
Chapter 6
Population Point Measure Processes

6.1 Multitype models

In the previous sections, the models that we considered described a homogeneous
population and could be considered as toy models. A first generalization consists
in considering multitype population dynamics. The demographic rates of a sub-
population depend on its own type. The ecological parameters are functions of the
different types of the individuals competiting with each other. Indeed, we assume
that the type has an influence on the reproduction or survival abilities, but also on
the access to resources. Some subpopulations can be more adapted than others to
the environment.

For simplicity, the examples that we consider now deal with only two types
of individuals. Let us consider two sub-populations characterized by two different
types 1 and 2. For i D 1; 2, the growth rates of these populations are r1 and r2.
Individuals compete for resources either inside the same species (intra-specific
competition) or with individuals of the other species (inter-specific competition).
As before, let K be the scaling parameter describing the capacity of the environment.
The competition pressure exerted by an individual of type 1 on an individual of type

1 (resp. type 2) is given by
c11

K
(resp.

c21

K
). The competition pressure exerted by an

individual of type 2 is, respectively, given by
c12

K
and

c22

K
. The parameters cij are

assumed to be positive.
By similar arguments as in Subsection 3.1, the large K-approximation of the

population dynamics is described by the well-known competitive Lotka-Volterra
dynamical system. Let x1.t/ (resp. x2.t/) be the limiting renormalized type 1

population size (resp. type 2 population size). We get

�
x0

1.t/ D x1.t/ .r1 � c11 x1.t/ � c12 x2.t//I
x0

2.t/ D x2.t/ .r2 � c21 x1.t/ � c22 x2.t//:
(6.1)
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50 6 Population Point Measure Processes

This system has been extensively studied and its long time behavior is well known.
There are 4 possible equilibria: the unstable equilibrium .0; 0/ and three stable ones:
. r1

c11
; 0/, .0; r2

c22
/ and a non-trivial equilibrium .x�

1 ; x�
2 / given by

x�
1 D r1c22 � r2c12

c11c22 � c12c21

I x�
2 D r2c11 � r1c21

c11c22 � c12c21

:

Of course, the latter is possible if the two coordinates are positive. The (unique)
solution of (6.1) converges to one of the stable equilibria, describing either the
fixation of one species or the co-existence of both species. The choice of the limit
depends on the signs of the quantities r2c11 � r1c21 and r1c22 � r2c12 which,
respectively, quantify the invasion ability of the subpopulation 2 (resp. 1) in a type
1 (resp. type 2) monomorphic resident population.

One could extend (6.1) to negative coefficients cij, describing a cooperation effect
of species j on the growth of species i. The long time behavior can be totally
different. For example, the prey–predator models have been extensively studied in
ecology (see [39], Part 1). The simplest prey–predator system

�
x0

1.t/ D x1.t/ .r1 � c12 x2.t//I
x0

2.t/ D x2.t/ .c21 x1.t/ � r2/;
(6.2)

with r1; r2; c12; c21 > 0, has periodic solutions.
Stochastic models have also been developed, based on this two type-population

model. Following the previous sections, a first point of view consists in generalizing
the logistic Feller stochastic differential equation to this two-dimensional frame-
work. The stochastic logistic Lotka-Volterra process is then defined by

�
dX1.t/ D X1.t/ .r1 � c11 X1.t/ � c12 X2.t// dt C p

�1X1.t/dB1
t I

dX2.t/ D X2.t/ .r2 � c21 X1.t/ � c22 X2.t// dt C p
�2X2.t/dB2

t ;

where the Brownian motions B1 and B2 are independent and give rise to the
demographic stochasticity (see Cattiaux-Méléard [20]). Another point of view
consists in taking account the environmental stochasticity (see Evans, Hening,
Schreiber [34]).

Of course, we could also study multi-dimensional systems corresponding to
multi-type population models. In what follows we are more interested in modeling
the case where the types of the individuals belong to a continuum. That will allow us
to add mutation events where the offspring of an individual may randomly mutate
and create a new type.
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6.2 Continuum of types and measure-valued processes

Even if the evolution appears as a global change in the state of a population, its
basic mechanisms, mutation and selection, operate at the level of individuals. Con-
sequently, we model the evolving population as a stochastic system of interacting
individuals, where each individual is characterized by a vector of phenotypic trait
values. The trait space X is assumed to be a closed subset of Rd, for some d � 1.

