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Chapter 1
Introduction

This course concerns the stochastic modeling of population dynamics. In the first
part, we focus on monotype populations described by one-dimensional stochastic
differential equations with jumps. We consider their scaling limits for large popu-
lations and study the long time behavior of the limiting processes. It is achieved,
thanks to martingale properties, Poisson measure representations, and stochastic
calculus. These tools and results will be used and extended to measure-valued
processes in the second part. The latter is dedicated to structured populations, where
individuals are characterized by a trait belonging to a continuum.

In the first section, we define birth and death processes with rates depending on
the state of the population and recall some long time properties based on recursion
equations. A pathwise representation of the processes using Poisson point measures
is introduced, from which we deduce some martingale properties. We represent the
carrying capacity of the underlying environment through a scaling parameter K 2 N

and state our results in the limit of large K. Depending on the demographic rates,
the population size renormalized by K is approximated either by the solution of an
ordinary differential equation or by the solution of a stochastic differential equation.
The proofs are based on martingale properties and tightness-uniqueness arguments.
When the per individual death rate is an affine function of the population size, in
the limit we obtain either a so-called logistic equation or a logistic Feller diffusion
process. The long time behavior of these limiting dynamics is studied. Assuming a
constant per capita death rate leads to a Feller diffusion which satisfies the branching
property: two disjoint subpopulations evolve independently. In that case, specific
tools using Laplace transforms can be used. We extend this class of processes
by adding jumps, which may be due either to demographic stochasticity or to
environmental stochasticity. We consider them separately and we characterize their
finite dimensional laws and long time behavior using the branching property, the
generator and martingale properties. First, we focus on Continuous State Branching
Processes, which arise as scaling limits of branching processes when the individuals
may have a very large number of offspring. This gives rise to a jump term whose

© Springer International Publishing Switzerland 2015
V. Bansaye, S. Méléard, Stochastic Models for Structured Populations, Mathematical
Biosciences Institute Lecture Series 1.4, DOI 10.1007/978-3-319-21711-6_1
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2 1 Introduction

rate is proportional to the size of the population. Using the Lamperti transform,
we can then both describe their scaling limits and classify the long time behavior:
extinction, absorption at 0 or exponential growth to infinity. The second class of
jump processes models random environmental catastrophes, which kill a random
fraction of the population. The continuous state process can be obtained as a limit
of discrete particle systems, where the demographic dynamics of the population
and the environmental catastrophes occur on different timescales. Now, only the
quenched branching property holds and the long time behavior of the Laplace
exponent is more subtle. We recover the three usual regimes, subcritical, critical,
and supercritical, but the subcritical case is split into three sub-cases leading to
different asymptotics for the survival probability.

The second part concerns structured populations whose individuals are charac-
terized by a type taking values in a continuum. Two main examples are developed.
The first one models Darwinian evolution where the type is an heritable trait subject
to selection and mutation. The second case describes cell division with parasite
infection and the type of a cell is the amount of parasites it carries. In both
cases, the mathematical model is a measure-valued Markov process with jumps.
Therefore, we develop some stochastic tools for such processes and use a pathwise
representation driven by Poisson point measures to obtain martingale properties.
We consider different approximations of the process, depending on the parameter
K, which as before scales the population size but now also the demographic rates.
The limiting theorems are proved using compactness-uniqueness arguments and the
semimartingale decomposition of the measure-valued processes.

In the first two subsections, the population model includes mutations, which may
occur during each birth event with some positive probability. The mutant inherits a
random perturbation of the ancestor’s trait. The individuals compete for resources
and the individual death rate depends on the whole population trait distribution,
leading to nonlinearities in the limit. In the large population case, the limiting
equation is a nonlinear integro-differential equation. In the allometric case, when the
demographic rates are much larger but the mutation amplitude is very small in an
appropriate scale, the limiting object can be either a nonlinear reaction-diffusion
equation or a nonlinear super-process. The latter is a continuous measure-valued
process whose law is characterized by martingale properties. Simulations show the
qualitative differences between the trait supports for these different asymptotics. It
means that a change of scales in the parameters leads to quite different evolutive
scenarios. Let us point out that the classical models for population dynamics in an
ecological or mutational framework can thus be explained from the birth and death
processes describing the evolution of the population at the level of the individuals.

In the last two subsections, we describe two-level models motivated by cell
division dynamics. First, we consider a finite population of dividing cells. The cells
are infected by parasites which may influence their division rates. The parasites
are more abundant and reproduce and die faster than the cells and their growth
is modeled by a Feller diffusion. When the cells divide, the parasite load is randomly
shared in the two daughter cells. Following a random cell lineage (by keeping one
daughter cell at random at each division) makes appear a Feller diffusion with
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catastrophes. When studying the number of infected cells for large times, we obtain
different regimes depending on the positivity or not of a parameter based on the
division rate, the parasite splitting law and the parasite growth rate. Finally, we
consider the long time behavior of a structured population when the genealogical
tree is a branching process. It allows multiple offspring and deaths. Between the
branching events, the individual traits evolve independently following a Markov
process. The ergodicity of a well-chosen one-dimensional auxiliary Markov process
allows to prove the convergence of the trait distribution within the population when
time goes to infinity.

Notation

For a Polish space E, P.E/ denotes the space of probability measures on E.
The spaces C2

b.R/, C2
b.RC/, C2

b.R
d/ are the spaces of bounded continuous

functions whose first and second derivatives are bounded and continuous, resp. on
R, RC, Rd.

In all what follows, C denotes a constant real number whose value can change
from one line to the other.

Acknowledgements The authors wish to warmly thank Amandine Véber for the reading of the
manuscript and her suggestions.



Part I
Discrete Monotype Population Models and

One-dimensional Stochastic Differential
Equations

In the first chapter, we concentrate on one-dimensional models for population
dynamics. After recalling the main properties of the birth and death processes,
we study different scaling limits using a martingale approach. Then we investigate
the long time behavior of some classes of limiting processes, in the case of large
reproduction events or random environment using the branching property.



Chapter 2
Birth and Death Processes

2.1 Definition and non-explosion criterion

Definition 2.1. A birth and death process is a pure jump Markov process whose
jump steps are equal to ˙1. The transition rates are as follows:

�
i ! i C 1 at rate �i

i ! i � 1 at rate �i;

.�i/i2N� and .�i/i2N� being two sequences of positive real numbers and
�0 D �0 D 0.

In this case, the infinitesimal generator is the matrix .Qi; j/ defined on N � N by

Qi;iC1 D �i ; Qi;i�1 D �i ; Qi;i D �.�i C �i/ ; Qi; j D 0 otherwise:

The global jump rate for a population with size i � 1 is �i C �i. After a random
time distributed according to an exponential law with parameter �i C�i, the process
increases by 1 with probability �i

�iC�i
and decreases by �1 with probability �i

�iC�i
.

If �i C �i D 0, the process is absorbed at i.
Recall that if P.t/ D .Pi; j.t//; t 2 RC denotes the transition semigroup of the

process, then

Pi;iC1.h/ D �i h C o.h/ I Pi;i�1.h/ D �i h C o.h/ I Pi;i.h/ D 1 � .�i C �i/ h C o.h/:

Examples. The constant numbers �, �, �, c are positive.

1) The Yule process corresponds to the case �i D i�, �i D 0.
2) The branching process or linear birth and death process : �i D i�; �i D i�.
3) The birth and death process with immigration : �i D i�C �; �i D i�.

© Springer International Publishing Switzerland 2015
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8 2 Birth and Death Processes

4) The logistic birth and death process : �i D i�; �i D i�C c i.i � 1/.
The following theorem characterizes the non-explosion in finite time of the process.
In this case, the process will be defined and will have a.s. finite value at any time
t 2 RC.

Theorem 2.2. Suppose that �i > 0 for all i � 1. Then the birth and death process
has almost surely an infinite lifetime if and only if the following series diverges:

X
i�1

�
1

�i
C �i

�i�i�1
C � � � C �i � � ��2

�i � � ��2�1
�

D C1: (2.1)

Corollary 2.3. If for any i, �i � � i, with � > 0, the process is well defined on RC.

Remark 2.4. One can check that the birth and death processes mentioned in the
examples above satisfy this property and are well defined on RC.

Proof of Theorem 2.2. Let .Tn/n be the sequence of jump times of the process and
.Sn/n the sequence of the inter-jump times,

Sn D Tn � Tn�1; 8n � 1I T0 D 0; S0 D 0:

We define T1 D limn Tn. The process doesn’t explode almost surely and is well
defined on RC if and only if for any i � 1, Pi.T1 < C1/ D 0.

The proof consists in showing that the process doesn’t explode almost surely if
and only if the unique non-negative and bounded solution x D .xi/i2N of Q x D x
is the null solution. This proof is actually achieved for any integer valued pure jump
Markov process. We will then see that it is equivalent to (2.1) for birth and death
processes.

For any i � 1, we set h.0/i D 1 and for n � 1,

h.n/i D Ei.exp.�Tn// D Ei

 
exp.�

nX
kD1

Sk/

!
:

We have

Ei

 
exp

 
�

nC1X
kD1

Sk

! ˇ̌
S1

!
D exp.�S1/ Ei

 
EXS1

 
exp.�

nX
kD1

Sk/

!!
;

by the Markov property, the independence of S1 and XS1 and since the jump times
of the shifted process are Tn � S1. Moreover,

Ei

 
EXS1

 
exp.�

nX
kD1

Sk/

!!
D
X
j¤i

Pi.XS1 D j/ Ej

 
exp.�

nX
kD1

Sk/

!
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D
X
j¤i

Qi; j

qi
h.n/j ;

where qi D P
j¤i Qi; j. Therefore, for all n � 0,

h.nC1/
i D Ei

 
Ei

 
exp.�

nC1X
kD1

Sk/
ˇ̌
S1

!!
D
X
j¤i

Qi; j

qi
h.n/j Ei.exp.�S1//:

Since Ei.exp.�S1// D R1
0

qie�qise�sds D qi
1Cqi

; we finally obtain that

h.nC1/
i D

X
j¤i

Qi; j

1C qi
h.n/j : (2.2)

Let .xi/i be a non-negative solution of Qx D x bounded by 1. We get h.0/i D 1 � xi

and thanks to the previous formula, we deduce by induction that for all i � 1 and
for all n 2 N, h.n/i � xi � 0: Indeed if h.n/j � xj, we get h.nC1/

i � P
j¤i

Qi; j

1Cqi
xj.

As x is solution of Qx D x, it satisfies xi D P
j Qi; j xj D Qi;ixi C P

j¤i Qi; jxj D
�qixi CP

j¤i Qi; jxj; thus
P

j¤i
Qi; j

1Cqi
xj D xi and h.nC1/

i � xi.
If the process doesn’t explode almost surely, we have T1 D C1 a.s. and

limn h.n/i D 0. Making n tend to infinity in the previous inequality, we deduce that
xi D 0. Thus, in this case, the unique non-negative and bounded solution of Qx D x
is the null solution.

Let us now assume that the process explodes with a positive probability. Let zi D
Ei.e�T1/. There exists i such that Pi.T1 < C1/ > 0 and for this integer i, zi > 0.
Going to the limit with T1 D limn Tn and Tn D Pn

kD1 Sk yields zj D limn h.n/j .
Making n tend to infinity proves that z is a non-negative and bounded solution of
Qz D z, with zi > 0. It ensures that the process doesn’t explode almost surely if and
only if the unique non-negative and bounded solution x D .xi/i2N of Q x D x is
x D 0.

We apply this result to the birth and death process. We assume that �i > 0 for
i � 1 and �0 D �0 D 0. Let .xi/i2N be a non-negative solution of the equation
Qx D x. For n � 1, introduce �n D xn � xn�1. Equation Qx D x can be written
x0 D 0 and

�nxnC1 � .�n C �n/xn C �nxn�1 D xn ; 8n � 1:

Setting fn D 1

�n
and gn D �n

�n
, we get

�1 D x1 I �2 D �1 g1 C f1 x1 I : : : I �nC1 D �n gn C fn xn:
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Remark that for all n, �n � 0 and the sequence .xn/n is non-decreasing. If x1 D 0,
the solution is zero. Otherwise we deduce that

�nC1 D fnxn C
n�1X
kD1

fk gkC1 � � � gn xk C g1 � � � gn x1:

Since .xk/k is non-decreasing and defining rn D 1

�n
C

n�1X
kD1

�kC1 � � ��n

�k�kC1 � � ��n
C�1 � � ��n

�1 � � ��n
,

it follows that rn x1 � �nC1 � rn xn, and by iteration

x1.1C r1 C � � � C rn/ � xnC1 � x1

nY
kD1
.1C rk/:

Therefore we have proved that the boundedness of the sequence .xn/n is equivalent
to the convergence of

P
k rk and Theorem 2.2 is proved. ut

2.2 Kolmogorov equations and invariant measure

Let us recall the Kolmogorov equations (see, for example, Karlin-Taylor[47]).
Forward Kolmogorov equation: for all i; j 2 N,

dPi; j

dt
.t/ D

X
k

Pi;k.t/Qk;j D Pi; jC1.t/QjC1;j C Pi; j�1.t/Qj�1;j C Pi; j.t/Qj;j

D �jC1Pi; jC1.t/C �j�1Pi; j�1.t/ � .�j C �j/Pi; j.t/: (2.3)

Backward Kolmogorov equation: for all i; j 2 N,

dPi; j

dt
.t/ D

X
k

Qi;k Pk;j.t/ D Qi;i�1Pi�1;j.t/C Qi;iC1PiC1;j.t/C Qi;iPi; j.t/

D �iPi�1;j.t/C �iPiC1;j.t/ � .�i C �i/Pi; j.t/: (2.4)

Let us define for all j 2 N the probability measure

pj.t/ D P.X.t/ D j/ D
X

i

P.X.t/ D jj X0 D i/P.X.0/ D i/ D
X

i

P.X.0/ D i/Pi; j.t/:

A straightforward computation shows that the forward Kolmogorov equation (2.3)
reads

d pj

dt
.t/ D �j�1 pj�1.t/C �jC1 pjC1.t/ � .�j C �j/ pj.t/: (2.5)
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This equation is useful to find an invariant measure, that is a sequence .qj/j of non-
negative real numbers with

P
j qj < C1 and satisfying for all j,

�j�1 qj�1 C �jC1 qjC1 � .�j C �j/ qj D 0:

2.3 Extinction criterion - Extinction time

Some of the following computation can be found in [47] or in [2], but they are finely
developed in [9].

Let T0 denote the extinction time and ui D Pi.T0 < 1/ the probability to see
extinction in finite time starting from state i.

Conditioning by the first jump XT1 2 f�1;C1g, we get the following recurrence
property: for all i � 1,

�iuiC1 � .�i C �i/ui C �iui�1 D 0 (2.6)

This equation can also be easily obtained from the backward Kolmogorov equa-
tion (2.4). Indeed

ui D Pi.9t > 0;Xt D 0/ D Pi.[tfXt D 0g/ D lim
t!1 Pi;0.t/;

and

dPi;0

dt
.t/ D �iPi�1;0.t/C �iPiC1;0.t/ � .�i C �i/Pi;0.t/:

Let us solve (2.6). We know that u0 D 1. Let us first assume that for a state N,
�N D 0 and �i > 0 for i < N. Define u.N/i D Pi.T0 < TN/, where TN is the hitting
time of N. Thus uN

0 D 1 et uN
N D 0. Setting

UN D
N�1X
kD1

�1 � � ��k

�1 � � ��k
;

straightforward computations using (2.6) yield that for i 2 f1; � � � ;N � 1g

u.N/i D .1C UN/
�1

N�1X
kDi

�1 � � ��k

�1 � � ��k
and in particular u.N/1 D UN

1C UN
:
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For the general case, let N tend to infinity. We observe that extinction will happen
(or not) almost surely in finite time depending on the convergence of the series
1X

kD1

�1 � � ��k

�1 � � ��k
.

Theorem 2.5. (i) If
1X

kD1

�1 � � ��k

�1 � � ��k
D C1, then the extinction probabilities ui are

equal to 1. Hence we have almost-sure extinction of the birth and death process
for any finite initial condition.

(ii) If
1X

kD1

�1 � � ��k

�1 � � ��k
D U1 < 1, then for i � 1,

ui D .1C U1/�1
1X

kDi

�1 � � ��k

�1 � � ��k
:

There is a positive probability for the process to survive for any positive initial
condition. ut

Application of Theorem 2.5 to the binary branching process (linear birth and
death process): any individual gives birth at rate � and dies at rate�. The population
process is a binary branching process and individual lifetimes are exponential
variables with parameter � C �. An individual either gives birth to 2 individuals
with probability �

�C� or dies with probability �

�C� .
Applying the previous results, one gets that when � � �, i.e. when the process

is sub-critical or critical, the sequence .UN/N tends to infinity with N and there
is extinction with probability 1. Conversely, if � > �, the sequence .UN/N converges
to �

��� and straightforward computations yield ui D .�=�/i.

Application of Theorem 2.5 to the logistic birth and death process. Let us
assume that the birth and death rates are given by

�i D � i I �i D � i C c i.i � 1/: (2.7)

The parameter c models the competition pressure between two individuals. It’s easy

to show that in this case, the series
1X

kD1

�1 � � ��k

�1 � � ��k
diverges, leading to the almost

sure extinction of the process. Hence the competition between individuals makes
the extinction inevitable.

Let us now come back to the general case and assume that the series
1X

kD1

�1 � � ��k

�1 � � ��k
diverges. The extinction time T0 is well defined and we wish to

compute its moments.
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We use the standard notation

�1 D 1

�1
I �n D �1 : : : �n�1

�1 : : : �n
8n � 2:

Proposition 2.6. Let us assume that

1X
kD1

�1 � � ��k

�1 � � ��k
D
X

n

1

�n�n
D C1: (2.8)

Then

(i) For any a > 0 and n � 1,

Gn.a/ D EnC1.exp.�aTn// D 1C �n C a

�n
� �n

�n

1

Gn�1.a/
: (2.9)

(ii) E1.T0/ D P
k�1 �k and for every n � 2,

En.T0/ D
X
k�1

�k C
n�1X
kD1

1

�k�k

X
i�kC1

�i D
n�1X
kD1

0
@ X

i�kC1

�kC1 : : : �i�1
�kC1 : : : �i

1
A :

Proof. (i) Let �n be a random variable distributed as Tn under PnC1 and consider
the Laplace transform of �n. Following [3, p. 264] and by the Markov property,
we have

�n�1
.d/D 1fYnD�1gEn C 1fYnD1g

�
En C �n C � 0

n�1
�

where Yn, En, � 0
n�1 and �n are independent random variables, En is an exponential

random variable with parameter �n C �n and � 0
n�1 is distributed as �n�1 and

P.Yn D 1/ D 1 � P.Yn D �1/ D �n=.�n C �n/. Hence, we get

Gn�1.a/ D �n C �n

a C �n C �n

�
Gn.a/Gn�1.a/

�n

�n C �n
C �n

�n C �n

�

and (2.9) follows.
(ii) Differentiating (2.9) at a D 0, we get

En.Tn�1/ D �n

�n
EnC1.Tn/C 1

�n
; n � 1:
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Following the proof of Theorem 2.5, we first deal with the particular case when
�N D 0 for some N > n, EN.TN�1/ D 1

�N
and a simple induction gives

En.Tn�1/ D 1

�n
C

NX
iDnC1

�n : : : �i�1
�n : : : �i

:

We get E1.T0/ D PN
kD1 �k and writing En.T0/ D Pn

kD1 Ek.Tk�1/, we
deduce that

En.T0/ D
NX

kD1
�k C

n�1X
kD1

1

�k�k

NX
iDkC1

�i:

In the general case, let N > n. Thanks to (2.8), T0 is finite and the process a.s.
does not explode in finite time for any initial condition. Then TN ! 1 Pn-a.s.,
where we use the convention fTN D C1g on the event where the process does
not attain N. The monotone convergence theorem yields

En.T0I T0 � TN/ �!
N!C1 En.T0/:

Let us consider a birth and death process XN with birth and death rates .�N
k ; �

N
k W

k � 0/ such that .�N
k ; �

N
k / D .�k; �k/ for k ¤ N and �N

N D 0; �N
N D �N .

Since .Xt W t � TN/ and .XN
t W t � TN

N / have the same distribution under Pn,
we get

En .T0I T0 � TN/ D En
�
TN
0 I TN

0 � TN
N

�
;

which yields

En.T0/ D lim
N!1En

�
TN
0 I TN

0 � TN
N

� � lim
N!1En

�
TN
0

�
;

where the convergence of the last term is due to the stochastic monotonicity of
TN
0 with respect to N under Pn. Using now that TN

0 is stochastically smaller than
T0 under Pn, we have also

En.T0/ � En.T
N
0 /:

We deduce that

En.T0/ D lim
N!1En.T

N
0 / D lim

N!1

NX
kD1

�k C
n�1X
kD1

1

�k�k

NX
iDkC1

�i;

which ends up the proof. ut
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Exercise. Assume (2.8). Show that for every n � 0,

EnC1.T2n / D 2

�n�n

X
i�n

�i�i EiC1.Ti/
2I

EnC1.T3n / D 6

�n�n

X
i�n

�i�i EiC1.Ti/VariC1.Ti/:

2.4 Trajectorial representation of birth and death
processes

We consider as previously a birth and death process with birth rates .�n/n and death
rates .�n/n. We write �n D �.n/ and �n D �.n/, where �.:/ and �.:/ are two
functions defined on RC. We assume further that there exist N� > 0 and N� > 0 such
that for any x � 0,

�.x/ � N� x I �.x/ � N�.1C x2/: (2.10)

This assumption is satisfied for the logistic case where �.x/ D � x and �.x/ D
cx.x � 1/C � x.

Assumption (2.10) is a sufficient condition ensuring the existence of the process
on RC, as observed in Corollary 2.3.

Proposition 2.7. On the same probability space, we consider a Poisson point
measure N.ds; du/with intensity dsdu on RC�RC (see Appendix). We also consider
a random variable Z0 independent of N and introduce the filtration .Ft/t given by
Ft D �.Z0;N..0; s	 � A/; s � t;A 2 B.RC//.

The left-continuous and right-limited non-negative Markov process .Zt/t�0
defined by

Zt D Z0 C
Z t

0

Z
RC

�
1fu��.Zs�/g � 1f�.Zs�/�u��.Zs�/C�.Zs�/g

�
N.ds; du/ (2.11)

is a birth and death process with birth (resp. death) rates .�n/n (resp. .�n/n).
If for p � 1, E.Zp

0/ < C1, then for any T > 0,

E
�

sup
t�T

Zp
t

�
< C1: (2.12)

Proof. For n 2 N, let us introduce the stopping times

Tn D infft > 0;Zt � ng:
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For s � t, we have

Zp
s^Tn

D Zp
0 C

Z s^Tn

0

..Zs� C 1/p � Zp
s�/1fu��.Zs�/g N.ds; du/

C
Z s^Tn

0

..Zs� � 1/p � Zp
s�/1f�.Zs�/�u��.Zs�/C�.Zs�/g N.ds; du/:

The second part of the r.h.s. is non-positive and the first part is increasing in time,
yielding the upper bound

sup
s�t

Zp
s^Tn

� Zp
0 C

Z t^Tn

0

..Zs� C 1/p � Zp
s�/1fu��.Zs�/g N.ds; du/:

Since there exists C > 0 such that .1C x/p � xp � C.1C xp�1/ for any x � 0 and
by (2.10), we get

E.sup
s�t

Zp
s^Tn

/ � E.Zp
0/C C N�E

�Z t^Tn

0

Zs .1C Zp�1
s / ds

�

� NC
 
1C

Z t

0

E
�

sup
u�s^Tn

Zp
u

�
ds

!
;

where NC is a positive number independent of n. Since the process is bounded by n
before Tn, Gronwall’s Lemma implies the existence (for any T > 0) of a constant
number CT;p independent of n such that

E
�

sup
t�T^Tn

Zp
t

� � CT;p: (2.13)

In particular, the sequence .Tn/n tends to infinity almost surely. Indeed,
otherwise there would exist T0 > 0 such that P.supn Tn < T0/ > 0. Hence
E
�

supt�T0^Tn
Zp

t

� � np
P.supn Tn < T0/, which contradicts (2.13). Making n tend

to infinity in (2.13) and using Fatou’s Lemma yield (2.12). ut
Remark that given Z0 and N, the process defined by (2.11) is unique. Indeed it can
be inductively constructed. It is thus unique in law. Let us now recall its infinitesimal
generator and give some martingale properties.

