Telecom. 8(5), 481–490 (1997)

7. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multi-
party computation with nearly optimal work and resilience. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

8. Damg̊ard, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds:
privacy in population protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007)

10. Dutta, D., Goel, A., Govindan, R., Zhang, H.: The design of a distributed rating
scheme for peer-to-peer systems. In: P2P Econ (2003)

11. Englert, B., Gheissari, R.: Multivalued and deterministic peer-to-peer polling in
social networks with reputation conscious participants. In: TrustCom (2013)

12. Galil, Z., Yung, M.: Partitioned encryption and achieving simultaneity by parti-
tioning. Inf. Process. Lett., 26(2) (1987)

13. Gambs, S., Guerraoui, R., Harkous, H., Huc, F., Kermarrec, A.-M.: Scalable and
secure polling in dynamic distributed networks. In: SRDS, pp. 181–190 (2012)

14. Giurgiu, A., Guerraoui, R., Huguenin, K., Kermarrec, A.-M.: Computing in social
networks. Infor. and Comp. 234, 3–16 (2014)

15. Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M.: Decentralized polling
with respectable participants. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS 2009. LNCS, vol. 5923, pp. 144–158. Springer, Heidelberg (2009)

16. Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M., Vigfusson, Y.: Decen-
tralized polling with respectable participants. JPDC 72(1), 13–26 (2012)

186 B.-T. Hoang and A. Imine

17. Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks.
In: NOSSDAV. ACM, New York (2003)

18. Hoang, B.-T., Imine, A.: On the polling problem for social networks. In: Baldoni,
R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 46–60.
Springer, Heidelberg (2012)

19. Hoang, B.-T., Imine, A.: Efficient polling protocol for decentralized social networks
(2014). CoRR, abs/1412.7653

20. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: PODC, pp. 355–364 (2012)

21. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3) (1982)

22. Malkhi, D., Margo, O., Pavlov, E.: E-voting without ‘cryptography’. In: Blaze, M.
(ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Heidelberg (2003)

23. Malkhi, D., Pavlov, E.: Anonymity without ‘cryptography’. In: Syverson, P.F. (ed.)
FC 2001. LNCS, vol. 2339, pp. 117–135. Springer, Heidelberg (2002)

24. Mislove, A., Post, A., Druschel, P., Gummadi, P.K.: Ostra: Leveraging trust to
thwart unwanted communication. In: NSDI (2008)

25. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

26. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC (1989)

27. Rivest, R.L.: Chaffing and winnowing: confidentiality without encryption. RSA
Laboratories CryptoBytes 4 (1998)

28. Rodriguez-Perez, M., Esparza, O., Muñoz, J.L.: Analysis of peer-to-peer dis-
tributed reputation schemes. In: CollaborateCom (2005)

29. Shah, N.B., Rashmi, K.V., Ramchandran, K.: Secure network coding for dis-
tributed secret sharing with low communication cost. In: ISIT (2013)

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Sirivianos, M., Kim, K., Yang, X.: Socialfilter: introducing social trust to collabo-

rative spam mitigation. In: INFOCOM (2011)
32. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social

network defense against sybil attacks. Trans. Netw. 18(3), 885–898 (2010)
33. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.D.: Sybilguard: defending

against sybil attacks via social networks. Trans. Netw. 16(3), 576–589 (2008)

Constructing Self-stabilizing Oscillators
in Population Protocols

Colin Cooper1, Anissa Lamani2(B), Giovanni Viglietta3,
Masafumi Yamashita2, and Yukiko Yamauchi2

1 Department of Informatics, Kings College, London, UK
2 Department of Informatics, Graduate School of ISEE, Kyushu University,

Fukuoka, Japan
anissa.lamani@gmail.com

3 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

Abstract. Population protocols (PPs) are a model of passive dis-
tributed systems in which a collection of finite-state mobile agents inter-
act with each other to accomplish a common task. Unlike other works,
which investigate their computation power, this paper throws light on an
aspect of PPs as a model of chemical reactions. Motivated by the well-
known BZ reaction that provides an autonomous chemical oscillator, we
address the problem of autonomously generating an oscillatory execu-
tion from any initial configuration (i.e., in a self-stabilizing manner). For
deterministic PPs, we show that the self-stabilizing leader election (SS-
LE) and the self-stabilizing oscillator problem (SS-OSC) are equivalent,
in the sense that an SS-OSC protocol is constructible from a given SS-LE
protocol and vice versa, which unfortunately implies that (1) resorting to
a leader is inevitable (although we seek a decentralized solution) and (2)
n states are necessary to create an oscillation of amplitude n, where n
is the number of agents (although we seek a memory-efficient solution).
Aiming at reducing the space complexity, we present and analyze some
randomized oscillatory PPs.

Keywords: Population protocol · Self-stabilization · Oscillatory behav-
ior · Leader election · Distributed algorithm

1 Introduction

The motivation of our study is to understand how autonomy emerges in bio-
logical systems, and to apply such understanding in giving artificial distributed
systems autonomous properties. Specifically, we focus on self-oscillations, which
play fundamental roles in autonomous biological reactions, and investigate them
as a phenomenon in distributed computing. Self-oscillations are often understood
as a chemical oscillator provided by certain reactions, such as the Belousov–
Zhabotinsky reaction. We use the population protocol model for our investiga-
tion, since it was introduced in part to model chemical reactions.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 187–200, 2015.
DOI: 10.1007/978-3-319-21741-3 13

188 C. Cooper et al.

The population protocol (PP) model introduced by Angluin et al. [2] is a
model of passive distributed systems. It is used as a theoretical model of a col-
lection of finite-state mobile agents that interact with each other in order to
solve a given problem in a cooperative fashion. Computations are done through
pairwise interactions, i.e., when two agents interact, they exchange their infor-
mation and update their states accordingly. The interaction pattern, however,
is unpredictable, and the agents have no control over which agent they interact
with. We thus assume the presence of an abstract mechanism called scheduler
that chooses at any time instant the pair of agents that interact with each other.
PPs can represent not only artificial distributed systems such as sensor networks
and mobile agent systems, but also natural distributed systems such as chemical
reactions and biological systems.

In the past few years, many problems have been investigated on PPs, includ-
ing the problems of computing a function, electing a leader, counting, coloring,
synchronizing and naming [1–4,7,8]. Most of the problems consider the compu-
tational power of the population and hence are static; the agents are requested
to eventually reach a configuration that represents the answer to the given com-
putation problem.

The notion of termination is typically intended in the Noetherian sense (in
the context of abstract rewriting systems); however the agents are not requested
to eventually terminate, but the execution is requested to repeat the same con-
figuration forever.

Unlike most of the past works in PPs, we throw light on an aspect of PPs as
a model of chemical reactions. Specifically, we investigate the problem of design-
ing a PP that stabilizes to an oscillatory execution, no matter from which initial
configuration it starts; that is, we explore a self-stabilizing PP that generates an
oscillatory execution. The problem emerges in the project of designing molecu-
lar robots [9], and is directly motivated by the Belousov–Zhabotinsky reaction,
which is an example of non-equilibrium thermodynamics providing a non-linear
chemical oscillator. We show that under a deterministic scheduler governed by
an adversary, the self-stabilizing leader election problem and the self-stabilizing
oscillator problem are equivalent, and hence costly in term of space complex-
ity. Aiming at space reduction, we then propose and analyze some approximate
solutions assuming a randomized scheduler.

In biological systems, the oscillatory behavior is used as a natural clock to
transmit signals and hence transfer information. In artificial distributed sys-
tems, PPs that exhibit an oscillatory behavior could be used to distributely and
autonomously implement a clock.

Apart from the difference of motivation, a few works on dynamic problems are
related to our work. Angluin et al. [4] provided a self-stabilizing token circulation
protocol in a ring with a pre-selected leader. Beauquier and Burman investigated
the self-stabilizing mutual exclusion, group mutual exclusion problems [6] and
also the self-stabilizing synchronization problem [5]. In the latter work, they have
shown that the synchronization problem in the PP model under a deterministic
scheduler is impossible to solve, and hence they proposed a solution assuming

Constructing Self-stabilizing Oscillators in Population Protocols 189

the presence of an unlimited-resource agent called Base Station. Our problem
also belongs to the class of dynamic problems.

After introducing some concepts and notions in Section 2, we consider a deter-
ministic scheduler governed by an adversary in Section 3. Under this scheduler,
we focus on the self-stabilizing oscillator (SS-OSC) problem. We show that the
self-stabilizing leader election (SS-LE) problem and the SS-OSC problem are
equivalent; that is, an SS-OSC protocol is constructible from a given SS-LE pro-
tocol, and vice versa. In Section 4, we consider a probabilistic scheduler, i.e.,
the interacting agents are chosen uniformly at random. Under the probabilistic
scheduler, we present and analyze some oscillatory PPs, mainly aiming to reduce
space complexity. Section 5 is devoted to the conclusions.

In this paper, we use results from [7] that concern the SS-LE problem. In [7],
it has been shown that the SS-LE is impossible to solve with less than n states
where n is the size of the population. Also, a PP that solves the SS-LE was
proposed. The protocol ensures that eventually each agent has unique state.

2 Preliminaries

In this paper, we consider a population of n anonymous finite-state agents that
update their state by interacting with other agents. We consider only pairwise
interactions, i.e., each interaction involves exactly two agents. When two agents
interact, they update their state according to a common protocol. We denote
by A = {0, 1, . . . , n − 1}, the set of agents in the population, that is, |A| = n.
Indices are used for notation purposes only; in fact, the agents are anonymous,
i.e., they have no identity and cannot be distinguished from each other. Any pair
of agents a1 and a2 (a1 �= a2) in the population are susceptible to interact and
the interactions are undirected.

A protocol P = (Q, δ) is a pair of a finite set of states Q and a transition
function δ : Q × Q → Q × Q. When two agents interact with each other, δ
determines the next state of both agents. Let p and q be the states of agents a1

and a2, respectively. δ(p, q) = (p′, q′) indicates that the states of agents a1 and
a2, after interacting with each other, are p′ and q′, respectively. We assume that
if δ(p, q) = (p′, q′) then δ(q, p) = (q′, p′).

A configuration C is a mapping A → Q that specifies the state of all the
agents in the population. By C(i), we refer to the state of agent i in configuration
C. By C we refer to the set of all possible configurations of the system. Given
a configuration C ∈ C and an interaction between the two agents a1 and a2,
r = (a1, a2), we say that C ′ is obtained from C via the interaction r, denoted
by C

r→ C ′, if (C ′(a1), C ′(a2)) = δ(C(a1), C(a2)).
Let Ct be the configuration at time t and let rt be the interaction on Ct

at time t. An execution E of a protocol P is a sequence of configurations and
transitions (C0, r0, C1, r1, . . .) such that ∀ i ≥ 0, ri is a transition of δ and Ci
ri→ Ci+1. When a configuration C ′ is reachable from C after a finite number of
transitions we note C

∗→ C ′.
A scheduler chooses a pair of agents to interact at each time t ≥ 0. In this

paper, we consider two types of schedulers: (i) A deterministic but globally

190 C. Cooper et al.

fair scheduler that guarantees that if there is a configuration that is reachable
infinitely often, then the configuration is eventually reached. (ii) A uniform
random scheduler, i.e., the pair of agents that are chosen for the interaction are
selected at random, independently and uniformly from the set of all the agents
in the system.

In the sequel, we define some important notions that will be used in the
paper.

Definition 1. (Oscillation) Let f : [a, b] ⊂ N → R be a function. We say that
f is an oscillation if there exists c ∈ N such that:

1. a < c < b,
2. f(a) < f(c) > f(b),
3. f is weakly increasing in [a, c] and weakly decreasing in [c, b].

The value f(c)− (f(a)+ f(b))/2 is called the amplitude of the oscillation and is
denoted by ιa, whereas b−a is called the period of the oscillation and is denoted
by ιp. The increasing phase (respectively, decreasing phase) of the oscillation is
the interval in which f is weakly increasing (respectively, weakly decreasing).

Definition 2. (Oscillatory behavior) Given an execution E of a population
protocol P on n agents and a set of states S, let fS : N → [0, n] ⊂ N be the
function mapping a time instant t into the number of agents whose state is in S
at time t. Let {t0, t1, . . . } be a strictly increasing sequence of time instants. We
say that E exhibits an oscillatory behavior for the set of states S, if for every
i ≥ 0, the restriction of fS to [ti, ti+1] is an oscillation.

Note that, according to the previous definitions, any execution exhibits oscil-
latory behavior, unless the number of agents whose state is in S eventually
stabilizes. However, we are also interested in evaluating the “quality” of the
oscillations, in terms of their amplitude and period.

3 Deterministic Scheduler

We investigate in this section the problem of generating oscillatory executions
under a global fair deterministic scheduler and starting from an arbitrary config-
uration. We show that the SS-LE problem and SS-OSC problem are equivalent.
By using the results in [7], we can deduce then, that the SS-OSC problem is
impossible to solve if |Q| < n or if n is arbitrary.

Let us first define the deterministic self-stabilizing oscillator.

Definition 3. (Deterministic oscillator) A population of agents executing
a deterministic protocol P, under a globally fair scheduler, is a (C,S, ιa, ιp)-
oscillator if any execution E = (C, r, C ′, r′, . . .) of P exhibits an oscillatory
behavior for the set of states S, with amplitude ιa and period ιp.

Constructing Self-stabilizing Oscillators in Population Protocols 191

Definition 4. (Deterministic self-stabilizing oscillator) A population of
agents executing a deterministic protocol P, under a globally fair scheduler, is
a self-stabilizing oscillator for the set of states S if, starting from an arbitrary
configuration C0 ∈ C, every execution E = (C0, r0, C1, r1, . . .) of Protocol P,
reaches a configuration C ∈ C such that (C,S, ιa, ιp) is a deterministic oscillator.

Observe that since the deterministic globally fair scheduler can delay any partic-
ular transition of the system for an arbitrary amount of time, it is not possible
to bound the period using the classical definition of an interaction. Hence, we
use the notion of active interactions that was introduced in [7]. Basically, an
interaction r is said to be active in a given configuration C ∈ C, if it updates the
state of at least one of the two agents that have participated in r. More precisely,
an interaction r = (a, b), is said to be active in C ∈ C, if C

r→ C ′ and either
C(a) �= C ′(a) or C(b) �= C(′b).

When ιp is omitted, it means that the period of the oscillator is not specified,
or that the oscillator is not periodic (i.e., not all oscillations have the same
period). We consider in the following (C,S, n, ιp)-oscillators.

Starting from an arbitrary initial configuration C0 ∈ C, we show the following
two results:

1. If the SS-LE problem is solvable using MLE states, then it is possible to
solve the SS-OCS problem using MLE + O(n) states.

2. If the SS-OSC problem is solvable using MOSC states, then it is possible to
solve the SS-LE problem using MOSC + O(1) states.

(1) SS-LE ⇒ SS-OSC. We show that a deterministic population protocol
POSC exists using MLE + 2n states per agent (MLE being the number of states
necessary to solve the self-stabilizing leader election problem). A solution with
MLE + O(n) states is also presented later in Discussion (1). The idea of the
solution is as follows: we combine our SS-OSC protocol POSC with the SS-
LE protocol PLE proposed in [7] and that uses n distinct states per agent.
When an interaction occurs between two agents, the two agents execute the
enabled actions of both POSC and PLE . Protocol PLE ensures that eventually
one leader is elected and all the agents have a unique state [7]. Our solution takes
advantage of this “identification” to create an oscillatory behavior. Indeed, using
the identification created by Protocol PLE , the leader can somehow remember
the agents it has already interacted with.

The state of each agent ai consists of a triplet of variables (idai
, pai

, Tai
). Vari-

able idai
is used by Protocol PLE (idai

∈ {0, 1, 2, . . . , n − 1}), where 0 is the
leader’s state. According to [7], eventually each agent has a unique value for idai

.
Variable pai

∈ {0, 1}, indicates the phase of the oscillation Agent ai is part of
(increasing or decreasing phase). Variable Tai

is an array of n entries such that ∀
j ∈ {1, . . . , n − 1}, Tai

[j] ∈ {0, 1}. The array is used only by the leader to keep
track of the agents the leader has already interacted with, hence, in the sequel, the
state of a non-leader agent aj is only represented by the pair (idaj

, paj
). Let ai and

aj be the two interacting agents at time t. Without loss of generality, assume that
idai

< idaj
. Protocol 1 describes how agents ai and aj update their state.

192 C. Cooper et al.

Protocol 1. Self-stabilizing deterministic oscillator with central control (POSC)
1: if (idai

= 0) then

2: if (∀ k ∈ [1, n − 1], Tai
[k] = 1) then

3: ∀ k ∈ [1, n − 1], Tai
[k] := 0

4: if (pai
= 0) then pai

:= 1

5: else pai
:= 0

6: end if
7: else
8: if (pai

= paj
) then

9: if (Tai
[idaj

] = 0) then Tai
[idaj

] := 1

10: end if
11: else
12: paj

:= pai

13: if (Tai
[idaj

] = 0) then Tai
[idaj

] := 1

14: end if
15: end if
16: end if

17: end if

By executing Protocol PLE , eventually a unique leader is elected and each
agent ai ∈ A has a unique value for its variable idai

(refer to [7]). Hence, idai
can

be used to identify Agent ai. Let us consider the population after the stabilization
of Protocol PLE , i.e., ∃! ai ∈ A such that idai

= 0 and ∀ aj , aj′ ∈ A, aj �= aj′ ⇒
idaj

�= idaj′ . Let us refer to the elected leader by ai. Recall that the array T
is only used by ai. Each entry k ∈ {1, . . . , n − 1} of Array Tai

corresponds to
the entry of Agent aj such that idaj

= k. Every time ai interacts with another
agent, say aj , Agent aj updates its variable paj

to be in the same phase as the
leader (refer to Line 12 in Protocol 1) and the leader updates the entry of aj to
1 to indicate that it has already interacted with aj (Lines 9 and 13). When all
the entries of Tai

are set to 1, the leader toggles its phase and re-initializes its
array (Lines 3-5). Since the initial configuration is arbitrary, some of the entries
in the leader’s array might be equal to 1 even if the leader did not interact
with the corresponding agents. However, since the leader’s array is eventually
re-initialized, we are sure that after the first re-initialization of T , if an entry of
T is equal to 1, then the leader has indeed interacted with the corresponding
agent and thus, all agents update their phase to be in the same phase as the
leader. Let S be the set of state such that p = 1 (Phase 1). Hence, starting from
any arbitrary configuration C0 ∈ C, every execution E = (C0, r0, C1, r1, . . .) of
PLE◦POSC reaches a configuration C ∈ C such that (C,S, n, ιp) is a deterministic
oscillator with ιp = O(n) active interactions.

Discussion (1). The number of states per agent can be reduced to MLE +O(n)
by using the same idea as in Protocol 1, but instead of using an array, the leader
uses a counter that we denote by Next (Next ∈ {1, . . . , n − 1}). The counter
is used to indicate the next agent the leader needs to interact with in order
to update its state, i.e., the agents update their state in a given order so that
the leader is sure to have interacted with everyone. While interacting with the
leader, the agents update their phase to be in the same phase as the leader.

Constructing Self-stabilizing Oscillators in Population Protocols 193

Protocol 2. Self-stabilizing deterministic oscillator with central control (second
approach)
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (0, 0, i),(i, 0) → (0, 0, i + 1),(i, 1) if i < n − 1

2. (0, 0, i),(i, 1) → (0, 0, i + 1),(i, 1) if i < n − 1

3. (0, 0, n − 1),? → (0, 1, 1), ?

4. (0, 1, i),(i, 0) → (0, 1, i + 1), (i, 0) if i < n − 1

5. (0, 1, i),(i, 1) → (0, 1, i + 1),(i, 0) if i < n − 1

6. (0, 1, n − 1),? → (0, 0, 1),?

The formal description of the solution is given in Protocol 2. Character ‘?’
indicates any state of a non leader agent. If ‘?’ is used then, the corresponding
non-leader agent does not update its state in the interaction. The state of a
leader agent ai consists of a triplet of variables (idai

, pai
, Next) where idai

and
pai

have the same role as in Protocol 1. The state of a non leader agent aj is only
represented by the couple (idaj

, paj
). Protocol 1 was introduced to get rid of the

state update order induced while using the counter in Protocol 2. We state the
following result:

Theorem 1. Under the global fair scheduler, if there exists a population protocol
that solves the SS-LE problem using MLE states then, there exists a population
protocol that solves the SS-OSC problem using MLE + O(n) states.

Discussion (2). From Discussion (1) we know that the number of states per
agent can be reduced to MLE+O(n) to create oscillations with amplitude ιa = n.
In fact, the result can be generalized to MLE+O(ιa) states where ιa is the desired
amplitude of the oscillator. By using the same strategy as in Discussion (1), it
is sufficient to set the maximum value of Next to ιa − 1. In addition, when the
leader interacts with a non leader agent aj such that idaj

> Next, Agent aj

updates its phase paj
to 0. Since the scheduler is globally fair, ∀ aj ∈ A such

that idaj
> Next, aj eventually interacts with the leader and hence paj

= 0.
Thus, only (ιa − 1) agents toggle their phase with the leader.

(2) SS-OSC ⇒ SS-LE. We show that if the deterministic SS-OSC problem is
solvable using MOSC states, then it is also possible to solve the deterministic
SS-LE problem using MOSC +O(1) states. To show this result, we build our self-
stabilizing SS-LE protocol P ′

LE on the top of the SS-OSC protocol P ′
OSC . By

executing Protocol P ′
OSC , the system eventually exhibits an oscillatory behavior

with respect to a given set of state S. Let us consider the population after the
stabilization of P ′

OSC . We first show some important properties of a population
that exhibits an oscillatory behavior. We assume that ιa = n. Given a configu-
ration C ∈ C, let NC(S) be the set of agents such that ∀ ai ∈ A, ai ∈ NC(S) if
C(ai) ∈ S. The number of agents part of NC(S) is denoted by |NC(S)|. By C+, we
denote the set of configurations that can appear during the increasing phase of
any oscillation before reaching the amplitude, that is, ∀ C ∈ C+, |NC(S)| < n. By
C∗, we refer to the set of configurations such that ∀ C ∈ C∗, |NC(S)| = n (config-
urations in which all the agents have their states part of S, i.e., the amplitude is

194 C. Cooper et al.

reached). The first step is to show that there is a non-empty subset of states that
can only appear when the amplitude of the oscillation is reached. More precisely,
in any configuration C ∈ C+, the transition δ(C(ai), C(aj)) = (C ′(ai), C ′(aj))
such that |NC(S)| > |NC′(S)| is never enabled when the system is stabilized. Let
Q′ be the set of states that enable such a transition then, ∀ C ∈ C+, ∀ ai ∈ A,
C ′(ai) �∈ Q′ and ∀ C ′ ∈ C∗, ∃ ai ∈ A, C ′(ai) ∈ Q′ (States in Q′ indicates that
the next phase of the oscillation can be initiated). Next, we define a subset of
special configurations that we denote by Csp ⊂ C+. A configuration C ∈ Csp

satisfies the two following conditions: (1) ∃! aj ∈ A such that C(aj) �∈ S and (2)
∀ ai ∈ A, C(ai) �∈ Q′. Observe that Condition (1) implies that ∀ ai ∈ A \ {aj},
C(ai) ∈ S. We show that a configuration C ∈ Csp is eventually reached and ∃
ai, aj ∈ A such that δ(Csp(ai), Csp(aj)) = (C ′(ai), C ′(aj)) with C(aj) �∈ S and
C ′(aj) ∈ S and either (C ′(ai) ∈ Q′) or (C ′(aj) ∈ Q′). That is, the amplitude
is reached and at least one of the two interacting agents has a state part of
Q′. We refer to such an interaction by rsp. Finally, we prove that from a con-
figuration C ∈ C∗, if ∃ ai ∈ A such that C(ai) �∈ Q′ and ∃aj ∈ A such that
δ(C(ai), C(aj)) = (C ′(ai), C ′(aj)) with C ′(ai) ∈ Q′ then C(aj) ∈ Q′, that is,
when the amplitude is reached, a given agent can change its state to a state in
Q′ only if it interacts with an agent already in a state part of Q′.

Protocol. In order to elect a leader starting from an arbitrary configuration
C0 ∈ C using the SS-OSC population protocol P ′

OSC , we add to the state of
each agent one bit of memory to indicate whether the agent is a leader or not
(l ∈ {0, 1}). When rsp is executed, if C ′ is the resulting configuration, then ∃ ai ∈
A such that C ′(ai) ∈ Q′ (recall that rsp:δ(Csp(ai), Csp(aj)) = (C ′(ai), C ′(aj))
such that (i) C(aj) �∈ S. (ii) C ′(aj) ∈ S. (iii) ((C ′(ai) ∈ Q′) ∨ (C ′(aj)) ∈ Q′)).
Assume that after the execution of rsp, ∃! ai ∈ A such that C ′(ai) ∈ Q′ (let
us refer to this agent by asp). The idea of the protocol is as follows: when rsp

is executed, Agent asp becomes a leader. In addition, when a given agent ai

interacts with a leader then, ai does not update its state (keep the same state).
Observe that since we assume an arbitrary initial configuration, such a transition
can be executed even if the population is not yet stabilized with respect to P ′

OSC .
To be sure to create only one leader, if in a given configuration C ∈ C, ai is a
leader then ai becomes a non-leader in the next interaction if C(ai) �∈ Q′ or
C(ai) �∈ S. In the same manner, ai becomes a non leader if it interacts either
with another leader or with an agent aj such that C(aj) �∈ S. Observe that if
∃ ai ∈ A such that ai is a leader, then ai can only be enabled to become a
non-leader, We show that:

Theorem 2. Under the global fair scheduler, if there exists a population protocol
P ′

OSC that solves the SS-OSC problem with amplitude n using MOSC states,
then the SS-LE problem is also possible to solve using MOSC + O(1) states.

Remark. Theorem 2 can be generalized to any amplitude ιa ≤ n. Indeed, the
main idea of the solution is to make any leader becomes a non leader infinitely
often during the stabilization time to ensure the convergence of Protocol P ′

OSC .
Once the population converges to an oscillatory behavior, the properties of the

Constructing Self-stabilizing Oscillators in Population Protocols 195

oscillatory behavior ensure that only one leader is created. The leader then
prevents the second phase of the oscillation to be initiated thus, no more leaders
are created.

Recall that it has been proved in [7] that the SS-LE problem is not solvable
when the number of states is less than the size of the population n and hence
impossible to solve in the case where n is arbitrary. Using Theorems 1 and 2, we
can deduce the following corollary:

Corollary 1. There exists no deterministic self-stabilizing oscillator if the num-
ber of states by agent is less than n, or if the size of the population is arbitrary.

4 Stochastic Scheduler

Aiming at the reduction of the space complexity, we investigate in this section
the SS-OSC problem under a uniform random scheduler, i.e., the pair of agents
that are selected for the interaction are chosen at random, independently and
uniformly from the set of all the agents of the population. Let us first define the
notion of the self-stabilizing stochastic oscillator.

Definition 5. (Self-stabilizing stochastic oscillator) A (sufficient large)
population of agents executing a deterministic protocol P, under a uniform random
scheduler, is a (C,S, ιa, ιp)-oscillator, if starting from any arbitrary configuration
C0 ∈ C, any execution E = (C0, r0, C1, r1, . . .) of P, reaches a configuration C ∈ C
such that (C,S, ιa, ιp) exhibits an oscillatory behavior for the set of states S with
an expected average amplitude ιa and an expected average period ιp.

We present in this section, three deterministic protocols. Each of them
assumes an arbitrary initial configuration and also the presence of a leader,
that is, the agents need first to elect a leader in order to achieve the oscillatory
behavior. Recall that, without a leader detector oracle, the SS-LE problem is
impossible to solve with less than n states. That is, Ω(n) states are necessary to
achieve the election [7]. We aim in the following at the reduction of the extra-cost
used to create the oscillatory behavior.

In the sequel, the state of the leader is represented by the couple (Lp, c) where
Lp indicates that the agent is a leader in Phase p (p ∈ {0, 1}) and c ∈ {0, . . . k}
represents the current value of the leader’s counter where k ∈ N, is the maximum
value that the counter can reach. The state of a non-leader agent consists of
only one variable p such that p ∈ {0, 1}. Variable p indicates which phase of the
oscillation the agent is part of. An agent is said to be a follower (respectively a
non-follower) if it is not a leader and if the value of its variable p is the same as
(respectively different from) the leader’s.

First Approach. The idea of the solution is as follows: at each time the leader
interacts with a follower agent, the leader increments its counter. If it interacts
with a non-follower agent, the leader re-initializes its counter and the non-follower
agent part of the interaction updates its phase to become a follower. When the
leader’s counter reaches its maximum value, it toggles its phase and re-initializes

196 C. Cooper et al.

Protocol 3. Self-stabilizing stochastic oscillator with central control
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (L0,i), 0 → (L0,i+1), 0 i < k

2. (L0,i),1 → (L0,0), 0 i < k

3. (L0,k), 0 → (L1,0), 0

4. (L1,i), 0 → (L1,0), 1 i < k

5. (L1,i), 1 → (L1,i+1), 1 i < k

6. (L1,k), 1 → (L0,0), 1

its counter. The formal description of the protocol is given in Protocol 3. We show
in the following that for any counter size k
 log n, the remaining non-follower
agents at the end of a phase is O((n/k) log n) with high probability (provided
that n is sufficiently large).

Suppose without loss of generality that the leader’s phase is 0 (L0), and there
are initially B0 ≤ n non-follower agents. Let X(k) = X(k,B0) be the number of
non-follower agents at the end of the phase (when the leader toggles its phase
from 0 to 1). Let P (J) be the probability the switch of phase by the leader
occurs when J non-follower agents remain. Then:

P (J) =
∏J+1

j=B0
(1 − (1 − j/n)k)(1 − J/n)k

Note that only interactions with the leader matter in this calculation. Let E be
the expected value of X(k) then: E =

∑B0
J=0 JP (J).

