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Abstract. We present Universal Property Directed Reachability
(PDR∀), a property-directed procedure for automatic inference of invari-
ants in a universal fragment of first-order logic. PDR∀ is an extension of
Bradley’s PDR/IC3 algorithm for inference of propositional invariants.
PDR∀ terminates when it either discovers a concrete counterexample,
infers an inductive universal invariant strong enough to establish the
desired safety property, or finds a proof that such an invariant does not
exist. We implemented an analyzer based on PDR∀, and applied it to a
collection of list-manipulating programs. Our analyzer was able to auto-
matically infer universal invariants strong enough to establish memory
safety and certain functional correctness properties, show the absence
of such invariants for certain natural programs and specifications, and
detect bugs. All this, without the need for user-supplied abstraction pred-
icates.

1 Introduction

We present Universal Property Directed Reachability (PDR∀), a procedure for
automatic inference of quantified inductive invariants, and its application for
the analysis of programs that manipulate unbounded data structures such as
singly-linked and doubly-linked list data structures. For a correct program, the
inductive invariant generated ensures that the program satisfies its specification.
For an erroneous program, PDR∀ produces a concrete counterexample. Histori-
cally, this has been addressed by abstract interpretation [17] algorithms, which
automatically infer sound inductive invariants, and bounded model checking
algorithms, which explore a limited number of loop iterations in order to sys-
tematically look for bugs [6,13]. We continue the line of recent works [2,32] which
simultaneously search for invariants and counterexamples. We follow Bradley’s
PDR/IC3 algorithm [9] by repeatedly strengthening a candidate invariant until
it either becomes inductive, or a counterexample is found.

In our experience, the correctness ofmanyprograms canbeprovenusinguniver-
sal invariants. Hence, we simplify matters by focusing on inferring universal first-
order invariants. When PDR∀ terminates, it yields one of the following outcomes:
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Fig. 1. Motivating examples. n∗(x , y) means a (possibly empty) path of n-fields from
x to y .

(i) a universal inductive invariant strong enough to show that the program respects
the property, (ii) a concrete counterexamplewhich shows that the programviolates
the desired safety property, or (iii) a proof that the program cannot be proven correct
using a universal invariant in a given vocabulary.

Diagram Based Abstraction. Unlike previous work [2,32], we neither assume
that the predicates which constitute the invariants are known, nor apriori bound
the number of universal quantifiers. Instead, we rely on first-order theories with a
finite model property : for such theories, SMT-based tools are able to either return
UNSAT, indicating that the negation of a formula ϕ is valid, or construct a finite
model σ of ϕ. We then translate σ into a diagram [10]—a formula describing
the set of models that extend σ—and use the diagram to construct a universal
clause to strengthen a candidate invariant.

Property-Directed Invariant Inference. Similarly to IC3, PDR∀ iteratively
constructs an increasing sequence of candidate inductive invariants F0 · · ·FN .
Every Fi over-approximates the set Ri of states that can be reached by up to
i execution steps from a given set of initial states. In every iteration, PDR∀
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uses SMT to check whether one of the candidate invariants became inductive.
If so, then the program respects the desired property. If not, PDR∀ iteratively
strengthens the candidate invariants and adds new ones, guided by the consid-
ered property. Specifically, it checks if there exists a bad state σ which satisfies
FN but not the property. If so, we use SMT again to check whether there is a
state σa in FN−1 that can lead to a state in the diagram ϕ of σ in one execution
step. If no such state exists, the candidate invariant FN can be strengthened
by conjoining it with the negation of ϕ. Otherwise, we recursively strengthen
Fi−1 to exclude σa from its over-approximation of Ri−1. If the recursive process
tries to strengthen F0, we stop and use a bounded model checker to look for a
counterexample of length N . If no counterexample is found, PDR∀ determines
that no universal invariant strong enough to prove the desired property exists
(see Lemma 1). We note that PDR∀ is not guaranteed to terminate, although in
our experience it often does.

Example 1. Procedure split(), shown in Fig. 1(a), moves the elements not satis-
fying the condition C from the list pointed to by h to the list pointed by g. PDR∀

can infer tricky inductive invariants strong enough to prove several interesting
properties: (i) memory safety, i.e., no null dereference and no memory leaks;
(ii) all the elements satisfying C are kept in h; (iii) all the elements which do
not satisfy C are moved to g ; (iv) no new elements are introduced; and (v) stabil-
ity, i.e., the reachability order between the elements satisfying C is not changed.
Our implementation verified that split() satisfies all the above properties fully
automatically by inferring an inductive loop invariant consisting of 36 clauses
(among them 19 are universal formulae) in 206 sec.

Example 2. Procedure filter(), shown in Fig. 1(b), removes and deallocates the
elements not satisfying the condition C from the list pointed to by h. The figure
also shows the loop invariant inferred by PDR∀ when it was asked to verify
a simplified version of property (iii): all the elements which do not satisfy C
are removed from h. The invariant highlights certain interesting properties of
filter(). For example, clause L4 says that if the head element of the list was
processed and kept in the list (this is the only way i �= h can hold), then j
becomes an immediate predecessor of i . Clause L7 says that all the elements x3
reachable from h and not satisfying C must occur after j .

Experimental Evaluation. We implemented PDR∀ on top of the decision pro-
cedure of [32], and applied it to a collection of procedures that manipulate (pos-
sibly sorted) singly linked lists, doubly-linked lists, and multi-linked lists. Our
analysis successfully verified interesting specifications, detected bugs in incorrect
programs, and established the absence of universal invariants for certain correct
programs.

Main Contributions. The main contributions of this work can be summarized
as follows.