Theorem 2.8. Let us assume that E.Zp
0/ < 1, for p � 2.

(i) The infinitesimal generator of the Markov process Z is defined for any bounded
measurable function 
 from RC into R by

L
.z/ D �.z/.
.z C 1/� 
.z//C �.z/.
.z � 1/� 
.z//:
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(ii) For any measurable function 
 such that j
.x/j C jL
.x/j � C .1 C xp/, the
process M
 defined by

M

t D 
.Zt/ � 
.Z0/ �

Z t

0

L
.Zs/ds (2.14)

is a left-limited and right-continuous (càdlàg) .Ft/t-martingale.
(iii) The process M defined by

Mt D Zt � Z0 �
Z t

0

.�.Zs/� �.Zs//ds (2.15)

is a square-integrable martingale with quadratic variation

hMit D
Z t

0

.�.Zs/C �.Zs//ds: (2.16)

Remark that the drift term of (2.15) involves the difference between the birth and
death rates (i.e., the growth rate), while (2.16) involves the sum of both rates. Indeed
the drift term describes the mean behavior whereas the quadratic variation reports
the random fluctuations.

Proof. (i) is well known.
(ii) Dynkin’s theorem implies that M
 is a local martingale. By the assumption

on 
, all the terms of the r.h.s. of (2.14) are integrable. Therefore M
 is a
martingale.

(iii) We first assume that E.Z30/ < C1. By (2.10), we may apply .ii/ to both
functions
1.x/ D x and 
2.x/ D x2. Hence Mt D Zt�Z0�

R t
0
.�.Zs/��.Zs//ds

and Z2t � Z20 � R t
0

�
�.Zs/.2Zs C 1/ � �.Zs/.1 � 2Zs/

�
ds are martingales. The

process Z is a semi-martingale and Itô’s formula applied to Z2 gives that Z2t �
Z20 � R t

0
2Zs
�
�.Zs/ � �.Zs/

�
ds � hMit is a martingale. The uniqueness of the

Doob-Meyer decomposition leads to (2.16). The general case E.Z20/ < C1
follows by a standard localization argument. ut



Chapter 3
Scaling Limits for Birth and Death Processes

If the population is large, so many birth and death events occur that the
dynamics becomes difficult to describe individual per individual. Living systems
need resources in order to survive and reproduce and the biomass per capita
depends on the order of magnitude of these resources. We introduce a parameter
K 2 N

� D f1; 2; : : :g scaling either the size of the population or the total amount of
resources. We assume that the individuals are weighted by 1

K .
In this section, we show that depending on the scaling relations between the

population size and the demographic parameters, the population size process will
be approximate either by a deterministic process or by a stochastic process. These
approximations will lead to different long time behaviors.

In the rest of this section, we consider a sequence of birth and death processes
ZK parameterized by K, where the birth and death rates for the population state
n 2 N are given by �K.n/ and �K.n/. Since the individuals are weighted by 1

K , the
population dynamics is modeled by the process .XK

t ; t � 0/ 2 D.RC;RC/ with
jump amplitudes ˙ 1

K and defined for t � 0 by

XK
t D ZK

t

K
: (3.1)

This process is a Markov process with generator

LK
.x/ D �K.Kx/
�

.x C 1

K
/ � 
.x/�C �K.Kx/

�

.x � 1

K
/� 
.x/

�
: (3.2)

Therefore, adapting Proposition 2.7 and Theorem 2.8, one can easily show that if
�K.n/ � N�n (uniformly in K) and if

sup
K

E..XK
0 /
3/ < C1; (3.3)

© Springer International Publishing Switzerland 2015
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then

sup
K

E.sup
t�T
.XK

t /
3/ < C1; (3.4)

and for any K 2 N
�, the process

MK
t D XK

t � XK
0 � 1

K

Z t

0

.�K.Z
K
s /� �K.Z

K
s //ds (3.5)

is a square-integrable martingale with quadratic variation

hMKit D 1

K2

Z t

0

.�K.Z
K
s /C �K.Z

K
s //ds: (3.6)

3.1 Deterministic approximation - Malthusian and logistic
equations

Let us now assume that the birth and death rates satisfy the following assumption:

�K.n/ D n�
� n

K

�
I �K.n/ D n�

� n

K

�
; where the functions

� and � are non-negative and Lipschitz continuous on RC;

�.x/ � N� I �.x/ � N�.1C x/: (3.7)

We will focus on two particular cases:

The linear case: �K.n/ D n� and �K.n/ D n�, with �;� > 0.

The logistic case: �K.n/ D n� and �K.n/ D n.�C c

K
n/ with �;�; c > 0.

By (3.3), the population size is of the order of magnitude of K and the biomass per
capita is of order 1

K . This explains that the competition pressure from one individual
to another one in the logistic case is proportional to 1

K .
We are interested in the limiting behavior of the process .XK

t ; t � 0/ when
K ! 1.

Theorem 3.1. Let us assume (3.7), (3.3) and that the sequence .XK
0 /K converges in

law (and in probability) to a real number x0. Then for any T > 0, the sequence
of processes .XK

t ; t 2 Œ0;T	/ converges in law (and hence in probability), in
D.Œ0;T	;RC/, to the continuous deterministic function .x.t/; t 2 Œ0;T	/ solution
of the ordinary differential equation

x0.t/ D x.t/.�.x.t// � �.x.t/// I x.0/ D x0: (3.8)
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In the linear case, the limiting equation is the Malthusian equation

x0.t/ D x.t/.� � �/:

In the logistic case, one obtains the logistic equation

x0.t/ D x.t/.� � � � c x.t//: (3.9)

These two equations have different long time behaviors. In the Malthusian case,
depending on the sign of � � �, the solution of the equation tends to C1 or to 0
as time goes to infinity, modeling the explosion or extinction of the population. In
the logistic case and if the growth rate � � � is positive, the solution converges to

the carrying capacity
� � �

c
> 0. The competition between individuals yields a

regulation of the population size.

Proof. The proof is based on a compactness-uniqueness argument. More precisely,
the scheme of the proof is the following:

1) Uniqueness of the limit.
2) Uniform estimates on the moments.
3) Tightness of the sequence of laws of .XK

t ; t 2 Œ0;T	/ in the Skorohod space. We
will use the Aldous and Rebolledo criteria.

4) Identification of the limit.

Thanks to Assumption (3.7), the uniqueness of the solution of equation (3.8) is
obvious. We also have (3.4). Therefore it remains to prove the tightness of the
sequence of laws and to identify the limit. Recall (see, for example, [30] or [43])
that since the processes .XK

t D XK
0 C MK

t C AK
t /t are semimartingales, tightness will

be proved as soon as we have

(i) The sequence of laws of .supt�T jXK
t j/ is tight,

(ii) The finite variation processes hMKi and AK satisfy the Aldous conditions.

Let us recall the Aldous condition (see [1]): let .YK/K be a sequence of Ft-adapted
processes and � the set of stopping times for the filtration .Ft/t. The Aldous
condition can be written: 8" > 0, 8� > 0, 9ı > 0, K0 such that

sup
K�K0

sup
S;S02� IS�S0�.SCı/^T

P.jYK
S0 � YK

S j > "/ � �:

Let us show this property for the sequence .AK/K . We have

E.jAK
S0 � AK

S j/ � E

 Z S0

S
XK

s j�.XK
s /� �.XK

s /jds

!
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� CE

 Z S0

S
.1C .XK

s /
2/ds

!
by (3.7)

� C ı E

�
sup
s�T
.1C .XK

s /
2/

�

which tends to 0 uniformly in K as ı tends to 0. We use a similar argument for
.hMKi/K to conclude for the tightness of the laws of .XK/K . Prokhorov’s Theorem
implies the relative compactness of this family of laws in the set of probability
measures on D.Œ0;T	;R/, leading to the existence of a limiting value Q.

Let us now identify the limit. The jumps of XK have the amplitude 1
K . Since

the mapping x ! supt�T j�x.t/j is continuous from D.Œ0;T	;R/ into RC, then the
probability measure Q only charges the subset of continuous functions. For any
t > 0, we define on D.Œ0;T	;R/ the function

 t.x/ D xt � x0 �
Z t

0

.�.xs/ � �.xs// xsds:

The assumptions yield

j t.x/j � C sup
t�T
.1C .xt/

2/

and we deduce the uniform integrability of the sequence . t.XK//K from (3.4).
The projection mapping x ! xt isn’t continuous on D.Œ0;T	;R/ but since Q only
charges the continuous paths, we deduce that X !  t.X/ is Q-a.s. continuous, if X
denotes the canonical process. Therefore, since Q is the weak limit of a subsequence
of .L.XK//K (that for simplicity we still denote L.XK/) and using the uniform
integrability of . t.XK//K , we get

EQ.j t.X/j/ D lim
K

E.j t.X
K/j/ D lim

K
E.jMK

t j/:

But

E.jMK
t j/ � �

E.jMK
t j2/�1=2

tends to 0 by (3.6), (3.7), and (3.4). Hence the limiting process X is the deterministic
solution of the equation

x.t/ D x0 C
Z t

0

xs.�.xs/� �.xs//ds:

That ends the proof. ut
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3.2 Stochastic approximation - Feller and logistic
Feller diffusions

Let us now assume that

�K.n/ D n .�Kn C �/ I �K.n/ D n
�
�Kn C �C c

K
n
�
; (3.10)

where �; �; �; c are non-negative constants and � > �. The coefficient � > 0

is called the allometry coefficient. Such population model describes the behavior
of small individuals which are born or die very fast. As we will see in the next
theorem, this assumption changes the qualitative nature of the large population
approximation.

Theorem 3.2. Assume (3.10) and (3.3) and that the random variables XK
0 converge

in law to a square-integrable random variable X0. Then for any T > 0, the sequence
of processes .XK

t ; t 2 Œ0;T	/ converges in law, in D.Œ0;T	;RC/, to the continuous
diffusion process .Xt; t 2 Œ0;T	/ solution of the stochastic differential equation

Xt D X0 C
Z t

0

p
2�XsdBs C

Z t

0

Xs.� � � � c Xs/ds: (3.11)

In this case, the limiting process is stochastic. Indeed there are so many birth and
death jump events that the stochasticity cannot completely disappear. Hence the
term

p
2�XtdBt models the demographic stochasticity. Its variance is proportional to

the renormalized population size. When c D 0, we get the Feller diffusion equation

dXt D p
2�XtdBt C Xt.� � �/dt: (3.12)

If c ¤ 0, Equation (3.11) is called by extension the logistic Feller diffusion equation
(see Etheridge [29] and Lambert [51]).

Proof. Here again the proof is based on a uniqueness-compactness argument.
Let us first prove the uniqueness in law of a solution of (3.11). We use a

general result concerning one-dimensional stochastic differential equations (see
Ikeda-Watanabe [41] p.448). The diffusion and drift coefficients are of class C1 and
non-zero on .0;C1/ but can cancel at 0. So Equation (3.11) is uniquely defined
until the stopping time Te D T0 ^ T1 where T0 is the hitting time of 0 and T1
the explosion time. Furthermore, 0 is an absorbing point for the process. In the
particular case where c D 0 (no interaction), the process stays in .0;1/ or goes to
extinction almost surely (see Subsection 4.1 and Proposition 4.7. When c > 0, the
process goes to extinction almost surely, as recalled below.

Lemma 3.3. For any x > 0, Px.Te D T0 < C1/ D 1 if c > 0.

Proof of Lemma 3.3. Recall Ikeda-Watanabe’s results in [41] (see also Shreve-
Karatzas [45] Prop. 5.32). Let Yt denote the solution of the one-dimensional
stochastic differential equation dYt D �.Yt/dBt C b.Yt/dt. Let us introduce the two
functions:
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ƒ.x/ D
Z x

1

exp

�
�
Z z

1

2b.y/

�2.y/
dy

�
dzI

.x/ D
Z x

1

exp

�
�
Z z

1

2b.y/

�2.y/
dy

��Z z

1

exp

�Z �

1

2b.y/

�2.y/
dy

�
d�

�2.�/

�
dz:

Then there is equivalence between the two following assertions:

(a) For any y > 0, Py.TY
e D TY

0 < C1/ D 1.
(b) ƒ.C1/ D C1 and .0C/ < C1.

In our case, straightforward computations allow us to show that (b) is satisfied by
the solution of (3.11) as soon as c ¤ 0. ut

Let us now prove that there exists a constant C1;T such that

sup
t�T

sup
K

E..XK
t /
3/ � C1;T ; (3.13)

where C1;T only depends on T. Following the proof of Theorem 2.8 .iii/, we note
that

.XK
t /
3 � .XK

0 /
3 �

Z t

0

�
�K2XK

s

�
.XK

s C 1

K
/3 C .XK

s � 1

K
/3 � 2.XK

s /
3

�

C�KXK
s

�
.XK

s C 1

K
/3 � .XK

s /
3

�
C .�K C cXK

s /X
K
s .X

K
s � 1

K
/3 � .XK

s /
3

	
ds

is a martingale. Therefore, using that .x C 1
K /

3 C .x � 1
K /

3 � 2x3 D 6
K2

x and (3.4), a
localization argument and Gronwall’s inequality, we get (3.13).

Hence, we may deduce a pathwise second order moment estimate:

sup
K

E
�

sup
t�T
.XK

t /
2
� � C2;T ; (3.14)

where C2;T only depends on T. Indeed, we have

XK
t D XK

0 C MK
t C

Z t

0

XK
s .� � � � cXK

s /ds;

where MK is a martingale. Then, there exists C0
T > 0 with

E
�

sup
s�t
.XK

s /
2
� � C0

T

�
E..XK

0 /
2/C sup

s�t
E..XK

s /
2/C E

�
sup
s�t
.MK

s /
2
��
;
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and by Doob’s inequality,

E
�

sup
s�t
.MK

s /
2
� � CE.hMKit/ D CE

�Z t

0

�
2�XK

s C XK
s

K
.�C �C cXK

s /
�
ds

�
:

Finally Gronwall’s Lemma and (3.13) allow to get (3.14). The proof of the tightness
follows as in the proof of Theorem 3.1.

Let us now identify the limit. We consider a limiting value Q. Remark once again
that since the mapping x ! supt�T j�x.t/j is continuous from D.Œ0;T	;R/ into RC,
then Q charges only the continuous paths. For any t > 0 and 
 2 C2

b , we define on
D.Œ0;T	;R/ the function

 1t .x/ D 
.xt/� 
.x0/�
Z t

0

L
.xs/ ds;

where L
.x/ D � x
00.x/C ..� � �/x � cx2/ 
0.x/. Note that j 1t .x/j � CR T
0 .1 C x2s /ds, which implies the uniform integrability of the sequence . 1t .X

K//K
by (3.4).

Let us prove that the process . 1t .X/; t � 0/ is a Q-martingale. That will be true
as soon as EQ.H.X// D 0 for any function H defined as follows:

H.X/ D g1.Xs1/ � � � gk.Xsk/. 
1
t .X/�  1s .X//;

for 0 � s1 � � � � � sk � s < t and g1; � � � ; gk 2 Cb.RC/.
Now, 
.XK

t / is a semimartingale and


.XK
t / D 
.XK

0 /C MK;

t C

Z t

0

LK
.X
K
s /ds;

Moreover jLK
.x/ � L
.x/j � C

K
.1C x2/ and

E.jLK
.X
K
s /� L
.XK

s /j/ � C

K
E.sup

s�T
.1C jXK

s j2//: (3.15)

We denote by  K
t .X/ the similar function as  1t .X/ with L replaced by LK .

The function HK will denote the function similar to H with  1t replaced by  K
t .

We write

EQ.H.X// D EQ.H.X/� HK.X//C �
EQ.HK.X//� E.HK.X

K//
�C E.HK.X

K//:

The third term is zero since . K
t ; t � 0/.Xk/ is a martingale. It’s easy to prove

the convergence to 0 of the first term using (3.15). The second term tends to 0
by continuity and uniform integrability. Hence we have proved that under Q the
limiting process satisfies the following martingale problem: for any 
 2 C2

b, the
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process 
.Xt/ � 
.X0/ � R t
0

L
.Xs/ds is a martingale. We know further that for
any T > 0, E.supt�T.Xt/

2/ < C1. It remains to show that under Q, .Xt/ is the
unique solution of (3.11). Such point is standard and can be found, for example, in
Karatzas-Shreve [45] but we give a quick proof. Applying the martingale problem to

.x/ D x, then 
.x/ D x2, we get that Xt is a square-integrable semimartingale and
that Xt D X0CMt C

R t
0

Xs.����cXs/Xs ds and the martingale part Mt has quadratic
variation

R t
0 2�Xsds. Then a representation theorem is used to conclude. Indeed, let

us increase the probability space and consider an auxiliary space .�0;A0;P0/ and a
Brownian motion W defined on the latter. On � ��0, let us define

Bt.!; !
0/ D

Z t

0

1p
2�Xs.!/

1fXs.!/¤0gdMs.!/C
Z t

0

1fXs.!/D0gdWs.!
0/:

It’s obvious that the processes Bt and B2t � t are continuous martingales on the prod-
uct probability space. Then B is a Brownian motion by the Lévy’s characterization.
In addition, we compute

E

 �
Mt �

Z t

0

p
2�XsdBs

�2!
D E

�Z t

0

1fXs.!/D0gdhMis

�
D 0:

Thus, Mt D R t
0

p
2�XsdBs, which ends the proof. ut

3.3 Selection strategy in random environments

In (3.11), the stochastic term is demographic in the sense that, as seen in the previous
section, it comes from a very high number of births and deaths. Another stochastic
term can be added to the deterministic equation to model a random environment. In
Evans, Hening, and Schreiber [34], the authors consider the population abundance
process .Yt; t � 0/ governed by the stochastic differential equation

dYt D Yt.r � cYt/C �YtdWt ; Y0 > 0; (3.16)

where .Wt/t�0 is a standard Brownian motion.
The growth rate has a stochastic component whose �2 is the infinitesimal

variance. The process is well defined and has an explicit form which can be checked
using Itô’s formula:

Yt D Y0 exp
�
.r � �2

2
/t C �Wt

�
1C Y0

r
c

R t
0

exp
�
.r � �2

2
/s C �Ws

�
ds
:

Then Yt � 0 for all t � 0 almost surely.
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The authors deduce the long time behavior of the process depending on the sign
of r � �2

2
. We refer to [34] for the proof.

Proposition 3.4. 1. If r � �2

2
< 0, then limt!1 Yt D 0 almost surely.

2. If r � �2

2
D 0, then lim inft!1 Yt D 0 almost surely, lim supt!1 Yt D 1 almost

surely and limt!1 1
t

R t
0

Ysds D 0 almost surely.

3. If r � �2

2
> 0, then .Yt/t has a unique stationary distribution which is the law

�. 2r
�2

� 1; �
2

2c / D �.k; �/, with density x �! 1
�.k/� k xk�1e� x

� .

Of course, a challenge is to consider a mixed model with demographic stochasticity
and random environment, consisting in adding the term

p
YtdBt to the r.h.s.

of (3.16). Some work has been developed in this sense in [12] in the case without
interaction c D 0. Modeling branching processes in random environment will be
the aim of Chapter 5.



Chapter 4
Continuous State Branching Processes

In this part, we consider a new class of stochastic differential equations for
monotype populations, taking into account exceptional events where an individual
has a large number of offspring. We generalize the Feller equation (3.12) obtained in
Subsection 3.2 by adding jumps whose rates are proportional to the population size.
The jumps are driven by a Poisson point measure, as already done in Subsection 2.4.
This class of processes satisfies the branching property: the individuals of the
underlying population evolve independently. Combining this property with the tools
developed in the first part, we describe finely the processes, their long time behavior,
and the scaling limits they come from.

4.1 Definition and examples

Definition 4.1. Let r 2 R, � � 0 and � be a �-finite measure on .0;1/ such
that

R1
0

�
h ^ h2

�
�.dh/ is finite. Let N0.ds; dh; du/ be a Poisson point measure on

R
3C with intensity ds�.dh/du and QN0 its compensated measure. Let B be a standard

Brownian motion independent of N0 and Z0 a square-integrable random variable
independent of N0 and B.

The Continuous State Branching process (CSBP) Z with characteristic triplet
.r; �; �/ is the unique non-negative strong solution in D.RC;RC/ of the following
stochastic differential equation

Zt D Z0 C
Z t

0

rZsds C
Z t

0

p
2�ZsdBs C

Z t

0

Z 1

0

Z 1

0

1fu�Zs�gh QN0.ds; dh; du/;

(4.1)

The difficulties in the proof of the existence and uniqueness come from the term
p

Zt

(which is non-Lipschitz for Z close to 0). We refer to Fu and Li [36] for a general
framework on the existence and uniqueness of such equations. In the forthcoming

© Springer International Publishing Switzerland 2015
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Proposition 4.5 and Section 4.5, the Lamperti representation and scaling limits of
discrete branching processes will be proved to actually provide alternative ways to
construct and identify CSBP.

We recall from the previous section that the term
p
2�ZsdBs corresponds to

continuous fluctuations of the population size, with variance proportional to the
number of individuals. The last term describes the jumps of the population size
whose rate at time s is proportional to the size Zs� and the distribution proportional
to the measure �. The jump term appears in the scaling limit when the individuals
reproduction law charges very large numbers (the second moment has to be infinite,
see Section 4.5). The case �.dz/ D cz�.1C˛/dz .˛ 2 .1; 2// plays a particular role
(see below), since the corresponding CSBP is then a stable process. We stress that in
the definition given above the jumps appear only through the compensated Poisson
measure, which uses the integrability assumption on �. Thus, the drift term rZs can
be seen as the sum of the drift term of a Feller diffusion and the drift term due to the
mean effect of the jumps.

4.2 Characterization and properties

Let Z be a CSBP with characteristic triplet .r; �; �/. It’s a Markov process.

Proposition 4.2. The infinitesimal generator of Z is given by: for every f 2
C2

b.RC/,

Af .z/ D rzf 0.z/C �zf 00.z/C
Z 1

0

�
f .z C h/� f .z/ � hf 0.z/

�
z�.dh/:

We refer to the Appendix for complements on the semi-martingale decomposition.
We note from the expression of A that the function z ! z2 doesn’t belong (in
general) to the domain of the generator. But one can prove that C2 functions
with two first derivatives bounded belong to the domain. It can be achieved by
monotone convergence using non-decreasing sequences of functions gn 2 C2

b such
that k g0

n k1 C k g00
n k1 is bounded and there exists C > 0 such that

jAf .z/j � C
�k f 0 k1 C k f 00 k1

�
z

for every z � 0.

Exercise. Prove that Ez.Zt/ D z exp.rt/ for any t; z � 0 and that .exp.�rt/Zt W
t � 0/ is a martingale. What can you say about the long time behavior of Zt? What
is the interpretation of r ?

Hint: One can use the two-dimensional Itô formula.
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We give now the key property satisfied by our class of processes. If necessary, we
denote by Z.z/ a CSBP starting at z.

Proposition 4.3. The process Z satisfies the branching property, i.e.

Z.zCQz/ dD Z.z/ C QZ.Qz/ .z; Qz 2 RC/;

where Z et QZ are independent CSBPs with the same distribution.
Then the Laplace transform of Zt is of the form

Ez

h
exp.��Zt/

i
D expf�zut.�/g; with � � 0;

for some non-negative function ut and any z � 0.

