Logic of Promotion and Demotion

Patrick Girard

Abstract In a logic with a dimension that represents social networks, for example
friendship, it is natural to add hierarchies. We can then talk about friends being better
than others, and isolate best friends. However, hierarchies are not rigid: majors can
become lieutenant, friendship may be strengthened or compromised, and experts
can loose or gain credibility. A proper analysis of the dynamics of hierarchies is thus
essential to the logic of social networks. Hierarchies of agents are structurally very
similar to plausibility orders of possible worlds central to logics for belief dynamics.
I use this formal analogy to show how standard policies of belief revision can be
applied in social networks, thus providing systematic mechanisms of promotion and
demotion in social networks.

Keywords Social networks ¢ Dynamic logic ¢ Belief revision * Logic in the
community * Two-dimensional logic

What does promotion have to do with belief revision? Think of belief revision as
dynamics over hierarchies of possible worlds. To revise with information ¢ is to
systematically promote worlds described by ¢. If you now think of ¢ as describing a
group of agents, the p-agents, then belief revision provides policies to systematically
promote the g-agents. Johan van Benthem (2007) describes the belief revision
operations of lexicographic upgrade and elite change. About lexicographic upgrade,
van Benthem says: “This move is like a social revolution where some underclass P
now becomes the upper class.” About elite change, he says: “Macchiavellistically,

I would like to thank Shaun White, Marcus Triplett and the anonymous referee for comments that
improved the paper greatly.

P. Girard (PX)
University of Auckland, New Zealand
e-mail: p.girard @auckland.ac.nz

© Springer International Publishing Switzerland 2015 107
A. Herzig, E. Lorini (eds.), The Cognitive Foundations of Group

Attitudes and Social Interaction, Studies in the Philosophy of Sociality 5,

DOI 10.1007/978-3-319-21732-1_5

mailto:p.girard@auckland.ac.nz

108 P. Girard

one just co-opts the leaders of the underclass, leaving the further social order
unchanged.” Transferred to a social setting, elite change and lexicographic upgrade
have a literal reading instead of an analogical interpretation. This idea is at the core
of the logic of promotion and demotion.

I addressed the problem of promotion and demotion in Girard (2011) and Girard
and Seligman (2009) with a logic for aggregation of prioritised preference orders
(cf., Andréka et al. 2002). I used a logical language with modalities [G]¢ defined
over the aggregated preferences of groups of agents G. For instance, I defined
the modality [i/j]¢ over the aggregation of the preferences of agents i and j by
giving priority to the preferences of agent i. I then analysed promotion as a shift
from a group G to a new group i/G in which agent i is given priority over
other agents in G. Using this logical language, I could formalise the aggregated
preferences over groups but I couldn’t reason directly about the structure of the
groups.

In this paper, I will propose a logic of promotion and demotion (LPD henceforth)
building on the framework of Logic in the Community (cf., Seligman et al. 2011,
2013). Logic in the community is a two-dimensional logic with epistemic and
social dimensions. The social dimension contains social networks: groups of agents
socially related, for example by a relation of friendship F. The modal language for
this logic has a corresponding friendship modality (F)¢p, allowing to express social
statements like “Carol is my friend” by (F)Carol. LPD adds to this framework
hierarchy relations H, for each agent a. Hierarchies are simply total preorders over
sets of friends. The language of LPD contains two modalities (H,)¢ and (H;)¢
defined over the hierarchy of a’s friends. You can read (H,)¢ as “¢ holds for some
friend that is at least as good as”, and (H)¢ as “¢ holds for some better friend.” For
the dynamics of promotion and demotion, I use propositional dynamic logic (PDL,
cf., Harel et al. 2000). As shown in Girard and Rott (2014), several belief revision
policies are definable in PDL. In LPD, these are adapted to the social dimension,
yielding various policies of promotion and demotion.

1 Hierarchical Models

Hierarchical models combine epistemic and social components in a two-
dimensional framework. In the first dimension, possible worlds are ordered by
agents according to indistinguishability. In the second dimension, there are two
components: (1) a social network for each possible world, and (2) a hierarchy over
each agent’s friends. Propositions are evaluated at world-agent pairs. So you may
think of propositions as being doubly indexical: p is true at world w for agent
a.