Let ω = ω(n) be some slowly growing function of n and assume B0 = n
(worst case), and J ≥ ωn/k. We have: P (J) ≤ (1 − J/n)k ≤ e−kJ/n ≤ e−ω. Let
ω = 2 log n, the contribution to E from ωn/k ≤ J ≤ n is then:

∑n
J=ωn/k JP (J) ≤ n2e−2 log n = 1

Similarly, if ω = 3 log n then, with high probability the number of non-follower
agents is never bigger than (3 log n) n/k when the leader toggles its phase. Thus
for ω = (2 log n) n/k, we have:

E ≤ 1 + [(2 log n) n/k]
∑

J≤(2 log n) n/k P (J) = O((log n) n/k)

As for the expected period, for any k a phase completes in O(kn) interactions
with the leader. So the length of the phase is O(n2k) with high probability.

Second Approach. To reduce even more the space complexity, we propose in
the sequel, two population protocols that solve the SS-OSC problem and that
use, in addition to the leader, another agent that we call marked agent and that
we denote by M . Recall that the SS-LE protocol proposed in [7] not only elects
a leader, but also provides a kind of identification, i.e., each agent ai has unique
state C(i) such that C(i) ∈ {0, 1, . . . , n − 1}. Hence, we can assume that the
leader is the agent ai ∈ A such that C(ai) = 0 and the marked agent is the

Constructing Self-stabilizing Oscillators in Population Protocols 197

agent aj ∈ A such that C(aj) = 1. Thus, no other run of the leader election
protocol is performed.

First Solution. The idea of the first solution is as follows: at each time the leader
interacts with the marked agent, the leader’s counter is incremented. On another
hand, when the leader interacts with a non-follower agent, the non-follower agent
updates its state to become a follower. When the leader’s counter value reaches
its maximum, i.e., after (k + 1) interactions with the marked agent, the leader
toggles its phase and re-initializes its counter value. The formal description of
the first solution is given in Protocol 4.

Protocol 4. Self-stabilizing stochastic oscillator with central control using the
marked agent trick without re-initialization
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (L0,i), 0 → (L0,i), 0 if i < k

2. (L0,i),1 → (L0,i), 0 if i < k

3. (L0,i), M → (L0,i+1), M if i < k

4. (L0,k), M → (L1,0), M

5. (L1,i), 0 → (L1,i), 1 if i < k

6. (L1,i), 1 → (L1,i), 1 if i < k

7. (L1,i), M → (L1,i+1), M if i < k

8. (L1,k), M → (L0,0), M

Let X (respectively X (i, i + 1)) be the number of interactions to reach the
maximum value of the leader’s counter (respectively to the number of interac-
tions in order for the leader’s counter to be incremented from i to i + 1), we

have: X=
k∑

i=0

X (i, i + 1). Recall that the leader’s counter is only incremented

when the leader interacts with the marked agent, that is, X (i, i + 1) has a geo-
metric distribution of parameter p: P (X (i, i+1) = m) = (1−p)m−1p, where p is
the probability to get an interaction between the leader and the marked agent.
Note that p = 2

n(n−1) . The expected number of interactions to increment the
leader’s counter from i to i + 1 is

E[X (i, i + 1)] = 1
p = n(n−1)

2 .

Using the linearity of the expectations, we obtain E[X] = (k + 1) n(n−1)
2 . So

after E[X] average interactions, the leader updates its phase to initiate the next
phase of the oscillation.

Assume without loss of generality that the leader’s phase is equal to 0. Let us
now determine the expected amplitude ιa which represents the expected number
of non-follower agents that become followers before the leader’s counter reaches
its maximum value. Let Ab(t) refers to the number of non-follower agents at
time t. The expected number of non-follower agents at time t + 1 (Ab(t + 1)) is
given by: Ab(t+1) = Ab(t)− 2.Ab(t)

n(n−1) . That is, at time (t+1), the number of non-
follower agents either remains the same or decreases when there is an interaction
between the leader and a non-follower agent. Approximately we have:

198 C. Cooper et al.

dAb(t)
dt = − 2

n(n−1)Ab(t), hence, Ab(t) = Ab(0) e−(2t
n(n−1))

Recall that we know the expected number of interactions before reaching
the amplitude. By replacing t by E[X], we obtain the expected number of non-
follower agents when the amplitude is reached. That is:

Aa(E[X]) = n − Ab(0) e−(k+1)

We observe that if k = log(n), Aa(E[X]) = n.

Second Solution. We present in the sequel, a variation of Protocol 4 aiming at
solving the SS-OSC problem with k ∈ O(1) (recall that k is the maximum value
of the leader’s counter). The idea of the solution is similar to the one used in
Protocol 4 except that, when the leader interacts with either a follower or a non-
follower agent, it re-initializes its counter, that is, the leader, needs to interact
(k + 1) consecutive times with the marked agent in order to toggle its phase.
The system can be represented by a Markov chain as shown in Figure 1, where
p is the probability to get an interaction between the leader and the marked
agent, q is the probability to get an interaction between the leader and either a
follower or a non-follower and M = 1 − (p + q) (interactions that do not include
the leader).

0 1 2 k-1 k

p p p p p

1-p

q
q

q

M M M

Fig. 1. Corresponding Markov Chain

The average number of interactions Ik, for the leader to toggle its phase, can
be computed using the first step analysis. We obtain:

Ik = n(n−1)
2 ((n−1)k−1

n−2) (k > 1).

Assume that (i − 1) non-follower agents have already updated their phase
to become followers. Let compute the probability, PNext−i, that a new non-
follower agent changes its phase to become a follower before the switch of phase
is performed by the leader i.e., before the (k+1) consecutive interactions between
the leader and the marked agent. We have:

PNext−i = Pbi · (
k−1∑

j=0

(P j
M)) · ∑

g≥0

(Pwi
·

k−1∑

j=0

(P j
M))g

Probability Probability of an interaction Value
PM (Leader, Marked agent) 1

(n−1)

Pbi
(Leader, non-follower agent) B−i+1

(n−1)

Pwi
(Leader, follower agent) n−B+i−3

(n−1)

Let Z =
k−1∑

j=0

P j
M and Z ′ =

∑

g≥0

(Z · Pwi
)g. Both Z and Z ′ are geometric series

of common ration (PM) and (Z · Pwi
) respectively. Hence:

Constructing Self-stabilizing Oscillators in Population Protocols 199

Z = (1 − P k
M)/(1 − PM) and Z ′ = (1 − (Z · Pwi

)m)/(1 − Z · Pwi
)

For a large population of agents, P k
M � 0 even if k ∈ O(1). In the same man-

ner, since, (Z · Pwi
) < 0 and m → ∞, (Z · Pwi

)m = 0. Thus, PNext−i � 1. That
is, all the non-follower agents become followers before reaching the maximum
value of the leader’s counter. Hence, ιa � n

5 Conclusion

In this paper, we have considered the PPs model and have addressed the prob-
lem of autonomously generating oscillatory executions. We have considered the
problem using deterministic protocols and have shown that, under a determin-
istic scheduler, Ω(n) states are necessary to solve the SS-OSC problem. This
result emphasizes somehow the impact and the importance of randomization in
biological systems and chemical reactions in creating self-oscillations. We have
then proposed some protocols that solve the problem assuming a probabilistic
scheduler. This is a preliminary work as several open questions arise: (i) All the
proposed solutions in this paper, assume a central control, that is, the agents
first need to elect a leader in order to create the desired oscillatory behavior.
This is really costly especially for these kinds of systems, since the number of
agents is usually huge. Thus, the problem of designing protocols that solve the
SS-OSC problem in a decentralized way remains open. The main challenge is
to achieve the self-stabilizing oscillatory behavior using a number of states that
is independent from any global parameter of the system. Observe that when
decentralized solutions are considered, it is impossible to achieve the oscillatory
behavior as defined in this paper as, during the increasing phase (respectively,
the decreasing phase) of an oscillation, the number of agents whose state is in the
set S can decrease (respectively, increase) before (respectively, after) reaching
the amplitude. However, there is a scaling effect that ensures that if we consider
the global behavior of the population, by zooming out and ignoring the small
fluctuations due to the agents that may toggle their phase before (respectively,
after) reaching the amplitude of the oscillation, the population could display an
oscillatory behavior. (ii) We have recently addressed the SS-OSC problem in a
slightly different setting in which we assume that the population is synchronous
i.e., each agent is part of an interaction at each instant t. We were able to imple-
ment a self-synchronized clock and use it to design primitive oscillators. The
number of states used to solve the problem does not depend on the size of the
population however, it does depends on the period of the oscillator. Hence, it
would be also interesting to investigate the impact of the degree of synchrony
on the SS-OSC problem. Finally, (iii) it would be challenging to simulate, as
for the Fourier Transform, in a self-stabilizing way, any periodic behavior of a
given population using a finite number of deterministic oscillators. We were able
to do so in a recent investigation assuming synchronous populations. Extend-
ing the investigation taking in account different level of synchrony seems to be
interesting direction to investigate.

200 C. Cooper et al.

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Sta-
bly computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S.,
Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population
protocols. TAAS 3(4) (2008)

5. Beauquier, J., Burman, J.: Self-stabilizing synchronization in mobile sensor networks
with covering. In: Rajaraman, R., Moscibroda, T., Dunkels, A., Scaglione, A. (eds.)
DCOSS 2010. LNCS, vol. 6131, pp. 362–378. Springer, Heidelberg (2010)

6. Beauquier, J., Burman, J.: Self-stabilizing mutual exclusion and group mutual exclu-
sion for population protocols with covering. In: Fernàndez Anta, A., Lipari, G., Roy,
M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 235–250. Springer, Heidelberg (2011)

7. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On
space complexity of self-stabilizing leader election on a population protocol model.
Theory Comput. Syst. 50(3), 433–445 (2012)

8. Kinpara, K., Izumi, T., Izumi, T., Wada, K.: Improving space complexity of self-
stabilizing counting on mobile sensor networks. In: Lu, C., Masuzawa, T., Mosbah,
M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 504–515. Springer, Heidelberg (2010)

9. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics:
A new paradigm for artifacts. New Generation Computing 31(1), 27–45 (2013)

Towards a Universal Approach for the Finite
Departure Problem in Overlay Networks

Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann(B)

Department of Computer Science, University of Paderborn, Paderborn, Germany
{koutsopo,scheidel,thim}@mail.upb.de

Abstract. A fundamental problem for overlay networks is to safely
exclude leaving nodes, i.e., the nodes requesting to leave the overlay
network are excluded from it without affecting its connectivity. There
are a number of studies for safe node exclusion if the overlay is in a
well-defined state, but almost no formal results are known for the case in
which the overlay network is in an arbitrary initial state, i.e., when look-
ing for a self-stabilizing solution for excluding leaving nodes. We study
this problem in two variants: the Finite Departure Problem (FDP) and
the Finite Sleep Problem (FSP). In the FDP the leaving nodes have
to irrevocably decide when it is safe to leave the network, whereas in
the FSP, this leaving decision does not have to be final: the nodes may
resume computation when woken up by an incoming message. We are the
first to present a self-stabilizing protocol for the FDP and the FSP that
can be combined with a large class of overlay maintenance protocols so
that these are then guaranteed to safely exclude leaving nodes from the
system from any initial state while operating as specified for the staying
nodes. In order to formally define the properties these overlay main-
tenance protocols have to satisfy, we identify four basic primitives for
manipulating edges in an overlay network that might be of independent
interest.

1 Introduction

Any distributed system must be based on some overlay network that specifies
which nodes can directly send messages to which other nodes in the system. For
distributed systems across the Internet, this is achieved by the nodes storing IP
addresses of other nodes in that system, and in this case a node is said to be able
to directly send a message to another node whenever it knows its IP address.
A basic prerequisite for an overlay network which allows all pairs of nodes to
exchange information is that it is connected, and a fundamental problem for
overlay networks is to preserve connectivity while nodes are leaving, i.e., the
nodes requesting to leave the overlay network are eventually excluded from it
without disconnecting any staying nodes. Since due to permanent or transient
failures a distributed system may rarely be in an ideal state, it would be desirable
to find self-stabilizing protocols for the exclusion of leaving nodes, i.e., from any
initial state connectivity is preserved. While this seems to be a fundamental
problem, only recently first solutions were found.
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 201–216, 2015.
DOI: 10.1007/978-3-319-21741-3 14

202 A. Koutsopoulos et al.

Foreback et al. [15] proposed to study this problem in two variants: the Finite
Departure Problem (FDP) and the Finite Sleep Problem (FSP). In the FDP
the leaving nodes have to irrevocably decide when it is safe to leave the network,
whereas in the FSP, this leaving decision does not have to be final: the nodes
may resume computation when woken up by an incoming message. On the neg-
ative side, Foreback et al. showed that there is no self-stabilizing local-control
protocol for the FDP. But if an oracle is available, then an appropriate local-
control protocol can be constructed. Moreover, a variant of that protocol can
solve the FSP without using an oracle. However, these protocols require that
there is a fixed total order on the nodes (e.g., their names or IP addresses do
not change), and they only work for a specific overlay maintenance protocol that
aims at organizing the nodes in a sorted list.

In this paper, we present a self-stabilizing protocol for the FDP that can
extend a large class of overlay maintenance protocols so that they are then
guaranteed to eventually exclude the leaving nodes without risking disconnection
and while the overlay maintenance protocol is operating as specified for the
staying nodes. As a by-product, we present a set of four basic primitives for
the manipulation of edges in overlay networks that are safe and universal in
a sense that connectivity is preserved and that, in principle, one can get from
any weakly connected graph to any other weakly connected graph. This might
be of independent interest as we expect our insights to simplify the design and
analysis of overlay maintenance protocols in the future.

1.1 Model

We consider a distributed system consisting of a fixed set of processes in which
each process has a unique reference (like its IP address). We refer to processes
and their references interchangeably. The system is controlled by a protocol that
specifies the variables and actions that are available in each process. In addition
to the protocol-based variables there is a system-based variable for each process
called channel whose values are sets of messages. We denote the channel of
process u as u.Ch and u.Ch contains all incoming messages to u. Its message
capacity is unbounded and messages never get lost. A process can add a message
to u.Ch if it knows u (resp. its reference). Besides these channels there are no
further communication means, so only point-to-point communication is possible.

A process u has a variable mode(u) ∈ {leaving, staying} that is read-only. If
this variable is set to leaving, the process is leaving ; the process is staying if
the variable is set to staying.

There are two types of actions. The first type of action has the form of
a standard procedure 〈label〉(〈parameters〉) : 〈command〉, where label is the
unique name of that action, parameters specifies the parameter list of the action,
and command specifies the statements to be executed when calling that action.
Such actions can be called remotely. In fact, we assume that every message must
be of the form 〈label〉(〈parameters〉) where label specifies the action to be called
in the receiving process and parameters contains the parameters to be passed
to that action call. All other messages will be ignored by the processes. Apart

Towards a Universal Approach for the Finite Departure Problem 203

from being triggered by messages, these actions may also be called locally by
the process, which causes their immediate execution. The second type of action
has the form 〈label〉 : 〈guard〉 −→ 〈command〉, where label and command are
defined as above and guard is a predicate over local variables. We call an action
whose guard is simply true a timeout action.

There are three special commands that are important for the study of our
finite departure problem. Whenever a process u wants to send a message to a pro-
cess whose reference is stored in variable v, it executes v ← label(parameters),
which asks the process referenced by v to execute action label with parameter
list parameters. In addition, there are exit and sleep. If a process executes
exit it enters a designated exit state. We call such a process gone. If a process
executes sleep, it enters a sleep state. Such a process is asleep. If a process never
wakes up again, it is called permanently asleep. A process that is neither gone
nor asleep is called awake. See Figure 1 for the corresponding state graph for a
process.

Fig. 1. The state graph for a process in our model

The system state is an assignment of a value to every variable of each process
and messages to each channel. An action in some process p is enabled in some
system state if its guard evaluates to true and p is awake, or there is a message
in p.Ch requesting to call it and p is awake or asleep. In the latter case, p
becomes awake again as soon as the corresponding message is processed (in
which case it is removed from p.Ch). The action is disabled otherwise. Hence,
while a gone process never wakes up again, an asleep process may wake up again
when processing an appropriate message.

A computation is an infinite fair sequence of system states such that for
each state si, the next state si+1 is obtained by executing an action that is
enabled in si. This disallows the overlap of action execution. That is, action
execution is atomic. We assume weakly fair action execution and fair message
receipt. Weakly fair action execution means that if an action is enabled in all
but finitely many states of the computation when the corresponding process
is awake, and the process is awake for infinitely many states, then this action
is executed infinitely often. Note that unless a process is gone or permanently
asleep at some point (i.e., it never wakes up again), its timeout action is executed
infinitely often. Fair message receipt means that if the computation contains a
state where there is a message in a channel of a process that is not gone and that
enables an action in that process, then that action is eventually executed with
the parameters of that message, i.e., the message is eventually processed. Besides
these fairness assumptions, we place no bounds on message propagation delay or

204 A. Koutsopoulos et al.

relative process execution speeds, i.e., we allow fully asynchronous computations
and non-FIFO message delivery.

We consider protocols that do not manipulate the internals of process ref-
erences. Specifically, a protocol is copy-store-send if the only operations that it
executes on process references is copying them, storing them in local memory and
sending them in a message. That is, operations on references such as addition,
radix computation, hashing, etc. are not used. In a copy-store-send protocol, if a
process does not store a reference in its local memory, the process may learn this
reference only by receiving it in a message. A copy-store-send protocol cannot
introduce new references to the system. It can only operate on the references
that are already there.

The overlay network of a set of processes is determined by their knowledge
of each other. We say that there is a (directed) edge from a to b, denoted by
(a, b), if process a stores a reference of b in its local memory or has a message
in a.Ch carrying the reference of b. In the former case, the edge is called explicit
(drawn solid in figures), and in the latter case, the edge is called implicit (drawn
dashed). The edges form a directed process (multi-)graph PG. A weakly con-
nected component of a directed graph G is a subgraph of G of maximum size so
that for any two processes u and v in that subgraph there is a (not necessar-
ily directed) path from u to v. Two processes that are not in the same weakly
connected component are disconnected. We call a process p hibernating if p is
asleep, p.Ch is empty and all processes q that have a directed path to p in PG
are also asleep and have an empty q.Ch. The following claim was shown in [15].

Claim. For any copy-store-send protocol and any system state of that protocol
in which process p is hibernating, p is permanently asleep.

1.2 Problem Statement

A protocol is self-stabilizing if it satisfies the following two properties.

Convergence: starting from an arbitrary system state, the protocol is guaran-
teed to arrive at a legitimate state.

Closure: starting from a legitimate state the protocol remains in legitimate
states thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regardless
of their nature. Moreover, a self-stabilizing protocol does not have to be initial-
ized as it eventually starts to behave correctly regardless of its initial state. In
topological self-stabilization we allow self-stabilizing protocols to perform changes
to the overlay network, resp. PG. A legitimate state may then include a partic-
ular graph topology or a family of graph topologies.

In the following, a process is called relevant if it is neither gone nor hiber-
nating. Otherwise we call it irrelevant. Since hibernating and gone processes will
never execute any action, for the self-stabilization we only consider initial states
in which all processes are relevant. We also restrict the initial state to contain
only a finite number of messages that can trigger actions, since other messages

Towards a Universal Approach for the Finite Departure Problem 205

are ignored by the processes. Finally, we do not allow the presence of references
that do not belong to a process in the system. Their handling would require
failure/presence detectors which is beyond the scope of this paper. From now
on, an initial system state satisfies all of these constraints.

A system state is legitimate if (i) every staying process is awake, (ii) every
leaving process is either hibernating or gone, and (iii) for each weakly connected
component of the initial process graph, the staying processes in that component
still form a weakly connected component. Now we are ready to formally state
the following two problems.

Finite Departure Problem (FDP): eventually reach a legitimate state for
the case that the sleep command (and therefore the sleep state) is not
available (but only exit).

Finite Sleep Problem (FSP): eventually reach a legitimate state for the case
that the exit command (and therefore the gone state) is not available (but
only sleep).

A self-stabilizing solution for these problems must be able to solve these
from any initial state and to satisfy the closure property afterwards. Notice that
(i) and (ii) can trivially be maintained in a legitimate state, so for the closure
property one just needs to ensure that (iii) is also maintained.

A process p can safely leave a system if the removal of p and its incident
edges from PG does not disconnect any relevant processes. As shown in [15],
there is no distributed algorithm within our model that can decide when it is
safe for a process p to leave the system. Hence, we need oracles.

1.3 Oracles

An oracle O is a predicate that depends on the current system state and the
process calling it. In the context of the FDP, an oracle is supposed to advise a
leaving process when it is safe to execute exit, thus we restrict our attention to
protocols that only allow a leaving process to do so if the given oracle is true
for it. Such a protocol is also said to rely on the oracle. Moreover, we restrict our
attention to oracles that only depend on the current process graph of relevant
processes and the calling process, i.e., oracles are of the form O: PG × P →
{true,false} where PG is the set of process graphs and P is the set of processes.

We define the following oracle that we will use throughout the paper. Oracle
SINGLE evaluates to true for a process u if u has edges with at most one other
relevant process.

1.4 Related Work

To the best of our knowledge, the results by Foreback et al. [15] were the first
attempt to rigorously analyze self-stabilizing process departures for overlay net-
works. The phenomenon they unearthed about the impossibility to locally decide
when it is safe to leave the network is similar to the results of Fisher et al. [14] on

206 A. Koutsopoulos et al.

the consensus problem, which is not solvable in an asynchronous system even if
only a single process may crash. However, solutions to the stabilizing consensus
problem, in which it is not required that each process irrevocably commits to a
final value but that eventually they arrive at a common, stable value without
being aware of that, are known [3,11]. The impossibility can also be circumvented
by the use of specialized oracles known as failure detectors [9].

Due to the popularity of peer-to-peer networks, the research literature on
this subject is extensive [2,4,5,8,17,24,28]. While departure algorithms have
been proposed in these papers, none of these protocols are self-stabilizing. Cases
in which the rate of churn is limited have already been considered [1,18,23].
Kuhn et al. [23] present a solution that organizes nodes into cliques of Θ(log n)
size that they call super-nodes. Hayes et al. [18] handle limited churn with a
topological repair strategy called Forgiving Graph. For the case that the nodes
have a sufficient amount of time to react, Saia et al. [26] propose an algorithm
that repairs the network after an arbitrary number of deletions. Limited churn
has also been studied in the context of adversarial nodes [6,27]. While there is
almost no work on self-stabilizing node departures, several self-stabilizing peer-
to-peer protocols have already been proposed [10,12,19,20,22,25]. The studied
topologies range from simple line and ring structures [16] to skip lists and skip
graphs [20,25], expanders [13], Delaunay graphs [21], and a Chord variant [22].
Also a universal algorithm for topological self-stabilization is known [7]. However,
none of these provide any means to exclude nodes that want to leave the network
in a self-stabilizing manner.

1.5 Our Results

Our main result is a self-stabilizing local-control protocol presented in Section
3 that can solve the FDP when relying on the SINGLE oracle. The SINGLE
oracle was chosen for its simplicity, since we expect it to be easily implementable
via timeouts in practice. The only interfaces our protocol needs to an underlying
communication layer is that it can send a message to a process identified by some
reference (by executing v ← label(parameters) for some variable v holding a
reference) and that it can check (via v = w) whether two references v and
w point to the same or different processes. This has the advantage that the
underlying layer is given full flexibility concerning the management of referencing
information and that it does not have to pass any of that information (apart from
whether two references point to the same process) to the process layer, which
might be useful for anonymous networks. Instead, the protocols in [15] require
that there is a fixed order on the processes. Also, the protocols in [15] were
designed with a fixed topology in mind while this is not the case for our new
protocol, which allows it to be easily integrated into existing overlay maintenance
protocols, as we will demonstrate in this paper in Section 4. In order to simplify
the analysis and formally specify the class of overlay maintenance protocols
that can be used in conjunction with our departure protocol, we introduce four
basic primitives for manipulating edges in the process graph in Section 2 and
prove some fundamental results about them which might be of independent

Towards a Universal Approach for the Finite Departure Problem 207

interest. We point out that the solutions in Sections 3 and 4 require the additional
constraint that initially there exists at least one staying process per connected
component of the overlay network.

2 Preliminaries

An important property for any overlay management protocol is the fact that
weak connectivity is never lost by its own actions. Therefore, it is highly desir-
able that every process only executes primitives that preserve weak connectivity.
Here we introduce four primitives for manipulating edges in an overlay network
that are safe in a sense that they preserve weak connectivity (as long as there
is no fault). This implies that any distributed protocol whose actions can be
decomposed into these four primitives is guaranteed to preserve weak connectiv-
ity. The four primitives are:

Introduction. If a process u has a reference to two processes v and w, u intro-
duces w to v if it sends a message to v containing a reference to w while
keeping the reference to w.

Delegation. If a process u has a reference to two processes v and w, then u
delegates w’s reference to v if it sends a message to v containing a reference
to w and deletes the reference to w.

Fusion. If a process u has two references v and w with v = w, then it fuses
them if it only keeps one of these references.

Reversal. If a process u has a reference to some other process v, then it reverses
the connection if it sends a reference of itself to v and deletes the reference
to v.

(a) Introduction primitive (b) Delegation primitive

(c) Fusion primitive (d) Reversal primitive

Fig. 2. The four primitives in pictures

Note that we assume that u, v, w are pairwise distinct. The only exception
is self-introduction, a special case of introduction, where u sends a reference
of itself to v, but does not delete its reference to v. The four primitives have
the advantage that they can be executed locally by every process in a wait-free
fashion (as none of the primitives requires any feedback). Also, they just need the

208 A. Koutsopoulos et al.

ability to check whether two references point to the same process (see Fusion)
to be implementable. Other than that, access to the contents of the references
is not needed, which is useful. Moreover, it holds:

Lemma 1. Introduction, Delegation, Fusion, and Reversal preserve weak con-
nectivity.

Proof. The statement obviously holds for Introduction since only additional
edges are introduced. In Delegation an edge (u,w) is deleted, but there still exists
a path from u to w via v, so u and w are still in the same weakly connected
component. Fusion deletes an edge only if it is superfluous for weak connectiv-
ity. The Reversal rule deletes an edge (u, v) but replaces it with an edge (v, u),
thereby also preserving weak connectivity. ��

Let P denote the set of all distributed protocols where all interactions
between processes can be decomposed into the four primitives. Not surprisingly,
all of the self-stabilizing topology maintenance protocols proposed so far (e.g.,
[10,12,19,20,22,25]) satisfy this property (as otherwise they would risk discon-
nection). Lemma 1 implies that any protocol in P preserves weak connectivity,
which was previously shown individually for each cited protocol. Note that the
first three primitives even preserve strong connectivity in a sense that for any
pair of nodes u, v with a directed path in PG there will always be a directed
path from u to v in PG when only allowing these three primitives. We say that
a set of primitives is universal if the primitives allow one to get from any weakly
connected graph G = (V,E) to any other weakly connected graph G′ = (V,E′)
for PG. The set is weakly universal if G′ is strongly connected.

Theorem 1. Introduction, Delegation, Fusion, and Reversal are universal.

Proof. We give a general strategy how to transform an arbitrary weakly con-
nected graph G = (V,E) into any other weakly connected graph G′ = (V,E′).
At first, note that if every process continuously introduces all neighbors to each
other, including self-introduction, then the topology of PG is eventually trans-
formed from G into a clique (in fact, O(log n) rounds of communication are
sufficient for that as the distances between the nodes are essentially cut in half
in each round of introduction).

Next we show that by using Delegation and Fusion, one can transform PG
from the clique to the bidirected extension G′′ = (V,E′′) of G′, i.e., the graph
where for any edge (u, v) ∈ E′ there are edges (u, v), (v, u) ∈ E′′. To do so, we
make use of the fact that G′′ is strongly connected. Consider an arbitrary edge
(u,w) in PG that is not in E′′. Since G′′ is strongly connected, there exists a
shortest path from u to w in G′′ and therefore also in PG (as we first want to
keep all edges in G′′). Let v1 be the first neighbor of u along that shortest path.
Then u delegates the reference of w to v1. Now the process v1 (and all other
processes on the shortest path) proceed similar to u by forwarding the reference
to w along the shortest path up to the last process vk, who is a neighbor of w.
Process vk uses Fusion to merge the edge with (vk, w) ∈ E′′. By applying this
procedure to all edges not in E′′, all that remains is G′′.

Towards a Universal Approach for the Finite Departure Problem 209

At last we can use Reversal and Fusion to get from G′′ to G′. To do so, every
edge (u, v) that is in E′′, but not in E′ is reversed by u. Then the newly created
edge (v, u) is fused with the already existing edge (v, u) ∈ E′. ��

Note that Theorem 1 only shows that in principle it is possible to get from
any weakly connected graph to any other weakly connected graph. From the
proof we can conclude the following corollary.

Corollary 1. Introduction, Delegation and Fusion are weakly universal.

Furthermore, Introduction, Delegation, Fusion and Reversal are not only
sufficient for universality but also necessary, i.e., by removing one primitive,
universality is lost.

Theorem 2. Introduction, Delegation, Fusion and Reversal are necessary for
universality.

Proof. To prove the lemma, we show that each primitive has a unique function
that cannot be replaced by the other primitives. Introduction is the only prim-
itive that can create new edges, so without it, any Graph G′ with |E′| > |E|
cannot be reached from G. Fusion is the only primitive that reduces the over-
all number of edges. Delegation is necessary, since by using only Introduction,
Fusion and Reversal, a protocol can never locally disconnect two specific pro-
cesses. Finally, consider an example graph G consisting of two processes u and
v and an edge (u, v). Reversal is necessary to reach the goal topology G′ that
consists solely of the edge (v, u). ��

3 Process Departures

In this section we present a self-stabilizing protocol for the FDP that only needs
to compare references for equality as needed for the four primitives.

Our protocol consists of various actions. In the present(v) action, a reference
v is introduced to some process (i.e., the sending of a present(v) message to u,
corresponds to Introduction primitive). Moreover, in the forward(v) action, the
reference v is delegated to the executing process.

We assume that whenever a process a sends a request to call present or
forward containing a reference of a process b to another process c, it auto-
matically sends some relevant information it knows about b along with it. In
this section the only relevant information is the mode of b, which we denote
as a.mode(b) (i.e., a’s knowledge of b’s mode), which can be staying or leav-
ing. Note that since we aim at a self-stabilizing protocol, a.mode(b) might be
incorrect (i.e., a.mode(b) 	= mode(b)) since b might have a different mode than a
thinks it has. In this case we say that process a contains invalid (mode) informa-
tion about process b. A system is in an invalid state if there exists at least one
relevant process u with invalid information stored in u itself or in some incoming
message in u.Ch. In both cases we say that u has invalid information. If no node
has invalid information, the system state is said to be valid.

