
The Hanoi Omega-Automata Format

Tomáš Babiak1, Frantǐsek Blahoudek1, Alexandre Duret-Lutz2,
Joachim Klein3(B), Jan Křet́ınský5, David Müller3, David Parker4,

and Jan Strejček1

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 LRDE, EPITA, Le Kremlin-Bicêtre, France

3 Technische Universität Dresden, Dresden, Germany
klein@tcs.inf.tu-dresden.de

4 University of Birmingham, Birmingham, UK
5 IST Austria, Klosterneuburg, Austria

Abstract. We propose a flexible exchange format for ω-automata, as
typically used in formal verification, and implement support for it in a
range of established tools. Our aim is to simplify the interaction of tools,
helping the research community to build upon other people’s work. A
key feature of the format is the use of very generic acceptance condi-
tions, specified by Boolean combinations of acceptance primitives, rather
than being limited to common cases such as Büchi, Streett, or Rabin.
Such flexibility in the choice of acceptance conditions can be exploited
in applications, for example in probabilistic model checking, and fur-
thermore encourages the development of acceptance-agnostic tools for
automata manipulations. The format allows acceptance conditions that
are either state-based or transition-based, and also supports alternating
automata.

1 Introduction

Finite automata over infinite words, ω-automata, play a crucial role in formal
verification. For instance, they are a key component in the automata-theoretic
approach to LTL model checking [21], where the property in question is encoded
as an ω-automaton. There is a long history of research and ongoing tool devel-
opment, trying to produce more compact automata in theory and in practice.

T. Babiak, F. Blahoudek, and J. Strejček have been supported by The Czech Science
Foundation, grant GBP202/12/G061. J. Klein and D. Müller have been supported
by the DFG through the collaborative research centre HAEC (SFB 912), the Excel-
lence Initiative by the German Federal and State Governments (cluster of excellence
cfAED and Institutional Strategy), the Graduiertenkolleg QuantLA (1763), and the
DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261). J. Křet́ınský
has been supported in part by the European Research Council (ERC) under grant
267989 (QUAREM), by the Austrian Science Fund (FWF) under grants S11402-
N23 (RiSE) and Z211-N23 (Wittgenstein Award), and by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007–2013) under REA grant agreement No 291734.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 479–486, 2015.
DOI: 10.1007/978-3-319-21690-4 31

480 T. Babiak et al.

Formats to represent ω-automata have mostly been defined in an ad-hoc
manner, tailored to their particular tools, setting and scope, and tend to be
restricted to a few specific acceptance conditions. For classical Büchi automata,
tools often use Spin’s never claims [8] (see Fig. 1(c)), or LBT’s format [17] (see
Fig. 1(b)), which can also represent generalized Büchi automata and which was
extended with transition-based acceptance by LBTT [19]. For Rabin and Streett
automata, the format of ltl2dstar [10] can be used, provided those automata
are complete, deterministic, and use state-based acceptance.

Fig. 1. A Büchi automaton for the LTL formula p0Up1 encoded in three formats.

The one format that covers most common acceptance conditions (Büchi, gen-
eralized Büchi, co-Büchi, Rabin, Streett, etc.) and automata structures (deter-
ministic, non-deterministic, and alternating) is the XML-based Goal File Format
(GFF) used internally by the Goal tool [20]. It uses specific encodings for the
different acceptance conditions. For instance, there is a special notation to define
the sets in each acceptance pair of Rabin conditions. This necessitates changes
to the format and its parsers when introducing new acceptance conditions and
makes acceptance-agnostic manipulations difficult.

Based on our experience as implementers of tools producing, consuming, and
manipulating ω-automata, we have set out to define a common, flexible, and
extensible format for representing ω-automata in a uniform way. The result is the
Hanoi Omega-Automata (HOA) format.1 A crucial feature is the introduction
of a generic way to specify the acceptance condition as an arbitrary Boolean
formula over the acceptance primitives “infinitely often” and “finitely often”,
covering the common acceptance conditions discussed so far and more.