Proof. To simplify the notation, we write Xt D Zt C Z0
t , where Z0 D z, Z0

0 D Qz and
Z and Z0 are two independent CSBP. The process X satisfies a.s. :

Xt D X0 C
Z t

0

rXsds C
Z t

0

p
2�ZsdBs Cp

2�Z0
sdB0

s (4.2)

C
Z t

0

Z 1

0

Z Zs�

0

h QN0.ds; dh; du/C
Z t

0

Z 1

0

Z Z0

s�

0

h QN0
0.ds; dh; du/

where B and B0 are two independent Brownian motions and N0 and N0
0 are two

independent Poisson point measures on R
3C with intensity ds�.dh/du. We introduce

the real valued process B00 defined by

B00
t D

Z t

0

1fXs>0g
p
2�ZsdBs Cp

2�Z0
sdB0

sp
2�Xs

C
Z t

0

1fXsD0gdBs

and note that B00 is a Brownian motion by Lévy Theorem since it is a continuous
local martingale with quadratic variation equal to t. We also define the random point
measure N00

0 on R
3C by

N00
0 .ds; dh; du/ D N0.ds; dh; du/1fu�Zs�g C bN0

0.ds; dh; du/;

where bN0
0 is the random point measure on R

3C given by bN0
0.A�B�Œh1; h2	/ D N0

0.A�
B � Œh1 � Zs�; h2 � Zs�	/: The random measure N00

0 is also a Poisson point measure
with intensity ds�.dh/du since N0 and N0

0 are independent. Adding that (4.2) can be
rewritten as

Xt D X0 C
Z t

0

rXsds C
Z t

0

p
2�XsdB00

s C
Z t

0

Z 1

0

Z Xs�

0

h QN00
0 .ds; dh; du/;

the process X is a CSBP with initial condition z C Qz.
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Furthermore, the branching property ensures that for � > 0,

EzCz0

h
exp.��Zt/

i
D Ez

h
exp.��Zt/

i
Ez0

h
exp.��Zt/

i

which yields the linearity of the Laplace exponent (taking the logarithm). ut
Combining Propositions 4.2 and 4.3, we characterize the finite dimensional distri-
butions of a CSBP.

Corollary 4.4 (Silverstein [61]). Let � > 0. The Laplace exponent ut.�/ is the
unique solution of

@

@t
ut.�/ D � .ut.�//; u0.�/ D �; (4.3)

where  is called the branching mechanism associated with Z and is defined by

 .�/ D �r�C ��2 C
Z 1

0

�
e��h � 1C �h

�
�.dh/: (4.4)

Proof. Applying Propositions 4.2 and 4.3 and defining z ! f�.z/ WD exp.��z/ 2
C2

b.RC/, we get Ptf�.z/ D exp.�zut.�// and

@

@t
Ptf�.1/ D APtf�.1/ D �@ut.�/

@t
exp.�ut.�//:

Thus computing the generator for the function z ! exp.�zut.�// yields the result.
ut

An alternative proof of this result can be given by using Itô’s formula to prove
that .exp.�vT�t.�/Zt/ W t 2 Œ0;T	/ is a martingale if and only if v is the solution
of (4.3). This idea will be extended to the random environment in the next section.

Exercise. 1) Check that for any � > 0 and t > 0, ut.�/ is the unique solution of
the integral equation

Z �

ut.�/

1

 .v/
dv D t:

2) Compute ut.�/ for a Feller diffusion and deduce from it the extinction probability.

4.3 The Lamperti transform

The following result is fundamental for the trajectorial and long time study of
CSBPs, since it allows to see these processes (whose dynamics are multiplicative)
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as the time change of some Lévy processes (which are well-known additive random
processes). We recall that a Lévy process is a càdlàg process with stationary
independent increments.

Proposition 4.5 (Lamperti [52, 53]). Let Y be a Lévy process defined by

Yt WD y0 C rt C �Bt C
Z t

0

Z 1

0

h QN.ds; dh/;

where r 2 R; � � 0, N is a Poisson point measure on R
2C with intensity ds�.dh/, QN

its compensated measure and
R1
0

�
h ^ h2

�
�.dh/ < 1. Writing YC for the process

Y killed when it reaches 0, the equation

Zt D YCR t
0 Zsds

(4.5)

has a unique solution Z for t � 0. This process Z is càdlàg and distributed as the
CSBP with characteristic .r; �; �/ started at y0.

In particular, when �.dz/ D cz�.1C˛/dz (r D 0; � D 0), we recover the stable Lévy
processes. A converse statement is given in the last part of this section. It relies on
the expression Yt D Z�t with �t D inffu W R u

0
ˇ.Zs/ds > tg.

To prove Proposition 4.5, we use the following lemma, which we derive from
Chapter 6 (random time changes) of Ethier & Kurtz [30].

Lemma 4.6. Let X be a càdlàg process from RC to RC and ˇ be a non-negative
continuous function on RC. We define At WD R t

0
1=ˇ.Xu/du and assume that

lim
t!1 At D C1; infft � 0 W At D C1g D infft � 0 W ˇ.Xt/ D 0g a.s:

(i) There exists a unique function � from RC to Œ0; infft � 0 W ˇ.Xt/ D 0g/ which
is solution of the equation A�t D t.
(ii) The process Z defined by Zt WD X�t for t � 0 is the unique solution of Zt D
XR t

0 Zsds for t � 0.

(iii-Martingale problem) If .f .Xt/ � R t
0 g.Xs/ds W t � 0/ is an .FX

t /t martingale,
then .f .Zt/� R t

0
ˇ.Zs/g.Zs/ds W t � 0/ is an .FZ

t /t martingale.

Proof. (i) simply comes from the fact that t ! At is an increasing bijection from
Œ0;T/ to RC, with T WD infft � 0 W ˇ.Xt/ D 0g.

(ii) is deduced from .i/ by noticing that

A�t D t .t � 0/ ” � 0
t D ˇ.Zt/ a.e. ” �t D

Z t

0

ˇ.Zs/ds .t � 0/ : (4.6)

(Take care of the regularity of the processes).
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To prove .iii/, we first check that f�s � tg D fAt � sg 2 FX
t . The optional

sampling theorem ensures that if f .Xt/ � R t
0

g.Xs/ds is an .FX
t /t martingale, then

f .X�t / � R �t

0
g.Xs/ds D f .Zt/ � R t

0
g.Zs/�

0
sds is an .FY

�.t//t martingale. Recalling
from (4.6) that � 0

s D ˇ.X�s/ D ˇ.Zs/ a.e, we get the result. ut
Proof of Proposition 4.5. The existence and uniqueness of the problem (4.5) come
from Lemma 4.6 .i/ and .ii/ with X D YC and ˇ.x/ D x. Indeed, we first note that
E.Y1/ 2 .�1;1/ and the following law of large numbers holds: Yt=t ! E.Y1/
a.s. Then

R1
0
1=YC

s ds D 1 a.s. Let us now check that the first time at which At is
infinite is the first time at which YC reaches 0. The fact that infft � 0 W YC

t D 0g �
infft � 0 W At D 1g is obvious. To get the converse inequality, we denote by T the
non-decreasing limit of the stopping times T� D infft � 0 W Yt � �g for � ! 0 and
prove that YT D 0 on the event fT < 1g (quasi-left continuity). For that purpose,
we use

E

�
f .YT^t/ � f .YT�^t/�

Z T^t

T�^t
Qf .Ys/ds

ˇ̌
FT�^t

�
D 0:

for f 2 C2
b.RC/, where we have denoted by Q the generator of Y:

Qf .y/ WD rf 0.y/C � f 00.y/C
Z 1

0

�
f .y C h/� f .x/ � hf 0.y/

�
�.dh/:

Then

lim
�!0

E.f .YT^t/jFT�^t/ D f .0/;

and using some non-negative function f 2 C2
b.RC/ which coincides with x2 in a

neighborhood of 0, we obtain YT^t D 0 on fT < 1g.
To check that the process given by (4.5) is indeed a CSBP, we use again the

generator Q of Y. Lemma 4.6 .iii/ ensures that for f 2 C2
b.RC/,

f .Zt/�
Z t

0

ZsQf .Zs/ds

is a martingale. It identifies the distribution of the càdlàg Markov process Z via
its generator Af .z/ D zQf .z/. More precisely, the uniqueness of the martingale
problem is required here to ensure the uniqueness of the distribution of the process
and we refer to Ethier & Kurtz [30], Theorem 4.1 in Section 4 for a general
statement. In our particular case, the proof can be made directly using the set
of functions f�.z/ D exp.��z/. Indeed, the independence and stationarity of the
increments of Y ensure the branching property of Z. One can then follow the proof
of Corollary 4.4 to derive Ez.exp.��Zt// from A and identify the finite dimensional
distributions of Z. ut
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4.4 Long time behavior

In this section, the characteristic triplet .r; �; �/ is assumed to be non-identical to 0,
to avoid the degenerate case where Z is a.s. constant.

Proposition 4.7. (i-unstability) With probability one, Zt tends to 0 or to 1 as
t ! 1.

(ii-extinction probability) Denoting by � the largest root of  , we have

Pz. lim
t!1 Zt D 0/ D exp.�z�/ .z � 0/:

In particular, extinction occurs a.s. if and only if r D � 0.0/ � 0.
(iii-absorption probability) P.9t > 0 W Zt D 0/ > 0 if and only if

R1
1=1 .x/

dx < 1:

As an illustration, which is left as an exercise, check that the CSBPs with
characteristics .r; 0; 0/ and .0; 0; x�21Œ0;1	.x/dx/ have positive extinction probability
but null absorption probability. For stable CSBPs (including the Feller diffusion),
extinction and absorption coincide.

Proof. (i) is a consequence of the Lamperti representation given in Proposition 4.5.
Indeed a non-degenerate Lévy process Y either goes to C1, �1 or oscillates
between C1 and �1 and we stress that Y is killed at 0 in the Lamperti
transform. So

�Z 1

0

Zsds D 1
	

�
n
Zt

t!1�! 0
o

[
n
Zt

t!1�! 1
o
:

Adding that

�Z 1

0

Zsds < 1
	

�
�

Zt
t!1�! YR1

0 Zsds and
Z 1

0

Zsds < 1
	

�
n
Zt

t!1�! 0
o

ends up the proof.
Concerning the extinction .ii/, we first use .i/ to write exp.�Zt/ !

1flimt!1 ZtD0g as t ! 1. By the bounded convergence theorem, Ez.exp.�Zt// !
Pz.limt!1 Zt D 0/. Moreover, Ez.exp.�Zt// D exp.�zut.1// by Proposition 4.3.
Noting that the branching mechanism  is convex (and non-trivial), it is positive
for z > � and negative for 0 < z < �. Thus, ut.1/ ! � as t ! 1 and
Pz.limt!1 Zt D 0/ D exp.�z�/.

Let us finally deal with the absorption .iii/. We note that Pz.Zt D 0/ D
lim�!1 exp.�zut.�// D exp.�zut.1// and recall from Proposition 4.4 that

Z �

ut.�/

1

 .u/
du D t:
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If ut.�/ is bounded for � > 0 (with some fixed t), then
R1

1= < 1 (by letting
� ! 1). Conversely the fact that ut.1/ < 1 is bounded for t � 0 forcesR1

1= .x/dx D C1 (by letting � and then t go to 1). ut

4.5 Scaling limits

In this section, we obtain the CSBP as a scaling limit of Galton-Watson processes.
We recall that a Galton-Watson process X with reproduction law � is defined by

XnC1 D
XnX

iD1
Li;n;

where .Li;n W i � 1; n � 0/ are i.i.d random variables with common distribution �.
Let us associate a random walk with this process, denoted by S. It is obtained by

summing the number of offspring of each individual of the Galton-Watson tree as
follows:

S0 WD Z0; SkC1 WD Sk C Lk�AnC1;n � 1

for each k 2 ŒAn;AnC1/ and n � 0; where An WD Pn�1
jD0 Xj. Thus the increments of

the random walk S are distributed as � shifted by �1. This random walk S satisfies
SAnC1

� SAn D PXn
iD1.Li;n � 1/ D XnC1 � Xn, so that

Xn D SAn D SPn�1
iD0 Xi

; (4.7)

which yields the discrete version of the Lamperti time change. It both enlightens
the Lamperti transform in the continuous setting (Proposition 4.5) and allows us to
prove the following scaling limit.

Theorem 4.8. Let XK be a sequence of Galton-Watson processes with reproduction
law �K and ŒKx	 initial individuals. We consider the scaled process

ZK
t D 1

K
XK
ŒvK t	 .t � 0/;

where .vK/K is a sequence tending to infinity. Denoting by SK the random walk
associated with ZK, we assume that

1

K
SK
ŒKvK :	

) Y;

where Y is a Lévy process. Then ZK ) Z, where Z is the CSBP characterized
by (4.5).
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The Feller diffusion case .� D 0) is the only possible limit of Galton-Watson
processes with bounded variance (see [38]). It comes from the convergence of
.SŒK2t	=K W t � 0/ to a Brownian motion under second moment assumption. More
generally, the stable case with drift  .�/ D �r�C c�˛C1 (˛ in .0; 1	) corresponds
to the class of CSBPs which can be obtained by scaling limits of Galton-Watson
processes with a fixed reproduction law (i.e., �K D �).

Several proofs of this theorem can be found. One can use a tightness argument
and identify the limit thanks to the Laplace exponent. Such a proof is in the same
vein as the previous section and we refer to [38] for details. As mentioned above, the
proof can also be achieved using discrete Lamperti transform (4.7) with an argument
of continuity. This argument can be adapted from Theorem 1.5 chapter 6 in Ethier-
Kurtz [30]:

Lemma 4.9. Let Y be a Lévy process killed at 0 and ˇ a continuous function.
Assume that YK ) Y, where YK is a càdlàg process from RC to RC and define
the process ZK as the solution of ZK

t D YKR t
0 ˇ.Z

K
s /ds

. Then ZK ) Z.

4.6 On the general case

What is the whole class of branching processes in the continuous setting? What is
the whole class of scaling limits of Galton-Watson processes? These two classes
actually coincide and extend the class of CSBPs with finite first moment (called
conservative CSBPs) we have considered above.

Theorem 4.10 ([18, 53]). The càdlàg Markov processes Z which take values in
Œ0;1	 and satisfy the branching property are in one to one correspondence with
Lévy processes Y with no negative jumps, through the equation

Zt D YCR t
0 Zs
:

Such a process Z is still characterized by a triplet .r; �; �/, with r 2 R; � 2 RC but
the measure � on RC only satisfies that

Z 1

0

�
1 ^ z2

�
�.dz/ < 1:

More specifically, the Laplace exponent ut of Z, which uniquely determines the
finite dimensional distributions, is the unique solution of

@ut.�/

@t
D � .ut.�//; u0.�/ D �;
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where

 .�/ WD �r�C ��2 C
Z 1

0

.e��h � 1C �h ^ h2/�.dh/:

More generally, the results given above can be extended. Thus, the expression of the
generator A remains valid and Z is given by the following SDE (see Proposition 4
in [18])

Zt D Z0 C
Z t

0

rZsds C
Z t

0

p
2�ZsdBs C

Z t

0

Z 1

0

Z Zs�

0

h QN0.ds; dh; du/

C
Z t

0

Z 1

1

Z Zs�

0

hN0.ds; dh; du/;

where B is a standard Brownian motion, N0.ds; dz; du/ is a Poisson random measure
on R

3C with intensity ds�.dz/du independent of B, and QN0 is the compensated
measure of N0.

We stress that the class of CSBPs obtained now yields the (only possible) scaling
limits of Galton-Watson processes (or more generally discrete space continuous
time branching processes) [18, 52, 53].

A new phenomenon appears in the non-conservative case: the process may
explode in finite time [37].

Proposition 4.11. The CSBP Z blows up with positive probability, which means
that P1.Zt D 1/ > 0 for some t � 0, if and only if

 0.0C/ D �1 and
Z
0

ds

 .s/
> �1:

In this section, we have focused on the size of the population Zt. The scaling limits
actually provide a natural notion of genealogy for the limiting object, see [27]. An
other point of view, using the flow of subordinators which comes by letting the
initial size vary, has been exhibited recently by Bertoin and Le Gall [11]. Finally,
let us mention that several extensions of CBSPs have been considered. In particular,
for CSBPs with immigration, we refer to [36] for the SDEs characterization and to
[17] for the Lamperti transform.



Chapter 5
Feller Diffusion with Random Catastrophes

We deal now with a new family of branching processes taking into account the effect
of the environment on the population dynamics. It may cause random fluctuations
of the growth rate [12, 33] or catastrophes which kill a random fraction of the
population [7].

Here, we are focusing on a Feller diffusion with catastrophes, in order to simplify
the study and fit with the motivations given in Chapter 8. We aim at highlightening
new behaviors due to the random environment and we refer to Subsection 5.4 for
extensions and comments on (more general) CSBPs in random environment.

5.1 Definition and scaling limit

We consider the Feller diffusion (3.12) and add some random catastrophes, whose
rates are given by a function � and whose effect on the population size are
multiplicative and given by some random variable F taking values in Œ0; 1	. This
process Y is defined as the solution of the following SDE:

Yt D y0C
Z t

0
rYsdsC

Z t

0

p
2�YsdBs �

Z t

0

Z 1

0

Z 1

0
1u��.Ys� /

�
1���Ys�

N1.ds; du; d�/

where B and N1 are, respectively, a Brownian motion and a Poisson point measure
on RC � RC � .0; 1	 with intensity ds duP.F 2 d�/, which are independent.

Thus, the random variable F is the intensity of the catastrophes. We assume that
P.F > 0/ D 1 and P.F 2 .0; 1// > 0 to avoid absorption by a single catastrophe.
Similarly, we also assume that

E.log.F// > �1:

© Springer International Publishing Switzerland 2015
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The rate � at which the catastrophes occur may depend on the population size.
We refer to Chapter 8 for motivations for cell division. More generally, the fact
that � is increasing is relevant when the catastrophe is actually a regulation of the
population dynamics. We may think about the effect of a treatment for an infected
population or invasive species or protocols for web treatment of tasks such as
TCP, etc.

Following Section 3.2, the process can be constructed as a scaling limit, which
enlightens the two timescales involved in the dynamics, namely the timescale of
the demography of the population and that of the catastrophes. It is achieved by
considering a linear birth and death process YK

t starting from ŒKy	 individuals. Its
individual birth and death rates are given by � C K� and � C K� . Moreover the
process YK jumps with rate �.n=K/ from n to Œ�n	 where � is chosen randomly
following the distribution F. More precisely

YK
t D ŒKy	C

Z t

0

Z 1

0

�
1u�YK

s�.�CK�/ � 1YK
s�.�CK�/�u�YK

s�.�CK�C�CK�/

�
N0.ds; du/

�
Z t

0

Z 1

0

1u��.YK
s�=K/.Ys� � Œ�Ys�	/N1.ds; du; d�/:

Then .YK
t =K W t � 0/ converges weakly to .Yt W t � 0/ as K ! 1, see [5]

for more details. Taking the integer part of the population size after a catastrophe
is convenient when proving the convergence of the scaling limit via tightness and
limiting martingale problem. Other models in discrete space would yield the same
limiting object. For example, each individual could be killed independently with
probability F when a catastrophe occurs. We also recall from the previous sections
that scaling limits of other processes, such as Galton Watson processes, lead to the
Feller diffusion.

5.2 Long time behavior when catastrophes occur
at a constant rate

In this section, we assume that �.:/ D � is constant and the successive catastrophes
can be represented by a Poisson point process f.Tk;Fk/ W k � 0g on RC � Œ0; 1	 with
intensity �dtdP.F 2 d�/. The long time behavior of Y can be guessed thanks to the
following heuristic :

Yt � Zt:…Tk�tFk

where Z is a Feller diffusion with parameters .r; �/ and all the catastrophes during
the time interval Œ0; t	 have been postponed at the final time. We recall from
Section 4.2 that Zt is equal to ertMt where M is a martingale. We prove in this section
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(see the two forthcoming theorems) that Yt behaves as exp.rt/…Tk�tFk D exp.Kt/

as t goes to infinity, where

Kt WD rt C
X
Tk�t

log Fk D rt C
Z t

0

Z 1

0

log.�/N1.ds; Œ0; �	; d�/;

with N1.ds; Œ0; �	; d�/ a Poisson point measure with intensity �dsP.F 2 d�/ and K
a Lévy process. It turns out that the asymptotic behavior of Feller diffusions with
catastrophes will be inherited from the classification of long time behavior of Lévy
processes. First, we check that

NYt WD exp.�Kt/Yt

is a continuous local martingale, which extends the result of Section 4.2 to random
environment.

Lemma 5.1. The process . NYt W t � 0/ satisfies the SDE

NYt D y0 C
Z t

0

e�Ks=2

q
2� NYsdBs: (5.1)

Proof. Since for every t 2 RC; 0 � Yt � Xt, where Xt is a Feller diffusion, all the
stochastic integrals that we write are well defined. Applying the two-dimensional
Itô’s formula with jumps to F.Kt;Yt/ D NYt, with F.x; y/ D exp.�x/y, we get

NYt Dx0 C
Z t

0

e�Ks

h
rYsds Cp

2�YsdBs

i
�
Z t

0

rYse
�Ks ds

C
Z t

0

Z 1

0

Z 1

0

�
Yse

�Ks � Ys�
e�Ks�

�
1u��N1.ds; du; d�/

Dx0 C
Z t

0

e�Ks
p
2�YsdBs C

Z t

0

Z 1

0

Z 1

0

NYs�

�
�e� log.�/ � 1�1u��N.ds; du; d�/

Dx0 C
Z t

0

e�Ks
p
2�YsdBs:

Then . NYt W t � 0/ satisfies the SDE (5.1). ut
We now state the absorption criterion.

Theorem 5.2. (i) If r � E.log.1=F//� , then P.9t > 0 W Yt D 0/ D 1.
(ii) Otherwise, P.8t � 0 W Yt > 0/ > 0.

For the proof, we first consider the quenched process, conditioned by the environ-
ment FN1 . Indeed the transformation Yt� ! xYt� D Yt preserves the branching
property of the Feller diffusion. The Feller diffusion then undergoes deterministic
catastrophes given by the conditional Poisson point measure N1.



42 5 Feller Diffusion with Random Catastrophes

Lemma 5.3 (Quenched characterization).

(i) Conditionally on FN1 and setting for t0; � � 0 and t 2 Œ0; t0	,

u.t; y/ D exp

 
� �y

��
R t0

t e�Ks ds C 1

!
:

The process .u.t; NYt/ W 0 � t � t0/ is a bounded martingale.
(ii) For all t; �; y0 � 0,

Ey0

�
exp.�� NYt/ j FN1

� D exp

 
� �y0
��
R t
0 e�Ks ds C 1

!
: (5.2)

Exercise. Prove that conditionally on FN1 , Y satisfies the branching property.
One may write a direct proof following Proposition 4.3 or use Lemma 5.3 (ii).

We stress that the non-conditional (annealed) branching property does not
hold. Formally, the quenched process can be defined on the probability space
.�;F ;P/ WD .�e � �d;Fe ˝ Fd;Pe ˝ Pd/ by using a Poisson Point process
N1.w/ D N1.we;wd/ WD N1.we/ for catastrophes and a Brownian motion
Bt.w/ D Bt.we;wd/ WD Bt.wd/ for the demographic stochasticity. Thus, the process
Y conditioned on the environment FN1 D �.Ks/ D �.Fe/ (quenched process) is
given by Y.we; :/ Pe a.s.

Proof. Let us work conditionally on FN1 . Using Itô’s formula for a function u.t; y/
which is differentiable by parts with respect to t and infinitely differentiable with
respect to y, we get

u.t; NYt/ D u.0; y0/C
Z t

0



@u

@s
.s; NYs/C @2u

@y2
.s; NYs/� NYse

�Ks

�
ds

C
Z t

0

@u

@y
.s; NYs/e

�Ks=2

q
2� NYsdBs:

The function u has been chosen to cancel the finite variation part, i.e. it satisfies

@u

@s
.s; y/C @2u

@y2
.s; y/�ye�Ks D 0 .s; y � 0/:

Then the process .u.t; NYt/ W 0 � t � t0/ is a local martingale bounded by 1 and thus
a real martingale and .i/ holds. We deduce that

Ey0

�
u.t0; NYt0 / jFN1

� D u.0; NY0/;

which gives .ii/. ut
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Before proving Theorem 5.2, we deal with the functional of the Lévy process
involved in the extinction.

Lemma 5.4. If r � �E.log.1=F//, then lim inft!1 Kt D �1 and
R1
0

exp.�Ks/ds
D C1 a.s.

Otherwise, limt!1 Kt D C1 and
R1
0

exp.�Ks/ds < C1 a.s.