210 A. Koutsopoulos et al.

We denote the set of all references a process u stores in its local memory
as the neighborhood set u.N of u. Note that u.N is not a variable of u but
just a notation we use, which simplifies our protocol description and the proofs.
Along with each v ∈ u.N , process u also stores its knowledge of the mode of
v, denoted by u.mode(v). Our solution makes use of a special variable called
anchor whose reference is the only one not being in u.N (i.e., it will be treated
differently than all other references of v throughout our protocol). The anchor
will only be used by the leaving nodes, so in a legitimate state, the anchor of
a staying process is empty, denoted by ⊥. The anchor of a leaving process v is
a reference to some process which, according to the local information of v is a
staying process. Therefore, each time v gets a message from a third process w,
v forwards w to its anchor by a forward message in the hope of eliminating all
references to itself. Each process has a periodically executed timeout action. In
case a process u is leaving, it sends a present(u) message to its anchor in the
timeout action (in order to verify it has a staying anchor). If it is staying, it
sends a present(u) message to all neighbors (to make other processes aware of
it). This is an implementation of our earlier presented self-introduction primi-
tive. Periodically executed self-introduction can ensure that invalid information
vanishes from the system, as we will show later. Additionally, leaving processes
consult SINGLE in timeout, and if it evaluates to true, the process is safe to
perform exit. The actions of our protocol are presented in Algorithms 1- 3.

Algorithm 1. u.timeout

1: if u.anchor �= ⊥ and u.mode(anchor) = leaving then
2: u ← present(u.anchor) � ♦
3: u.anchor := ⊥
4: if mode(u) = leaving then
5: if u.N = ∅ then
6: if SINGLE(u) then
7: exit
8: else
9: if u.anchor �= ⊥ then

10: u.anchor ← present(u) � ♦
11: else
12: for all v ∈ u.N do
13: u ← forward(v) � ♦
14: u.N := ∅
15: else
16: if u.anchor �= ⊥ then
17: u ← present(u.anchor) � ♦
18: u.anchor := ⊥
19: for all v ∈ u.N do
20: if u.mode(v) = leaving then
21: u.N := u.N \ {v}
22: v ← present(u) � ♦ or ♣

Towards a Universal Approach for the Finite Departure Problem 211

Algorithm 2. u.present(v)

1: if v = u.anchor and u.mode(v) = leaving then
2: u.anchor := ⊥ � ♠
3: if u.mode(v) = leaving then
4: if mode(u) = leaving then
5: v ← forward(u) � ♣
6: else
7: if v ∈ u.N then
8: u.N := u.N \ {v}
9: v ← forward(u) � ♣

10: else
11: if mode(u) = leaving then
12: if u.anchor �= ⊥ then
13: v ← forward(u) � ♣
14: else
15: u.anchor := v
16: else
17: u.N := u.N ∪ {v} � ♠

Algorithm 3. u.forward(v)

1: if v = u.anchor and u.mode(v) = leaving then
2: anchor := ⊥ � ♠
3: if u.mode(v) = leaving then
4: if mode(u) = leaving then
5: if u.anchor = ⊥ then
6: v ← forward(u) � ♣
7: else
8: u.anchor ← forward(v) � ♥
9: else

10: if v ∈ u.N then
11: u.N := u.N \ {v}
12: v ← forward(u) � ♣
13: else
14: if mode(u) = leaving then
15: if u.anchor �= ⊥ then
16: u.anchor ← forward(v) � ♥
17: else
18: u.anchor := v
19: else
20: u.N := u.N ∪ {v} � ♠

212 A. Koutsopoulos et al.

3.1 Correctness Proof

To show that our proposed protocol is a self-stabilizing solution to the FDP, it
remains to show two properties.

Safety : The protocol never disconnects any relevant processes.
Liveness: All leaving processes are eventually gone.

Lemma 2. If a computation of our protocol starts in a state where the subgraph
PG of relevant processes is weakly connected, it remains weakly connected in
every state of the computation.

To prove safety we make use of the results from Section 2.

Proof. First of all, note that each relevant process is also awake, since obviously
gone processes cannot be relevant. The proof of the lemma relies on the fact that
our protocol that the (awake) processes run is a composition of the four primi-
tives presented in Section 2. To illustrate this, the protocol is annotated with the
symbols ♦,♥,♠,♣. Each symbol represents a primitive: ♦ is (Self-)Introduction,
♥ is Delegation, ♠ is Fusion and ♣ is Reversal. Therefore, we can use the result
of Lemma 1 and the fact that SINGLE preserves weak connectivity in the only
case in which we do not use a primitive, (i.e., a process executes exit). This
proves the lemma. ��

It remains to show that our protocol makes progress such that all leaving
processes eventually leave the system. Due to space constraints, we only sketch
the proof of Lemma 3.

Lemma 3. Leaving processes eventually execute the exit command, thereby pre-
serving liveness.

Sketch of Proof: Let Φt be a potential function that denotes the amount of invalid
information present in the system at some time t, i.e., Φt is equal to the number
of edges (x, y), either explicit or implicit, such that mode(y) 	= x.mode(y).

The only way Φt could increase is if invalid information is copied. In order
to do so, a process u has to forward invalid information about process v to
another process w, since the information sent about oneself is always valid. The
only spots in the pseudocode where this can potentially happen are lines 8 and
16 of the forward action, where u sends forward(v) to u.anchor. However, in
that case v is not saved by u. So, even if u sends invalid information about v
to u.anchor, the invalid information is not duplicated in the system. Therefore,
Φt ≥ Φt′ for any t′ > t. To show that the system state is eventually valid, it
suffices to show that as long as Φt > 0 it holds that for any t there is a t′ > t
such that Φt′ < Φt.

Let (u, v) be an edge that contains invalid information at time t. We have
to show that for every combination of the values of mode(u) and mode(v) the
potential drops. Due to page limitations we skip this part of the proof.

The statement of Lemma 3 follows, since we can show that eventually a
leaving process which has an edge to or from some staying process u executes

Towards a Universal Approach for the Finite Departure Problem 213

exit. By using this argument inductively we have that eventually all leaving
processes execute exit. ��

From Lemma 2 and 3 we can conclude the following Theorem.

Theorem 3. The protocol depicted in Algorithms 1- 3 together with the oracle
SINGLE is a self-stabilizing solution to the FDP.

4 Embedding in Existing Overlay Protocols

In this section we show how the protocol that was developed in Section 3 can
be combined with a large class of distributed overlay protocols. Note that the
original protocol does not necessarily have to be self-stabilizing. However, it must
satisfy our safety requirement, i.e., no action should disconnect processes. The
framework given below solves the FDP (Section 4.1).

4.1 FDP for Arbitrary Protocols

Consider any protocol P ∈ P (i.e., P is based on the four primitives and hence
satisfies the safety condition). In order to combine our protocol with P , P has to
fulfill two algorithmic requirements. First, P conducts periodic self-introduction,
i.e., it has a periodically executed (timeout) action, in which the executing pro-
cess introduces itself to all processes in its neighborhood (among other activi-
ties). The timeout action of P is called P -timeout. Second, P has a postprocess
action, which is able to handle messages that cannot be delivered, i.e., if a mes-
sage v ← label(parameters) cannot be delivered, postprocess is able to act
accordingly in order to reintegrate the information into the process. We need
postprocess to handle messages that cannot be delivered because references of
leaving processes are in parameters. Therefore, we require that postprocess uses
the forward messages of our original protocol to get rid of these references. The
exact inner workings of postprocess are closely tied to P itself, therefore we do
not specify how postprocess deals with references of staying processes and other
variables that are in parameters. Apart from being useful for us to solve the
FDP, such a postprocess action is also helpful in cases of messages that need
to be reintegrated into the process, for example because their delivery failed
before. Many known self-stabilizing overlay protocols proposed so far can easily
be adapted to satisfy these requirements.

Let P ′ be the protocol framework that combines P and the already presented
protocol to solve the FDP. The idea of P ′ is to introduce an action preprocess
that is used every time a process u sends a message v ← label(parameters) in P .
Instead of sending this message directly, u calls its preprocess(label, parameters)
action. This action saves the message in a message list and verifies the mode of
v and each process x in parameters by sending a verify(u) message to that
process. These verify messages are resent in timeout, if an answer has not been
received yet. Once all processes have answered by a process(v) message, u either
sends the message v ← label(parameters) if all processes in parameters are stay-
ing, otherwise it calls the local postprocess(parameters) action. The postprocess

214 A. Koutsopoulos et al.

action makes sure that all leaving processes in parameters are excluded and that
staying processes are reintegrated into P . Note that preprocess and postprocess
can only be called locally. To enhance readability we write (x1, . . . , xk) instead of
parameters in all algorithms, thereby focusing on the process references of mes-
sages in P and leaving out the part of parameters which does not contain process
references, but just additional information. However, this additional information
in parameters is not lost by preprocess and postprocess, but we do not interfere
with it.

Another addition is that every process u executing P ′ is required to main-
tain an additional variable u.anchor, which (in a valid configuration) has the
value ⊥ if u is staying. Moreover, each process maintains a list variable u.mlist
which stores all the messages u wants to send. These are sent out once the valid
information from the xi processes arrive by process messages. In addition to
our earlier protocol the mode information of a reference saved in mlist can have
the additional value unknown to indicate that a process message has not been
received yet, i.e., the mode is not verified. Of course, the mode information the
node v stores about itself (mode(v)) still can only have either the value leaving
or staying. It remains to specify how leaving nodes react if a label(parameters)
message of P is received. A leaving node will not execute the corresponding
action of P but sends present messages to all processes in parameters in order
to remove possible references to it.

Due to space constraints the framework for constructing the modified pro-
tocol P ′ cannot be presented in this paper. Note that even though we do not
present them in a specific algorithm, all actions of P have to adhere to the
changes presented in the last paragraph (not only timeout). Furthermore, the
present and forward actions from the last section are changed in case a staying
process gets a reference from another staying process.

Correctness Proof. We need to show that all leaving processes are eventually
gone and, in case P is self-stabilizing, that protocol P ′ eventually works like
P (e.g., reaches the same target topology). The proof of Theorem 4 proceeds
analogously to the proofs of Section 3.

Theorem 4. Let P ∈ P be a distributed overlay protocol which solves some
distributed problem DP with the already mentioned requirements. Then there is
another protocol P ′ constructed as described above, such that P ′ eventually solves
FDP. In addition, if P is self-stabilizing, then P ′ also solves DP.

Analogous to the results in [15], we can overcome the use of oracles by relaxing
the FDP to the FSP. In this problem a process u can either be asleep or awake.
If u is asleep, it does not preform any actions besides waiting for incoming
messages. If it is awake, it conducts the desired protocol as usual. Once an
asleep process receives a message, it automatically becomes awake again and
executes the corresponding actions.

Towards a Universal Approach for the Finite Departure Problem 215

5 Conclusion

We presented a self-stabilizing protocol for the FDP and the FSP that can
be combined with a large class of overlay maintenance protocols. Additionally,
we identified four basic primitives for manipulating edges in an overlay network
that preserve weak connectivity and are universal.

In the future we want to investigate stronger safety conditions for overlay
networks than just connectivity.

References

1. Albrecht, K., Kuhn, F., Wattenhofer, R.: Dependable Peer-to-Peer Systems With-
standing Dynamic Adversarial Churn. In: Kohlas, J., Meyer, B., Schiper, A.
(eds.) Dependable Systems: Software, Computing, Networks. LNCS, vol. 4028,
pp. 275–294. Springer, Heidelberg (2006)

2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay
networks. In: SOSP, pp. 131–145 (2001)

3. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing Consensus in Mobile Networks.
In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 37–50. Springer, Heidelberg (2006)

4. Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37
(2007)

5. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data
structure for distributed environments. In: SODA, pp. 318–327 (2004)

6. Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory Comput.
Syst. 45(2), 234–260 (2009)

7. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)

8. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a
dynamic overlay network for routing, data management, and multicasting. In:
SPAA, pp. 170–179 (2004)

9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed
systems. J. ACM 43(2), 225–267 (1996)

10. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic
skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)

11. Doerr, B., Goldberg, LA., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing
consensus with the power of two choices. In: SPAA, pp. 149–158 (2011)

12. Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and Byzantine-Tolerant
Overlay Network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 343–357. Springer, Heidelberg (2007)

13. Dolev, S., Tzachar, N.: Spanders: Distributed spanning expanders. Sci. Comput.
Program. 78(5), 544–555 (2013)

14. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

15. Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., Strothmann, T.:
On Stabilizing Departures in Overlay Networks. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 48–62. Springer, Heidelberg (2014)

216 A. Koutsopoulos et al.

16. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time
Complexity of Distributed Topological Self-stabilization: The Case of Graph Lin-
earization. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 294–305.
Springer, Heidelberg (2010)

17. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A
scalable overlay network with practical locality properties. In: USENIX Symposium
on Internet Technologies and Systems ((2003)

18. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure
for low stretch under adversarial attack. Distributed Computing 25(4), 261–278
(2012)

19. Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief Announce-
ment: Self-stabilizing Spanning Tree Algorithm for Large Scale Systems. In: Datta,
A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer,
Heidelberg (2006)

20. Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed poly-
logarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140
(2009)

21. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional
topological self-stabilization: A distributed algorithm for delaunay graphs. Theor.
Comput. Sci. 457, 137–148 (2012)

22. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord
overlay network. In: SPAA, pp. 235–244 (2011)

23. Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-
to-peer systems. Distributed Computing 22(4), 249–267 (2010)

24. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation
of the butterfly. In: PODC, pp. 183–192 (2002)

25. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A Stabilizing Deterministic
Message-Passing Skip List. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011.
LNCS, vol. 6976, pp. 356–370. Springer, Heidelberg (2011)

26. Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks.
In: IPDPS, pp. 1–12 (2008)

27. Scheideler, C.: How to spread adversarial nodes?: rotate! In: STOC, pp. 704–713
(2005)

28. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Frans Kaashoek, M., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

Refinement of Probabilistic Stabilizing Programs
Using Genetic Algorithms

Ling Zhu(B), Jingshu Chen, and Sandeep Kulkarni

Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824, USA

{zhuling,chenji15,sandeep}@cse.msu.edu

Abstract. In this paper, we evaluate the role of genetic algorithms
(GAs) for identifying optimal probabilities in probabilistic self-stabilizing
algorithms. Although it is known that the use of probabilistic actions is
beneficial for reducing the state space requirements and solving problems
that are unsolvable in the deterministic manner, identifying the ideal
probabilities is often difficult. This is especially the case where several
independent probability values need to be selected. We analyze two token
ring protocols proposed by Herman –an asymmetric program where one
process is distinguished and a symmetric program where all processes
are identical (anonymous). We find that for the asymmetric program,
unequal probabilities are preferred for smaller rings. Moreover, the size
of the ring for which equal probability is desirable increases with the
increase in the states available to individual processes. By contrast,
unequal probabilities are preferred for the symmetric token ring when
the number of processes increases. We also consider the case where the
symmetric protocol is modified to allow each process to choose the proba-
bilities independently. We find that making a few processes almost deter-
ministic reduces the expected convergence time. Finally, we note that the
analysis in the paper can also be used to identify the increased cost of
randomization when compared to a corresponding deterministic solution.

1 Introduction

A stabilizing program [5] ensures that starting from an arbitrary state, the pro-
gram recovers to its legitimate states. Moreover, after reaching a legitimate state,
in the absence of faults, it remains in legitimate states forever. Thus, a stabilizing
program ensures that it can recover to its legitimate states from any transient
fault. Examples of stabilizing systems include [5,11,12,14,16]. Programs used in
[5,14,16] ensure that any computation of the program will inevitably reach the
legitimate states, and programs used in [11,12] guarantee that legitimate states
will be reached with probability 1.0. In other words, programs in [5,14,16] ensure
that any computation starting outside legitimate states cannot stay outside legit-
imate states forever. By contrast, programs in [11,12] can have computations
that stay outside legitimate states forever. However, by assigning probabilities
to individual program actions, we can make this probability negligible.

Although programs in [11,12] guarantee convergence to legitimate states with
probability 1.0, identifying optimal probability valuesto minimize the expected
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 217–232, 2015.
DOI: 10.1007/978-3-319-21741-3 15

218 L. Zhu et al.

convergence is often difficult. If the program involves several independent prob-
abilities, then even a brute force analysis could be impossible.

With this motivation, in this paper, we focus on the problem of identifying
ideal probability values that will reduce the expected convergence time using
genetic algorithms (GAs). GA is a computation method based on the princi-
ples of natural evolution to solve optimization problems. In GA, we begin with
a population of programs and identify their objective function that character-
izes the level to how they satisfy the program specification and/or minimize the
desired objective. Subsequently, the programs of the next generation are gener-
ated by selecting elite programs of current population and applying mutation
and crossover to evolve new programs. Although the solutions (programs) iden-
tified by GA are not always the provably optimal solutions, GA has the potential
to find optimal solutions. Moreover, if the same optimal solution survives sev-
eral generations, it is typically considered as a final optimal solution. GA can
substantially reduce the search space and can be effective in the case where the
independent probabilities make the brute force search impossible.

In our work, we utilize GA with both single objective and multiple objec-
tives. In cases of multiple objectives, GA finds multiple non-dominating pro-
grams (called Pareto-optimal solutions). We utilize the multiple objectives to
effectively find best probability values for each size of the underlying network.

We analyze the programs in [11,12] by GA. Of these, the program in [12]
is an asymmetric token ring program that has one distinguished process that
runs a different set of actions than all other processes. The program in [11] is
a symmetric token ring program where all processes are indistinguishable from
each other. The main observations of our analysis are as follows:

– For the asymmetric token ring program, when the number of processes is
small, the expected convergence time is least with a biased coin. However,
as the number of processes increases, an unbiased coin is required to reduce
expected convergence time.

– We also consider an extension of the asymmetric token ring program in [12]
where we increase the domain of each variable. We find that the number
of processes for which unbiased coin is preferred keeps increasing with the
domain size of each variable. Specifically, if the domain of variables used
by processes is 3 then an unbiased coin is desirable when the number of
processes is 6 or larger. By contrast, for a domain size of 4, an unbiased
coin is desirable when the number of processes is 11 or larger. Finally, for
a domain of size 5, the number of processes for which an unbiased coin is
preferred is large; exact number could not be identified due to the state space
explosion problem.

– For the symmetric token ring program, we were able to validate a previously
known result that when the number of processes is less than or equal to 7,
an unbiased coin reduces the expected value of the convergence time. As the
number of processes increase, it is desirable that the coin bias is increased.
For example, for 15 processes, a coin that produces 0 with 31% probability
is ideal.

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 219

– We also consider a simple extension of the symmetric token ring program
in [11] where each process chooses its probability values independently.
Although this violates the pure symmetry (anonymity) of processes, we find
that this can reduce the expected convergence time even more. For example,
for 5 processes, the expected value of convergence time reduces by more than
5%, and for 3 processes, reduces by 10% when compared with the fully sym-
metric program. Additionally, in this approach with 5 processes, the best
solution identified by GA made 2 of the processes to be lowest probability
value and 3 of the processes to be the highest value.

2 Preliminaries

In this section, we recall the definitions of programs, computations and stabi-
lization. These definitions are based on the work in [3,5,6].

A program p is specified in terms of a set of processes. Each process is asso-
ciated with a set of variables and a set of actions. Each variable is associated
with a finite domain. An action is of the form:

Action name :: 〈guard〉 −→ pr1 〈statement1〉,
pr2 〈statement2〉,

. . .;

where Action name is the name given to the action, pr1, pr2 · · · are real numbers
in [0..1], guard is a Boolean expression involving program variables (i.e., the
union of the process variables) and statement(s) updates one or more variables
of the process. Furthermore, the sum of probability values associated with a
given action is 1.0. We assume that if a process has multiple actions then the
guards corresponding to those actions are disjoint.

A state of the program is obtained by assigning each program variable a value
from its domain. The state space of the program is the set of all possible states
of the program. A state predicate of program is a subset of its state space.

A transition of a program from state s0 is obtained as follows. Each process
identifies the guard of an action (if any) that is true in state s0. If such an
action exists then it executes one of the corresponding statements based on the
given probability values. If no such action exists then the state of that process
remains unchanged. The new state of the program is obtained by simultaneous
execution of all processes in the program. Finally, this process is continued ad
infinitum to obtain a computation of that program. Observe that this execution
is in synchronous semantics.

Finally, we say that a program p stabilizes to state predicate S iff (1) if p
starts from an arbitrary state it reaches a state in S with probability 1, and
(2) if p starts from a state in S then it remains in S forever. Observe that
the above definition allows the possibility that the program can stay outside S
forever. However, the probability of such a computation can be made as small
as possible.

220 L. Zhu et al.

3 An Asymmetric Probabilistic Self-stabilizing Program

In this section, we recall the asymmetric probabilistic self-stabilizing program
for a unidirectional ring of processes by Herman [12]. This algorithm is a variant
of Dijkstra’s K-state token ring program.

This program, say PA, consists of n processes numbered 0..(n − 1) that are
organized in a ring. The program is asymmetric in the sense that there is a special
process (named 0) that runs a different set of actions than all other processes.
All other processes run the same program. Each process j maintains the variable
x.j whose domain is {0, 1, 2}. The actions of this program are as follows:

A0 :: x.0 == x.(n − 1) −→ λ : x.0 := (x.0 + 1) mod 3
+ 1 − λ : x.0 := (x.0 + 2) mod 3;

Aj j �= 0 :: x.j �= x.(j − 1) −→ x.j = x.(j − 1);

In the above actions, A0 is specifically designed for process 0. When the guard
condition x.0 == x.(n − 1) is satisfied, process 0 is privileged, (respectively, holds
a token). Then, with probability λ, process 0 increments its value by 1 in modulo
3 arithmetic. Alternatively, with probability 1 − λ, it increases the value by 2
in modulo 3 arithmetic. The second action is designed for other processes j,
0 < j < n. When the guard condition x.j �= x.(j − 1) is satisfied, j is privileged.
Subsequently, process j copies the value of its predecessor.

Observe that if all x values are initialized to 0 then only process 0 has the
token. In this state, process 0 can either change its value to 1 or 2. Without
loss of generality, consider the case where process 0 changes its value to 1. In
this state, only process 1 has the token. Execution of process 1 changes x.1 to
1. In this state, process 2 has the token. This execution continues until all x
values change to 1. In this state, process 0 can execute again and change x.0.
The states reached in the execution of this program are the legitimate states of
the program. Additionally, as shown in [12], if the program starts in an arbitrary
state, with probability 1, it is guaranteed to reach a legitimate state. In other
words, although this program can have computations that stay outside legitimate
states forever, the probability of such computations can be made smaller than
any ε, ε > 0. Furthermore, after it reaches a legitimate state, its subsequent
execution only includes legitimate states.

The above program is a variation of the K-state program by Dijkstra [5] in
synchronous semantics. Specifically, in [5], the value of λ is always 1, i.e., process
0 always increments its value by 1. Although this program is often studied in
interleaving semantics, it is known to be stabilizing in synchronous semantics as
well. And, in this program, any computation is guaranteed to reach a legitimate
state and stay there forever. However, to ensure stabilization, it requires that the
domain of x be equal to [0..K − 1], where K ≥ n. By contrast, the program in
[12], provides probabilistic stabilization even if the domain of x is only {0, 1, 2}.

The above program can also be easily extended to the case where domain
of x is slightly increased. For example, if the domain of x is {0, 1, 2, 3} then we
need to change the above program so that process 0 increments x.0 by 1 with

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 221

probability λ1, by 2 with probability λ2 and by 3 with probability 1 − λ1 − λ2.
We consider these variations in our analysis of this program.

4 A Symmetric Probabilistic Self-stabilizing Program

In this section, we recall the symmetric token ring program in [11]. Similar to
the program in Section 3, this program also arranges the processes 0..(n − 1) in
a ring, where n is odd. However, unlike the asymmetric program in Section, 3, in
the symmetric program, all processes execute an identical code and cannot use
their ID. In other words, the process IDs are only for understanding the program
and not used by processes themselves. The action of the program is as follows:

Aj : x.j == x.pre −→ λ :: x.j := 0
+1 − λ :: x.j := 1;

Aj : x.j �= x.pre −→ 1 :: x.j := x.pre

where pre denotes the process that comes before process j in the ring. Observe
that in the above program, process j is privileged (respectively, process j has
the token) iff its value equals that of its predecessor. In this case, it randomly
chooses to update its value. In particular, with probability λ, it sets the value
to 0. And, with probability 1 − λ, it sets it to 1.

In this program, process j is said to have the token iff x.j is the same as its
predecessor. Since the number of processes are odd, it follows that the x values of
at least two neighboring processes are equal. In other words, there is at least one
process that has the token. Now, consider the case where we have five processes
and the x values of processes are 〈0, 1, 0, 1, 0〉. In this state, process 0 has the
token since x.0 is the same as its predecessor. Process 1 will have the token after
the execution of one program step. Furthermore, this program guarantees that
with probability 1, the program converges to its legitimate states where exactly
one process has the token and this token circulates along the ring.

5 Methodology

5.1 Overall Framework

The overall framework (Figure 1) is as follows: For a given probabilistic program,
we determine probabilities need to optimize, then encode these probabilities into
genome. GA initializes the population with random created genomes (programs),
evaluates programs using a probabilistic model checker - PRISM, and optimizes
the program by iterative reproduction (selection, crossover and mutation).

222 L. Zhu et al.

Fig. 1. Overall Framework

5.2 Genetic Algorithm

GA[15,23] is a guided search or optimization technique, inspired by the bio-
logic evolution. The solution (or program) is encoded into artificial chromo-
somes(genomes), and these genomes preserve the problem structure and infor-
mation during the evolution. The implementation of GA is shown in Figure 1. It
begins with a population of randomly generated genomes(programs), then GA
evaluates generated programs using PRISM and assigns objective values to each
program. After that population for next generation (called offspring) is created
by selecting and recombining the population of current generation (called par-
ent genomes). Iteratively, GA evolves the population that the average objective
values get better until some stopping criterion is reached. The stopping criterion
is either if the number of generation reaches the maximum allowed generation
or the optimal solutions are found.

Genome. In this paper, we optimize a set of probabilities (λs) that maximize
the program performance, and use bit strings to represent these probabilities
with a range of [0.01, 0.99]. Each probability value is obtained by mapping an
7-bit string to an integer value from [1, 99], then divided by 100. The genome, a
representation of solutions to the problem, consists of one or multiple bit strings.

Multi-objective and NSGAII. In GA, objective functions are to evaluate
the quality of the genome, and it is called multi-objective GA if two or three
objectives used in GA. In this paper, one of the objective functions measures
the expected convergence time of the probabilistic programs using PRISM, and
GA is set to minimize this objective. The other objective is the total number
of processes in the ring. By using the multi-objective GA, we can get minimum

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 223

expected convergence time for all different sizes of ring from run of GA. Other-
wise, if we use single objective, then we need run GA multiple times with each
time running for a specific size of ring.

We apply nondominated sorting GA (NSGAII [4]) to implement multi-
objective GA. NSGAII is one of the state-of-art methods for multi-objective
GA. It preserve all the elites to emphasize the good solutions, at the same time,
maintains diversity of the search. It uses nondominated sorting which compares
two solutions by the concept of domination. Domination is defined as follows:
A solution A dominates B if A is no worse than B in all objectives, and A is
strictly better than B in at least one objective. NSGAII sorts the population
rank by rank, and nondominated solutions in a generation are the solutions
of first rank and considered as best ones in that generation. If nondominated
solutions of first rank are removed from the population, then another set of non-
dominated solutions are emerged and called solutions of second rank. Within
the same rank, the solutions are compared based on the crowding distance, that
is, less crowded solution is considered better. Using nondominated sorting and
crowding distance, NSGAII quickly converges to the optimum front as well as
maintain the diversity among the solutions in the front.

Genetic Operator. We apply single point crossover and bit-flip mutation.
In single point crossover, two solutions are combined by taking a part of the
gene from one solution and another part from the second solution.This crossover
would create a new program that is obtained by combining different probabilities.
The mutation operator is a random bit flip in the genome.

6 Experiments

6.1 Experiment Setup

In experiments, we use NSGAII with the population size of 40 (in Section 6.3)
and 100 (in Section 6.2). For genetic operator, mutation has the probability rang-
ing from of 0.05 to 0.1, and 0.95 for crossover operator. We set the maximum
number of generations to 500. However GA is stopped when the best solution
survives more than 50 generations. We also save the objective value of any solu-
tion firstly evaluated in our algorithm. In other words, if a solution is preserved
in future generations, we do not need to compute its objective function again.
Each experiment runs multiple times, and we take the common best programs
found in all runs.

6.2 Results of Asymmetric Probabilistic Self-stabilizing Program

This section depicts experimental results for identifying the optimal probabil-
ity values for the asymmetric probabilistic self-stabilizing token ring program
described in Section 3. We consider three variations of this program. The first
program, denoted by Asymmetric1, is the same as that shown in Section 3.

224 L. Zhu et al.

The second program, denoted by Asymmetric2, increases the domain of x.j to
{0, 1, 2, 3}. Hence, if x.0 equals x.(n − 1) then process 0 increases x.0 by 1 with
probability λ1, by 2 with probability λ2, and by 3 with probability 1 − λ1 − λ2.
Likewise, the third program, denoted by Asymmetric3, increases the domain of
x.j to {0, 1, 2, 3, 4} and introduces three independent probabilities λ1, λ2 and λ3.
For each variation, we consider different sizes of the ring.

The goal of GA is to generate the program of each ring, which achieves the
best performance, by evolving optimal probabilities. Generated programs con-
tain two objective functions: N (size of the ring) and the expected convergence
time for the program. We set GA to maximize N and at the same time mini-
mize expected convergence time. Solving the optimization in the multi-objective
manner, we could find the potential optimal probabilities for all rings of different
sizes by calling GA once.

Tables 1, 2 and 3 show the optimal probabilities (found by GA) for the
three variations mentioned above. In Table 1 for most of rings (N ≥ 6), the
optimal λ found by GA is 0.50. Thus, for Asymmetric1 program, executing
two actions with equal probability is most preferable when the size of ring is
equal to or greater than 6. However, for a ring smaller than 6 processes, biasing
the coin towards one value is preferable. We note that for the case where we
have 4 processes, the optimal value of λ identified in Table 1 is 0.22. GA also
found another solution where λ is 0.78. This is expected due to symmetry of the
solution. In all experiments performed in this section, GA found such symmetric
solutions as well. However, for brevity, we only discuss one of them.