We will denote by MF.X / the set of all finite non-negative measures on X . Let
M be the subset of MF.X / consisting of all finite point measures:

M D
(

nX
iD1

ıxi ; n � 0; x1; : : : ; xn 2 X
)

:

Here and below, ıx denotes the Dirac mass at x. For any � 2 MF.X / and any
measurable function f on X , we set h�; f i D R

X fd�.
We wish to study the stochastic process .Yt; t � 0/, taking its values in M, and

describing the distribution of individuals and traits at time t. We define

Yt D
NtX

iD1

ıXi
t
; (6.3)

Nt D hYt; 1i 2 N standing for the number of individuals alive at time t, and
X1

t ; : : : ; XNt
t describing the individuals’ traits (in X ).

We assume that the birth rate of an individual with trait x is b.x/ and that for a
population � D PN

iD1 ıxi , its death rate is given by d.x; C��.x// D d.x;
PN

iD1 C.x�
xi//. This death rate takes into account the intrinsic death rate of the individual;
it does not depend not only on its phenotypic trait x but also on the competition
pressure exerted by the other individuals alive, modeled by the competition kernel C.
Let p.x/ and m.x; z/dz be, respectively, the probability that an offspring produced by
an individual with trait x carries a mutated trait and the law of this mutant trait.

Thus, the population dynamics can be roughly summarized as follows. The initial
population is characterized by a (possibly random) counting measure �0 2 M
at time 0, and any individual with trait x at time t has two independent random
exponentially distributed “clocks”: a birth clock with parameter b.x/, and a death
clock with parameter d.x; C � Yt.x//. If the death clock of an individual rings, this
individual dies and disappears. If the birth clock of an individual with trait x rings,
this individual produces an offspring. With probability 1 � p.x/ the offspring carries
the same trait x; with probability p.x/ the trait is mutated. If a mutation occurs, the
mutated offspring instantly acquires a new trait z, picked randomly according to the
mutation step measure m.x; z/dz. When one of these events occurs, all individuals’
clocks are reset to 0.
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We are looking for a M-valued Markov process .Yt/t�0 with infinitesimal
generator L, defined for all real bounded functions � and � 2 M by

L�.�/ D
NX

iD1

b.xi/.1 � p.xi//.�.� C ıxi/ � �.�//

C
NX

iD1

b.xi/p.xi/

Z
X

.�.� C ız/ � �.�//m.xi; z/dz

C
NX

iD1

d.xi; C � �.xi//.�.� � ıxi/ � �.�//: (6.4)

The first term in (6.4) captures the effect of births without mutation, the second
term the effect of births with mutation, and the last term the effect of deaths. The
density-dependence makes the third term nonlinear.

6.3 Path construction of the process

Let us justify the existence of a Markov process admitting L as infinitesimal gen-
erator. The explicit construction of .Yt/t�0 also yields two side benefits: providing
a rigorous and efficient algorithm for numerical simulations (given hereafter) and
establishing a general method that will be used to derive some large population
limits (Chapter 7).

We make the biologically natural assumption that the trait dependency of birth
parameters is “bounded,” and at most linear for the death rates. Specifically, we
assume

Assumption 6.1. There exist constants Nb, Nd, NC, and ˛ and a probability density
function Nm on R

d such that for each � D PN
iD1 ıxi and for x; z 2 X , � 2 R,

b.x/ � Nb; d.x; �/ � Nd.1 C j�j/;
C.x/ � NC;

m.x; z/ � ˛ Nm.z � x/:

These assumptions ensure that there exists a constant OC, such that for a population
measure � D PN

iD1 ıxi , the total event rate, obtained as the sum of all event rates, is
bounded by OCN.1 C N/.