• We present PDR∀, a pleasantly simple, yet surprisingly powerful, combination
of PDR [9] with a strengthening technique based on diagrams [10]. PDR∀
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enjoys a high-degree of automation because it does not require pre-defined
abstraction predicates.

• The diagram-based abstraction is particularly interesting as it is determined
“on-the-fly” according to the structural properties of the bad states discovered
in PDR’s traversal of the state space.

• We prove that the diagram-based abstraction is precise in the sense that if
PDR∀ finds a spurious counterexample then the program cannot be proven
correct using a universal invariant. We believe that this is a unique feature of
our approach.

• We implemented PDR∀ on top of a decision procedure for logic AER [31], and
applied it successfully to verify a collection of list-manipulating programs,
detect bug, and prove the absence of universal invariants. We show that our
technique outperforms an existing state-of-the-art less-automatic PDR-based
verification technique [32] which uses the same decision procedure.

2 Preliminaries

Programs. We handle single loop programs, i.e., we assume that a program has
the form while Cond do Cmd , where Cmd is loop-free. We encode more com-
plicated control structures, e.g., nested or multiple loops, by explicitly recording
the program counter. For clarity, in our examples we allow for a sequence of
instructions preceding the loop. Technically, we encode their effect in the loop’s
pre-condition.

From Programs to Transition Systems. The semantics of a program is
described by a transition system, which consists of a set of states and transitions
between states.

Program States. We consider the states of the program at the beginning of
each iteration of the loop. A program state is represented by a first-order model
σ = (U , I) over a vocabulary V which consists of constants and relation symbols,
where U is the universe of the model, and I is the interpretation function of
the symbols in V. For example, to represent memory states of list manipulating
programs, we use a vocabulary V which associates every program variable x with
a constant x , every boolean field C with a unary predicate C (·), and every pointer
field n with a binary predicate n∗(·, ·) which represents its reflexive transitive
closure.1 We use a special constant null to denote the null value. We depict
memory states σ = (U , I) as directed graphs (see Fig. 2). Individuals in U ,
representing heap locations, are depicted as circles labeled by their name. We
draw an edge from the name of constant x and of a unary predicate C to an
individual v if σ |= x = v or σ |= C (v), respectively. We draw an n∗-annotated
edge between v and u if σ |= n∗(v , u). For clarity, we do not show edges that
can be inferred from the reflexive and transitive nature of n∗.
1 We reason about list-manipulating programs using logic EAR [32]. Hence, values of

pointer fields n are defined indirectly by a formula over n∗, but n is not included in
the vocabulary.
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Transition Relation. The set of transitions of a program is defined using a
transition relation. A transition relation is a set of models of a double vocabulary
V̂ = V � V ′, where vocabulary V is used to describe the source state of the
transition and vocabulary V ′ = {v ′ | v ∈ V} is used to describe its target state:
A model σ′ = (U , I ′) over V ′ describes a program state σ = (U , I), where
I(v) = I ′(v ′) for every symbol v ∈ V.

Definition 1 (Reduct). Let σ̂ = (U , I) be a model of V̂, and let Σ ⊆ V̂. The
reduct of σ̂ to Σ is the model (U , Ii) of Σ where for every symbol v ∈ Σ,
Ii(v) = I(v).

We often write a transition σ̂ as a pair of states (σ1, σ2), such that σ1 is the
reduct of σ̂ to vocabulary V, and σ2 is the state described by the reduct to V ′.
Each transition (σ1, σ2) describes one possible execution of the loop body, Cmd ,
i.e., it relates the state σ1 at the beginning of an iteration of the loop to the
state σ2 at the end of the iteration. We say that σ2 is a successor of σ1, and σ1

is a predecessor of σ2.

Properties and Assertions. Properties are sets of states. We express prop-
erties using logical formulae over V. For example, we express properties of
list-manipulation programs, e.g., their pre- and post-conditions, Pre and Post ,
respectively, using assertions written in a fragment of first-order logic with tran-
sitive closure. In our analysis, these assertions are translated into equisatisfi-
able first-order logic formulae [31]. We use (ϕ)′ to denote the formula obtained
by replacing every constant and relation symbol in formula ϕ with its primed
version.

Verification Problem. The transition system of a program is represented by
a pair TS = (Init , ρ), where Init is a first-order formula over V used to denote
the initial states of the program, and ρ is a formula over V̂ used to denote its
transition relation. A state σ is initial if σ |= Init , and a pair of states (σ1, σ2) is
a transition if (σ1, σ2) |= ρ. We say that a state is reachable by at most i steps of
ρ (or i -reachable for short, when ρ is clear from the context) if it can be reached
by at most i applications of ρ starting from some initial state. We denote the set
of i -reachable states by Ri . We say that a state is reachable if it is i -reachable for
some i . We say that TS satisfies a safety property P if all reachable states satisfy
P. We often define Bad def= ¬P, and refer to states satisfying Bad as bad states. We
define ρ

def= Cond ∧ wlp(Cmd , Id), where wlp(Cmd , Id) denotes the weakest lib-
eral precondition of the loop body and Id is a conjunction of equalities between
V and V ′ (see [31] for more details). We define Init and Bad using the pro-
grams pre- and post- conditions: Init def= Pre and Bad def= ¬Cond∧¬Post . That is,
a state is initial if it satisfies the pre-condition, and it is bad if it satisfies the
negation of the loop condition (which indicates termination of the loop) but does
not satisfy the post-condition. This captures the requirement that when the loop
terminates the post-condition needs to hold.
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Fig. 2. Graphical depiction of models found during the analysis of the running example.

Example 3. In Example 2, Init def=(i = h) ∧ (j = null) and Bad def=(i = null) ∧
¬(h �= null → (∀v .n∗(h, v) → C (v))). Note that these refer to the pre- and
post-conditions that should hold right before the loop begins and right after it
terminates, respectively. Here, a state is bad if i = null (i.e., it occurs when the
loop terminates) and h points to a non-empty list that contains an element not
having the property C .