Table 1. Optimal Probabilities for
Asymmetric1

N λ 1 − λ

4 0.22 0.78
5 0.40 0.60
6 0.50 0.50
7 0.50 0.50
8 0.50 0.50
9 0.50 0.50
10 0.50 0.50
11 0.50 0.50
12 0.50 0.50
13 0.50 0.50

Table 2. Optimal Probabilities for
Asymmetric2

N λ1 λ2 1 − λ1 − λ2

4 0.01 0.01 0.98
5 0.01 0.01 0.98
6 0.01 0.15 0.84
7 0.01 0.20 0.79
8 0.01 0.25 0.74
9 0.09 0.27 0.64
10 0.25 0.33 0.42
11 0.34 0.33 0.33
12 0.34 0.33 0.33
13 0.34 0.33 0.33

Table 2 shows our analysis for Asymmetric2. For N < 9, the optimal λ1

is the minimum value 0.01, whereas λ3 is very large from 0.74 to 0.98. Thus,
the solutions that reduce the expected convergence time heavily prefer the third
action (where x.0 is increased by 3) over the first two actions. As N increases
the three probabilities λ1, λ2 and 1 − λ1 − λ2 are balanced. Also, the optimal
value for λ2 also increases when the size of ring increases. Thus, in both results

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 225

in Tables 1 and 2, we observe that equal probabilities are preferred as the size
of the ring increases. However, unequal probabilities are preferred for smaller
rings. Also, the exact size of the ring for which equal probabilities are preferred
increases with the size of domain of x.

In Table 3, for N < 11, the optimal λ1 and λ2 are the minimum value 0.01.
As N increases, λ3 increases slightly and 1 − λ1 − λ2 − λ3 decreases accordingly.
Unlike the previous two cases, for the large size ring N = 11, executing all
actions with equal chance is not the optimal, and the optimal solutions still
prefer executing one actions with high probability. This is anticipated in that
the size of the ring where equal probabilities are preferred is expected to be much
higher.

To analyze the performance of GA, in Figure 2, we plot the variation of pop-
ulation’s average objective value (second objective, expected convergence time)
with the generation number. To compare three cases, all the values are normal-
ized here. The figure shows that the optimization of Asymmetric1 reaches the
minimum values very quickly at generation 5. Minimum value for Asymmetric2
is reached moderately slower at generation 17. And, the number of generations
required for Asymmetric3 is 95. Although the search space for the last case is as
large as 8×106 (100 possible values for λ1, λ2 and λ3 and 8 values for number of
processes), GA effectively finds the optimal probabilities within 100 generations.
Hence, the number of solutions discovered is around 8000. When the search space
is small, for instance Asymmetric1, GA is not very competent since it still takes
5 generations that explore around half of the search space. Hence, for the small
search space, using small size of population is a better choice. In all these three
cases, once the minimum is found, the whole population converges to it very
quickly.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

N
or

m
al

iz
ed

 A
ve

ra
ge

 o
bj

ec
tiv

e
II

Asymmetric
1

Asymmetric
2

Asymmetric
3

Fig. 2. Variation of second objective
with generation number for asymmet-
ric program

Table 3. Optimal Probabilities for
Asymmetric3

Ring Size N λ1 λ2 λ3 1 − λ1 − λ2 − λ3

4 0.01 0.01 0.06 0.92
5 0.01 0.01 0.01 0.97
6 0.01 0.01 0.05 0.93
7 0.01 0.01 0.08 0.90
8 0.01 0.01 0.10 0.88
9 0.01 0.01 0.13 0.85
10 0.01 0.01 0.15 0.83
11 0.01 0.01 0.18 0.80

226 L. Zhu et al.

6.3 Optimization Results of Symmetric Probabilistic Self-stabilizing
Program

This section depicts experimental results for identifying the optimal probability
values for the symmetric probabilistic self-stabilizing token ring program, say
Symmetric, described in Section 6.2. We consider the cases where the ring size
varies from 3 to 15 and where the domain of x variable is {0, 1}. Similar to
Section 6.2, we use NSGAII to find ideal probabilities for all different sizes of
ring. Thus, the generated programs also contain two objective functions: ring size
N and expected convergence time, and GA maximizes the former and minimizes
the latter.

Table 4 shows the optimal probabilities of Symmetric. For Symmetric pro-
gram, λ and 1−λ are symmetric. We observe that for smaller size of ring N < 9,
the optimal λ found by GA is 0.50, and for N ≥ 9, biased to one of the action
is more desirable. Moreover, as the ring size increases the difference between λ
and 1 − λ increases.

We also plot the variation of average second objective value with the genera-
tion number in Figure 3. The figure shows that the optimization of Symmetric
reaches the minimum values very quickly at generation 6 marked in dotted line.
Since the population size is set to 40, the search of GA explores around 28% of
the entire search space. The success rate of GA is 100%. Thus, GA is a promising
approach for optimizing probabilistic self-stabilizing program.

Table 4. Optimal Proba-
bilities for Symmetric

N λ 1 − λ
3 0.50 0.50
5 0.50 0.50
7 0.50 0.50
9 0.46 0.54
11 0.37 0.63
13 0.33 0.67
15 0.31 0.69

0 10 20 30 40 50
5

10

15

Generation

A
ve

ra
ge

 o
bj

ec
tiv

e
II

Average Value of Objective II

Fig. 3. Variation of second objectives with generation is
shown for the Symmetric

6.4 An Alternate Program for Symmetric Token Ring and Its
Analysis

In the program in Section 4, if a process has the token, it chooses its new value
by tossing a coin. An informal example given to describe this program from [11]
is as follows:

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 227

Imagine seven boys, seated in a circle, each with a coin laying at on one
hand. In unison, all boys do the following. Each boy looks at the face
of his own coin and that of the boy to his left in the circle; if the two
coins show differing faces (head and tail) then he will turn his coin over;
otherwise he will toss his coin to obtain a random face. This unison step
is repeated ad infinitum. Regardless of the initial faces of the coins, after
a finite number of steps (with probability one) only one boy tosses a coin
in each step.

The results in Section 6.3 show that for the above program, a biased coin
reduces the expected convergence time. In the above program, if x value of
process j equals that of x.(j−1) then the new value of x.j does not depend upon
the old value of x.j. Next, we consider the following variation: When process j
tosses a coin then if the coin toss returns head, it keeps the old value. On the other
hand, if it returns tail, it flips the value. In other words, the revised program is
as follows:

Aj : x.j == x.pre −→ λ :: x.j := x.j
+1 − λ :: x.j := 1 − x.j;

Aj : x.j �= x.pre −→ 1 :: x.j := x.pre

Thus, the new program denoted as Alternative can be described by the
following informal example:

Imagine seven boys, seated in a circle, each with a coin laying at on
one hand. In unison, all boys do the following. Each boy looks at the
face of his own coin and that of the boy to his left in the circle; if the
two coins show differing faces (head and tail) then he will turn his coin
over; otherwise he will flip his coin with probability 1 − λ. This
unison step is repeated ad infinitum. Regardless of the initial faces of
the coins, after a finite number of steps (with probability one) only one
boy is eligible to flip his coin in each step.

Given the similarity of this program with the program in Section 4, we eval-
uated this program with GA to identify the optimal values of λ to reduce the
expected convergence time. The results are as shown in Table 5. It is surprising
that even though these two programs are similar, the ideal value of λ for the
above program is 0.5.

7 Evaluating Token Ring Program of Probabilistic
Model(s) and Non-probabilistic Model

In this section, we compare the expected convergence time for the asymmetric
token-ring program (introduced in Section 3) with the program in [5] in syn-
chronous semantics. Specifically, compared to the program in [5], the program

228 L. Zhu et al.

Table 5. Optimal Probabilities of Alternative

Ring Size λ 1 − λ

3 0.50 0.50
5 0.50 0.50
7 0.50 0.50
9 0.50 0.50
11 0.50 0.50
13 0.50 0.50

in Section 3 aims to reduce the space requirement of each process while providing
probabilistic stabilization (as opposed to deterministic stabilization provided by
[5]. In particular, we use the best solutions identified by GA for Asymmetric1,
Asymmetric2 and Asymmetric3 with that in [5] that the x value of each process
is chosen from domain 0..K−1, where K ≥ n, the number of processes in the
ring. By contrast, the domain of x values in Asymmetric1, Asymmetric2 and
Asymmetric3 is 3, 4 and 5 respectively.

Specifically, Figure 4 plots the number of processes against expected conver-
gence time in terms of steps. For those experiments, we consider the case where
the number of processes is in the set {4, ..., 11}. As expected, average convergence
time increases with introduction of randomness. In particular, when n ≥ 6, the
expected convergence time is minimum for the deterministic program and it is
maximum for Asymmetric1.

4 6 8 10
0

5

10

15

20

25

Number of Processes

E
xp

ec
te

d
C

on
ve

rg
en

ce
 T

im
e

 Asymmetric
1

Asymmetric
2

Asymmetric
3

K−State−Sync

Fig. 4. Expected Convergence Time for the Asymmetric Program

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 229

8 Symmetric Token Ring Protocols Using Asymmetric
Probabilities

In Section 6.3, the values of λ used by all processes are identical. This captures
the intuition of [11] that the processes are anonymous and cannot use their
process ID. In this section, we consider the effect of relaxing this so that each
process chooses its λ value independently. We denote λ for process j as λj . We
consider this for ring size of 3 and 5. The optimal probabilities identified by GA
are showm in Table 6.

As shown in Table 6, with 3 processes, making one of the processes to be
(almost) deterministic is ideal for reducing the convergence time. However, we
note that such a solution is unacceptable, since it will (almost) bring the token
circulation to halt in some legitimate states. Hence, we performed these experi-
ments again with the constraint that λ ∈ [0.25..0.75]. The results are as shown in
Table 7. Given the constraint, the optimal solutions require one of the processes
to choose the least probability value.

Table 6. Optimal Probabilities of
Symmetric Using Asymmetric Probabil-
ities With Domain Range [0.01..0.99]

Expected
N λ1 λ2 λ3 λ4 λ5 Conv Time

3 0.99 0.01 0.50 0.25250
5 0.99 0.99 0.99 0.01 0.01 1.61997

Table 7. Optimal Probabilities of
Symmetric Using Asymmetric Probabil-
ities With Domain Range [0.25..0.75]

Expected
N λ1 λ2 λ3 λ4 λ5 Conv Time

3 0.75 0.25 0.50 0.30769
5 0.25 0.75 0.25 0.75 0.25 1.83535

We also consider the algorithm in Section 6.4 where each process could choose
the value of λ independently. We restrict λ to be in [0.01..0.75] (In this program
choosing λ to be very small implies that the process almost always chooses to flip
its value. This is acceptable. However, keeping its original value is not accept-
able.) The results are as shown in Table 8. One of the interesting observations is
that allowing processes to have independent λ reduces the expected convergence
time (compared to the Symmetric). Moreover, the optimal expected conver-
gence time of Alternative using asymmetric probabilities with domain range
[0.01..0.75] is better than Symmetric using asymmetric probabilities.

Table 8. Optimal Probabilities of Alternative Using Asymmetric Probabilities With
Domain Range [0.01..0.75]

N λ1 λ2 λ3 λ4 λ5 Expected Conv Time

3 0.75 0.75 0.01 0.26810
5 0.75 0.75 0.01 0.75 0.01 1.21268

230 L. Zhu et al.

9 Related Work

A number of studies have considered Herman’s probabilistic stabilizing pro-
grams, including [1,7,9,10,17,18,20]. Specifically, most existing work focus on
analyzing Herman’s probabilistic stabilizing program in terms of expected con-
vergence time and propose an upper bound. Also, some existing work in [1,17]
states that expected stabilization time should minimized by the equidistant con-
figuration. Our technique differs from previous work in several ways: First, our
technique infers optimal probabilities for randomized stabilizing program with
respect to ideal expected convergence time. This is not addressed by existing
work. Second, Our technique employs GA. The key insight underlying our app-
roach is using evolution-based problem solving technique.

Evolution-based techniques in the context of program synthesis and
refinement have been studied in [2,8,19,21]. In [2,8], authors propose an evolu-
tionary approach to automatically repair software bugs. In [21,22], authors intro-
duce evolution based approaches for synthesizing distributed programs. Instead,
our work here focuses on refining distributed program, attempting to achieve
optimal performance. Similar to our work, [19] investigates the trading-off of
non-functional properties of a self-stabilizing program using GA and PRISM.
However, our work considers more than one program and shows many inter-
esting observations. Recently, authors in [24] focuses on identifying trade-offs
between closure and convergence properties of stabilizing programs. Our work
focuses on the approach of identifying optimal probability values to reduce the
convergence time.

10 Conclusion

In this paper, we used genetic algorithms (GAs) to analyze the probabilistic
stabilizing programs in [11,12]. Although it is well known that randomized algo-
rithms can reduce the state space required to achieve stabilization as well as solve
several problems that cannot be solved in a deterministic setting, identifying the
optimal probability values for optimum results is often difficult.

For the program in [12], we showed that a biased coin is preferable when the
ring size is small. However, unbiased coin is desirable when the ring size is large.
Moreover, when the state space of the program is increased, the ring size for
which unbiased coin is preferable increases. To the best of our knowledge, this
result was not previously known.

For the program in [11], we showed that unbiased coin was preferable when
the ring size was small. However, as the ring size increases, a biased coin is
desirable. Moreover, as the ring size increases, the level of the bias also increases.
This result was previously known [18] by exhaustive analysis. We showed that
this result could be identified with GA as well. Moreover, GA did not require
analysis of the entire search space.

In [11], when a process chooses a new value, it chooses the value 0 with
probability λ and the value 1 with probability 1 − λ. In other words, the new

Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms 231

value is independent of the old value. We considered a variation of this problem
where the value λ identifies whether the process should keep its current value.
We found a surprising result that that with this variation, an unbiased coin is
preferable for all ring sizes up to 13.

As expected, when the number of independent probabilities is larger, the
corresponding search space is large too. GA is most beneficial in these cases.
Particular, for Asymmetric3, GA was able to identify the best solutions by
searching less than 0.1% of the search space. However, when the number of
independent probabilities are small, GA search covered most of the search space.
For example, for Asymmetric1, GA searched for about 65% of the search space.

In our solution, we used PRISM [13] to analyze individual programs. Hence,
one bottleneck for the use of GA in this manner is any bottleneck (e.g., state
space explosion) associated with PRISM. One future work in this area is to
develop algorithms for objective functions that provide a rough estimate of the
desired property (expected convergence time in this case) more efficiently. This
will allow GA to identify almost optimal solutions quickly. One future work in
this area is to identify whether this approach can improve the performance of
GA. Another future work in this area is to use parallelization. Since GA provides
easy opportunities for parallelization, we anticipate that this will be especially
valuable for large programs. We also plan to investigate these algorithms in terms
of providing trade-off between token circulation time and time for stabilization. It
is anticipated that for the program in [11], an unbiased coin would be preferred
for token circulation in legitimate states. However, for certain ring sizes, it is
known that a biased coin decreases the convergence time. It will be useful to
identify the potential trade-off between these two objectives.

References

1. Annabelle, C.M.: Mcovera. An elementary proof that herman’s ring is (n2).
Information Processing Letters 94(2), 79–84 (2005)

2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software
bug fixing. In: IEEE World Congress on Computational Intelligence Evolutionary
Computation, pp. 162–168 (2008)

3. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Trans. Softw. Eng., 19(11), November 1993

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

6. Dolev, S.: Self-Stabilization. MIT Press (2000)
7. Feng, Y., Zhang, L.: A tighter bound for the self-stabilization time in herman’s

algorithm. Inf. Process. Lett. 113(13), 486–488 (2013)
8. Forrest, S., Nguyen, T., Weimer, W., Goues, C.L.: A genetic programming

approach to automated software repair. In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation, New York, NY, USA (2009)

232 L. Zhu et al.

9. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization.
Distributed Computing 18(3), 221–232 (2006)

10. Haslegrave, J.: Bounds on herman’s algorithm. CoRR, abs/1405.5209 (2014)
11. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
12. Herman, T.: Self-stabilization: Randomness to reduce space. Distributed Comput-

ing 6(2), 95–98 (1992)
13. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for

Automatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

14. Hoepman, J.-H.: Uniform deterministic self-stabilizing ring-orientation on
odd-length rings. In: Proceedings of the 8th International Workshop on Distributed
Algorithms, WDAG 1994, pp. 265–279 (1994)

15. Holland, J.H.: Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. U Michigan
Press (1975)

16. Huang, S.-T.: Leader election in uniform rings. ACM Trans. Program. Lang. Syst.
15(3), July 1993

17. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Three tokens in
herman’s algorithm. Formal Asp. Comput. 24(4–6), 671–678 (2012)

18. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of herman’s
self-stabilisation algorithm. Formal Asp. Comput. 24(4–6), 661–670 (2012)

19. Millard, A.G., White, D.R., Clark, J.A.: Searching for Pareto-optimal Randomised
Algorithms. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS,
vol. 7515, pp. 183–197. Springer, Heidelberg (2012)

20. Nakata, T.: On the expected time for herman’s probabilistic self-stabilizing
algorithm. Theor. Comput. Sci. 349(3), 475–483 (2005)

21. Weise, T., Tang, K.: Evolving distributed algorithms with genetic programming.
IEEE Transactions on Evolutionary Computation 16(2), 242–265 (2012)

22. Weise, T., Zapf, M., Geihs, K.: Rule-based genetic programming. In: Bio-Inspired
Models of Network, Information and Computing Systems, Bionetics 2007, 2nd edn.
pp. 8–15 (2007)

23. Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4(2), 65–85
(1994)

24. Zhu, L., Kulkarni, S.: Using genetic programming to identify tradeoffs in
self-stabilizing programs: A case study. In: Proceedings of the 2015 IEEE 35th
International Conference on Distributed Computing Systems Workshops, ICDCSW
2015, Columbus, OH, USA (2015)

Avatar: A Time- and Space-Efficient
Self-stabilizing Overlay Network

Andrew Berns(B)

Department of Computer Science, University of Wisconsin-La Crosse,
La Crosse, WI, USA
aberns@uwlax.edu

Abstract. Overlay networks present an interesting challenge for fault-
tolerant computing. Many overlay networks operate in dynamic envi-
ronments (e.g. the Internet), where faults are frequent and widespread,
and the number of processes in a system may be quite large. Recently,
self-stabilizing overlay networks have been presented as a method for
managing this complexity. Self-stabilizing overlay networks promise that,
starting from any weakly-connected configuration, a correct overlay net-
work will eventually be built. To date, this guarantee has come at a cost:
nodes may either have high degree during the algorithm’s execution,
or the algorithm may take a long time to reach a legal configuration.
In this paper, we present the first self-stabilizing overlay network algo-
rithm that does not incur this penalty. Specifically, we (i) present a new
locally-checkable overlay network based upon a binary search tree, and
(ii) provide a randomized algorithm for self-stabilization that terminates
in an expected polylogarithmic number of rounds and increases a node’s
degree by only a polylogarithmic factor in expectation.

1 Introduction

Today’s distributed systems are quite different from those only a decade ago.
Pervasive network connectivity and an increase in the number of computational
devices has ushered in an era of large-scale distributed systems operating in
highly-dynamic environments. One type of distributed system that has gained
popularity recently is the overlay network. An overlay network is a network
where communication occurs over logical links, where each logical link consists
of zero or more physical links. The use of logical links allows the design of
efficient logical topologies (e.g. topologies with low diameter and/or low degree)
irrespective of the physical topology, enabling efficient data structures to be
constructed from large systems with arbitrary physical networks.

The dynamic nature of many overlay networks makes fault tolerance
extremely important. Self-stabilization, first presented by Dijkstra in 1974 [6], is
an elegant fault-tolerant paradigm promising that, after any memory-corrupting
transient fault, the system will eventually recover to a correct configuration.
Self-stabilizing overlay networks are logical networks that guarantee a correct
topology will be restored after any such transient fault.
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 233–247, 2015.
DOI: 10.1007/978-3-319-21741-3 16

234 A. Berns

1.1 Related Work

Many overlay networks include a mechanism to tolerate a subset of possible
faults. For instance, Chord [15] defines a procedure for nodes to join the network
efficiently. The Forgiving Graph [9] presents a self-healing overlay network
which maintains connectivity while limiting degree increases and stretch despite
periodic adversarial node insertions and deletions.

Self-stabilizing overlay networks, however, are a relatively new area of
research. In 2007, Onus et al. presented the first silent self-stabilizing overlay net-
work, building a linear topology in linear (in the number of nodes) rounds [14].
The Skip+ graph, presented in 2009 by Jacob et al. [10], was the first self-
stabilizing overlay network with polylogarithmic convergence time. Berns et al.
presented a generic framework capable of building any locally-checkable overlay
network, and proved that their result was near-optimal in running time [4].

Current self-stabilizing overlay networks have suffered from one of two limi-
tations. First, some self-stabilizing overlay networks require a long time to reach
a correct configuration. For instance, ReChord [11], a self-stabilizing variant of
Chord, requires O(n log n) rounds to reach a correct configuration. Other self-
stabilizing overlay networks that converge quickly have required a large amount
of space. For example, Skip+ [10] has a polylogarithmic convergence time, but
may increase a node’s degree to O(n) during convergence. The Transitive Clo-
sure Framework [4] requires Θ(n) space. To date, no work has achieved efficient
convergence in both time and space.

1.2 Contributions

In Section 3, we present Avatar, a generic locally checkable overlay network,
and describe a specific “instance” of the network called AvatarCbt which is
based upon a binary search tree. Section 4 presents a randomized self-stabilizing
algorithm for creating the AvatarCbt network, as well as an analysis sketch of
the algorithm’s performance in both convergence time and space (using a new
metric we call the degree expansion).

2 Model of Computation

We model the distributed system as an undirected graph G = (V,E), with
nodes V representing the processes of the system, and edges E representing the
communication links. Each node u is assigned an identifier from the function
id : V → Z

+. We assume each node stores id(u) as immutable data. Where
clear from context, we refer to a node u by its identifier id(u).

Each node u ∈ V has a local state S(u) consisting of a set of variables and
their values. We assume all nodes have access to a shared immutable random
sequence Ψ . A node u can modify the values of its variables using actions defined
in the program of u. All nodes execute the same program. We use a synchronous
model of computation, where in one round each node executes its program and

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 235

communicates with its neighbors. We use the message passing model of com-
munication, where a node u can communicate with a node v in its neighborhood
N(u) = {v ∈ V : (u, v) ∈ E} by sending node v (called a neighbor) a mes-
sage. A node can send unique messages to every neighbor in every round. We
assume reliable and bounded capacity communication channels where a message
is received by a node u at the beginning of round i if and only if it was sent to
u by some v ∈ N(u) in round (i − 1).

In the overlay network model, a node’s neighborhood is part of its state,
allowing a node to change its neighborhood with program actions. In a round i,
a node u can delete any subset of edges incident upon it, and add edges to any
nodes currently at distance 2 from u. Specifically, let Gi be the configuration in
round i. A node u can (i) delete any edge (u, v) ∈ E(Gi), resulting in (u, v) /∈
E(Gi+1), and (ii) create the edge (u,w) if (u, v), (v, w) ∈ E(Gi), resulting in
(u,w) ∈ E(Gi+1). We restrict edge additions to only those nodes at distance 2
to reflect the fact that only nodes at distance 2 share a common neighbor through
which they can be “connected”. We assume that v ∈ N(u) ⇔ (u, v) ∈ E – that
is, every neighbor of u is known, and u has no “false neighbors” in N(u) (this
can be achieved with the use of a “heartbeat” message).

Our problem is to take a set of nodes V and create a legal configuration,
where a legal configuration is defined by some predicate taken over the state of
all nodes in V . Since edges are state in an overlay network, the legal configuration
predicate often includes the requirement that the topology matches a particular
desired topology ON(V) = (V,E). The self-stabilizing overlay network problem
is to design an algorithm A such that, when executed on nodes V with arbitrary
initial state in an arbitrary weakly-connected initial topology, the system even-
tually reaches a legal configuration. Furthermore, once the network is in a legal
configuration, it remains in a legal configuration until an external fault perturbs
the system.

Performance of an overlay network algorithm can be measured in terms of
both time and space. To analyze the worst-case performance, it is assumed that
an adversary creates the initial configuration using full knowledge of the nodes
and the algorithm they will execute. The adversary does not, however, know
the value of the shared random sequence Ψ . The maximum number of rounds
required for a legal configuration to be reached, taken over all possible con-
figurations, is the convergence time of A. One measure of space complexity is
the number of incident edges on a node, as each incident edge requires mem-
ory and maintenance (heartbeat messages). We introduce the degree expansion
as a space complexity measurement. The degree expansion, informally, is the
amount a node’s degree may grow “unnecessarily” during convergence. For a
graph G with node set V , let ΔG be the maximum degree of nodes in G. For a
self-stabilizing algorithm A executing on G, let ΔA,G be the maximum degree
of any node from V during execution of A beginning from configuration G. We
define degree expansion as follows.

236 A. Berns

Definition 1. The degree expansion of A on G, denoted DegExpA,G, is equal
to (ΔA,G/max(ΔG,ΔON (λ))). Let the degree expansion of A be DegExpA =
maxG∈G(DegExpA,G)

The degree expansion is meant to capture the degree growth of the algorithm
while excluding clever initial configurations from the adversary resulting in a high
degree increase.

A self-stabilizing overlay network algorithm is silent if and only if the algo-
rithm brings the system to a configuration where the messages exchanged
between nodes remains fixed until a fault perturbs the system [7]. Tradition-
ally, these messages consist of a node’s state. In order for a silent self-stabilizing
overlay network algorithm to exist using only this information, the network must
be locally checkable. An overlay network is locally checkable if and only if each
illegal configuration has at least one node (called a detector) which detects that
the configuration is not legal using only its state and the state of its neighbors,
and all legal configurations have no detectors.

3 The AVATAR Network

3.1 AVATAR Specification

One of the challenges with creating silent self-stabilizing overlay network algo-
rithms is designing a locally checkable topology as many previous overlay net-
works are not locally checkable. For instance, Skip+ [10] was created to have
a locally-checkable variant of the Skip graph [1]. Similarly, the self-stabilizing
ReChord network [11] is a locally-checkable Chord [15] derivative built using
real and virtual nodes. Simplifying this network design task is the motivation
for Avatar. Avatar easily allows many different topologies to be “simulated”
while ensuring local checkability.

Avatar is based around the idea of network embeddings. A network embed-
ding Φ maps the node set of a guest network Gg = (Vg, Eg) onto the node set of
a host network Gh = (Vh, Eh) [13]. The dilation of Φ is defined as the maximum
distance between any two nodes Φ(u), Φ(v) ∈ Vh such that (u, v) ∈ Eg. The
Avatar network is an overlay network realizing a dilation-1 embedding for a
guest network using logical overlay links. To do this and ensure local checkabil-
ity, the (host) overlay edges of Avatar consist of the successor and predecessor
edges from a linearized graph (ensuring host nodes can check which guest nodes
map to them) as well as the overlay edges necessary for host nodes of two neigh-
boring guest nodes to be at most distance 1 apart.

Formally, for any N ∈ N, let [N] be the set of nodes {0, 1, . . . , N − 1}. Let
F be a family of graphs such that, for each N ∈ N, there is exactly one graph
FN ∈ F with node set [N]. We use F(N) to denote FN . We call F a full graph
family, capturing the notion that the family contains exactly one topology for
each “full” set of nodes [N] (relative to the identifiers). For any N ∈ N and
V ⊆ [N], AvatarF (N,V) is a network with node set V that realizes a dilation-1
embedding of FN ∈ F . The specific embedding is given below. We also show

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 237

that, when N is known, Avatar is locally checkable (N can be viewed as an
upper bound on the number of nodes in the system).

Definition 2. Let V ⊆ [N] be a node set {u0, u1, . . . , un−1}, where ui < ui+1

for 0 ≤ i < n−1. Let the range of a node ui be range(ui) = [ui, ui+1) for 0 < i <
n − 1. Let range(u0) = [0, u1) and range(un−1) = [un−1, N). AvatarF (N,V) is
a graph with node set V and edge set consisting of two edge types:

Type 1: {(ui, ui+1)|i = 0, . . . , n − 1}
Type 2: {(ui, uj)|ui �= uj ∧ ∃(a, b) ∈ E(FN), a ∈ range(ui) ∧ b ∈ range(uj)}

Theorem 1. Let F be an arbitrary full graph family, and let AvatarF (N,V)
be an overlay network for an arbitrary N and V , and let each u ∈ V know N .
AvatarF (N,V) is locally checkable.

Proof sketch: Note each node can calculate its range using only its neighborhood.
Using the state of its neighbors, u can also calculate the range of each neighbor.
This information is sufficient for each node u to verify every neighbor v ∈ N(u) is
either from a type 1 or type 2 edge. As all nodes know N and there is exactly one
FN ∈ F , all nodes can verify their type 1 and type 2 edges correctly map to the
given network. Interestingly, AvatarF is locally checkable using only O(log n)
bits from each neighbor: each node need share only (i) its identifier, and (ii) the
identifier of its predecessor and successor.

3.2 The Full Graph Family CBT

Our goal is to create a self-stabilizing Avatar network which stabilizes quickly
and maintains low degree during convergence. To this end, we simulate a simple
data structure with constant degree and logarithmic diameter: a binary search
tree. As we show, an embedding in Avatar of a binary search tree maintains a
low degree and diameter.

Formally, consider the graph family based upon complete binary search trees.
Below we define the full graph family Cbt by defining Cbt(N) recursively.

Definition 3. For a ≤ b, let Cbt[a, b] be a binary tree rooted at r =
(b+a)/2�.
Node r’s left cluster is Cbt[a, r − 1], and r’s right cluster is Cbt[r + 1, b]. If
a > b, then Cbt[a, b] = ⊥. We define Cbt(N) = Cbt[0, N − 1]. Let the level of
a node d in Cbt[0, N − 1] be the distance from d to root
N − 1/2�.

