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Abstract. Most common vulnerabilities in Web applications are due
to string manipulation errors in input validation and sanitization code.
String constraint solvers are essential components of program analy-
sis techniques for detecting and repairing vulnerabilities that are due
to string manipulation errors. For quantitative and probabilistic pro-
gram analyses, checking the satisfiability of a constraint is not sufficient,
and it is necessary to count the number of solutions. In this paper, we
present a constraint solver that, given a string constraint, (1) constructs
an automaton that accepts all solutions that satisfy the constraint, (2)
generates a function that, given a length bound, gives the total number
of solutions within that bound. Our approach relies on the observation
that, using an automata-based constraint representation, model count-
ing reduces to path counting, which can be solved precisely. We demon-
strate the effectiveness of our approach on a large set of string constraints
extracted from real-world web applications.

1 Introduction

Since many computer security vulnerabilities are due to errors in string manip-
ulating code, string analysis has become an active research area in the last
decade [3,9,12,17,31,36,38,39]. Symbolic execution is a well-known automated
bug detection technique which has been applied to vulnerability detection [28].
In order to apply symbolic execution to analysis of string manipulating pro-
grams, it is necessary to check satisfiability of string constraints [6]. Several
string constraint solvers have been proposed in recent years to address this prob-
lem [1,18,19,21,23,24,32,40].

This material is based on research sponsored by NSF under grant CCF-1423623 and
by DARPA under agreement number FA8750-15-2-0087. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA or the
U.S. Government. Part of this research was conducted while Tevfik Bultan was vis-
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There are two recent research directions that aim to extend symbolic exe-
cution beyond assertion checking. One of them is quantitative information flow,
where the goal is to determine how much secret information is leaked from a
given program [10,26,27,29], and another one is probabilistic symbolic execu-
tion where the goal is to compute probability of the success and failure paths in
order to establish reliability of the given program [7,13]. Interestingly, both of
these approaches require the same basic extension to constraint solving: They
require a model-counting constraint solver that not only determines if a con-
straint is satisfiable, but it also computes the number of satisfying instances.

In this paper, we present an automata-based model-counting technique for
string constraints that consists of two main steps: (1) Given a string constraint
and a variable, we construct an automaton that accepts all the string values for
that variable for which the string constraint is satisfiable. (2) Given an automa-
ton we generate a function that takes a length bound as input and returns the
total number of strings that are accepted by the automaton that have a length
that is less than or equal to the given bound.

Our constraint language can handle regular language membership queries,
word equations that involve concatenation and replacement, and arithmetic con-
straints on string lengths. For a class of constraints that we call pseudo-relational,
our approach gives the precise model-count. For constraints that are not in this
class our approach computes an upper bound. We implemented a tool called
Automata-Based model Counter for string constraints (ABC) using the app-
roach we present in this paper. Our experiments demonstrate that ABC is effec-
tive and efficient when applied to thousands of string constraints extracted from
real-world web applications.

Related Work: Our inspiration for this work was the recently proposed model-
counting string constraint solver SMC [25]. Similar to SMC, we also utilize gener-
ating functions in model-counting. However, due to some significant differences in
how we utilize generating functions, our approach is strictly more precise than
the approach used in SMC. For example, SMC cannot determine the precise
model count for a regular expression constraint such as x ∈ (a|b)∗|ab, whereas
our approach is precise for all regular expressions. More importantly, SMC can-
not propagate string values across logical connectives which reduces its precision.
For example, for a simple constraint such as (x ∈ a|b) ∨ (x ∈ a|b|c|d) SMC will
generate a model-count range which consists of an upper bound of 6 and a lower
bound of 2, whereas our approach will generate the exact count which is 4. More-
over, SMC always generates a lower bound of 0 for conjunctions that involve the
same variable. So, the range generated for (x ∈ a|b) ∧ (x ∈ a|b|c|d) would be
0 to 2, whereas our approach generates the exact count which is 2. The set of
constraints we handle is also larger than the constraints that SMC can handle. In
particular, we can handle constraints with replace operations which is common
in server-side input sanitization code.

There has been significant amount of work on string constraint solving in
recent years [1,15,18,19,21,23,24,28,32,40]. Some of these constraints solvers
bound the string length [21,23,28] whereas our approach handles strings of
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arbitrary length. None of these string constraint solvers provide model-counting
functionality. Our modal-counting constraint solver, ABC, builds on the
automata-based string analysis tool Stranger [36,38,39], which was determined
to be the best in terms of precision and efficiency in a recent empirical study for
evaluating string constraint solvers for symbolic execution of Java programs [20].
In addition to checking satisfiability, ABC also generates an automaton that
accepts all possible solutions and provides model-counting capability. To the
best of our knowledge, ABC is the only tool that supports all of these. In addi-
tion to enabling quantitative and probabilistic analysis by model counting, our
constraint solver also enables automated program repair synthesis by generating
a characterization of all solutions [2,37].