Invariants. An invariant of a program is a property that should hold for all
reachable states. It is inductive if it is closed under application of ρ.

Definition 2 (Invariants). Let TS = (Init , ρ) be a transition system and P a
safety property over V. A formula I is a safety inductive invariant ( invariant,
in short) for TS and P if (i) Init ⇒ I, and (ii) I ∧ ρ ⇒ (I)′, and (iii) I ⇒ P.

If there exists an invariant for TS and P, then TS satisfies P. An invariant is
universal if it is equivalent to a universal formula in prenex normal form. We
note that the invariants inferred by PDR∀ are conjunctions of universal clauses,
where a universal clause is a universally quantified disjunction of literals (positive
or negative atomic formulae).

3 Universal-Property-Directed Reachability

In this section, we present Universal Property Directed Reachability (PDR∀),
an algorithm for checking if a transition system TS satisfies a safety prop-
erty P. PDR∀ is an adaptation of Bradley’s property-directed reachability
(IC3) algorithm [9] that uses universal formulae instead of propositional pred-
icates [9,22,29] or predicate abstraction [32]. We use Example 2 as a running
example throughout this section.

Requirements. We require that the transition relation ρ, as well as the Init and
Bad conditions, are expressible in a first-order logic L (We can partly handle
transitive closure using the approach of [31]. See Sect. 5.) We require that every
satisfiable formula in L has a finite model, and assume to have a decision pro-
cedure SAT (ψ), which checks if a formula ψ in L is satisfiable, and a function
model(ψ), which returns a finite model σ of ψ if such a model exists and None
otherwise.
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3.1 Diagrams as Structural Abstractions

PDR∀ iteratively strengthens a candidate invariant by retrieving program states
that lead to bad states and checking whether the retrieved states are reachable.
In that sense, PDR∀ is similar to IC3. The novel aspect of our approach is the
use of diagrams [10] to generalize individual states into sets of states before
checking for reachability. Diagrams provide a structural abstraction of states by
existential formulae: The diagram of a finite model σ, denoted by Diag(σ), is an
existential cube which describes explicitly the relations between all the elements
of the model.2

Definition 3 (Diagrams). Given a finite model σ = (U , I) over alphabet V,
the diagram of σ, denoted by Diag(σ), is a formula over alphabet V which denotes
the set of models in which σ can be isomorphically embedded. Diag(σ) is con-
structed as follows.

– For every element ei ∈ U , a fresh variable xei is introduced.
– ϕdistinct is a conjunction of inequalities of the form xei �= xej for every pair of

distinct elements ei �= ej in the model.
– ϕconstants is a conjunction of equalities of the form c = xe for every constant

symbol c such that σ |= c = e.
– ϕatomic is a conjunction of atomic formulae which include for every predicate

p ∈ V the atomic formula p(x̄e) if σ |= p(ē), and ¬p(x̄e) otherwise.

Then: Diag(σ) def= ∃xe1 . . . xe|U| .ϕdistinct ∧ ϕconstants ∧ ϕatomic .

Intuitively, one can think of Diag(σ) as the formula produced by treating individ-
uals in σ as existentially quantified variables and explicitly encoding the inter-
pretation of every constant and every predicate using a conjunction of equalities,
inequalities, and atomic formulae. For example, the diagram of σb , depicted in
Fig. 2(σb), is

Diag(σb)
def= ∃x0, x1, x2. x0 �= x1 ∧ x0 �= x2 ∧ x1 �= x2 ∧

h = x0 ∧ j = x1 ∧ i = x2 ∧ null = x2 ∧
¬C (x0) ∧ ¬C (x1) ∧ ¬C (x2) ∧
n∗x0x0 ∧ n∗x1x1 ∧ n∗x2x2 ∧ n∗x0x1 ∧
¬n∗x0x2 ∧ ¬n∗x1x0 ∧ ¬n∗x1x2 ∧ ¬n∗x2x0 ∧ ¬n∗x2x1 .

The first line records the fact that the universe of σb consists of three elements.
The second line characterizes the interpretations of all the constant symbols in
σb . The other lines capture precisely the interpretation of predicates C and n∗

in σb .

2 Definition 3, as well as the property formulated by Lemma 1, are an adaptation of
the standard model-theoretic notion of a diagram [10].
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Lemma 1. Let σ be a model over V, and let φ be a closed existential first-order
formula over V. If σ |= φ then Diag(σ) ⇒ φ.

Semantically, Lemma 1 means that for any models σ and σi such that σi |=
Diag(σ) if σ |= φ then σi |= φ. This implies that if a bad state is reachable from
σ and the program can be proven correct using an inductive universal invari-
ant I then all the states in σ’s diagram are unreachable too: I is an inductive
invariant, thus any state σ leading to a bad state must satisfy (closed existen-
tial) formula ¬I. Hence, Diag(σ) ⇒ ¬I, which means that all states satisfying
Diag(σ) are unreachable. In this sense, the abstraction based on diagrams is
precise for programs with universal invariants.

3.2 Data Structures and Frames

PDR∀ is shown in Algorithm 1. It uses procedures block() and analyzeCEX(),
shown in Algorithms 2 and 3, respectively, as subroutines. The algorithm uses an
array F of frames, where a frame is a conjunction of universal clauses. For clarity,
we refer to the ith entry of the array using subscript notation, i.e., Fi instead of
F [i ]. Intuitively, frame Fi over-approximates Ri , the set of i -reachable states.
The algorithm also maintains a frame counter N which records the number of
frames it developed. We refer to F0 as the initial frame, to FN as the frontier
frame, and to any Fi , where 0 ≤ i < N , as a back frame.