Proof. If r � �E.log.1=F//, then E.K1/ � 0 and the Lévy process Kt either goes to
�1 or oscillates. In any case, the sequence of stopping times

T0 WD 0; Tk WD infft � Tk�1 C 1 W Kt � 0g < C1

is finite for k � 0. Then,

Z 1

0

exp.�Ks/ds �
X
k�1

Z TkC1

Tk

exp.�Ks/ds

�
X
k�1

Z 1

0

exp.�.KTkCs � KTk //ds DW
X
k�1

Xk;

where Xk are non-negative (non-identically zero) i.i.d. random variables. ThenR1
0 exp.Ks/ds D C1 a.s. Conversely if r > �E.log.1=F//, there exists � > 0

such that E.K1/� � > 0 and Kt � �t goes to C1 a.s. Then

L WD inffKs � �s W s � 0g > �1 a.s.

and
R1
0

exp.�s/ds D C1 yields the result. ut
Proof of Theorem 5.2. Integrating (5.2), we get by bounded convergence that

lim
t!1Ey0 .exp.�� NYt// D Ey0

 
exp

 
� �y0
��
R1
0

exp.�Ks/ds C 1

!!
:

The process . NYt W t � 0/ converges in distribution as t ! C1 to NY1 whose
distribution is specified by the right-hand side of the above limit. Letting � ! C1,
we get by bounded convergence:

Py0 . NY1 D 0/ D Ey0

 
exp

 
� y0
�
R1
0

exp.�Ks/ds

!!
: (5.3)

Recalling from Lemma 5.1 that . NYt W t � 0/ is a non-negative local martingale, we
obtain by Jensen’s inequality that .exp.� NYt/ W t � 0/ is a positive sub-martingale
bounded by 1. We deduce that the convergence towards NY1, which is possibly
infinite, also holds a.s.
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Using Lemma 5.4, we obtain that the probability of the event

flim inf
t!1 Yt D 0g D flim inf

t!1 eKt NYt D 0g

is either one or less than one depending on r � �E.log.1=F// or r > �E.log.1=F//.
Moreover, the absorption probability of the Feller diffusion is positive (see Sec-
tion 4.2) and the Markov property ensures that Y is a.s. absorbed on the event
flim inft!1 Yt D 0g. It ends the proof. ut

Let us note that the a.s. convergence relies here on the fact that .exp.� NYt/ W
t � 0/ is a bounded sub-martingale. This method can be adapted to study the long
time behavior of a conservative CSBP instead of using the Lamperti transform (see
Chapter 4). We describe now the speed at which the absorption occurs. The random
environment makes three asymptotic regimes appear in the subcritical case.

Theorem 5.5 (Growth and speed of extinction, [7]). We assume that E..log F/2/
< 1.

a/ If r < �E.log.1=F// (subcritical case), then

(i) If �E.F log F/C r < 0 (strongly subcritical regime), then there exists c1 > 0

such that for every y0 > 0,

Py0.Yt > 0/ 	 c1y0e
t.rC�ŒE.F/�1	/; as t ! 1:

(ii) If �E.F log F/ C r D 0 (intermediate subcritical regime), then there exists
c2 > 0 such that for every y0 > 0,

Py0 .Yt > 0/ 	 c2y0t
�1=2et.rC�ŒE.F/�1	/; as t ! 1:

(iii) If �E.F log F/ C r > 0 (weakly subcritical regime), then for every y0 > 0,
there exists c3 > 0 such that

Py0.Yt > 0/ 	 c3t
�3=2et.rC�ŒE.F�/�1	/; as t ! 1;

where � is the root of E.F� log F/C r on .0; 1/.

b/ If r D �E.log.1=F// (critical case), then for every y0 > 0, there exists c4 > 0

such that

Py0.Yt > 0/ 	 c4t
�1=2; as t ! 1:

c/ If r > �E.log.1=F// (supercritical case), then there exists a finite r.v. W such that

e�Kt Yt ���!
t!1 W a:s:; fW D 0g D

n
lim

t!1 Yt D 0
o
:
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The asymptotic results a=�b= rely on the study of P.Yt > 0/ D E
�
f
�R t
0

e�ˇKs ds
��

,
for t ! 1, where f has a polynomial decay when x ! 1 and here ˇ D 1.
It is linked to the asymptotic distribution of It D inffKs W s � tg and the different
asymptotics appear for P.It � x/when t ! 1. The proof in [7] uses a discretization
of

R t
0

exp.�ˇKs/ds of the form
Pn

iD0 …i
jD0 Ai and the different regimes are

inherited from local limit theorems for semi-direct products [55].

5.3 Monotone rate of catastrophes

We first deal with increasing rates, which are relevant for the applications on cell
infection developed in the second part.

Proposition 5.6. We assume that � is a non-decreasing function.

(i) If there exists y1 � 0 such that r � E.log.1=F//�.y1/, then

P

�
9t > 0; Yt D 0

�
D 1:

(ii) If r > E.log.1=F// supx�0 �.x/, then P.8t � 0 W Yt > 0/ > 0.

Heuristically, if r � E.log.1=F//�.y1/, as soon as Y � y1, the division rate is
larger than r.y1/ and Theorem 5.2 .i/ ensures that the process is pushed back to y1.
Eventually, it reaches zero by the strong Markov property, since each time it goes
below y1, it has a positive probability to reach 0 before time 1.

The proof can be made rigorous by using a coupling with a Feller diffusion with
catastrophes occurring at constant rate �.y1/. Finally, we note that the case

r > E.log.1=F//�.x/ for every x � 0I r D E.log.1=F// sup
x�0

�.x/

remains open.
Let us now consider the case when � is non-increasing. The asymptotic behavior

now depends on

�� D inf
x�0 �.x/: (5.4)

Proposition 5.7. We assume that r is a non-increasing function.

(i) If r � E.log.1=F//��, then P

�
9t > 0; Yt D 0

�
D 1:

(ii) Else, P.8t > 0; Yt > 0/ > 0.

The proof is easier in that case and we refer to [5] for details.



46 5 Feller Diffusion with Random Catastrophes

5.4 Further comments : CSBPs in random environment

We have studied a particular case of continuous state branching processes in random
environment. It can be extended in several ways. A general construction of Feller
diffusions in random environment has been provided by Kurtz [50]. It relies on the
scaling and time change

Yt D exp.Mt/Z�t ; where �t D
Z t

0

exp.�Ms/Asds;

M is a càdlàg process and Z is a Feller diffusion and A is non-decreasing and
absolutely continuous w.r.t. Lebesgue measure.

In the case where Mt D Kt and At D � t, this construction leads to the Feller
diffusion with catastrophes. When Mt is a Brownian motion and At D � t, we obtain
a Feller diffusion in a Brownian environment. Its asymptotic behavior is close to the
one of Feller diffusion with catastrophes and can be found in [12, 40]. It uses the
explicit expression of the density of some functional of Brownian motion involved
in the Laplace exponent of the process.

The construction of Kurtz has been extended by Borovkov [15] to the case where
A is no more absolutely continuous. The time change can also be generalized to the
stable case but does not hold for general CSBPs in random environment. We refer to
[8] for the quenched construction without second moment assumption, as a scaling
limit, when M has finite variations. Let us mention [7] for the asymptotic study of
CSBPs with catastrophes, which extends the asymptotic results given in Section 5.2.
New asymptotic behaviors appear for the process, which may oscillate in .0;1/ in
the critical regime.

A possible generalization of our results is the combination of Brownian fluctua-
tions of the drift and catastrophes

Yt D y0C
Z t

0

Ys�dMs C
Z t

0

p
2�sYsdBs �

Z t

0

Z
RC�Œ0;1	

1u��.Ys� /

�
1���Ys�

N1.ds; du; d�/;

where dMs D rsds C �edBe
s and N1 is a Poisson Point Process with intensity

ds duP.F 2 d�/ and both are independent of B. Such stochastic differential
equations both integrate small fluctuations and dramatic random events due to the
environment. Finding a general approach to deal with the long time behavior of
CSBPs in random environment is an open and delicate question.



Part II
Structured Populations and

Measure-valued Stochastic Differential
Equations

In this chapter the individuals are characterized by some quantitative traits.
Therefore the population is described by a random point measure with support on
the trait space. We first study the measure-valued process modeling the population
dynamics including competition and mutation events. We give its martingale
properties and determine some scaling limits. Then we consider the particular
case of cell division with parasite infection and the Markov processes indexed by
continuous time Galton-Watson trees.



Chapter 6
Population Point Measure Processes

6.1 Multitype models

In the previous sections, the models that we considered described a homogeneous
population and could be considered as toy models. A first generalization consists
in considering multitype population dynamics. The demographic rates of a sub-
population depend on its own type. The ecological parameters are functions of the
different types of the individuals competiting with each other. Indeed, we assume
that the type has an influence on the reproduction or survival abilities, but also on
the access to resources. Some subpopulations can be more adapted than others to
the environment.

For simplicity, the examples that we consider now deal with only two types
of individuals. Let us consider two sub-populations characterized by two different
types 1 and 2. For i D 1; 2, the growth rates of these populations are r1 and r2.
Individuals compete for resources either inside the same species (intra-specific
competition) or with individuals of the other species (inter-specific competition).
As before, let K be the scaling parameter describing the capacity of the environment.
The competition pressure exerted by an individual of type 1 on an individual of type

1 (resp. type 2) is given by
c11
K

(resp.
c21
K

). The competition pressure exerted by an

individual of type 2 is, respectively, given by
c12
K

and
c22
K

. The parameters cij are

assumed to be positive.
By similar arguments as in Subsection 3.1, the large K-approximation of the

population dynamics is described by the well-known competitive Lotka-Volterra
dynamical system. Let x1.t/ (resp. x2.t/) be the limiting renormalized type 1
population size (resp. type 2 population size). We get

�
x0
1.t/ D x1.t/ .r1 � c11 x1.t/ � c12 x2.t//I

x0
2.t/ D x2.t/ .r2 � c21 x1.t/ � c22 x2.t//:

(6.1)
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This system has been extensively studied and its long time behavior is well known.
There are 4 possible equilibria: the unstable equilibrium .0; 0/ and three stable ones:
. r1

c11
; 0/, .0; r2

c22
/ and a non-trivial equilibrium .x�

1 ; x
�
2 / given by

x�
1 D r1c22 � r2c12

c11c22 � c12c21
I x�

2 D r2c11 � r1c21
c11c22 � c12c21

:

Of course, the latter is possible if the two coordinates are positive. The (unique)
solution of (6.1) converges to one of the stable equilibria, describing either the
fixation of one species or the co-existence of both species. The choice of the limit
depends on the signs of the quantities r2c11 � r1c21 and r1c22 � r2c12 which,
respectively, quantify the invasion ability of the subpopulation 2 (resp. 1) in a type
1 (resp. type 2) monomorphic resident population.

One could extend (6.1) to negative coefficients cij, describing a cooperation effect
of species j on the growth of species i. The long time behavior can be totally
different. For example, the prey–predator models have been extensively studied in
ecology (see [39], Part 1). The simplest prey–predator system

�
x0
1.t/ D x1.t/ .r1 � c12 x2.t//I

x0
2.t/ D x2.t/ .c21 x1.t/� r2/;

(6.2)

with r1; r2; c12; c21 > 0, has periodic solutions.
Stochastic models have also been developed, based on this two type-population

model. Following the previous sections, a first point of view consists in generalizing
the logistic Feller stochastic differential equation to this two-dimensional frame-
work. The stochastic logistic Lotka-Volterra process is then defined by

�
dX1.t/ D X1.t/ .r1 � c11 X1.t/ � c12 X2.t// dt Cp

�1X1.t/dB1t I
dX2.t/ D X2.t/ .r2 � c21 X1.t/ � c22 X2.t// dt Cp

�2X2.t/dB2t ;

where the Brownian motions B1 and B2 are independent and give rise to the
demographic stochasticity (see Cattiaux-Méléard [20]). Another point of view
consists in taking account the environmental stochasticity (see Evans, Hening,
Schreiber [34]).

Of course, we could also study multi-dimensional systems corresponding to
multi-type population models. In what follows we are more interested in modeling
the case where the types of the individuals belong to a continuum. That will allow us
to add mutation events where the offspring of an individual may randomly mutate
and create a new type.
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6.2 Continuum of types and measure-valued processes

Even if the evolution appears as a global change in the state of a population, its
basic mechanisms, mutation and selection, operate at the level of individuals. Con-
sequently, we model the evolving population as a stochastic system of interacting
individuals, where each individual is characterized by a vector of phenotypic trait
values. The trait space X is assumed to be a closed subset of Rd, for some d � 1.

We will denote by MF.X / the set of all finite non-negative measures on X . Let
M be the subset of MF.X / consisting of all finite point measures:

M D
(

nX
iD1

ıxi ; n � 0; x1; : : : ; xn 2 X
)
:

Here and below, ıx denotes the Dirac mass at x. For any � 2 MF.X / and any
measurable function f on X , we set h�; f i D R

X fd�.
We wish to study the stochastic process .Yt; t � 0/, taking its values in M, and

describing the distribution of individuals and traits at time t. We define

Yt D
NtX

iD1
ıXi

t
; (6.3)

Nt D hYt; 1i 2 N standing for the number of individuals alive at time t, and
X1t ; : : : ;X

Nt
t describing the individuals’ traits (in X ).

We assume that the birth rate of an individual with trait x is b.x/ and that for a
population � D PN

iD1 ıxi , its death rate is given by d.x;C
�.x// D d.x;
PN

iD1 C.x�
xi//. This death rate takes into account the intrinsic death rate of the individual;
it does not depend not only on its phenotypic trait x but also on the competition
pressure exerted by the other individuals alive, modeled by the competition kernel C.
Let p.x/ and m.x; z/dz be, respectively, the probability that an offspring produced by
an individual with trait x carries a mutated trait and the law of this mutant trait.

Thus, the population dynamics can be roughly summarized as follows. The initial
population is characterized by a (possibly random) counting measure �0 2 M
at time 0, and any individual with trait x at time t has two independent random
exponentially distributed “clocks”: a birth clock with parameter b.x/, and a death
clock with parameter d.x;C 
 Yt.x//. If the death clock of an individual rings, this
individual dies and disappears. If the birth clock of an individual with trait x rings,
this individual produces an offspring. With probability 1� p.x/ the offspring carries
the same trait x; with probability p.x/ the trait is mutated. If a mutation occurs, the
mutated offspring instantly acquires a new trait z, picked randomly according to the
mutation step measure m.x; z/dz. When one of these events occurs, all individuals’
clocks are reset to 0.
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We are looking for a M-valued Markov process .Yt/t�0 with infinitesimal
generator L, defined for all real bounded functions 
 and � 2 M by

L
.�/ D
NX

iD1
b.xi/.1 � p.xi//.
.� C ıxi/� 
.�//

C
NX

iD1
b.xi/p.xi/

Z
X
.
.� C ız/� 
.�//m.xi; z/dz

C
NX

iD1
d.xi;C 
 �.xi//.
.� � ıxi/� 
.�//: (6.4)

The first term in (6.4) captures the effect of births without mutation, the second
term the effect of births with mutation, and the last term the effect of deaths. The
density-dependence makes the third term nonlinear.

6.3 Path construction of the process

Let us justify the existence of a Markov process admitting L as infinitesimal gen-
erator. The explicit construction of .Yt/t�0 also yields two side benefits: providing
a rigorous and efficient algorithm for numerical simulations (given hereafter) and
establishing a general method that will be used to derive some large population
limits (Chapter 7).

We make the biologically natural assumption that the trait dependency of birth
parameters is “bounded,” and at most linear for the death rates. Specifically, we
assume

Assumption 6.1. There exist constants Nb, Nd, NC, and ˛ and a probability density
function Nm on R

d such that for each � D PN
iD1 ıxi and for x; z 2 X , � 2 R,

b.x/ � Nb; d.x; �/ � Nd.1C j�j/;
C.x/ � NC;

m.x; z/ � ˛ Nm.z � x/:

These assumptions ensure that there exists a constant OC, such that for a population
measure � D PN

iD1 ıxi , the total event rate, obtained as the sum of all event rates, is
bounded by OCN.1C N/.

Let us now give a pathwise description of the population process .Yt/t�0.
We introduce the following notation.
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Notation 1. Let N� D Nnf0g. Let H D .H1; : : : ;Hk; : : :/ W M 7! .Rd/N
�

be
defined by H

�Pn
iD1 ıxi

� D .x�.1/; : : : ; x�.n/; 0; : : : ; 0; : : :/, where � is a permutation
such that x�.1/ 2 : : : 2 x�.n/, for some arbitrary order 2 on R

d (for example, the
lexicographic order).

This function H allows us to overcome the following (purely notational) problem.
Choosing a trait uniformly among all traits in a population � 2 M consists in
choosing i uniformly in f1; : : : ; h�; 1ig, and then in choosing the individual number
i (from the arbitrary order point of view). The trait value of such an individual is
thus Hi.�/.

We now introduce the probabilistic objects we will need.

Definition 6.1. Let .�;F ;P/ be a (sufficiently large) probability space. On this
space, we consider the following four independent random elements:

(i) a M-valued random variable Y0 (the initial distribution),
(ii) Poisson point measures N1.ds; di; d�/, and N3.ds; di; d�/ on RC � N

� � R
C,

with the same intensity measure ds
�P

k�1 ık.di/
�

d� (the “clonal” birth and
the death Poisson measures),

(iii) a Poisson point measure N2.ds; di; dz; d�/ on RC�N
� �X �R

C, with intensity
measure ds

�P
k�1 ık.di/

�
dzd� (the mutation Poisson point measure).

Let us denote by .Ft/t�0 the canonical filtration generated by these processes.

We finally define the population process in terms of these stochastic objects.

Definition 6.2. Assume .H/. A .Ft/t�0-adapted stochastic process Y D .Yt/t�0 is
called a population process if a.s., for all t � 0,

Yt D Y0 C
Z
Œ0;t	�N��RC

ıHi.Ys�/1fi�hYs�;1ig 1f��b.Hi.Ys�//.1�p.Hi.Ys�///gN1.ds; di; d�/

C
Z
Œ0;t	�N��X�RC

ız1fi�hYs�;1ig 1f��b.Hi.Ys�//p.Hi.Ys�//m.Hi.Ys�/;z/gN2.ds; di; dz; d�/

�
Z
Œ0;t	�N��RC

ıHi.Ys�/1fi�hYs�;1ig1f��d.Hi.Ys�/;C�Ys�.Hi.Ys�///gN3.ds; di; d�/

(6.5)

Let us now show that if Y solves (6.5), then Y follows the Markovian dynamics we
are interested in.

Proposition 6.3. Assume Assumption 6.1 holds and consider a solution .Yt/t�0
of (6.5) such that E.supt�ThYt; 1i2/ < C1; 8T > 0. Then .Yt/t�0 is a Markov
process. Its infinitesimal generator L is defined by (6.4). In particular, the law of
.Yt/t�0 does not depend on the chosen order 2.
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Proof. The fact that .Yt/t�0 is a Markov process is classical. Let us now consider a

measurable bounded function 
. With our notation, Y0 D PhY0;1i
iD1 ıHi.Y0/. A simple

computation, using the fact that a.s., 
.Yt/ D 
.Y0/CP
s�t.
.Ys� C .Ys � Ys�//�


.Ys�//, shows that


.Yt/ D 
.Y0/C
Z
Œ0;t	�N��RC

�

.Ys� C ıHi.Ys�// � 
.Ys�/

�
1fi�hYs�;1ig

1f��b.Hi.Ys�//.1�p.Hi.Ys�///gN1.ds; di; d�/

C
Z
Œ0;t	�N��X�RC

.
.Ys� C ız/ � 
.Ys�// 1fi�hYs�;1ig

1f��b.Hi.Ys�//p.Hi.Ys�//m.Hi.Ys�/;z/gN2.ds; di; dz; d�/

C
Z
Œ0;t	�N��RC

�

.Ys� � ıHi.Ys�//� 
.Ys�/

�
1fi�hYs�;1ig

1f��d.Hi.Ys�/;C�Ys�.Hi.Ys�///gN3.ds; di; d�/:

Taking expectations, we obtain

E.
.Yt// D E.
.Y0//

C
Z t

0

E

� hYs;1iX
iD1

� �

.Ys C ıHi.Ys//� 
.Ys/

�
b.Hi.Ys//.1 � p.Hi.Ys///

C
Z
X
.
.Ys C ız/ � 
.Ys// b.Hi.Ys//p.H

i.Ys//m.Hi.Ys/; z/dz

C �

.Ys � ıHi.Ys// � 
.Ys/

�
d.Hi.Ys/;C 
 Ys.H

i.Ys///

	�
ds

Differentiating this expression at t D 0 leads to (6.4). ut
Let us show the existence and some moment properties for the population process.

Theorem 6.4. (i) Assume Assumption 6.1 holds and that E .hY0; 1i/ < 1. Then
the process .Yt/t�0 defined in Definition 6.2 is well defined on RC.

(ii) If furthermore for some p � 1, E .hY0; 1ip/ < 1, then for any T < 1,

E. sup
t2Œ0;T	

hYt; 1ip/ < C1: (6.6)

Proof. We first prove (ii). Consider the process .Yt/t�0. We introduce for each n
the stopping time �n D inf ft � 0; hYt; 1i � ng. Then a simple computation using
Assumption 6.1 shows that, dropping the non-positive death terms,
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sup
s2Œ0;t^�n	

hYs; 1ip � hY0; 1ip

C
Z
Œ0;t^�n	�N��RC

..hYs�; 1i C 1/p � hYs�; 1ip/ 1fi�hYs�;1ig

1f��b.Hi.Ys�//.1�p.Hi.Ys�///gN1.ds; di; d�/

C
Z
Œ0;t^�n	�N��X�RC

..hYs�; 1i C 1/p � hYs�; 1ip/ 1fi�hYs�;1ig

1f��b.Hi.Ys�//p.Hi.Ys�//m.Hi.Ys�/;z/gN2.ds; di; dz; d�/:

Using the inequality .1C x/p � xp � Cp.1C xp�1/ and taking expectations, we thus
obtain, the value of Cp changing from one line to the other,

E. sup
s2Œ0;t^�n	

hYs; 1ip/ � Cp

�
1C E

�Z t^�n

0

Nb .hYs�; 1i C hYs�; 1ip/ ds

��

� Cp

�
1C E

�Z t

0

.1C hYs^�n ; 1ip/ ds

��
:

The Gronwall Lemma allows us to conclude that for any T < 1, there exists a
constant Cp;T , not depending on n, such that

E. sup
t2Œ0;T^�n 	

hYt; 1ip/ � Cp;T : (6.7)

First, we deduce that �n tends a.s. to infinity. Indeed, if not, one may find
T0 < 1 such that �T0 D P .supn �n < T0/ > 0. This would imply that
E
�
supt2Œ0;T0^�n	

hYt; 1ip� � �T0n
p for all n, which contradicts (6.7). We may let

n go to infinity in (6.7) thanks to the Fatou Lemma. This leads to (6.6).
Point (i) is a consequence of point (ii). Indeed, one builds the solution .Yt/t�0

step by step. One only has to check that the sequence of jump instants Tn goes a.s.
to infinity as n tends to infinity. But this follows from (6.6) with p D 1. ut

6.4 Examples and simulations

Let us remark that Assumption 6.1 is satisfied in the case where

d.x;C 
 �.x// D d.x/C ˛.x/
Z
X

C.x � y/�.dy/; (6.8)

and b, d, and ˛ are bounded functions.
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In the case where moreover, p � 1, this individual-based model can also be
interpreted as a model of “spatially structured population,” where the trait is viewed
as a spatial location and the mutation at each birth event is viewed as dispersal.
This kind of models has been introduced by Bolker and Pacala [13, 14] and Law
et al. [54], and mathematically studied by Fournier and Méléard [35]. The case
C � 1 corresponds to a density-dependence in the total population size.

Later, we will consider the particular set of parameters, taken from Kisdi [49]
and corresponding to a model of asymmetric competition:

X D Œ0; 4	; d.x/ D 0; ˛.x/ D 1; p.x/ D p;

b.x/ D 4 � x; C.x � y/ D 2

K

�
1 � 1

1C 1:2 exp.�4.x � y//

�
(6.9)

and m.x; z/dz is a Gaussian law with mean x and variance �2 conditioned to stay in
Œ0; 4	. As we will see in Chapter 7, the constant K scaling the strength of competition
also scales the population size (when the initial population size is proportional to K).
In this model, the trait x can be interpreted as body size. Equation (6.9) means that
body size influences the birth rate negatively, and creates asymmetrical competition
reflected in the sigmoid shape of C (being larger is competitively advantageous).