2 Automata Construction for String Constraints

In this section, we discuss how to construct automata for string constraints.
Given a constraint and a variable, our goal is to construct an automaton that
accepts all strings, which, when assigned as the value of the variable in the given
constraint, results in a satisfiable constraint.

2.1 String Constraint Language

We define the set of string constraints using the following abstract grammar:

F → C | ¬F | F ∧ F | F ∨ F (1)
C → S ∈ R (2)

| S = S (3)
| S = S . S (4)
| len(S) O n (5)
| len(S) O len(S) (6)
| contains(S, s) (7)
| begins(S, s) (8)
| ends(S, s) (9)
| n = indexof(S, s) (10)
| S = replace(S, s, s) (11)

S → v | s (12)
R → s | ε | R R | R | R | R∗ (13)
O → < | = | > (14)

where C denotes the basic constraints, n denotes integer values, s ∈ Σ∗ denotes
string values, ε is the empty string, v denotes string variables, . is the string
concatenation operator, len(v) denotes the length of the string value that is
assigned to variable v, and the string functions are defined as follows:
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– contains(v, s) ⇔ ∃s1, s2 ∈ Σ∗ : v = s1ss2
– begins(v, s) ⇔ ∃s1 ∈ Σ∗ : v = ss1
– ends(v, s) ⇔ ∃s1 ∈ Σ∗ : v = s1s
– n = indexof(v, s) ⇔ (contains(v, s) ∧ (∃s1, s2 ∈ Σ∗ : len(s1) = n ∧ v = s1ss2) ∧

(∀i < n : ¬(∃s1, s2 ∈ Σ∗ : len(s1) = i ∧ v = s1ss2))) ∨ (¬contains(v, s) ∧ n = −1)
– v = replace(v′, s1, s2) ⇔ (∃s3, s4, s5 ∈ Σ∗ : v′ = s3s1s4 ∧ v = s3s2s5 ∧ s5 =

replace(s4, s1, s2) ∧ (∀s6, s7 ∈ Σ∗ : v′ = s6s1s7 ⇒ len(s6) ≥ len(s3))) ∨
(¬contains(v′, s1) ∧ v = v′)

and the definitions of these functions when the string variable v is replaced with
a string constant are similar.

Given a constraint F , let VF denote the set of variables that appear in F . Let
F [s/v] denote the constraint that is obtained from F by replacing all appearances
of v ∈ VF with the string constant s. We define the truth set of the formula F
for variable v as �F, v� = {s | F [s/v] is satisfiable}.

We identify three classes of constraints: (1) Single-variable constraints are
constructed using at most one string variable (i.e., VF = {v} or VF = ∅), they
do not contain constraints of type (4), (6), and (11), and have a single variable
on the left hand side of constraints of type (3). (2) Pseudo-relational constraints:
are a set of constraints that we define in the next section, for which the truth
sets are regular (i.e., each �F, v� is a regular set). (3) Relational constraints are
the constraints that are not pseudo-relational constraints (truth sets of relational
constraints can be non-regular).

2.2 Mapping Constraints to Automata

A Deterministic Finite Automaton (DFA) A is a 5-tuple (Q,Σ, δ, q0, F ), where
Q = {1, 2, . . . , n} is the set of n states, Σ is the input alphabet, δ ⊆ Q × Q × Σ
is the state transition relation set, q0 ∈ Q is the initial state, and F ⊆ Q is the
set of final, or accepting, states.

Given an automaton A, let L(A) denote the set of strings accepted by A.
Given a constraint F and a variable v, our goal is to construct an automaton A,
such that L(A) = �F, v�.

Automata Construction for Single-Variable Constraints: Let us define an auto-
mata constructor function A such that, given a formula F and a variable v,
A(F, v) is an automaton where L(A(F, v)) = �F, v�. In this section we discuss
how to implement the automata constructor function A.

Consider the following string constraint F ≡ ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 over
the alphabet Σ = {0, 1}. Let us name the sub-constraints of F as C1 ≡ x ∈ (01)∗,
C2 ≡ len(x) ≥ 1, F1 ≡ ¬C1, where F ≡ F1 ∧ C2. The automata construction
algorithm starts from the basic constraints at the leaves of the syntax tree (C1

and C2), and constructs the automata for them. Then it traverses the syntax tree
towards the root by constructing an automaton for each node using the automata
constructed for its children (where the automaton for F1 is constructed using the
automaton for C1 and the automaton for F is constructed using the automata
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Fig. 1. (a) The syntax tree for the string constraint ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 and
(b) the automata construction that traverses the syntax tree from the leaves towards
the root.

for F1 and C2). Figure 1 demonstrates the automata construction algorithm on
our running example.

Let A(Σ∗),A(Σn),A(s), and A(∅) denote automata that accept the lan-
guages Σ∗, Σn, {s}, and ∅, respectively. We construct the automaton A(F, v)
recursively on the structure of the single-variable constraint F as follows:

– case VF = ∅ (i.e., there are no variables in F ): Evaluate the constraint F . If F ≡ true
then A(F, v) = A(Σ∗), otherwise A(F, v) = A(∅).