PDR∀ maintains several invariants which ensure that every frame Fi is an
over-approximation of Ri , and hence that the sequence of developed frames is
an over-approximation of all the traces of the program of length N + 1 or less.
Technically, this means that the algorithm constructs an approximate reachability
sequence.

Definition 4. Let TS = (Init , ρ) be a transition system and P a safety property.
A sequence 〈F0,F1, . . . ,FN 〉 is an approximate reachability sequence for TS and
P if:

(i) Init ⇒ F0.
(ii) Fi ⇒ Fi+1, for all 0 ≤ i < N , i.e., for every state σ, if σ |= Fi then

σ |= Fi+1.
(iii) Fi ∧ ρ ⇒ (Fi+1)′, for all 0 ≤ i < N , i.e., for every transition (σ1, σ2) |= ρ,

if σ1 |= Fi then σ2 |= Fi+1.
(iv) Fi ⇒ P, for all 0 ≤ i ≤ N .

Items (ii) and (iii) ensure that every frame includes the states of the previous
frame and their successors, respectively. Together with item (i), it follows by
induction that for every 0 < i ≤ N the set of states (models) that satisfy Fi is a
superset of the set Ri . Furthermore, by item (iv) no frame includes a bad state.
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Algorithm 1. PDR∀ (Init , ρ,Bad)
1 if SAT(Init ∧ Bad) then

2 exit invalid : model(Init ∧ Bad)

3 F0 := Init

4 F1 := true

5 N := 1

6 while true do

7 if there exists 0 ≤ j < N

such that Fj+1 ⇒ Fj then

8 return valid

9 if ¬SAT(FN ∧ Bad) then

10 FN+1 := true

11 N := N + 1

12 else

13 σb := model(FN ∧ Bad)

14 block(N , σb)

Algorithm 2. block(j , σ)
21 ϕ = Diag(σ)

22 if (j = 0) ∨ (j = 1 ∧ SAT(ϕ ∧ Init)) then

23 analyzeCEX(j ,N )

24 while SAT(Fj−1 ∧ ρ ∧ (ϕ)′) do

25 σa = reduct(model(Fj−1 ∧ ρ ∧ (ϕ)′))
26 block(j − 1, σa)

27 for i = 0 . . . j do

28 Fi := Fi ∧ ¬ϕ

Algorithm 3. analyzeCEX(j ,N )
31 if j = 0∧there exists σ0, . . . , σN such that

32 σ0 |= Init

33 (σi , σi+1) |= ρ for every 0 ≤ i < N , and

34 σN |= Bad

35 then exit invalid : σ0, . . . , σN

36 else exit No Universal Invariant Exists

3.3 Iterative Construction of an Approximate
Reachability Sequence

PDR∀ is an iterative algorithm. At every iteration, the algorithm either strength-
ens the N th frame, if it contains a bad state, or starts to develop the N +1th
frame, otherwise. In addition, in every iteration, it might also strengthen some
of the back frames. Each strengthening of frame Fi is performed by determining
a universal clause ϕi which holds for any i -reachable state, and then conjoining
Fi with ϕi .

Initialization. The algorithm first checks that the initial states and the bad
states do not intersect. If so, it exits and returns the state that satisfies both
Init and Bad as a counterexample (line 2). Otherwise, it sets F0 to represent the
set of initial states (line 3), F1 to represent all possible states (line 4), and the
frame counter to 1. Note that at this point, F1 is a trivial over-approximation
of the set of initial states and their successors, but it might contain bad states.

Iterative Construction. The algorithm then starts its iterative search for
an inductive invariant (line 6). Recall that when the algorithm develops the
N th frame, it has already managed to determine an approximate reachability
sequence 〈F0, . . . ,FN−1〉. Hence, every iteration starts by checking whether a
fixpoint has been reached (line 7).If true, then an inductive invariant proving
unreachability of Bad has been found, and the algorithm returns valid (line
8). Otherwise, the algorithm keeps on strengthening the frontier frame FN by
searching for a bad witness, a bad state in the frontier frame (line 9). If no
such state exists, it means that no bad state is N -reachable. Moreover, at this
point 〈F0, . . . ,FN 〉 is an approximate reachability sequence. Thus, the iterative
strengthening of FN terminates and a new frontier frame is initialized to true
(line 10 and 11).
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If the frontier frame contains a bad witness, i.e. FN ∧ Bad is satisfiable,
then there might be an N -reachable bad state. Due to our requirement for finite
satisfiability of the logic, the bad witness is a finite model. Given a bad witness
σb (line 13), the algorithm tries to determine whether it is indeed reachable, and
thus the program does not satisfy its specification, or whether σb was discovered
due to some over-approximation in one of the back frames. This check is done
by invoking procedure block() with the index of the frontier frame and σb as
parameters (line 14). The latter either returns a counterexample, determines
that it is impossible to prove the specification using a universal invariant (in the
given logic and vocabulary), or strengthens the frontier frame to exclude the set
of states in the diagram of σb , and possibly strengthens some back frames too
(see below). The iterative construction and strengthening of the frames continues
until reaching a fixpoint, finding a counterexample, or determining the absence
of a universal invariant.3

Example 4. When analyzing the running example, our algorithm discovers that
state σb , shown in Fig. 2, is a bad witness when F1 = true, and thus it invokes
block(1, σb). In this example, block() succeeds to block σb . Unfortunately, the
strengthened frame F 1

1 (see below) still has bad models. Therefore, the iterative
strengthening continues and the next iterations find σ′

b , depicted in Fig. 2, as
a bad witness model for F 1

1 , σ′′
b as a bad witness model of F 2

1 and σ′′′
b as a

bad witness model of F 3
1 . At that point, however, the algorithm determines

that the strengthened frame F 4
1 does not have a bad witness. 〈F0,F 4

1 〉 is now
an approximate reachability sequence and PDR∀ goes on and initializes a new
frame, F2, to true, and the search for an inductive invariant continues.