Let us give now an algorithmic construction of the population process (in the
general case), giving the size Nt of the population and the trait vector Xt of all
individuals alive at time t.

At time t D 0, the initial population Y0 contains N0 individuals and the corre-
sponding trait vector is X0 D .Xi

0/1�i�N0 . We introduce the following sequences of
independent random variables, which will drive the algorithm.

• The type of birth or death events will be selected according to the values of a
sequence of random variables .Wk/k2N� with uniform law on Œ0; 1	.

• The times at which events may be realized will be described using a sequence of
random variables .�k/k2N with exponential law with parameter OC.

• The mutation steps will be driven by a sequence of random variables .Zk/k2N
with law Nm.z/dz.

We set T0 D 0 and construct the process inductively for k � 1 as follows.
At step k � 1, the number of individuals is Nk�1, and the trait vector of these

individuals is XTk�1 .

Let Tk D Tk�1 C �k

Nk�1.Nk�1 C 1/
. Notice that

�k

Nk�1.Nk�1 C 1/
represents the

time between jumps for Nk�1 individuals, and OC.Nk�1 C 1/ gives an upper bound of
the total rate of events affecting each individual.

At time Tk, one chooses an individual ik D i uniformly at random among the
Nk�1 alive in the time interval ŒTk�1;Tk/; its trait is Xi

Tk�1
. (If Nk�1 D 0, then Yt D 0

for all t � Tk�1.)
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• If 0 � Wk � d.Xi
Tk�1

;
PIk�1

jD1 C.Xi
Tk�1

� Xj
Tk�1

//

OC.Nk�1 C 1/
D Wi

1.XTk�1 /, then the chosen

individual dies, and Nk D Nk�1 � 1.
• If Wi

1.XTk�1 / < Wk � Wi
2.XTk�1 /, where

Wi
2.XTk�1 / D Wi

1.XTk�1 /C Œ1 � p.Xi
Tk�1

/	b.Xi
Tk�1

/

OC.Nk�1 C 1/
;

then the chosen individual gives birth to an offspring with trait Xi
Tk�1

, and Nk D
Nk�1 C 1.

• If Wi
2.XTk�1 / < Wk � Wi

3.XTk�1 ;Zk/, where

Wi
3.XTk�1 ;Zk/ D Wi

2.XTk�1 / C p.Xi
Tk�1

/b.Xi
Tk�1

/m.Xi
Tk�1

;Xi
Tk�1

C Zk/

OC Nm.Zk/.Nk�1 C 1/
;

then the chosen individual gives birth to a mutant offspring with trait Xi
Tk�1

C Zk,
and Nk D Nk�1 C 1.

• If Wk > Wi
3.XTk�1 ;Zk/, nothing happens, and Nk D Nk�1.

Then, at any time t � 0, the number of individuals and the population process are
defined by

Nt D
X
k�0

1fTk�t<TkC1gNk; Yt D
X
k�0

1fTk�t<TkC1g
NkX

iD1
ıXi

Tk
:

The simulation of Kisdi’s example (6.9) can be carried out following this algorithm.
We can show a very wide variety of qualitative behaviors depending on the value of
the parameters � , p and K.

In the following figures (cf. Champagnat-Ferrière-Méléard [21]), the upper part
gives the distribution of the traits in the population at any time, using a grey scale
code for the number of individuals holding a given trait. The lower part of the
simulation represents the dynamics of the total population size Nt.

These simulations will serve to illustrate the different mathematical scalings
described in Chapter 7. In Fig. 6.1 (a)–( c), we see the qualitative and quantitative
effects of increasing scalings K, from a finite trait support process for small K to a
wide population density for large K. The simulations of Fig. 6.2 involve birth and
death processes with large rates (see Section 7.2) given by

b.x/ D K� C b.x/ and d.x; �/ D K� C d.x/C ˛.x/�

and small mutation step �K . There is a noticeable qualitative difference between
Fig. 6.2 (a) where � D 1=2, and Fig. 6.2 (b) where � D 1. In the latter, we observe
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Fig. 6.1 Numerical simulations of trait distributions (upper panels, darker means higher fre-
quency) and population size (lower panels). The initial population is monomorphic with trait
value 1:2 and contains K individuals. (a–c) Effect of increasing the system size (measured by
the parameter K).
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Fig. 6.2 Numerical simulations of trait distributions (upper panels, darker means higher fre-
quency) and population size (lower panels) for accelerated birth and death and concurrently
increased parameter K. The parameter � (between 0 and 1) relates the acceleration of demographic
turnover to the increase of system size K. (a) Case � D 0:5. (b) Case � D 1. The initial population
is monomorphic with trait value 1:2 and contains K individuals.

strong fluctuations in the population size and a finely branched structure of the
evolutionary pattern, revealing a new form of stochasticity in the large population
approximation.

6.5 Martingale Properties

We give some martingale properties of the process .Yt/t�0, which are the key point
of our approach.

Theorem 6.5. Suppose Assumption 6.1 holds and that for some p � 2,
E .hY0; 1ip/ < 1.

(i) For all measurable functions 
 from M into R such that for some constant C,
for all � 2 M, j
.�/j C jL
.�/j � C.1C h�; 1ip/, the process


.Yt/� 
.Y0/ �
Z t

0

L
.Ys/ds (6.10)

is a càdlàg .Ft/t�0-martingale starting from 0.
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(ii) Point (i) applies to any function 
.�/ D h�; f iq, with 0 � q � p � 1 and with
f bounded and measurable on X .

(iii) For such a function f , the process

Mf
t D hYt; f i � hY0; f i �

Z t

0

Z
X

��
.1 � p.x//b.x/� d.x;C 
 Ys.x//

�
f .x/

C p.x/b.x/
Z
X

f .z/m.x; z/dz

	
Ys.dx/ds (6.11)

is a càdlàg square-integrable martingale starting from 0 with quadratic
variation

hMf it D
Z t

0

Z
X

��
.1 � p.x//b.x/� d.x;C 
 Ys.x//

�
f 2.x/

C p.x/b.x/
Z
X

f 2.z/m.x; z/dz

	
Ys.dx/ds: (6.12)

Proof. The proof follows the proof of Theorem 2.8. First of all, note that point (i) is
immediate thanks to Proposition 6.3 and (6.6). Point (ii) follows from a straightfor-

ward computation using (6.4). To prove (iii), we first assume that E
�
hY0; 1i3

�
< 1.

We apply (i) with 
.�/ D h�; f i. This gives us that Mf is a martingale. To compute
its bracket, we first apply (i) with 
.�/ D h�; f i2 and obtain that

hYt; f i2 � hY0; f i2 �
Z t

0

Z
X

��
.1 � p.x//b.x/.f 2.x/C 2f .x/ hYs; f i/

C d.x;C 
 Ys.x//.f
2.x/� 2f .x/ hYs; f i/

�

C p.x/b.x/
Z
X
.f 2.z/C 2f .z/ hYs; f i/m.x; z/dz

	
Ys.dx/ds (6.13)

is a martingale. On the other hand, we apply the Itô formula to compute hYt; f i2
from (6.11). We deduce that

hYt; f i2 � hY0; f i2 �
Z t

0

2 hYs; f i
Z
X

��
.1 � p.x//b.x/� d.x;C 
 Ys.x//

�
f .x/

C p.x/b.x/
Z
X

f .z/m.x; z/dz

	
Ys.dx/ds � hMf it (6.14)

is a martingale. Comparing (6.13) and (6.14) leads to (6.12). The extension to the

case where only E
�
hY0; 1i2

�
< 1 is straightforward by a localization argument,

since also in this case, E.hMf it/ < 1 thanks to (6.6) with p D 2. ut



Chapter 7
Scaling limits for the individual-based process

As in Chapter 2, we consider the case where the system size becomes very large.
We scale this size by the integer K and look for approximations of the conveniently
renormalized measure-valued population process, when K tends to infinity.

For any K, let the set of parameters CK , bK , dK , mK , pK satisfy Assumption 6.1.
Let YK

t be the counting measure of the population at time t. We define the measure-
valued Markov process .XK

t /t�0 by

XK
t D 1

K
YK

t :

As the system size K goes to infinity, we need to assume the

Assumption 7.1. The parameters CK, bK, dK, mK, and pK are continuous, � 7!
d.x; �/ is Lipschitz continuous for any x 2 X and

CK.x/ D C.x/

K
:

A biological interpretation of this renormalization is that larger systems are made
up of smaller individuals, which may be a consequence of a fixed amount of
available resources to be partitioned among individuals. Indeed, the biomass of
each interacting individual scales like 1=K, and the interaction effect of the global
population on a focal individual is of order 1. The parameter K may also be
interpreted as scaling the amount of resources available, so that the renormalization
of CK reflects the decrease of competition for resources.

The generator QLK of .YK
t /t�0 is given by (6.4), with parameters CK , bK , dK , mK ,

pK . The generator LK of .XK
t /t�0 is obtained by writing, for any measurable function


 from MF.X / into R and any � 2 MF.X /,

LK
.�/ D @tE�.
.X
K
t //tD0 D @tEK�.
.Y

K
t =K//tD0 D QLK
K.K�/

© Springer International Publishing Switzerland 2015
V. Bansaye, S. Méléard, Stochastic Models for Structured Populations, Mathematical
Biosciences Institute Lecture Series 1.4, DOI 10.1007/978-3-319-21711-6_7

61



62 7 Scaling limits for the individual-based process

where 
K.�/ D 
.�=K/. Then we get

LK
.�/ D K
Z
X

bK.x/.1 � pK.x//.
.� C 1

K
ıx/� 
.�//�.dx/

C K
Z
X

Z
X

bK.x/pK.x/.
.� C 1

K
ız/� 
.�//mK.x; z/dz�.dx/

C K
Z
X

dK.x;C 
 �.x//.
.� � 1

K
ıx/� 
.�//�.dx/: (7.1)

By a similar proof as that carried out in Section 6.5, we may summarize the moment
and martingale properties of XK .

Proposition 7.1. Assume that for some p � 2, E.hXK
0 ; 1ip/ < C1.

(1) For any T > 0, E
�

supt2Œ0;T	hXK
t ; 1ip

�
< C1.

(2) For any bounded and measurable function 
 on MF such that j
.�/j C
jLK
.�/j � C.1 C h�; 1ip/, the process 
.XK

t / � 
.XK
0 / � R t

0
LK
.XK

s /ds
is a càdlàg martingale.

(3) For each measurable bounded function f , the process

MK;f
t D hXK

t ; f i � hXK
0 ; f i

�
Z t

0

Z
X
.bK.x/ � dK.x;C 
 XK

s .x///f .x/X
K
s .dx/ds

�
Z t

0

Z
X

pK.x/bK.x/

�Z
X

f .z/mK.x; z/dz � f .x/

�
XK

s .dx/ds

is a square-integrable martingale with quadratic variation

hMK;f it D 1

K

� Z t

0

Z
X

pK.x/bK.x/

�Z
X

f 2.z/mK.x; z/dz � f 2.x/

�
XK

s .dx/ds

C
Z t

0

Z
X
.bK.x/C dK.x;C 
 XK

s .x///f
2.x/XK

s .dx/ds

	
: (7.2)

The search of tractable limits for the semimartingales hXK; f i yields different
choices of scalings for the parameters. In particular, we obtain a deterministic or
stochastic approximation, depending on the quadratic variation of the martingale
term given in (7.2).
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7.1 Large-population limit

We assume here that bK D b, dK D d, pK D p, mK D m. We also assume that X
is a compact subset of Rd and we endow the measure space MF.X / with the weak
topology.

Theorem 7.2. Assume Assumptions 6.1 and 7.1 hold. Assume moreover that
supK E.hXK

0 ; 1i3/ < C1 and that the initial conditions XK
0 converge in law and for

the weak topology on MF.X / as K increases, to a finite deterministic measure �0.
Then for any T > 0, the process .XK

t /t�0 converges in law, in the Skorohod
space D.Œ0;T	;MF.X //, as K goes to infinity, to the unique deterministic continuous
function � 2 C.Œ0;T	;MF.X // satisfying for any bounded f W X ! R

h�t; f i D h�0; f i C
Z t

0

Z
X

f .x/Œ.1 � p.x//b.x/� d..x;C 
 �s.x//	�s.dx/ds

C
Z t

0

Z
X

p.x/b.x/

�Z
X

f .z/m.x; z/dz

�
�s.dx/ds (7.3)

The proof of Theorem 7.2 is left to the reader. It can be adapted from the proofs of
Theorem 7.4 and 7.6 below, or obtained as a generalization of Theorem 3.1. This
result is illustrated by the simulations of Figs. 6.1 (a)–(c).

Main Examples:

(1) A density case.

Proposition 7.3. Suppose that �0 is absolutely continuous with respect to
Lebesgue measure. Then for all t � 0, �t is absolutely continuous with respect
to Lebesgue measure and �t.dx/ D �t.x/dx, where �t.x/ is the solution of the
functional equation

@t�t.x/ D Œ.1 � p.x//b.x/� d.x;C 
 �t.x//	 �t.x/

C
Z
Rd

m.y; x/p.y/b.y/�t.y/dy (7.4)

for all x 2 X and t � 0.

Some people refer to �t.:/ as the population number density.

Proof. Consider a Borel set A of Rd with Lebesgue measure zero. A simple
computation allows us to obtain, for all t � 0,

h�t; 1Ai � h�0; 1Ai/C Nb
Z t

0

Z
X

1A.x/�s.dx/ds

C Nb
Z t

0

Z
X

Z
X

1A.z/m.x; z/dz�s.dx/ds:
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By assumption, the first term on the RHS is zero. The third term is also zero,
since for any x 2 X ,

R
X 1A.z/m.x; z/dz D 0. Using Gronwall’s Lemma, we

conclude that h�t; 1Ai D 0 and then, the measure �t.dx/ is absolutely continuous
w.r.t. Lebesgue measure. One can easily prove from (7.3) that the density
function �t.:/ is solution of the functional equation (7.4). ut

(2) The mean field case. The case of structured populations with d.x;C 
 �.x// D
d C˛C
�.x/ with constant rates b, d, ˛ is meaningful, and has been developed
in a spatial context where the kernel C describes the resources available (see,
for example, [49]). In this context, (7.3) leads to the following equation on the
total mass nt D h�t; 1i:

@tnt D .b � d/nt � ˛
Z
X�X

C.x � y/�t.dx/�t.dy/: (7.5)

This equation is not closed in .nt/t and presents an unresolved hierarchy of
nonlinearities. In the very particular case of uniform competition where C �
1 (usually called “mean-field case”), there is a “decorrelative” effect and we
recover the classical mean-field logistic equation of population growth:

@tnt D .b � d/nt � ˛n2t :

(3) Monomorphic and dimorphic cases with no mutation. We assume here that
the mutation probability is p D 0. Without mutation, the trait space is fixed at
time 0.

(a) Monomorphic case: All the individuals have the same trait x. Thus, we can
write XK

0 D nK
0 .x/ıx, and then XK

t D nK
t .x/ıx for any time t. In this case,

Theorem 7.2 recasts into nK
t .x/ ! nt.x/ with �t D nt.x/ıx, and (7.3) reads

d

dt
nt.x/ D nt.x/

�
b.x/ � d.x;C.0/nt.x//

�
; (7.6)

When d.x;C 
 �.x// D d C ˛C 
 �.x/, we recognize the logistic equa-
tion (3.9).

(b) Dimorphic case: The population consists in two subpopulations of individ-
uals with traits x and y, i.e. XK

0 D nK
0 .x/ıx C nK

0 .y/ıy and when K tends to
infinity, the limit of XK

t is given by �t D nt.x/ıx C nt.y/ıy satisfying (7.3),
which recasts into the following system of coupled ordinary differential
equations:

d

dt
nt.x/Dnt.x/

�
b.x/�d.x;C.0/nt.x/CC.x�y/nt.y//

�
d

dt
nt.y/Dnt.y/

�
b.y/�d.y;C.0/nt.y/CC.y�x/nt.x//

�
:

(7.7)

When d.x;C 
 �.x// D d C ˛ C 
 �.x/, we obtain the competitive Lotka-Volterra
system (6.1).
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7.2 Large-population limit with accelerated births
and deaths

We consider here an alternative limit of large population, combined with accelerated
birth and death. This may be useful to investigate the qualitative differences of
evolutionary dynamics across populations with allometric demographies (larger
populations made up of smaller individuals who reproduce and die faster, See
[19, 22]).

Here, we assume that X D R
d. Let us denote by MF the space MF.R

d/.
It will be endowed with the weak topology (the test functions are continuous
and bounded). We will also consider the vague topology (the test functions are
compactly supported). We assume that the dominant terms of the birth and death
rates are proportional to K� while preserving the demographic balance. That is, the
birth and death rates satisfy

Assumption 7.2.

bK.x/ D K��.x/C b.x/; dK.x; �/ D K��.x/C d.x; �/:

The allometric effect (smaller individuals reproduce and die faster) is parametrized
by a positive and bounded function r and by a real number � 2 .0; 1	. A detailed
discussion of the biological meaning of these parameters in terms of allometry
and life-history can be found in [21]. Observe that � is a parameter scaling the
speed of acceleration of the birth and death rates when K ! 1 (births and deaths
occur faster for larger �) and that the individual growth rate bK � dK stays bounded
from above. In other words, the timescale of population growth is assumed to be
slower than the timescale of individuals’ births and deaths. As in Section 7.1, the
interaction kernel C is renormalized by K. Using similar arguments as in Section 7.1,
the process XK D 1

K YK is now a Markov process with generator

LK
.�/ D K
Z
Rd
.K��.x/C b.x//.1 � pK.x//.
.� C 1

K
ıx/� 
.�//�.dx/

C K
Z
Rd
.K��.x/C b.x//pK.x/

Z
Rd
.
.� C 1

K
ız/

� 
.�//mK.x; z/dz�.dx/C K
Z
Rd
.K��.x/

C d.x;C 
 �.x///.
.� � 1

K
ıx/� 
.�//�.dx/:

As before, for any measurable functions 
 on MF such that j
.�/j C jLK
.�/j �
C.1C h�; 1i3/, the process


.XK
t /� 
.XK

0 /�
Z t

0

LK
.XK
s /ds (7.8)
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is a martingale. In particular, for each measurable bounded function f , we obtain

MK;f
t D hXK

t ; f i � hXK
0 ; f i

�
Z t

0

Z
Rd
.b.x/� d.x;C 
 XK

s .x///f .x/X
K
s .dx/ds (7.9)

�
Z t

0

Z
Rd

pK.x/.K
��.x/C b.x//

�Z
Rd

f .z/mK.x; z/dz � f .x/

�
XK

s .dx/ds

is a square-integrable martingale with quadratic variation

hMK;f it D 1

K

� Z t

0

Z
Rd
.2K��.x/C b.x/C d.x;C 
 XK

s .x///f
2.x/XK

s .dx/ds

C
Z t

0

Z
Rd

pK.x/.K
��.x/C b.x//

�Z
Rd

f 2.z/mK.x; z/dz � f 2.x/

�
XK

s .dx/ds

	
:

(7.10)

In what follows, the variance of the mutation distribution mK is of order 1=K�. That
will ensure that the deterministic part in (7.9) converges. In the large-population
renormalization (Section 7.1), the quadratic variation of the martingale part was of
order 1=K. Here, it is of order K� � 1=K. This quadratic variation will thus stay
finite provided that � 2 .0; 1	, in which case tractable limits will result. Moreover,
this limit will be zero if � < 1 and nonzero if � D 1, which will lead to deterministic
or random limit models, as stated in the two following theorems.

We assume here that the mutation rate is fixed, so that mutation events appear
more often as a consequence of accelerated births. We assume

Assumption 7.3. (1) pK D p.
(2) The mutation step density mK.x; z/ is the density of a random variable with

mean x, variance–covariance matrix †.x/=K� (where †.x/ D .†ij.x//1�i;j�d)
and with third moment of order 1=K�C" uniformly in x (" > 0). (Thus, as K goes
to infinity, mutant traits become more concentrated around their progenitors).

(3)
p
† denotes the symmetric square root matrix of † and the function

p
†� p is

Lipschitz continuous.

The main example is when the mutation density is the vector density of independent
Gaussian variables with mean x and variance �2.x/=K�:

mK.x; z/ D
�

K�

2��2.x/

�d=2

exp
��K�jz � xj2=2�2.x/� (7.11)

where �2.x/ is positive and bounded over Rd.
Then the convergence results of this section can be stated as follows.
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Theorem 7.4. (1) Assume that Assumptions 6.1–7.3 hold and that 0 < � < 1.
Assume also that the initial conditions XK

0 converge in law and for the weak
topology on MF as K increases, to a finite deterministic measure �0 and that

sup
K

E.hXK
0 ; 1i3/ < C1: (7.12)

Then, for each T > 0, the sequence of processes .XK/ belonging to
D.Œ0;T	;MF/ converges (in law) to the unique deterministic function .�t/t�0 2
C.Œ0;T	;MF/ satisfying: for each function f 2 C2

b.R
d/,

h�t; f i D h�0; f i C
Z t

0

Z
Rd
.b.x/� d.x;C 
 �s.x///f .x/�s.dx/ds

C
Z t

0

Z
Rd

1

2
p.x/�.x/

X
1�i;j�d

†ij.x/@
2
ijf .x/�s.dx/ds; (7.13)

where @2ijf denotes the second-order partial derivative of f with respect to xi and
xj (x D .x1; : : : ; xd/).

(2) Assume moreover that there exists c > 0 such that �.x/p.x/s�†.x/s � cjjsjj2
for any x and s in R

d. Then for each t > 0, the measure �t has a density with
respect to Lebesgue measure.

Observe that the limit (7.13) is independent of � 2 .0; 1/. As will appear in the
proof, this comes from the fact that the growth rate bK � dK is independent of �
and that the mutation kernel mK.x; z/ compensates exactly the dispersion in the trait
space induced by the acceleration of the births with mutations.

Remark 7.5. In case (2), Eq. (7.13) may be written as

@t�t.x/ D �
b.x/� d.x;C 
 �t.x//

�
�t.x/C 1

2

X
1�i;j�d

@2ij.� p†ij�t/.x/: (7.14)

Observe that for the example (7.11), this equation writes

@t�t.x/ D �
b.x/� d.x;C 
 �t.x//

�
�t.x/C 1

2
�.�2� p �t/.x/: (7.15)

Therefore, Eq. (7.15) generalizes the Fisher reaction-diffusion equation known from
classical population genetics (see, e.g., [16]).

Theorem 7.6. Assume that Assumptions 6.1–7.3 hold and that � D 1. Assume also
that the initial conditions XK

0 converge in law and for the weak topology on MF as
K increases, to a finite (possibly random) measure X0, and that supK E.hXK

0 ; 1i3/ <
C1:
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Then, for each T > 0, the sequence of processes .XK/ converges in law in
D.Œ0;T	;MF/ to the unique (in law) continuous superprocess X 2 C.Œ0;T	;MF/,
defined by the following conditions:

sup
t2Œ0;T	

E
�hXt; 1i3

�
< 1; (7.16)

and for any f 2 C2
b.R

d/,

NMf
t D hXt; f i � hX0; f i � 1

2

Z t

0

Z
Rd

p.x/�.x/
X

1�i;j�d

†ij.x/@
2
ijf .x/Xs.dx/ds

�
Z t

0

Z
Rd

f .x/ .b.x/� d.x;C 
 Xs.x///Xs.dx/ds (7.17)

is a continuous martingale with quadratic variation

h NMf it D 2

Z t

0

Z
Rd
�.x/f 2.x/Xs.dx/ds: (7.18)

Remark 7.7. (1) The limiting measure-valued process X appears as a general-
ization of the one proposed by Etheridge [29] to model spatially structured
populations.

(2) The equations characterizing the above process X can be formally rewritten as

@tXt.x/ D
�

b.x/� d.x;C 
 Xt.x//

�
Xt.x/C 1

2

X
1�i;j�d

@2ij.� p†ijXt/.x/C PMt

where PMt is a random fluctuation term, which reflects the demographic stochas-
ticity of this fast birth and death process, that is, faster than the accelerated
birth and death process which led to the deterministic reaction-diffusion
approximation (7.15).

(3) As developed in Step 1 of the proof of Theorem 7.6 below, a Girsanov’s theorem
relates the law of Xt and the one of a standard super-Brownian motion, which
leads us to conjecture that a density for Xt exists only when d D 1, as for super-
Brownian motion.