– case F ≡ ¬F1: A(F, v) is constructed using A(F1, v) and it is an automaton that
accepts the complement language Σ∗ − L(A(F1, v)).

– case F ≡ F1 ∧ F2 or F ≡ F1 ∨ F2: A(F, v) is constructed using A(F1, v) and
A(F2, v) using automata product, and it accepts the language A(F1, v) ∩ A(F2, v)
or A(F1, v) ∪ A(F2, v), respectively.

– case F ≡ v ∈ R: A(F, v) is constructed using regular expression to automata con-
version algorithm and accepts all strings that match the regular expression R.

– case F ≡ v = s: A(F, v) = A(s).
– case F ≡ len(v) = n: A(F, v) = A(Σn).
– case F ≡ len(v) < n: A(F, v) is an automaton that accepts the language {ε}∪Σ1 ∪

Σ2 ∪ . . . ∪ Σn−1.
– case F ≡ len(v) > n: A(F, v) is constructed using A(Σn+1) and A(Σ∗) and then

constructing an automaton that accepts the concatenation of those languages, i.e.,
Σn+1Σ∗.

– case F ≡ contains(v, s): A(F, v) is an automaton that is constructed using A(Σ∗)
and A(s) and it accepts the language Σ∗sΣ∗.

– case F ≡ begins(v, s): A(F, v) is constructed using A(Σ∗) and A(s), and it accepts
the language sΣ∗.

– case F ≡ ends(v, s): A(F, v) is constructed using A(Σ∗) and A(s), and it accepts
the language Σ∗s.

– case F ≡ n = indexof(v, s): Let Li denote the language ΣisΣ∗. Automata that
accept the languages Li can be constructed using A(Σi), A(s), and A(Σ∗).
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Then A(F, v) is the automaton that accepts the language ΣnsΣ∗ − ({ε} ∪ L1 ∪
L2 ∪ . . . ∪ Ln−1) which can be constructed using A(Σn), A(s), A(Σ∗), and the
automata that accept Li.

Pseudo-Relational Constraints: Pseudo-relational constraints are multi-variable
constraints. Note that, using multiple variables, one can specify constraints with
non-regular truth sets. For example, given the constraint F ≡ x = y . y, �F, x�
is not a regular set, so we cannot construct an automaton precisely recognizing
its truth set. Below, we define a class of constraints called pseudo-relational
constraints for which �F, v� is regular.

We assume that constraint F is converted to DNF form where F ≡ ∨n
i=1 Fi,

Fi ≡ ∧m
j=1 Cij , and each Cij is either a basic constraint or negation of a basic

constraint. The constraint F is pseudo-relational if each Fi is pseudo-relational.
Given F ≡ C1 ∧ C2 ∧ . . . ∧ Cn, where each Ci is either a basic constraint

or negation of a basic constraint, for each Ci, let VCi
denote the set of variables

that appear in Ci. We call F pseudo-relational if the following conditions hold:

1. Each variable v ∈ VF appears in each Ci at most once.
2. There is only one variable, v ∈ VF , that appears in more than one constraint Ci

where v ∈ VCi ∧ |VCi | > 1, and in each Ci that v appears in, v is on the left hand
side of the constraint. We call v the projection variable.

3. For all variables v′ ∈ VF other than the projection variable, there is a single con-
straint Ci where v′ ∈ VCi ∧ |VCi | > 1 and the projection variable v appears in Ci,
i.e., v ∈ VCi .

4. For all constraints Ci where |VCi | > 1, Ci is not negated in the formula F .

Many string constraints extracted from programs via symbolic execution
are pseudo-relational constraints, or can be converted to pseudo-relational con-
straints. The projection variable represents either the variable that holds the
value of the user’s input to the program (for example, user input to a web appli-
cation that needs to be validated), or the value of the string expression at a
program sink. A program sink is a program point (such as a security sensitive
function) for which it is necessary to compute the set of values that reach to
that program point in order to check for vulnerabilities.

For example, following constraint is a pseudo-relational constraint extracted
from a web application (regular expressions are simplified):

(x = y . z) ∧ (len(y) = 0) ∧ ¬(z ∈ (0|1)) ∧ (x = t) ∧ ¬(t ∈ 0∗)

Automata Construction for Pseudo-Relational Constraints: Given a pseudo-
relational constraint F and the projection variable v, we now discuss how to
construct the automaton A(F, v) that accepts �F, v�. As above, we assume that
F is converted to DNF form where F ≡ ∨n

i=1 Fi, Fi ≡ ∧m
j=1 Cij , and each Cij is

either a basic constraint or negation of a basic constraint.
In order to construct the automaton A(F, v) we first construct the automata

A(Fi, v) for each Fi where A(Fi, v) accepts the language �Fi, v�. Then we com-
bine the A(Fi, v) automata using automata product such that A(F, v) accepts
the language �F1, v� ∪ �F2, v� ∪ . . . ∪ �Fm, v�.
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Since we discussed how to handle disjunction, from now on we focus on
constraints of the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn where each Ci is either a
basic constraint or negation of a basic constraint. For each Ci, let VCi

denote
the set of variables that appear in Ci. If VCi

is a singleton set, then we refer to
the variable in it as vCi

.
First, for each single-variable constraint Ci that is not negated, we construct

an automaton that accepts the truth set of the constraint Ci, �Ci, vCi
�, using the

techniques we discussed above for single-variable constraints. If Ci is negated,
then we construct the automaton that accepts the complement language Σ∗ −
�Ci, vCi

� (note that, only single-variable constraints can be negated in pseudo-
relational constraints). Let us call these automata A(Ci, vCi

) (some of which
may correspond to negated constraints).

