
OptiMathSAT: A Tool for Optimization
Modulo Theories

Roberto Sebastiani and Patrick Trentin(B)

DISI, University of Trento, Trento, Italy
patrick.trentin@unitn.it

Abstract. Many SMT problems of interest may require the capability
of finding models that are optimal wrt. some objective functions. These
problems are grouped under the umbrella term of Optimization Modulo
Theories – OMT. In this paper we present OptiMathSAT, an OMT tool
extending the MathSAT5 SMT solver. OptiMathSAT allows for solv-
ing a list of optimization problems on SMT formulas with linear objective
functions –on the Boolean, the rational and the integer domains, and on
their combination thereof– including MaxSMT. Multiple objective func-
tions can be combined together and handled either independently, or
lexicographically, or in a min-max/max-min fashion.

OptiMathSAT ships with an extended SMT-LIBV2 input syntax
and C API bindings, and it preserves the incremental attitude of its
underlying SMT solver.

1 Introduction

SMT solvers are currently used as backend engines in many formal verification
(FV) tools for Hardware, Software and Hybrid Systems. Many SMT problems of
interest for FV or for other disciplines, however, require the capability of finding
models that are optimal wrt. some objective functions [6,8,9,11,13–16,18–20].
These problems are grouped under the umbrella term of Optimization Modulo
Theories – OMT.

For instance, in SMT-based model checking with timed or hybrid systems,
you may want to find executions which optimize the value of some parameter
while fulfilling/violating some property –e.g., to find the minimum opening time
interval for a railcrossing causing a safety violation. (See e.g. [19] for some exam-
ples.) Also, a recent application of OMT is the SMT-based computation of the
worst-case execution time (WCET) of loop-free programs [12], which finds tighter
over-approximations of the WCET than other state-of-the-art approaches.
A longer list of OMT applications in formal verification and in other disciplines
can be found in [8,11,14–16,19].

This work is supported by Semiconductor Research Corporation (SRC) under GRC
Research Project 2012-TJ-2266 WOLF. We thank Alberto Griggio for support with
MathSAT5 code.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 447–454, 2015.
DOI: 10.1007/978-3-319-21690-4 27



448 R. Sebastiani and P. Trentin

In this paper we present OptiMathSAT, an OMT tool extending the
MathSAT5 SMT solver [3,10], implementing the OMT procedures described
in [18–20]. OptiMathSAT allows for solving a list of optimization problems on
SMT formulas with linear objective functions –on the Boolean, the rational and
the integer domains, and on their combination thereof– including MaxSMT.
Multiple objective functions can be combined together and handled either inde-
pendently, or lexicographically, or in a min-max/max-min fashion. Like Math-
SAT5, it is freely available for research and evaluation purposes [4], and it is
currently used in some innovative projects (see Sect. 5).

Related Tools. Currently few other OMT tools exist. Closest to OptiMathSAT
are Symba [14] and the very-recent νZ [6,7], which are both built on top of Z3.
[14] considered the problem of optimizing multiple rational cost functions at the
same time. Symba uses the underlying SMT solver as black-box, and it features
additional ad hoc techniques for detecting unbounded costs and optimization.
νZ supports both single-objective linear optimization –over a real, integer or bit-
vector term – and multi-objective optimization in either boxed, lexicographic or
Pareto-optimization mode. It ships with several specialized engines for MaxSMT
and with pre-processing techniques that re-encode the 0-1 integer variables of
the input formula into Pseudo-Boolean or MaxSMT constraints. We refer the
reader to the related work section of [19] for a more-detailed analysis of other
OMT-related approaches and tools.

Content. This paper is structured as follows. Section 2 provides a brief outline
of OptiMathSAT architecture, followed by a description of its optimization
functionalities and interfaces in Sect. 3. Section 4 presents a short example, and
Sect. 5 reviews some recent interesting applications of OptiMathSAT. Section 6
concludes the paper with hints of some future developments. An extended version
of this paper, containing a performance evaluation and some more details, is
available from OptiMathSAT web page [4].