These two theorems are illustrated by the simulations of Figs. 6.2 (a) and (b).

Proof of Theorem 7.4.(1) We divide the proof in six steps. Let us fix T > 0.

Step 1 Let us first show the uniqueness of a solution of the equation (7.13).
To this aim, we define the mild equation associated with (7.13). It is easy to
prove that if � is a solution of (7.13) satisfying supt2Œ0;T	h�t; 1i < 1, then for

each test function  t.x/ D  .t; x/ 2 C1;2
b .RC � R

d/, one has
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h�t;  ti D h�0;  0i C
Z t

0

Z
Rd
.b.x/� d.x;C 
 �s.x/// .s; x/�s.dx/ds

C
Z t

0

Z
Rd
.@s .s; x/C 1

2
�.x/p.x/

X
i;j

†ij.x/@
2
ij s.x//�s.dx/ds:

(7.19)

Now, since the function
p
†� p is Lipschitz continuous, we may define the

transition semigroup .Pt/ with infinitesimal generator f 7! � p

2

X
i;j

†ij@
2
ijf .

Then, for each function f 2 C2
b.R

d/ and fixed t > 0, choosing  .s; x/ D
Pt�sf .x/ yields

h�t; f i D h�0;Ptf iC
Z t

0

Z
Rd
.b.x/�d.x;C
�s.x///Pt�sf .x/�s.dx/ds; (7.20)

since @s .s; x/C 1
2
�.x/p.x/

P
i;j†ij.x/@2ij s.x/ D 0 for this choice.

We now prove the uniqueness of a solution of (7.20).
Let us consider two solutions .�t/t�0 and . N�t/t�0 of (7.20) satisfying
supt2Œ0;T	

˝
�t C N�t; 1

˛ D AT < C1. We consider the variation norm defined
for �1 and �2 in MF by

jj�1 � �2jj D sup
f 2L1.Rd/; jjf jj1�1

j h�1 � �2; f i j: (7.21)

Then, we consider some bounded and measurable function f defined on X
such that jjf jj1 � 1 and obtain

j ˝�t � N�t; f
˛ j �

Z t

0

ˇ̌̌
ˇ
Z
Rd
Œ�s.dx/� N�s.dx/	 .b.x/� d.x;C 
 �s.x///Pt�sf .x/

ˇ̌̌
ˇ ds

C
Z t

0

ˇ̌
ˇ̌Z

Rd

N�s.dx/.d.x;C 
 �s.x//� d.x;C 
 N�s.x///Pt�sf .x/

ˇ̌
ˇ̌ ds:

(7.22)

Since jjf jj1 � 1, then jjPt�sf jj1 � 1 and for all x 2 R
d,

j.b.x/� d.x;C 
 �s.x///Pt�sf .x/j � Nb C Nd.1C NCAT/:

Moreover, d is Lipschitz continuous in its second variable with Lipschitz
constant Kd. Thus we obtain from (7.22) that

j ˝�t � N�t; f
˛ j � �Nb C Nd.1C NCAT/C KdAT NC

Z t

0

jj�s � N�sjjds: (7.23)
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Taking the supremum over all functions f such that jjf jj1 � 1, and using
Gronwall’s Lemma, we finally deduce that for all t � T, jj�t � N�tjj D 0.
Uniqueness holds.

Step 2 Next, we would like to obtain some moment estimates. First, we check
that for any T > 0,

sup
K

sup
t2Œ0;T	

E
�hXK

t ; 1i3
�
< 1: (7.24)

To this end, we use (7.8) with 
.�/ D h�; 1i3. (To be completely rigorous,
one should first use 
.�/ D h�; 1i3 ^ A and let A tend to infinity). Taking
expectation, we obtain that for all t � 0, all K,

E
�hXK

t ; 1i3
� D E

�hXK
0 ; 1i3

�

C
Z t

0

E

�Z
Rd

�
ŒK�C1�.x/C Kb.x/	

�
ŒhXK

s ; 1i C 1

K
	3 � hXK

s ; 1i3
	

˚
K�C1�.x/C Kd.x;C 
 XK

s .x//
� �
ŒhXK

s ; 1i � 1

K
	3

�hXK
s ; 1i3

	 �
XK

s .dx/

�
ds:

Dropping the non-positive death term involving d, we get

E.hXK
t ; 1i3/ � C

Z t

0

E

�Z
Rd

�
K�C1�.x/

�
ŒhXK

s ; 1i C 1

K
	3

C ŒhXK
s ; 1i � 1

K
	3 � 2hXK

s ; 1i3
	

C Kb.x/

�
ŒhXK

s ; 1i C 1

K
	3 � hXK

s ; 1i3
	 �

XK
s .dx/

�
ds:

But for all x � 0, all � 2 .0; 1	, .x C �/3 � x3 � 6�.1C x2/ and j.x C �/3 C
.x � �/3 � 2x3j D 6�2x. We finally obtain

E
�hXK

t ; 1i3
� � E

�hXK
0 ; 1i3

�C C
Z t

0

E
�hXK

s ; 1i C hXK
s ; 1i2 C hXK

s ; 1i3
�

ds:

Assumption (7.12) and Gronwall’s Lemma allow us to conclude that (7.24)
holds.
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Next, we wish to check that

sup
K

E
�

sup
t2Œ0;T	

hXK
t ; 1i2

�
< 1: (7.25)

Applying (7.9) with f � 1, we obtain

hXK
t ; 1i D hXK

0 ; 1i C
Z t

0

Z
X

�
b.x/� d.x;C 
 XK

s .x//
�

XK
s .dx/ds C MK;1

t :

Hence

sup
s2Œ0;t	

hXK
s ; 1i2 � C

�
hXK

0 ; 1i2 C Nb
Z t

0

hXK
s ; 1i2ds C sup

s2Œ0;t	
jMK;1

s j2
�
:

Thanks to (7.12), the Doob inequality and Gronwall’s Lemma, there exists a
constant Ct not depending on K such that

E
�

sup
s2Œ0;t	

hXK
s ; 1i2

� � Ct
�
1C E

�hMK;1it
��
:

Using now (7.10), we obtain, for some other constant Ct not depending on K,

E
�hMK;1it

� � C
Z t

0

�
E
�hXK

s ; 1i C hXK
s ; 1i2

� �
ds � Ct

thanks to (7.24). This concludes the proof of (7.25).

Step 3 We first endow MF with the vague topology, the extension to the
weak topology being handled in Step 6 below. To show the tightness of the
sequence of laws QK D L.XK/ in P.D.Œ0;T	; .MF ; v///, it suffices, following
Roelly [59], to show that for any continuous bounded function f on R

d, the
sequence of laws of the processes hXK; f i is tight in D.Œ0;T	;R/. To this end,
we use the Aldous criterion [1] and the Rebolledo criterion (see [43]). We
have to show that

sup
K

E
�

sup
t2Œ0;T	

jhXK
t ; f ij� < 1; (7.26)

and the Aldous condition, respectively, for the predictable quadratic variation
of the martingale part and for the drift part of the semimartingales hXK; f i.
Since f is bounded, (7.26) is a consequence of (7.25): let us thus consider a
couple .S; S0/ of stopping times satisfying a.s. 0 � S � S0 � S C ı � T.
Using (7.10) and (7.25), we get for constants C;C0

E
�hMK;f iS0 � hMK;f iS

� � CE

 Z SCı

S

�hXK
s ; 1i C hXK

s ; 1i2
�

ds

!
� C0ı:
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In a similar way, the expectation of the finite variation part of hXK
S0 ; f i�hXK

S ; f i
is bounded by C0ı.
Hence, the sequence .QK D L.XK// is tight in P.D.Œ0;T	; .MF ; v///.

Step 4 We want to get a convergence result with MF endowed with the weak
topology. To this aim, as in [44] Lemmas 4.2 and 4.3, we use a sequence of
functions which will help to control the measures outside the compact sets.

Lemma 7.8. There exists a sequence of C2
b.R/-functions .fn/n , even and non-

decreasing on RC, with f0 D 1 and such that

fn D 0 on Œ�.n � 1/I n � 1	 I fn D 1 on Œ�nI n	c

and satisfying

lim
n!1 lim sup

K!1
E

�
sup
t�T

hXK
t ; fni

�
D 0: (7.27)

We refer to [44] for the proof of Lemma 7.8.

Step 5 Let us now denote by Q the weak limit in P.D.Œ0;T	; .MF; v/// of
a subsequence of .QK/ which we also denote by .QK/. Let X D .Xt/t�0 a
process with law Q. We remark that by construction, almost surely,

sup
t2Œ0;T	

sup
f 2L1.Rd/;jjf jj1�1

jhXK
t ; f i � hXK

t� ; f ij � 1=K:

Since, for each f in a countable measure-determining set of continuous and
compactly supported functions on R, the mapping � 7! supt�T jh�t; f i �
h�t�; f ij is continuous on D.Œ0;T	; .MF ; v//, one deduces that Q only charges
the continuous processes from Œ0;T	 into .MF; v/. Let us now endow MF

with the weak convergence topology and check that Q only charges the
continuous processes from Œ0;T	 into .MF;w/, and that the sequence .QK/

in P.D.Œ0;T	; .MF ;w// converges weakly to Q. For this purpose, we need
to control the behavior of the total mass of the measures. We employ
the sequence .fn/ of smooth functions introduced in Lemma 7.8 which
approximate the functions 1fjxj�ng. For each n 2 N, the continuous and

compactly supported functions .fn;l
defD fn.1� fl//l2N increase to fn, as l ! 1.

Continuity of the mapping � 7! supt�Th�t; fn;li on D.Œ0;T	; .MF; v// and its
uniform integrability deduced from (7.25) imply the bound

E

�
sup
t�T

hXt; fn;li
�

D lim
K!1E

�
sup
t�T

hXK
t ; fn;li

�
� lim inf

K!1 E

�
sup
t�T

hXK
t ; fni

�
:
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Taking the limit, l ! 1, in the left-hand side, in view of the monotone
convergence theorem and respectively, (7.25) and Lemma 7.8, one concludes
that for n D 0,

E

�
sup
t�T

hXt; 1i
�

D E

�
sup
t�T

hXt; f0i
�
< C1 (7.28)

and for general n,

lim
n!1E

�
sup
t�T

hXt; fni
�

D 0: (7.29)

As a consequence one may extract a subsequence of the sequence
.supt�ThXt; fni/n that converges a.s. to 0 under Q, and the set .Xt/t�T is
tight Q-a.s. Since Q only charges the continuous processes from Œ0;T	 into
.MF; v/, one deduces that Q also only charges the continuous processes from
Œ0;T	 into .MF;w/.
According to Méléard and Roelly [56], to prove that the sequence .QK/
converges weakly to Q inP.D.Œ0;T	; .MF ;w//, it is sufficient to check that the

processes .hXK; 1i D .hXK
t ; 1i/t�T/K converge in law to hX; 1i defD .hXt; 1i/t�T

in D.Œ0;T	;R/. For a Lipschitz continuous and bounded function F from
D.Œ0;T	;R/ to R, we have

lim sup
K!1

jE.F.h�K; 1i/ � F.hX; 1i/j � lim sup
n!1

lim sup
K!1

jE.F.hXK ; 1i/ � F.hXK ; 1 � fni//j

C lim sup
n!1

lim sup
K!1

jE.F.hXK; 1 � fni/ � F.hX; 1 � fni//j

C lim sup
n!1

jE.F.hX; 1 � fni/ � F.hX; 1i//j:

Since jF.hX; 1� fni/ � F.X; 1i/j � C supt�ThXt; fni, Lemma 7.8 and (7.29),
respectively, imply that the first and the third terms in the r.h.s. are equal to 0.
The second term is 0 in view of the continuity of the mapping � 7! h�; 1� fni
in D.Œ0;T	; .MF ;w//.

Step 6 The time T > 0 is fixed. Let us now check that almost surely, the
process X is the unique solution of (7.13). Thanks to (7.28), it satisfies
supt2Œ0;T	hXt; 1i < C1 a.s., for each T. We fix now a function f 2 C3

b.R
d/

(the extension of (7.13) to any function f in C2
b is not hard) and some t � T.

For � 2 C.Œ0;T	;MF/, denote

‰1
t .�/ D h�t; f i � h�0; f i �

Z t

0

Z
Rd
.b.x/� d.x;C 
 �s.x///f .x/�s.dx/ds;
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‰2
t .�/ D �

Z t

0

Z
Rd

1

2
p.x/�.x/

X
i;j

†ij.x/@
2
ijf .x/�s.dx/ds: (7.30)

Our aim is to show that

E
�j‰1

t .X/C‰2
t .X/j

� D 0; (7.31)

implying that X is solution of (7.19).
By (7.9), we know that for each K,

MK;f
t D ‰1

t .X
K/C‰2;K

t .XK/;

where

‰2;K
t .XK/ D �

Z t

0

Z
Rd

p.x/.K��.x/C b.x//

�
�Z

Rd
f .z/mK.x; z/dz � f .x/

�
XK

s .dx/ds: (7.32)

Moreover, (7.25) implies that for each K,

E

�
jMK;f

t j2
�

D E
�hMK;f it

� � Cf K�

K
E

�Z t

0

˚hXK
s ; 1i C hXK

s ; 1i2
�

ds

�

� Cf ;T K�

K
; (7.33)

which goes to 0 as K tends to infinity, since 0 < � < 1. Therefore,

lim
K

E.j‰1
t .X

K/C‰2;K
t .XK/j/ D 0:

Since X is a.s. strongly continuous (for the weak topology) and since f 2
C3

b.R
d/ and thanks to the continuity of the parameters, the functions ‰1

t and
‰2

t are a.s. continuous at X. Furthermore, for any � 2 D.Œ0;T	;MF/,

j‰1
t .�/C‰2

t .�/j � Cf ;T sup
s2Œ0;T	

�
1C h�s; 1i2

�
: (7.34)

Hence using (7.24), we see that the sequence .‰1
t .X

K/ C ‰2
t .X

K//K is
uniformly integrable, and thus

lim
K

E
�j‰1

t .X
K/C‰2

t .X
K/j� D E

�j‰1
t .X/C‰2

t .X/j
�
: (7.35)
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We have now to deal with ‰2;K
t .XK/�‰2

t .X
K/. The convergence of this term

is due to the fact that the measure mK.x; z/dz has mean x, variance †.x/=K�,
and third moment bounded by C=K�C" (" > 0) uniformly in x. Indeed, if
Hf .x/ denotes the Hessian matrix of f at x,

Z
Rd

f .z/mK.x; z/dz

D
Z
Rd

�
f .x/C .z � x/ � rf .x/

C 1

2
.z � x/�Hf .x/.z � x/C O..z � x/3/

�
mK.x; z/dz

D f .x/C 1

2

X
i;j

†ij.x/

K�
@2ijf .x/C o.

1

K�
/: (7.36)

where K�o. 1K� / tends to 0 uniformly in x (since f is in C3
b), as K tends to

infinity. Then,

‰2;K
t .XK/ D �

Z t

0

Z
Rd

p.x/.K��.x/C b.x//�

�
�
1

2

X
i;j

†ij.x/

K�
@2ijf .x/C o.

1

K�
/

�
XK

s .dx/ds;

and

j‰2;K
t .XK/�‰2

t .X
K/j � Cf

�
sup
s�T

< XK
s ; 1 >

�� 1

K�
C K�o.

1

K�
/

�
:

Using (7.25), we conclude the proof of (7.31) and Theorem 7.4 (1).
Let us now prove the point (2). The non-degeneracy property �.x/p.x/s�
†.x/s � cksk2 > 0 for each x; s 2 R

d implies that for each time t > 0,
the transition semigroup Pt.x; dy/ introduced in Step 1 of this proof has for
each x a density function pt.x; y/ with respect to Lebesgue measure. Then if
we come back to the mild equation (7.20), we can write

Z
Rd

f .x/�t.dx/ D
Z
Rd

�Z
Rd

f .y/pt.x; y/dy

�
�0.dx/

C
Z t

0

Z
Rd
.b.x/� d.x;C 
 �s.x///

�Z
Rd

f .y/pt�s.x; y/dy

�
�s.dx/ds:
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Using the fact that the parameters are bounded, that supt�Th�t; 1i < C1 and
that f is bounded, we can apply Fubini’s theorem and deduce that

Z
Rd

f .x/�t.dx/ D
Z
Rd

Ht.y/f .y/dy

with H 2 L1.Œ0;T	;L1.Rd//. We deduce that �t has a density with respect to
Lebesgue measure for each time t � T.
Equation (7.14) is then the dual form of (7.13). ut

Proof of Theorem 7.6. We use a similar method as the one of the previous theorem.
Steps 2, 3, 4, and 5 of this proof can be achieved exactly in the same way. Therefore,
we only have to prove the uniqueness (in law) of the solution to the martingale
problem (7.16)–(7.18) (Step 1), and that any accumulation point of the sequence of
laws of XK is solution to (7.16)–(7.18) (Step 6).

Step 1 This uniqueness result is well known for the super-Brownian process
(defined by a similar martingale problem, but with b D d D 0, � D p D 1

and † D Id, cf. [59]). Following [29], we may use the version of Dawson’s
Girsanov transform obtained in Evans and Perkins [31] (Theorem 2.3), to deduce
the uniqueness in our situation, provided the condition

E

�Z t

0

Z
Rd
Œb.x/ � d.x;C 
 Xs.x//	

2Xs.dx/ds

�
< C1

holds. This is easily obtained from (7.16) since the coefficients are bounded.

Step 6 Let us now identify the limit. Let us call QK D L.XK/ and denote by Q
a limiting value of the tight sequence QK , and by X D .Xt/t�0 a process with
law Q. Because of Step 5, X belongs a.s. to C.Œ0;T	; .MF ;w//. We want to show
that X satisfies the conditions (7.16), (7.17), and (7.18). First note that (7.16) is
straightforward from (7.25). Then, we show that for any function f in C3

b.R
d/,

the process NMf
t defined by (7.17) is a martingale (the extension to every function

in C2
b is easy). We consider 0 � s1 � : : : � sn < s < t, some continuous

bounded maps 
1; : : : 
n on MF, and our aim is to prove that, if the function ‰
from D.Œ0;T	;MF/ into R is defined by

‰.�/ D 
1.�s1/ : : : 
n.�sn/
n
h�t; f i � h�s; f i

�
Z t

s

Z
Rd

�
1

2
p.x/�.x/

X
i;j

†ij@
2
ijf .x/

C f .x/ Œb.x/ � d.x;C 
 �u.x//	

�
�u.dx/du

o
; (7.37)

then
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E .j‰.X/j/ D 0: (7.38)

It follows from (7.9) that

0 D E

�

1.X

K
s1 / : : : 
n.X

K
sn
/
n
MK;f

t � MK;f
s

o�
D E

�
‰.XK/

� � AK ; (7.39)

where AK is defined by

AK D E

�

1.X

K
s1/ : : : 
n.X

K
sn
/

Z t

s

Z
Rd

p.x/
n
b.x/

hZ
Rd
.f .z/� f .x//mK.x; z/dz

i

C�.x/K
hZ

Rd
.f .z/ � f .x/ �

X
i;j

†ij.x/

2K
@2ijf .x//mK.x; z/dz

io
XK

u .dx/du
�
:

Using (7.36), we see that AK tends to zero as K grows to infinity and using (7.25),
that the sequence .j‰.XK/j/K is uniformly integrable, so

lim
K

E
�j‰.XK/j� D E .j‰.X/j/ : (7.40)

Collecting the previous results allows us to conclude that (7.38) holds, and thus
NMf is a martingale.

We finally have to show that the bracket of NMf is given by (7.18). To this end, we
first check that

NNf
t D hXt; f i2 � hX0; f i2 �

Z t

0

Z
Rd
2�.x/f 2.x/Xs.dx/ds

� 2

Z t

0

hXs; f i
Z
Rd

f .x/ Œb.x/� d.x;C 
 Xs.x//	Xs.dx/ds

�
Z t

0

hXs; f i
Z
Rd

p.x/�.x/
X

i;j

†ij.x/@
2
ijf .x/Xs.dx/ds (7.41)

is a martingale. This can be done exactly as for NMf
t , using the semimartingale

decomposition of hXK
t ; f i2, given by (7.8) with 
.�/ D h�; f i2. On the other

hand, Itô’s formula implies that

hXt; f i2 � hX0; f i2 � h NMf it �
Z t

0

hXs; f i
Z
Rd
�.x/p.x/

X
i;j

†ij.x/@
2
ijf .x/Xs.dx/ds

� 2
Z t

0

hXs; f i
Z
Rd

f .x/
�
b.x/� d.x;C 
 Xs.x//


Xs.dx/ds

is a martingale. Comparing this formula with (7.41), we obtain (7.18). ut



Chapter 8
Splitting Feller Diffusion for Cell Division with
Parasite Infection

We now deal with a continuous time model for dividing cells which are infected by
parasites. We assume that parasites proliferate in the cells and that their lifetimes
are much shorter than the cell lifetimes. The quantity of parasites .Xt W t � 0/ in a
cell is modeled by a Feller diffusion (see Chapter 3 and Definition 4.1). The cells
divide in continuous time at rate �.x/ which may depend on the quantity of parasites
x that they contain. When a cell divides, a random fraction F of the parasites goes
in the first daughter cell and a fraction .1 � F/ in the second one. More generally,
splitting Feller diffusion may model the quantity of some biological content which
grows (without resource limitation) in the cells and is shared randomly when the
cells divide (for example, proteins, nutriments, energy or extrachromosomal rDNA
circles in yeast).

Let us give some details about the biological motivations. The modeling of
parasites sharing is inspired by experiments conducted in Tamara’s Laboratory
where bacteria E-Coli have been infected with bacteriophages. These experiments
show that a heavily infected cell often shares in a heavily infected cell and a lightly
infected cell. Thus we are interested in taking into account unequal parasite splitting
and we do not make restrictive (symmetry) assumptions about the distribution of
F. We aim at quantifying the role of asymmetry in the infection. Without loss of
generality, we assume that F is distributed as 1 � F and we say that the sharing is
asymmetric when its distribution is not closely concentrated around 1=2.

This splitting diffusion is a “branching within branching” process, in the same
vein as the multilevel model for plasmids considered by Kimmel [48]. In the latter
model, the cells divide in continuous time at a constant rate and the number of
parasites is a discrete quantity which is fixed at the birth of the cell: the parasites
reproduce ‘only when the cells divide.’ Moreover the parasites sharing is symmetric.

© Springer International Publishing Switzerland 2015
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Let us describe briefly our process and we refer to Subsection 7.1 for a precise
construction and definition. We denote by I WD [n�0f1; 2gn the usual labeling of a
binary tree and by n.di/ the counting measure on I. We define Vt � I as the set of
cells alive at time t and Nt the number of cells alive at time t: Nt D #Vt. For i 2 Vt,
we denote by Xi

t 2 RC the quantity of parasites in the cell i at time t.
The population of cells at time t including their parasite loads is modeled by the

random point measure on RC:

Zt.dx/ D
X
i2Vt

ıXi
t
.dx/; (8.1)

and the dynamics of Z is described as follows.

1. A cell with load x of parasites divides into two daughters at rate �.x/, where for
some p � 1 and any x � 0, �.x/ � N�.1C xp/.

2. During the division, the parasites are shared between the two daughters: Fx
parasites in one cell (chosen at random) and .1 � F/x.

3. Between two divisions, the quantity of parasites in a cell follows a Feller diffu-
sion process (see (3.12)), with diffusion coefficient

p
2�x and drift coefficient

rx, r and � being two real numbers, � > 0.