Then, for any variable v′ ∈ VF that is not the projection variable, we con-
struct an automaton A(F, v′) which accepts the intersection of the languages
A(Ci, v

′) for all single-variable constraints that v′ appears in, i.e., L(A(F, v′)) =⋂
VCi

={v′} L(A(Ci, v
′)).

Next, for each multi-variable constraint Ci we construct an automaton that
accepts the language �Ci, v� where v is the projection variable as follows:

– case Ci ≡ v = v′: A(Ci, v) = A(F, v′).
– case Ci ≡ v = v1 . v2: A(Ci, v) is constructed using the automata A(F, v1) and

A(F, v2) and it accepts the concatenation of the languagesL(A(F, v1)) andL(A(F, v2)).
– case Ci ≡ len(v) = len(v′): Given the automaton A(F, v′), we construct an automa-

ton Alen(F,v′) such that s ∈ L(Alen(F,v′)) ⇔ ∃s′ : len(s) = len(s′) ∧ s′ ∈
L(A(F, v′)). Then, A(Ci, v) = Alen(F,v′).

– case Ci ≡ len(v) < len(v′): Given the automaton A(F, v′) we find the length of the
maximum word accepted by A(F, v′), which is infinite if A(F, v′) has a loop that
can reach an accepting state. If it is infinite then A(Ci, v) = A(Σ∗). If not, then
given the maximum length m, A(Ci, v) is the automaton that accepts the language
{ε} ∪ Σ1 ∪ Σ2 ∪ . . . ∪ Σm−1. Note that if m = 0 then A(Ci, v) = A(∅).

– case Ci ≡ len(v) > len(v′): Given the automaton A(F, v′) we find the length of the
minimum word accepted by A(F, v′). Given the minimum length m, A(Ci, v) is the
automaton that accepts the concatenation of the languages accepted by A(Σm+1)
and A(Σ∗), i.e., Σm+1Σ∗.

– case Ci ≡ v = replace(v′, s, s): Given the automaton A(F, v′) we use the construc-
tion presented in [38,39] for language based replacement to construct the automaton
A(Ci, v).

The final step of the construction is to construct A(F, v) using the automata
A(Ci, v) where L(A(F, v)) =

⋂
v∈VCi

L(A(Ci, v)).
For pseudo-relational constraints, the automaton A(F, v)) constructed based

on the above construction accepts the truth set of the formula F for the pro-
jected variable, i.e., L(A(F, v)) = �F, v�. However, the replace function has dif-
ferent variations in different programming languages (such as first-match versus
longest-match replace) and the match pattern can be given as a regular expres-
sion. The language-based replace automata construction we use [38,39] over-
approximates the replace operation in some cases, which would then result in
over-approximation of the truth set: L(A(F, v)) ⊇ �F, v�.
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Automata Construction for Relational Constraints: For constraints that are not
pseudo-relational, we extend the above algorithm to compute an over approxima-
tion of �F, v�. In relational constraints, more than one variable can be involved
in multi-variable constraints which creates a cycle in constraint evaluation.

Given a relational constraint in the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn, we
start with initializing each A(F, v) to A(Σ∗), i.e., initially variables are uncon-
strained. Then, we process each constraint as we described above to compute new
automata for the variables in that constraint using the automata that are already
available for each variable. We can stop this process at any time, and, for each
variable v, we would get an over-approximation of the truth-set A(F, v) ⊇ �F, v�.
We can state this algorithm as follows:

Algorithm 1. Automata For Constraint(F ≡ C1 ∧ C2 ∧ . . . ∧ Cn)

1: for v ∈ VF do
2: A(F, v) = A(Σ∗);
3: end for
4: count = 0; done = false;
5: while count < bound ∧ ¬done do
6: for each C ∈ F and v ∈ VC do
7: construct A′ where L(A′) = L(A(F, v)) ∩ L(A(C, v));
8: L(A(F, v)) = A′;
9: end for

10: if none of the L(A(F, v)) changed during the current iteration of the while loop
then

11: done = true;
12: end if
13: count = count + 1;
14: end while

In order to improve the efficiency of the above algorithm, we first build a con-
straint dependency graph where, 1) a multi-variable constraint Ci depends on a
single variable constraint Cj if VCj