Diagram-Based Abstract Blocking. Procedure block(j , σ), shown in Algo-
rithm 2, gets an index of a frame j = 0 · · ·N and a state σ which is included in
the j th frame, i.e., σ |= Fj , and tries to determine whether σ is j -reachable. The
unique aspect of our approach is the way in which it abstracts σ to a set of states
in order to accelerate the strengthening routine. Namely, the use of diagrams.
More specifically, PDR∀ computes the diagram ϕ of σ (line 21) and then checks
whether there is a j -reachable state satisfying ϕ. Importantly, due to Lemma 1,
if a universal invariant exists then the generalization of σ to its diagram will not
include any reachable state, hence the abstraction is precise in the sense that it
maintains unreachability. In this case the strengthening of Fj is also guaranteed
to succeed, excluding not only σ, but its entire diagram.

The check if the diagram ϕ of σ includes a j -reachable state is done con-
servatively by determining whether some state of ϕ is an initial state or has a
predecessor in Fj−1. (Recall that Fj−1 over-approximates Rj−1.) The former is

3 For efficiency, in our implementation we represent each frame as a set of clauses (with
the meaning of conjunction) and check implication (line 7) by checking inclusion of
these sets. To facilitate this fixpoint computation, any clause ϕ in Fi that is inductive
in Fi , i.e., Fi ∧ρ ⇒ (ϕ)′ is also propagated forward to Fi+1. In particular, this allows
to initialize a new frontier frame FN , for 1 < N , to a tighter over-approximation of
RN than true (line 10) [22].
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equivalent to checking if ϕ∧ Init is satisfiable. Note that if we reached the initial
frame, i.e., if j = 0, then σ |= Init , hence the above formula is guaranteed to be
satisfiable. Explicitly checking that ϕ ∧ Init is satisfiable is required only at the
second frame, i.e., if j = 1:

Lemma 2. For every 1 < j ≤ N , when block(j , σ) is called, Fi ⇒ ¬Diag(σ) for
every i ≤ j − 1. In particular, Init ⇒ ¬Diag(σ).

If the algorithm finds an adverse initial state, i.e., an initial state satisfying ϕ,
(line 22),4 it invokes procedure analyzeCEX() for further analysis (see below).
Otherwise, the algorithm checks if the formula δ = Fj−1 ∧ ρ ∧ (ϕ)′ is satisfiable
(line 24),5 i.e., whether some state of ϕ has a predecessor in Fj−1. There can be
two cases:

Case I. If δ is unsatisfiable then no state represented by ϕ is j -reachable. Hence,
Fj remains an over-approximation of Rj even if any state of ϕ is excluded. The
exclusion is done by conjoining the j th frame with the universal formula ¬ϕ
(line 28), and results in a strengthening of Fj . In fact, ¬ϕ is conjoined to any
back frame (line 27). We refer to the exclusion of the states of ϕ as the blocking
of (the diagram of) σ from frame Fj .

Example 5. In our running example, in the first iteration block(1, σb) updates
F 0
1 to F 1

1 = true∧¬Diag(σb). This excludes σb , but also all states where i = null ,
C is empty, and j is n-reachable from h in any (nonzero) number of steps. In
later iterations block updates F 2

1 = F 1
1 ∧ ¬Diag(σ′

b), F
3
1 = F 2

1 ∧ ¬Diag(σ′′
b ), and

F 4
1 = F 3

1 ∧ ¬Diag(σ′′′
b ).

Case II. If δ is satisfiable, then there exists an adverse state σa in frame Fj−1,
a state which is the predecessor of some state of the diagram of σ that we try
to block at frame Fj . Note that σa is not necessarily a predecessor of σ itself.
The adverse state σa is found by taking the reduct of a (finite) model of δ (line
25). If an adverse model σa exists then the algorithm recursively tries to block it
from Fj−1 (line 26). The recursive procedure continues until the adverse state is
either blocked or the algorithm finds an adverse initial state (line 22). Note that
blocking an adverse state during the development of the N th frame leads to a
strengthening of some back frame Fi , and thus tightens its over-approximation
of Ri .

Finding Concrete Counterexamples and Proving the Absence of
Universal Invariants. Procedure analyzeCEX(), shown in Algorithm 3, is
called when an adverse initial state is found. Such a state indicates that an
abstract counterexample exists:

4 If Init is a universal formula, then Lemma 2 holds for j = 1 as well, hence j =
1 ∧ SAT (ϕ ∧ Init) never holds, and its check can be omitted (line 22).

5 As an optimization, one can consider δ′ = Fj−1 ∧ ¬ϕ ∧ ρ ∧ (ϕ)′ instead of δ. The
two formulae are equivalent since Fj−1 ⇒ ¬ϕ (by Lemma 2 for j > 1, and since it
was checked for j = 1), but the strenthening of δ can make the satisfiability check
cheaper.
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Definition 5 (Abstract and Spurious Counterexamples). A sequence of
formulae 〈φj , φj+1 · · · φN 〉 is an abstract counterexample if the formulae φj ∧
Init, φN ∧Bad, and ϕi ∧ρ∧ (φi+1)′, for every i = j · · ·N −1, are all satisfiable.
The abstract counterexample is spurious if there exists no sequence of states
〈σj , σj+1 · · · σN 〉 such that σj |= Init, σN |= Bad, and for every j ≤ i < N ,
(σi , σi+1) |= ρ.