Let us give a pathwise representation of the Markov process .Zt; t � 0/. Let
.Bi; i 2 I/ be a family of independent Brownian motions (BMs) and let
N.ds; du; di; d�/ be a Poisson point measure (PPM) on RC � RC � I � Œ0; 1	

with intensity q.ds; dv; di; d�/ D ds dv n.di/P.F 2 d�/ independent of the BMs.
We denote by .Ft W t � 0/ the canonical filtration associated with the BMs and the
PPM. Then, for every .t; x/ 7! f .t; x/ 2 C1;2

b .RC � RC;R/ (the space of bounded
functions of class C1 in t and C2 in x with bounded derivatives),

hZt; f i D f .0; x0/C
Z t

0

Z
RC

�
@sf .s; x/C rx@xf .s; x/C �x@2xxf .s; x/

�
Zs.dx/ ds

C Mf
t C

Z t

0

Z
RC�I�Œ0;1	

1i2Vs� ; u��.Xi
s� /

�
f .s; �Xi

s�

/

C f .s; .1 � �/Xi
s�

/ � f .s;Xi
s�

/
�

N.ds; du; di; d�/; (8.2)

where x0 is the load of parasites in the ancestor cell ; at t D 0 and

Mf
t D

Z t

0

X
i2Vs

q
2�Xi

s@xf .s;Xi
s/dBi

s (8.3)

is a continuous square-integrable martingale with quadratic variation:

hMf it D
Z t

0

Z
RC

2�x.@xf .s; x//2 ds Zs.dx/: (8.4)
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Remark 8.1. The existence and uniqueness of a solution of (8.2) are obtained from
an adaptation of Subsection 5.3. (See also the next subsection for an approximation
proof of the existence and [5] for details).

Notice that between two jumps, hZt; f i D P
i2Vt

f .Xi
t/ and Itô’s formula explains

the second and third terms of (8.2). The fourth term (driven by the PPM) models the
division events with the random sharing of parasites.

Proposition 8.2. The total quantity of parasites Xt D R
RC

x Zt.dx/ is a Feller

diffusion (defined in (3.12)) with drift rx and diffusion coefficient
p
2�x starting

from x0. As a consequence,

8t 2 RC; Ex0 .Xt/ D x0e
rt < C1; Px0 .9t � 0 W Xt D 0/ D exp.�rx0=�/: (8.5)

Proof. We remark that Xt can be written Xt D x0 C R t
0 rXsds C Mt where M is

a continuous square-integrable martingale with quadratic variation
R t
0
2�Xsds. The

representation theorem explained in the proof of Theorem 3.2 allows us to conclude.
The properties (8.5) follow by classical arguments. ut

8.1 Approximation by scaling limit

Inspired by the previous sections, we are looking for discrete approximations of
the continuous model defined in (8.2), where each cell hosts a discrete parasite
population. Let us introduce, as previously, the scaling parameter K. Let us describe
the approximating model. The initial cell contains ŒKx0	 parasites. The parasites
reproduce asexually with the individual birth and death rates K� C �; K� C �,
where �;� > 0 satisfy ��� D r > 0. The cell population is fully described by the
point measure

NZK
t .du; dx/ D

X
i2Vt

ı
.i;XK;i

t /
.du; dx/

where XK;i
t is the number of parasites renormalized by K in the cell i at time t. This

representation allows to keep a record of the underlying genealogy, which is useful
in the forthcoming proofs. It also provides a closed equation to characterize the
process NZ (and derive Z). Notice that an alternative representation has been given in
Chapter 7 by ordering the atoms XK;i

t for i 2 Vt.
Let N0 and N1 be two independent PPMs on RC �X0 WD RC �I�RC and RC �

X1 WD RC �I�RC � Œ0; 1	 with intensity measures dsn.di/du and ds n.di/duP.F 2
d�/. We associate N1 with the births and deaths of parasites, while N2 corresponds
to the cell divisions. The discrete space process is the unique strong solution of
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NZK
t D ı.;;ŒKx0	=K/ (8.6)

C
Z t

0

Z
X0

N0.ds; di; du/1i2Vs�

h�
ı
.i;XK;i

s� C1=K/ � ı
.i;XK;i

s� /

�
1u��K XK;i

s�

C
�
ı
.i;XK;i

s� �1=K/ � ı
.i;XK;i

s� /

�
1l
�K XK;i

s�<u�.�KC�K /X
K;i
s�

i
:

C
Z t

0

Z
X1

N1.ds; di; du; d�/1i2Vs�
1u��.XK;i

s� /

�
ı
.i1;Œ�KXK;i

s� 	=K/

C ı
.i2;XK;i

s� �Œ�KXK;i
s� 	=K/ � ı

.i;XK;i
s� /

�
;

where we set �K D K.� C K�/; �K D K.� C K�/. We recall from Sections 4.5
and 5.1 that other discrete models would lead to the same continuous limiting object.
For example, the parasites could be shared following a binomial distribution whose
parameter is picked according to P.F 2 d�/.

Proposition 8.3. Assume that there exists an integer p � 1 and a positive N� > 0

such that for all x 2 RC, 0 � �.x/ � N�.1C xp/. Then, the sequence .ZK W n 2 N
�/

defined in (8.6) converges in distribution in D.RC;MF.RC// as K ! C1 to the
process Z defined in (8.2)–(8.4).

The proof can be found in the Appendix of [5]. It follows the scheme of proof
developed in the previous section, namely control of the moments and tightness and
identification of the limit via the martingale problem for < NZK

t ; f >. The additional
regularities on the division rate � are required to control the difference between the
microscopic process (8.6) and its approximation (8.2)–(8.4).

Exercise. Write the measure-valued equation which characterizes the limiting
process NZt.du; dx/ D P

i2Vt
ı.i;Xi

t/
.du; dx/.

8.2 Recovery criterion when the division rate is constant

We now consider the case where the infection does not influence the division rate
and �.:/ D � . We say that the organism recovers when the proportion of infected
cells becomes negligible compared to the population of cells.

Theorem 8.4. (i) If r � 2�E.log.1=F//, then the organism recovers a.s.:

lim
t!C1

#fi 2 Vt W Xi
t > 0g

Nt
D 0 a.s:

(ii) If r > 2�E.log.1=F// then the parasites proliferate in the cells as soon as the
parasites do not become extinct in the sense that
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˚
lim sup
t!C1

#fi 2 Vt W Xi
t � etg

Nt
> 0

� D f8t > 0 W Xt > 0g a.s. (8.7)

for every  < r � 2�E.log.1=F//. The probability of this event is 1 �
exp.�rx0=�/.

The factor 2 in the criterion comes from a bias phenomenon in continuous time.
It appears in the following result shedding light on an auxiliary Markov process,
namely the infection process X with catastrophes occurring at the accelerated rate
2� . This factor 2 ‘increases the probability of recovery’ in the sense that the amount
of parasites in a random cell lineage (which can be obtained by keeping one cell at
random at each division) may go to infinity with positive probability whereas the
organism recovers a.s.

Since the division rate is constant, the process .Nt; t � 0/ is a simple linear
(branching) birth process (called Yule process). Then E.Nt/ D exp.� t/ and we
define

�t.dx/ WD E.Zt.dx//=E.Nt/ D e�� t
E.Zt.dx//:

The dynamics of �t is given by the following result.

Lemma 8.5. The family of probability measures .�t; t � 0/ is the unique solution
of the following equation: for f 2 C1;2

b .R2C;R/ and t 2 RC (and ft.:/ D f .t; :/):

h�t; fti D f0.x0/C
Z t

0

Z
RC

�
@sfs.x/C rx@xfs.x/C �x@2xx fs.x/

�
�s.dx/ds:

C 2�

Z t

0

Z
RC

Z 1

0

Œfs.�x/� fs.x/	P.F 2 d�/�s.dx/ds (8.8)

Proof of Lemma 8.5. Let t 2 RC and .f W .s; x/ 7! fs.x// 2 C1;2
b .R2C;R/.

Using (8.2) with .s; x/ 7! fs.x/e��s entails:

he�� tZt.dx/; fti D hZt.dx/; e�� t fti

D f0.x0/C
Z t

0

Z
RC

�
rx@xfs.x/C �x@2xxfs.x/� � fs.x/C @sfs.x/

�
e��sZs.dx/ ds

C
Z t

0

Z
RC�I�Œ0;1	

1i2Vs�
1u��

h
fs.�Xi

s�/C fs..1� �/Xi
s�/� fs.X

i
s�/
i
e��sN.ds; du; di; d�/

C Mf
t
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where Mf
t is a continuous square-integrable martingale started at 0. Taking the

expectation and using the symmetry of the distribution of F with respect to 1=2:

h�t; fti Df0.x0/C
Z t

0

Z �
rx @xfs.x/C �x @2xx fs.x/C @sfs.x/

�
�s.dx/ds

C
Z t

0

Z
RC�Œ0;1	

2� Œfs.�x/� fs.x/	P.F 2 d�/�s.dx/ds: (8.9)

Let us prove that there is a unique solution to (8.8). We follow Step 1 of the proof
of Theorem 7.4 and let .�1t ; t � 0/ and .�2t ; t � 0/ be two probability measures
solutions of (8.8). The total variation distance between �1t and �2t is

k�1t � �2t kTV D sup

2Cb.RC;R/

k
k1�1
jh�1t ; 
i � h�2t ; 
ij: (8.10)

Let t 2 RC and ' 2 C2
b.RC;R/ with k'k1 � 1. We denote by .Ps W s � 0/

the semi-group associated with the Feller diffusion started at x 2 RC: Ps'.x/ D
Ex.'.Xs//. Notice that kPt�s'k1 � k'k1 � 1. By (8.9) with fs.x/ D Pt�s'.x/, the
first term equals 0 and

ˇ̌h�1t � �2t ; 'iˇ̌ D
ˇ̌̌
ˇ2�

Z t

0

Z
RC

Z 1

0

�
Pt�s'.�x/ � Pt�s'.x/

�
P.F 2 d�/.Y1s � �2s /.dx/ ds

ˇ̌̌
ˇ

�4�
Z t

0

k�1s � �2s kTVds:

Since C2
b.RC;R/ is dense in Cb.RC;R/ for the bounded pointwise topology, taking

the supremum in the l.h.s. implies that: k�1t � �2t kTV � 4�
R t
0

k�1s � �2s kTV ds.
Gronwall’s Lemma ensures that k�1t � �2t kTV D 0, which ends up the proof. ut

We can then interpret �t as the marginal distribution (at time t) of an auxiliary
process .Yt; t � 0/.

Proposition 8.6. For all f 2 C2
b.RC;R/ and t 2 RC;

h�t; f i D e�� t
E
�X

i2Vt

f .Xi
t/
� D E.f .Yt//; (8.11)

where .Yt; t � 0/ is a Feller branching diffusion with catastrophes with rate 2� and
distribution given by F. Moreover,

E
�
#fi 2 Vt W Xi

t > 0g
� D e� t

P.Yt > 0/: (8.12)
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Proof. One can describe the dynamics of t ! �t.ft/ D E.ft.Yt// thanks to Itô’s
formula and check that it satisfies (8.8). Uniqueness of the solution of this equation
yields (8.11). We can then apply (8.11) with f .x/ D 1x>0 by taking a monotone
limit of C2

b functions to get (8.12). ut
Proof of Theorem 8.4. Let us first prove the convergence in probability in .i/. We
denote by V�

t D fi 2 Vt W Xi
t > 0g the set of infected cells and by N�

t D #V�
t its

cardinality. By Theorem 5.2, under the assumption .i/, .Yt; t � 0/ dies in finite time
a.s. Thus h�t;1x>0i converges in L

1 and hence in probability to 0. Moreover the
non-negative martingale Nt= exp.� t/ tends a.s. to a non-negative random variable
W. In addition, the L

2-convergence can be easily obtained and is left to the reader.
Therefore, P.W > 0/ and then W > 0 a.s. One could actually even show that W is
an exponential random variable with mean 1. Then

lim
t!C1

N�
t

Nt
D lim

t!C1
N�

t

e� t

e� t

Nt
D 0 in probability: (8.13)

It remains to show that the convergence holds a.s, which is achieved by checking
that

sup
s�0

N�
tCs=NtCs

t!1�! 0 in probability: (8.14)

Indeed, let us denote by Vt;s.i/ the set of cells alive at time t C s and whose ancestor
at time t is the cell i 2 Vt. Then .#Vt;s.i/; s � 0/ are i.i.d. random processes for
i 2 Vt distributed as .Ns; s � 0/. We have

N�
tCs �

X
i2V�

t

#Vt;s.i/ � e�s
X
i2V�

t

Mt.i/ a.s.

where Mt.i/ are i.i.d random variables distributed like M WD supfe��sNs; s � 0g.
Similarly,

NtCs �
X
i2Vt

#Vt;s.i/ � e�s
X
i2Vt

It.i/ a.s.;

where It.i/ are i.i.d. random variables distributed like I WD inffe��sNs; s � 0g.
We add that E.M/ < 1 since the martingale e��sNs is bounded in L

2. Moreover
E.I/ 2 .0;1/ so that

N��1
t

P
i2V�

t
Mt.i/

N�1
t

P
i2Vt

It.i/

is stochastically bounded (or tight) for t � 0. Using that N�
t =Nt ! 0when t ! C1

in probability yields (8.14). This ensures the a.s. convergence of Rt D N�
t =Nt to 0,

using that P.lim supt!1 Rt � �/ � limt!0 P.sups�0 RtCs � �/ D 0.
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supercritical

weakly subcritical

strongly subcritical

0 1/2q

r
-
�

Fig. 8.1 Asymptotic regimes for the mean number of infected cells when P.F D �/ D
P.F D 1� �/ D 1=2 and � 2 .0; 1/.

The proof of .ii/ is similar. One can first note thanks to Section 5.2 that P.Yt �
exp.t// has a positive limit and prove that

�
lim sup
t!C1

#fi 2 Vt W Xi
t � etg

Nt
> 0

	

has a positive probability. To check that this latter event coincides with f8t > 0 W
Xt > 0g, a zero-one law is involved, which is inherited from the branching property
by a standard argument. ut

Asymptotic regimes for the speed of infection. Combining Theorem 5.5 and
Proposition 8.11 yield different asymptotic regimes for the mean number of infected
cells E.N�

t /. They are plotted in Figure 8.1 when the sharing F of parasites is
deterministic. We stress that it differs from the discrete analogous model [4]. In
the supercritical regime, the number of infected cells and the number of cells are of
the same order. In the strongly subcritical regime, the number of infected cells and
the parasite loads are of the same order. In the weakly subcritical regime, the number
of infected cells is negligible compared to the number of cells and the amount of
parasites.

8.3 Some first results for a monotonic rate of division

The asymptotic study of such processes with a non-constant rate of division is the
object of recent works (see [23, 25] and works in progress). Let us simply mention
some relevant consequences of the previous results for non-decreasing rate � .
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8.3.1 A sufficient condition for recovery

We assume either that � is non-decreasing and there exists x1 > 0 such that
�.x1/ < �.0/ or that �.0/ > �.x/ for any x > 0. The second case means that the non-
infected cells divide faster than the infected ones. Let us recall from Proposition 5.6
in Section 5.3 the notation

�� WD inff�.x/ W x � 0g:

Proposition 8.7. If r � ��E.log 1=.min.F; 1� F///, the organism recovers a.s.

We only give the idea of the proof and refer to [5] for more details. Let us follow
a cell lineage by starting from the initial cell and choosing the less infected cell at
each division. The infection along this lineage is a Feller diffusion with catastrophes
whose distribution is min.F; 1 � F/ and the catastrophe rate is � . We know from
Section 5.3 when the infection in such a cell line becomes extinct a.s. Then one
uses that the population of non-infected cells is growing faster than the population
of cells infected by more than x1 parasites.

8.3.2 An example of moderate infection

We assume here that �.x/ is an increasing function of the parasite load. This means
that the more the cell is infected, the faster it divides. Low infected cells divide
slower and may even stop dividing if �.0/ D 0. That’s why a new regime appears
here, between recovery and proliferation of the parasites, where a positive fraction
of cells is infected but the quantity of parasites inside remains bounded. We then
say that the infection is moderate. Let us provide an example where the infection is
indeed moderate: the organism does not recover but the parasites do not proliferate
in the cells.

F D 1=2 a.s.; �.x/ D 0 if x < 2 and �.x/ D 1 if x � 2:

Indeed, as soon as the quantity of parasites in a cell reaches 2, the cell divides and
the quantity of parasites in each daughter cell is equal to one. The parasites do not
proliferate in the cells since the parasite load in each cell is less than 2.

We now fix the growth rate of parasites r such that the probability that the Feller
diffusion .Xt; t � 0/ reaches 0 before 2 is strictly less than 1=2. Then the number
of infected cells follows a supercritical branching process and grows exponentially
with positive probability. Conditionally on this event, the proportion of infected cells
doesn’t tend to zero since the non-infected cells do not divide. Thus the organism
doesn’t recover.



Chapter 9
Markov Processes along Continuous Time
Galton-Watson Trees

In this section, we consider measure-valued processes associated with a discrete
genealogy given by a branching process. These processes describe a structured
population where individuals are characterized by a trait. We focus on the case
where the branching rate is constant and the number of offspring belongs to N.
During the life of an individual, its trait dynamics is modeled by a general Markov
process. More precisely, the individuals behave independently and

1. Each individual lives during an independent exponential time of parameter � and
then gives birth to a random number of offspring whose distribution is given by
.pk; k � 0/.

2. Between two branching events, the trait dynamics of an individual follows a
càdlàg strong Markov process .Xt/t�0 with values in a Polish space X and
infinitesimal generator L with domain D.L/. Here again, we can assume that
X � R

d.
3. When an individual with trait x dies, the distribution of the traits of its offspring

is given by .P.k/.x; dx1; : : : ; dxk/ W k � 1/, where k is the number of offspring.

Let us note that an individual may die without descendance when p0 > 0. Moreover,
when X is a Feller diffusion and p2 D 1, we recover the splitting Feller diffusion of
Chapter 8. In the general case, the process X is no longer a branching process and
the key property for the long time study of the measure-valued process will be the
ergodicity of a well-chosen auxiliary Markov process.

A vast literature can be found concerning branching Markov processes and
special attention has been payed to Branching Brownian Motion from the pioneering
work of Biggins [10] about branching random walks, see, e.g., [28, 60] and the
references therein. More recently, non-local branching events (with jumps occurring
at the branching times) and superprocesses limits corresponding to small and rapidly
branching particles have been considered and we refer, e.g., to the works of Dawson
et al. and Dynkin [26].

© Springer International Publishing Switzerland 2015
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9.1 Continuous Time Galton-Watson Genealogy

The genealogy of the population is a branching process with reproduction at rate �
and offspring distribution given by .pk; k � 0/. We assume that the population arises
from a single ancestor f;g. Roughly speaking, the genealogy is obtained by adding
i.i.d. exponential life lengths (with parameter �) to a (discrete) Galton-Watson tree.
Let us give some details on this construction, which will be useful in the sequel. We
define I WD f¿g [ S

n�1.N�/n, which we endow with the order relation � : u � v

if there exists w 2 I such that v D .u;w/. For example, the individual .2; 3; 4/ is
the fourth child of the third child of the second child of the root ;. We denote by
.A.i/; i 2 I/ i.i.d. random variables with distribution p. The discrete genealogy I is
the random subset of I obtained by keeping the individuals which are born:

I WD [q�0f.i1; : : : ; iq/ W 8k D 1; : : : ; q; ik � A..i1; : : : ; ik�1//g;

where by convention the first set in the right-hand side is f;g. We consider now a
sequence .li; i 2 I/ of exponential random variables, so that li is the lifetime of the
individual i 2 I and

˛.i/ D
X
j�i

lj and ˇ.i/ D
X
j�i

lj D ˛.i/C li; (9.1)

with the convention ˛.;/ D 0, are the birth and death times of i 2 I. We assume
that the offspring distribution p has a finite second moment and that

m D
X
k�0

k pk > 1 (supercriticality):

Let us denote by Vt � I the set of individuals alive at time t :

Vt WD fi 2 I W ˛.i/ � t < ˇ.i/g; and as before Nt D #Vt:

The supercriticality assumption on the reproduction law implies the persistence of
the process with positive probability.

Proposition 9.1. The population size process .Nt; t � 0/ survives with positive
probability. Moreover, for any t � 0,

E.Nt/ D exp.�.m � 1/t/ (9.2)

and

Nt

E.Nt/

t!1�! W a.s. and in L
2;

where W 2 RC is positive on the survival event.
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The proof uses the generator of N and the martingale Nt=E.Nt/. It is left to the
reader.

The continuous time Galton-Watson genealogy T is defined as the (random)
subset of I � RC such that .i; t/ 2 T if and only if i 2 Vt.

We define now the branching Markov process along this genealogy T . We use
the shift operator � for such trees and �.i;t/T is the subtree of T rooted in .i; t/.

Definition 9.2. Let X D .Xt; t � 0/ be a càdlàg X -valued strong Markov
process and � 2 P.X /. Let .P.k/.x; dx1 : : : dxk/; k � 1/ be a family of transitions
probabilities from X to X k.

The continuous time branching Markov process XT D .Xi
t ; .i; t/ 2 T / indexed

by T , the underlying trait dynamics X and starting distribution �, is defined
conditionally on T recursively as follows:

(i) X; D .X;
t ; t 2 Œ0; ˇ.;/// is distributed as .Xt; t 2 Œ0; ˇ.;///with X0 distributed

according �.
(ii) Conditionally on X;, the initial traits of the first generation of offspring

.Xi
˛.i/; 1 � i � A.;// are distributed as P.A.;//.X¿

ˇ.¿/; dx1 : : : dxA.;//.
(iii) Conditionally on X;, A.;/, ˇ; and .Xi

˛.i/; 1 � i � A.;//, the tree-indexed

Markov processes .Xij
˛.i/Ct; .j; t/ 2 �.i;˛.i//T / for 1 � i � A.;/ are independent

and, respectively, distributed as X with starting distribution ıXi
˛.i/

.

There is no spatial structure on the genealogical tree and without loss of generality,
we assume that the marginal measures of P.k/.x; dx1 : : : dxk/ are identical. It can be
achieved simply by a uniform permutation of the traits of the offspring.

Following the previous sections, we give a pathwise representation of the point
measure-valued process defined at time t by

Zt D
X
i2Vt

ıXi
t
: (9.3)

The dynamics of Z is given by the following stochastic differential equation.
Let N.ds; di; dk; d�/ be a Poisson point measure on RC � I � N � Œ0; 1	 with
intensity �dsn.di/p.dk/d� where n.di/ is the counting measure on I and p.dk/ DP

l2N plıl.dk/ is the offspring distribution. Let L be the infinitesimal generator
of X. Then for test functions f W .t; x/ 7! ft.x/ in C1;0b .RC � X ;R/ such that
8t 2 RC; ft 2 D.L/, we have

hZt; fti D f0.X
;

0 /C
Z t

0

Z
RC

.Lfs.x/C @sfs.x// dsZs.dx/C Mf
t (9.4)

C
Z t

0

Z
I�N�Œ0;1	

1fi2Vs�g

0
@ kX

jD1

fs.F
.k/
j .Xi

s�

; �//� fs.X
i
s�

/

1
AN.ds; di; dk; d�/;

where Mf
t is a martingale and .F.k/j .x; ‚/ W j D 1 : : : k/ is a random vector distributed

like P.k/.x; dx1 : : : dxk/ when ‚ is uniform in Œ0; 1	.
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9.2 Long time behavior

We are now interested in studying the long time behavior of the branching Markov
process Z. We will show that it is deduced from the knowledge of the long time
behavior of a well-chosen one-dimensional auxiliary Markov process. In particular,
the ergodicity of the auxiliary process will give a sufficient condition in the
applications, to obtain a limit as time goes to infinity.

Let us recall from Proposition 9.1 that the expectation at time t and the long time
behavior of the population size process N are known.

9.2.1 Many-to-one formula

We introduce the auxiliary Markov process Y with infinitesimal generator given by

Af .x/ D Lf .x/C �m
Z
X

�
f .y/ � f .x/

�
Q.x; dy/

for f 2 D.L/ and

Q.x; dy/ WD 1

m

X
k�0

kpkP.k/.x; dyX k�1/:

In words, Y follows the dynamics of X with additional jumps at rate �m whose
distribution is given by the size biased transition probability measure Q.

Proposition 9.3. For t � 0 and for any non-negative measurable function
f 2 B.D.Œ0; t	;X // and t � 0, we have

E�

0
@X

i2Vt

f .Xi
s; s � t/

1
A D E.Nt/E�.f .Ys; s � t// D e�.m�1/t

E�.f .Ys; s � t//;

(9.5)
where (with a slight abuse) Xi

s is the trait of the ancestor of i 2 Vt living at time s.

To prove such a formula in the particular case f .xs; s � t/ D f .xt/, one can use Itô’s
calculus and follow Section 8.2 and conclude with a monotone class argument. Here
we prove the general statement using the following Girsanov type formula. In the
rest of this section, the random jumps QTk and Tk of the Poisson point processes on
R

C that we consider are ranked in increasing order.