Given a set of propositional variables PROP and agent names AGENT, hierar-
chical models are tuples M = (W, A, K, F,H,H=, V), in which:

Logic of Promotion and Demotion 109

e W is a non-empty set of possible worlds,

e A={ab...}isafinite set of agents,

* K is an epistemic (equivalence) relation over W x A such that ((w, @), (v, b)) € K
implies that a = b,

 Fis afriendship' relation over W x A such that ((w, 0), (v, b)) € F, implies that
w=v,

* H is a collection of total preorders® H, on the set {(w,b) € Wx A | a =
b or ((w,a),(w,b)) € F} for every a € AGENT such that: ((u, b), (v,¢)) €
H,=u=v,

* H= is a collection of strict orders H; defined as sub-relations of H, in the usual
way’: ((w,a), (v,b)) € HT iff ((w,a), (v,b)) € H, and {(v,b), (w,a)) & H,,
and

e V is a propositional valuation which assigns subsets of W x A to propositional
variables. To each agent name a € AGENT, V assigns a unique agent a € A. So
fora € AGENT, V(a) = W x {a}.

I will abuse notation and write a indiscriminately to refer to agent names a €
AGENT or proper agents a € A. In hierarchical models, each agent has an epistemic
relation over the set of possible worlds, and each world has a friendship relation over
the set of agents. The domain of a hierarchical relation H, is the set of world-agent
pairs (w, b) such that a and b are friends in world w, and hierarchies are kept world-
bound. So in each world and for any two friends, agents can tell whether they are
equal friends, or if one is better than the other. If ((w, b), (w,c)) € H,, say that “c
is at least as good a friend to a as b”. If ((w, b), (w, c)) € H, say that “c is a better
friend to a than b”.

Example. The following represents a hierarchical model, call it M. I will refer back
to M several times in the paper.

'T use friendship as a basic social relation for simplicity. I thus only assume F to be symmetric.
Other social relations could be used, but friendship is all I need for the interpretations of promotion
and demotion I have in mind.

2Preorders are reflexive and transitive relations. Total preorders make any two friends comparable.
Friends may be equally ranked, as you should expect.

3Because it is defined in terms of H, H=< is redundant in models. But it is not redundant in the
logic, as it is well-known that strict subrelations are not modally definable. For uniformity, I thus
keep H*< in models.

110 P. Girard

p
Wa o [) K
1
w ‘_‘- o . r
a b C
b b
wo l ’ G—b—e ‘ 1
Ha) ={b} Hb) ={a,c} Fle) ={b}
ST 2N 7
Fla)={b,c} F(b) :b{a, c} F(c) ={a,b}

M is a two-dimensional model with two worlds, w, and w», and three agents, a, b and
c.* The top part represents the epistemic and friendship relations. For each world,
there is a friendship relation represented with dotted horizontal lines. Hence, in wy,
all agents are friends together. In w,, b is friends with a and ¢, but @ and ¢ are
not friends. The vertical lines represent epistemic relations, and only agent b finds
worlds w; and w, indistinguishable. Since a and ¢ are friends in wy, but not in w»,
the model depicts a situation in which agent b doesn’t know whether a and ¢ are
friends. Finally, the proposition p is true at w, for agent a and ¢ is true at w; for
agent c. The bottom part represents every agent’s hierarchy over their friends. In w»,
b ranks no one above others, but a and ¢ rank » above themselves. In w;, a ranks
herself and ¢ equally above b, b ranks a above both b and c, and finally ¢ puts a on
top of herself, with b at the bottom.

2 Basic Language and Semantics

Let p € PROP U AGENT. The basis of the LPD-language for the logic of
promotion and demotion is constructed from the following syntactic rules:

“Here and throughout the paper, I omit transitive and reflexive links whenever it improves
readability in pictures.

Logic of Promotion and Demotion 111

mu=K|F|H,|H;
pu=pl-plerneg|(T)e

The interpretation of the languages is an extension of the valuation function to
a valuation [-]” assigning semantic values, or subsets of W x A, to the sentences
of the language.5 In each hierarchical model M = (W, A, K, F,H,H<, V), semantic
values [p]¥ € W x A and [7]¥ C (W x A)? are computed in the following way:

[e]¥ = V(p),for p € PROP U AGENT.