2 Architecture

OptiMathSAT is written in C++ and it is built as an extension of Math-
SAT5, which implements the standard lazy SMT paradigm (see [5]). Unlike
the OMT algorithms in [6,14], which are based on an offline architecture –in
which the SMT Solver is incrementally called multiple times as a black-box–
OptiMathSAT is based on an inline architecture –in which the SMT solver is
run only once and its internal SAT solver is modified to handle the search for
the optima [18–20]. Although harder to implement, the inline architecture has
showed better performance for OptiMathSAT than the offline one [18,19]. (We
refer the reader to [19] for a comparison of the two architectures.)

The optimization algorithm can explore the search space in linear-search
mode, by pruning one intermediate solution at a time, or in binary-search mode,
by introducing cuts bisecting the search space, or in adaptive-search mode, which



OptiMathSAT: A Tool for Optimization Modulo Theories 449

uses adaptive heuristics to choose among the linear- and binary-search modes at
each search step.

Some functionalities, such as the control loop for lexicographic optimization
and the assertion of soft clauses, are handled at a higher level of abstraction by
means of a combination of MathSAT5 and OptiMathSAT API calls.

3 Optimization Functionalities

OptiMathSAT is mainly a tool for (single- and multiple-objective) OMT with
linear objective functions OMT(LA∪T ) s.t. “LA” denotes linear arithmetic over
either the rationals (LRA), or the integers (LIA) or their combination LRIA,
and T denotes any other Nelson-Oppen theory supported by MathSAT5. For
each objective it is possible to specify both global and local bounds, if known.1

OptiMathSAT can use this information to explore the search space in binary
or in adaptive search mode, which might improve the overall performance of the
solver. We support objective functions over the rational, integer and Boolean
domains2, or their combinations.

Here we provide a brief list of OptiMathSAT optimization functionalities,
omitting the functionalities inherited from MathSAT5 [10]. A detailed descrip-
tion of the implemented algorithms is presented in [18–20].

3.1 Single-Objective Optimization

We discuss first the case in which we have only one objective function, namely
obj.

Linear Arithmetic Optimization over LRA, LIA and LRIA. Given some
term obj on LA, OptiMathSAT finds a solution (if any) which makes the
term obj minimum/maximum. This is based on a combination of SMT and
linear [integer] programming techniques.

Partial Weighted MaxSMT and SMT with Pseudo-Boolean Objec-
tives (PB-SMT). Given an input formula ϕh ∧ϕs, where ϕh contains hard
constraints and ϕs contains soft constraints with positive weights, the goal of
partial weighted MaxSMT [9,16] is to find a model M s.t. M |= ϕh∧ϕM

s and
ϕM
s is a subset of ϕs in which the soft-constraints have the largest cumulative

weight possible. Similarly, OptiMathSAT allows also for defining Pseudo-
Boolean objective functions in the form

∑
i wiψi, where wi are numerical

constants and ψi are sub-formulas.
Unlike with the procedures in [6,8,9,16], which use specialized algorithms

for MaxSMT/PB-SMT, OptiMathSAT works by encoding the problem
into the optimization of an LRA term, as described in [19]. This allows
for combining the MaxSMT terms with other objectives, as we describe in
Sect. 3.2.

1 Local bounds have a special use in boxed multi-objective optimization (see Sect. 3.2).
In single-objective and lexicographic optimization, they coincide with global bounds.

2 i.e. MaxSMT and SMT with Pseudo-Boolean objective functions.



450 R. Sebastiani and P. Trentin

Notice that it is possible to interrupt the search of OptiMathSAT (e.g., by
setting a timeout) and to still have access to the current sub-optimal solutions
and its model.

3.2 Multi-objective Combination

The interface of OptiMathSAT allows for combining multiple objective func-
tions obj1, ..., objN in various ways.

Multiple Independent Objectives [14]. (Aka Boxed Optimization [6].) Opti-
MathSAT can solve simultaneously N independent optimization problems
〈ϕ, obj1〉, ..., 〈ϕ, objN 〉, optionally building the corresponding optimum mod-
els M0, ...,MN .3 (In the empirical evaluation presented in [20], we showed
that using this optimization strategy can be considerably more efficient than
solving N single-objective optimization problems.) This option is the default
configuration.

Lexicographic Optimization. OptiMathSAT optimizes lexicographically
the objectives obj1, ..., objN by decreasing level of priority. If any objective
obji is unsatisfiable or unbounded, the search returns.