Diameter and Maximum Degree of AVATARCBT . All dilation-1 embed-
dings preserve the diameter of the guest network, meaning AvatarCbt has
O(log N) diameter. Note a node v in our embedding may have a large Φ−1(v)
– that is, many nodes from the guest network may map to a single host node.
Surprisingly, the host nodes for AvatarCbt have a small degree regardless of
Φ−1, as we show below.

238 A. Berns

Theorem 2. For any node set V ⊆ [N], the maximum degree of any node u ∈ V
in AvatarCbt(N,V) is at most 2 · log N + 2.

Proof sketch: Consider Φ−1(u), the subset of nodes from [N] mapped to node
u. Let [N]j be the set of all nodes at level j of Cbt(N). There are at most 2
nodes in Φ−1(u) ∩ [N]j with a neighbor not in Φ−1(u) – that is, there are at
most 2 edges from the range of a node u to any other node outside this range
for a particular level j of the tree. As there are only log N + 1 levels, the total
degree of any node in AvatarCbt is at most 2 · log N + 2.

4 A Self-Stabilizing Algorithm

4.1 Algorithm Overview

At a high level, our self-stabilizing algorithm works on the same principle as
Gallager, Humblet, and Spira’s algorithm for constructing a minimum-weight
spanning tree [8]. The network is organized into disjoint clusters, each with
a leader. The cluster leaders coordinate cluster merges until a single cluster
remains, at which point the network is in a legal configuration.

Self-stabilizing overlay networks introduce a complication to this pattern.
Converging from an arbitrary weakly-connected configuration while limiting a
node’s degree increase requires coordinated merges, which requires either time
(additional rounds) or bandwidth (additional edges). In the overlay network
model, we can increase both: we can add edges to the network and add steps
to our algorithm. Our algorithm balances these additions using four compo-
nents, discussed below, to achieve expected polylogarithmic convergence time
and degree growth.

1. Clustering: As any weakly-connected initial configuration is possible, we
must ensure all nodes join a cluster and have a way to efficiently commu-
nicate within their cluster. We define a cluster for AvatarCbt and present
mechanisms for cluster creation and intra-cluster communication.

2. Matching: Progress comes from clusters merging, moving towards a single-
cluster configuration. However, we will show merging clusters results in an
O(log2 N) degree increase for each involved cluster. To control degree growth,
we limit a cluster to merge with at most one other cluster at a time. We create
a matching to determine which clusters should merge. Using the overlay
network model’s ability to add edges, we introduce a mechanism to create
“sufficiently-many” matchings on any topology.

3. Merging: Once two clusters are matched they merge together into a sin-
gle cluster. Merging quickly requires sufficient “bandwidth” (in the form of
edges) between two clusters. To limit degree increases, these edges must be
created carefully. We present an algorithm for merging two clusters quickly
while still limiting the number of additional edges that are created.

4. Termination Detection: Finally, to ensure our algorithm is silent, we
define a simple mechanism for detecting when the legal configuration has
been reached, allowing our algorithm to terminate.

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 239

We discuss these components below, providing sketches of the algorithms and
analysis. Complete algorithms and analysis can be found in the full version of
this work [3].

4.2 Clustering

Defining a Cluster. In the overlay network model, we can create clusters by
defining the nodes of the cluster as well as the topology of the cluster.

Definition 4. Let G be a graph with node set V . A Cbt cluster is a set of
nodes V ′ ⊆ V in graph G such that G[V ′], the subgraph of G induced by V ′, is
AvatarCbt(N,V ′).

Notice our cluster can be thought of on two levels: on one level, it consists of
an N -node guest Cbt network, while on the other level, it consists of host nodes
V ′. We call the root of the guest Cbt network the root of the cluster. Figure
1 contains the (host) network G with two clusters: T and T ′. The two (guest)
Cbt networks corresponding to these clusters are given in Figure 2.

Fig. 1. Host nodes of clusters T (top) and T ′ (bottom)

Fig. 2. Guest Nodes for T (right) and T ′ (left)

240 A. Berns

To ensure nodes quickly perform the necessary actions to join a cluster, we
make our Cbt clusters (from here on, simply clusters) locally checkable. To do
this, we add three variables to each node: a cluster identifier clusteru containing
the identifier of the host of the root node in the cluster, and a cluster predecessor
clusterPredu and successor clusterSuccu, set to the closest identifiers in the
subgraph induced by nodes with the same cluster identifier. Let the cluster range
of u be the range of u defined by the cluster predecessor and successor. We say
a set of nodes V ′ is a valid cluster if and only if (i) the subgraph induced by
V ′ matches AvatarCbt(N,V ′), and (ii) the legal range in AvatarCbt(N,V ′)
matches the cluster range of u in the configuration G.

Like AvatarCbt(N,V ′), our cluster is locally checkable. The proof follows
closely the proof that AvatarCbt itself is locally checkable: nodes in a cluster
V ′ can calculate their cluster range and the cluster range of their cluster neigh-
bors, allowing them to check that their intra-cluster edges are from AvatarCbt

(N,V ′). Furthermore, if the cluster identifier is invalid, at least one node will
detect this. During convergence, there are some cases where a node is not a
member of a cluster due to program actions (i.e. merge). Later we show this is
also locally checkable.

In the self-stabilizing setting, there is no guarantee that each node begins
execution belonging to a valid cluster. Therefore, we define a “reset” operation
which a node executes when a subset of faulty configurations are detected. We
say that a node u has detected a reset fault if u detects (i) it is not a member
of a cluster, (ii) it is not in a state reachable from a “legal” merge (as we shall
see, merges occur in a way allowing nodes to differentiate fault-induced invalid
clusters from merging clusters), and (iii) it did not reset in the previous round.
When u detects a reset fault, it “resets” to a cluster of size 1.

Intra-Cluster Communication. Our algorithms require a systematic and
reliable means of intra-cluster communication. For this, we use a non-snap-
stabilizing variant of the propagation of information with feedback and clean-
ing (PFC) algorithm [5], which we “simulate” on the guest Cbt network for a
cluster T (denoted CbtT (N)). The root node initiates a PFC wave, which (i)
propagates information down the tree level-by-level until reaching the leaves, (ii)
sends a feedback wave from the leaves to the root, passing along any requested
feedback, and (iii) prepares all nodes for another PFC wave. To allow the host
network to simulate the PFC algorithm, it is sufficient to append the “level”
of the sender in the guest network to each message in the host network. For
instance, a guest root initiating a PFC wave with message m corresponds to
the host of the root sending the message (m, 0) to the (at most two) hosts of the
root’s children.

Analysis of Cluster Creation and Communication

Lemma 1. Every node u will be a member of a cluster in O(log N) rounds.

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 241

Proof sketch: The lemma holds easily for nodes that are members of a cluster
initially. Consider a node u that is not a member of a cluster. If a reset fault
is detected by u, then u becomes a size-1 cluster in one round. If no reset fault
is detected, either (i) u believes it is participating in a merge, or (ii) u believes
it is a member of a cluster. For case (i), we will show later that the merge
process is locally checkable (that is, if a configuration is reached that is not a
valid merge, at least one node detects this), and that every node that detects an
invalid cluster from a merge will either complete the merge in O(log N) rounds,
or reset in O(log N) rounds, satisfying our claim. For case (ii), as clusters are
locally checkable, there must be a shortest path of nodes u, v0, v1, . . . , vk, with
k = O(log N), such that all nodes in the path have a cluster identifer matching
the identifier of u, and vk detects a reset fault. When vk executes a reset, it will
cause node vk−1 to detect a reset fault in the next round, causing it to reset and
vk−2 to detect a reset fault, and so on. In this way, the reset will “spread” to u
in O(log N) rounds, resulting in u executing a reset, satisfying our claim.

Lemma 2. After O(log N) rounds, if a set of nodes T ⊆ V forms a cluster, no
node in T will execute a reset action until an external fault perturbs the system.

Proof sketch: Note that once u is part of a cluster T , no action u executes will
cause it to leave cluster T unless it is merging with another cluster T ′. If T
and T ′ are merging, they will successfully create a new valid cluster T ′′, with
V (T) ⊆ V (T ′′). Our lemma’s initial “delay” of O(log N) rounds handles the case
where the initial configuration contains a node which is part of a cluster with
a corrupted PFC mechanism. This can only happen in an initial configuration,
and it is corrected (either through the PFC mechanism or through resets) in
O(log N) rounds, confirming our claim.

From this point forward, our analysis shall assume the system is in a “reset-
free” configuration consisting of valid clusters and merging clusters.

4.3 Matching

We can add edges during a merge to increase “bandwidth” and thus decrease the
time required for the merge. However, we must be careful to limit the resulting
degree increase. Therefore, a cluster T can only merge one other cluster at a
time. For this, we calculate a matching between clusters. We say that a cluster
T has been assigned a merge partner T ′ if and only if the roots of T and T ′ have
been connected by the matching process described below. We say that a cluster
T is matched if it has been assigned a merge partner, and unmatched otherwise.

We say that the cluster graph Gc of G is the graph induced by the clusters
in configuration G, where a node vT in Gc corresponds to a cluster T in G, and
an edge (vT , vT ′) corresponds to an edge between at least one node u ∈ T and
node u′ ∈ T ′. Our goal is to find a large matching on the cluster graph. To
find this matching, we use a randomized symmetry-breaking technique. “Tra-
ditional” matching algorithms, however, are insufficient, as there are topologies
where even a maximum matching consists of only a small number of nodes

242 A. Berns

(e.g. a star topology has a maximum matching of a single pair). In these cases,
only a small number of merges would occur at a time, resulting in slow conver-
gence. Note, however, that one can identify large matchings on the square of
the cluster graph, G2

c (the graph resulting from connecting all nodes of distance
at-most 2 in G). Since we are in the overlay network model, a matching on G2

c

can become a (distance-one) matching by adding a single edge between matched
clusters. Our matching algorithm creates a matching on G2

c . We provide a sketch
of the matching algorithm in Algorithm 1, and a discussion below.

Our matching algorithm uses two different roles selected by the cluster root:
leaders and followers. Leaders connect followers together to form a matching
on G2

c . A cluster root chooses the cluster’s role uniformly at random, with the
exception of one special case (as discussed below, clusters which are merging
become leaders if they were “followed” during their merge). When the root has
selected the role of follower (leader), we say that the entire cluster is a follower
(leader).

Consider first a follower cluster T . Each node u ∈ T will check N(u) for a
node v such that v is in another cluster T ′ and v is a potential leader. A potential
leader is a node which either (i) has the role of leader and is “open” (see below),
or (ii) is merging, and thus “available” for followers. A node u ∈ T will (i) mark
one potential leader as “followed” (if one such neighbor exists), (ii) receive at
most two edges to potential leaders from its children, and (iii) forward at most
one edge incident on a potential leader to u’s parent. Eventually, at most two
such edges reach the root of the cluster. At this point, the root waits for the
selected leader to assign it a merge partner. We define two types of followers:
long followers and short followers. Short followers will only search for a leader
for a “short” amount of time (4 log N rounds), while long followers will search
for a (slightly) “longer” time (24 log N). Long and short followers are used to
make the scenario where a cluster and all of its neighbors are “stuck” searching
for a leader sufficiently rare.

If the root of T has selected the leader role, the root begins by communicating
the leader role to all nodes in the cluster. At this point, nodes are considered
open leaders, and neighboring follower nodes can “follow” these leaders. After
this PFC wave completes, the root sends another PFC wave asking nodes in T
to (i) become closed leaders (no node can select them as a potential leader), and
(ii) connect any current followers as merge partners. Nodes in T will connect all
followers incident upon them as merge partners, thus creating a matching on G2

c .
If a node u ∈ T has an odd number of followers, it simply matches as many pairs
as possible and forwards the one “extra” follower to u’s parent. This guarantees
all followers of T will find a merge partner, as the root of T either receives no
followers, matches two received followers, or sets the single received follower as
the merge partner for T itself. Once this PFC wave completes, the root either
(i) begins the merge process with a follower T ′ (if a merge partner was found),
or (ii) randomly selects a new role.

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 243

Algorithm Sketch 1. The Matching Algorithm for Cluster T

1. If no role, root rT selects a role uniformly at random: leader or follower.
2. If rT is a leader :
3. rT uses PFC to set all nodes as open leaders
4. Upon completion of the wave, rT uses PFC set all nodes as closed leader
5. Upon completion of the wave, nodes connect all incident followers, and

forward to their parent the (at-most-one) unmatched follower
6. rT matches any received followers
7. rT either repeats the matching algorithm (if unmatched), or

begins merging (if matched)
8. Else
9. rT selects uniformly at random the role of long or short follower
10. Nodes in T search for a leader. Short followers search for 2 PFC waves,

while long followers search for 12 PFC waves
11. If a leader was found rT waits to be matched with a merge partner
12. Else T repeats the matching algorithm
13. Endif

Analysis of Matching

Lemma 3. Consider a cluster T in a configuration Gi. With probability at least
1/4, all nodes in T will be a potential leader for at least one round in the next
O(log N) rounds.

Proof sketch: There are four cases to consider based on the state of T in Gi: T
is an open leader, T is a closed leader, T is a follower, and T is merging. If T
is an open leader, our claim holds. If T is a closed leader, in O(log N) rounds
T will either begin a merge (becoming a potential leader) or select the new
role of leader with probability 1/2. If T is a follower, T is a short follower with
probability 1/2, and after 4(log N + 1) + 4 rounds T will select a new role of
leader with probability 1/2, or begin a merge (becoming a potential leader). If
T is currently merging, then every node will be a potential leader for at least
one round during the merging process, which will complete in O(log n) rounds.

Lemma 4. Consider a cluster T in configuration Gi. With probability at least
1/16, T is assigned a merge partner at least once over O(log N) rounds.

Proof sketch: This proof combines the previous lemma with the fact that a
cluster has probability 1/4 of being a long follower, which will ensure the cluster
searches sufficiently long to detect at least one potential leader in a neighboring
cluster.

4.4 Merging

After being matched, two clusters can merge. Our merging algorithm adds edges
in a systematic fashion to ensure there is enough “bandwidth” for two clusters

244 A. Berns

to merge quickly, yet still limits degree increases. Our merging algorithm can be
discussed from two points of view: one which considers two N -node clusters in the
guest network merging into a single N -node cluster, and another which considers
two clusters in the host network systematically updating their cluster successors
and predecessors. Below, we present a discussion from both viewpoints for clarity.
Note these are simply different ways of thinking about the same algorithm.

From the point of view of the guest network, merging can be thought of as (i)
connecting guest nodes with identical identifiers from the two clusters, beginning
with the roots, (ii) determining which of these guest nodes will remain in the new
network (using the ranges of their hosts), and (iii) transferring the links from the
“deleted” node to the “winning” node (the node remaining in the single merged
N -node cluster). The remaining node can then connect its children with the
received children from the former root, and these nodes then repeat the “merge”
process. This proceeds level-by-level until only a single N -node cluster remains.

From the point of view of the host network, the merge involves (i) connecting
the two hosts of two guest nodes with the same identifiers (beginning with the
hosts of the root), and then (ii) updating the cluster ranges of these hosts,
transferring any links from the “lost range” of one host node to another. Note
that initially the hosts of the roots are connected and the cluster ranges of
these two hosts overlap. Given the presence of the other host, each host will
update their cluster successor or predecessor (if needed), and the host whose
cluster range was reduced will transfer any outgoing intra-cluster links to its new
successor/predecessor, effectively allowing one host to “take over” the cluster
range of another. This change in the cluster range corresponds to the “deleting”
of a guest node discussed above. The hosts from the next level in the tree are
then connected and the process repeats recursively until all cluster successors,
predecessors, and (by implication) Type 2 edges are updated and a new cluster
is formed. The merge algorithm is sketched in Algorithm 2.

Algorithm Sketch 2. The Merging Algorithm for Cluster T

// Cluster T has been assigned merge partner T ′

1. Root rT notifies all nodes of merge partner T ′ and
its view of the random sequence Ψr

2. Edges between T and T ′ are removed if Ψr = Ψ
3. Beginning with the roots rT and rT ′ :
4. Node rT updates its range based upon the identifier of rT ′ (if needed)
5. Node rT sends any edges not in its new range to rT ′ ,

and receives edges from rT ′

6. Children of rT and r′
T are connected, and process repeats concurrently

7. Once process reaches leaves, pass feedback wave to new root
8. New root rT ′′ sends PFC wave to update nodes in T ′′ of new cluster identifier.

Note every merge begins with a pre-processing stage which removes all links
between merge partners T and T ′ other than the edge between the roots of

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 245

T and T ′. To prevent the network from being partitioned, no edge is deleted
unless both incident nodes receive from their respective cluster roots a message
matching the shared random sequence Ψ . As this sequence is unknown to the
adversary, network partitions are prevented with high probability.

Analysis of Merge

Lemma 5. Consider two clusters T and T ′ such that T and T ′ are merge part-
ners. In O(log N) rounds, T and T ′ have formed a single cluster T ′′ consisting
of all nodes in T ∪ T ′.

Proof sketch: The proof follows from the fact that the merge process requires
O(log N) rounds of pre-processing, and then resolves at least one level of the
guest network in a constant number of rounds. Since there are log N + 1 levels,
our lemma holds.

Lemma 6. The degree of a node u ∈ T will increase by O(log2 N) during a
merge, and will return to within O(log N) of its initial degree when the merge is
complete.

Proof sketch: This proof follows from Theorem 2. For any set of nodes T forming
AvatarCbt (including a cluster), a node u ∈ T has at most O(log N) edges
amongst nodes in T . As merging involves transferring the O(log N) edges from
a contiguous portion of range(u) to some node v at most once per level in the
guest network, no node will “take over” more than O(log2 N) edges during a
merge. Once the merge is completed, any node in the new cluster T ′′ has at
most O(log N) edges in T ′′, again by Theorem 2.

4.5 Termination Detection

Note the root of a cluster repeatedly executes the matching algorithm. For silent
stabilization, the root must know when a legal configuration has been reached
so it can cease the matching algorithm. For this, we add a “faulty bit” to the
feedback wave sent after a merge has completed. If a node (i) detects the con-
figuration is faulty, or (ii) received a faulty bit of 1 from at least one child, the
node sets its faulty bit to 1 and appends this to the feedback message sent to
the node’s parent. If the root receives a feedback wave without the faulty bit set
(i.e. a value of 0), it stops executing the algorithm. If a node u completes this
wave with its faulty bit set to 0 and it either (i) detects a faulty configuration,
or (ii) detects a neighbor with a faulty bit not equal to 0, u will detect a reset
fault. This ensures our algorithm is silent and stabilizing.

Lemma 7. When our algorithm builds a legal AvatarCbt network, the faulty
bit will be set to 0, and remain 0 until a transient fault again perturbs the system.

Proof sketch: Since AvatarCbt is locally checkable, a faulty configuration has
at least one detector which will set its faulty bit to 1. By similar argument to
Lemma 1, in O(log N) rounds, all nodes will have their faulty bit set to 1 and
begin executing our algorithm. Once the last merge occurs, no node will detect
a fault, and all faulty bits will remain 0 until another fault occurs.

246 A. Berns

4.6 Combined Analysis

Theorem 3. The algorithm in Section 4 is a self-stabilizing algorithm for the
AvatarCbt network with expected convergence time of O(log2 N).

Proof sketch: All nodes are members of a cluster in O(log N) rounds, at which
point the number of clusters will only decrease. Each time a merge occurs, the
number of clusters is reduced by 1, and the probability that a cluster merges over
a span of O(log N) rounds is constant (1/16). In expectation, then, every cluster
has merged in O(log N) rounds, halving the number of clusters. After O(log2 N)
rounds, we are left with a single cluster, which is the legal configuration.

Theorem 4. The degree expansion of the self-stabilizing AvatarCbt algorithm
from Section 4 is O(log2 N) in expectation.

Proof sketch: A node’s degree will increase under only a small number of cir-
cumstances. A node will only have O(log N) edges to nodes in its cluster (except
during merges). During a merge, the degree can increase to at most O(log2 N)
(Lemma 6). Each time a cluster selects the leader role, a node in the cluster
may have its degree increase by 1. As the algorithm will terminate in O(log2 N)
rounds in expectation, there are an expected O(log N) such increases. Finally,
consider an invalid initial configuration which causes a node u to receive many
edges while not in a cluster or merging with another cluster. The only way for
a node u to receive additional edges in a round and not execute a reset action
is for only a single node to add edges to u. Since no node will send more than
O(log N) edges in a single round, and u will be in a cluster in O(log N) rounds,
the degree expansion of our algorithm is O(log2 N).

5 Discussion and Future Work

As it is based on a binary tree, AvatarCbt has poor load balancing properties.
However, it can be useful as an intermediate step in creating other topologies
using a mechanism we call network scaffolding. In this approach, AvatarCbt is
used as an intermediate topology from which another network is built (much like
a scaffold is used for construction). Our technique has already been successful
in building a self-stabilizing Chord network with polylogarithmic convergence
time and degree expansion [2].

To build on this work, we would like to remove the requirement that all nodes
know N , perhaps using a self-stabilizing protocol. We also are examining how
much state nodes must continuously exchange to guarantee local checkability
with mutable state, unlike immutable proof labels [12]. Reducing this exchanged
state can reduce the maintenance for correct configurations. We are also investi-
gating bounds for the degree expansion to determine how efficient this algorithm
is in this self-stabilizing overlay network setting.
Acknowledgments: I would like to thank my advisors, Dr. Sriram V. Pemmaraju
and Dr. Sukumar Ghosh, for their guidance and discussions on this paper.

Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network 247

References

1. Aspnes, J., Shah, G.: Skip graphs. In: SODA 2003: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 384–393. Society for
Industrial and Applied Mathematics, Philadelphia (2003)

2. Berns, A.: Self-Stabilizing Overlay Networks. Ph.D. thesis, University of Iowa
(December 2012)

3. Berns, A.: Avatar: A Time- and Space-Efficient Self-Stabilizing Overlay Network
(2015). 1506.0168

4. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013).
http://dx.doi.org/10.1016/j.tcs.2013.02.021

5. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in
tree networks. In: Workshop on Self-stabilizing Systems, ICDCS 1999, pp. 78–85.
IEEE Computer Society, Washington, DC (1999). http://dl.acm.org/citation.cfm?
id=647271.721996

6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

7. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
8. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-

weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983).
http://doi.acm.org/10.1145/357195.357200

9. Hayes, T., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure
for low stretch under adversarial attack. Distributed Computing 25(4), 261–278
(2012). http://dx.doi.org/10.1007/s00446-012-0160-1

10. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed poly-
logarithmic time algorithm for self-stabilizing skip graphs. In: PODC 2009: Pro-
ceedings of the 28th ACM Symposium on Principles of Distributed Computing,
pp. 131–140. ACM, New York (2009)

11. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord
overlay network. In: Proceedings of the 23rd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2011, pp. 235–244. ACM, New York (2011).
http://doi.acm.org/10.1145/1989493.1989527

12. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: Proceedings of the
Twenty-fourth Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC 2005, pp. 9–18. ACM, New York (2005). http://doi.acm.org/10.1145/
1073814.1073817

13. Leighton, F.T.: Introduction to parallel algorithms and architectures: array, trees,
hypercubes. Morgan Kaufmann Publishers Inc., San Francisco (1992)

14. Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sort-
ing in graphs. In: ALENEX. SIAM (2007)

15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

http://arxiv.org/abs/1506.0168
http://dx.doi.org/10.1016/j.tcs.2013.02.021
http://dl.acm.org/citation.cfm?id=647271.721996
http://dl.acm.org/citation.cfm?id=647271.721996
http://doi.acm.org/10.1145/357195.357200
http://dx.doi.org/10.1007/s00446-012-0160-1
http://doi.acm.org/10.1145/1989493.1989527
http://doi.acm.org/10.1145/1073814.1073817
http://doi.acm.org/10.1145/1073814.1073817

Self-stabilizing Virtual Synchrony

Shlomi Dolev1, Chryssis Georgiou2,
Ioannis Marcoullis2(B), and Elad M. Schiller3

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

dolev@cs.bgu.ac.il
2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus

{chryssis,imarco01}@cs.ucy.ac.cy
3 Department of Engineering and Computer Science,

Chalmers University of Technology, Gothenburg, Sweden
elad@chalmers.se

Abstract. Virtual synchrony (VS) is an important abstraction that is
proven to be extremely useful when implemented over asynchronous, typ-
ically large, message-passing distributed systems. Fault tolerant design
is critical for the success of such implementations since large distributed
systems can be highly available as long as they do not depend on the
full operational status of every system participant. Self-stabilizing sys-
tems can tolerate transient faults that drive the system to an arbitrary
unpredictable configuration. Such systems automatically regain consis-
tency from any such configuration, and then produce the desired system
behavior ensuring it for practically infinite number of successive steps,
e.g., 264 steps.

We present a new multi-purpose self-stabilizing counter algorithm
establishing an efficient practically unbounded counter, that can directly
yield a self-stabilizing Multiple-Writer Multiple-Reader (MWMR) reg-
ister emulation. We use our counter algorithm, together with a self-
stabilizing group membership and a self-stabilizing multicast service to
devise the first practically stabilizing VS algorithm and a self-stabilizing
VS-based emulation of state machine replication (SMR). As we base the
SMR implementation on VS, rather than consensus, the system pro-
gresses in more extreme asynchronous settings in relation to consensus-
based SMR.

1 Introduction

Virtual Synchrony (VS) has been proven to be very important in the scope of
fault-tolerant distributed systems [4]. The VS property ensures that two or more
processors that participate in two consecutive communicating groups should
have delivered the same messages. Systems that support the VS abstraction
are designed to operate in the presence of fail-stop failures of a minority of the

The work of the first author is partially supported by the Rita Altura Trust Chair
in Computer Sciences, and the Israel Science Foundation (grant 428/11). The work
of the second and third authors is supported by the University of Cyprus.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 248–264, 2015.
DOI: 10.1007/978-3-319-21741-3 17

Self-stabilizing Virtual Synchrony 249

participants. Such a design fits large computer clusters, data-centers and cloud
computing, where at any given time some of the processing units are nonoper-
ational. Systems that cannot tolerate such failures degrade their functionality
and availability to the degree of unuseful systems.

Group communication systems that realize the VS abstraction provide ser-
vices, such as group membership and reliable group multicast. The group mem-
bership service is responsible for providing the current group view of the recently
live and connected group members, i.e., a processor set and a unique view iden-
tifier, which is a sequence number of the view installation. The reliable group
multicast allows the service clients to exchange messages with the group mem-
bers as if it was a single communication endpoint with a single network address
and to which messages are delivered in an atomic fashion, thus any message is
either delivered to all recently live and connected group members prior to the
next message, or is not delivered to any member. The challenges related to VS
consist of the need to maintain atomic message delivery in the presence of asyn-
chrony and crash failures. VS facilitates the implementation of a replicated state
machine [4] that is more efficient than classical consensus-based implementations
that start every multicast round with an agreement on the set of recently live
and connected processors. It is also usually easier to implement [4]. To the best
of our knowledge, no self-stabilizing virtual synchrony solution exists.

Transient violations of design assumptions can lead a system to an arbitrary
state. For example, the assumption that error detection ensures the arrival of
correct messages and the discarding of corrupted messages, might be violated
since error detection is a probabilistic mechanism that may not detect a cor-
rupt message. As a result, the message can be regarded as legitimate, driving
the system to an arbitrary state after which, availability and functionality may
be damaged forever, requiring human intervention. In the presence of transient
faults, large multicomputer systems providing VS-based services, can prove hard
to manage and control. One key problem, not restricted to virtually synchronous
systems, is catering for counters (such as view identifiers) reaching an arbitrary
value. How can we deal with the fact that transient faults may force counters
to wrap around to the zero value and violate important system assumptions
and correctness invariants, such as ordering of events? A self-stabilizing algo-
rithm [7] can automatically recover from such unexpected failures, possibly as
part of after-disaster recovery or even after benign temporal violation of the
assumptions made in the design of the system. We tackle this issue in our work.

Contributions. We present the first self-stabilizing virtual synchrony solution.
Specifically, we provide a self-stabilizing counter algorithm using bounded mem-
ory and communication bandwidth, and yet (many writers) can increment the
counter for an unbounded number of times in the presence of processor crashes
and unbounded communication delays. Our counter algorithm is modular with a
simple interface for increasing and reading the counter, as well as providing the
identifier of the processor that has incremented it. At the heart of our counter
algorithm is the underlying labeling algorithm which extends the label scheme of
Alon et al. [1] to support multiple writers, whilst the algorithm specifies how the

250 S. Dolev et al.

processors exchange their label information in the asynchronous system and how
they maintain proper label bookkeeping so as to “discover” the greatest label
and discard all obsolete ones. An immediate application of our counter algo-
rithm is a self-stabilizing MWMR register emulation. Our self-stabilizing counter,
using the self-stabilizing reliable multicast and membership services yields our
self-stabilizing VS solution, which leads to a self-stabilizing VS-based State
Machine Replication (SMR) implementation. A full version of this paper can be
found in [11].

Related Work. Lamport was the first to introduce SMR, presenting it as an
example in [12]. Schneider [14] gave a more generalized approach to the design
and implementation of SMR protocols. Group communication services can imple-
ment SMR by providing reliable multicast that guarantees VS [3]. Birman et al.
were the first to present VS and a series of improvements in the efficiency of
ordering protocols [5]. Birman gives a concise account of the evolution of the VS
model for SMR in [4].

Research during the last recent decades resulted in an extensive literature
on ways to implement VS and SMR, as well as industrial construction of such
systems. A recent research line on (practically) self-stabilizing versions of repli-
cated state machines [1,6,9,10] obtains self-stabilizing replicated state machines
in shared memory as well as synchronized and asynchronous message passing
systems.

The bounded labeling scheme and the use of practically unbounded sequence
numbers proposed in [1], allow the creation of self-stabilizing bounded-size solu-
tions to the never-exhausted counter problem in the restricted case of a single
writer. In [6] a self-stabilizing version of Paxos was developed that led to a self-
stabilizing consensus-based SMR implementation. To this end, a labeling scheme
extending the one of [1] to allow multiple writers. Extracting this scheme for
other uses does not seem intuitive. We present a simpler and significantly more
communication efficient self-stabilizing (bounded-size never-exhausted) counter
that also supports many writers, where a single label rather than a vector of
labels needs to be communicated. Our solution is highly modular and can be
easily used in any similar setting requiring such counters.