⊆ VCi
, and 2) a multi-variable constraint Ci

depends on a multi-variable constraint Cj if VCj
∩VCi


= ∅. We traverse the con-
straints based on their ordering in the dependency graph and iteratively refine
the automata in case of cyclic dependencies. Note that, in the constructions we
described above we only constructed automaton for the variable on the left-hand-
side of a relational constraint using the automata for the variables on the right-
hand-side of the constraint. In the general case we need to construct automata
for variables on the right-hand-side of the relational constraints too. We do this
using techniques similar to the ones we described above. Constructing automata
for the right-hand-side variables is equivalent to the pre-image computations
used during backward symbolic analysis as discussed in [35] and we use the con-
structions given there. Finally, unlike pseudo-relational constraints, a relational
constraint can contain negation of a basic constraint Ci where |VCi

| > 1. In such
cases, in constructing the truth set of ¬Ci we can use the complement language
Σ∗ − �Ci, v� only if �Ci, v� is a singleton set. Otherwise, we construct an over
approximation of the truth set of ¬Ci.
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3 Automata-Based Model Counting

Once we have translated a set of constraints into an automaton we employ alge-
braic graph theory [5] and analytic combinatorics [14] to perform model counting.
In our method, model counting corresponds exactly to counting the accepting
paths of the constraint DFA up to a given length bound k. This problem can be
solved using dynamic programming techniques in O(k · |δ|) time where δ is the
DFA transition relation [11,16]. However, for each different bound, the dynamic
programming technique requires another traversal of the DFA graph.

A preferable solution is to derive a symbolic function that given a length
bound k outputs the number of solutions within bound k. To achieve this, we use
the transfer matrix method [14,30] to produce an ordinary generating function
which in turn yields a linear recurrence relation that is used to count constraint
solutions. We will briefly review the necessary background and then describe the
model counting algorithm.

Given a DFA A, consider its corresponding language L. Let Li = {w ∈ L :
|w| = i}, the language of strings in L with length i. Then L =

⋃
i≥0 Li. Define

|Li| to be the cardinality of Li. The cardinality of L can be computed by the sum
of a series a0, a1, . . . , ai, . . . where each ai is the cardinality of the corresponding
language Li, i.e., ai = |Li|.

For example, recall the automaton in Fig. 1. Let Lx be the language over Σ =
{0, 1} that satisfies the formula (x 
∈ (01)∗ ∧ LEN(x) ≥ 1). Then Lx is described
by the expression Σ∗−(01)∗. In the language Lx, we have zero strings of length 0
(ε 
∈ Lx), two strings of length 1 ({0, 1}), three strings of length 3 ({00, 10, 11}),
and so on. The sequence is then a0 = 0, a1 = 2, a2 = 3, a3 = 8, a4 = 15, etc. For
any length i, |Lx

i |, is given by a 3rd order linear recurrence relation:

a0 = 0, a1 = 2, a2 = 3
ai = 2ai−1 + ai−2 − 2ai−3 for i ≥ 3

(15)

In fact, using standard techniques for solving linear homogeneous recurrences,
we can derive a closed form solution to determine that

|Lx
i | = (1/2)(2i+1 + (−1)i+1 − 1). (16)

In the following discussion we give a general method based on generating func-
tions for deriving a recurrence relation and closed form solution that we can use
for model counting.

Generating Functions: Given the representation of the size of a language L as
a sequence {ai} we can encode each |Li| as the coefficients of a polynomial,
an ordinary generating function (GF). The ordinary generating function of the
sequence a0, a1, . . . , ai, . . . is the infinite polynomial [14,30]

g(z) =
∑

i≥0

aiz
i (17)

Although g(z) is an infinite polynomial, g(z) can be interpreted as the Taylor
series of a finite rational expression. I.e., we can also write g(z) = p(z)/q(z),
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where p(z) and q(z) are finite degree polynomials. If g(z) is given as a finite
rational expression, each ai can be computed from the Taylor expansion of g(z):

ai =
g(i)(0)

i!
(18)

where g(i)(z) is the ith derivative of g(z). We write [zi]g(z) for the ith Taylor
series coefficient of g(z). Returning to our example, we can write the generating
function for |Lx

i | both as a rational function and as an infinite Taylor series
polynomial. The reader can verify the following equivalence by computing the
right hand side coefficients via Eq. (18).

g(z) =
2z − z2

1 − 2z − z2 + 2z3
= 0z0 + 2z1 + 3z2 + 8z3 + 15z4 + . . . (19)

Generating Function for a DFA: Given a DFA A and length k we can compute
the generating function gA(z) such that the kth Taylor series coefficient of gA(z)
is equal to |Lk(A)| using the transfer-matrix method [14,30].

We first apply a transformation and add an extra state, sn+1. The resulting
automaton is a DFA A′ with λ-transitions from each of the accepting states of A
to sn+1 where λ is a new padding symbol that is not in the alphabet of A. Thus,
L(A′) = L(A) · λ and furthermore |Li(A)| = |Li+1(A′)|. That is, the augmented
DFA A′ preserves both the language and count information of A. Recalling the
automaton from Fig. 1, the corresponding augmented DFA is shown in Fig. 2(b).
(Ignore the dashed λ transition for the time being.)