Lemma 9.4. Let f. QTk; QAk/ W k � 0g be a Poisson point process with intensity
�m ds Qp.dk/ on RC � N, where

Qp.fkg/ D kpk=m:
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Then, for any t � 0 and q � 0 and any non-negative measurable function g on
.RC � N/qC1:

E

�
g.. QTk; QAk/ W k � q/1QTq�t<QTqC1

�

D e��.m�1/t
E

0
@g..Tk;Ak/ W k � q/1fTq�t<TqC1g

Y
k�q

Ak

1
A ;

where f.Tk;Ak/ W k � 0g is a Poisson point process on RC � N with intensity
� ds p.dk/. Thus, for any measurable non-negative function h,

E
�
h.. QTk; QAk/ W k � 0; QTk � t/

�

D e��.m�1/t
E

0
@h..Tk;Ak/ W k � 0; Tk � t/

Y
Tk�t

Ak

1
A : (9.6)

Proof. Let q � 0 and remark that

g.. QTk; QAk/ W k � q/ DGq. QT0; QT1 � QT0; : : : ; QTq � QTq�1; QA0; QA1; : : : ; QAq/;

for some non-negative functions .Gq; q 2 N/. Using that QT0 and . QTkC1 � QTk W k � 0/

are i.i.d. exponential random variables with parameter �m, we deduce that

EŒg.. QTk; QAk/ W k � q/1QTq�t<QTqC1
	

D
Z
R

qC2
C

X
n0;:::;nq

.�m/qC2 e��m.t0C:::CtqC1/ Gq.t0; : : : ; tq; n0; : : : ; nq/

�
qY

kD0

pnk nk

m
1fPq

kD0 tk�t<
PqC1

kD0 tkgdt0 : : : dtqC1

D
Z
R

qC1
C

X
n0;:::;nq

�qC1 e�� t Gq.t0; : : : ; tq; n0; : : : ; nq/ e��.m�1/t

�
qY

kD0
nk pnk 1fPq

kD0 tk�tgdt0 : : : dtq;

which yields the first result. The second one is obtained by summing over q and
forgetting the last point of the PPP. ut
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Proof of Proposition 9.3. We give here the main steps of the proof. We recall that
the random variables .A.i/; l.i// have been defined for i 2 I. Let us now introduce
the point process describing the birth times and number of offspring of the ancestral
lineage of i:

ƒi WD f.ˇ.j/;A.j// W j � ig .i 2 I/:

We stress that for any q � 0, the processes ..Xi; ƒi/; i 2 .N�/q/ corresponding to
individual labels with length q, are identically distributed (but dependent). They are
distributed like .X0; ƒq/, where

• ƒq D f.Tk;Ak/ W k � qg and � D f.Tk;Ak/ W k � 0g is a Poisson point process
on RC � N with intensity �dsp.dk/ (with Tk ranked in increasing order).

• Conditionally on ƒ D f.tk; nk/ W k � 0g for nk � 1, X0 is the time non-
homogeneous Markov process such that

– at time ti, X0 jumps and the transition probability is given by P.ni/.x; dyX ni�1/;
– during the time intervals Œti; tiC1/, the infinitesimal generator of X0 is L.

We denote by jij the length of the label i. We can now compute

X
i2I

E�

�
g.ƒi/f .Xi

s W s � t/1
fi2Vtg

�

D
X
i2I

X
q2N

1
fjijDqg

E�

�
g.ƒi/E�.f .X

i
s W s � t/jƒi/1

f˛.i/�t<ˇ.i/I 8kD1;:::;qW A.i1;:::;ik�1/�ikg

�

D
X
i2I

X
q2N

1
fjijDqg

E�

�
g.ƒq/E�.f .X

0

s W s � t/jƒ/1
fTq�1�t<TqI 8kD0;:::;q�1W Ak�ikC1g

�

D
X
i2I

X
q2N

1
fjijDqg

E�

�
Ff .ƒq/1fTq�1�t<TqI 8kD0;:::;q�1W Ak�ikC1g

�
;

where we have denoted Ff .ƒ
q/ D g.ƒq/E�.f .X0

s W s � t/jƒq/ and used the
convention T�1 D 0. Adding that

X
q2N

X
i2I

1fjijDqgFf .ƒq/1fTq�1�t<TqI 8kD0;:::;q�1W Ak�ikC1g

D
X
q2N

Ff .ƒq/#fi 2 I W jij D q; 8k D 0; : : : ; q � 1 W ikC1 � Akg1Tq�1�t<Tq

D Ff ..Tk;Ak/ W k � 0;Tk � t/
Y
Tk�t

Ak
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and using (9.6) and (9.2), we get

X
i2I

E�

�
g.ƒi/f .Xi

s W s � t/1fi2Vtg
� D E�

0
@Ff ..Tk;Ak/ W k � 0;Tk � t/

Y
Tk�t

Ak

1
A

D e�.m�1/t
E�

�
Ff .. QTk; QAk/ W k � 0;Tk � t/

�
:

Finally, we combine the definitions of X0 and Y to conclude, recalling that f. QTk; QAk/ W
k � 0g is a Poisson point process with intensity �mdsQp.dk/. ut

9.2.2 Law of large numbers

Let us now describe the asymptotic distribution of traits within the population (see
[6] for details).

Theorem 9.5. Assume that for some bounded continuous function f , the auxiliary
process satisfies

Ex.f .Yt//
t!1�! �.f / (9.7)

for every x 2 X and � a probability measure on X .
Then, for every probability distribution � on X ,

lim
t!1

1fNt>0g
Nt

X
i2Vt

f
�
Xi

t

� D 1lfW>0g�.f / (9.8)

in P� probability.

This result implies in particular that for such a function f ,

lim
t!C1E

�
f .XU.t/

t / j Nt > 0
 D �.f /; (9.9)

where U.t/ stands for an individual chosen at random in the set Vt of individuals
alive at time t.

Condition (9.7) deals with the ergodic behavior of Y and will be obtained for
regular classes of functions f , see below for an example.

Main ideas of the proof. Let f be a non-negative function bounded by 1 and define

Gi
t WD f .Xi

t/ � �.f /
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and let us prove that

At WD E

0
B@
0
@X

i2Vt

Gi
t

1
A
2
1
CA  E.Nt/

2

Indeed we can write At D Bt C Ct, where

Bt WD E

0
@X

i2Vt

.Gi
t/
2

1
A and Ct WD E

0
@ X

i¤j2Vt

Gi
tG

j
t

1
A :

We easily remark from (9.2) that Bt � E.Nt/  E.Nt/
2. Let us now deal with Ct

and use the most recent common ancestor of i and j:

Ct D E

0
BB@

X
u;.u;k1/;.u;k2/2I;

k1¤k2

1fˇ.u/<tg E

0
@ X

i2VtWi�.u;k1/

X
j2VtWj�.u;k2/

E

�
Gi

tG
j
t

ˇ̌
ˇ.u/;X.u;k1/ˇ.u/ ;X

.u;k2/
ˇ.u/

�1A
1
CCA

The key point is that on the event fˇ.u/ < t; .u; k1/ 2 I; .u; k2/ 2 Ig,

X
i2VtWi	.u;k1/

X
j2VtWj	.u;k2/

E

�
Gi

tG
j
t

ˇ̌
ˇ.u/;X.u;k1/ˇ.u/ ;X

.u;k2/
ˇ.u/

�

D
X

i2VtWi	.u;k1/
E

�
Gi

t

ˇ̌
ˇ.u/;X.u;k1/ˇ.u/

�
�

X
j2VtWj	.u;k2/

E

�
Gj

t

ˇ̌
ˇ.u/;X.u;k2/ˇ.u/

�

by the branching property. Moreover the many-to-one formula (9.5) ensures that

X
i2VtWi	uk1

E

�
Gi

t

ˇ̌
ˇ.u/;X.u;k1/ˇ.u/

�
D E.Nt/EX

.u;k1/
ˇ.u/

�
f .Yt�ˇ.u//� �.f /

�

on the event fˇ.u/ < t; .u; k1/ 2 I; .u; k2/ 2 Ig. The convergence (9.7) ensures that
the second term in the right-hand side tends to zero for ˇ.u/ fixed. This convergence
depends on the initial condition. Nevertheless this difficulty can be overcome by
proving (see [6]) that the common ancestor of two individuals lives almost-surely
at the beginning of the continuous time Galton-Watson tree. This fact also allows
to sum over .u; k1/ 2 I; .u; k2/ 2 I and obtain that Ct  E.Nt/

2 by dominated
convergence arguments. Recalling that Nt=E.Nt/ converges to W in L

2 yields the
result. ut
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9.3 Application to splitting diffusions

For the sake of simplicity, we assume in this section that the branching events are
binary (p.dk/ D ı2.dk/), so that the genealogical tree is the Yule tree. We describe a
population of infected cells undergoing a binary division, as in the previous chapter
for constant division rates. When a division occurs, a random fraction F is inherited
by a daughter cell and the rest by the other daughter cell. But in contrast with the
previous chapter, the process X may not be a branching process, which allows, for
example, to take into account resources limitation for the parasites living in the cell.
Here, X is a diffusion with infinitesimal generator

Lf .x/ D r.x/f 0.x/C �.x/2

2
f 00.x/

We refer to [6] for other applications, such as cellular aging.
The infinitesimal generator of the auxiliary process Y is characterized for f 2

C2b.R;R/ by:

Af .x/ D r.x/f 0.x/C �.x/2

2
f 00.x/C 2�

Z 1

0

�
f .�x/ � f .x/

�
P.F 2 d�/: (9.10)

Proposition 9.6. Assume that Y is a Feller process which is irreducible, i.e. there
exists a probability measure � on R such that for any measurable set B and x 2 R,

�.B/ > 0 )
Z 1

0

Px.Yt 2 B/dt > 0:

Assume also that there exists K � 0, such that for every jxj � K, r.x/ � � 0jxj for
some � 0 < � .

Then, Y is ergodic with stationary probability � and we have

1fNt>0g
Nt

#fi 2 Vt W Xi
t 2 Ag t!1�! �.A/

for every Borelian set A such that �.@A/ D 0 and @A is the boundary of A.

Proof. Once we check that Y is ergodic, the second part comes from Theorem 9.5.
The ergodicity of Y is based on Theorems 4.1 of [57] and 6.1 of [58]. Since Y is
Feller and irreducible, the process Y admits a unique invariant probability measure
� and is exponentially ergodic provided there exists a positive measurable function
V such that limx!˙1 V.x/ D C1 and for which:

9c > 0; d 2 R; 8x 2 R; AV.x/ � �cV.x/C d: (9.11)



98 9 Markov Processes along Continuous Time Galton-Watson Trees

For V.x/ D jxj regularized on an "-neighborhood of 0 (0 < " < 1), we have:

8jxj > "; AV.x/ Dsign.x/r.x/C 2� jxjE.F � 1/ D sign.x/r.x/ � � jxj; (9.12)

as the distribution of F is symmetric with respect to 1=2. Then, by assumption, there
exist � > 0 and K > " such that

8x 2 R; AV.x/ � ��V.x/C �
sup

jxj�K
jr.x/j C �K

�
1fjxj�Kg: (9.13)

This implies (9.11) and the geometric ergodicity gives us that

9ˇ > 0; B < C1; 8t 2 RC; 8x 2 R; sup
g = jg.u/j�1Cjuj

ˇ̌
Ex.g.Yt//�h�; giˇ̌ � B.1Cjxj/ e�ˇt :

The proof is complete. ut

9.4 Some extensions

Following Chapter 3, we could consider a model for cell division with parasites
where the growth of parasites is limited by the resources for the cells. The
Markovian dynamics of the parasite population size could be described by a logistic
Feller diffusion process. Since this process goes to extinction almost surely (or to a
finite positive limit if the process is deterministic), Proposition 9.6 may be applied
to derive the asymptotic distribution of the infection among the cell population. The
construction of the model and the proofs are left to the reader.

On the other hand, let us note that the many-to-one formula (9.5) holds for f
depending on time. Therefore the large numbers law (Theorem 9.5) can be extended
to the case where Y isn’t ergodic as soon as we can find some renormalization gt

such gt.Yt/ satisfies (9.7). We refer to [6] for an application when X is a branching
Lévy process and in particular we recover the classical central limit theorem for
branching Brownian motions.



Appendix A
Poisson point measures

In this appendix, we summarize the main definitions and results concerning the
Poisson point measures. The reader can consult the two main books by Ikeda-
Watanabe [41] and by Jacod-Shiryaev [42] for more details.

Definition A.1. Let .E; E/ be a measurable space and � a �-finite measure on this
space. A (homogeneous) Poisson point measure N with intensity �.dh/dt onRC�E
is a .RC �E;B.RC/˝E/-random measure defined on a probability space .�;F ;P/
which satisfies the following properties:

1. N is a counting measure: 8 OA 2 B.RC/˝ E , 8! 2 �, N.!; OA/ 2 N [ fC1g.
2. 8! 2 �, N.!; f0g � E/ D 0: no jump at time 0.
3. 8 OA 2 B.RC/˝ E , E.N. OA// D �. OA/, where �.dt; dh/ D �.dh/dt .
4. If OA and OB are disjoint in B.RC/˝ E and if �. OA/ < C1; �. OB/ < C1, then the

random variables N. OA/ and N. OB/ are independent.

The existence of such a Poisson point measure with intensity �.dh/dt is proven in
[42], for any �-finite measure � on .E; E/.

Let us remark that for any A 2 E with �.A/ < 1 the process defined by

Nt.A/ D N..0; t	 � A/

is a Poisson process with intensity �.A/.

Definition A.2. The filtration .Ft/t generated by N is given by

Ft D �.N..0; s	 � A/;8s � t;8A 2 E/:

If OA 2 .s; t	 � E and �. OA/ < 1, then N. OA/ is independent of Fs.

© Springer International Publishing Switzerland 2015
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Let us first assume that the measure � is finite on .E; E/. Then .Nt.E/; t � 0/

is a Poisson process with intensity �.E/. The point measure is associated with a
compound Poisson process. Indeed, let us write

�.dh/ D �.E/
�.dh/

�.E/
;

the decomposition of the measure � as the product of the jump rate �.E/ and the
jump amplitude law �.dh/

�.E/ . Let us fix T > 0 and introduce T1; : : : ;T� the jump times
of the process .Nt.E/; t � 0/ between 0 and T. We know that the jump number � is a
Poisson variable with parameter T�.E/. Moreover, conditionally on � , T1; : : : ;T� ,
the jumps .Un/nD1;:::;� are independent with the same law �.dh/

�.E/ . We can write in
this case

N.dt; dh/ D
�X

nD1
ı.Tn;Un/:

Therefore, one can define for any measurable function G.!; s; h/ defined on � �
RC � E the random variable

Z T

0

Z
E

G.!; s; h/N.!; ds; dh/ D
�X

nD1
G.!;Tn;Un/:

In the following, we will forget the !. Let us remark that T �! R T
0

R
E G.s; h/

N.ds; dh/ is a finite variation process which is increasing if G is positive. A main
example is the case where G.!; s; h/ D h. Then

XT D
Z T

0

Z
E

h N.ds; dh/ D
�X

nD1
Un D

X
s�T

�Xs

is the sum of the jumps between 0 and T.
Our aim now is to generalize the definition of the integral of G with respect to N

when �.E/ D C1. In this case, one can have an accumulation of jumps during the
finite time interval Œ0;T	 and the counting measure N is associated with a countable
set of points:

N D
X
n�1

ı.Tn;Un/:

We need additional properties on the process G.
Since � is �-finite, there exists an increasing sequence .Ep/p2N of subsets of

E such that �.Ep/ < 1 for each p and E D [pEp. As before we can defineR T
0

R
Ep

G.s; h/N.ds; dh/ for any p.
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We introduce the predictable �-field P on � � RC (generated by all left-
continuous adapted processes) and define a predictable process .G.s; h/; s 2
RC; h 2 E/ as a P ˝ E measurable process.

Theorem A.3. Let us consider a predictable process G(s, h) and assume that

E

�Z T

0

Z
E

jG.s; h/j�.dh/ds

�
< C1: (A.1)

1) The sequence of random variables
�R T

0

R
Ep

G.s; h/N.ds; dh/
�

p
is Cauchy in L

1

and converges to a L
1-random variable that we denote by

R T
0

R
E G.s; h/N.ds; dh/.

It’s an increasing process if G is non-negative. Moreover, we get

E

�Z T

0

Z
E

G.s; h/N.ds; dh/

�
D E

�Z T

0

Z
E

G.s; h/�.dh/ds

�

2) The process M D .
R t
0

R
E G.s; h/N.ds; dh/ � R t

0

R
E G.s; h/�.dh/ds; t � T/ is a

martingale.
The random measure

QN.ds; dh/ D N.ds; dh/� �.dh/ds

is called the compensated martingale-measure of N.
3) If we assume moreover that

E

�Z T

0

Z
E

G2.s; h/�.dh/ds

�
< C1; (A.2)

then the martingale M is square-integrable with quadratic variation

hMit D
Z t

0

Z
E

G2.s; h/�.dh/ds:

Let us remark that when (A.1) holds, the random integral
R t
0

R
E G.s; h/N.ds; dh/ can

be defined without the predictability assumption on G but the martingale property
of the stochastic integral

R t
0

R
E G.s; h/ QN.ds; dh/ is only true under this assumption.

We can improve the condition under which the martingale .Mt/ can be defined.
The proof of the next theorem is tricky and consists in studying the L

2-limit of
the sequence of martingales

R t
0

R
Ep

G.s; h/ QN.ds; dh/ as p tends to infinity. Once

again, this sequence is Cauchy in L
2 and converges to a limit which is a square-

integrable martingale. Let us recall that the quadratic variation of a square-integrable
martingale M is the unique predictable process hMi such that M2 � hMi is a
martingale.
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Theorem A.4. Let us consider a predictable process G(s, h) satisfying (A.2). Then
the process M D .

R t
0

R
E G.s; h/ QN.ds; dh/; t � T/ is a square-integrable martingale

with quadratic variation

hMit D
Z t

0

Z
E

G2.s; h/�.dh/ds:

If (A.2) is satisfied but not (A.1), the definition of M comes from a L
2-limiting

argument, as for the usual stochastic integrals. In this case the quantityR t
0

R
E G.s; h/N.ds; dh/ isn’t always well defined and we are obliged to compensate.

Example. Let ˛ 2 .0; 2/. A symmetric ˛-stable process S can be written

St D
Z t

0

Z
R

h1f0<jhj<1g QN.ds; dh/C
Z t

0

Z
R

h1fjhj�1gN.ds; dh/; (A.3)

where N.ds; dh/ is a Poisson point measure with intensity �.dh/ds D 1

jhj1C˛ dhds.
There is an accumulation of small jumps and the first term in the r.h.s. of (A.3) is
defined as a compensated martingale. The second term corresponds to the big jumps,
which are in finite number on any finite time interval.

If ˛ 2 .1; 2/, then
R

h^h2�.dh/ < 1 and the process is integrable. If ˛ 2 .0; 1/,
we only have that

R
1 ^ h2�.dh/ < 1 and the integrability of the process can fail.

Let us now consider a stochastic differential equation driven both by a Brownian
term and a Poisson point measure. We consider a random variable X0, a Brownian
motion B and a Poisson point measure N.ds; dh/ on RC �R with intensity �.dh/ds.
Let us fix some measurable functions b and � onR and G.x; h/ and K.x; h/ on R�R.

We consider a process X 2 D.RC;R/ such that for any t > 0,

Xt D X0 C
Z t

0

b.Xs/ds C
Z t

0

�.Xs/dBs

C
Z t

0

Z
R

G.Xs�; h/N.ds; dh/C
Z t

0

Z
R

K.Xs�; h/ QN.ds; dh/: (A.4)

To give a sense to the equation, one expects that for any T > 0,

E

�Z T

0

Z
R

jG.Xs; h/j�.dh/ds

�
< C1 I E

�Z T

0

Z
R

K2.Xs; h/�.dh/ds

�
< C1:

We refer to [41] Chapter IV-9 for general existence and uniqueness assumptions
(generalizing the Lipschitz continuity assumptions asked in the case without jump).

Let us assume that a solution of (A.4) exists. The process X is a left-limited and
right-continuous semimartingale. A standard question is to ask when the process
f .Xt/ is a semimartingale and to know its Doob-Meyer decomposition. For a smooth
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function f , there is an Itô’s formula generalizing the usual one stated for continuous
semimartingales.

Recall (cf. Dellacherie-Meyer VIII-25 [24]) that for a function a.t/ with bounded
variation, the change of variable formula gives that for a C1-function f ,

f .a.t// D f .a.0//C
Z
.0;t	

f 0.a.s//da.s/C
X
0<s�t

.f .a.s//�f .a.s�//��a.s/f 0.a.s�///:

We wish to replace a by a semimartingale. We have to add smoothness to f and we
will get two additional terms in the formula because of the two martingale terms.
As in the continuous case, we assume that the function f is C2.

Theorem A.5 (see [41] Theorem 5.1 in Chapter II). Let f a C2-function. Then
f .X/ is a semimartingale and for any t,

f .Xt/ D f .X0/C
Z t

0

f 0.Xs/b.Xs/ds C
Z t

0

f 0.Xs/�.Xs/dBs

C 1

2

Z t

0

f 00.Xs/�
2.Xs/ds

C
Z t

0

Z
R

.f .Xs� C G.Xs�; h//� f .Xs�//N.ds; dh/

C
Z t

0

Z
R

.f .Xs� C K.Xs�; h//� f .Xs�// QN.ds; dh/

C
Z t

0

Z
R

�
f .Xs C K.Xs; h//� f .Xs/ � K.Xs; h/f

0.Xs/
�
�.dh/ds: (A.5)

Corollary A.6. Under suitable integrability and regularity conditions on b, � , G,
K and �, the process X is a Markov process with extended generator: for any C2-
function f , for x 2 R,

Lf .x/ D b.x/f 0.x/C 1

2
�2.x/f 00.x/C

Z
R

.f .x C G.x; h//� f .x// �.dh/

C
Z
R

�
f .x C K.x; h//� f .x/ � K.x; h/f 0.x/

�
�.dh/: (A.6)

Example. Let us study the case where

Xt D X0 C
Z t

0

b.Xs/ds C
Z t

0

�.Xs/dBs C St;

where S is the stable process introduced in (A.3). Let us consider a C2-function f .
Then f .X/ is a semimartingale and writes
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f .Xt/ D f .X0/C Mt C
Z t

0

f 0.Xs/b.Xs/ds C 1

2

Z t

0

f 00.Xs/�
2.Xs/ds

C
Z t

0

Z
R

.f .Xs� C h1fjhj>1g/� f .Xs�//
1

jhj1C˛ dhds

C
Z t

0

Z
R

�
f .Xs� C h1fjhj�1g/ � f .Xs�/

� h1fjhj�1gf 0.Xs�/
� 1

jhj1C˛ dhds

D f .X0/C Mt C
Z t

0

f 0.Xs/b.Xs/ds C 1

2

Z t

0

f 00.Xs/�
2.Xs/ds

C
Z t

0

Z
R

�
f .Xs� C h/� f .Xs�/ � h1fjhj�1gf 0.Xs�/

� 1

jhj1C˛ dhds;

where M is a martingale.

Let us come back to the general case and apply Itô’s formula (A.7) to f .x/ D x2:

X2t D X20 C
Z t

0

2Xsb.Xs/ds C
Z t

0

2Xs��.Xs�/dBs C
Z t

0

�2.Xs/ds

C
Z t

0

Z
R

.2Xs�G.Xs�; h/C .G.Xs�; h//2/N.ds; dh/

C
Z t

0

Z
R

.2Xs�K.Xs�; h/C .K.Xs�; h//2/ QN.ds; dh/

C
Z t

0

Z
R

.K.Xs�; h//2�.dh/ds: (A.7)

On the other hand, since

Xt D X0 C Mt C At;

where M is square-integrable and A has finite variation, then

X2t D X20 C Nt C
Z t

0

2Xs�dAs C hMit:

Doob-Meyer’s decomposition allows us to identify the martingale parts and the
finite variation parts in the two previous decompositions and therefore

hMit D
Z t

0

�2.Xs/ds C
Z t

0

Z
R

.G2.Xs�; h/C K2.Xs�; h//�.dh/ds:
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