Let us now give a pathwise description of the population process .Yt/t�0.
We introduce the following notation.
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Notation 1. Let N� D Nnf0g. Let H D .H1; : : : ; Hk; : : :/ W M 7! .Rd/N
�

be
defined by H

�Pn
iD1 ıxi

� D .x�.1/; : : : ; x�.n/; 0; : : : ; 0; : : :/, where � is a permutation
such that x�.1/ 2 : : : 2 x�.n/, for some arbitrary order 2 on R

d (for example, the
lexicographic order).

This function H allows us to overcome the following (purely notational) problem.
Choosing a trait uniformly among all traits in a population � 2 M consists in
choosing i uniformly in f1; : : : ; h�; 1ig, and then in choosing the individual number
i (from the arbitrary order point of view). The trait value of such an individual is
thus Hi.�/.

We now introduce the probabilistic objects we will need.

Definition 6.1. Let .�;F ; P/ be a (sufficiently large) probability space. On this
space, we consider the following four independent random elements:

(i) a M-valued random variable Y0 (the initial distribution),
(ii) Poisson point measures N1.ds; di; d	/, and N3.ds; di; d	/ on RC � N

� � R
C,

with the same intensity measure ds
�P

k�1 ık.di/
�

d	 (the “clonal” birth and
the death Poisson measures),

(iii) a Poisson point measure N2.ds; di; dz; d	/ on RC�N
��X �R

C, with intensity
measure ds

�P
k�1 ık.di/

�
dzd	 (the mutation Poisson point measure).

Let us denote by .Ft/t�0 the canonical filtration generated by these processes.

We finally define the population process in terms of these stochastic objects.

Definition 6.2. Assume .H/. A .Ft/t�0-adapted stochastic process Y D .Yt/t�0 is
called a population process if a.s., for all t � 0,

Yt D Y0 C
Z

Œ0;t
�N��RC

ıHi.Ys�/1fi�hYs�;1ig 1f	�b.Hi.Ys�//.1�p.Hi.Ys�///gN1.ds; di; d	/

C
Z

Œ0;t
�N��X�RC

ız1fi�hYs�;1ig 1f	�b.Hi.Ys�//p.Hi.Ys�// m.Hi.Ys�/;z/gN2.ds; di; dz; d	/

�
Z

Œ0;t
�N��RC

ıHi.Ys�/1fi�hYs�;1ig1f	�d.Hi.Ys�/;C�Ys�.Hi.Ys�///gN3.ds; di; d	/

(6.5)

Let us now show that if Y solves (6.5), then Y follows the Markovian dynamics we
are interested in.

Proposition 6.3. Assume Assumption 6.1 holds and consider a solution .Yt/t�0

of (6.5) such that E.supt�ThYt; 1i2/ < C1; 8T > 0. Then .Yt/t�0 is a Markov
process. Its infinitesimal generator L is defined by (6.4). In particular, the law of
.Yt/t�0 does not depend on the chosen order 2.
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Proof. The fact that .Yt/t�0 is a Markov process is classical. Let us now consider a
measurable bounded function �. With our notation, Y0 D PhY0;1i

iD1 ıHi.Y0/. A simple
computation, using the fact that a.s., �.Yt/ D �.Y0/ C P

s�t.�.Ys� C .Ys � Ys�// �
�.Ys�//, shows that

�.Yt/ D �.Y0/ C
Z

Œ0;t
�N��RC

�
�.Ys� C ıHi.Ys�// � �.Ys�/

�
1fi�hYs�;1ig

1f	�b.Hi.Ys�//.1�p.Hi.Ys�///gN1.ds; di; d	/

C
Z

Œ0;t
�N��X�RC

.�.Ys� C ız/ � �.Ys�// 1fi�hYs�;1ig

1f	�b.Hi.Ys�//p.Hi.Ys�// m.Hi.Ys�/;z/gN2.ds; di; dz; d	/

C
Z

Œ0;t
�N��RC

�
�.Ys� � ıHi.Ys�// � �.Ys�/

�
1fi�hYs�;1ig

1f	�d.Hi.Ys�/;C�Ys�.Hi.Ys�///gN3.ds; di; d	/:

Taking expectations, we obtain

E.�.Yt// D E.�.Y0//

C
Z t

0

E

� hYs;1iX
iD1

� �
�.Ys C ıHi.Ys// � �.Ys/

�
b.Hi.Ys//.1 � p.Hi.Ys///

C
Z
X

.�.Ys C ız/ � �.Ys// b.Hi.Ys//p.Hi.Ys// m.Hi.Ys/; z/dz

C �
�.Ys � ıHi.Ys// � �.Ys/

�
d.Hi.Ys/; C � Ys.H

i.Ys///

��
ds

Differentiating this expression at t D 0 leads to (6.4). ut
Let us show the existence and some moment properties for the population process.