An abstract counterexample does not necessarily describe a real counterex-
ample. In fact, if j �= 0, the counterexample is necessarily spurious (as, if a real
counterexample shorter than N had existed, the algorithm would have already
terminated during the development of the N −1th frame). However, when j = 0,
the algorithm determines if the abstract counterexample is real or spurious by
checking whether a bad state can be reached by N applications of the transition
relation (line 31). Technically, analyzeCEX() can be implemented using a sym-
bolic bounded model checker [5]. If a real counterexample is found, the algorithm
reports it (line 35). Otherwise, the obtained counterexample is spurious. Tech-
nically, this means that the property is neither verified nor falsified. In our case,
the algorithm can determine that the verification effort is doomed: The spurious
counterexample is in fact a proof for the absence of a universal invariant (see
Proposition 1).

Generalization of Blocked Diagrams. Rather than blocking a diagram φ
from frames 0 · · · j by conjoining them with the clause ¬φ (line 28), our imple-
mentation uses a minimal unsat core of ψ = ((Init)′ ∨ (Fj−1 ∧ρ))∧ (ϕ)′ to define
a clause L which implies ¬φ and is also disjoint from Init and unreachable from
Fj−1. Blocking is done by conjoining L with Fi for every i ≤ j .6

4 Correctness

In this section we formalize the correctness guarantees of PDR∀. We recall that
if PDR∀ terminates it reports that either the program is safe, the program is
not safe, providing a counterexample, or the program cannot be verified using a
universal inductive invariant.

Lemma 3. Let TS = (Init , ρ) be a transition system and let P be a safety
property. If PDR∀ returns valid then TS satisfies P. Further, if PDR∀ returns
a counterexample, then TS does not satisfy P.

Proof. PDR∀ returns valid if there exists i such that Fi+1 ⇒ Fi . Therefore,
Fi ∧ ρ ⇒ (Fi+1)′ ⇒ (Fi)′. Recall that, by the properties of an approximate
reachability sequence, Init ⇒ F0 ⇒ Fi and Fi ⇒ P. Therefore, Fi is an inductive
invariant, which ensures that TS satisfies P. The second part of the claim follows
immediately from the definition of a counterexample. �

6 We can also use inductive generalization, i.e., look for a minimal subclause L of ¬φ
that is still inductive relative to Fj−1, meaning ((Init)′ ∨ (Fj−1 ∧ L ∧ ρ)) ∧ (¬L)′ is
unsatisfiable.
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Proposition 1. Let TS = (Init , ρ) be a transition system and let P be a safety
property. If PDR∀ obtains a spurious counterexample 〈φj · · · φN 〉 then there exists
no universal safety inductive invariant I for TS and P.

Proof. Assume that there exists a universal safety inductive invariant I over V.
We show by induction on the distance N − i = 0 · · ·N , of Fi from FN that every
state σi generated by PDR∀ at frame Fi is such that σi |= ¬I. This implies,
by Lemma 1, that every diagram φi generated by PDR∀ at frame Fi is such
that φi ⇒ ¬I, and hence φi ⇒ ¬Init . (Recall that by definition Init ⇒ I,
i.e., ¬I ⇒ ¬Init). This contradicts the existence of a spurious counterexample,
where φj ∧ Init is satisfiable.

The base case of the induction pertains to FN . It follows immediately from
the property that a state σN generated at frame FN is a model of the formula
FN ∧ Bad , and in particular is a model of Bad = ¬P, i.e., σN |= ¬P. Since
I ⇒ P, or equivalently ¬P ⇒ ¬I, we conclude that σN |= ¬I.

Consider a state generated at frame Fi . Then σi is the reduct of a model of
the formula Fi ∧ ρ ∧ (Diag(σi+1))′ to V. Moreover, by the induction hypothesis,
σi+1 |= ¬I. Since ¬I is an existential formula, this means by Lemma1 that
Diag(σi+1) ⇒ ¬I. We conclude that Fi ∧ ρ ∧ (Diag(σi+1))′ ⇒ Fi ∧ ρ ∧ (¬I)′.
Therefore, σi is also (a reduct of) a model of the formula Fi ∧ ρ ∧ (¬I)′. If we
assume that σi |= I, we would get that I∧ρ∧(¬I)′ is satisfiable, in contradiction
I being inductive. Hence, σi |= ¬I. �

Example 6. Procedure traverseTwo(), presented in Figure 3 together with its
pre- and post-condition, traverses two lists until it finds their last elements. If
the lists have a shared tail then p and q should point to the same element when
the traversal terminates. The program indeed satisfies this property. However,
this cannot be proven correct using an inductive universal invariant: Take, as
usual, Init to be the procedure’s precondition and P to be the safety property
whose negation is Bad = (i = null ∧ j = null) ∧ ¬post , where post is the
procedure’s postcondition. Consider the state σ0 depicted in Figure 4. Clearly,
this model satisfies Init . Therefore, if I exists, σ0 |= I. σ0 is a predecessor of
σt
1 and hence it should be the case that σt

1 |= I. Now consider σ1, which is a
submodel of σt

1 and interprets all constants as in σ1. If I is universal, then σ1 |= I
as well. However, σ1 �|= P, in contradiction to the property of a safety invariant.
Indeed, when using PDR∀, the spurious counterexample 〈σ0, σ1, σ2〉 presented
in Figure 4 is obtained. This indicates that no universal invariant for P exists.
Note that state σ1 is a predecessor of σ2 and recall that σ0 is a predecessor of
σt
1. The spurious counterexample was obtained because σt

1 satisfies the diagram
of state σ1.

5 Implementation and Empirical Evaluation

PDR∀ is parametric in the vocabulary, and can be implemented on top of any
decision procedure for finite satisfiability of first-order logic formulae. The lan-
guage of these formulae should be expressive enough to capture the assertions,
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Fig. 3. A procedure that finds the last elements of two non-empty acyclic lists.