Practically-stabilizing VS and self-stabilizing VS are identical when VS is
defined by the behaviour of classical VS algorithms that use (bounded) counters.
These algorithms preserve the VS requirements as long as the counters do not
reach their upper bound. In our setting, if a counter reaches the upper bound due
to a transient fault our self-stabilizing/practically-stabilizing solution introduces
a new epoch with new sequence numbers. It, thus, converges to act exactly as the
non-stabilizing VS (for the same number of steps) as an initialized non-stabilizing
VS algorithm.

2 System Settings

We consider an asynchronous message passing system that includes a set P of n
communicating processors; we refer to the processor with identifier i, as pi. We
assume that up to a minority of processors may become inactive. The system runs

Self-stabilizing Virtual Synchrony 251

on top of a stabilizing data-link layer that provides reliable FIFO communication
over unreliable bounded capacity channels [8] and reference therein. The network
topology is of a fully connected graph where every two processors exchange
(low-level messages called) packets to enable a reliable delivery of (high level)
messages. When no confusion is possible we use the term messages for packets.

The communication links have bounded capacity, thus the number of pack-
ets in every given instance is bounded by a constant. When processor pi sends a
packet, π, to processor pj , the operation send inserts a copy of π into the FIFO
queue representing the communication channel from pi to pj , while respect-
ing the capacity of the channel, possibly omitting the new packet or one of
the already sent packets. Packets are retransmitted until more than the total
capacity acknowledgments arrive. Acknowledgments are sent only when a packet
arrives (not spontaneously). When pj receives π from pi, π is dequeued. We
assume that packets can be spontaneously omitted (lost) from the channel, how-
ever, a packet that is sent infinitely often is received infinitely often.

Over this data-link, the two connected processors can constantly exchange a
“token”. Specifically, the sender (possibly the processor with the highest identi-
fier among the two) constantly sends packet π1 until it receives enough acknowl-
edgments (more than the capacity). Then, it constantly sends packet π2, and so
on and so forth. This assures that the receiver has received packet π1 before the
sender starts sending packet π2. This can be viewed as a token exchange. We use
the abstraction of the token carrying messages back and forth between any two
communication entities and use it to implement a reliable multicast procedure,
and a failure detector in Section 4.

The code of self-stabilizing algorithms usually consists of a do forever loop
that contains communication operations with the neighbors and validation that
the system is in a consistent state as part of the transition decision. An iteration
of the algorithm starts in the loop’s first line and ends at the last (regardless of
whether it enters branches).

Every processor pi executes a program that is a sequence of (atomic) steps,
where a step starts with local computations and ends with a single communica-
tion operation, which is either send or receive of a packet. For ease of description,
we assume the interleaving model, where steps are executed atomically, a single
step at any given time. An input event can be either the receipt of a packet or
a periodic timer triggering pi to (re)send. Note that the system is asynchronous
thus rate of the timer is totally unknown.

A (system) configuration is a tuple of the form (s1, s2, · · · , sn), where si is the
state of pi (including the values of all the variables and all messages in transit to
pi). Each algorithm step can change the processor’s state. An execution (or run)
R = c0, a0, c1, a1, . . . is an alternating sequence of system configurations cx and
steps ax, such that each configuration cx+1, except the initial configuration c0, is
obtained from the preceding configuration cx by the execution of the step ax. A
practically infinite execution [6] is an execution with many steps (and iterations),
where “many” is defined to be proportional to the time it takes to execute a step
and the life-span time of a system.

252 S. Dolev et al.

We define the system’s task by a set of executions called legal executions
(LE) in which the task’s requirements hold, we use the term safe configura-
tion for any configuration in LE. An algorithm is self-stabilizing with relation
to the task LE when every (unbounded) execution of the algorithm reaches a
safe configuration with relation to the algorithm and the task. An algorithm is
practically stabilizing with relation to the task LE if in any practically infinite
execution a safe configuration is reached.

The VS property requires that any two processors sharing the same sequence
of views, ought to deliver identical message sets in these views. A legal execu-
tion of VS is defined in terms of input/output sequences of the system with
the environment. When a majority of processors are continuously active, every
external input (and only the external inputs) should be atomically accepted and
processed by this majority. Note that in executions lacking a majority, there is
no delivery and processing guarantee, but still any delivery and processing is
due to a received environment input.

3 Self-stabilizing Labeling Scheme and Counter
Increment

In this section we first present the self-stabilizing labeling algorithm for multiple
writers and extend this result to obtain self-stabilizing practically unbounded
counters.

3.1 Labeling Algorithm for Concurrent Label Creations
Bounded Labeling Scheme. We build on the labeling scheme of Alon et al. [1]
to support wait-free multi-writer systems. The labels (also called epochs) allow
the system to stabilize, since once a label is established, the integer counter
related to this label is considered to be practically infinite. We extend the label
structure of [1] by including the epoch creator’s (writer’s) identity to break
symmetry, to determine the most recent epoch, even when two or more creators
concurrently create a new label.

Specifically, we consider the set of integers D = [1, k2 + 1]. A label (or
epoch) is a triple 〈lCreator, sting, Antistings〉, where lCreator is the iden-
tity of the processor that established (created) the label, Antistings ⊂ D with
|Antistings| = k, and sting ∈ D. Given two labels �i, �j , we define the relation �i

≺lb �j ≡ (�i.lCreator < �j .lCreator) ∨ (�i.lCreator = �j .lCreator ∧ ((�i.sting
∈ �j .Antistings) ∧ (�j .sting
∈ �i.Antistings))); we use =lb for label identity.
Note that ≺lb does not define a total order. For example, when �i.lCreator =
�j .lCreator and (�i.sting
∈ �j .Antistings) and (�j .sting
∈ �i.Antisting) these
labels are incomparable. We say that a label � cancels another label �′, if either
they are incomparable or they have the same lCreator but � is greater than �′

(with respect to sting and Antistings).
Function nextLabel() (Algorithm 1) accepts a set of labels as input and

returns a new label, greater than all of the input labels. It has the same func-
tionality as the function Nextb() of [1], but it additionally considers the label
creator. It builds a new Antistings set from the stings of all the labels it has as

Self-stabilizing Virtual Synchrony 253

Algorithm 1. The nextLabel() function; code for pi

1 For any non-empty set X ⊆ D, function pick(d, X) returns d arbitrary elements of X;
input : S = 〈�1, �2 . . . , �k〉 set of k labels.
output : 〈i, newSting, newAntistings〉

2 let newAntistings = {�j .sting : �j ∈ S};
3 newAntistings ← newAntistings ∪ pick(k − |newAntistings|, D \ newAntistings);
4 return 〈i, pick(1, D \ (newAntistings ∪ {∪�j∈S�j .Antistings})), newAntistings〉;

input, and chooses a sting that is in none of the Antistings of the input labels.
In this way it ensures that the new label is greater than any of the input. Note
that the function takes k Antistings of k labels, implying at most k2 integers,
thus the choice of |D| = k2 + 1 ensures the existence of an integer to be used as
the sting, which is not part of Antistings of the input labels.

Each processor pi is required to “clean up” the system from obsolete labels of
which pi appears to be the creator (for example, such labels could be present in
the system’s initial arbitrary state). To achieve this, pi maintains a bounded FIFO
history of such labels that it has recently learned while communicating with the
other processors, and creates a greater label by passing the labels in its queue
to nextLabel(); call this new label pi’s local maximal label. Performing the above
tasks is aimed at having each processor learn the globally maximal label, that is, the
label in the system that is the greatest among the local maximal ones and adopt
it. Unfortunately, when some processors are not active, finding a global maximal
becomes challenging, since these processors will not “clean up” their local labels.
Active processors have to do this indirectly without knowing which processors are
inactive. Note that this is not a concern in [1], since the sole writer is responsible
of “cleaning” obsolete labels as long as it is active; once the single writer becomes
inactive nothing can be done with respect to new label creation.

Let us explain why obsolete labels from inactive processors are problematic
when they are not cleaned (canceled). Consider a system starting in a state that
includes a cycle of labels �1 ≺lb �2 ≺lb �3 ≺lb �1, all of the same creator, say
px. If px is active, it eventually learns about these labels and creates a label
greater than them all. But if px is inactive, the system’s asynchronous nature
may cause a repeated cyclic label adoption, especially when px has the greatest
processor identifier, since the identifier is used to break symmetry. Say that an
active processor learns and adopts �1 as its global maximal label. Then, it learns
about �2 and hence adopts it, while forgetting about �1. Then, learning of �3 it
adopts it. Lastly, it learns about �1, and as it is greater than �3, it adopts �1
once more, as the greatest in the system; this can continue indefinitely.

As a solution, each processor maintains a bounded queue for each other
processor, where a label with lCreator = j, is stored in the queue corresponding
to processor pj . Obsolete labels eventually accumulate in these bounded FIFO
queues and are never again adopted, ending cyclic adoptions. We show that
given a majority of active processors and any initial state, the system eventually
converges to a global maximal label.

254 S. Dolev et al.

The Labeling Algorithm. The algorithm specifies how the processors
exchange their label information in the asynchronous system and how they main-
tain proper label bookkeeping so as to “discover” their greatest label and cancel
all obsolete ones. As we will be using pairs of labels with the same label creator,
for the ease of presentation, we will be referring to these two variables as the
(label) pair. The first label in a pair is called ml. The second label is called cl
and it is either ⊥, or equal to a label that cancels ml (i.e., cl indicates whether
ml is an obsolete label or not).

The Processor’s State: Each processor stores an array of label pairs, maxi[],
where maxi[i] refers to pi’s maximal label pair and maxi[j] is the most recent
label that pi knows about pj ’s pair. Processor pi also stores the pairs of the
most-recently-used labels in the array of queues storedLabelsi[]. The j-th entry
refers to the queue with pairs from pj ’s domain, i.e., created by pj . The algorithm
makes sure that storedLabelsi[j] includes only label pairs with unique ml from
pj ’s domain and that at most one of them is legitimate, i.e., not canceled.

Information Exchange Between Processors: Processor pi takes a step
whenever it receives two pairs 〈sentMax, lastSent〉 from some other processor,
say pj . We note that in a legal execution pj ’s pair includes both sentMax, which
refers to pj ’s maximal label pair maxj [j], and lastSent, which refers to a recent
label pair that pj received from pi about pi’s maximal label, maxj [i] (line 16).

Whenever pi receives a pair 〈sentMax, lastSent〉 from pj , pi stores the
arriving sentMax in maxi[j] (line 19). Note that in a legal execution the
arriving sentMax is always legitimate. However, when pj acknowledges pi’s
label, it is possible that pj needs to inform pi of a label from pi’s domain
that cancels pi’s maximal label, ml in maxi[i]. It does so by sending to pi

a label that cancels ml and thus it would be the case, lastSent will have a
lastSent.cl, that is not ⊥. Specifically, it contains a label that pj knows such that
lastSent.cl
�lb lastSent.ml, i.e., lastSent.cl is either greater or incomparable to
lastSent.ml. In case this lastSent.ml still refers to pi’s maximal label, pi must
cancel maxi[i] by assigning it with lastSent (and thus maxi[i].cl = lastSent.cl)
as in line 20. Lines 21 to 28 show how pi processes the two pairs received.

Label Processing: Having received a new pair message 〈sentMax, lastSent〉
from some pj , processor pi starts a step by removing stale information, i.e., mis-
placed or doubly represented labels (line 9) in the label storage. When stale
information exists, the algorithm empties the entire storage. Processor pi then
tests whether the arriving two pairs are already included in the label storage
(storedLabels[]), otherwise it includes them (line 22). Based on the new pairs
added to the label store, the algorithm determines whether it is possible to can-
cel a non-canceled label pair (which may well be a newly added pair). In this
case, the algorithm updates the canceling field of any label pair lp (line 23)
with the canceling label of a label pair lp′ such that lp′.ml
�lb lp.ml (line 23).
It is implied that since the two pairs belong to the same storage queue, they
have the same creator identity. Line 24 checks whether any pair of the maxi[]
array can cancel a record in the label storage, and line 25 removes any canceled

Self-stabilizing Virtual Synchrony 255

Algorithm 2. Self-Stabilizing Labeling Algorithm; code for pi

1 Variables:
2 max[n] of 〈ml, cl〉: max[i] is pi’s largest label pair, max[j] refers to pj ’s label pair (canceled

when max[j].cl
= ⊥).
3 storedLabels[n]: an array of queues of the most-recently-used label pairs, where

storedLabels[j] holds the labels created by pj ∈ P . For pj ∈ (P \ {pi}), storedLabels[j]’s
queue size is limited to (n + m) w.r.t. label pairs, where n = |P | is the number of processors
in the system and m is the maximum number of label pairs that can be in transit in the
system. The storedLabels[i]’s queue size is limited to (n(n2 + m)) pairs. The operator
add(�) adds lp to the front of the queue, and emptyAllQueues() clears all storedLabels[]
queues. We use lp.remove() for removing the record lp ∈ storedLabels[]. Note that an
element is brought to the queue front every time this element is accessed in the queue.

4 Notation: Let y and y′ be two records that include the field x. We denote y =x y′ ≡ (y.x

= y′.x)
5 Macros:
6 legit(lp) = (lp = 〈•, ⊥〉)
7 labels(lp) : return (storedLabels[lp.ml.lCreator])

8 double(j, lp) = (∃lp′ ∈ storedLabels[j] : ((lp
= lp′)∧((lp =ml lp′)∨(legit(lp)∧legit(lp′)))))
9 staleInfo() = (∃pj ∈ P, lp ∈ storedLabels[j] : (lp
=lCreator j) ∨ double(j, lp))

10 recordDoesntExist(j) = (〈max[j].ml, •〉 /∈ labels(max[j]))

11 notgeq(j, lp) = if (∃lp′ ∈ storedLabels[j] : (lp′.ml
�lb lp.ml)) then return(lp′.ml)
else return(⊥)

12 canceled(lp) = if (∃lp′ ∈ labels(lp) : ((lp′ =ml lp) ∧ ¬legit(lp′))) then return(lp′)
else return(⊥)

13 needsUpdate(j) = (¬legit(max[j]) ∧ 〈max[j].ml, ⊥〉 ∈ labels(max[j]))
14 legitLabels() = {max[j].ml : ∃pj ∈ P ∧ legit(max[j])}
15 useOwnLabel() = if (∃lp ∈ storedLabels[i] : legit(lp)) then max[i] ← lp

else storedLabels[i].add(max[i] ← 〈nextLabel(), ⊥〉) // For every lp ∈ storedLabels[i],
we pass in nextLabel() both lp.ml and lp.cl.

16 upon transmitReady(pj ∈ P \ {pi}) do transmit(〈max[i], max[j]〉)
17 upon receive(〈sentMax, lastSent〉) from pj

18 begin
19 max[j] ← sentMax;
20 if ¬legit(lastSent) ∧ max[i] =ml lastSent then max[i] ← lastSent;
21 if staleInfo() then storedLabels.emptyAllQueues();
22 foreach pj ∈ P : recordDoesntExist(j) do labels(max[j]).add(max[j]);
23 foreach pj ∈ P, lp ∈ storedLabels[j] : (legit(lp) ∧ (notgeq(j, lp)
= ⊥)) do

lp.cl ← notgeq(j, lp);
24 foreach pj ∈ P, lp ∈ labels(max[j]) : (¬legit(max[j]) ∧ (max[j] =ml lp) ∧ legit(lp)) do

lp ← max[j];
25 foreach pj ∈ P, lp ∈ storedLabels[j] : double(j, lp) do lp.remove();
26 foreach pj ∈ P : (legit(max[j]) ∧ (canceled(max[j])
= ⊥)) do

max[j] ← canceled(max[j]);
27 if legitLabels()
= ∅ then max[i] ← 〈max≺lb

(legitLabels()), ⊥〉;
28 else useOwnLabel();

records that share the same ml. The test also considers the case in which the
above update may cancel any arriving label in max[j] and updates this entry
accordingly based on stored pairs (line 26).

After this series of tests and updates, the algorithm is ready to decide upon a
maximal label based on its local information. This is the �lb-greatest legit label
pair among all the ones in maxi[] (line 26). When no such legit label exists, pi

request a legit label in its own label storage, storedLabelsi[i], and if one does
not exist, will create a new one if needed (line 28). This is done by passing the
labels in the storedLabeli[i] queue to the nextLabel() function. Note that the
returned label is coupled with a ⊥ and the resulting label pair is added to both
maxi[i] and storedLabeli[i].

256 S. Dolev et al.

Correctness Proof Outline. Consider an execution R of Algorithm 2 that
may start in an arbitrary configuration. We first show some basic facts, such
as: (1) stale information is removed, i.e., storedLabelsi[j] includes only unique
copies of pj ’s labels, and at most one legitimate and (2) pi either adopts or
creates the �lb-greatest legitimate local label. We then bound on the number of
adoptions, first in the absence of label creations and then in their presence.
Lemma 1. Let pi, pj ∈ P , be two processors. Suppose that pj has stopped adding
labels to the system configuration (the else part of line 28), and sending (line 16)
these labels during R. Processor pi adopts (line 27) at most (n + m) label pairs,
lpj : (lpj =lCreator j), from pj’s unknown domain (lpj /∈ labelsi(lpj)), where m
is the maximum number of label pairs that can be in transit in the system.

Lemma 2. Let pi ∈ P be a processor. Let Li = lpi0 , lpi1 , . . . be the sequence of
legitimate label pairs (i.e., lpik

.cl = ⊥), �ik
=lCreator i, from pi’s domain, which

pi stores in maxi[i] over time, where k ∈ N . It holds that |Li| ≤ n(n2 + m).
Active processors can now be shown to eventually stop adopting or creating

labels. We show that incomparable label pairs eventually disappear from the
system and thus no new labels are adopted or created, which then implies the
existence of a global maximal label. Combining all the above, we deduce that
starting from any initial configuration, the system eventually reaches a configu-
ration in which there is a global maximal label.

Theorem 1. Suppose that there exists at least one processor, pu ∈ P with
unknown identity, that takes practically infinite number of steps in R. Within
a bounded number of steps, there is a legitimate label pair �max, such that for
any processor pi ∈ P (that takes a practically infinite number of steps in R), it
holds that pi has that label pair maxi[i] = �max when naming its (local) maxi-
mal label, maxi[i].ml. Moreover, for any processor pj ∈ P (that takes a practi-
cally infinite number of steps in R), it holds that ((maxi[j] �lb �max) ∧ ((∀� ∈
storedLabelsi[j] : legit(�)) ⇒ (� �lb �max))).

Proof Sketch. For any processor in the system which may take any (bounded
or practically infinite) number of steps in R, we know that there is a bounded
number of label pairs, Li = lpi0 , lpi1 , . . ., that processor pi ∈ P adds to the
system configuration (the else part of line 28), where lpik

=lCreator i (Lemma 2).
Thus, by the pigeonhole principle, we know that within a bounded number of
steps in R, there is a period during which pu takes a practically infinite number of
steps in R whilst (all processors) pi do not add any label pair, lpik

=lCreator i,
to the system configuration (the else part of line 28). During this period, we
know that for any processor pj ∈ P that takes any number of (bounded or
practically infinite) steps in R, and processor pk ∈ P that adopts labels in R
(line 27), lpj : (lpj =lCreator j), from pj ’s unknown domain (lpj /∈ labelsk(lpj)),
it holds that pk adopts such labels (line 27) only a bounded number of times
in R (Lemma 1). Again, by the pigeonhole principle, there is a period during
which pu takes practically infinite steps in R where neither pi adds a label,
lpik

=lCreator i, to the system (line 28), nor pk adopts labels (line 27), lpj :
(lpj =lCreator j), from pj ’s unknown domain (lpj /∈ labelsk(lpj)). Consequently,

Self-stabilizing Virtual Synchrony 257

whilst pu takes practically infinite steps, all processors (that take practically
infinite steps in R) name the same �lb-greatest legitimate label as the theorem
statement specifies. �

3.2 Increment Counter Algorithm
In this subsection, we explain how we can enhance the labeling scheme presented
in the previous subsection to obtain a practically self-stabilizing counter incre-
ment algorithm supporting multiple writers. To do so, we extend the labeling
scheme to handle counters. A counter cnt is a triplet 〈lbl, seqn,wid〉, where lbl is
an epoch label as defined in the previous subsection, the sequence number seqn
is an integer ranging from 0 to 2b, where b is large enough, say b = 64, and wid
is the identifier of the processor that last incremented the counter’s sequence
number, i.e., wid is the counter writer. Then, given two counters cnti, cntj
we define the relation cnti ≺ct cntj ≡ (cnti.lbl ≺lb cntj .lbl) ∨ ((cnti.lbl =
cntj .lbl) ∧ (cnti.seqn < cntj .seqn)) ∨ ((cnti.lbl = cntj .lbl) ∧ (cnti.seqn =
cntj .seqn) ∧ (cnti.wid < cntj .wid)). When the labels of the two counters are
incomparable, the counters are also incomparable.

The relation ≺ct defines a total order (as required by practically unbounded
counters) only when processors share a globally maximum label. In this case,
processors can increment a shared counter even when attempting to do so con-
currently. Note that by the correctness of the labeling algorithm, starting from
any initial state, we eventually reach a configuration where the active proces-
sors adopt the same maximal label. Thus, the system stabilizes to use a global
maximal label, and so the pair of the sequence number and the identifier of
the processor who created this sequence number can be used as an unbounded
counter, as used, for example, in MWMR register implementations [13].

Let us highlight the main issues one needs to consider when dealing with
counters rather than labels. Recall that in the labeling algorithm each processor
pi maintained two main structures of pairs of labels: array max[] that stored the
local maximal labels of each other processor (based on the message exchange) and
storedLabels[], an array of queues of label pairs that each processor maintains
in an attempt to clean up obsolete labels created by itself or other processors.
These structures now need to contain counters instead of just labels (and these
structures are called maxC[] and storedCnts[]). However, each label can now
yield many different counters. In order to avoid increasing the size of these
queues (with respect to the number of elements stored), we only keep the highest
sequence number observed for each label (breaking ties with wids).

If there are corrupt counters in the system (from the initial arbitrary state),
then they can only force a change of label if their sequence number is exhausted
(i.e., seqn ≥ 2b). Exhausted counters are treated by the algorithm in a simi-
larly to canceled labels in the labeling algorithm; an exhausted counter cnti in
a counter pair 〈cnti, cntj〉 is canceled, by setting cnti.lbl = cntj .lbl (i.e., the
counter’s own label cancels it) and hence making the counter non-legit (thus it
cannot be used as a local maximal counter in maxCi[i]). This cannot increase
the number of labels that are created due to the initially corrupted ones, as the
total capacity of the links in the system still corresponds to m.

258 S. Dolev et al.

Another issue worth mentioning is that the system might revert back to a
previous legit label x, in case the current maximal label y is canceled. Label x
might have been used before to create counters, so it is required to store the last
sequence number written. If x is legit the system should not propose a new label
and instead revert to it. Otherwise the queues might grow with no bound. But
as mentioned above, each processor stores only the maximal sequence number
learned for each label, inside storedCnts[] (i.e., the counter with the maximal
(seqn,wid) to the corresponding lbl).

Algorithm Description: To increment the counter, a processor pi first sends
a request to all other processors querying the counter they consider as the global
maximum and awaits for responses from a majority. In a procedure similar to
the labeling algorithm, pi (eventually) finds the maximal epoch label and the
maximal sequence number for this label. In other words, it collects counters
and finds the one(s) with the largest global label; there can be more than one
such counter. In this case, it returns the one with the highest sequence number,
breaking symmetry with the wids. It then checks whether this maximal sequence
number is exhausted, i.e., if it is equal or greater than 2b. If so, it proceeds to
find a new maximal label until it finds one that is not exhausted and uses the
maximal sequence number it knows for this epoch label, incrementing it by one,
and setting its own identifier as the writer of this new sequence number. It then
sends the new counter to all processors, awaiting for acknowledgment from a
majority. This is, in spirit, similar to the two-phase write operation of MWMR
register implementations, focusing on the sequence number rather than on an
associated value [13].

When a processor pi establishes a new label � as the global maximum, it
sets the corresponding counter cnt = 〈�, 0, i〉; in this case, the label creator
identifier and the sequence number writer identifier is i. When there is an already
established maximal label � in the system and processor pi wants to increment
the counter, it increases the corresponding (to �) maximal sequence number
found (maxseqn) by one, and sets the counter cnt = 〈�,maxseqn + 1, i〉; in this
case, the label creator identifier and the sequence number writer identifier need
not be the same, i.e., if pi was not the creator of label �. From the above, we
have the following correctness result:
Theorem 2. Given an execution of the counter increment algorithm in which
up to a minority of processors may become inactive, starting from an arbitrary
configuration, the algorithm eventually ensures that counters increment mono-
tonically.

Having a self-stabilizing counter increment algorithm, we can implement a
self-stabilizing MWMR register emulation. Each counter is associated with a
value and the counter increment procedure essentially becomes a write operation:
once the writer finds a maximal counter, it increments and associates it with the
value to be written. It then communicates this to a majority of processors. The
read operation is similar: the reader queries all processors about the maximum
counter they are aware of, and waits for a majority to respond. If it does not
receive such a counter, it returns ⊥ so the read has to be repeated; i.e., the

Self-stabilizing Virtual Synchrony 259

system has yet to converge to a maximal label. If a maximal counter exists,
it sends this together with the associated value to all the processors, and once
it is acknowledged by a majority, it returns the counter with the associated
value. The second phase is a standard requirement to preserve the register’s
consistency [2,13].

4 Virtually Synchronous Stabilizing Replicated State
Machine

In this section, we present our practically stabilizing VS algorithm that emulates
SMR.

4.1 Preliminaries

As already mentioned, group communication systems providing the VS property
implement two main services: a membership service and a reliable multicast ser-
vice, whilst they assume there is access to an unbounded counter to use as unique
view identifiers. We provide these services in a coordinator-based solution, con-
sidering a primary-group implementation [5]. To assign view identifiers, we use
our counter increment algorithm. Specifically, a counter defines a view identi-
fier, and the counter’s writer identifier is that of the view’s coordinator. This
defines a simple interface with the counter algorithm, which provides an iden-
tical output. The output of the coordinator’s failure detector defines the set of
view members; this helps to maintain a consistent membership among the group
members, despite inaccuracies between the various failure detectors. Pairing the
coordinator’s member set with the counter we obtain a view. The coordinator is
also responsible for the consistency of the multicast mechanism within the group.
We first suggest a possible implementation of a failure detector (to provide mem-
bership) and of a reliable multicast service over the self-stabilizing FIFO data
link given in Section 2.

Failure Detector Implementation: Every processor p, maintains a heartbeat
integer counter for every other processor q. Whenever p receives the token from
q over their data link, p resets q’s counter value to zero and increments all the
integer counters associated with the other processors by one, up to a predefined
threshold value W . Once the heartbeat counter value of a processor q reaches
W, the failure detector of p considers q as inactive. In other words, the failure
detector at p considers processor q to be active, if and only if the heartbeat
associated with q is strictly less than W. This is essentially the failure detector
implementation mentioned in [6]. Note that for the correctness of our VS algo-
rithm, we require a weaker failure detector. Specifically, we require that at least
one processor is not suspected, for sufficiently long time, only by a majority of
the processors, as opposed to an eventually perfect failure detector that ensures
that after a certain time, no active processor suspects any other active processor.

Reliable Multicast Implementation: We use the coordinator, some processor
say p�, to exchange messages (by multicasting) within the group. The coordinator

260 S. Dolev et al.

requests, collects and combines input from the group members, and then it mul-
ticasts the updated information. Specifically, when p� decides to collect inputs,
it waits for the token to arrive from each group participant. Whenever a token
arrives from a participant, p� uses the token to send the request for input to that
participant, and waits the token to return with some input (possibly ⊥, when the
participant does not have a new input). Once p� receives an input from a certain
participant with respect to this multicast invocation, the corresponding token
will not carry any new requests to receive input from the same participant; of
course, the tokens continue to move back and forth. When all inputs are received,
p� combines them and again uses the token to carry the updated information.
The coordinator can then proceed to the next round of input collection.

4.2 Self-stabilizing Virtually Synchrony and SMR Algorithm

We now present our self-stabilizing virtual synchrony and SMR algorithm. The
guarantees for VS hold under the assumption that a primary partition exists as
defined below.

Definition 1 (Primary partition). We say that the output of the (local) fail-
ure detectors in execution R includes a primary partition when it includes a
supporting majority of processors, Pmaj ⊆ P , that (mutually) never suspect at
least one processor, i.e., ∃p� ∈ P for which |Pmaj | > �n/2� and (pi ∈ (Pmaj ∩
FD�)) ⇐⇒ (p� ∈ (Pmaj ∩ FDi)) in every c ∈ R, where FDx returns the set of
processors that according to x’s failure detector are active.

Note that Definition 1, allows for more than one such processor p�; in this case,
it is not necessary for these processors to have the same supporting majority.

Algorithm Outline. Each participant maintains a replica rep[] of the state
machine.We bound the memory used to store the history of the replica by only
keeping the encapsulated influence of the history represented by the current state
of the replica (variable state). Each participant also maintains the last delivered
(composite) message, msg[n], ensuring common reliable multicast, in case the
coordinator becomes inactive before ensuring delivery by all members of the
group.

The existence of coordinator p� is in the heart of Algorithm 3. The algorithm
determines p�’s availability and acts towards finding a new coordinator when no
valid coordinator exists (lines 5 to 9). The pseudocode details the coordinator-
side (lines 10 to 16) and the follower-side (lines 17 to 22) actions and how the two
sides exchange messages. Lines 1–3 define the processor’s state and interfaces.

Determining Coordinator Availability: The algorithm takes an agile app-
roach for multicasting with atomic delivery guarantees. Namely, a new view
is installed whenever the coordinator sees a change to its local failure detector,
failureDetector(), which pi stores in FDi (line 5). Nevertheless, we might reach
a configuration without a view coordinator as a result of an arbitrary initial
configuration, or of a coordinator becoming inactive. Using the failure detector
heartbeat exchange, processors can detect such initially corrupted states. Each

Self-stabilizing Virtual Synchrony 261

Algorithm 3. Self-stabilizing automaton replication using VS, code for proc.

pi
1 Constants: PCE (periodic consistency enforcement) number of rounds between global state

check;
2 Interfaces: fetch() next multicast message, apply(state, msg) applies the step msg to

state (while producing side effects), synchState(replica) returns a replica consolidated
state, synchMsgs(replica) returns a consolidated array of last delivered messages,
failureDetector() returns a vector of processor pairs 〈pid, crdID〉, inc() returns a counter
from the increment counter algorithm;

3 Variables: rep[n] = 〈view = 〈ID, set〉, status ∈ {Multicast, Propose, Install}, (multicast
round number) rnd, (replica) state, (last delivered messages) msg[n] (to the state
machine), (last fetched) input (to the state machine), propV = 〈ID, set〉, (no
coordinator alive) noCrd, (recently live and connected component) FD〉 : an array of
state replica of the state machine, where rep[i] refers to the one that processor pi maintains.
A local variable FDin stores the failureDetector() output. FD is an alias for {FDin.pid},
i.e. the set of processors that the failure detector considers as active. Let
crd(j) = {FDin.crdID : FDin.pid = j}, i.e. the id of pj ’s local coordinator, or ⊥ if none.