Theorem 6.4. (i) Assume Assumption 6.1 holds and that E .hY0; 1i/ < 1. Then
the process .Yt/t�0 defined in Definition 6.2 is well defined on RC.

(ii) If furthermore for some p � 1, E .hY0; 1ip/ < 1, then for any T < 1,

E. sup
t2Œ0;T


hYt; 1ip/ < C1: (6.6)

Proof. We first prove (ii). Consider the process .Yt/t�0. We introduce for each n
the stopping time �n D inf ft � 0; hYt; 1i � ng. Then a simple computation using
Assumption 6.1 shows that, dropping the non-positive death terms,
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sup
s2Œ0;t^�n


hYs; 1ip � hY0; 1ip

C
Z

Œ0;t^�n
�N��RC

..hYs�; 1i C 1/p � hYs�; 1ip/ 1fi�hYs�;1ig

1f	�b.Hi.Ys�//.1�p.Hi.Ys�///gN1.ds; di; d	/

C
Z

Œ0;t^�n
�N��X�RC

..hYs�; 1i C 1/p � hYs�; 1ip/ 1fi�hYs�;1ig

1f	�b.Hi.Ys�//p.Hi.Ys�// m.Hi.Ys�/;z/gN2.ds; di; dz; d	/:

Using the inequality .1 C x/p � xp � Cp.1 C xp�1/ and taking expectations, we thus
obtain, the value of Cp changing from one line to the other,

E. sup
s2Œ0;t^�n


hYs; 1ip/ � Cp

�
1 C E

�Z t^�n

0

Nb .hYs�; 1i C hYs�; 1ip/ ds

		

� Cp

�
1 C E

�Z t

0

.1 C hYs^�n ; 1ip/ ds

		
:

The Gronwall Lemma allows us to conclude that for any T < 1, there exists a
constant Cp;T , not depending on n, such that

E. sup
t2Œ0;T^�n


hYt; 1ip/ � Cp;T : (6.7)

First, we deduce that �n tends a.s. to infinity. Indeed, if not, one may find
T0 < 1 such that �T0 D P .supn �n < T0/ > 0. This would imply that
E

�
supt2Œ0;T0^�n
 hYt; 1ip� � �T0np for all n, which contradicts (6.7). We may let

n go to infinity in (6.7) thanks to the Fatou Lemma. This leads to (6.6).
Point (i) is a consequence of point (ii). Indeed, one builds the solution .Yt/t�0

step by step. One only has to check that the sequence of jump instants Tn goes a.s.
to infinity as n tends to infinity. But this follows from (6.6) with p D 1. ut

6.4 Examples and simulations

Let us remark that Assumption 6.1 is satisfied in the case where

d.x; C � �.x// D d.x/ C ˛.x/

Z
X

C.x � y/�.dy/; (6.8)

and b, d, and ˛ are bounded functions.
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In the case where moreover, p � 1, this individual-based model can also be
interpreted as a model of “spatially structured population,” where the trait is viewed
as a spatial location and the mutation at each birth event is viewed as dispersal.
This kind of models has been introduced by Bolker and Pacala [13, 14] and Law
et al. [54], and mathematically studied by Fournier and Méléard [35]. The case
C � 1 corresponds to a density-dependence in the total population size.