Firstly, this approach facilitates the exchange and usage of new acceptance
conditions, which can provide important gains in efficiency. For instance, the
generalized Rabin condition [13] has led to an orders-of-magnitude speed-up
of probabilistic LTL model checking [3,12]. Secondly, it offers flexibility in the
1 The discussion about this format started during ATVA’13 in Hanoi, hence the name.

The Hanoi Omega-Automata Format 481

choice of acceptance conditions, which can again be quite beneficial in practice,
such as for deterministic Streett and Rabin automata [9], where there is an
exponential worst-case size difference in both directions [16].

Thirdly, arbitrary Boolean combinations of acceptance conditions can be
exploited. For example, building a deterministic automaton for an LTL formula
using a product of the automata constructed for its subformulas can be ben-
eficial in practice [9]. But this normally only works when the structure of the
formula and acceptance condition are aligned, e.g., conjunctive formulas and
a conjunctive acceptance condition such as Streett. With generic acceptance,
it becomes possible to compositionally construct automata using disjunction,
conjunction, and negation of deterministic automata with unrelated acceptance
conditions. For some verification problems, such as probabilistic model checking
of LTL in Markov chains, this generic acceptance condition can be used directly
for verification.

The HOA format offers flexibility in other respects too. It supports various
structural variants of ω-automata such as labels on states or transitions and
state-based or transition-based acceptance, and can describe deterministic, non-
deterministic, and alternating automata. Despite its generality, the format also
contains features that allow a concise and readable representation in special cir-
cumstances, such as when dealing with deterministic complete automata, where
the number of transitions per state is constant.

We have implemented support for the HOA format in various established
tools, as detailed in Sect. 3, and are already seeing several of the intended bene-
fits. Interaction between existing tools has become significantly easier: they are
no longer restricted by the particular format of automata used, but only by the
algorithms implemented to work with them. This shortens development time
and can bring performance gains, as described above. It also facilitates research
into new types of automata; for instance the intermediate co-Büchi alternating
automata built by ltl3ba can now be exported to an easily-readable format.
More generally, we hope to stimulate the development of acceptance-agnostic
tools for the automata construction pipeline, e.g., for doing structural transfor-
mations such as switching between state- and transition-based acceptance or for
reduction algorithms that do not rely on a particular acceptance condition.

2 Main Features of the HOA Format

The HOA format currently supports the following:

– deterministic, non-deterministic, and alternating ω-automata,
– both state-labelled and transition-labelled ω-automata,
– generic acceptance conditions, specified in a uniform and extensible way,
– both state-based and transition-based acceptance.

482 T. Babiak et al.

The format was also designed to:

– be succinct and human-readable,
– be extensible, by allowing additional information to be stored in the headers,
– support streaming, for processing automata in batches.

The full specification of the format and some examples can be found at http://
adl.github.io/hoaf/. Below, we discuss a few of the most important features.

As seen in Fig. 1(d), an automaton is defined in two parts: a header that
specifies the characteristics of the automaton, and a body that gives the tran-
sition structure, the labels of states or transitions (in square brackets), and the
acceptance sets (in curly brackets). Numbers in the body outside any brackets
always refer to states. Labels (in square brackets) are Boolean formulas over inte-
gers that index the atomic propositions listed in the AP: header. Using indices
instead of atomic propositions makes it easy to rename an atomic proposition,
and allows using arbitrarily long names without bloating the resulting file.

Header lines that start with a capital letter are supposed to affect the seman-
tics of the automaton, while header lines that start with a lower-case letter
are only informative. The HOA specification reserves a few header names, but
additional headers can be added as needed. This gives an easy and robust way
for automata producers to extend the format and emit additional information
about the automaton: Consumers that encounter a capitalized header they do
not understand should report an error, but can safely ignore a lower-case one.

The Acceptance line specifies the acceptance condition formally. This line
has the form “Acceptance: n acc”, where n gives the number of acceptance sets
used, subsequently named 0, . . . , n − 1, and acc is a formula built according to
the following grammar.

acc ::= f | t | Inf(s) | Inf(!s) | Fin(s) | Fin(!s) | acc&acc | acc|acc | (acc)

Above, s denotes one of the acceptance sets. Membership in these sets for states
and transitions is defined in the body of the automaton. A run satisfies an
acceptance primitive Inf(s) or Fin(s) iff it visits the acceptance set s infinitely
often or at most finitely often, respectively. The same notations with !s refer to
the complement of the set s.2 A run is accepting if it satisfies the acceptance
condition acc. We do not need a negation operator, as negation can be pushed
into the acceptance primitives, e.g., ¬Inf(s) is equivalent to Fin(s).