4 Do forever begin
5 let FDin = failureDetector();
6 let seemCrd = {p� = rep[�].propV.ID.wid ∈ FD : (|rep[�].propV.set| > �n/2�) ∧

(|rep[�].FD| > �n/2�) ∧ (p� ∈ rep[�].propV.set) ∧ (pk ∈ rep[�].propV.set ↔ p� ∈
rep[k].FD) ∧ ((rep[�].status = Multicast) → rep[�].(view = propV)) ∧ crdID(�) = �};

7 let valCrd = {p� ∈ seemCrd : (∀pk ∈ seemCrd : rep[k].propV.ID �ct

rep[�].propV.ID)};
8 noCrd ← (|valCrd|
= 1);
9 if (|FD| > �n/2�) ∧ (((|valCrd|
= 1) ∧ (|{pk ∈ FD : pi ∈ rep[k].FD ∧

rep[k].noCrd}| > �n/2�)) ∨ ((valCrd = {pi}) ∧ (FD
= propV.set))) then
(status, propV) ← (Propose, 〈inc(), FD〉);

10 else if (valCrd = {pi}) ∧ (∀ pj ∈ view.set : rep[j].(view, status, rnd) = (view,
status, rnd)) ∨ ((status
= Multicast) ∧ (∀ pj ∈ propV.set :
rep[j].(propV, status) = (propV,Propose)) then

11 if status = Multicast then
12 apply(state, msg); input ← fetch();
13 foreach pj ∈ P do if pj ∈ view.set then msg[j] ← rep[j].input else

msg[j] ← ⊥;
14 rnd ← rnd + 1;

15 else if status = Propose then
(state, status, msg) ← (synchState(rep), Install, synchMsgs(rep));

16 else if status = Install then (view, status, rnd) ← (propV,Multicast, 0);

17 else if
valCrd = {p�} ∧ �
= i ∧ ((rep[�].rnd = 0 ∨ rnd < rep[�].rnd ∨ rep[�].(view
= propV))
then

18 if rep[�].status = Multicast then
19 if rep[�].state = ⊥ then rep[�].state ← state /∗ PCE optimization, line 25 ∗/;
20 rep[i] ← rep[�]; apply(state, rep[�].msg); /∗ for the sake of side-effects ∗/
21 input ← fetch();

22 else if rep[�].status = Install then rep[i] ← rep[�];
23 else if rep[�].status = Propose then (status, propV) ← rep[�].(status, propV);

24 let m = rep[i] /∗ sending messages: all to coordinator and coordinator to all ∗/ ;
25 if status = Multicast ∧ rnd(mod PCE)
= 0 then m.state ← ⊥ /∗ PCE optimization,

line 19 ∗/ ;
26 let sendSet = (seemCrd ∪ {pk ∈ propV.set : valCrd = {pi}} ∪ {pk ∈ FD : noCrd ∨

(status = Propose)})
27 foreach pj ∈ sendSet do send(m);

28 Upon Message Arrival m from pj do rep[j] ← m;

participant that detects that it has no coordinator, seeks for potential candidates
based on the exchanged information.

Processor pi can see the set of processors, seemCrdi, that each seems to be
the view coordinator, because pi stored a message from p� ∈ FDi in which p� =
rep[�].propV.ID.wid. Note that pi cannot consider p� as a (seemly) coordinator

262 S. Dolev et al.

unless the conditions in line 6 hold. Intuitively, such a processor must be active
according to pi’s failure detector, and there is a majority of processors that also
think so. Note that all these are based on local knowledge, which due to asyn-
chrony might not be up to date. The next step is for pi to consider the processor
in seemCrdi with the �ct-greatest view identifier (line 7) as the valid coordina-
tor. Here, set valCrdi is either a singleton or empty (line 8). If pi considers some
processor p� as a valid coordinator, it waits to hear from p� (or learn that it is
not active). We call pi a follower of p�. If there is no such processor, pi will only
propose a new view if its failure detector indicates that there exists a supportive
majority of active processors that are also without a valid coordinator (line 9).
If such a majority exists, pi acquires a counter from the counter increment algo-
rithm and proposes a new view, with the counter as the view ID, and the set
of processors that appear active according to its failure detector as the group
membership.

As we show, if pi’s view is accepted from all the processors in the view,
then it proceeds to install the view, unless another processor who has obtained
a higher counter does so. In a transition from one view to the next, there can
be several processors attempting to become the coordinator (namely, those who
according to their knowledge have a supporting majority). Still, by exploiting
the intersection property of the supporting majorities we prove that each of
these processors will propose a view at most once, and out of these, one view
will be installed (i.e., we do not have never-ending attempts for new views to
be installed). To satisfy the VS property, no new multicast message is delivered
to a new view, before the coordinator of this new view has collected all the
participants’ last delivered messages (of their prior views) and has resent the
messages appearing not to have been delivered uniformly.

The Coordinator-Side: Processor pi is aware of its valid coordinatorship if
(valCrdi = {pi}) (line 10). During a normal Multicast round, pi observes the
round end, when for every view member pj it holds that (repi[j].(view, status,
rnd) = (viewi, statusi, rndi)). Depending on its status, the coordinator pi

proceeds once it observes a successful round conclusion. At the end of a normal
Multicast round, the coordinator increments the round number after aggregating
the followers’ input (line 11). The coordinator continues from the end of a Propose
round to an Install round after using the most recently received replicas and the
last delivered messages of each processor to install a synchronized state of the
emulated automaton (line 15). After a successful Install round (line 16), the
coordinator proceeds to a Multicast round after installing the proposed view and
the first round number.

As part of the multicast procedure, the coordinator (line 13), collects inputs
(possibly ⊥) received from the environment and ensures that all group members
apply these inputs to the replica producing possible side-effects. The processors
need to apply one input at a time, maybe in an agreed upon sequential order, say
from the input of the first processor to the last. Alternatively, the coordinator
may request one input at a time in a round-robin fashion and multicast it.

Self-stabilizing Virtual Synchrony 263

The Follower-Side: Processor pi considers p� as its coordinator when (valCrdi

= {p�}) and i
= � (line 17). It has to act upon merely new messages, i.e., the
first message round when installing a new view (rep[�].rnd = 0), the first time a
message arrives (rnd < rep[�].rnd) or a new view is proposed (rep[�].(view
=
propV)). During normal Multicast rounds (line 18) the follower pi applies the
aggregated message of this round to its current automaton state so that it pro-
duces the needed side-effects before adopting the coordinator’s replica (line 22).
Once a processor does not have a coordinator, and while in a Propose round,
pi does not overwrite its round number, and so the coordinator can know the
last round number that pi delivered a message during the latest installed view.
Both the coordinator and the followers periodically send their current replica
(line 27) and store the replicas received (line 28). As an optimization, during
normal Multicast rounds, processors transmit their full replica state every PCE
rounds, where PCE is a predefined constant.

Correctness Outline. We show that starting from an arbitrary state in an exe-
cution R of Algorithm 3 and once the primary partition property (Definition 1)
holds throughout R, we reach a configuration c ∈ R where some processor p�

proposes a view including a majority of processors and this view is accepted by
all its members. We then prove that a coordinator without a supporting majority
stops being the coordinator. Then we show that when there is no coordinator, a
processor with a supporting majority eventually proposes a view. All such pro-
cessors propose at most once, leading to a unique coordinator. We conclude by
proving that any execution suffix in R that begins from such a configuration c
will preserve the VS property and implement SMR.

Lemma 3. If the conditions of Definition 1 hold throughout an execution R of
Algorithm 3, then starting from an arbitrary configuration, the system reaches a
configuration in which any processor p� with a supporting majority may propose
itself as the coordinator at most once. As a consequence, the system reaches a
configuration in which one of these processors is the global coordinator until the
end of the execution.

Then we show the main result:

Theorem 3. Starting from any configuration, an execution R of Algorithm 3
satisfying Definition 1, emulates automaton replication preserving the VS prop-
erty.

Proof Sketch. We consider a finite prefix R′ of R with an arbitrary configura-
tion c, and a primary partition (as per Definition 1) and assume that this prefix
is sufficiently long for Lemma 3 to hold. I.e., we reach a safe configuration in
which there exists a global coordinator for a majority of processors. By careful
consideration of the code and the way the coordinated multicast steps take place
we argue the claim of the theorem. �

264 S. Dolev et al.

5 Conclusion

We have presented the first self-stabilizing algorithm that guarantees VS, and
used it to obtain a self-stabilizing VS-based SMR emulation; within this emula-
tion, the system progresses in more extreme asynchronous executions compared
to consensus-based SMRs. A key component of the VS algorithm is a novel
modular self-stabilizing counter algorithm, that establishes an efficient practical
unbounded counter, which in turn can be directly used to implement a self-
stabilizing MWMR register emulation.

References

1. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.:
Practically stabilizing SWMR atomic memory in message-passing systems. Journal
of Computer and System Sciences (2015)

2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

3. Bartoli, A.: Implementing a replicated service with group communication. Journal
of Systems Architecture 50(8), 493–519 (2004)

4. Birman, K.: A history of the virtual synchrony replication model. In: Charron-
Bost, B., Pedone, F., Schiper, A. (eds.) Replication. LNCS, vol. 5959, pp. 91–120.
Springer, Heidelberg (2010)

5. Birman, K., Van Renesse, R.: Reliable distributed computing with the Isis toolkit.
Wiley-IEEE Computer society press, Los Alamitos (1994)

6. Blanchard, P., Dolev, S., Beauquier, J., Delaët, S.: Practically self-stabilizing paxos
replicated state-machine. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS,
vol. 8593, pp. 99–121. Springer, Heidelberg (2014)

7. Dolev, S.: Self-Stabilization. MIT press (2000)
8. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-end

communication in (bounded capacity, omitting, duplicating and non-FIFO)
dynamic networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS,
vol. 7596, pp. 133–147. Springer, Heidelberg (2012)

9. Dolev, S., Kat, R.I., Schiller, E.M.: When consensus meets self-stabilization.
Journal of Computer and System Sciences 76(8), 884–900 (2010)

10. Dolev, S., Lahiani, L., Lynch, N.A., Nolte, T.: Self-stabilizing mobile node location
management and message routing. In: Tixeuil, S., Herman, T. (eds.) SSS 2005.
LNCS, vol. 3764, pp. 96–112. Springer, Heidelberg (2005)

11. Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.: Practically Stabilizing Virtual
Synchrony. CoRR abs/1502.05183 (2015)

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

13. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In: Proc. of FTC 1997, pp. 272–281
(1997)

14. Schneider, F.B.: Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

Brief Announcements

Two-Phase Non-repudiation Protocols

Muqeet Ali, Rezwana Reaz, and Mohamed G. Gouda

Department of Computer Science, University of Texas at Austin,
Austin, Texas 78712, USA

{muqeet,rezwana,gouda}@cs.utexas.edu

Abstract. In this paper, we identify a rich class of non-repudiation
protocols, called two-phase protocols, and discuss how to formally specify
and verify the correctness of these protocols. We also point out some
advantages that these protocols have over non-repudiation protocols that
are not two-phase.

Keywords: Non-repudiation · Trusted third party · Deterministic
execution · Synchronized clocks

1 Introduction

A non-repudiation protocol from party S to party R performs two tasks. First,
the protocol enables party S to send to party R some text x along with a
proof (that can convince a judge) that x was indeed sent by S. Second, the
protocol enables party R to receive text x from S and to send to S a proof
(that can convince a judge) that x was indeed received by R. Only one of two
outcomes is possible when the execution of a non-repudiation protocol from S
to R terminates. The first outcome is that both S and R obtain their required
proofs. The second outcome is that neither S nor R obtains its required proof.

Non-repudiation protocols can support several important applications over
the Internet. Examples of these applications are certified email [1], cloud stor-
age [2], electronic billing [3], and meter reading in smart grids [4].

Examples of non-repudiation protocols are presented in [5–7].

2 Two-Phase Protocols

A non-repudiation protocol from party S to party R is called two-phase iff exe-
cution of the protocol by parties S and R proceeds in two phases. In the first
phase, the party (S or R) recognizes that it has not yet received its complete
proof and so it continues to execute the protocol as specified. In the second
phase, the party (S or R) recognizes that it has already received its complete
proof and so it refrains from sending any more messages specified by the protocol
because these messages only help the other party complete its proof. In other
words, the two parties S and R in any two-phase protocol will always act in
their own self-interests during execution of the protocol.
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 267–268, 2015.
DOI: 10.1007/978-3-319-21741-3

268 M. Ali et al.

Two-phase nonrepudiation protocols have the following advantages over non-
repudiation protocols that are not two-phase:

(a) Execution of a two-phase protocol is inherently deterministic, whereas exe-
cution of a protocol that is not two-phase is usually non-deterministic.

(b) The participating parties of a two-phase protocol do not need to have syn-
chronized clocks, whereas parties of a protocol that is not two-phase need to
have synchronized clocks.

(c) It follows from (a) and (b) above that specifying and verifying the correct-
ness of a two-phase protocol are easier than specifying and verifying the
correctness of a comparable protocol that is not two-phase.

One more advantage of two-phase protocols is that the exchanged messages
in these protocols are of two types only: send-proof messages and receive-proof
messages.

3 Security Analysis

We analyzed the security of some two-phase protocols and showed that these
protocols can be designed to defend against four security attacks: (1) malicious
parties, (2) message loss, (3) collusion attacks, and (4) replay attacks.

Acknowledgement. Research of M.G. Gouda is supported by NSF Award 1440035.

References

1. Oppliger, R.: Providing certified mail services on the internet, vol. 5, pp. 16–22.
IEEE (2007)

2. Feng, J., Chen, Y.: A fair non-repudiation framework for data integrity in cloud
storage services, vol. 2, pp. 20–47. Inderscience (2013)

3. Zhou, J., Lam, K.Y.: Undeniable billing in mobile communication. In: Proceedings
of the 4th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, pp. 284–290. ACM (1998)

4. Xiao, Z., Xiao, Y., Du, D.C.: Non-repudiation in neighborhood area networks for
smart grid, vol. 51, pp. 18–26. IEEE (2013)

5. Zhou, J., Gollman, D.: A fair non-repudiation protocol. In: 1996 IEEE Symposium
on Security and Privacy, pp. 55–61. IEEE Computer Society (1996)

6. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted
third party. In: Second Conference on Security in Communication Networks,
Amalfi, Italy (1999)

7. Kremer, S., Markowitch, O.: A multi-party non-repudiation protocol. In: Qing, S.,
Eloff, J.H.P. (eds.) Information Security for Global Information Infrastructures,
IFIP, vol. 47, pp. 271–280. Springer, Heidelberg (2000)

Secure and Private Bidding Protocol
for Incentive-Based Demand-Response

System of Smart Grid

Mohammad Shahriar Rahman, Anirban Basu, and Shinsaku Kiyomoto

KDDI R&D Labs, 2-1-15 Ohara, Fujimino, Saitama, Japan
{mohammad,basu,kiyomoto}@kddilabs.jp

Abstract. DR-DB (Demand Response-Demand Bidding) is one kind of
incentive-based DR, where certain incentives are awarded to consumers
who participate in DR events. Security and privacy of DR-DB bidding
system are of paramount importance as consumer data are involved in
it. In this brief announcement, we propose a secure and private bid-
ding protocol for incentive-based demand-response system using crypto-
graphic primitives. To the best of our knowledge, our proposed secure
and private protocol is the first work in this area.

1 Introduction

As consumers’ information is an integral part of incentive-based demand-
response systems, securing the data communication and protecting data privacy
are crucial. One of the primary security objectives is to ensure that entities par-
ticipating in the DR protocol and the protocol messages generated by them pro-
vide authenticity and integrity. From the viewpoint of privacy, it is required that
no untrusted entity should be able to link multiple bids to a specific consumer
since being able to do so would reveal private information of that consumer.
Moreover, bids accessible by the untrusted entities can be used to infer bidders’
private information. We emphasize that, along with authenticity, integrity, and
privacy, the following properties must be achieved by an incentive-based demand-
response system: (Anonymity) no unauthorized entity shall be able to identify
the bidder during the bidding; (Untraceability) the winning bidder should not
be traceable at the end of the bidding by untrusted entities, but its legitimacy
should be verifiable; (No Impersonation) no one shall participate in the bidding
with the identity of another bidder; (Unforgeability) no one should be able to
falsify a valid bidding price; (Non-repudiation) bidders cannot deny their bid
after the winning bidder has been announced; (Public Verifiability) anyone can
verify the validity of the bids; (Single Registration) a bidder needs to register
only once, and then can participate in all biddings; (Easy Revocation) registra-
tion manager should be able to revoke a bidder easily; (Incentive Allocation) the
winner should be able to claim the incentive without revealing his identity and
no other entity should be able to impersonate the winner.

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 269–271, 2015.
DOI: 10.1007/978-3-319-21741-3

270 M.S. Rahman et al.

There are three entities in the proposed system: energy supplier as Reg-
istration Manager (RM), DR service provider as Bidding Manager (BM) and
consumers as bidders. We assume honest-but-curious model for RM and BM.
All other participating entities or outsiders are assumed to be malicious. El-
Gamal public key encryption [1] and Schnorr’s signature scheme [2] are used for
encryption and signature purposes, respectively. Our proposed protocol achieves
the aforementioned security and privacy properties assuming the hardness of
solving discrete logarithm problem.

2 Proposed Approach

Pre-processing: BM and RM create bulletin boards where they can post nec-
essary information. These boards are read-only for all other entities. Also, RM
generates public parameters for the protocol, its own private-public key pair and
signing-verification key pair. Similarly, BM generates its public key. AM and BM
jointly create a bulletin board for the winning bidder.

Bidder Registration: Each bidder generates the necessary keys along with regis-
tration key to register himself with the RM for bidding. The bidder also performs
some computations to generate other parameters that are useful for bidding.
These parameters and the registration key are encrypted using RM’s public key
and sent to the RM.

Bidding Key Generation: RM broadcasts a signed request to all the registered
bidders. Upon receiving and verifying the request, all the bidders send their
necessary information (encrypted) for generating the bidding key to RM. RM
generates the bidding keys and posts them in its bulletin board. Each bidder
also computes its bidding key and keeps it with him.

Bidding Setup: Using the parameters posted in RM’s bulletin board, BM gener-
ates bidding certificate for each bidder and posts the certificates in its bulletin
board.

Bidding: Each bidder generates its bid, encrypts the bid information and signs
the encrypted bid. He writes his bidding certificate, encrypted bid and its sig-
nature on BM’s bulletin board. BM verifies all the signatures coming from the
bidders and decrypts the encrypted files to get all the bids. BM then announces
the highest bid publicly to continue the current bidding round.

Bid Verification: Anyone can verify bid’s validity using verifiable computations.

Winner Announcement: At the end of a bidding session, BM announces the
winning bidder’s information on the winner’s own bulletin board. Anyone can
check and verify the winning bid.

Incentive Claim: After the bidding ends, the winner can claim the incentive by
placing a zero-knowledge proof to the RM.

Secure and Private Bidding Protocol 271

References

1. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

2. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Quisquater,
J.-J., Vandewalle, V. (eds.) EUROCRYPT 1989. LNCS, vol. 435, pp. 239–252 (1990)

Brief Announcement: Meta-MapReduce
A Technique for Reducing Communication

in MapReduce Computations

Foto Afrati1, Shlomi Dolev2, Shantanu Sharma2, and Jeffrey D. Ullman3

1 National Technical University of Athens, Athens, Greece
2 Ben-Gurion University of the Negev, Beer-Sheva, Israel

3 Stanford University, Stanford, USA

The federation of cloud and big data activities is the next challenge where
MapReduce should be modified to avoid (big) data migration across remote
(cloud) sites. This is exactly our scope of research, where only the very essential
data for obtaining the result is transmitted, reducing communication, process-
ing and preserving data privacy as much as possible. We propose an algorithmic
technique for MapReduce algorithms, called Meta-MapReduce, that decreases the
communication cost by allowing us to process and move metadata to clouds and
from the map to reduce phases. Details are given below:

Locality of Data. Input data to a MapReduce job, on one hand, may exist at
the same site where mappers and reducers reside. However, ensuring an identical
location of data and mappers-reducers cannot always be guaranteed. On the
other hand, it may be possible that a user has a single local machine and wants to
enlist a public cloud to help data processing. Consequently, in both the cases, it is
required to move data to the location of mappers-reducers. In order to motivate
and demonstrate the impact of different locations of data and mappers-reducers,
we consider a real example, as: Amazon Elastic MapReduce. Amazon Elastic
MapReduce (EMR) processes data that is stored in Amazon Simple Storage
Service (S3), where the locations of EMR and S3 are not identical. Hence, it
is required to move data from S3 to the location of EMR. However, moving all
data from S3 to EMR is not efficient if only small specific part of it is needed
for the final output.

Communication Cost. The communication cost dominates the performance
of a MapReduce algorithm and is the sum of the total amount of data that is
required to move from the location of users or data (e.g., S3) to the location of
mappers (e.g., EMR) and from the map phase to the reduce phase in each round
of a MapReduce job. In this paper, we are interested in minimizing the data
transferred in order to avoid communication and memory overhead, as well as to
protect data privacy as much as possible. If few inputs are required to compute

More details appear in the technical report 15-04, Department of Computer Science, Ben-Gurion
University of the Negev, Israel, 2015. Supported by the project Handling Uncertainty in Data
Intensive Applications, co-financed by the European Union (European Social Fund) and Greek
national funds, through the Operational Program “Education and Lifelong Learning,” under the
program THALES, Orange Labs, Rita Altura trust chair in computer science, the Lynne and
William Frankel Center for Computer Science, and the Israeli Science Foundation (grant number
428/11).

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 272–274, 2015.
DOI: 10.1007/978-3-319-21741-3

Brief Announcement: Meta-MapReduce – A Technique 273

the final output, then it is not communication efficient to move all the inputs to
the site of mappers-reducers, and then, the copies of same inputs to the reduce
phase.

Meta-MapReduce. We provide a new algorithmic approach for MapReduce
algorithms, Meta-MapReduce, that decreases the communication cost signifi-
cantly. Meta-MapReduce (M-MR) regards the locality of data and mappers-
reducers and avoids the movement of data that does not participate in the
final output. Particularly, M-MR provides a way to compute the desired out-
put using metadata1 (which is much smaller than the original input data) and
avoids to upload all data (either because it takes too long or for privacy reasons).
It should be noted that we are enhancing MapReduce and not creating entirely a
new framework for large-scale data processing; thus, M-MR is implementable in
state-of-the art MapReduce systems such as Spark or modern Hadoop. In addi-
tion, M-MR also allows us to protect data privacy as much as possible in the
case of an honest-but-curious adversary by not sending all the inputs. Neverthe-
less, by the auditing process, a malicious adversary can be detected. Moreover, in
some settings auditing enforces participants to be honest-but-curious rather than
malicious, as malicious actions can be discovered and imply punishing actions.

Having the same scenario of locality of input data, in the standard MapRe-
duce, users send their data to the site of mappers before the computation begins.
However, in M-MR, users send metadata to the site of mappers, instead of orig-
inal data.

An Example of Equijoin of Two Relations X(A,B) and Y (B,C). We
present an example to show the impact of different locations of data and mappers-
reducers on the communication cost involved in a MapReduce job. Problem state-
ment : The join of relations X(A,B) and Y (B,C), where the joining attribute
is B, provides output tuples 〈a, b, c〉, where (a, b) is in A and (b, c) is in C. In
the equijoin of X(A,B) and Y (B,C), all tuples of both the relations with an
identical value of the attribute B should appear together at the same reducer for
providing the final output tuples. In Fig. 1, two relations X(A,B) and Y (B,C)

Fig. 1. Equijoin of two relations.

1 The term metadata is used in a different manner, and it represents a small subset,
which varies according to tasks, of the dataset.

274 F. Afrati et al.

are shown, and we consider that the size of all the B values is very small as
compared to the size of values of the attributes A and C.

Communication Cost Analysis: In Fig. 1, the communication cost for joining of
the relations X and Y is the sum of the sizes of all three tuples of each relation
that are required to move from the location of the user to the location of mappers,
and then, from the map phase to the reduce phase. Consider that each tuple is
of unit size, and hence, the total communication cost is 12 for obtaining the final
output. Using M-MR, where values of the attribute B work as metadata, there
is no need to send tuples having values b2 and b3 to the location of computation.
Thus, a solution to the problem of equijoin has only 4 units cost plus a constant
cost for moving metadata.

Table 1. The communication cost for joining of relations using Meta-MapReduce.

Brief Announcement:
Vehicle to Vehicle Authentication

Shlomi Dolev1, �Lukasz Krzywiecki2, Nisha Panwar1, and Michael Segal3

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

{dolev, panwar}@cs.bgu.ac.il
2 Institute of Mathematics and Computer Science,

Wroclaw University of Technology, Wroc�law, Poland
lukasz.krzywiecki@pwr.wroc.pl

3 Department of Communication Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

segal@cse.bgu.ac.il

Vehicle Authentication. In recent future, vehicles will establish a spontaneous
connection over a wireless radio channel, coordinating actions and information.
Vehicles will exchange warning messages over the wireless radio channel through
Dedicated Short Range Communication (IEEE 1609) over the Wireless Access
in Vehicular Environment (802.11p). Unfortunately, the wireless communication
among vehicles is vulnerable to security threats that may lead to very serious
safety hazards. Therefore, the warning messages being exchanged must incorpo-
rate an authentic factor such that recipient is willing to verify and accept the
message in a timely manner.

Our Contribution. (i) Coupling fixed and non-fixed vehicle attributes with
the public key, (ii) Optical out-of-band communication channel, (iii) Adaptation
with existing authentication protocols, (iv) Verification.

Previous Work. Vehicles utilize wireless communication standard, i.e., IEEE
802.11p Wireless Access in Vehicular Environment (WAVE) based on IEEE 1609
Dedicated Short Range Communication (DSRC). Raya and Haubaux proposed
a Public Key Infrastructure (PKI) based vehicle security scheme, however, an
active adversary may launch an impersonation attack. Moreover, roadside infras-
tructure is required to provide the most updated Certificate Revocation List
(CRL). Our scheme removes the active participation of roadside units as well as
the regional authorities.

Problem Statement. Every vehicles public key is signed by the authorities
and can be verified by the receiver, still, an impersonation attack among the

S. Dolev and N. Panwar—Partially supported by the Rita Altura Trust Chair in
Computer Sciences, Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant 428/11), the Israeli Internet Association, and the Min-
istry of Science and Technology, Infrastructure Research in the Field of Advanced
Computing and Cyber Security.
�L. Krzywiecki—Partially supported by fundings from Polish National Science Center
(decision number DEC-2013/09/B/ST6/02251).

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 275–277, 2015.
DOI: 10.1007/978-3-319-21741-3

276 S. Dolev et al.

moving vehicles is possible. Accordingly, the scenario starts when a vehicle v1
tries to securely communicate with v2 and requests for the public key of v2.
Vehicle v3 pretends to be v2 and answers v1 with v3 public key instead of v2.
Then v3 concurrently asks v2 for its public key. Vehicle v1 is fooled to establish a
private key with v3 instead of v2, and v2 is fooled to establish a private key with
v3 instead of v1. Vehicle v3 conveys messages from v1 to v2 and back decrypting
and re-encrypting with the appropriate established keys. In this way, v3 can find
the appropriate moment to change information and cause hazardous actions to
v1 and v2.

System Model. (i) Light Amplification by Stimulated Emission of Radiation
(LASER), (ii) LIght Detection And Ranging (LIDAR), (iii) Autocollimator,
(iv) Physically Unclonable Function(PUF).

Proposed Scheme. The proposed approaches for the vehicle to vehicle authen-
tication are summarized as below:

Basic Scheme1. We propose to certify both the public key and out-of-band sense-
able static attributes to enable mutual authentication of the communicating
vehicles. Vehicle owners are bound to preprocess a certificate (periodically, pos-
sibly during the annual inspection procedure) that signs monolithically both
a public key and a list of fixed unchangeable attributes (e.g., license number,
brand and color) of the vehicle (extending ISO 3779 and 3780 standards). With
such a scheme the vehicle can verify (say by using a camera) that the public
key belongs to the specific vehicle to which the connection should be established
(rather than a public key of a standing by adversary).

Intermediate Scheme2. We consider the case of multiple malicious vehicles with
identical visual static attributes. Apparently, dynamic attributes (e.g., location
and direction) can uniquely define a vehicle and can be utilized to resolve the
true identity of vehicles. However, unlike static attributes, dynamic attributes
cannot be signed by a trusted authority beforehand. We propose an approach to
verify the coupling between non-certified dynamic attributes and certified static
attributes via an auxiliary laser communication channel.

Sophisticated Scheme3. At last, we propose to use, the optical Physically Unclon-
able Function (PUF) to ensure that response from the receiving vehicle is spon-
taneous, rather than an answer forwarded from another vehicle. Vehicles utilize
an out-of-band optical communication channel in order to exchange the PUF
stimulated optical challenge and corresponding response from the sender and
receiver, respectively.
1 An extended description of these results can be found in ASCOMS/SAFECOMP

2013.
2 An extended description of these results can be found in the proceedings of 13th

IEEE International Symposium on Network Computing and Applications 2014.
3 See Technical Report 15-02 of the Department of Computer Science, Ben-Gurion

University of the Negev, Israel, 2015.

Brief Announcement: Vehicle to Vehicle Authentication 277

Claims. We provide an extended proof of the proposed scheme using Spi cal-
culus and BAN Logic, respectively. Our proposed approach adapts the security
construction of the conventional Transport Layer Security (TLS) protocol and
satisfy two crucial security properties, i.e., (i) Authentication: No active or pas-
sive adversary would be able to intercept the communication between sender
and receiver and (ii) Secrecy: No active or passive adversary would be able to
reveal neither the secret session messages nor the secret key.