[-e]" = W\[e]”

[o Avl" = [el” N ly]Y
[(m)el” = {(w,a) e WxA | ((w,a),(v,b)) € [7]" & (v,b) € [¢]",
for some (v,b) € W x A}

k1Y = K
[F1* = F

[H]Y = H,

71" = H

Example (continuing from p. 109). Here are some formulas that are true in M.

(w1, b) € [-[K]{Hy)Kq]” In world wy, b doesn’t know that she has a friend at least as
good as herself who knows g.

(w2, ¢) € [[HZ]-[K]{F)Kp]" | None of c’s better friends know that they have a friend who
knows p.

(w2,b) € [{K)(HT)c M It is consistent with what b knows that ¢ may rank herself
above b.

3 PDL Programs

PDL-programs are tools for transforming models by redefining the relations
between worlds using propositional dynamic logic (PDL). The new relations are
constructed out of the old ones using PDL-programs. PDL-programs are built using
four basic operations: composition, choice, iteration and test. From now on, I will
only write ‘program’ instead of ‘PDL-program’.

51 choose this notation for the definition of the semantics over the more common M, w, a =
for uniformity and easier integration of PDL in the next sections. In the more common notation,
instead of writing (w, a) € [{m)@]™, we would write M, w,a = (7)¢.

112

The composition program

‘;> takes two relations R; and R, and combines them

so that (x,y) € (R ; R,) whenever there is a z such that R;xz and R,zy:

pR1 R2p
o —0 0

Ri; Ry

>

o o o

The choice program ‘U’ chooses between two relations Ry and R, so that (x,y) €
(Ry U Ry) if either Ryxy or Ryxy:

p Ry

p

p

Ry P

*—0—0

Ri U Ry

~y

*—0—0

The iteration program ‘x’ repeats a basic program an arbitrary finite number of
times. Formally, it corresponds to taking the reflexive transitive closure of a relation,
as in:

p R, R}

Q—>.—>. > C:—»Q g@

Finally, the fest program ‘? tests if a formula is true at a state. As composition
and choice, the test program defines a relation on models. It returns a reflexive link
for worlds in which the tested formula is true®:

p R, p?
.—>.—>. ~

p p
<o O oo

PDL can be used to define complex PDL programs. For example:

p? U Ry U (Ry: Ro)

. pgp
aad .O

To describe programs in the language, we simply add the PDL-operators:

p Ry Ry p
*—0—0

mu=K|F|H, |H |nUn|m;m|xa*]|¢e?
pu=pl-glernel|(n)e

And we expand the semantic definition accordingly:

SMaybe not very intuitive, but that’s how it works.

Logic of Promotion and Demotion 113

[U mp]™

[1; o]

o™ U]

{w,a), (v,D)) | ((w,a), (u,c)) € [m]”

& {(u,c), (v,b)) € [m]M, for some (u,c) € W x A}

|[7T*]]M = {{w.a),(.b)[(w,a) = (v,D) or ((uj, a;), (i1, ait+1))
€ [=]™ for some n > 0, (ug, ag), . . . (. a,) € W x A,
(uo, ap) = (w, a) and (uy, a,) = (v,b)}

[e21" = {w,a),(w.a) | (w.a) € [p]"}

4 Promotion and Demotion

Having a social language, we can describe groups of agents with formulas. For
instance, we can isolate the friends of Barry and Carol with the formula (F)Barryv
(F)Carol. For any world w, any formula ¢ describes a group of agents, viz., the
agents a such that M, w, a |= ¢. Hence, we can use belief revision operations on ¢
to promote or demote groups of agents. I will use the following abbreviations:

HY = (p?: Hy: ¢?)
best, (@) ::= (Flan ¢ A=(H;)@

For any formula ¢, Hy restricts a’s hierarchy to agents described by ¢ and best, (¢)
isolates the best p-agents in a’s hierarchy. For example, take ¢ = (F)a, i.e., agents
satisfying the formula which says that a is amongst their friends, then best, (@)
returns a’s best friends. Or one can think of ¢ as ascribing expertise to agents, so
that promoting @-agents is giving priority to p-experts.