Later, we will consider the particular set of parameters, taken from Kisdi [49]
and corresponding to a model of asymmetric competition:

X D Œ0; 4
; d.x/ D 0; ˛.x/ D 1; p.x/ D p;

b.x/ D 4 � x; C.x � y/ D 2

K

�
1 � 1

1 C 1:2 exp.�4.x � y//

	
(6.9)

and m.x; z/dz is a Gaussian law with mean x and variance �2 conditioned to stay in
Œ0; 4
. As we will see in Chapter 7, the constant K scaling the strength of competition
also scales the population size (when the initial population size is proportional to K).
In this model, the trait x can be interpreted as body size. Equation (6.9) means that
body size influences the birth rate negatively, and creates asymmetrical competition
reflected in the sigmoid shape of C (being larger is competitively advantageous).

Let us give now an algorithmic construction of the population process (in the
general case), giving the size Nt of the population and the trait vector Xt of all
individuals alive at time t.

At time t D 0, the initial population Y0 contains N0 individuals and the corre-
sponding trait vector is X0 D .Xi

0/1�i�N0 . We introduce the following sequences of
independent random variables, which will drive the algorithm.

• The type of birth or death events will be selected according to the values of a
sequence of random variables .Wk/k2N� with uniform law on Œ0; 1
.

• The times at which events may be realized will be described using a sequence of
random variables .�k/k2N with exponential law with parameter OC.

• The mutation steps will be driven by a sequence of random variables .Zk/k2N
with law Nm.z/dz.

We set T0 D 0 and construct the process inductively for k � 1 as follows.
At step k � 1, the number of individuals is Nk�1, and the trait vector of these

individuals is XTk�1 .

Let Tk D Tk�1 C �k

Nk�1.Nk�1 C 1/
. Notice that

�k

Nk�1.Nk�1 C 1/
represents the

time between jumps for Nk�1 individuals, and OC.Nk�1 C 1/ gives an upper bound of
the total rate of events affecting each individual.

At time Tk, one chooses an individual ik D i uniformly at random among the
Nk�1 alive in the time interval ŒTk�1; Tk/; its trait is Xi

Tk�1
. (If Nk�1 D 0, then Yt D 0

for all t � Tk�1.)
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• If 0 � Wk � d.Xi
Tk�1

;
PIk�1

jD1 C.Xi
Tk�1

� Xj
Tk�1

//

OC.Nk�1 C 1/
D Wi

1.XTk�1 /, then the chosen

individual dies, and Nk D Nk�1 � 1.
• If Wi

1.XTk�1 / < Wk � Wi
2.XTk�1 /, where

Wi
2.XTk�1 / D Wi

1.XTk�1 / C Œ1 � p.Xi
Tk�1

/
b.Xi
Tk�1

/

OC.Nk�1 C 1/
;

then the chosen individual gives birth to an offspring with trait Xi
Tk�1

, and Nk D
Nk�1 C 1.

• If Wi
2.XTk�1 / < Wk � Wi

3.XTk�1 ; Zk/, where

Wi
3.XTk�1 ; Zk/ D Wi

2.XTk�1 / C p.Xi
Tk�1

/b.Xi
Tk�1

/ m.Xi
Tk�1

; Xi
Tk�1

C Zk/

OC Nm.Zk/.Nk�1 C 1/
;

then the chosen individual gives birth to a mutant offspring with trait Xi
Tk�1

C Zk,
and Nk D Nk�1 C 1.

• If Wk > Wi
3.XTk�1 ; Zk/, nothing happens, and Nk D Nk�1.

Then, at any time t � 0, the number of individuals and the population process are
defined by

Nt D
X
k�0

1fTk�t<TkC1gNk; Yt D
X
k�0

1fTk�t<TkC1g
NkX

iD1

ıXi
Tk

:

The simulation of Kisdi’s example (6.9) can be carried out following this algorithm.
We can show a very wide variety of qualitative behaviors depending on the value of
the parameters � , p and K.

In the following figures (cf. Champagnat-Ferrière-Méléard [21]), the upper part
gives the distribution of the traits in the population at any time, using a grey scale
code for the number of individuals holding a given trait. The lower part of the
simulation represents the dynamics of the total population size Nt.