Fig. 4. A spurious counterexample found for procedure traverseTwo(), shown in
Fig. 3.

transition system, and space of candidate invariants. Our algorithm is not guar-
anteed to terminate, thus the underlying logic does not have to be decidable.
Our implementation, however, uses EAR which is a decidable logic [31].

EAR allows for relational first-order formulae with a quantifier prefix of the
form ∃∗∀∗ and a deterministic transitive-closure operator ∗, but forbids func-
tional symbols. We use n∗ to construct reachability constraints over the pointer
field n, e.g., in Examples1 and 2, and to define the “next” relation n [31] using
a universal formula. We note that The latter can be done only when the prefix
of the resulting formula is of the form ∃∗∀∗.

EAR satisfiability is reducible to effectively-propositional (EPR) satisfiability,
also known as the Bernays-Schönfinkel-Ramsey class, and hence is decidable
and enjoys the small model property, i.e., every satisfiable formula in EAR is
guaranteed to have a finite model. Technically, the reduction introduces axioms
(EPR formulae) that capture the reflexivity, transitivity, acyclicity and linearity
properties of the ∗ operator [31].

Benchmarks. We implemented PDR∀ and applied it to a collection of proce-
dures that manipulate singly-linked lists, doubly-linked lists, multi-linked lists,
and implementations of an insertion-sort algorithm [16], and a union-find algo-
rithm [16]. Our experiments were conducted using a 3.6GHz Intel Core i7
machine with 32GB of RAM, running Ubuntu 14.04. We used the 64bit version
of Z3 4.4 [19] with the default settings to check satisfiability of EPR formulae.
Table 1 summarizes our experimental results.

(a) Verification. Our analyzer successfully verified memory safety, i.e., the
absence of null-dereferences and of memory leaks, preservation of data-structure
integrity, meaning that the procedure never creates cycles in the list, and
functional correctness of several singly- and doubly-linked list manipulating
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Table 1. Experimental results. Running time is measured in seconds. N denotes the
highest index for a developed frame Fi . “# Z3” denotes the number of calls to Z3.
AF denotes “Abstraction Failure” of [32]. TO means timeout (> 1 hr). (a) Correct
programs; “# Cl. (∀)” = number of (∀-)clauses in the inferred invariant. (b) Cor-
rect programs for which there is no universal inductive invariant. (c) Incorrect pro-
gram; “C.e. size”is the maximal number of elements in a model that arises in the
counterexample.

Full Memory safety Memory safety [32]
(a) Verification Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀) Time N # Z3 # Cl. (∀)
— Singly-linked lists —
concat 2.1 3 59 7 (4) 1.5 4 59 5 (2) AF
delete 15 5 279 23 (12) 1.5 3 59 7 9.7 4 108 11
delete-all 16 6 300 16 (9) 0.6 3 37 3 (1) 2.7 3 60 6
filter 26 5 336 19 (12) 2.6 4 98 9 (1) 6.6 5 144 9
insert-at 1.9 3 70 9 (2) 1.6 4 60 9 (1) 7.8 5 157 10
insert 3.2 3 71 9 (2) 1.4 3 59 7 (1) 2.1 3 48 7
merge 201 6 1251 34 (22) 12 5 255 13 (3) AF
reverse 13 5 218 12 (7) 6.0 7 183 5 (1) 8.4 6 266 5
split 206 8 1143 36 (19) 9.6 6 216 13 24 6 186 10
uf-find 37 7 531 21 (13) 4.9 9 201 7 (2) 8.3 11 309 10
uf-union 77 6 618 26 (12) 79 8 819 22 (4) TO
— Sorted singly-linked lists —
sorted-insert 6.2 3 95 14 (6) 1.8 3 56 8 (1) 26 3 63 10
sorted-merge 655 8 1822 36 (22) 18 5 263 11 (3) AF
bubble-sort 112 11 931 24 (8) 2.0 5 53 4 (1) 3.5 6 54 2
insertion-sort 1934 14 4783 41 (18) 265 13 1878 37 (6) TO
— Doubly-linked lists —
create 15 6 195 9 (5) 5.5 6 135 7 (2) 47 3 43 6
delete 4.2 3 68 11 (4) 1.5 3 36 5 (2) 403 6 98 8
insert-at 8.0 5 130 15 (6) 2.7 3 60 10 (3) 439 5 208 16
— Composite linked-list structures —
nested-flatten 734 17 3018 34 (20) 262 14 1714 25 (10) AF
nested-split 278 9 930 25 (19) 7.3 4 152 9 (1) AF
overlaid-delete 163 6 918 26 (5) 60 5 518 23 (3) TO
ladder 117 7 723 30 (16) 9.2 6 152 13 (3) 12 4 70 7

(b) Absence of a universal invariant Description Time N Z3
shared-tail See Example6 3.6 2 42
comb See Section5(b) 2 3 52

(c) Bug finding Bug description Time N Z3 C.e. size
insert-at Precondition is too weak (omitted e �= null) 0.4 1 11 4
filter Forgot a corner case where ¬C (h) 3 1 21 4
insertion-sort Typo: typed j instead of i 5 4 68 4
sorted-merge Forgot to link the two segments 7.5 1 49 4

procedures. The precondition says that the expected input is a (possibly empty)
acyclic list, and the post-condition is the one expected from the procedure’s
name. For example, the post-condition of reverse() is that it returns a list com-
prised of the same elements as in its input, but in reversed order. To verify the
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absence of memory leaks, we used a unary predicate alloc(·) to record whether
a node is allocated. To verify the other properties, we used auxiliary predicates
to mark the elements of the input list and record the reachability order between
them.