Brief Announcement: Data Stabilization
Enforcement via Active Monitoring

the Cloud Infrastructure Consistency Case

Alexander Binun2, Thierry Coupaye1, Shlomi Dolev2,
Mohammed Kassi-Lahlou1, Marc Lacoste1, Alex Palesandro1,

Aurélien Wailly1, Reuven Yagel2,3, and Leonid Yankulin2

1 Orange Labs, Paris, France
2 Department of Computer Science, Ben-Gurion University of the Negev,

Beersheba, Israel
3 Department of Software Engineering, Azrieli – Jerusalem College of Engineering,

Jerusalem, Israel

Introduction. For any system, protection against faults or attacks has long
been viewed as a long, endless series of steps where each new counter-measure
is introduced to mitigate an upcoming attack or failure, until the next unex-
pected event occurs. This is particularly the case for cloud systems, where the
field of cloud dependability rapidly expands as the reaches of security and safety
impacts core cloud features. For example, the expectations from resource sharing,
elasticity, or virtualization grow ever deeper and broader to an initially unsus-
pecting researcher or engineer. What if threats and failures were evolving faster
than defense mechanisms? What if stacking so many counter-measures mecha-
nisms was simply not fast enough? We take the approach to admit that faults
or attacks will occur no matter what. Instead, focus should be put on grace-
ful recovery. Research on self-stabilizing systems seems particularly promising
to allow building self-stabilizing clouds that will converge into and remain in a
stable state. But how to build such clouds? We leverage on the initial research
addressing the single host layer, in the hypervisor [2]. We aim at stabilizing
the following distributed cloud components: monitoring, networking, distributed
computation and scheduling mechanisms. Locally, stabilization applies to the
hypervisor, to its relevant low layers (e.g. OS drivers) down to the hardware.
We stabilize also the computing and the networking components of the cloud.
The communication part will enable remote distributed monitoring. Monitoring
includes various assertions and actions for detecting and correcting corrupted
states. The monitoring facility can be reconfigured and performed through the
network. Infrastructure integrity violations are treated by (a) including the rel-
evant self-stabilization components into the hypervisor and by (b) ensuring that
the networking infrastructure is functioning and nodes can continue collaborat-
ing in spite of faults even in the orchestration level, e.g., loss of synchrony.

Prototyping a Self-Stabilizing Cloud Infrastructure. We focus on Open-
Stack due to its prominence as an open cloud computation platform. OpenStack

Partially supported by Orange Labs, Rita Altura Trust chair in computer science,
the Lynne and William Frankel Center for Computer Science, and the Israeli Science
Foundation (grant number 428/11).

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 278–280, 2015.
DOI: 10.1007/978-3-319-21741-3

Data Stabilization Enforcement via Active Monitoring 279

exposes full-fledged IaaS functionality, thus allowing conducting real-life experi-
ments. For each type of resource (storage, networking etc.), the OpenStack spec-
ification defines interfaces to cooperate with the relevant resource management
services.

Database Active Monitoring. A current state of an OpenStack instance
is maintained in the internal database (usually MySQL) and is accessible on
demand from the hosts that running the cloud. Depending on its role within the
cloud, each host may run agents that incorporate certain duties of cloud ser-
vices (modules that implement one of the cloud functions on premises). Agents
receive partial information concerning the cloud current state by issuing Web
API requests to their services and receiving responses via a messaging queue.
At any moment of time, an instance is aware of the recent state of the cloud.
In case of data inconsistency that is a result of malicious attack, human mis-
take or software/hardware malfunction, the cloud state can be inconsistent. We
introduce active monitoring for detecting internal database instance, and enforce
data consistency in a provable self-stabilizing manner (rather than, e.g., intru-
sion detection based techniques [1]). Active monitoring verifies the data held
by each participant by repeatedly querying and examining the source for the
data, refreshing the data to gain global consistency by distributed independent
updates. In the worst case, active monitoring may imply the need of global
assignment of a consistent distributed state (usually the initial one).

On the (correct) Behavior of the Active Monitor. Active distributed
monitoring relies on the correct functioning of monitoring agents that should run
at every relevant host. We ensure the existence and correct functioning of these
agents [2]. Another possible problem is de-synchronization of the current state
information of the cloud that was received by different agents that run at the
same host or at different hosts. The information can get out of synchronization
due to an error while being transferred via a messaging queue or due to a memory
corruption. It can also be caused by more recent changes to the cloud state. For
example, a network agent has to be aware of VM instances connected to the
local network that, not necessarily, run on the same hypervisor as the one that
the agent is deployed to. In case of a notification failure, the local network
image that is stored within the agent is compromised. We propose an algorithm
that is based on enforcing self-stabilization of each of the distributed agents [2],
that eventually bring the distributed agents and the distributed database to a
consistent state within the cloud.

References

1. Liu, P., Jing, J., Luenam, P., Wang, Y., Li, L., Ingsriswang, S.: The design and
implementation of a self-healing database system. J. Intell. Inf. Syst. 23(3), 247–269
(2004)

2. Binun, A., Bloch, M., Dolev, S., Kahil, R.M., Menuhin, B., Yagel, R., Coupaye, T.,
Lacoste, M., Wailly, A.: Self-stabilizing virtual machine hypervisor architecture for
resilient cloud. In: SERVICES 2014, pp. 200–207 (2014)

Self-adjusting Skip Graphs

Sukumar Ghosh and Sikder Rezwanul Huq

The University of Iowa, Iowa, USA
{sukumar-ghosh,sikderrezwanul-huq}@uiowa.edu

Abstract. We present a self-adjusting algorithm for skip graphs that
performs topological adaptation to an unknown communication pattern
σ. Our algorithm is fully decentralized, conforms to CONGEST model,
and requires O(log n) memory for each node, where n is the total number
of nodes. We derive a lower bound of amortized cost for any algorithm
that follows our model. We analyze our algorithm and show that the cost
is at most a logarithmic factor more than the derived lower bound.

1 Introduction

A Skip Graph [1] G = (V,E) is a useful form of peer-to-peer communica-
tion topology that guarantees O(log n) worst-case communication time between
arbitrary pairs of nodes, where n = |V |. In practice, however, what matters
is the total time taken by a sequence of communication requests where each
request involves a source-destination pair. Self-adjustment is an attractive tool
to reduce the amortized times of the sequence of communications. In general,
amortized costs in dynamically adjusting topologies are not much worse than
their static counterparts, and can lead to significant performance gains when
the communication pattern is skewed. This paper proposes an algorithm for
the self-adjustment of the topology of a Skip Graph with no a priori knowl-
edge of the future communication pattern, and analyze the performance of the
self-adjustment protocol.

2 The Model and Definitions

Let S be the family of all Skip Graphs where each topology G(V,E) ∈ S is a
skip graph. We denote the base level as level 0 and the top level as level h, where
h is the height of corresponding skip graph. A linked list at any level i gets split
into two mutually exclusive linked lists (0-list and 1-list) at level i+1. Each node
x has a unique membership vector m(x) where ith bit of m(x) determines node
x’s linked list at level i+ 1.

We say a Skip Graph satisfies the a-balance property if there exists a positive
integer a, such that among any a+1 consecutive nodes in any linked list at level i,
at most a nodes can step up to a single linked list at level i+ 1. This property
ensures that the length of the search path between any pair of nodes is at most
a log n.
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 280–281, 2015.
DOI: 10.1007/978-3-319-21741-3

Self-adjusting Skip Graphs 281

Let σ = (σ0, σ1, ..., σm−1) be an online access sequence consisting of m
sequential communication requests, σt = (u, v) ∈ V ×V denotes a routing request
from source u to destination v. Let ui is the source and vi is the destination
specified by communication request σi at time i. We construct a communication
graph G with the nodes that communicated (either as source or destination) in
the time period starting from the last time ui and vi communicated, and ending
at time i. We draw an edge between any pair of nodes in G if they communicated
in this time period. The working-set number ti(σi) for request σi is the number
of distinct nodes in G that has a path from either ui or vi.

A self-adjusting algorithm transforms the skip graph S ∈ S to another skip
graph S′ ∈ S after each communication request. Our self-adjusting skip graph
model enforces following constraints: (1) any two communicating node must
move to a linked list of size two in the transformed topology (2) the a-balance
property can never be violated (3) A node can have O(log n) memory (4) The
height of the skip graph can never exceed O(log n).

3 Dynamic Skip Graph Algorithm (DSG)

We propose a self-adjusting algorithm DSG for skip graphs that dynamically
performs local transformation (by partially reconstructing the network) upon
a communication request and conforms to the self-adjusting skip graph model.
Every node belongs to a group at each level and holds a group-id and a timestamp
for each of the levels. We propose a routing algorithm ROUTING for skip graphs
which is optimized for algorithm DSG. Upon a communication request from
node u to node v, routing is first done by using the algorithm ROUTING. Then
each node x ∈ lα, s.t. lα is the smallest common linked list containing u and v,
computes a priority p(x) by using their group-ids and timestamps. We design
a distributed approximate median finding algorithm for our skip graph model
that finds an approximate median priority in expected logarithmic time. Let
lα be a linked list at level α. Then starting at level α, nodes x ∈ lα initiates
the approximate median finding algorithm AMF to compute a median priority.
Nodes with a priority lower than the median priority move to the 0-list at the
level α+ 1 and change m(x) accordingly. Nodes with priorities higher than the
median similarly move to the 1-list. With some exceptions this process continues
recursively and parallelly for levels higher than α until all nodes x ∈ lα become
singleton at some level.

Theorem 1. At any time i, given that any two nodes u and v communicated ear-
lier, the cost for routing from u to v in the skip graph at time i is O(log ti(u, v)).

Theorem 2. The cost for algorithm DSG is at most logarithmic factor of the
optimal algorithm.

References

1. Aspnes, J., Shah, G.: Skip graphs. In: Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, Baltimore, MD, USA, 12–14 January 2003, pp. 384–393
(2003)

A Framework for Containing the Degree Growth
in Topological Self-stabilization

Thamer Alsulaiman1, Andrew Berns2, and Sukumar Ghosh1

1 University of Iowa, Iowa, USA
{thamer-alsulaiman,sukumar-ghosh}@uiowa.edu

2 University of Wisconsin-La Crosse, La Crosse, USA
aberns@uwlax.edu

1 Introduction

Overlay networks are built with logical links over one or more physical edges of
a network. Logical links can be added or removed via program actions. Overlay
networks mostly operate in fragile environments, and without central supervi-
sion. Bad configurations may be caused by node or link failures, by a node join or
a node leave, or deliberate actions of nodes trying to derive undue performance
benefits for themselves. Such adversarial actions may alter the network topology
in an arbitrary manner. Topological self-stabilization takes a walk through the
space of all networks defined by a given set of nodes, starting from a source net-
work that is illegal and ending up at a target network that is legal. In the rest of
the paper, we work under the assumption that the corrupted topology remains
connected. We propose a framework that caps the degree growth to sublinear
bounds while generating the target topology. As an illustration of the proposed
technique, we present a self-stabilizing algorithm for building a heap.

2 The Main Idea

Background. The network topology G = (V,E) is an undirected connected
graph, where nodes have unique, positive identifiers. Each node i ∈ V maintains
a neighbor set N(i) as a part of its local state, along with, maybe, other variables
to help node i reach its goal. We assume a synchronous message-passing model.
The efficiency of the detection of illegal topologies largely depends on the distri-
bution of the detectors in the network. For overlay networks that are not locally
checkable, there may not be a single detector even if the topology is illegal.

Given a faulty topology G = (V,E), the detector diameter D(G) for the given
class of networks is the maximum hop distance in G between any node in V and
its closest detector. The task of notifying every non-detector is time-efficient
when the detector diameter is small.

Now, consider an instance of a computation where the topology transitions
are represented by the sequence G,G1, G2, . . . , Gf , here G is the initial topology
and Gf is the final legal topology. Maintaining large degrees, even for an interim
period, is challenging for the nodes of any overlay network. This is why we
c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 282–283, 2015.
DOI: 10.1007/978-3-319-21741-3

A Framework for Containing the Degree Growth 283

would prefer the computation to steer the topology of the given network through
the space of all “low degree” topologies with n nodes. The following definition
quantifies the degree growth parameter:

Definition 1. Consider a topological self-stabilization algorithm A that trans-
forms a given initial topology G into a legal topology Gf . Let δmax be the largest
of all the node degrees between G and Gf . Then the degree growth of A is con-
tained, if in none of the intermediate configurations, the degree of any node
exceeds δmax + f(n), where f(n) is sublinear.

The Framework. Our framework consists of three components. The first com-
ponent uses a predicate DETECT to notify every process that the current con-
figuration is not a legal one. The second component builds an interim LINEAR
topology out of the given topology G. The third and the final component is a
subroutine REPAIR that transforms the linear topology into a legal topology of
the desired class.

The Linear network consists of all the nodes of a graph connected in the
total order of their identifiers. We adopt the Pure Linearization algorithm from
[2], since it caps the degree growth during stabilization. In [2], the degree of a
node can increase by at most two in each round. We observe that the degree
cannot keep increasing monotonically till the end – at some point the degree
growth tapers off. See Theorem 1.

The REPAIR procedure starts after the linearization is over. The node with
the largest id acts as the leader, and uses the linear chain to collect the identifiers
of all the nodes in O(n) rounds. Thereafter, the leader locally computes the legal
topology, i.e. the ideal neighbor set Nbr(i) for each node i, and disseminates them
to every node i using the same linear pipeline. Each node i connects with the
neighbor set Nbr(i), which concludes the REPAIR phase.

Theorem 1. For any locally checkable topology, and using the proposed frame-
work, the stabilization time is O(n) rounds. And, for a given node, the degree
growth using the Pure Linearization algorithm is bounded by O(δ +

√
n), where

δ is the initial degree of the node.

Using the proposed framework, we illustrate how a binary max-heap topology
can be stabilized in (On) rounds while containing the degree growth. This topol-
ogy is not locally checkable, but we add an extra variable per node to make it
locally checkable. We demonstrate that the detector diameter of the heap topol-
ogy is O(log n). Note that without the degree cap, the heap can be stabilized in
O(log n) rounds using the transitive closure framework [1].

References

1. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)

2. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting
in graphs. In: Proceedings of the Nine Workshop on Algorithm Engineering and
Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 6 January 2007

Stabilizing Breach-Free Sensor Barriers

Jorge A. Cobb1 and Chin-Tser Huang2

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, USA

cobb@utdallas.edu
2 Department of Computer Science and Engineering,

University of South Carolina at Columbia, Columbia, USA
huangct@cse.sc.edu

1 Contribution

A wireless sensor network (WSN) consists of a geographical area populated with
a large number of sensors nodes, where each sensor has a limited battery lifetime.
The type of coverage provided by the sensors is classified into full or partial
coverage. In full coverage, the entire area is covered at all times by the sensors,
and any event within the area is immediately detected [3]. On the other hand,
in partial coverage, the area has some regions not covered by the sensors [7].

One form of partial coverage is barrier coverage [6]. A barrier is a subset of
sensors that divide the area of interest into two regions, such that it is impossible
to move from one of the regions to the other without being detected by at least
one of the sensors. Figure 1(a) highlights a subset of sensors that provide barrier
coverage to the area.

In the specific case of intrusion detection, only one barrier needs to be active
at any moment in time; the remaining barriers can remain asleep in order to
conserve energy. When a barrier is close to depleting all of its power, another
barrier is placed in service. Finding the largest number of sensor barriers is
solvable in polynomial-time [6]. Consider the example in Fig. 1(b) with four
barriers, B1 through B4. If we use the barriers in a sequential wakeup-sleep
cycle, the users are protected for a total of four times the average lifetime of a
sensor.

(a) Sensor Barrier (b) Multiple Barriers (c) Barrier Breaches

Fig. 1. Sensor Barriers

c© Springer International Publishing Switzerland 2015
A. Pelc and A.A. Schwarzmann (Eds.): SSS 2015, LNCS 9212, pp. 284–285, 2015.
DOI: 10.1007/978-3-319-21741-3

Stabilizing Breach-Free Sensor Barriers 285

Sensor barriers are susceptible to a problem, known as a barrier-breach, in
which it is possible for an intruder to cross an area during the time that one
barrier is being replaced by another [4,5]. The existence of a barrier-breach is
dependent not on the structure of an individual sensor barrier, but on the relative
shape of two consecutive sensor barriers, which can be illustrated as follows.

Consider Fig. 1(c), where specific points in the plane have been highlighted.
The order in which the barriers are scheduled makes a significant difference, in
particular, for barriers B1 and B2. If B2 is scheduled first, followed by B1, then
an intruder could move to the point highlighted by a diamond, and after B2

is turned off, the intruder is free to cross the entire area. Also, only one of B3

and B4 is of use. To see this, suppose that we activate B3 first. In this case, the
intruder can move to the location of marked by the black star. Then, when B4 is
activated and B3 deactivated, the intruder can reach the users undetected. The
situation is similar if B4 is activated first, and the intruder moves to the location
of the grey star.

The complexity of obtaining the largest number of breach-free sensor barriers
is an open problem. Thus, heuristics have been presented in [4,5]. In [2], we
presented a heuristic which outperforms those of [4,5]. This heuristic, as well as
those in [4,5], are centralized. In our latest work [1], we transform the heuristic
we presented in [2] into a fully distributed solution, where the sensor nodes
organize themselves into breach-free barriers. In addition to being distributed,
our solution is stabilizing, i.e., starting from any state, a subsequent state is
reached and maintained where the sensors are organized into breach-free barriers.

References

1. Cobb, J.A., Huang, C.T.: Stabilizing breach-free sensor barriers. Technical report,
Department of Computer Science, The University of Texas at Dallas, May 2015

2. Cobb, J.A.: Improving the lifetime of non-penetrable barrier coverage in sensor
networks. In: International Workshop on Assurance in Distributed Systems and
Networks (2015, to appear)

3. Huang, C., Tseng, Y.: The coverage problem in a wireless sensor network. In: ACM
International Workshop on Wireless Sensor Networks and Applications (WSNA)
(2003)

4. Kim, D., Kim, J., Li, D., Kwon, S.S., Tokuta, A.O.: On sleep-wakeup scheduling
of non-penetrable barrier-coverage of wireless sensors. In: Proceedings of the IEEE
Global Communications Conference (GLOBECOM 2012), pp. 321–327, December
2012

5. Kim, H.B.: Optimizing Algorithms in Wireless Sensor Networks. Ph.D. thesis, The
University of Texas at Dallas, Advisor: J. Cobb, May 2013

6. Kumar, S., Lai, T.H., Posner, M.E., Sinha, P.: Maximizing the lifetime of a barrier
of wireless sensors. Mobile Computing, IEEE Transactions on 9(8), 1161–1172 (Aug
2010)

7. Vu, C., Chen, G., Zhao, Y., Li, Y.: A universal framework for partial coverage in
wireless sensor networks. In: 2009 IEEE 28th International Performance Computing
and Communications Conference (IPCCC), pp. 1–8, December 2009

Author Index

Aflaki, Saba 156
Afrati, Foto 272
Ali, Muqeet 109, 267
Alsulaiman, Thamer 282

Basu, Anirban 269
Berns, Andrew 233, 282
Binun, Alexander 278
Bonakdarpour, Borzoo 156
Bramas, Quentin 36
Brownstein, Dan 94

Chen, Jingshu 217
Cobb, Jorge A. 284
Cooper, Colin 187
Coupaye, Thierry 278

Decker, Christian 3
Dolev, Shlomi 94, 248, 272, 275, 278
Dubois, Swan 51

Elmallah, Ehab S. 109

Gąsieniec, Leszek 67
Georgiou, Chryssis 248
Ghosh, Sukumar 280, 282
Gilboa, Niv 94
Gouda, Mohamed G. 109, 267

Hamilton, David D. 67
Heule, Marijn J.H. 109
Hoang, Bao-Thien 171
Huang, Chin-Tser 284

Imbs, Damien 139
Imine, Abdessamad 171

Jubran, Oday 124

Kaaouachi, Mohamed-Hamza 51
Kiyomoto, Shinsaku 269
Koutsopoulos, Andreas 201
Kassi-Lahlou, Mohammed 278
Krzywiecki, Łukasz 275
Kulkarni, Sandeep 217

Lacoste, Marc 278
Lamani, Anissa 187

Marcoullis, Ioannis 248
Martin, Russell 67
Möhlmann, Eike 124

Palesandro, Alex 278
Panwar, Nisha 275
Petit, Franck 51

Rajsbaum, Sergio 139
Reaz, Rezwana 109, 267
Rezwanul Huq, Sikder 280
Ries, Benjamin 81

Schamberg, Bernhard 81
Scheideler, Christian 201
Schiller, Elad M. 248
Segal, Michael 275
Shahriar Rahman, Mohammad 269
Sharma, Shantanu 272
Spirakis, Paul G. 67
Strothmann, Thim 201
Su, Lili 21

Theel, Oliver 124
Tixeuil, Sébastien 36, 156

Ullman, Jeffrey D. 272
Unger, Walter 81

Vaidya, Nitin 21
Valle, Adrián 139
Viglietta, Giovanni 187

Wailly, Aurélien 278
Wattenhofer, Roger 3

Yagel, Reuven 278
Yamashita, Masafumi 187
Yamauchi, Yukiko 187
Yankulin, Leonid 278

Zhu, Ling 217

288 Author Index

	Preface
	Organization
	Keynote Lectures
	Distributed Runtime Verification

	A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels
	Correctness Conditions for Randomized Shared
Memory Algorithms

	Contents
	Keynote Lecture
	A Fast and Scalable Payment Network with Bitcoin Duplex Micropayment Channels
	1 Introduction
	2 Bitcoin
	3 Building Blocks
	3.1 Bitcoin Contracts
	3.2 Timelocks and Invalidation
	3.3 Shared Accounts
	3.4 Simple Micropayment Channels
	3.5 Atomic Multiparty Opt-In
	3.6 Hashed Timelock Contracts (HTLC)

	4 Duplex Micropayment Channel
	4.1 Structure
	4.2 Setup
	4.3 Reset
	4.4 Teardown and Commit
	4.5 Refresh

	5 Routing Payments
	6 Related Work
	7 Conclusion
	References

	Regular Papers

	Reaching Approximate Byzantine Consensus with Multi-hop Communication
	1 Introduction
	2 System Model and Structure of Iterative Algorithms
	3 Necessary Condition
	3.1 Equivalent Characterization of Condition NC

	4 Sufficiency: Algorithm 1
	4.1 Matrix Representation of Algorithm 1

	5 Unbounded Path Length
	5.1 Undirected Graph with Unbounded Path Length
	5.2 Directed Graph with Unbounded Path Length

	6 Summary and Discussion
	References

	The Complexity of Data Aggregation in Static and Dynamic Wireless Sensor Networks
	1 Introduction
	2 Model and Preliminaries
	3 NP-Hardness
	3.1 Static Grid Graphs of Degree at Most Three
	3.2 Dynamic Graphs of Degree at Most Two

	4 Upper and Lower Bounds
	5 Impossibility Results
	6 Approximation Algorithm
	7 Conclusion
	References

	Enabling Minimal Dominating Set in Highly Dynamic Distributed Systems
	1 Introduction
	2 Time-Varying Graph: Model and Complexity
	2.1 Model
	2.2 Complexity Measures

	3 Underlying Graph Computation
	3.1 Algorithm
	3.2 Time Optimality

	4 Minimal Dominating Set Construction
	4.1 Preliminaries
	4.2 Impossibility Result
	4.3 Algorithm

	5 Conclusion
	References

	The Match-Maker: Constant-Space Distributed Majority via Random Walks
	1 Introduction
	1.1 The Problem, Model and Motivation
	1.2 Our Results
	1.3 Previous Work

	2 Our Proposed Method: The Match-Making Algorithm
	3 The BASIC Protocol in Dynamic Graphs
	4 A Lower Bound for the Time Needed by BASIC for Static Graphs
	4.1 The Match-Making Process Defines a Weighted Bipartite Graph

	5 The Expected Convergence Time of BASIC on the Clique
	6 On Termination of the BASIC Process in Static Graphs
	7 Walks with Limited Counters in Graphs of Small Cover Time
	8 Future Work
	References

	The k-Observer Problem on d-regular Graphs
	1 Introduction and Motivation
	1.1 Related Work
	1.2 Outline

	2 Bipartite d-regular Graphs
	3 Approximation Algorithm for d-regular Graphs
	4 Distributed Algorithm
	5 Conclusion and Future Work
	References

	Functional Encryption for Cascade Automata (Extended Abstract)
	1 Introduction
	2 Definitions and Notations
	2.1 Finite Automata
	2.2 Functional Encryption for ECMMA
	2.3 Threshold--BDHE Assumption

	3 ECMMA-Based Functional Encryption Scheme Construction
	3.1 Intuition
	3.2 Algorithms
	3.3 Main Theorem

	4 Compact Signature Verification ECMMA
	References

	The Implication Problem of Computing Policies
	1 Introduction
	2 Preliminaries about Policies
	2.1 Intervals
	2.2 Attributes
	2.3 Requests
	2.4 Predicates
	2.5 Actions
	2.6 Rules
	2.7 Policies

	3 The Policy Implication Problem
	4 Implication of Accept Rules
	5 Implication of Accept Slices
	6 Implication of Accept Policies
	7 Concluding Remarks
	References

	Verifying Recurrence Properties in Self-stabilization by Checking the Absence of Finite Counterexamples
	1 Introduction
	2 Notation and Formalism
	3 Recurrence in Self-stabilization
	4 Finite Counterexamples
	5 An Alternative View to con-convergence
	6 Model Checking the Absence of Finite Counterexamples
	7 Conclusion and Discussion
	References

	Untangling Partial Agreement: Iterated x-consensus Simulations
	1 Introduction
	2 Model of Computation
	2.1 The Shared Memory Communication Model
	2.2 Model with x-consensus
	2.3 The Iterated x-consensus Model

	3 The Base Simulation
	3.1 The Simulation Algorithm
	3.2 Proof of the Simulation

	4 The Extended Simulation
	5 Implications of the Simulation
	References

	Automated Analysis of Impact of Scheduling on Performance of Self-stabilizing Protocols
	1 Introduction
	2 Preliminaries
	2.1 Distributed Programs
	2.2 Self-stabilization and Convergence Time
	2.3 Scheduler Types

	3 Augmenting a Distributed Program with a Scheduler
	3.1 Encoding Schedulers in a Distributed Program

	4 Experiments and Analysis
	4.1 Self-stabilizing Vertex Coloring in Arbitrary Graphs
	4.2 Composition with Dining Philosophers and the Cost of Ensuring Safety
	4.3 ID-Based Prioritization
	4.4 Probabilisitic-Stabilizing Vertex Coloring Programs
	4.5 Comparing Strategies and Schedulers

	5 Conclusion
	References

	Efficient and Decentralized Polling Protocol for General Social Networks
	1 Introduction
	2 Social Network Model
	2.1 User Behaviors
	2.2 Social Graph Model
	2.3 Secret Sharing Based Graphs

	3 Polling Protocol
	4 Correctness and Complexity Analysis
	4.1 Absence of Dishonest Nodes
	4.2 Presence of Dishonest Nodes

	5 Crash and Message Loss Analysis
	6 Related Work
	7 Conclusion
	References

	Constructing Self-stabilizing Oscillators in Population Protocols
	1 Introduction
	2 Preliminaries
	3 Deterministic Scheduler
	4 Stochastic Scheduler
	5 Conclusion
	References

	Towards a Universal Approach for the Finite Departure Problem in Overlay Networks
	1 Introduction
	1.1 Model
	1.2 Problem Statement
	1.3 Oracles
	1.4 Related Work
	1.5 Our Results

	2 Preliminaries
	3 Process Departures
	3.1 Correctness Proof

	4 Embedding in Existing Overlay Protocols
	4.1 FDP for Arbitrary Protocols

	5 Conclusion
	References

	Refinement of Probabilistic Stabilizing Programs Using Genetic Algorithms
	1 Introduction
	2 Preliminaries
	3 An Asymmetric Probabilistic Self-stabilizing Program
	4 A Symmetric Probabilistic Self-stabilizing Program
	5 Methodology
	5.1 Overall Framework
	5.2 Genetic Algorithm

	6 Experiments
	6.1 Experiment Setup
	6.2 Results of Asymmetric Probabilistic Self-stabilizing Program
	6.3 Optimization Results of Symmetric Probabilistic Self-stabilizing Program
	6.4 An Alternate Program for Symmetric Token Ring and Its Analysis

	7 Evaluating Token Ring Program of Probabilistic Model(s) and Non-probabilistic Model
	8 Symmetric Token Ring Protocols Using Asymmetric Probabilities
	9 Related Work
	10 Conclusion
	References

	Avatar: A Time- and Space-Efficient Self-stabilizing Overlay Network
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Model of Computation
	3 The AVATAR Network
	3.1 AVATAR Specification
	3.2 The Full Graph Family CBT

	4 A Self-Stabilizing Algorithm
	4.1 Algorithm Overview
	4.2 Clustering
	4.3 Matching
	4.4 Merging
	4.5 Termination Detection
	4.6 Combined Analysis

	5 Discussion and Future Work
	References

	Self-stabilizing Virtual Synchrony
	1 Introduction
	2 System Settings
	3 Self-stabilizing Labeling Scheme and Counter Increment
	3.1 Labeling Algorithm for Concurrent Label Creations
	3.2 Increment Counter Algorithm

	4 Virtually Synchronous Stabilizing Replicated State Machine
	4.1 Preliminaries
	4.2 Self-stabilizing Virtually Synchrony and SMR Algorithm

	5 Conclusion
	References

	Brief Announcements
	Two-Phase Non-repudiation Protocols
	Secure and Private Bidding Protocol
for Incentive-Based Demand-Response
System of Smart Grid
	Brief Announcement: Meta-MapReduce
A Technique for Reducing Communication
in MapReduce Computations
	Brief Announcement:
Vehicle to Vehicle Authentication
	Brief Announcement: Data Stabilization Enforcement
via Active Monitoring
the Cloud Infrastructure Consistency Case
	Self-adjusting Skip Graphs
	A Framework for Containing the Degree Growth
in Topological Self-stabilization
	Stabilizing Breach-Free Sensor Barriers

	Author Index