Min-max and Max-min. The goal of a min-max problem is to find the max-
imum value of an obj s.t.

∧N
i=0 (obj ≤ obji) ∧

∨N
i=0 (obji = obj), obj being

a fresh variable.4 Max-min is dual. OptiMathSAT provides syntactic-sugar
extensions to SMT-LIBv2 that allow for encoding this type of objectives.

Linear Combination. Obviously, one can also create objectives that are a
linear combination of other objectives obj1, ..., objN , i.e., obj =

∑N
i=1 wi ·obji.

We remark that all the above combinations hold for obji cost functions over every
domain, including Boolean. For instance, you can combine together MaxSMT
with OMT optimization over Integer or Real objectives.

3.3 Interfaces

Input Language. OptiMathSAT functions are accessible through a list
of commands, extending the SMT-LIBv2 syntax, which is shown in a concise
description in Fig. 1. Notice that, differently from νZ [7], in case of a MaxSMT
problem we require the user to build explicitly a minimization objective using the
ID associated with the asserted soft clauses, i.e., by writing “(minimize ID)”.
The advantage of this requirement is that we allow for arbitrary composition
of the MaxSMT objective with other linear arithmetic functions, which can
be useful in particular contexts (for instance, to build obj functions on mixed
Boolean/numeric domains, as with Linear Generalized Disjunctive Programming
(LGDP) problems [17]).
3 Since the N input problems are independent to one another, the local bounds of

each objective obji do not have any side effect on the feasible solutions of all other
objectives objj , as if the N problems were solved separately.

4 Notice that in the actual encoding we drop the “
∨

” part of the formula, since it is
unnecessary and may cause extra Boolean search.



OptiMathSAT: A Tool for Optimization Modulo Theories 451

Fig. 1. SMT-LIBv2 Optimization Extensions, square brackets corresponds to optional
parameters, whereas “|” stands for alternative choices.

Fig. 2. SMT-LIBv2 encoding of the problem.



452 R. Sebastiani and P. Trentin

C API. The optimization functions of OptiMathSAT are also available
through its C API, which extends that of MathSAT5 [3]. A detailed docu-
mentation of the C API, the SMT-LIBv2 language extensions and some usage
examples are accessible on OptiMathSAT website [4].

Incremental Interface. Like MathSAT5, OptiMathSAT provides a
push/pop interface for adding and removing objectives and pieces of formulas
from the formula stack, which allows for reusing information from one optimiza-
tion search to another to improve the global performance of the search [20].

4 Example

In Fig. 2 we present a toy example that illustrates how to encode a problem
into the extended SMT-LIBv2 language of OptiMathSAT. A small com-
pany urgently needs 250 units of some goods. Suppliers s1, s2, s3, s4 offer to
supply up to 250, 150, 100, 100 units of goods starting from the minimum quan-
tity of 50, 100, 100, 50 units respectively. Their prices are 23$, 21$, 20$, 10$ per
unit respectively. Our goal is (A) to minimize the overall purchase cost and, at
cost tie, (B) to maximize the number of suppliers.

A simple OMT encoding of the problem is shown in Fig. 2. In this exam-
ple there are two combinations of suppliers –s2, s4 and s1, s3, s4– from which
we can purchase the goods at the minimum cost of 4150$. Therefore, the tie is
broken by our secondary goal (B), which imposes our preference on the second
solution. The optimum model of a lexicographic optimization is always associ-
ated with the top-most objective on the internal stack. Since in this example
there are only two objectives, this objective can be selected by passing 1 to the
set-model command. As mentioned in Sect. 3.3, notice that we explicitly ask for
ignored suppliers, the label of the MaxSMT constraints, to be minimized.
OptiMathSAT solved the problem in 10ms.

5 Applications

We briefly mention two examples of recent applications –which are very inno-
vative in their respective domains– that have been technologically enabled by
OMT and use OptiMathSAT as backend automated-reasoning engine.