These simulations will serve to illustrate the different mathematical scalings
described in Chapter 7. In Fig. 6.1 (a)–( c), we see the qualitative and quantitative
effects of increasing scalings K, from a finite trait support process for small K to a
wide population density for large K. The simulations of Fig. 6.2 involve birth and
death processes with large rates (see Section 7.2) given by

b.x/ D K C b.x/ and d.x; �/ D K C d.x/ C ˛.x/�

and small mutation step �K . There is a noticeable qualitative difference between
Fig. 6.2 (a) where  D 1=2, and Fig. 6.2 (b) where  D 1. In the latter, we observe
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Fig. 6.1 Numerical simulations of trait distributions (upper panels, darker means higher fre-
quency) and population size (lower panels). The initial population is monomorphic with trait
value 1:2 and contains K individuals. (a–c) Effect of increasing the system size (measured by
the parameter K).
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Fig. 6.2 Numerical simulations of trait distributions (upper panels, darker means higher fre-
quency) and population size (lower panels) for accelerated birth and death and concurrently
increased parameter K. The parameter  (between 0 and 1) relates the acceleration of demographic
turnover to the increase of system size K. (a) Case  D 0:5. (b) Case  D 1. The initial population
is monomorphic with trait value 1:2 and contains K individuals.

strong fluctuations in the population size and a finely branched structure of the
evolutionary pattern, revealing a new form of stochasticity in the large population
approximation.

6.5 Martingale Properties

We give some martingale properties of the process .Yt/t�0, which are the key point
of our approach.

Theorem 6.5. Suppose Assumption 6.1 holds and that for some p � 2,
E .hY0; 1ip/ < 1.

(i) For all measurable functions � from M into R such that for some constant C,
for all � 2 M, j�.�/j C jL�.�/j � C.1 C h�; 1ip/, the process

�.Yt/ � �.Y0/ �
Z t

0

L�.Ys/ds (6.10)

is a càdlàg .Ft/t�0-martingale starting from 0.
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(ii) Point (i) applies to any function �.�/ D h�; f iq, with 0 � q � p � 1 and with
f bounded and measurable on X .

(iii) For such a function f , the process

Mf
t D hYt; f i � hY0; f i �

Z t

0

Z
X

��
.1 � p.x//b.x/ � d.x; C � Ys.x//

	
f .x/

C p.x/b.x/

Z
X

f .z/ m.x; z/dz

�
Ys.dx/ds (6.11)

is a càdlàg square-integrable martingale starting from 0 with quadratic
variation

hMf it D
Z t

0

Z
X

��
.1 � p.x//b.x/ � d.x; C � Ys.x//

	
f 2.x/

C p.x/b.x/

Z
X

f 2.z/ m.x; z/dz

�
Ys.dx/ds: (6.12)

Proof. The proof follows the proof of Theorem 2.8. First of all, note that point (i) is
immediate thanks to Proposition 6.3 and (6.6). Point (ii) follows from a straightfor-

ward computation using (6.4). To prove (iii), we first assume that E
�
hY0; 1i3

�
< 1.

We apply (i) with �.�/ D h�; f i. This gives us that Mf is a martingale. To compute
its bracket, we first apply (i) with �.�/ D h�; f i2 and obtain that

hYt; f i2 � hY0; f i2 �
Z t

0

Z
X

��
.1 � p.x//b.x/.f 2.x/ C 2f .x/ hYs; f i/

C d.x; C � Ys.x//.f 2.x/ � 2f .x/ hYs; f i/
	

C p.x/b.x/

Z
X

.f 2.z/ C 2f .z/ hYs; f i/ m.x; z/dz

�
Ys.dx/ds (6.13)

is a martingale. On the other hand, we apply the Itô formula to compute hYt; f i2

from (6.11). We deduce that

hYt; f i2 � hY0; f i2 �
Z t

0

2 hYs; f i
Z
X

��
.1 � p.x//b.x/ � d.x; C � Ys.x//

	
f .x/

C p.x/b.x/

Z
X

f .z/m.x; z/dz

�
Ys.dx/ds � hMf it (6.14)

is a martingale. Comparing (6.13) and (6.14) leads to (6.12). The extension to the

case where only E
�
hY0; 1i2

�
< 1 is straightforward by a localization argument,

since also in this case, E.hMf it/ < 1 thanks to (6.6) with p D 2. ut
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