In the case of Fig. 1(d), there is only one acceptance set, and accepting runs
should visit this acceptance set infinitely often. In the body of the automaton,
state 1 is marked with {0}, meaning that it belongs to the set 0.

Rabin acceptance with 3 pairs of acceptance sets could be defined as follows:

Acceptance: 6 (Fin(0)&Inf(1))|(Fin(2)&Inf(3))|(Fin(4)&Inf(5))

Here, a run is accepting if it visits set 0 finitely and set 1 infinitely often, or set
2 finitely and set 3 infinitely often, or analogously for sets 4 and 5.
2 Readers familiar with LTL can interpret Inf(s), Fin(s), Inf(!s), Fin(!s) as mean-

ing GFps, FG¬ps, GF¬ps, FGps, where ps is the property “belongs to set s”.

http://adl.github.io/hoaf/
http://adl.github.io/hoaf/

The Hanoi Omega-Automata Format 483

Fig. 2. A (non-simplified) transition-based generalized deterministic Rabin automaton
for the LTL formula G(Fa ∧ XFb).

Figure 2 shows an example of a transition-based generalized deterministic
Rabin automaton (such as produced internally by ltl3dra before optimiza-
tions). Here, acceptance sets are expressed in terms of transitions. As a final
example, Fig. 3 shows an alternating transition-based co-Büchi automaton, such
as those studied in [18]. Alternation is supported by allowing a transition to
have multiple destinations. Runs over alternating automata are trees, and in
this example a run is accepting iff the only transition in the acceptance set 0 is
visited finitely often in all the branches, as specified by the Acceptance: line.
This example also demonstrates that states may be named.

In general, most of the tools that are the ultimate consumers of HOA
automata, such as model checkers, will employ algorithms restricted to particular
acceptance conditions. There are often multiple ways to syntactically structure
the acceptance condition. For example, the Rabin acceptance can be expressed
with the sets in the pairs swapped or complemented, as in [14]. Therefore, we
specify canonical expression and acceptance set indices for the common accep-
tance conditions, and an optional acc-name: header line which helps tools to
detect acceptance conditions they support. However, as discussed in the intro-
duction, some verification procedures can make direct use of generic acceptance
conditions.

3 Application Support

We have implemented support for HOA in a range of tools, with the current
status available at http://adl.github.io/hoaf/support.html, including links to
releases of each tool and a Live CD ISO for easy investigation of them all.

HOA Generation. Generating automata in the HOA format is now sup-
ported by several tools: ltl2dstar [10], which translates LTL to determinis-
tic Rabin or Street automata; ltl3ba [1], which generates Büchi automata,

http://adl.github.io/hoaf/support.html

484 T. Babiak et al.

Fig. 3. Alternating transition-based co-Büchi automaton for (Fa ∧ G(b ∧ Xc)) ∨ c.

transition-based generalized Büchi automata, and very weak alternating co-
Büchi automata; ltl3dra [2], which converts a fragment of LTL to determinis-
tic Rabin automata, transition-based generalized deterministic Rabin automata,
and very weak alternating co-Büchi automata; and Rabinizer3 [12], which
translates LTL into state- and transition-based variants of deterministic Rabin
automata and generalized deterministic Rabin automata.

Furthermore, Spot [6] offers many tools for generating automata in the HOA
format: ltl2tgba [5] can translate LTL/PSL into Büchi automata, transition-
based generalized Büchi automata or monitors; randaut generates random Büchi
automata, transition-based generalized Büchi automata or monitors; and finally
dstar2tgba converts deterministic automata in the dstar format into Büchi
automata, transition-based generalized Büchi automata or monitors. The Spot
tool autfilt filters, transforms, and converts formats for Büchi automata, gen-
eralized Büchi automata, and monitors and supports reading and writing HOA,
with ltldo wrapping other LTL/PSL-to-automata translators to convert their
input and output. This command and the previous one can be used to pro-
duce HOA output from existing tools that only output never claims or the LBT
format.