We also verified the correctness of several procedures that manipulate
sorted lists: sorted-insert() inserts an element into its appropriate place in
a sorted list, sorted-merge() creates a sorted list by merging two sorted ones,
and bubble-sort() and insertion-sort() sort their input lists. We represented
the order on data elements by a binary predicate together with the appropriate
axioms.

In addition, we verified several procedures that manipulate multi-linked lists:
overlaid-delete() takes an overlaid list and deletes a given element. (Overlaid
lists use multiple pointer fields to index the same set of elements in different
orders.) nested-split() moves all the elements not satisfying C into a sub-
list. flatten() takes a nested list and flattens it by concatenating its sublists.
ladder() creates a copy t of a list h and places a pointer p from every element
in h to its counterpart in list t. We then verify that the p field of every element
in h points to a distinct element in list t. This property indicates, indirectly,
that both lists have the same length. Finally, we verify the union-find algorithm.
E.g., for compressing find() operation, we prove the it maintains the reachability
between every node and its root and preserves the elements.

We compared our results to [32], where EAR was used to verify properties
of list-manipulating programs with PDR, using human-supplied (universally-
quantified) abstraction predicates as templates. We note that [32] can also estab-
lish certain functional correctness properties, but theirs are strictly weaker than
ours. For example, they do not verify that a reversed list does not contain more
elements than in its input list.

(b) Verifying the Absence of Universal Invariants. Our tool was also able
to show that certain properties cannot be verified with a universal invariant. It
proved that procedure shared-tail(), described in Example 6, does not have a
universal invariant. We applied our tool to procedure comb(), which is a simplified
version of ladder() where the newly allocated elements are not linked together,
hence resulting in a heap shaped like a comb. The tool discovered that it is not
possible to use a universal invariant to prove that when comb() terminates there
is no null-valued p-field in the input list.

(c) Bug Finding. We also ran our analysis on programs containing deliberate
bugs. In all of the cases, the method was able to detect the bug and generate a
concrete trace in which the safety or correctness properties are violated.

6 Related Work

Synthesizing quantified invariants has received significant attention. Several
works have considered discovery of quantified predicates, e.g., based on coun-
terexamples [18] or by extension of predicate abstraction to support free vari-
ables [24,33]. Our inferred invariants are comprised of universally quantified
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predicates, but unlike these approaches, our computation of the predicates is
property directed and does not employ predicate abstraction. Additional works
for generation of quantified invariants include using abstract domains of quan-
tified data automata [25,26] or ones tailored to Presburger arithmetic with
arrays [20], instantiating quantifier templates [8,38], applying symbolic proof
techniques [30], or using abstractions based on separation logic [4,21].

Other works aim to identify loop invariants given a set of predicates as can-
didate ingredients. Houdini [23] is the first such algorithm of which we are aware.
Santini [39,40] is a recent algorithm which is based on full predicate abstraction.
In the context of IC3, predicate abstraction was used in [7,12,32], the last of
which specifically targeting shape analysis. In contrast to previous work, our
algorithm does not require a pre-defined set of predicates, and is therefore more
automatic: The diagrams provide an “on-the-fly” abstraction mechanism.

PDR has been shown to work extremely well in other domains, such as hard-
ware verification [9,22]. Subsequently, it was generalized to software model check-
ing for program models that use linear real arithmetic [29] and linear rational
arithmetic [11]. The latter employs a quantifier-elimination procedure for linear
rational arithmetic to provide an approximate pre-image operation. In contrast,
our use of diagrams allows us to obtain a natural approximation which is precise
for programs that can be verified using universal invariants.

The reduction we use into EPR creates a parametrized array-based system
(where the range of the arrays are Booleans). A number of tools have been
developed for general array-based systems. The SAFARI [3] system is relevant.
It is related to MCMT and Cubicle [14,15,27,28], SAFARI uses symbolic pre-
conditions to propagate symbolic states in the form of cubes that are conjunc-
tions of literals over array constraints, and uses interpolants to synthesize universal
invariants. Our method for propagating and inductively generalizing diagrams dif-
fers by being based on PDR.

The logic used by our implementation has limited capabilities to express
properties of list segments that that are not pointed to by variables [32]. This
is similar to the self-imposed limitations on expressibility used in a number of
shape analysis algorithms [4,21,34–37,41]. Past experience, as well as our own,
has shown that despite these limitations it is still possible to successfully analyze
a rich set of programs and properties.

7 Conclusions

PDR∀ is a combination of PDR/IC3 [9] with the model-theoretic notion of dia-
grams [10]. The latter provide PDR an aggressive strengthening scheme in which
the structural properties of a bad state are abstracted “on-the-fly” by a formula
describing all of its possible extensions, which are then blocked together within
the same iteration of PDR’s main refinement loop. This obviates the need for
user-supplied abstraction predicates. This form of automation is particularly
important when one tries to verify tricky programs, e.g., programs that manipu-
late unbounded data structures, against a variety (of possibly changing) specifi-
cations. Indeed, our implementation successfully analyzed multiple specifications
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of tricky list-manipulating programs, discovered counterexamples, and, uniquely
to our approach, showed that certain programs cannot be proven correct using a
universal invariant. Interestingly, we noticed that sometimes the tool had to work
harder to verify simple properties than when it was asked to verify complicated
ones. In particular, verifying partial correctness properties was done faster when
verified together with memory safety than without. In hindsight, this might not
be surprising due to the property guided nature of the analysis.

We are very pleased with the simplicity of our approach and believe that the
notion of diagram-based abstractions is particularly useful for the verification of
programs that manipulate unbounded state. In the future, we plan to apply it
in other contexts too, e.g., for the verification of network programs [1].
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