Fig. 2. (a) The original DFA A, and (b) the augmented DFA A′ used for model counting
(sink state omitted).

From A′ we construct the (n + 1) × (n + 1) transfer matrix T . A′ has n + 1
states s1, s2, . . . sn+1. The matrix entry Ti,j is the number of transitions from
state si to state sj . Then the generating function for A is

gA(z) = (−1)n
det(I − zT : n + 1, 1)

z det(I − zT )
, (20)

where (M : i, j) denotes the matrix obtained by removing the ith row and jth

column from M , I is the identity matrix, detM is the matrix determinant, and
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n is the number of states in the original DFA A. The number of accepting paths
of A with length exactly k, i.e. |Lk(A)|, is then given by [zk]gA(z) which can be
computed through symbolic differentiation via Eq. 18.

For our running example, we show the transition matrix T and the terms
(I − zT ) and (I − zT : n, 1). Here, T1,2 is 1 because there is a single transition
from state 1 to state 2, T3,3 is 2 because there are two transitions from state 3
to itself, T2,4 is 1 because there is a single (λ) transition from state 2 to state 4,
and so on for the remaining entries.

T =

⎡

⎢⎢⎣

0 1 1 0
1 0 1 1
0 0 2 1
0 0 0 1

⎤

⎥⎥⎦ , I − zT =

⎡

⎢⎢⎣

1 −z −z 0
−z 1 −z −z
0 0 1 − 2z −z
0 0 0 1

⎤

⎥⎥⎦ , (I − zT : n, 1) =

⎡

⎣
−z −z 0
1 −z −z
0 1 − 2z −z

⎤

⎦

Applying Eq. (20) results in the same GF that counts Li(A) given in (19).

gA′(z) = −det(I − zT : n, 1)

z det(I − zT )
=

2z − z2

1 − 2z − z2 + 2z3
. (21)

Suppose we now want to know the number of solutions of length six. We compute
the sixth Taylor series coefficient to find that |Lx

6(A)| = [z6]g(z) = 63.

Deriving a Recurrence Relation: We would like a way to compute [zi]g(z) that is
more direct than symbolic differentiation. We describe how a linear recurrence for
[zi]g(z) can be extracted from the GF. Before we describe how to accomplish this
in general, we demonstrate the procedure for our example. Combining Eqs. (17)
and (21) and multiplying by the denominator, we have

2z − z2 = (1 − 2z − z2 + 2z3)
∑

i≥0

aiz
i.

Expanding the sum for 0 ≤ i < 3 and collecting terms,

2z − z2 = a0 + (a1 − 2a0)z + (a2 − 2a1 − a0)z
2 +
∑

i≥3

(ai − 2ai−1 − ai−2 + 2ai−3)z
i.

Comparing each coefficient of zi on the left side to the coefficient of zi on the
right side, we have the set of equations

a0 = 0
a1 − 2a0 = 2
a2 − 2a1 − a0 = −1
ai − 2ai−1 − ai−2 + 2ai−3 = 0, for i ≥ 3

One can see that this results in the same solution given in Eq. (15).
This idea is easily generalized. Recall that g(z) = p(z)/q(z) for finite degree

polynomials p and q. Suppose that the maximum degree of p and q is m. Then

g(z) =
bmzm + . . . + b1z + b0
cmzm + . . . + c1z + c0

=
∑

i≥0

aiz
i.
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Multiplying by the denominator, expanding the sum up to m terms, and com-
paring coefficients we have the resulting system of equations which can be solved
for {ai : 0 ≤ i ≤ m} using standard linear algebra:

i∑

j=0

cjai−j =

{
bi, for 0 ≤ i ≤ m
0, for i > m

For any DFA A, since each coefficient ai is associated with |Lk(A)|, the recur-
rence gives us an O(kn) method to compute |Lk(A)| for any string length bound
k. In addition, standard techniques for solving linear homogeneous recurrence
relations can be used to derive a closed form solution for |Li(A)| [22].

Counting All Solutions within a Given Bound: The above described method gives
a generating function that encodes each |Li(A)| separately. Instead, we seek a
generating function that encodes the number of all solutions within a bound. To
this end we define the automata model counting function

MCA(k) =

k∑

i≥0

|Li(A)|. (22)

In order to compute MCA(k) we make a simple adjustment. All that is needed
is to add a single λ-cycle (the dashed transition in Fig. 2(b)) to the accepting
state of the augmenting DFA A′. Then Lk+1(A

′) =
⋃k

i=0 Li(A) · λk−i and the
accepting paths of strings in Lk+1(A

′) are in one-to-one correspondence with the
accepting paths of strings in

⋃k
i=0 Li(A). Consequently, |Lk+1(A

′)| =
∑k

i=0 |Li(A)|
and so MCA(k) = |Lk+1(A

′)|. Hence, we can compute MCA using the recurrence
for |Li(A

′)| with the additional λ-cycle.