HOA Parsing. There are two parsers for the HOA format. The first, in
C++, is included in Spot and is able to read a stream of automata whose
format can be either HOA, LBT or never claim. This parser powers the tools
autfilt and ltldo (presented above), and also ltlcross [4] (a verifier for LTL
translators). At the time of writing, Spot does not yet support alternation.

The second is the jhoafparser library [11], which provides a Java-based
parser. This provides a convenient interface for applications to consume the
different elements of the HOA format, taking care of basic sanity checks. The
library is accompanied by a command-line tool that checks the well-formedness
of an automaton in the HOA format and performs basic manipulations.

HOA Import. We have extended the probabilistic model checker PRISM [15]
to interface with external tools for the conversion from LTL to deterministic
automata. This is done using the HOA format and jhoafparser. In parallel, we

The Hanoi Omega-Automata Format 485

have expanded PRISM’s ω-automata verification procedures: Markov chains can
now be model checked against generic acceptance conditions, giving producers of
deterministic automata full flexibility in terms of acceptance conditions. Markov
decision processes can be checked against both generalized or standard Rabin
acceptance conditions. As a result, we have successfully interfaced PRISM with
Rabinizer3, ltl2dstar, and ltl3dra.

4 Conclusion

We have presented a new format for ω-automata that supports generic accep-
tance conditions, and implemented it in several tools. Besides smoothing the
interaction between tools, this representation of acceptance conditions allows a
significant flexibility and performance increase, which has already been harnessed
in PRISM, and encourages tool developers to expand the range of supported
acceptance conditions. The HOA format has been developed openly on GitHub,
and an issue tracker keeps a public archive of our discussion and decisions. We
encourage other tool authors to report issues and suggest improvements.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata transla-
tion: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

2. Babiak, T., Blahoudek, F., Křet́ınský, M., Strejček, J.: Effective translation of LTL
to deterministic Rabin automata: beyond the (F,G)-fragment. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg
(2013)

3. Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H.
(eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)

4. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg
(2013)

5. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput.
Based Syst. 5(1/2), 31–54 (2014)

6. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In: MASCOTS 2004, pp. 76–83.
IEEE Computer Society Press (2004)

7. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: PSTV 1995, pp. 3–18. Chapman and Hall
(1996)

8. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2003)

9. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

10. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-
automata. In: Holub, J., Ždárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61.
Springer, Heidelberg (2007)

486 T. Babiak et al.

11. Klein, J., Müller, D.: The jhoafparser library (2015). http://automata.tools/hoa/
jhoafparser/

12. Komárková, Z., Křet́ınský, J.: Rabinizer 3: Safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235–241. Springer, Heidelberg (2014)

13. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012)

14. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deter-
ministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS,
vol. 834, pp. 378–386. Springer, Heidelberg (1994)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

16. Löding, C.: Optimal bounds for transformations of ω-automata. In: Pandu Rangan,
C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109.
Springer, Heidelberg (1999)

17. Rönkkö, M.: LBT: LTL to Büchi conversion. http://www.tcs.hut.fi/Software/
maria/tools/lbt/ (1999). Implements [7]

18. Tauriainen, H.: Automata and linear temporal logic: translation with transition-
based acceptance. Ph.D thesis, Helsinki University of Technology, Espoo, Finland,
Sept 2006

19. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi
automata. Int. J. Softw. Tools Technol. Transf. 4(1), 57–70 (2002)

20. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889.
Springer, Heidelberg (2013)

21. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

http://automata.tools/hoa/jhoafparser/
http://automata.tools/hoa/jhoafparser/
http://www.tcs.hut.fi/Software/maria/tools/lbt/
http://www.tcs.hut.fi/Software/maria/tools/lbt/

	The Hanoi Omega-Automata Format
	1 Introduction
	2 Main Features of the HOA Format
	3 Application Support
	4 Conclusion
	References