I first consider two operations of promotion which I call, following the termi-
nology of Girard and Rott (2014) and Rott (2009), conservative and moderate.
Conservative promotion promotes the best ¢-agents on top of the hierarchy and
preserves the ranking otherwise:

Conservative Promotion

CProma(p) = H, %9 U (((F)arn-besty(¢))?; F*; besta(¢)?)

Notice the role of F* to ensure that all of a’s friends can be accessed, creating
(possibly) new links ranking a’s best ¢-friends over the others. Since F is a
symmetric relation, F* is an equivalence relation (it takes the reflexive transitive
closer of a symmetric relation). Whenever I need to access all of a’s friends in
programs, I use F* in a similar fashion.

114 P. Girard

Moderate promotion acts like conservative promotion, but promotes all ¢-agents
instead of only the best ones:

Moderate promotion

MProma(p) = Hi U H.* U (Fan-9)?: F*; ((Flang)?)

As a simple representation, here’s the result of applying conservative and
moderate promotion to the same initial model:

Conservative and Moderate Promotion

— =
CProm, () ©@—> 00— 0 «—0
¥ 12

©—>0—>0—@ /\
MProm, ()

=
Ooe—e

The black figures represent best friends. The three operations of promotion agree
on who should be the best friends after promoting ¢ agents, but they disagree on
how to order the remaining friends. Conservative promotion preserves most of the
initial hierarchy, only taking the best ¢-agents and putting them on top. Moderate
promotion reorders every agent, by putting all ¢-agents over all ~¢-agents.

For demotion, I also define a conservative and a moderate version. As these
operations are based on doxastic operations with a minimalist attitude, the result
of demoting @p-agents doesn’t entail that ¢-agents are no longer best friends. What
demotion does to a group is to make sure that the set of best friends is no longer
only constituted by ¢-agents.

Conservative demotion takes the best —¢-agents and puts them on a par with
other best friends, but preserves the hierarchy otherwise.

Conservative Demotion

—_

CDema(p) = H,™5C9 U (F*: besty(-9)?) U (F*: besta(T)?)

Conservative demotion guarantees that the ruling class no longer consists only of
@-agents.

Moderate demotion again preserves best ¢-friends, but it puts all other ¢-agents
under —~¢-agents:

Moderate Demotion
MDema(¢) = H UH,*
U (((F)a A pA=best,(T))?; F*; ((F)an-¢)?)
U (F; best,(-9)?) U (F*; best,(T)?)

Logic of Promotion and Demotion 115

The following diagram illustrates the difference between conservative and
moderate demotion. As was the case with promotion, the two operations agree on
who become the best friends after demotion, but diverge in how they treat other
agents.

Conservative and Moderate Demotion

¥ ® CDem, () @ —>0—>80—>8©
_— _
©—0—>060—8 MDem, (i) 0 0-—>0<>9

5 PDL-Transformations

The final installments in the logic of promotion and demotion are PDL transfor-
mations, taken from Girard et al. (2012).” PDL-transformations are collections of
PDL programs that operate in parallel. A PDL-transformation A is a collection of
programs A(K), A(F) and A(H,) that redefines each of the relations. I represent
PDL-transformations in the following way:

A
K = AK)
F = A
H, := A(H,),foreverya € AGENT

A PDL-transformation is thus a way of combining several programs to redefine
the relations of a model. From now on, I will just write ‘transformation’ instead of
‘PDL-transformation’.

Let A be a transformation and let M = (W, A, K, F,H, H<, V) be a hierarchical
model. A(M) = (W,A, A(K), A(F), A(H,), A(H}), V) is anew hierarchical model
resulting from applying A to M, in which:

AK) = [AE]Y
AF) = [ABD
A(H,) = HA(Ha)]]M
AH) = [(AH)TY

In some cases, transformations preserve some relations in the model exactly as
they were. For instance, in the logic of promotion and demotion, they never affect

7For the details of the general case of PDL-transformations, the reader should consult section 1 of
Girard et al. (2012). I give here a self-contained special case of PDL-transformations required for
my purposes.