4 Implementation

We implemented Automata-Based model Counter for string constraints (ABC)
using the symbolic string analysis library provided by the Stranger tool [36,38,
39]. We used the symbolic DFA representation of the MONA DFA library [8] to
implement the constructions described in Sect. 2. In MONA’s DFA library, the
transition relation of the DFA is represented as a Multi-terminal Binary Decision
Diagram (MBDD) which results in a compact representation of the transition rela-
tion. ABC supports more operations (such as trim, substring) than the ones
listed in Sect. 2 using constructions similar to the ones given in that section.

ABC supports the SMT-LIB 2 language syntax. We specifically added sup-
port for CVC4 string operations [24]. In string constraint benchmarks provided
by CVC4, boolean variables are used to assert the results of subformulas. In
our automata-based constraint solver, we check the satisfiability of a formula by
checking if its truth set is empty or not. We eliminated the boolean variables
that are only used to check the results of string operations (such as string equiva-
lence, string membership) and instead substituted the corresponding expressions
directly. We converted if-then-else structures into disjunctions. We also searched
for several patterns between length equations and word equations to infer the
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values of the string variables whenever possible (for example when we see the
constraint len(x) = 0 we can infer that the string variable x must be equal to
the empty string). These transformations allow us to convert some constraints
to pseudo-relational constraints that we can precisely solve. If these transforma-
tions do not resolve all the cyclic dependencies in a constraint then the resulting
DFA may recognize an over-approximation of all possible solutions.

We implemented the automata-based model counting algorithm of Sect. 3
by passing the automaton transfer matrix to Mathematica for computing the
generating function, corresponding recurrence relation, and the model count for
a specific bound. Because the DFAs we encountered in our experiments typi-
cally have sparse transition graphs, we make use of Mathematica’s powerful and
efficient implementations of symbolic sparse matrix determinant functions [33].

5 Experiments

To evaluate ABC we experimented with a set of Java application benchmarks,
SMT-LIB 2 translation of Kaluza JavaScript benchmarks, and several examples
from the SMC distribution. In our experiments we compared ABC to SMC [25]
and CVC4 [24]. We ran all the experiments on an Intel I5 machine with 2.5GHz
X 4 processors and 32 GB of memory running Ubuntu 14.041.

Table 1. Constraint characteristics

Table 1 shows the frequency of string operations from our string constraint
grammar that are contained in the ASE, Kaluza Small, and Kaluza Big bench-
mark sets. ASE benchmarks are from Java programs and represent server-side
code [20]. The Kaluza benchmarks are taken from JavaScript programs and
represent client-side code [28]. All three benchmarks have regular expression
membership (∈), concatenation (.), string equality (=), and length constraints.
However, the ASE benchmark contains additional string operations that are
typically used for input sanitization, like replace and substring.

Java Benchmarks. String constraints in these benchmarks are extracted from
7 real-world Java applications: Jericho HTML Parser, jxml2xql (an xml-to-sql
converter), MathParser, MathQuizGame, Natural CLI (a natural language com-
mand line tool), Beasties (a command line game), HtmlCleaner, and iText (a
PDF library) [20]. These benchmarks represent server-side code and employ
many input-sanitizing string operators such as replace and substring as seen
1

Results of our experiments are available at http://www.cs.ucsb.edu/∼vlab/ABC/.

http://www.cs.ucsb.edu/~vlab/ABC/
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in Table 1. These string constraints were generated by extracting program path
constraints through dynamic symbolic execution [20].

In [20], an empirical evaluation of several string constraint solvers is pre-
sented. As a part of this empirical evaluation, the authors use the symbolic string
analysis library of Stranger [36,38,39] to construct automata for path constraints
on strings. In order to evaluate the model counting component of ABC, we ran
their tool on the 7 benchmark sets and output the resulting automata whenever
the constraint is satisfiable. Out of 116,164 string path constraints, 66,236 were
found to be satisfiable and we performed model counting on those cases. The
constraints in Java benchmarks are all single-variable or pseudo-relational con-
straints. The resulting automata do not have any over-approximation caused by
relational constraints. As a measure of the size of the resulting automata, we
give the number of BDD nodes used in the symbolic transition relation repre-
sentation of MONA. The average number of BDD nodes for the satisfiable path
constraints is 69.51 and the size of the each BDD node is 16 bytes. For these
benchmarks our model-counter is efficient; the average running time of model
counting per path constraint is 0.0015 seconds and the resulting model-counting
recurrence is precise, i.e., gives the exact count for any given bound.

SMC and CVC4 are not able to handle the constraints in this data set since
they do not support sanitization operations such as replace.