Structured Learning Modulo Theories. In Machine Learning applications,
performing inference and learning in hybrid domains –characterized by both
continuous and Boolean/discrete variables– is a particularly daunting task.
Structured Learning Modulo Theories (SLMT) [21] addresses the problem
by combining (Structured-Output) Support Vector Machines (SVNs) with
OMT, so that the latter plays the role of inference and separation oracle
for the former. The tool LMT implementing the SLMT method [2] uses
OptiMathSAT as backend OMT engine.



OptiMathSAT: A Tool for Optimization Modulo Theories 453

Automated Reasoning on Constrained Goal Models. Goal Models (GM)
are used in Requirements Engineering to represent software requirements,
objectives, and design qualities [22]. Constrained Goal Models (CGM) are a
novel, formal version of GM which are enriched with constraints so that to
handle preferences, numerical attributes and resources (e.g., scores, financial
cost, workforce, etc.). OptiMathSAT is used as a backend reasoning engine
of CGM-Tool [1], a tool for building and reasoning on CGMs, allowing for
automatically verifying the realizability of a CGM and for finding optimal
realizations according to some specified criterion.

6 Future Developments

We plan to extend OptiMathSAT capabilities along several directions. For
instance, we are interested into generalizing our implementation to support
objective functions extended on other theories, i.e. bit-vector. We are also
considering to add the possibility of combining multiple objectives for Pareto-
optimization. Finally, we plan to parallelize OMT so that to exploit the multi-
core architectures of modern CPUs.

References

1. CGM-Tool. www.cgm-tool.eu
2. LMT. http://disi.unitn.it/teso/lmt/lmt.tgz
3. MathSAT 5. http://mathsat.fbk.eu/
4. OptiMathSAT. http://optimathsat.disi.unitn.it/
5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-

ries. In: Handbook of Satisfiability, chap. 26, pp. 825–885. IOS Press (2009)
6. Bjorner, N., Phan, A.-D.: νZ - Maximal satisfaction with Z3. In: Proceedings

of SCSS. Invited presentation., Gammart, Tunisia, December 2014. EasyChair
Proceedings in Computing (EPiC). http://www.easychair.org/publications/?
page=862275542

7. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - An optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015, to appear)

8. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg
(2010)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to maxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

11. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments
for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
394–409. Springer, Heidelberg (2012)

www.cgm-tool.eu
http://disi.unitn.it/teso/lmt/lmt.tgz
http://mathsat.fbk.eu/
http://optimathsat.disi.unitn.it/
http://www.easychair.org/publications/?page=862275542
http://www.easychair.org/publications/?page=862275542


454 R. Sebastiani and P. Trentin

12. Henry, J., Asavoae, M., Monniaux, D., Mäıza, C.: How to compute worst-case
execution time by optimization modulo theory and a clever encoding of program
semantics. SIGPLAN Not. 49(5), 43–52 (2014)

13. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Minimal-model-
guided approaches to solving polynomial constraints and extensions. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 333–350. Springer, Heidelberg
(2014)

14. Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL. ACM Press (2014)

15. Manolios, P., Papavasileiou, V.: ILP modulo theories. In: Sharygina, N., Veith, H.
(eds.) CAV 2013. LNCS, vol. 8044, pp. 662–677. Springer, Heidelberg (2013)

16. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006)

17. Raman, R., Grossmann, I.: Modelling and computational techniques for logic based
integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

18. Sebastiani, R., Tomasi, S.: Optimization in SMT with LAQ Cost Functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012)

19. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Logics 16(2) (2015). doi:10.1145/2699915

20. Sebastiani, R., Trentin, P.: Pushing the envelope of optimization modulo theories
with linear-arithmetic cost functions. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 335–349. Springer, Heidelberg (2015)

21. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Arti-
ficial Intelligence (2015). http://disi.unitn.it/rseba/publist.html

22. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the Fifth IEEE International Conference on Requirements Engi-
neering, RE 2001, pp. 249–262. IEEE Computer Society (2001)

http://dx.doi.org/10.1145/2699915
http://disi.unitn.it/rseba/publist.html

	OptiMathSAT: A Tool for Optimization Modulo Theories
	1 Introduction
	2 Architecture
	3 Optimization Functionalities
	3.1 Single-Objective Optimization
	3.2 Multi-objective Combination
	3.3 Interfaces

	4 Example
	5 Applications
	6 Future Developments
	References