116 P. Girard

the epistemic relation. I will thus shorten the representation of transformations by
omitting relations that are preserved, as in:

B
H, := MPromy(c)
H, := CDemy(a)

The transformation 8 contains two programs, one for @ and one for b. With §,
a moderately promotes ¢ and his friends, and b conservatively demotes a. All other
relations are not affected by 8, and so are omitted from the representation.

Example (continuing from p. 111). Let’s see how f operates on M by computing

BM):

p
wa o o K
I
W @ @@ -
a b c
b b
0 T Q—— phe—cC ‘ T
Fla) ={b} Fb) ={a,c} Hc) ={b}
N == |
Fla) ={b,c} F(b) :b{ayc} Hc) ={a, b}

Transformations can do more than simply combining social action for all agents,
as in the simple example above. They can also define actions of promotion and
demotion that are not reducible to simple programs. As an example, here’s a
transformation for radical promotion that operates on both the friendship and the
hierarchy relation to define a new hierarchy. Radical promotion is an operation by
which an agent breaks the relationship with some of her friends, but keeps the hierar-
chy amongst the remaining friends as it was before. Since friendship is a symmetric
relation, a breaking the relationship with b forces b to also reconfigure her hierarchy:

Logic of Promotion and Demotion 117

Radical Promotion — RProm, (¢)
F = F“U (@ F;¢N) U ((marne)?; F; a?)
H, HE U (a?; Hy: 9?) U (¢?: Hy: a?)
H; (9?; H7) U (=¢?; H;) fori # a,i € AGENT

This definition is tailored to the friendship relation F being a symmetric relation.
When a drops ¢-agents amongst her friends, those agents are no longer friends with
a and must adapt their hierarchy relations accordingly. H, is transformed so that
a only ranks herself and ¢-agents just as she used to rank them. Finally, all other
agents, if they are g-agents, have to exclude a from their hierarchies, as they are no
longer friends.

Example (continuing from p. 111). As an example of a transformation acting on a
model, let’s compute the result RPromy, (c)(M) of b radically promoting ¢ in model
M:

p

w @ @@ ‘K

l)
woe e F

a b c
b
w | L% b T

Ha) =0 Fb) ={c} Fc) ={b}

Ha) ={c} F(b) ={c} Fe) ={a, b}

118 P. Girard
6 Logic of Promotion and Demotion: LPD

To describe transformations in the language of LPD, we add modalities (A) for each
acceptable transformation A3:

mnu=K|F|H, |H |nUn|m;nm|xa*]|¢e?
pu=pl-glene|(m)e| (A

We finally expand the semantic definition for the transformation modalities:

[(A)el" = [e]*®

An accustomed reader or a keen logician might now expect me to axiomatise
LPD and prove completeness. I will not do so in this paper. As is common in
the dynamic epistemic logic literature, completeness for dynamics is not a difficult
technical problem, because it can be avoided. In the case of LPD, we can use a
translation @ of formulas of the LPD language with transformation modalities to
formulas without them, so that:

w.a) € [iff (w.a) € [p]*™

Whereas a transformation A operates on a model M to create a new model A (M),
the translation of formulas encodes the result of the transformation in the language
without transformation modalities. It’s as though the static language could predict
what will happen after models are transformed.

The proof strategy I used is directly borrowed from the GDDL logic of Girard
et al. (2012) and is straightforwardly adapted to the LPD context. The translation
@™ needed for the reduction is the following:

P =p KA = A(K)
o)t = -t FA = A(F)
("’“”)2 = (soim/fAA) H} K = A(H,)
(m)ep)* = (nl)e (H7) = (H,)~
(mUm)? = rdurd
(7T1;712)A = Nf\/iﬂzl\
(7*) = (z")*
(N = (p")?

With this translation, a straightforward induction establishes Lemma 1, which
states that the logic with transformations can be systematically reduced to one
without them:

8We only accept transformations that produce hierarchical models. Here’s a technical problem for
the inclined reader: how do you characterise acceptable transformations for different logics? That
is, if I give you a class of models, how can you isolate transformations that will produce models
within the same class?