SMC Examples. For a comparative evaluation of our tool with SMC, we used
the examples that are listed on SMC’s web page. We translated the 6 example
constraints listed in Table 2 into SMT-LIB2 language format that we support.
We inspected the examples to confirm that they are pseudo-relational, i.e., our
analysis generates a precise model-counting function for these constraints. We
compare our results with the results reported in SMC’s web page. The first
column of the Table 2 shows the file names of these example constraints. The
second column shows the bounds used for obtaining the model counts. The next
two columns show the log-scale SMC lower and upper bound values for the model
counts. The last column shows the log-scale model count produced by ABC. We
omit the decimal places of the numbers to fit them on the page. For all the cases
ABC generates a precise count given the bound. ABC’s count is exactly equal
to SMC’s upper bound for four of the examples and is exactly equal to SMC’s
lower bound for one example. For the last example ABC reports a count that is
between the lower and upper bound produced by SMC. Note that these are log
scaled values and actual differences between a lower and an upper-bound values
are huge. Although SMC is unable to produce an exact answer for any of these
examples, ABC produces an exact count for each of them.

JavaScript Benchmarks. We also experimented with Kaluza benchmarks
which were extracted from JavaScript code via dynamic symbolic execution [28].
These benchmarks are divided to a small and large set based on the sizes of the
constraints. These benchmarks have been used by both SMC and CVC4 tools.
ABC handles 19,731 benchmark constraints in the satisfiable small set with an
average of 0.32 seconds per constraint for model counting, whereas SMC handles
17,559 constraints with an average of 0.26 seconds per constraint. ABC handles
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Table 2. Log scaled comparison between SMC and ABC

bound SMC lower bound SMC upper bound ABC count

nullhttpd 500 3752 3760 3760

ghttpd 620 4880 4896 4896

csplit 629 4852 4921 4921

grep 629 4676 4763 4763

wc 629 4281 4284 4281

obscure 6 0 3 2

1,587 benchmark constraints in satisfiable big set with an average of 0.34 seconds
per constraint for model counting, whereas SMC handles 1,342 constraints with
an average of 5.29 seconds per constraint. We were not able to do a one-to-one
timing and precision comparison between ABC and SMC for each constraint due
to an error in the SMC data file (the mapping between file names and results is
incorrect).

Table 3. Constraint-solver comparison

ABC CVC4 ABC CVC4 ABC CVC4 ABC CVC4 ABC CVC4

sat - sat unsat-unsat sat-unsat unsat-sat sat-timeout

sat/small 19728 3 0 0 0

sat/big 1587 0 0 0 0

unsat/small 8139 3013 74 0 0

unsat/big 3419 5904 2385 0 2359

Satisfiability Checking Evaluation. We ran ABC on SMT-LIB 2 transla-
tion of the full set of JavaScript benchmarks. We put a 20-second CPU timeout
limit on ABC for each benchmark constraint. Table 3 shows the comparison
between ABC and the CVC4 [24] constraint solver based on the CVC4 results
that are available online. The first column shows the initial satisfiability clas-
sification of the data set by the creators of the benchmarks [28]. The next two
columns show the number of results that ABC and CVC4 agree. The last three
columns show the cases where ABC and CVC4 differ. Note that, since ABC
over-approximates the solution set, if the given constraint is not single-valued
or pseudo-relational, it is possible for ABC to classify a constraint as satisfi-
able even if it is unsatisfiable. However, it is not possible for ABC to classify a
constraint unsatisfiable if it is satisfiable. Out of 47,284 benchmark constraints
ABC and CVC4 agree on 41,793 of them. As expected ABC never classifies a
constraint as unsatisfiable if CVC4 classifies it as satisfiable. However, due to
over-approximation of relational constraints, ABC classifies 2,459 constraints as
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satisfiable although CVC4 classifies them as unsatisfiable. A practical approach
would be to use ABC together with a satisfiability solver like CVC4, and, given
a constraint, first use the satisfiability solver to determine the satisfiability of
the formula, and then use ABC to generate its truth set and the model counting
function.

The average automata construction time for big benchmark constraints is
0.44 seconds and for small benchmark constraints it is 0.01 seconds. CVC4 aver-
age running times are 0.18 seconds and 0.015 seconds respectively (excluding
timeouts). CVC4 times out for 2359 constraints, whereas ABC never times out.
For those 2359 constraints, ABC reports satisfiable. ABC is unable to handle
672 constraints; the automata package we use (MONA) is unable to handle the
resulting automata and we believe that these cases can be solved by modifying
MONA. For these 672 constraints; CVC4 times out for 29 of them, reports unsat
for 246 of them, and reports sat for 397 of them. There are also a few thousand
constraints from the Kaluza benchmarks that CVC4 is unable to handle.

6 Conclusions and Future Work

We presented a model-counting string constraint solver that, given a constraint,
generates: (1) An automaton that accepts all solutions to the given string con-
straint; (2) A model-counting function that, given a length bound, returns the
number of solutions within that bound. Our experiments on thousands of con-
straints extracted from real-world web applications demonstrates the effective-
ness and efficiency of the proposed approach. Our string constraint solver can
be used in quantitative information flow, probabilistic analysis and automated
repair synthesis. We plan to extend our automata-based model-counting app-
roach to Presburger arithmetic constraints using an automata-based representa-
tion for Presburger arithmetic constraints [4,34].
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