Logic of Promotion and Demotion 119

Lemma 1. For each world-agent pair (w, a) of A(M) and (v, b) of M, and for each
formula ¢:

(w.,a) € [p" ™ iff (w.a) € [p]*™
(w,a), (v,b)) € [#* " iff ((w.a),(v.b)) € [x]*™

Therefore, as far as completeness of the logic is concerned, no additional work
is required to axiomatise (A) modalities.

7 Conclusion

This concludes our investigation of promotion and demotion as can be expressed
in LPD. Many more operations can be defined in LPD, but I have selected those
which I think are most interesting. I have left some topics untouched in this paper.
In particular, I haven’t mentioned anything about the axiomatisation of the static
part of LPD. Although not a trivial task, I believe this will not present serious
difficulties. The axiomatisation of the hierarchical modalities would be based on
that for total preorders for [H,]¢ with an axiom for the proper interaction with [H]:
a — (Hy¢<H,(pA-Hpa)). One also needs an axiom for the proper interaction
with the friendship modality: [F]¢ — [H,]¢. Another aspect of the GDDL which I
haven’t exploited is the formalisation of private actions, in which agents secretly
change the hierarchy of their friends with some of them being ignorant of the
change.

I have only considered operations of promotion and demotion on groups as they
were suggested by the doxastic operation of revision and contraction found in the
AGM literature. But the LPD language is very flexible, and we could use it to
formalise a range of different notions of promotion and demotion. One could for
instance define operations in which a demotion of ¢-agents would put all ¢-agents
under all ~¢p-agents, or would put all best ¢-agents under all best ~p-agents; with
neither of these alternative definitions would best ¢-agents remain best friends after
the demotion, as is the case when we use my own definitions. The preliminary
framework and results I have provided encourage further investigation in a number
of different directions.

References

Andréka, Hajnal, Mark Ryan, and Pierre-Yves Schobbens. 2002. Operators and laws for combining
preference relations. Journal of Logic and Computation 12(1): 13-53.

Girard, Patrick. 2011. Modal logic for lexicographic preference aggregation. In Games, norms and
reasons, 97-117. Dordrecht: Springer.

Girard, Patrick, and Hans Rott. 2014. Belief revision and dynamic logic. In Trends in logic,
outstanding contributions: Johan F. A. K. Van Benthem on logical and informational dynamics,
vol. 5, ed. Alexandru Baltag and Sonja Smets. Cham: Springer.

120 P. Girard

Girard, Patrick, and Jeremy Seligman. 2009. An analytic logic of aggregation. In Logic and its
applications, Lecture notes in computer science, vol. 5378, ed. R. Ramanujam and Sundar
Sarukkai, 146-161. Berlin/Heidelberg: Springer.

Girard, Patrick, Jeremy Seligman, and Fenrong Liu. 2012. General dynamic dynamic logic.
Advances in Modal Logics 9: 239-260

Harel, David, Jerzy Tiuryn, and Dexter Kozen. 2000. Dynamic logic. Cambridge: MIT.

Rott, Hans. 2009. Shifting priorities: Simple representations for twenty-seven iterated theory
change operators. In Towards mathematical philosophy, Trends in logic, vol. 28, ed. David
Makinson, Jacek Malinowski, and Heinrich Wansing, 269-296. Dordrecht: Springer.

Seligman, Jeremy, Fenrong Liu, and Patrick Girard. 2011. Logic in the community. In Logic and
Its Applications, Lecture notes in computer science, vol. 6521, ed. Mohua Banerjee and Anil
Seth, 178-188. Berlin/Heidelberg: Springer.

Seligman, Jeremy, Fenrong Liu, and Patrick Girard. 2013. Facebook and the epistemic logic
of friendship. In TARK XIV: Proceedings of the 13th conference on theoretical aspects of
rationality and knowledge, Chennai: India.

van Benthem, Johan. 2007. Dynamic logic for belief revision. Journal of Applied Non-classical
Logic 17(2): 129-155.

	Logic of Promotion and Demotion
	1 Hierarchical Models
	2 Basic Language and Semantics
	3 PDL Programs
	4 Promotion and Demotion
	5 PDL-Transformations
	6 Logic of Promotion and Demotion: LPD
	7 Conclusion
	References

